Science.gov

Sample records for fluorescence intensity multiple

  1. Fluorescence detection by intensity changes for high-performance thin-layer chromatography separation of lipids using automated multiple development.

    PubMed

    Cebolla, Vicente L; Jarne, Carmen; Domingo, Pilar; Domínguez, Andrés; Delgado-Camón, Aránzazu; Garriga, Rosa; Galbán, Javier; Membrado, Luis; Gálvez, Eva M; Cossío, Fernando P

    2011-05-13

    Changes in emission of berberine cation, induced by non-covalent interactions with lipids on silica gel plates, can be used for detecting and quantifying lipids using fluorescence scanning densitometry in HPTLC analysis. This procedure, referred to as fluorescence detection by intensity changes (FDIC) has been used here in combination with automated multiple development (HPTLC/AMD), a gradient-based separation HPTLC technique, for separating, detecting and quantifying lipids from different families. Three different HPTLC/AMD gradient schemes have been developed for separating: neutral lipid families and steryl glycosides; different sphingolipids; and sphingosine-sphinganine mixtures. Fluorescent molar responses of studied lipids, and differences in response among different lipid families have been rationalized in the light of a previously proposed model of FDIC response, which is based on ion-induced dipole interactions between the fluorophore and the analyte. Likewise, computational calculations using molecular mechanics have also been a complementary useful tool to explain high FDIC responses of cholesteryl and steryl-derivatives, and moderate responses of sphingolipids. An explanation for the high FDIC response of cholesterol, whose limit of detection (LOD) is 5 ng, has been proposed. Advantages and limitations of FDIC application have also been discussed. PMID:21145556

  2. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  3. Anomalous fluorescence line intensity in megavoltage bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Pereira, Nino; Litz, Marc; Merkel, George; Schumer, Joseph; Seely, John; Carroll, Jeff

    2009-11-01

    A Cauchois transmission crystal spectrometer intended for laser plasma diagnostics has measured an anomalous ratio between the fluorescence lines in megavoltage bremsstrahlung. When observed in reflection, Kα1 fluorescence is twice as strong as the Kβ line, as is usual. However, in forward-directed bremsstrahlung from a 2 MV end point linear accelerator with a tungsten converter, the Kα1 and Kβ fluorescence are approximately equal. The anomalous fluorescence line ratio, unity, reflects the large amount of fluorescence generated on the side of the converter where the electrons enter, and the differential attenuation of the fluorescence photons as they pass through the converter to opposite side. Understanding of fluorescence in megavoltage bremsstrahlung is relevant to the explanation of anomalous line ratios in spectra produced by high-energy electrons generated by intense femtosecond laser irradiation.

  4. The Development of Fluorescence Intensity Standards

    PubMed Central

    Gaigalas, A. K.; Li, Li; Henderson, O.; Vogt, R.; Barr, J.; Marti, G.; Weaver, J.; Schwartz, A.

    2001-01-01

    The use of fluorescence as an analytical technique has been growing over the last 20 years. A major factor in inhibiting more rapid growth has been the inability to make comparable fluorescence intensity measurements across laboratories. NIST recognizes the need to develop and provide primary fluorescence intensity standard (FIS) reference materials to the scientific and technical communities involved in these assays. The critical component of the effort will be the cooperation between the Federal laboratories, the manufacturers, and the technical personnel who will use the fluorescence intensity standards. We realize that the development and use of FIS will have to overcome many difficulties. However, as we outline in this article, the development of FIS is feasible.

  5. Manipulating fluorescence intensity with mechanical strains

    NASA Astrophysics Data System (ADS)

    Zhao, Weiwei; Bi, Kedong; Zhang, Hongze; Guo, Xitao; Ni, Zhenhua; Chen, Yunfei

    2015-01-01

    In this paper we show that the fluorescence of rhodamine 6G (R6G) can be manipulated by applying mechanical strains to gold nanoparticles (GNs) sandwiched in graphene/GNs/polydimethylsiloxane (graphene/GNs/PDMS) structure. The fluorescence intensity of R6G on the graphene/GNs/PDMS sample shows a gradual increase with the mechanical strain. However, the fluorescence intensity of R6G on the graphene/PDMS structure without the GNs buried in between is almost unchanged under the action of the external mechanical strain. Experiment results indicate that the gap distance change between the GNs is the main cause of the fluorescence intensity increase and graphene, as a passivation layer, does not block the energy transfer from R6G to GNs. Compared with that tuning the gap distance between GNs by preparing various GNs samples, applying macroscopic mechanical strain on GNs is a simple way to manipulate the fluorescence intensity of a specific material and brings a new perspective for optoelectronic applications.

  6. Highly intense fluorescence of novel carbon nanocrystals combined with a DNAzyme-assisted autocatalytic multiple amplification strategy for sensitive detection of thrombin.

    PubMed

    Wang, Xiaochun; Lu, Zhengkun; Tan, Lu; Jie, Guifen

    2016-05-10

    In this work, novel water-soluble carbon nanocrystals (CNCs) with excellent fluorescence were prepared, and successfully applied to sensitive fluorescence detection of thrombin by using an enzyme-assisted autocatalytic DNA recycling amplification strategy. PMID:27079442

  7. A model for multiexponential tryptophan fluorescence intensity decay in proteins.

    PubMed Central

    Bajzer, Z; Prendergast, F G

    1993-01-01

    Tryptophan fluorescence intensity decay in proteins is modeled by multiexponential functions characterized by lifetimes and preexponential factors. Commonly, multiple conformations of the protein are invoked to explain the recovery of two or more lifetimes from the experimental data. However, in many proteins the structure seems to preclude the possibility of multiple conformers sufficiently different from one another to justify such an inference. We present here another plausible multiexponential model based on the assumption that an energetically excited donor surrounded by N acceptor molecules decays by specific radiative and radiationless relaxation processes, and by transferring its energy to acceptors present in or close to the protein matrix. If interactions between the acceptors themselves and back energy transfer are neglected, we show that the intensity decay function contain 2N exponential components characterized by the unperturbed donor lifetime, by energy transfer rates and a probability of occurrence for the corresponding process. We applied this model to the fluorescence decay of holo- and apoazurin, ribonuclease T1, and the reduced single tryptophan mutant (W28F) of thioredoxin. Use of a multiexponential model for the analysis of the fluorescence intensity decay can therefore be justified, without invoking multiple protein conformations. Images FIGURE 1 PMID:8312471

  8. An optical microsensor to measure fluorescent light intensity in biofilms.

    PubMed

    Beyenal, Haluk; Yakymyshyn, Chris; Hyungnak, Jeon; Davis, Catherine C; Lewandowski, Zbigniew

    2004-09-01

    We have developed an optical microsensor to quantify fluorescent light intensity distribution in biofilms. The optical system consisted of a beam splitter, light couplers, filters and a spectrophotometer able to accept the fiberoptic cable to measure fluorescent light intensity. The emitted light, fluorescence from the biofilm, was collected at the tip of the optical microsensor and was transferred to a spectrophotometer via a fiberoptic cable. The total fluorescent light intensity was evaluated from the emission spectrum by numerical integration. The newly developed fiberoptic microsensor was tested using a Staphylococcus aureus strain producing yellow fluorescent protein (YFP) grown as biofilm. We used a 405-nm violet laser diode for excitation, and measured the emission intensity between 480 nm and 540 nm. The optical microsensor that quantifies fluorescent light intensity is a promising tool in biofilm research which often requires detection and quantification of fluorescent light intensity distribution generated by various fluorescent proteins. PMID:15279941

  9. Three Dimensional Fluorescence Imaging Using Multiple Light-Sheet Microscopy

    PubMed Central

    Mohan, Kavya; Purnapatra, Subhajit B.; Mondal, Partha Pratim

    2014-01-01

    We developed a multiple light-sheet microscopy (MLSM) system capable of 3D fluorescence imaging. Employing spatial filter in the excitation arm of a SPIM system, we successfully generated multiple light-sheets. This improves upon the existing SPIM system and is capable of 3D volume imaging by simultaneously illuminating multiple planes in the sample. Theta detection geometry is employed for data acquisition from multiple specimen layers. This detection scheme inherits many advantages including, background reduction, cross-talk free fluorescence detection and high-resolution at long working distance. Using this technique, we generated equi-intense light-sheets of thickness approximately with an inter-sheet separation of . Moreover, the light-sheets generated by MLSM is found to be 2 times thinner than the state-of-art SPIM system. Imaging of fluorescently coated yeast cells of size (encaged in Agarose gel-matrix) is achieved. Proposed imaging technique may accelerate the field of fluorescence microscopy, cell biology and biophotonics. PMID:24911061

  10. Complete suppression of the fluorophore fluorescence by combined effect of multiple fluorescence quenching groups: A fluorescent sensor for Cu²⁺ with zero background signals.

    PubMed

    Long, Lingliang; Wu, Yanjun; Wang, Lin; Gong, Aihua; Hu, Rongfeng; Zhang, Chi

    2016-02-18

    The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu(2+) was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu(2+), sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu(2+) concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu(2+) in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu(2+) in living cells. PMID:26826684

  11. Phycobiliprotein fusion proteins: versatile intensely fluorescent constructs

    NASA Astrophysics Data System (ADS)

    Glazer, Alexander N.; Cai, Yuping A.; Tooley, Aaron J.

    2004-06-01

    Since 1982, phycobiliproteins have served as fluorescent labels in a wide variety of cell and molecule analyses. The exceptional spectroscopic properties of these labels include very high absorbance coefficients and quantum yields, and large Stokes shifts. The spectroscopic diversity of these reagents is restricted to a subset of naturally occurring phycobiliproteins with stable assembly states in vitro, whose target specificity is generated by chemical conjugation to proteins or small molecules. The latter step generates heterogeneity. These limitations have been overcome by expressing various recombinant phycobiliprotein constructs in the cyanobacterium Anabaena sp. PCC7120. Modular recombinant phycobiliprotein-based labels were constructed with some or all of the following features (a) an affinity purification tag; (b) a stable oligomerization domain (to maintain stable higher order assemblies of the phycobiliprotein monomers at very low protein concentration); (c) a biospecific recognition domain. Such phycobiliprotein constructs are readily purified from crude cell extracts by affinity chromatography and used directly as fluorescent labels. To generate constructs for intracellular in vivo labeling, the entire pathways for the biosynthesis of the His-tagged holo- α (phycocyanobilin-bearing) subunit of phycocyanin (emission max. 641 nm) and of the His-tagged holo-α (phycobiliviolin-bearing) subunit of phycoerythrocyanin (emission max. 582 nm) were reconstituted in Escherichia coli.

  12. Zeeman degeneracy effects in collisional intense-field resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Cooper, J.; Ballagh, R. J.; Burnett, K.

    1980-01-01

    Resonance fluorescence due to intense laser fields from a Zeeman degenerate atom being perturbed by collisional interactions is calculated in the impact regime by using the quantum-fluctuation-regression theorem. Various interesting effects are found. For example, the scattered intensity spectrum for a J = 0 to J = 1 transition for polarization parallel to the laser polarization is essentially an asymmetric triplet, whereas for a perpendicular polarization due to collisions the spectrum is essentially a doublet (whose frequencies do not correspond with any of those of the triplet). Further, the width of the fluorescent component (whose frequency is close to the unperturbed frequency) actually decreases with increasing laser power.

  13. Dipyrrolylquinoxaline difluoroborates with intense red solid-state fluorescence.

    PubMed

    Yu, Changjiang; Hao, Erhong; Li, Tingting; Wang, Jun; Sheng, Wanle; Wei, Yun; Mu, Xiaolong; Jiao, Lijuan

    2015-08-21

    A set of organic fluorescent dyes of dipyrrolylquinoxalines (PQs ) and their BF2 complexes (BPQs ) were synthesized from commercial reagents, and were characterized by their X-ray structural analysis, and optical and electrochemical properties. BPQs showed intense broad absorption in the visible region in the solution-state. In comparison with that of PQs , there is an over 110 nm red-shift of the absorption maximum in the BPQs (up to 583 nm). Interestingly, dyes all exhibit red solid-state fluorescence with moderate to high fluorescence quantum yields except for PQ which showed bright yellow solid-state fluorescence. X-ray structures of BPQs showed the planar structure of quinoxaline with one pyrrole unit via the BF2 chelation and the almost perpendicular orientation of the uncoordinated pyrrole to the NBN core plane (the dihedral angle of 70-73°). The extended π-conjugation was in good agreement with the observed red-shift of the spectra. These dyes formed well-ordered intermolecular packing structures via the intermolecular hydrogen bonding between the N atoms of quinoxaline moieties and the NH units of adjacent pyrroles. The lack of π-π stacking in their crystal packing structures may explain the interestingly intense solid-state fluorescence of these dyes. PMID:26152609

  14. Multispectral excitation based multiple fluorescent targets resolving in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Guang, Huizhi; Pu, Huangsheng; Zhang, Jiulou; Bai, Jing; Luo, Jianwen

    2016-04-01

    Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and resolve multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. An algorithm based on independent component analysis (ICA) for multispectral excited FMT is proposed to resolve multiple fluorescent targets in this study. Fluorescent targets are excited by multispectral excitation, and the three-dimensional distribution of fluorescent yields under the excitation spectrum is reconstructed by an iterative Tikhonov regularization algorithm. Subsequently, multiple fluorescent targets are resolved from mixed fluorescence signals by employing ICA. Simulations were performed and the results demonstrate that multiple adjacent fluorescent targets can be resolved if the number of excitation wavelengths is not smaller than that of fluorescent targets with different concentrations. The algorithm obtains both independent components that provide spatial information of different fluorescent targets and spectral courses that reflect variation trends of fluorescent yields along with the excitation spectrum. By using this method, it is possible to visualize the metabolism status of drugs in different structure organs, and quantitatively depict the variation trends of fluorescent yields of each functional organ under the excitation spectrum. This method may provide a pattern for tumor detection, drug delivery and treatment monitoring in vivo.

  15. Intensity calibration and flat-field correction for fluorescence microscopes.

    PubMed

    Model, Michael

    2014-04-01

    Standardization in fluorescence microscopy involves calibration of intensity in reproducible units and correction for spatial nonuniformity of illumination (flat-field or shading correction). Both goals can be achieved using concentrated solutions of fluorescent dyes. When a drop of a highly concentrated fluorescent dye is placed between a slide and a coverslip it produces a spatially uniform field, resistant to photobleaching and with reproducible quantum yield; it can be used as a brightness standard for wide-field and confocal microscopes. For wide-field microscopes, calibration can be further extended to absolute molecular units. This can be done by imaging a solution of known concentration and known depth; the latter can be prepared by placing a small spherical lens in a diluted solution of the same fluorophore that is used in the biological specimen. PMID:24692055

  16. A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing.

    PubMed

    Ji, Xiaofan; Yao, Yong; Li, Jinying; Yan, Xuzhou; Huang, Feihe

    2013-01-01

    A supramolecular cross-linked network was fabricated and demonstrated to act as a multiple fluorescent sensor. It was constructed from a fluorescent conjugated polymer and a bisammonium salt cross-linker driven by dibenzo[24]crown-8/secondary ammonium salt host-guest interactions. Compared with the conjugated polymer, the network has weak fluorescence due to the aggregation of polymer chains. Thanks to the multiple stimuli-responsiveness of host-guest interactions, the fluorescence intensity of the system can be enhanced by four types of signals, including potassium cation, chloride anion, pH increase, and heating. Hence, the network can serve as a cation sensor, an anion sensor, a pH sensor, and a temperature sensor. It can be used in both solution and thin film. Interestingly, exposure of a film made from this supramolecular cross-linked network to ammonia leads to an increase of fluorescence, making it a good candidate for gas detection. PMID:23259828

  17. Lidar Tracking of Multiple Fluorescent Tracers: Method and Field Test

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Willis, Ron J.

    1992-01-01

    Past research and applications have demonstrated the advantages and usefulness of lidar detection of a single fluorescent tracer to track air motions. Earlier researchers performed an analytical study that showed good potential for lidar discrimination and tracking of two or three different fluorescent tracers at the same time. The present paper summarizes the multiple fluorescent tracer method, discusses its expected advantages and problems, and describes our field test of this new technique.

  18. A triple-color fluorescent probe for multiple nuclease assays.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Zhang, Chun-yang

    2015-06-01

    We develop a triple-color fluorescent probe which may function as a lab-on-a-DNA-molecule for simultaneous detection of multiple exonucleases/restriction endonucleases. This triple-color fluorescent probe can be further applied for the discrimination of seven exonucleases and four cell lines as well as the screening of various nuclease inhibitors. PMID:25940190

  19. The instantaneous light-intensity function of a fluorescent lamp

    NASA Astrophysics Data System (ADS)

    Gluskin, Emanuel; Topalis, Frangiskos V.; Kateri, Ifigenia; Bisketzis, Nikolas

    2006-05-01

    Using some simple physics and “system” considerations, the instantaneous light intensity function ψ(t) of a fluorescent lamp fed via a regular ballast from the 50 60 Hz line is argued to be ψ(t)=ψ+bp(t), where p(t) is the instantaneous power function of the lamp, and b is a constant, and experiment confirms this formula well. The main frequency of ψ(t), the very significant singularity of its waveform, and the relative intensity of the ripple, i.e., the depth of the modulation, are the focus. The results are important for research into the vision problem that some humans (autistic, but others, too) experience regarding fluorescent light. The inertia of the processes in the lamp which are responsible for the light emission, provides some nonzero emission at the instants when p(t) has zeros. The smaller the volume of the tube and the mass of the gas are, the more weakly the inertia of the processes is expressed, and the relatively smaller is ψ. However, it should be very difficult to theoretically obtain ψ(t), in particular ψ, from the very complicated physics of the low-pressure discharge in the tube. We conclude that ψ has to be connected with the (also easily measured) lamp's inductance. The work should attract more attention of the physicists to the properties of the common fluorescent lamps.

  20. Unmixing multiple adjacent fluorescent targets with multispectral excited fluorescence molecular tomography.

    PubMed

    Zhou, Yuan; Guang, Huizhi; Pu, Huangsheng; Zhang, Jiulou; Luo, Jianwen

    2016-06-20

    Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and unmix multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. A method based on independent component analysis for multispectral excited FMT was proposed in our previous study. It showed that double fluorescent targets with certain edge-to-edge distance (EED) could be unmixed by the method. In this study, the situation is promoted to unmix multiple adjacent fluorescent targets (i.e., more than two fluorescent targets and EED=0). Phantom experiments on the resolving ability of the proposed algorithm demonstrate that the algorithm performs well in unmixing multiple adjacent fluorescent targets in both lateral and axial directions. And also, we recovered the locational information of each independent fluorescent target and described the variable trends of the corresponding fluorescent targets under the excitation spectrum. This method is capable of unmixing multiple fluorescent targets with small EED but labeled with the same fluorochrome, and may be used in imaging of nonspecific probe targeting and metabolism of drugs. PMID:27409108

  1. Multiple stimulated emission fluorescence photoacoustic sensing and spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Gao, Fei; Qiu, Yishen; Feng, Xiaohua; Zheng, Yuanjin

    2016-07-01

    Multiple stimulated emission fluorescence photoacoustic (MSEF-PA) phenomenon is demonstrated in this letter. Under simultaneous illumination of pumping light and stimulated emission light, the fluorescence emission process is speeded up by the stimulated emission effect. This leads to nonlinear enhancement of photoacoustic signal while the quantity of absorbed photons is more than that of fluorescent molecules illuminated by pumping light. The electronic states' specificity of fluorescent molecular can also be labelled by the MSEF-PA signals, which can potentially be used to obtain fluorescence excitation spectrum in deep scattering tissue with nonlinearly enhanced photoacoustic detection. In this preliminary study, the fluorescence excitation spectrum is reconstructed by MSEF-PA signals through sweeping the wavelength of exciting light, which confirms the theoretical derivation well.

  2. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli

    PubMed Central

    Hur, Kwang-Ho; Mueller, Joachim D.

    2015-01-01

    The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell. PMID:26099032

  3. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  4. Quantitating Fluorescence Intensity From Fluorophore: Assignment of MESF Values

    PubMed Central

    Gaigalas, A. K.; Wang, Lili; Schwartz, Abe; Marti, Gerald E.; Vogt, Robert F.

    2005-01-01

    A procedure is presented to convert the comparison of measured fluorescence signals into a comparison of fluorescence yields (FY). The fluorescence yield, which is a property of a solution or a suspension, is defined as the product of the fluorophore concentration and the molecular quantum yield. The paper revises the measurement model which relates the measured fluorescence signal to the FY. The equality of FY of two solutions provides an equivalence between the concentrations of fluorophore in the two solutions. The equivalence is the basis for quantitation in terms of molecules of equivalent soluble fluorophore (MESF). The quantitation procedure starts with the measurement of fluorescence signals from a serial dilution of fluorescein solutions to obtain a calibration of a fluorometer. The fluorometer is used to measure the fluorescence signal of a suspension of microspheres with immobilized fluorescein isothiocyanate (FITC). The calibration is used to obtain the concentration of soluble fluorophores which gives the same fluorescence signal as the microsphere suspension. The number concentration of microspheres is measured and the equality of fluorescence yields is used to obtain the number of soluble fluorescein molecules equivalent to a single microsphere. PMID:27308107

  5. Correlation of conformational heterogeneity of the tryptophyl side chain and time-resolved fluorescence intensity decay kinetics

    NASA Astrophysics Data System (ADS)

    Laws, William R.; Ross, J. B. Alexander

    1992-04-01

    The time-resolved fluorescence properties of a tryptophan residue should be useful for probing protein structure, function, and dynamics. To date, however, the non-single exponential fluorescence intensity decay kinetics for numerous peptides and proteins having a single tryptophan residue have not been adequately explained. Many possibilities have been considered and include: (1) contributions from the 1La and 1Lb states of indole; (2) excited-state hydrogen exchange; and (3) environmental heterogeneity from (chi) 1 and (chi) 2 rotamers. In addition, it has been suggested that generally many factors contribute to the decay and a distribution of probabilities may be more appropriate. Two recent results support multiple species due to conformational heterogeneity as the major contributor to complex kinetics. First, a rotationally constrained tryptophan analogue has fluorescence intensity decay kinetics that can be described by the sum of two exponentials with amplitudes comparable to the relative populations of the two rotational isomers. Second, the multiple exponentials observed for tyrosine-containing model compounds and peptides correlate with the (chi) 1 rotamer populations independently determined by 1H NMR. We now report similar correlations between rotamer populations and fluorescence intensity decay kinetics for a tryptophan analogue of oxytocin. It appears for this compound that either (chi) 2 rotations do not appreciably alter the indole environment, (chi) 2 rotations are rapid enough to average the observed dependence, or only one of two possible (chi) 2 populations is associated with each (chi) 1 rotamer.

  6. Ambiguous dependence of fluorescence intensity of trees on chlorophyll concentration

    NASA Astrophysics Data System (ADS)

    Zavoruev, Valeriy V.; Zavorueva, Elena N.

    2014-11-01

    Using fluorimetry Junior PAM (Heinz Walz GmbH, Germany) fluorescence parameters of leaves Prinsepia sinensis, Crataegus chlorocarca M, Acer negúndo, Bétula péndula are studied. It was found that the dependence of maximum fluorescence (Fm) plants on the concentration of chlorophyll depends on the sampling method during of vegetation. The correctness of sampling proves during vegetation is substantiated.

  7. Coordinate-targeted fluorescence nanoscopy with multiple off states

    NASA Astrophysics Data System (ADS)

    Danzl, Johann G.; Sidenstein, Sven C.; Gregor, Carola; Urban, Nicolai T.; Ilgen, Peter; Jakobs, Stefan; Hell, Stefan W.

    2016-02-01

    Far-field super-resolution fluorescence microscopy discerns fluorophores residing closer than the diffraction barrier by briefly transferring them in different (typically ON and OFF) states before detection. In coordinate-targeted super-resolution variants, such as stimulated emission depletion (STED) microscopy, this state difference is created by the intensity minima and maxima of an optical pattern, causing all fluorophores to assume the off state, for instance, except at the minima. Although strong spatial confinement of the on state enables high resolution, it also subjects the fluorophores to excess intensities and state cycles at the maxima. Here, we address these issues by driving the fluorophores into a second off state that is inert to the excess light. By using reversibly switchable fluorescent proteins as labels, our approach reduces bleaching and enhances resolution and contrast in live-cell STED microscopy. Using two or more transitions to off states is a useful strategy for augmenting the power of coordinate-targeted super-resolution microscopy.

  8. INTER-LABORATORY STUDY OF CELLULAR FLUORESCENCE INTENSITY MEASUREMENTS WITH FLUORESCEIN-LABELED MICROBEAD STANDARDS

    EPA Science Inventory

    To determine the precision of cellular fluorescence intensity (FI) measurements derived from labeled microbead standards, FI results were compared from 43 different flow cytometers in 34 laboratories. ll laboratories analyzed prepared aliquots of fluoresceinated calf thymocyte nu...

  9. Theory of light quenching: effects of fluorescence polarization, intensity, and anisotropy decays.

    PubMed Central

    Kuśba, J; Bogdanov, V; Gryczynski, I; Lakowicz, J R

    1994-01-01

    Experimental studies have recently demonstrated that fluorescence emission can be quenched by laser light pulses from modern high repetition rate lasers, a phenomenon we call "light quenching." We now describe the theory of light quenching and some of its effects on the steady-state and time-resolved intensity and anisotropy decays of fluorophores. Light quenching can decrease or increase the steady-state or time-zero anisotropy. Remarkably, the light quenching can break the usual z axis symmetry of the excited-state population, and the emission polarization can range from -1 to +1 under selected conditions. The measured anisotropy (or polarization) depends upon whether the observation axis is parallel or perpendicular to the propagation direction of the light quenching beam. The effects of light quenching are different for a single pulse, which results in both excitation and quenching, as compared with a time-delayed quenching pulse. Time-delayed light quenching pulses can result in step-like changes in the time-dependent intensity or anisotropy and are predicted to cause oscillations in the frequency-domain intensity and anisotropy decays. The increasing availability of pulsed laser sources offers the opportunity for a new class of two-pulse or multiple-pulse experiments where the sample is prepared by an excitation pulse, the excited state population is modified by the quenching pulse(s), followed by time- or frequency-domain measurements of the resulting emission. PMID:7858140

  10. High-intensity xenon pulse light source for fluorescence excitation

    NASA Astrophysics Data System (ADS)

    Miyamoto, Makoto; Ueno, Kazuo

    1997-05-01

    A newly developed 60W xenon flash lamp, L6604 and L6605, achieves the goals of longer operating life, higher output, and improved light stability. It operates at 2 Joules per flash input energy with approximately a 4 microsecond flash duration. The stability achieved is 2-3 percent peak-to-peak during a lifetime of 5 X 10e7 flashes, which is almost double that of conventional xenon flash lamps. This newly developed xenon flashlamp should serve as an excellent light source for analytical cytology and other fluorescence instruments. It can function as a high output, stable excitation light source for conventional fluorescence or delayed luminescence with a CCD. Besides providing powerful and stable illumination for absorption analysis of cells on slides, this lamp eliminates the optical artifacts associated with vibration of the stage which often limit throughput. This paper will describe in detail performance improvements obtained from this newly developed xenon flash lamp.

  11. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  12. A precise Boltzmann distribution law for the fluorescence intensity ratio of two thermally coupled levels

    NASA Astrophysics Data System (ADS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Zhang, Zhiguo; Cao, Wenwu

    2016-06-01

    Noncontact monitoring temperature is very important in modern medicine, science, and technologies. The fluorescence intensity ratio (FIR) technique based on the Boltzmann distribution law exhibits excellent application potential, but the observed FIR deviates from the Boltzmann distribution law in the low temperature range. We propose a fluorescence intensity ratio relation FIR* = ηFIR by introducing a quantity η representing thermal population degree, which can be obtained from measured fluorescence decay curves of the upper emitting level. Using Eu3+ as an example, the method is confirmed that the deviated FIR is able to be corrected and return to follow the Boltzmann law.

  13. Determination of Some Non-sedating Antihistamines via Their Native Fluorescence and Derivation of Some Quantitative Fluorescence Intensity - Structure Relationships.

    PubMed

    El-Kommos, Michael E; El-Gizawy, Samia M; Atia, Noha N; Hosny, Noha M

    2015-11-01

    A validated simple, novel, and rapid spectrofluorimetric method was developed for the determination of some non-sedating antihistamines (NSAs); namely cetirizine (CTZ), ebastine (EBS), fexofenadine (FXD), and loratadine (LOR). The method is based on measuring the native fluorescence of the cited drugs after protonation in acidic media and studying their quantitative fluorescence intensity - structure relationships. There was a linear relationship between the relative fluorescence intensity and the concentration of the investigated drug. Under the optimal conditions, the linear ranges of calibration curves for the determination of the studied NSAs were 0.10-2.0, 0.20-6.0, and 0.02-1.0 [Formula: see text] for (CTZ, FXD), (EBS), and (LOR); respectively. The factors affecting the protonation of the studied drugs were carefully studied and optimized. The method was validated according to ICH guidelines. The suggested method is applicable for the determination of the four investigated drugs in bulk and pharmaceutical dosage forms with excellent recoveries (97.67-103.80%). Quantitative relationships were found between the relative fluorescence intensities of the protonated drugs and their physicochemical parameters namely: the pKa, log P, connectivity indexes (χ(v)) and their squares. Regression equations (76) were obtained and not previously reported. Six of these equations were highly significant and used for the prediction of RFI of the studied NSAs. PMID:26439930

  14. Diagnostic potential of fluorescence of formalin-fixed paraffin-embedded malignant melanoma and pigmented skin lesions: quantitative study of fluorescence intensity using fluorescence microscope and digital imaging.

    PubMed

    Chwirot, B W; Sypniewska, N; Swiatlak, J

    2001-12-01

    The background for this study was reports in the literature of stronger fluorescence observed visually for melanomas compared with benign naevi in formalin-fixed paraffin-embedded sections. Our objective was to carry out a quantitative study of the phenomenon and to investigate if such an approach could be used in the detection of melanomas. Microscopic digital imaging was used to measure quantitatively the fluorescence intensity in specimens from 50 malignant melanomas, four basal cell carcinomas and 58 benign lesions. The mean fluorescence intensity of the melanomas was considerably higher than of the other lesions. For melanomas, the intensity depended both on the distance from the skin surface and the distance from the centre of the lesion. A simple algorithm based on the intensity threshold correctly classified the melanomas with a sensitivity of 74% and a specificity of 59%. Quantitative measurements of the fluorescence of the pigmented skin lesions fixed with formalin and embedded in paraffin can be a useful auxiliary tool for differentiating melanoma from other pigmented lesions histopathologically. PMID:11725203

  15. Quantitating Fluorescence Intensity From Fluorophores: Practical Use of MESF Values

    PubMed Central

    Wang, Lili; Gaigalas, Adolfas K.; Abbasi, Fatima; Marti, Gerald E.; Vogt, Robert F.; Schwartz, Abe

    2002-01-01

    The present work uses fluorescein as the model fluorophore and points out critical steps in the use of MESF (Molecules of Equivalent Soluble Fluorophores) values for quantitative flow cytometric measurements. It has been found that emission spectrum matching between a reference solution and an analyte and normalization by the corresponding extinction coefficient are required for quantifying fluorescence signals using flow cytometers. Because of the use of fluorescein, the pH value of the medium is also critical for accurate MESF assignments. Given that the emission spectrum shapes of microbead suspensions and stained biological cells are not significantly different, the percentage of error due to spectrum mismatch is estimated. We have also found that the emission spectrum of a microbead with a seven-methylene linker between the fluorescein and the bead surface (bead7) provides the best match with the spectra from biological cells. Therefore, bead7 is potentially a better calibration standard for flow cytometers than the existing one that is commercially available and used in the present study.

  16. Mathematical Modeling of Tear Film Break up Modes and Fluorescent Intensity

    NASA Astrophysics Data System (ADS)

    Siddique, Javed; Braun, Richard; Begley, Carolyn; Winkeler, Adam; King-Smith, Peter E.

    2013-11-01

    The purpose of this study is to develop mathematical model for variables of interest in tear film break up (TBU) to compare with experimental images of TBU to better predict local values of tear film osmolarity and fluorescence during and following the TBU. Models are developed for local changes tear film thickness, insoluble surfactant concentration as well as osmolarity and fluorescein concentration inside the tear film. Fluorescence concentration was converted to fluorescent intensity using the expression involving film thickness and the full range of fluorescence as described by Nichols et al. (IOVS 2012). The fluorescent intensity response is a primary tool for visualizing the tear film thickness, and it is qualitatively different in the dilute vs concentrated regimes. Computed results over a wide range of fluorescein concentrations show that elevated surfactant concentration or evaporation rate led to thinner regions where TBU first occurs. The model predicts locally elevated concentration of osmolarity within areas of TBU and fluorescence intensity patterns very similar to computed thickness and the observed experimental results. The osmolarity may increase from 50 % to 1300 % of the isosmolar value, depending sensitively on the corneal permeability. Supported by Simons Foundation Grant 281839 (JIS), NSF Grant 1022706, NEI Grant 1RO1EY021794 (Begley), and NEI Grant RO1EY17951 (King-Smith).

  17. Multiple vibration intensities and frequencies for bone mineral density improvement.

    PubMed

    Ezenwa, Bertram; Burns, Edith; Wilson, Charles

    2008-01-01

    Devices that deliver controlled quantum vibration intensities at multiple frequencies (QVIMF) provide optimal stress to the musculoskeletal system for improved bone mineral density and muscle strength. This paper presents development of a QVIMF system and pilot study to determine device performance. Development is centered on specially-designed actuators that comprise multiple nodes of controlled and smooth, but variable rates of contact on a telescoping platform through sets of damping subsystems. The combination of specially-designed actuators and damping subsystems, powered by a DC controlled motor, delivers quantum busts of vibration at multiple frequencies resulting in whole body vibration. An initial feasibility study involved a 79 year old adult male. After IRB approval from both the University of Wisconsin-Milwaukee (UWM) and the Zablocki VA Medical Center, Milwaukee, the subject's bone mineral density (BMD) was measured by dual x-ray absorptimetry (DXA) at baseline. The subject then visited the UWM laboratory for two fifteen-minute vibration sessions per visit, three times a week for a total of 60 visits. Post-vibration BMD was again measured by DXA. Comparison pre- and post-vibration test results showed increases in BMD at the femoral neck, trochanter, total hip, forearm and lower lumbar spine (L1-4). PMID:19163635

  18. Narrow-Band Emitting Solid Fluorescence Reference Standard with Certified Intensity Pattern.

    PubMed

    Hoffmann, Katrin; Spieles, Monika; Bremser, Wolfram; Resch-Genger, Ute

    2015-07-21

    The development of a lanthanum-phosphate glass doped with several rare-earth-ions for use as solid fluorescence standard is described. The cuvette-shaped reference material which shows a characteristic emission intensity pattern upon excitation at 365 nm consisting of a multitude of relatively narrow emission bands in the wavelength region between 450 and 700 nm is intended for the day-to-day performance validation of fluorescence measuring devices. Evaluation of the fluorescent glass includes the determination of all properties which can affect its relative emission intensity profile or contribute to the uncertainty of the certified values like absorption spectra, fluorescence anisotropy, excitation wavelength, and temperature dependence of the spectroscopic features, homogeneity of fluorophore distribution, and photo- and long-term stability. Moreover, a certification procedure was developed including the normalization of the intensity profile consisting of several narrow emission bands and the calculation of wavelength-dependent uncertainties. Criteria for the design, characterization, and working principle of the new reference material BAM-F012 are presented, and possible applications of this ready-to-use fluorescence standard are discussed. PMID:26077510

  19. Fluorescence intensity positivity classification of Hep-2 cells images using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Sazali, Dayang Farzana Abang; Janier, Josefina Barnachea; May, Zazilah Bt.

    2014-10-01

    Indirect Immunofluorescence (IIF) is a good standard used for antinuclear autoantibody (ANA) test using Hep-2 cells to determine specific diseases. Different classifier algorithm methods have been proposed in previous works however, there still no valid set as a standard to classify the fluorescence intensity. This paper presents the use of fuzzy logic to classify the fluorescence intensity and to determine the positivity of the Hep-2 cell serum samples. The fuzzy algorithm involves the image pre-processing by filtering the noises and smoothen the image, converting the red, green and blue (RGB) color space of images to luminosity layer, chromaticity layer "a" and "b" (LAB) color space where the mean value of the lightness and chromaticity layer "a" was extracted and classified by using fuzzy logic algorithm based on the standard score ranges of antinuclear autoantibody (ANA) fluorescence intensity. Using 100 data sets of positive and intermediate fluorescence intensity for testing the performance measurements, the fuzzy logic obtained an accuracy of intermediate and positive class as 85% and 87% respectively.

  20. Multiphoton fluorescence microscopy: behavior of biological specimens under high-intensity illumination

    NASA Astrophysics Data System (ADS)

    Cheng, Ping C.; Lin, Bai-Ling; Kao, Fu-Jen; Sun, Chi-Kuang

    2000-07-01

    Recent development in multi-photon fluorescence microscopy, second and third harmonic generation microscopy (SHG and THG) and CARS open new dimensions in biological studies. Not only the technologies allow probing the biological specimen both functionally and structurally with increasing spatial and temporal resolution, but also raise the interest in how biological specimens respond to high intensity illumination commonly used in these types of microscopy. We have used maize leaf protoplast as a model system to evaluate the photo-induced response of living sample under high intensity illumination. It was found that cells can be seriously damaged by high intensity NIR irradiation even the linear absorption coefficient in low in these wavelengths. Micro-spectroscopy of single chloroplast also allows us to gain insight on the possible photo-damage mechanism. In addition to fluorescence emission, second harmonic generation was observed in the maize protoplasts.

  1. Fluorescence enhancement and multiple protein detection in ZnO nanostructure microfluidic devices.

    PubMed

    Sang, Chen-Hsiang; Chou, Shu-Jen; Pan, F M; Sheu, Jeng-Tzong

    2016-01-15

    In this study, different morphological ZnO nanostructures, those of sharp nanowires (NWs), rod NWs, and hexahedral-puncheon nanostructures, were grown in microfluidic channels on the same glass substrate. Characterizations of correspondent biomolecule binding properties were simulated and demonstrated. The surface was modified using 3-ammineopropyl-triethoxysilane (3-APTES) and biotin-N-hydroxysuccinimide ester (NHS-biotin). Different concentrations (4.17pM to 41.7nM) of dye-conjugated streptavidin were simultaneously infused through the second microfluidic channels, which lie 90° from the first microfluidic channels. The florescent intensity at the crossover areas showed good agreement with simulations, with sharp ZnO NWs exhibiting the largest dynamic range and the highest fluorescent intensity. We further characterize correspondent protein detection using sharp ZnO NWs. The surfaces of these ZnO NWs were modified with mouse immunoglobulin G (IgG), infused through the second microfluidic channels with dye-conjugated (Alexa 546) anti-mouse IgG in different concentrations. Concentrations ranging from 417fM to 41.7nM can be resolved using sharp ZnO NWs. Finally, multiple protein detection was demonstrated using a five-by-eight microfluidic channel array. Fluorescence images present clear multiple detections at the crossover areas when using the sharp ZnO NWs for simultaneous dye-conjugated anti-mouse IgG and dye-conjugated anti-rabbit IgG (Alexa 647) detection. PMID:26322591

  2. Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media

    PubMed Central

    Riley, Jason; Boukari, Hacène; Gandjbakhche, Amir; Nossal, Ralph

    2012-01-01

    Abstract. Fluorescence correlation spectroscopy (FCS) is increasingly being used to assess the movement of particles diffusing in complex, optically dense surroundings, in which case measurement conditions may complicate data interpretation. It is considered how a single-photon FCS measurement can be affected if the sample properties result in scattering of the incident light. FCS autocorrelation functions of Atto 488 dye molecules diffusing in solutions of polystyrene beads are measured, which acted as scatterers. Data indicated that a scattering-linked increase in the illuminated volume, as much as two fold, resulted in minimal increase in diffusivity. To analyze the illuminated beam profile, Monte-Carlo simulations were employed, which indicated a larger broadening of the beam along the axial than the radial directions, and a reduction of the incident intensity at the focal point. The broadening of the volume in the axial direction has only negligible effect on the measured diffusion time, since intensity fluctuations due to diffusion events in the radial direction are dominant in FCS measurements. Collectively, results indicate that multiple scattering does not result in FCS measurement artifacts and thus, when sufficient signal intensity is attainable, single-photon FCS can be a useful technique for measuring probe diffusivity in optically dense media. PMID:23208294

  3. Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media.

    PubMed

    Zustiak, Silviya; Riley, Jason; Boukari, Hacène; Gandjbakhche, Amir; Nossal, Ralph

    2012-12-01

    Fluorescence correlation spectroscopy (FCS) is increasingly being used to assess the movement of particles diffusing in complex, optically dense surroundings, in which case measurement conditions may complicate data interpretation. It is considered how a single-photon FCS measurement can be affected if the sample properties result in scattering of the incident light. FCS autocorrelation functions of Atto 488 dye molecules diffusing in solutions of polystyrene beads are measured, which acted as scatterers. Data indicated that a scattering-linked increase in the illuminated volume, as much as two fold, resulted in minimal increase in diffusivity. To analyze the illuminated beam profile, Monte-Carlo simulations were employed, which indicated a larger broadening of the beam along the axial than the radial directions, and a reduction of the incident intensity at the focal point. The broadening of the volume in the axial direction has only negligible effect on the measured diffusion time, since intensity fluctuations due to diffusion events in the radial direction are dominant in FCS measurements. Collectively, results indicate that multiple scattering does not result in FCS measurement artifacts and thus, when sufficient signal intensity is attainable, single-photon FCS can be a useful technique for measuring probe diffusivity in optically dense media. PMID:23208294

  4. Precise intensity correlation measurement for atomic resonance fluorescence from optical molasses.

    PubMed

    Nakayama, Kazuyuki; Yoshikawa, Yutaka; Matsumoto, Hisatoshi; Torii, Yoshio; Kuga, Takahiro

    2010-03-29

    We measured the intensity correlation of true thermal light scattered from cold atoms in an optical molasses. Using a single-mode fiber as a transverse mode filter, measurement with maximally high spatial coherence was realized, allowing us to observe ideal photon bunching with unprecedented precision. The measured intensity correlation functions showed a definite bimodal structure with fast damped oscillation from the maximum value of 2.02(3) and slow monotonic decay toward unity. The oscillation can be understood as an interference between elastic and inelastic scattering fields in resonance fluorescence. PMID:20389684

  5. The use of simultaneous confidence bands for comparison of single parameter fluorescent intensity data.

    PubMed

    Kim, Dongha; Donnenberg, Vera S; Wilson, John W; Donnenberg, Albert D

    2016-01-01

    Despite the utility of multiparameter flow cytometry for a wide variety of biological applications, comparing single parameter histograms of fluorescence intensity remains a mainstay of flow cytometric analysis. Even comparisons requiring multiparameter gating strategies often end with single parameter histograms as the final readout. When histograms overlap, analysis relies on comparison of mean or median fluorescence intensities, or determination of percent positive based on an arbitrary cutoff. Earlier attempts to address this problem utilized either simple channel-by-channel subtraction without statistical evaluation, or the Kolmogorov-Smirnov (KS) or Chi-square test statistics, both of which proved to be overly sensitive to small and biologically insignificant differences. Here we present a method for the comparison of two single-parameter histograms based on difference curves and their simultaneous confidence bands generated by bootstrapping raw channel data. Bootstrapping is a nonparametric statistical approach that can be used to generate confidence intervals without distributional assumptions about the data. We have constructed simultaneous confidence bands and show them to be superior to KS and Cox methods. The method constructs 95% confidence bands about the difference curves, provides a P value for the comparison and calculates the area under the difference curve (AUC) as an estimate of percent positive and the area under the confidence band (AUCSCB95), providing a lower estimate of the percent positive. To demonstrate the utility of this new approach we have examined single-color fluorescence intensity data taken from a cell surface proteomic survey of a lung cancer cell line (A549) and a published fluorescence intensity data from a rhodamine efflux assay of P-glycoprotein activity, comparing rhodamine 123 loading and efflux in CD4 and CD8 T-cell populations. SAS source code is provided as supplementary material. PMID:26407241

  6. Two-photon microscopy of living cells by simultaneously exciting multiple endogenous fluorophores and fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Li, Dong; Qu, Jianan Y.

    2010-02-01

    Endogenous fluorophores, such as reduced nicotinamide adenine dinucleotide (NADH), keratin, and tryptophan, have been used as contrast agents for imaging metabolism and morphology of living cells and tissues. Multilabeling which maps the distribution of different targets is an indispensable technique in many biomedical and biochemical studies. Therefore, two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with in vivo fluorescence labeling techniques such as genetically encoded fluorescent protein could be a powerful tool for imaging living cells and tissues. However, the challenge is that the excitation and emission wavelengths of these endogenous fluorophores and fluorescence labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected Supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores and fluorescent proteins such as NADH, tryptophan, green fluorescent protein (GFP), and yellow fluorescent protein (YFP) were excited in their optimal wavelengths alternately or simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and spectral domains. Cellular organelles such as nucleus, mitochondria, microtubule and Endoplasmic Reticulum (ER), were clearly revealed in the TPEF images.

  7. Intra- and Inter-annual Fluorescence Intensity Variations in Drip Water, Heshang Cave, Central China: Implications for Speleothem Palaeoclimatology

    NASA Astrophysics Data System (ADS)

    Jin, L.; Hu, C.; Li, X.; Ruan, J.; Hartland, A.

    2015-12-01

    Cave drip water acts as a signal carrier for the soil-rock-air system leading to the capture of climatic and environmental information in stalagmites. This paper seeks to develop an understanding of the environmental and climatic factors which control fluorescence variations in dripwater from in Heshang Cave, Central China. This information is essential to unravelling the significance of organic fluorescence in stalagmites and its utility in quantitative paleoclimate reconstructions. On the seasonal time scale, drip water fluorescence is largely controlled by the decomposition and translocation of dissolved organic matter in the soil, related to climate factors like temperature and precipitation. On the inter-annual time scale, longer duration monitoring data in scarce, yet this is needed to fully comprehend the influence of climate in stalagmite fluorescence time series. This study presents nine consecutive years of monthly drip water fluorescence intensity and drip rate data from two perennial drip sites in Heshang Cave. Drip water fluorescence was generally characterized by intensities in spring/summer and low intensities in autumn/winter. In dry hydrologic years, little seasonality in fluorescence signals was observed, but the opposite was observed in wet years. On the inter-annual time scale, the annual mean intensities of drip water fluorescence positively correlated with local annual rainfall with a 1-year lag (R2HS4=0.94; R2HS6=0.74). This indicates that rainfall is the main control on total drip water fluorescence (integrating across a hydrologic year), despite significant degrees of intra-annual fluorescence variation being observed between wet and dry years. These findings are of direct relevance for paleoclimate reconstruction using fluorescence intensities in stalagmites from the Asian monsoon region. Key words: fluorescence; dissolved organic matter; drip water rates; seasonality; precipitation

  8. Multi-color femtosecond source for simultaneous excitation of multiple fluorescent proteins in two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Liu, Tzu-Ming; Wu, Juwell; Horton, Nicholas G.; Lin, Charles P.; Xu, Chris

    2013-02-01

    Simultaneous imaging of cells expressing multiple fluorescent proteins (FPs) is of particular interest in applications such as mapping neural circuits, tracking multiple immune cell populations, etc. To visualize both in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissues, two-photon fluorescence microscopy (2PM) is a powerful tool that has found wide applications. However, simultaneous imaging of multiple FPs with 2PM is greatly hampered by the lack of proper ultrafast lasers offering multi-color femtosecond pulses, each targeting the two-photon absorption peak of a different FP. Here we demonstrate simultaneous two-photon fluorescence excitation of RFP, YFP, and CFP in human melanoma cells engineered to express a "rainbow" pallet of colors, using a novel fiber-based source with energetic, three-color femtosecond pulses. The three-color pulses, centered at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation of the 1550 nm pump laser and SHG of the solitons at 1728 nm and 1900 nm generated through soliton self-frequency shift (SSFS) of the pump laser in a large-mode-area (LMA) fiber. The resulting wavelengths are well matched to the two-photon absorption peaks of the three FPs for efficient excitation. Our results demonstrate that multi-color femtosecond pulse generation using SSFS and a turn-key, fiber-based femtosecond laser can fulfill the requirements for simultaneous imaging of multiple FPs in 2PM, opening new opportunities for a wide range of biological applications where non-invasive, high-resolution imaging of multiple fluorescent indicators is required.

  9. Life History Changes in Coral Fluorescence and the Effects of Light Intensity on Larval Physiology and Settlement in Seriatopora hystrix

    PubMed Central

    Roth, Melissa S.; Fan, Tung-Yung; Deheyn, Dimitri D.

    2013-01-01

    Fluorescence is common in both coral adult and larval stages, and is produced by fluorescent proteins that absorb higher energy light and emit lower energy light. This study investigated the changes of coral fluorescence in different life history stages and the effects of parental light environment on larval fluorescence, larval endosymbiotic dinoflagellate abundance, larval size and settlement in the brooding coral Seriatopora hystrix. Data showed that coral fluorescence changed during development from green in larvae to cyan in adult colonies. In larvae, two green fluorescent proteins (GFPs) co-occur where the peak emission of one GFP overlaps with the peak excitation of the second GFP allowing the potential for energy transfer. Coral larvae showed great variation in GFP fluorescence, dinoflagellate abundance, and size. There was no obvious relationship between green fluorescence intensity and dinoflagellate abundance, green fluorescence intensity and larval size, or dinoflagellate abundance and larval size. Larvae of parents from high and low light treatments showed similar green fluorescence intensity, yet small but significant differences in size, dinoflagellate abundance, and settlement. The large variation in larval physiology combined with subtle effects of parental environment on larval characteristics seem to indicate that even though adult corals produce larvae with a wide range of physiological capacities, these larvae can still show small preferences for settling in similar habitats as their parents. These data highlight the importance of environmental conditions at the onset of life history and parent colony effects on coral larvae. PMID:23544072

  10. Dependence of X-Ray fluorescence intensity on sample specific gravity

    SciTech Connect

    Az'muko, A.A.; Butuina, L.F.; Smagunova, A.N.; Tarasenko, S.V.

    1986-06-01

    In order to understand the physical nature of the experimental relation I=f(n), the authors set up tests that study the dependence of intensity on packing density. Tests were carried out on samples of the minerals galena cassiterite, and zircon, and cassiterite-calcite and zircon-quartz mixtures. The intensities of the Pb L Sn K /SUB alpha/ , and Zr K /SUB alpha/ lines were measured in a KRFS-5 spectrometer with BKhV-6 x-ray tube with tungsten anode. The experimental and theoretical functions I /SUB rel/ =fIn) for galena are shown and the values of the effect understudy are given. It is shown that the observed dependence of fluorescence intensity on sample density is due to the effect of sample surface quality on the value of I /SUB A/ .

  11. Homogeneous immunoassays based on fluorescence emission intensity variations of zinc selenide quantum dot sensors.

    PubMed

    Wang, Jun; Mountziaris, T J

    2013-03-15

    The fluorescence emission intensity of ZnSe quantum dots (QDs) conjugated to proteins to form QD-based biomolecular sensors increases significantly upon binding of the sensors to target proteins in solution. This phenomenon enables the development of homogeneous, separation-free immunoassays for rapid quantitative detection of proteins in solution. Proof-of-principle assays were developed by dosing a solution containing a biomolecular target with a solution containing the corresponding QD-based sensor and monitoring the changes in the peak fluorescence emission intensity of the QDs. Direct immunoassays for detecting basic fibroblast growth factor (bFGF) and prostate-specific antigen (PSA) in solution were demonstrated using QD-anti-bFGF and QD-anti-PSA sensors. A competitive immunoassay for detecting human serum albumin (HSA) was also demonstrated by dosing samples containing HSA with QD-HSA sensors and free anti-HSA antibodies. The QD-HSA sensors were tested in 1000× diluted human serum and found to be unaffected by interference from other proteins. The lower limit of detection of the assays was equal to the lowest sensor concentration in the solution that can be unambiguously detected, typically less than 1 nM. The dynamic range of the assays was determined by identifying the sensor concentration above which optical interference between QDs affected adversely the observed fluorescence emission intensity. The upper limit of this concentration was 2.5 μM for 4 nm QDs. The ZnSe QD-based sensors were stable and preserved ~80% of their initial peak emission intensity after two months in refrigerated storage. These biosensors have potential applications in rapid sensing of target proteins for emergency and point-of-care diagnostic applications. PMID:22960008

  12. Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Zhang, Shuai; Liu, Guokui; Li, Kexiang; Tang, Bo

    2011-03-01

    Ellagic acid (C 14H 6O 8), a naturally occurring phytochemical, found mainly in berries and some nuts, has anticarcinogenic and antioxidant properties. It is found that fluorescence of Ellagic acid (EA) is greatly enhanced by micelle of cetyltrimethylammonium bromide (CTAB) surfactant. Based on this effect, a sensitive proposed fluorimetric method was applied for the determination of Ellagic acid in aqueous solution. In the Borax-HCl buffer, the fluorescence intensity of Ellagic acid in the presence of CTAB is proportional to the concentration of Ellagic acid in range from 8.0 × 10 -10 to 4.0 × 10 -5 mol L -1; and the detection limits are 3.2 × 10 -10 mol L -1 and 5.9 × 10 -10 mol L -1 excited at 266 nm and 388 nm, respectively. The actual samples of pomegranate rinds are simply manipulated and satisfactorily determined. The interaction mechanism studies argue that the negative EA-Borax complex is formed and solubilized in the cationic surfactant CTAB micelle in this system. The fluorescence intensity of EA enhances because the CTAB micelle provides a hydrophobic microenvironment for EA-Borax complex, which can prevent collision with water molecules and decrease the energy loss of EA-Borax complex.

  13. Effect of quencher and temperature on fluorescence intensity of laser dyes: DETC and C504T.

    PubMed

    Jana, Basavaraja; Inamdar, S R; H M, Suresh Kumar

    2017-01-01

    Fluorescence quenching of 7- Diethylamino-3-thenoylcoumarin (DETC) and 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl11-oxo-1H,5H,11H- [1]benzopyrano[6,7,8-ij]quinolizine-10-carboxylic acid, ethyl ester (C504T) by aniline(AN), dimethylaniline (DMA) and diethylaniline (DEA) was investigated in toluene by steady state and transient methods. The quenching parameters like frequency of encounter (kd), probability of quenching per encounter (p), quenching rate parameters (kq) and activation energy of quenching (Ea) were determined experimentally. The kq values determined by steady state and time-resolved methods for the both dyes were found to be same, indicating the dynamic nature of interaction. Magnitudes of p and Ea suggested that the quenching reaction is predominantly controlled by material diffusion. The quenching mechanism is rationalized in terms of electron transfer (ET) from donors (aromatic amines) to the acceptors (coumarin derivatives) confirmed by correlating kq with free energy changes (ΔG°). Further, an effect of temperature on fluorescence intensity was carried out in toluene and methanol solvents. Fluorescence intensity of both the dyes decreases with increase in temperature. Temperature quenching in case of C504T is due to intersystem crossing S1→T2, whereas for DETC, quenching is due to intersystem crossing S1→T2 and ICT→TICT transition. PMID:27423111

  14. Fe II fluorescence and anomalous C IV doublet intensities in symbiotic novae

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Kafatos, M.; Meier, S. R.

    1992-01-01

    The variation of absolute intensities of Bowen-excited Fe II emission in the symbiotic stars RR Tel, RX Pup, and AG Peg is examined. The C IV doublet intensity ratios in RR Tel were not anomalous between 1979 and 1989, and the ratio had typical values within the optically thin range. The intensity of individual Fe II Bowen-excited lines is correlated with the C IV 1548.2 A flux, suggesting the presence of a foreground Fe II region in which fluorescent-excited material responds to flux variations of C IV 1548.2 A. In RX Pup the combined fluxes of Fe II Bowen-pumped lines can account for an appreciable fraction of the flux deficit in the C IV 1548.2 A line when the C IV doublet ratio is less than the optically thick limit of unity. The Fe II Bowen lines in RX Pup exhibit a velocity range from 0 to 80 km/s, where several strong Fe II emission lines correspond to deep absorption structure in the C IV 1548.2 A line profile. In AG Peg and C IV 1548.2 A flux deficit cannot be explained by Fe II fluorescent absorption alone when the C IV doublet ratio anomaly is at an extreme.

  15. Improved phase imaging from intensity measurements in multiple planes

    SciTech Connect

    Soto, Marcos; Acosta, Eva

    2007-11-20

    Problems stemming from quantitative phase imaging from intensity measurements play a key role in many fields of physics. Techniques based on the transport of intensity equation require an estimate of the axial derivative of the intensity to invert the problem. Derivation formulas in two adjacent planes are commonly used to experimentally compute the derivative of the irradiance. Here we propose a formula that improves the estimate of the derivative by using a higher number of planes and taking the noisy nature of the measurements into account. We also establish an upper and lower limit for the estimate error and provide the distance between planes that optimizes the estimate of the derivative.

  16. Fluorescence Intensity- and Lifetime-Based Glucose Sensing Using Glucose/Galactose-Binding Protein

    PubMed Central

    Pickup, John C.; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J. S.

    2013-01-01

    We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.Fluorescence technique is one of the major solutions for achieving the continuous and noninvasive glucose sensor for diabetes. In this article, a highly sensitive nanostructured sensor is developed to detect extremely small amounts of aqueous glucose by applying fluorescence energy transfer (FRET). A one-pot method is applied to produce the dextran-fluorescein isothiocyanate (FITC)-conjugating mesoporous silica nanoparticles (MSNs), which afterward interact with the tetramethylrhodamine isothiocyanate (TRITC)-labeled concanavalin A (Con A) to form the FRET nanoparticles (FITC-dextran-Con A-TRITC@MSNs). The nanostructured glucose sensor is then formed via the self-assembly of the FRET nanoparticles on a transparent, flexible, and biocompatible substrate, e.g., poly(dimethylsiloxane). Our results indicate the diameter of the MSNs is 60 ± 5 nm. The difference in the images before and after adding 20 μl of glucose (0.10 mmol/liter) on the FRET sensor can be detected in less than 2 min by the laser confocal laser scanning microscope. The correlation between the ratio of fluorescence intensity, I(donor)/I(acceptor), of the FRET sensor and the concentration of aqueous glucose in the range of 0.04–4 mmol/liter has been investigated; a linear relationship is found. Furthermore, the durability of the nanostructured FRET sensor is evaluated for 5 days. In addition, the recorded images can be converted to digital images by

  17. Theory of time-dependent intense-field collisional resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Kleiber, P. D.; Cooper, J.; Burnett, K.; Kunasz, C. V.; Raymer, M. G.

    1983-01-01

    The time-dependent theory of Courtens and Szoke (1977) is generalized using the approach of Burnett et al. (1982) to derive time-dependent spectral intensities of resonance fluorescence from atoms driven by a pulsed laser in the presence of collisions. These results are valid both for laser detunings inside and outside the usual impact region of the spectrum, including Zeeman degeneracy effects. This theory is applied to a simple but important example (J = 0 to J = 1) to obtain quantitative predictions for the observable scattered-light spectrum which can be directly compared with recent experiments.

  18. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    SciTech Connect

    Furuyama, S.; Yaita, J.; Kondo, M.; Tahara, K.; Iwasaki, T.; Shimizu, M.; Kodera, T.; Hatano, M.

    2015-10-19

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  19. A direct method for the correction of pressure-induced scrambling of polarized fluorescence intensities.

    PubMed

    Targowski, P; Davenport, L

    1999-10-15

    A simple and direct method for the simultaneous correction of steady-state polarized fluorescence intensities, depolarized (or scrambled) by the effects of applied hydrostatic pressure, is described. In the method discussed here, it is not necessary to first determine the scrambling factors from a separate experiment with a dye immobilized in a rigid medium. Rather correction for depolarizing effects of the high-pressure spectroscopy cell windows is achieved by direct recalculation of the measured polarized data obtained for the sample of interest at the time of data collection. This method of correction is tested for common fluorescent dyes 1, 6-diphenyl-1,3,5-hexatriene (DPH) and 9,10-diphenylanthracene in glycerol where their rotational behavior is well understood. In addition, the pressure-induced "melt" profile for the more complicated biologically relevant system of DPH imbedded within dipalmitoylphosphatidylcholine small unilamellar vesicles has been reexamined. While the method discussed here is used for the correction of steady-state polarized data, it may be easily adapted for use in time-resolved polarized fluorescence measurements. Advantages and limitations of the new correction method are discussed. PMID:10527523

  20. Quantum chemical calculations to reveal the relationship between the chemical structure and the fluorescence characteristics of phenylquinolinylethynes and phenylisoquinolinylethynes derivatives, and to predict their relative fluorescence intensity.

    PubMed

    Riahi, Siavash; Beheshti, Abolghasem; Ganjali, Mohammad Reza; Norouzi, Parviz

    2009-12-01

    In this paper the relationship between the chemical structure and fluorescence characteristics of 30 phenylquinolinylethyne (PhQE), and phenylisoquinolinylethyne (PhIE) derivatives compounds employing ab initio calculations have been elucidated. Quantum chemical calculations (6-31G) were carried out to obtain: the optimized geometry, energy levels, charges and dipole moments of these compounds, in the singlet (steady and excited states) and triplet states. The relationship between quantum chemical descriptors, and wavelength of maximum excitation and emission indicated that these two parameters have the most correlation with quantum chemical hardness (eta). Also, stokes shift has the most correlation with the square of difference between the maximum of positive charges in the singlet steady and singlet excited states. The quantitative structure-property relationship (QSPR) of PhQE and PhIE was studied for relative fluorescence intensity (RFI). The genetic algorithm (GA) was applied to select the variables that resulted in the best-fit models. After the variable selection, multiple linear regression (MLR) and support vector machine (SVM) were both utilized to construct linear and non-linear QSPR models, respectively. The SVM model demonstrated a better performance than that of the MLR model. The route mean square error (RMSE) in the training and the test sets for the SVM model was 0.195 and 0.324, and the correlation coefficients were 0.965 and 0.960, respectively, thus revealing the reliability of this model. The resulting data indicated that SVM could be used as a powerful modeling tool for QSPR studies. According to the best of our knowledge, this is the first research on QSPR studies to predict RFI for a series of PhQE and PhIE derivative compounds using SVM. PMID:19854100

  1. Mapping tillage intensity by integrating multiple remote sensing data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage practices play an important role in the sustainable agriculture system. Conservative tillage practice can help to reduce soil erosion, increase soil fertility and improve water quality. Tillage practices could be applied at different times with different intensity depending on the local weat...

  2. Photoactivatable aggregation-induced emission fluorophores with multiple-color fluorescence and wavelength-selective activation.

    PubMed

    Peng, Lu; Zheng, Yue; Wang, Xiaoyan; Tong, Aijun; Xiang, Yu

    2015-03-01

    Photoactivatable (caged) fluorophores are widely used in chemistry, materials, and biology. However, the development of such molecules exhibiting photoactivable solid-state fluorescence is still challenging due to the aggregation-caused quenching (ACQ) effect of most fluorophores in their aggregate or solid states. In this work, we developed caged salicylaldehyde hydrazone derivatives, which are of aggregation-induced emission (AIE) characteristics upon light irradiation, as efficient photoactivatable solid-state fluorophores. These compounds displayed multiple-color emissions and ratiometric (photochromic) fluorescence switches upon wavelength-selective photoactivation, and were successfully applied for photopatterning and photoactivatable cell imaging in a multiple-color and stepwise manner. PMID:25644036

  3. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore.

    PubMed

    Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal

    2016-05-01

    In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase. PMID:26993308

  4. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, Tudor N.

    1993-01-01

    Apparatus and method for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochomes in the sample.

  5. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, T.N.

    1993-05-04

    Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.

  6. A handheld laser-induced fluorescence detector for multiple applications.

    PubMed

    Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun

    2016-04-01

    In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. PMID:26838391

  7. Mapping fast protein folding with multiple-site fluorescent probes

    PubMed Central

    Prigozhin, Maxim B.; Chao, Shu-Han; Sukenik, Shahar; Pogorelov, Taras V.; Gruebele, Martin

    2015-01-01

    Fast protein folding involves complex dynamics in many degrees of freedom, yet microsecond folding experiments provide only low-resolution structural information. We enhance the structural resolution of the five-helix bundle protein λ6–85 by engineering into it three fluorescent tryptophan–tyrosine contact probes. The probes report on distances between three different helix pairs: 1–2, 1–3, and 3–2. Temperature jump relaxation experiments on these three mutants reveal two different kinetic timescales: a slower timescale for 1–3 and a faster one for the two contacts involving helix 2. We hypothesize that these differences arise from a single folding mechanism that forms contacts on different timescales, and not from changes of mechanism due to adding the probes. To test this hypothesis, we analyzed the corresponding three distances in one published single-trajectory all-atom molecular-dynamics simulation of a similar mutant. Autocorrelation analysis of the trajectory reveals the same “slow” and “fast” distance change as does experiment, but on a faster timescale; smoothing the trajectory in time shows that this ordering is robust and persists into the microsecond folding timescale. Structural investigation of the all-atom computational data suggests that helix 2 misfolds to produce a short-lived off-pathway trap, in agreement with the experimental finding that the 1–2 and 3–2 distances involving helix 2 contacts form a kinetic grouping distinct from 1 to 3. Our work demonstrates that comparison between experiment and simulation can be extended to several order parameters, providing a stronger mechanistic test. PMID:26080403

  8. Comparative study of the fatty acid binding process of a new FABP from Cherax quadricarinatus by fluorescence intensity, lifetime and anisotropy.

    PubMed

    Li, Jiayao; Henry, Etienne; Wang, Lanmei; Delelis, Olivier; Wang, Huan; Simon, Françoise; Tauc, Patrick; Brochon, Jean-Claude; Zhao, Yunlong; Deprez, Eric

    2012-01-01

    Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty

  9. Comparative Study of the Fatty Acid Binding Process of a New FABP from Cherax quadricarinatus by Fluorescence Intensity, Lifetime and Anisotropy

    PubMed Central

    Li, Jiayao; Henry, Etienne; Wang, Lanmei; Delelis, Olivier; Wang, Huan; Simon, Françoise; Tauc, Patrick; Brochon, Jean-Claude; Zhao, Yunlong; Deprez, Eric

    2012-01-01

    Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty

  10. Using water raman intensity to determine the effective excitation and emission path lengths of fluorophotometers for correcting fluorescence inner filter effect

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence and Raman inner filter effects (IFE) cause spectral distortion and nonlinearity between spectral signal intensity with increasing analyte concentration. Convenient and effective correction of fluorescence IFE has been an active research goal for decades. Presented herein is the finding ...

  11. Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion.

    PubMed

    Takaki, Fumiya; Nakamuta, Nobuaki; Kusakabe, Tatsumi; Yamamoto, Yoshio

    2015-02-01

    The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion. PMID:25416508

  12. mMaple: A Photoconvertible Fluorescent Protein for Use in Multiple Imaging Modalities

    PubMed Central

    McEvoy, Ann L.; Hoi, Hiofan; Bates, Mark; Platonova, Evgenia; Cranfill, Paula J.; Baird, Michelle A.; Davidson, Michael W.; Ewers, Helge; Liphardt, Jan; Campbell, Robert E.

    2012-01-01

    Recent advances in fluorescence microscopy have extended the spatial resolution to the nanometer scale. Here, we report an engineered photoconvertible fluorescent protein (pcFP) variant, designated as mMaple, that is suited for use in multiple conventional and super-resolution imaging modalities, specifically, widefield and confocal microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy. We demonstrate the versatility of mMaple by obtaining super-resolution images of protein organization in Escherichia coli and conventional fluorescence images of mammalian cells. Beneficial features of mMaple include high photostability of the green state when expressed in mammalian cells and high steady state intracellular protein concentration of functional protein when expressed in E. coli. mMaple thus enables both fast live-cell ensemble imaging and high precision single molecule localization for a single pcFP-containing construct. PMID:23240015

  13. Effect of Host Medium on the Fluorescence Emission Intensity of Rhodamine B in Liquid and Solid Phase

    NASA Astrophysics Data System (ADS)

    Fikry, M.; Omar, M. M.; Ismail, Lotfi Z.

    2011-06-01

    In this work, we study the effect of concentration, host medium, PH, ions complex and phase states on the fluorescence emission from the laser dye, Rhodamine B, pumping by UV laser as exited source. The polymethylmethacrylate PMMA used as host medium in case of solid phase samples while, ethanol and Tetrahydrofuran (THF) are used in case of liquid one. The Laser Induced Fluorescence (LIF) technique was used to study the fluorescence properties of the both cases liquid and thin film solid-state samples. In addition, the Dual Thermal Lens (DTL) technique was used to study the quantum yield of these samples. The maximum fluorescence emission observed at concentration of Rhodamine B C=3×10-4M. At this concentration of Rhodamine B, the type of solvent and polarity of the medium affect on the fluorescence emission intensity of Rhodamine B with. The measurements revile that, the behavior of both phases state was analogous and Rhodamine B/PMMA thin film sample by ratio of 4:1 and thickness 0.12 mm is the best photostability sample and its quantum yield about ≈ 0.82. Also, the fluorescence emission intensity of Rhodamine B was quenched by complex formation of Co, Al, Cu and iodide ions with Rhodamine B due to the increase of the charge density of the ions.

  14. Resonance fluorescence of strongly driven two-level system coupled to multiple dissipative reservoirs

    NASA Astrophysics Data System (ADS)

    Yan, Yiying; Lü, Zhiguo; Zheng, Hang

    2016-08-01

    We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born-Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupled to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.

  15. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes

    PubMed Central

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A.; Troemel, Emily R.; Liu, Zhaowei

    2016-01-01

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D ‘object plane’. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume. PMID:27527813

  16. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-01-01

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume. PMID:27527813

  17. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    PubMed Central

    Hsieh, Meng-Chang; Chiu, Yi-Hsin; Lin, Sheng-Fu; Chang, Jenq-Yang; Chang, Chia-Ou; Chiang, Huihua Kenny

    2015-01-01

    Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector. PMID:25690548

  18. Limited-projection-angle hybrid fluorescence molecular tomography of multiple molecules.

    PubMed

    Radrich, Karin; Mohajerani, Pouyan; Bussemer, Johanna; Schwaiger, Markus; Beer, Ambros J; Ntziachristos, Vasilis

    2014-04-01

    An advantage of fluorescence methods over other imaging modalities is the ability to concurrently resolve multiple moieties using fluorochromes emitting at different spectral regions. Simultaneous imaging of spectrally separated agents is helpful in interrogating multiple functions or establishing internal controls for accurate measurements. Herein, we investigated multimoiety imaging in the context of a limited-projection-angle hybrid fluorescence molecular tomography (FMT), and x-ray computed tomography implementation and the further registration with positron emission tomography (PET) data. Multichannel FMT systems may image fluorescent probes of varying distribution patterns. Therefore, it is possible that different channels may require different use of priors and regularization parameters. We examined the performance of automatically estimating regularization factors implementing priors, using data-driven regularization specific for limited-projection-angle schemes. We were particularly interested in identifying the implementation variations between hybrid-FMT channels due to probe distribution variation. For this reason, initial validation of the data-driven algorithm on a phantom was followed by imaging different agent distributions in animals, assuming superficial and deep seated activity. We further demonstrate the benefits of combining hybrid FMT with PET to gain multiple readings on the molecular composition of disease. PMID:24770661

  19. Interphase fluorescence in situ hybridization signal detection by computing intensity variance along the optical axis

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Zheng, Bin; Ren, Liqiang; Liu, Hong

    2014-02-01

    Fluorescence in situ Hybridization technology is a commonly used tool to detect chromosome aberrations, which are often pathologically significant. Since manual FISH analysis is a tedious and time-consuming procedure, reliable and robust automated image acquisition and analysis are in demand. Under high magnification objective lenses such as 60x and 100x, the depth of field will often be too small and the FISH probes may not always lie in the same focal plane. A statistical variance based automated FISH analysis method is developed in order to address this problem. On a stack of slices at consecutive image planes with a step size d, the statistical variance alone the z-axis is calculated to form a 2-D matrix. Since pixels shift dramatically to high intensity at FISH probe location, the probes will manifest high peak values in the matrix. A computer-aided detection scheme based on top-hat transform is applied to the matrix to detect FISH probe signals. This study demonstrates a simple and robust method for FISH probe detection as well as a way of 2- D representation of 3-D data.

  20. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    NASA Astrophysics Data System (ADS)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  1. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel. PMID:25727072

  2. Open source software for quantification of cell migration, protrusions, and fluorescence intensities

    PubMed Central

    Barry, David J.; Durkin, Charlotte H.; Abella, Jasmine V.

    2015-01-01

    Cell migration is frequently accompanied by changes in cell morphology (morphodynamics) on a range of spatial and temporal scales. Despite recent advances in imaging techniques, the application of unbiased computational image analysis methods for morphodynamic quantification is rare. For example, manual analysis using kymographs is still commonplace, often caused by lack of access to user-friendly, automated tools. We now describe software designed for the automated quantification of cell migration and morphodynamics. Implemented as a plug-in for the open-source platform, ImageJ, ADAPT is capable of rapid, automated analysis of migration and membrane protrusions, together with associated fluorescently labeled proteins, across multiple cells. We demonstrate the ability of the software by quantifying variations in cell population migration rates on different extracellular matrices. We also show that ADAPT can detect and morphologically profile filopodia. Finally, we have used ADAPT to compile an unbiased description of a “typical” bleb formed at the plasma membrane and quantify the effect of Arp2/3 complex inhibition on bleb retraction. PMID:25847537

  3. Stress Intensity Factor Solutions for Multiple Edge Cracks in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis

    1997-01-01

    NASA Lewis Research Center conducted a study to determine the stress intensity factor solutions for periodic arrays of bridged cracks for various crack spacings and crack lengths. Initially, the stress intensity factor of an array of unbridged multiple edge cracks was determined under constant global displacement as well as at a point load along the crack wake. These solutions are expected to contribute toward the development of a damage-based life-prediction methodology for CMC engine components.

  4. Development of pathological diagnostics of human kidney cancer by multiple staining using new fluorescent Fluolid dyes.

    PubMed

    Wuxiuer, Dilibaier; Zhu, Yun; Ogaeri, Takunori; Mizuki, Keiji; Kashiwa, Yuki; Nishi, Kentaro; Isobe, Shin-ichiro; Aoyagi, Tei-ichiro; Kiyama, Ryoiti

    2014-01-01

    New fluorescent Fluolid dyes have advantages over others such as stability against heat, dryness, and excess light. Here, we performed simultaneous immunostaining of renal tumors, clear cell renal cell carcinoma (RCC), papillary RCC, chromophobe RCC, acquired cystic disease-associated RCC (ACD-RCC), and renal angiomyolipoma (AML), with primary antibodies against Kank1, cytokeratin 7 (CK7), and CD10, which were detected with secondary antibodies labeled with Fluolid-Orange, Fluolid-Green, and Alexa Fluor 647, respectively. Kank1 was stained in normal renal tubules, papillary RCC, and ACD-RCC, and weakly or negatively in all other tumors. CK7 was positive in normal renal tubules, papillary RCC, and ACD-RCC. In contrast, CD10 was expressed in renal tubules and clear cell RCC, papillary RCC, AML, and AC-RCC, and weakly in chromophobe RCC. These results may contribute to differentiating renal tumors and subtypes of RCCs. We also examined the stability of fluorescence and found that fluorescent images of Fluolid dyes were identical between a tissue section and the same section after it was stored for almost three years at room temperature. This indicates that tissue sections can be stored at room temperature for a relatively long time after they are stained with multiple fluorescent markers, which could open a door for pathological diagnostics. PMID:24995295

  5. Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique)

    SciTech Connect

    Charalampous, Georgios; Hardalupas, Yannis

    2011-03-20

    The dependence of fluorescent and scattered light intensities from spherical droplets on droplet diameter was evaluated using Mie theory. The emphasis is on the evaluation of droplet sizing, based on the ratio of laser-induced fluorescence and scattered light intensities (LIF/Mie technique). A parametric study is presented, which includes the effects of scattering angle, the real part of the refractive index and the dye concentration in the liquid (determining the imaginary part of the refractive index). The assumption that the fluorescent and scattered light intensities are proportional to the volume and surface area of the droplets for accurate sizing measurements is not generally valid. More accurate sizing measurements can be performed with minimal dye concentration in the liquid and by collecting light at a scattering angle of 60 deg. rather than the commonly used angle of 90 deg. Unfavorable to the sizing accuracy are oscillations of the scattered light intensity with droplet diameter that are profound at the sidescatter direction (90 deg.) and for droplets with refractive indices around 1.4.

  6. Fluorescence of the gamma, epsilon, and delta systems of nitric oxide - Polarization and use of calculated intensities for spectrometer calibration.

    NASA Technical Reports Server (NTRS)

    Poland, H. M.; Broida, H. P.

    1971-01-01

    Results of a study in which fluorescence of the gamma system of nitric oxide was obtained by excitation from both the 2144 A line of ionized cadmium and a continuum source. Individual rotational lines of the 2144 A excited fluorescence spectrum were found to be partially polarized and to have polarizations of differ ing sign. Measured relative vibrational band intensities from line and continuum excitation were compared to calculated Franck-Condon factors. Those Franck-Condon factors based on a single potential for the two spin states of the X super pi state agreed better with measured values than those based on separate potentials for the two spin states. Calculated intensities of the v prime = 3 progression were used to calibrate the instrument response in the wavelength region from 2000 to 2500 A and were checked with measured intensities of the v prime = 0.1, and 2 progressions. Fluorescence of the epsilon and delta bands obtained with continuum lamp excitation also were compared to calculated intensities.

  7. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    PubMed Central

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-01-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test. PMID:27001460

  8. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation

    PubMed Central

    Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco

    2015-01-01

    Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273

  9. Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers

    NASA Astrophysics Data System (ADS)

    Xu, Sai; Dong, Biao; Zhou, Donglei; Yin, Ze; Cui, Shaobo; Xu, Wen; Chen, Baojiu; Song, Hongwei

    2016-03-01

    A paper-based upconversion fluorescence resonance energy transfer assay device is proposed for sensitive detection of CEA. The device is fabricated on a normal filter paper with simple nano-printing method. Upconversion nanoparticles tagged with specific antibodies are printed to the test zones on the test paper, followed by the introduction of assay antigen. Upconversion fluorescence measurements are directly conducted on the test zones after the antigen-to-antibody reactions. Furthermore, a multi-channel test paper for simultaneous detection of multiple cancer biomarkers was established by the same method and obtained positive results. The device showed high anti-interfere, stability, reproducible and low detection limit (0.89 ng/mL), moreover it is very easy to fabricate and operate, which is a promising prospect for a clinical point-of-care test.

  10. Mixed-Dye-Based Label-Free and Sensitive Dual Fluorescence for the Product Detection of Nucleic Acid Isothermal Multiple-Self-Matching-Initiated Amplification.

    PubMed

    Ding, Xiong; Wu, Wenshuai; Zhu, Qiangyuan; Zhang, Tao; Jin, Wei; Mu, Ying

    2015-10-20

    Visual detections based on fluorescence and the color changes under natural light are two promising product detections for isothermal nucleic acid amplifications (INAAs) such as the isothermal multiple-self-matching-initiated amplification (IMSA) as point-of-care testing techniques. However, the currently used approaches have shortcomings in application. For the former, fluorescence changes recognized by naked eye may be indistinguishable because of single fluorescence emitted and strong background noise, which requires empirical preset of cutoff intensity values. For the latter, visual detection sensitivity under natural light is not comparable to that based on fluorescence. Herein, hydroxyl naphthol blue (HNB) and SYBR Green I (SG) were coupled to acquire a label-free dual fluorescence for the visual product detection of IMSA. The mixed-dye-loaded off-chip (tube-based) and on-chip (microfluidic chip-based) IMSAs for the detection of hepatitis B virus were conducted. The results demonstrated that this dual fluorescence could realize distinguishable fluorescent color changes to improve visual detection sensitivity and avoid the preset of cutoff values. Moreover, the mixed dye is stable when kept at room temperature and compatible with the IMSA's reagents without a contamination-prone step of opening tubes after amplification. Also, this coupled dye inherits the advantages of achieving color changes under natural light from HNB and real-time detection from SG. In conclusion, the mixed-dye-based dual fluorescence has a potential in the point-of-care testing application for realizing off-chip and on-chip product detection of IMSA, loop-mediated isothermal amplification (LAMP), or other INAAs. PMID:26383158

  11. The correlation of the maximum intensity of fluorescence with pigment characteristics of leaves of Betula pendula

    NASA Astrophysics Data System (ADS)

    Zavoruev, V. V.; Zavorueva, E. N.

    2015-11-01

    Using fluorimeter Junior PAM (Heinz Walz GmbH, Germany) the fluorescence parameters of leaves of Betula pendula are investigated. A linear dependence of the maximum fluorescence (Fm) of leaves from the ratio of total chlorophylls concentration to concentration of carotenoids is obtained. Such dependence is found for samples collected during the period of vegetation and for simultaneous selection of colored leaves.

  12. Intensive (Daily) Behavior Therapy for School Refusal: A Multiple Baseline Case Series

    ERIC Educational Resources Information Center

    Tolin, David F.; Whiting, Sara; Maltby, Nicholas; Diefenbach, Gretchen J.; Lothstein, Mary Anne; Hardcastle, Surrey; Catalano, Amy; Gray, Krista

    2009-01-01

    The following multiple baseline case series examines school refusal behavior in 4 male adolescents. School refusal symptom presentation was ascertained utilizing a functional analysis from the School Refusal Assessment Scale (Kearney, 2002). For the majority of cases, treatment was conducted within a 15-session intensive format over a 3-week…

  13. Fluorescence molecular tomography on animal model by means of multiple views structured light illumination

    NASA Astrophysics Data System (ADS)

    Ducros, N.; Bassi, A.; Valentini, G.; Canti, G.; Arridge, S.; D'Andrea, C.

    2013-03-01

    Fluorescence molecular tomography (FMT) is quite demanding in terms of acquisition/computational times due to the huge amount of data. Different research groups have proposed compression approaches regarding both illumination (wide field structured light instead of raster point scanning) and detection (compression of the acquired images). The authors have previously proposed a fast FMT reconstruction method based on the combination of a multiple-view approach with a full compression scheme. This method had been successfully tested on a cylindrical phantom and is being generalized in this paper to samples of arbitrary shape. The devised procedure and algorithms have been tested on an ex-vivo mouse.

  14. New fluorescence markers to distinguish co-infecting Trypanosoma brucei strains in experimental multiple infections.

    PubMed

    Balmer, Oliver; Tostado, Cristóbal

    2006-01-01

    Multiple-genotype infections are increasingly recognized as important factors in disease evolution, parasite transmission dynamics, and the evolution of drug resistance. However, the distinction of co-infecting parasite genotypes and the tracking of their dynamics have been difficult with traditional methods based on various genotyping techniques, leaving most questions unaddressed. Here we report new fluorescence markers of various colours that are inserted into the genome of Trypanosoma brucei to phenotypically label live parasites of all life cycle stages. If different parasite strains are labelled with different colours they can be easily distinguished from each other in experimental studies. A total of 10 T. brucei strains were successfully transfected with different fluorescence markers and were monitored in culture, tsetse flies and mice, to demonstrate stability of marker expression. The use of fluorescence activated cell sorting (FACS) allowed rapid and accurate identification of parasite strains labelled with different markers. Cell counts by FACS were virtually identical to counts by traditional microscopy (n=75, Spearman's rho: 0.91, p<0.0001) but were considerably faster and had a significantly lower sampling error (66% lower, d.f.=73, t=-17.1, p<0.0001). Co-infecting strains transfected with fluorescence genes of different colour were easily distinguished by eye and their relative and absolute densities were reliably counted by FACS in experimental multiple infections in mice. Since the FACS can simultaneously determine the population sizes of differently labelled T. brucei strains or subspecies it allows detailed and efficient tracking of multiple-genotype infections within a single host or vector individual, enabling more powerful studies on parasite dynamics. In addition, it also provides a simple way to separate genotypes after experimental mixed infections, to measure responses of the single strains to an applied treatment, thus eliminating the

  15. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    ERIC Educational Resources Information Center

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  16. Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity.

    PubMed

    Leiger, Kristjan; Freiberg, Arvi

    2016-01-01

    Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment-protein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed. PMID:25764015

  17. Multiple Velocity Profile Measurements in Hypersonic Flows using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inmian, Jennifer A.; Jones, Stephen B.; Ivey, Christopher B.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD camera was used to obtain separate images of the initial undelayed and delayed NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm x 0.7-mm). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. Quantification of systematic errors, the contribution of gating/exposure duration errors, and influence of collision rate on fluorescence to temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the analysis technique and signal-to-noise of the acquired profiles. This investigation focused on two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-inch Mach 10 wind tunnel.

  18. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals.

    PubMed

    Okano, Masayuki; Okamoto, Ryo; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki

    2012-06-18

    We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two β-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz). We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices. PMID:22714463

  19. Short communication: Changes in fluorescence intensity induced by soybean soluble polysaccharide-milk protein interactions during acidification.

    PubMed

    Li, Y H; Wang, W J; Xu, X J; Meng, Y C; Zhang, L W; Chen, J; Qiu, R

    2015-12-01

    Interactions between stabilizer and milk protein are believed to influence the stabilizing behavior of the milk system. We investigated changes in fluorescence intensity induced by interactions of soybean soluble polysaccharide (SSPS) and milk protein (Mp) during acidification. The fluorescence intensity (If) of Mp increased as pH decreased from 6.8 to 5.2. Compared with Mp alone, If of SSPS-Mp mixtures increased as the pH decreased from 6.8 to 5.2. We found that the If of the SSPS-Mp mixture decreased in a pH range from 5.2 to 3.6, which indicated a change in the polarity microenvironment around the Trp residues. We also found that the maximum emission wavelength (λmax) shifted from 337 to 330nm as pH decreased from 6.8 to 3.6, in further support of SSPS interacting with the polar portion of Mp during acidification. Furthermore, an excited monomeric molecule (pyrene exciplex) was found as a ground-state pyrene formed and a broad band was shown at about 450nm. The intensity ratio of the first peak to the third peak (I1:I3) of Mp increased slightly, and the ratio of intensity of pyrene exciplex to monomer (Ie:Im) decreased because pyrene molecules were located in a less hydrophobic microenvironment during acidification. However, the ratio of I1:I3 decreased clearly at pH below 5.6 and the ratio of Ie:Im showed the opposite trend in the SSPS-Mp mixture. Changes in intrinsic and exogenous fluorescence intensity confirmed that interactions of SSPS and Mp could change the polarity of the microenvironment and that SSPS probably interacted with the polar portion of Mp. These results could give insight into the behavior of stabilizers in acid milk products. PMID:26476946

  20. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    PubMed

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. PMID:27161580

  1. Multiple reflection high-energy electron diffraction beam intensity measurement system

    NASA Technical Reports Server (NTRS)

    Resh, J. S.; Jamison, K. D.; Strozier, J.; Ignatiev, A.

    1990-01-01

    A video-based analysis system for reflection high-energy electron diffraction (RHEED) is described which simultaneously measures the intensities and profiles of multiple diffraction beams. This system is used to record real-time RHEED intensity oscillations for layer-by-layer epitaxial growth. Fast Fourier transform analysis of the oscillation data is used to directly determine the growth rate and to accurately obtain phase information about the oscillations. This system is demonstrated and compared to other methods of recording RHEED oscillation data.

  2. Non-destructive mobile monitoring of microbial contaminations on meat surfaces using porphyrin fluorescence intensities.

    PubMed

    Durek, J; Fröhling, A; Bolling, J; Thomasius, R; Durek, P; Schlüter, O K

    2016-05-01

    A non-destructive mobile system for meat quality monitoring was developed and investigated for the possible application along the whole production chain of fresh meat. Pork and lamb meat was stored at 5 °C for up to 20 days post mortem and measured with a fluorescence spectrometer. Additionally, the bacterial influence on the fluorescence signals was evaluated by different experimental procedures. Fluorescence of NADH and different porphyrins could be correlated to the growth of diverse bacteria and hence used for contamination monitoring. The increase of porphyrin fluorescence started after 9 days p.m. for pork and after 2 days p.m. for lamb meat. Based on the results, a mobile fluorescence system was built and compared with the laboratory system. The corrected function of the meat slices showed a root mean square error of 1156.97 r.u. and a mean absolute percentage error of 12.59%; for lamb the values were 470.81 r.u. and 15.55%, respectively. A mobile and non-invasive measurement system would improve the microbial security of fresh meat. PMID:26773794

  3. Titration of a CD45-FITC conjugate to determine the linearity and dynamic range of fluorescence intensity measurements on lymphocytes.

    PubMed

    Powell, M K; Whitfield, W; Redelman, D; Henderson, L O; Vogt, R F

    1998-10-01

    To produce biologic calibrators for relative fluorescence intensity (RFI) measurements, we stained leukocytes with serial dilutions of CD45-FITC conjugate and processed them using our regular whole blood lysis procedure. Cells were stained with conjugate concentrations ranging from twice recommended to a million-fold lower. At the highest concentrations of conjugate, the RFI reached a plateau near the top of the third decade, indicating saturation of CD45 binding sites. As the concentration decreased, the RFI declined in a highly linear relationship between the dilution factor and the histogram channel number. For channel numbers corresponding to the lowest percentiles of the RFI distribution, linearity persisted down to the first half decade. The slope of this relationship revealed a true dynamic range of 4.5 decades, which was comparable to the value obtained with microbead standards calibrated in molecules of equivalent soluble fluorochrome (MESF). Our results suggest that the lower limit of linearity for fluorescence intensity from fluorescein isothiocyanate (FITC)-stained lymphocytes is below 500 MESF and that cellular autofluorescence is the major limiting factor in detecting and quantifying FITC-specific staining. This procedure provides an adroit way of characterizing the linearity and dynamic range of measurements for quantitative fluorescence cytometry using exactly the same matrix, stains, and preparation methods as those used for cellular analytes. PMID:9773883

  4. Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine

    NASA Astrophysics Data System (ADS)

    Malvindi, Maria Ada; di Corato, Riccardo; Curcio, Annalisa; Melisi, Daniela; Rimoli, Maria Grazia; Tortiglione, Claudia; Tino, Angela; George, Chandramohan; Brunetti, Virgilio; Cingolani, Roberto; Pellegrino, Teresa; Ragusa, Andrea

    2011-12-01

    The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release.The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed

  5. A Model of Population and Subject (MOPS) Intensities with Application to Multiple Sclerosis Lesion Segmentation

    PubMed Central

    Tomas-Fernandez, Xavier; Warfield, Simon K.

    2015-01-01

    White matter (WM) lesions are thought to play an important role in multiple sclerosis (MS) disease burden. Recent work in the automated segmentation of white matter lesions from MRI has utilized a model in which lesions are outliers in the distribution of tissue signal intensities across the entire brain of each patient. However, the sensitivity and specificity of lesion detection and segmentation with these approaches have been inadequate. In our analysis, we determined this is due to the substantial overlap between the whole brain signal intensity distribution of lesions and normal tissue. Inspired by the ability of experts to detect lesions based on their local signal intensity characteristics, we propose a new algorithm that achieves lesion and brain tissue segmentation through simultaneous estimation of a spatially global within-the-subject intensity distribution and a spatially local intensity distribution derived from a healthy reference population. We demonstrate that MS lesions can be segmented as outliers from this intensity model of population and subject (MOPS). We carried out extensive experiments with both synthetic and clinical data, and compared the performance of our new algorithm to those of state-of-the art techniques. We found this new approach leads to a substantial improvement in the sensitivity and specificity of lesion detection and segmentation. PMID:25616008

  6. Determination of sulfur in biodiesel microemulsions using the summation of the intensities of multiple emission lines.

    PubMed

    Young, Carl G; Amais, Renata S; Schiavo, Daniela; Garcia, Edivaldo E; Nóbrega, Joaquim A; Jones, Bradley T

    2011-05-15

    A method for the determination of sulfur in biodiesel samples by inductively coupled plasma optical emission spectrometry which uses microemulsion for sample preparation and the summation of the intensities of multiple emission lines has been developed. Microemulsions were prepared using 0.5 mL of 20% v/v HNO(3), 0.5 mL of Triton X-100, 2-3 mL of biodiesel sample, and diluted with n-propanol to a final volume of 10 mL. Summation of the emission intensities of multiple sulfur lines allowed for increased accuracy and sensitivity. The amounts of sulfur determined experimentally were between 2 and 7 mg L(-1), well below legislative standards for many countries. Recoveries obtained ranged from 72 to 119%, and recoveries obtained for the 182.562 nm line were slightly lower. This is most likely due to its lower sensitivity. Using microemulsion for sample preparation and the summation of the intensities of multiple emission lines for the successful determination of sulfur in biodiesel has been demonstrated. PMID:21482315

  7. Gateway Vectors for Simultaneous Detection of Multiple Protein−Protein Interactions in Plant Cells Using Bimolecular Fluorescence Complementation

    PubMed Central

    Hikino, Kazumi; Goto-Yamada, Shino; Nishimura, Mikio; Nakagawa, Tsuyoshi; Mano, Shoji

    2016-01-01

    Bimolecular fluorescence complementation (BiFC) is widely used to detect protein—protein interactions, because it is technically simple, convenient, and can be adapted for use with conventional fluorescence microscopy. We previously constructed enhanced yellow fluorescent protein (EYFP)-based Gateway cloning technology-compatible vectors. In the current study, we generated new Gateway cloning technology-compatible vectors to detect BiFC-based multiple protein—protein interactions using N- and C-terminal fragments of enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), and monomeric red fluorescent protein (mRFP1). Using a combination of N- and C-terminal fragments from ECFP, EGFP and EYFP, we observed a shift in the emission wavelength, enabling the simultaneous detection of multiple protein—protein interactions. Moreover, we developed these vectors as binary vectors for use in Agrobacterium infiltration and for the generate transgenic plants. We verified that the binary vectors functioned well in tobacco cells. The results demonstrate that the BiFC vectors facilitate the design of various constructions and are convenient for the detection of multiple protein—protein interactions simultaneously in plant cells. PMID:27490375

  8. One-step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Bian, Pingping; Zhou, Jing; Liu, Yueying; Ma, Zhanfang

    2013-06-01

    A one-step method for successfully fabrication of water-soluble and alkanethiol-stabilized Au nanoclusters (NCs) was demonstrated. The novel and facile method was based on simply placing histidine (His), HAuCl4 and 11-mercaptoundcanoic acid (MUA) together at room temperature. The resulting Au NCs were exclusively composed of Au17MUA4His22 (AMH), as demonstrated by the photoluminescence, UV-Vis absorption, electrospray ionization mass and X-ray photoelectron spectroscopy. AMH exhibited intense red fluorescence (λem = 600 nm), a long fluorescence lifetime (7.11 μs), considerable stability, and a large Stoke's shift (320 nm). Based on the excellent properties of the AMH, cell experiments were conducted. Cytotoxicity studies showed that the Au NCs exhibited negligible effects in altering cell proliferation or triggering apoptosis. Cancer cell imaging of HeLa cell lines indicated that the obtained AMH could serve as a promising fluorescent bioprobe for bioimaging. This strategy, based on the one-step method, may offer a novel approach to fabricate other water-soluble and alkanethiol-stabilized metal nanoclusters for application in biolabelling and bioimaging.A one-step method for successfully fabrication of water-soluble and alkanethiol-stabilized Au nanoclusters (NCs) was demonstrated. The novel and facile method was based on simply placing histidine (His), HAuCl4 and 11-mercaptoundcanoic acid (MUA) together at room temperature. The resulting Au NCs were exclusively composed of Au17MUA4His22 (AMH), as demonstrated by the photoluminescence, UV-Vis absorption, electrospray ionization mass and X-ray photoelectron spectroscopy. AMH exhibited intense red fluorescence (λem = 600 nm), a long fluorescence lifetime (7.11 μs), considerable stability, and a large Stoke's shift (320 nm). Based on the excellent properties of the AMH, cell experiments were conducted. Cytotoxicity studies showed that the Au NCs exhibited negligible effects in altering cell proliferation or

  9. Multiple Velocity Profile Measurements in Hypersonic Flows Using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Ivey,Christopher b.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD (charge-coupled device) camera was used to obtain two sequential images of the NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. A numerical study of measured velocity error due to a uniform and linearly-varying collisional rate distribution was performed. Quantification of systematic errors, the contribution of gating/exposure duration errors, and the influence of collision rate on temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity measurement technique has been demonstrated for two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel.

  10. Assessment of natural fluorescence as a tracer of diffuse agricultural pollution from slurry spreading on intensely-farmed grasslands.

    PubMed

    Naden, Pamela S; Old, Gareth H; Eliot-Laize, Caroline; Granger, Steve J; Hawkins, Jane M B; Bol, Roland; Haygarth, Phil

    2010-03-01

    The value of natural fluorescence in tracing diffuse pollution, in liquid phase, following slurry application to land was assessed by field experiment using twelve one hectare lysimeters on a heavy clay soil in Devon, UK, during autumn 2007. A strong linear relationship was found between natural fluorescence intensity and slurry concentration. The ratio of indices of tryptophan-like and fulvic/humic-like fluorescence (TI:FI) varied between 2 and 5 for a range of slurries sampled from Devon farms and allowed slurry to be distinguished from uncontaminated drainage waters (TI:FI<1). Incidental losses of slurry, indicated by significantly enhanced TI:FI ratios, high TI and high ammonium levels, occurred via the drain flow pathway of the drained lysimeters during the first small event following slurry-spreading. The maximum estimated loss from a single lysimeter was 2-8kg or 0.004-0.016% of the applied slurry. In the second larger storm event, some five weeks later, significantly enhanced TI:FI ratios in the drain flows were not associated with high TI but with high nitrate levels and, compared to the earlier storm, an increase in the humification index. This implies the loss of slurry decomposition products during this event but further work is needed to validate this. There was no significant enhancement of TI:FI in the surface/throughflow pathways of the drained or undrained lysimeters in either of the events. The observed change over a period of weeks in the strength and nature of the fluorescence signal from spread slurry restricts quantification of slurry losses to those immediately after slurry spreading. Nonetheless, this study demonstrates the utility of fluorescence as an indicator of slurry in drainage waters and the importance of field drains in diffuse agricultural pollution. PMID:20018337

  11. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

    2000-01-01

    BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

  12. Optimal Gaussian Mixture Models of Tissue Intensities in Brain MRI of Patients with Multiple-Sclerosis

    NASA Astrophysics Data System (ADS)

    Xiao, Yiming; Shah, Mohak; Francis, Simon; Arnold, Douglas L.; Arbel, Tal; Collins, D. Louis

    Brain tissue segmentation is important in studying markers in human brain Magnetic Resonance Images (MRI) of patients with diseases such as Multiple Sclerosis (MS). Parametric segmentation approaches typically assume unimodal Gaussian distributions on MRI intensities of individual tissue classes, even in applications on multi-spectral images. However, this assumption has not been rigorously verified especially in the context of MS. In this work, we evaluate the local MRI intensities of both healthy and diseased brain tissues of 21 multi-spectral MRIs (63 volumes in total) of MS patients for adherence to this assumption. We show that the tissue intensities are not uniform across the brain and vary across (anatomical) regions of the brain. Consequently, we show that Gaussian mixtures can better model the multi-spectral intensities. We utilize an Expectation Maximization (EM) based approach to learn the models along with a symmetric Jeffreys divergence criterion to study differences in intensity distributions. The effects of these findings are also empirically verified on automatic segmentation of brains with MS.

  13. Photoactive yellow protein-based protein labeling system with turn-on fluorescence intensity.

    PubMed

    Hori, Yuichiro; Ueno, Hideki; Mizukami, Shin; Kikuchi, Kazuya

    2009-11-25

    Protein labeling provides significant information about protein function. In this research, we developed a novel protein labeling technique by utilizing photoactive yellow protein (PYP). PYP is a small protein (14 kDa) derived from purple bacteria and binds to 7-hydroxycoumarin-3-carboxylic acid as well as to a natural ligand, 4-hydroxycinnamic acid, through a thioester bond with Cys69. Based on the structure and fluorescence property of this coumarin derivative, we designed two fluorescent probes that bind to PYP. One has an azido moiety, which allows stepwise labeling by click chemistry, and the other is a fluorogenic probe. The live-cell imaging and specific labeling of PYP were achieved by using both probes. The flexibility of the probe design and the small size of the tag protein are great advantages of this system against the existing methods. This novel labeling technique can be used in a wide variety of applications for biological research. PMID:19877615

  14. Monitoring plasmid replication in live mammalian cells over multiple generations by fluorescence microscopy.

    PubMed

    Norby, Kathryn; Chiu, Ya-Fang; Sugden, Bill

    2012-01-01

    Few naturally-occurring plasmids are maintained in mammalian cells. Among these are genomes of gamma-herpesviruses, including Epstein-Barr virus (EBV) and Kaposi's Sarcoma-associated herpesvirus (KSHV), which cause multiple human malignancies (1-3). These two genomes are replicated in a licensed manner, each using a single viral protein and cellular replication machinery, and are passed to daughter cells during cell division despite their lacking traditional centromeres (4-8). Much work has been done to characterize the replications of these plasmid genomes using methods such as Southern blotting and fluorescence in situ hybridization (FISH). These methods are limited, though. Quantitative PCR and Southern blots provide information about the average number of plasmids per cell in a population of cells. FISH is a single-cell assay that reveals both the average number and the distribution of plasmids per cell in the population of cells but is static, allowing no information about the parent or progeny of the examined cell. Here, we describe a method for visualizing plasmids in live cells. This method is based on the binding of a fluorescently tagged lactose repressor protein to multiple sites in the plasmid of interest (9). The DNA of interest is engineered to include approximately 250 tandem repeats of the lactose operator (LacO) sequence. LacO is specifically bound by the lactose repressor protein (LacI), which can be fused to a fluorescent protein. The fusion protein can either be expressed from the engineered plasmid or introduced by a retroviral vector. In this way, the DNA molecules are fluorescently tagged and therefore become visible via fluorescence microscopy. The fusion protein is blocked from binding the plasmid DNA by culturing cells in the presence of IPTG until the plasmids are ready to be viewed. This system allows the plasmids to be monitored in living cells through several generations, revealing properties of their synthesis and partitioning to

  15. Combining OCT and a fluorescence intensity imaging method for atherosclerosis detection

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Yin, Jiechen; Narula, Jagat; Chen, Zhongping

    2012-02-01

    Coronary heart disease (like myocardial infarction) is caused by atherosclerosis. It cause over 30% of all deaths in North America and are the most common cause of death in European men under 65 years of age and the second most common cause in women. To diagnose this atherosclerosis before it gets rupture is the most effect way to increase the chance of survival for patients who suffer from this disease. The crucial tusk is how to find out vulnerable plaques. In resent years optical coherence tomography (OCT) has become a very useful tool for intravascular imaging, since it has high axial and transverse resolution. OCT can tell the detail structure inside the plaque like the thickness of plaque cap which is an important factor to identify vulnerable plaques. But we still need to find out the biochemical characteristics that is unique for vulnerable plaques (like inflammation). Fluorescence molecular imaging is a standard way to exam the biochemical property of biological samples. So we integrate these two techniques together into one probe. Our probe is comprised of a double-clad fiber (DCF) and a grin lens, and rotates with a micro mirror in front. The single-mode inner core of the DCF transmits both OCT and fluorescence excitation light, and the multimode inner cladding is used to detect fluorescence signal. In vitro result shows that this is a possible way for more accurate diagnose of vulnerable plaques.

  16. Padé-Laplace method for analysis of fluorescence intensity decay.

    PubMed Central

    Bajzer, Z; Myers, A C; Sedarous, S S; Prendergast, F G

    1989-01-01

    This novel approach to the analysis of multiexponential functions is based on the combined use of the Laplace transform and Padé approximants (Yeramian, E., and P. Claverie. 1987. Nature (Lond.). 326:169-174). It is similar in principle to the well-known Isenberg method of moments (Isenberg, I. 1983. Biophys. J. 43:141-148) traditionally applied to the analysis of fluorescence decay. The advantage of the Padé-Laplace method lies in its ability to detect the number of components in a multiexponential function as well as their parameters. In this paper we modified the original method so that it can be applied to the analysis of multifrequency phase/modulation measurements of fluorescence decay. The method was tested first on simulated data. It afforded recovery up to four distinct lifetime components (and their fractional contributions). In the case of simulated data corresponding to continuous lifetime distributions (nonexponential decay), the results of the analysis by the Padé-Laplace method indicated the absence of discrete exponential components. The method was also applied to real phase/modulation data gathered on known fluorophores and their mixtures and on tryptophan fluorescence in phospholipase A2. The lifetime and fraction recoveries were consistent with those obtained from standard methods involving nonlinear least-square fitting. PMID:2752091

  17. Fluorescence spectroscopy to discriminate neoplastic human brain lesions: a study using the spectral intensity ratio and multivariate linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Nazeer, Shaiju S.; Saraswathy, Ariya; Gupta, Arun Kumar; Jayasree, Ramapurath S.

    2014-02-01

    Fluorescence spectroscopy is an emerging tool used to differentiate normal and malignant tissue based on the emission spectral profile from endogenous fluorophores. The goal of this study is to estimate the concentration of fluorophores using autofluorescence spectroscopy and try to utilize its diagnostic potential on samples of clinical importance. Brain tumor tissues from patients who received craniotomy for the removal of astrocytoma, glioma, meningioma and schwannoma were utilized in this study. Fluorescence emissions of the formalin fixed samples were recorded at excitation wavelengths of 320 and 410 nm. The emission characteristics of fluorophores such as collagen, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), phospholipids and porphyrins of tumor tissue and adjacent normal tissue were elicited. Exact tissue classification was carried out using the spectral intensity ratio (SIR) and multivariate principal component analysis-linear discriminant analysis (PCA-LDA). The diagnostic algorithm based on PCA-LDA provided better classification efficiency than SIR. Moreover, the spectral data based on an excitation wavelength of 410 nm are found to be more efficient in the classification than 320 nm excitation, using PCA-LDA. Better efficacy of PCA-LDA in tissue classification was further confirmed by the receiver operator characteristic (ROC) curve method. The results of this study establish the feasibility of using fluorescence spectroscopy based real time tools for the discrimination of brain tumors from the adjacent normal tissue during craniotomies, which at present faces a huge challenge.

  18. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    SciTech Connect

    Lee,C.; Gong, P.; Harbers, G.; Grainger, D.; Castner, D.; Gamble, L.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s{yields}{pi}* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in

  19. Supramolecular Fluorescent Nanoparticles Constructed via Multiple Non-Covalent Interactions for the Detection of Hydrogen Peroxide in Cancer Cells.

    PubMed

    Wei, Xuan; Dong, Ruijiao; Wang, Dali; Zhao, Tianyu; Gao, Yongsheng; Duffy, Patrick; Zhu, Xinyuan; Wang, Wenxin

    2015-08-01

    Overabundance of hydrogen peroxide originating from environmental stress and/or genetic mutation can lead to pathological conditions. Thus, the highly sensitive detection of H2 O2 is important. Herein, supramolecular fluorescent nanoparticles self-assembled from fluorescein isothiocyanate modified β-cyclodextrin (FITC-β-CD)/rhodamine B modified ferrocene (Fc-RB) amphiphile were prepared through host-guest interaction between FITC-β-CD host and Fc-RB guest for H2 O2 detection in cancer cells. The self-assembled nanoparticles based on a combination of multiple non-covalent interactions in aqueous medium showed high sensitivity to H2 O2 while maintaining stability under physiological condition. Owing to the fluorescence resonance energy transfer (FRET) effect, addition of H2 O2 led to obvious fluorescence change of nanoparticles from red (RB) to green (FITC) in fluorescent experiments. In vitro study showed the fluorescent nanoparticles could be efficiently internalized by cancer cells and then disrupted by endogenous H2 O2 , accompanying with FRET from "on" to "off". These supramolecular fluorescent nanoparticles constructed via multiple non-covalent interactions are expected to have potential applications in diagnosis and imaging of diseases caused by oxidative stresses. PMID:26133314

  20. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  1. Atmospheric electric field effect for total NM intensity and different multiplicities on Mt Hermon

    NASA Astrophysics Data System (ADS)

    Lev, Dorman; Zukerman, Igor; Pustilnik, Lev; Dai, Uri; Shternlib, Abracham; Shai Applbaum, David; Kazantsev, Vasilii; Kozliner, Lev; Ben Israel, Isaac

    Cosmic rays (CR) are an important element of space weather and instrument of space weather forecasting. From this point of view, it is necessary to take into account all factors influencing CR intensity. One of these important factors is the influence of atmospheric electric fields (AEF) during thunderstorms on CR intensity. This is caused by local acceleration (or deceleration, depending on the direction of the AEF and the sign of charged particles) of secondary CR particles (mostly muons and electrons, for CR observations in the low atmosphere or underground). We analysed one minute data on AEF obtained by the ESF-1000 sensor in our observatory on Mt. Hermon, and one minute neutron monitor data corrected on barometric effects and on the effect of snow. While AEF does not influence neutrons, we found significant effects in the observed total neutron intensity and in the intensities of different multiplicities. This is caused mostly by soft negative muons, captured by nuclei of lead (instead of the atom’s electrons) with the formation of mesoatoms. While the cross section of muons relative to strong interactions is very small (the same order as for neutrino), because the captured muon moves about inside the nucleus with very high density, the probability of muon interaction with nucleus is higher than the decay of muon. As result of this interaction the total energy of the rest muon about 100 MeV goes to the excitation of lead nuclei, with emanation of a few neutrons which are detected by the neutron monitor. Therefore, a neutron monitor is an ideal detector for separating positive and negative soft muons (without using a big magnetic system). We obtained results for positively and negatively directed AEF and show existing significant AEF influence on CR intensithttps://www.cospar-assembly.org/user/download2.php?id=29566&type=previewy, biggest for small multiplicities. We give a theoretical explanation of obtained results.

  2. Photoelectron Holography: Exploration of the Multiphoton Ionization and Multiple Rescattering in Intense Laser Fields

    NASA Astrophysics Data System (ADS)

    Chu, Chon-Teng; Li, Peng-Cheng; Chu, Shih-I.

    2015-05-01

    We perform a fully ab initio investigation of the multiphoton ionization (MPI) and electron multiple rescattering dynamics of atomic H driven by intense ultrashort mid-IR laser fields. The time-dependent Schrödinger equation is solved accurately and efficiently by means of the time-dependent generalized pseudospectral method (TDGPS) in the Kramers-Henneberger (KH) frame. We use the semiclassical approach to analyze and visualize all the trajectories during the atom-laser interaction, unveiling the multiple e-parent ion rescattering processes. In this way, we can identify the dominant behaviors of different parts of photoelectron holography to a particular number of times of the electron's revisits to its parent ion. This work was partially supported by DOE.

  3. Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as antibody labels to increase the fluorescence signal and sensitivity. Ep...

  4. Spatial dynamics of laser-induced fluorescence in an intense laser beam: An experimental and theoretical study with alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Auzinsh, M.; Berzins, A.; Ferber, R.; Gahbauer, F.; Kalnins, U.

    2016-03-01

    We show that it is possible to model accurately optical phenomena in intense laser fields by taking into account the intensity distribution over the laser beam. We present an extension of an earlier theoretical model that divides an intense laser beam into concentric regions, each with a Rabi frequency that corresponds to the intensity in that region, and solve a set of coupled optical Bloch equations for the density matrix in each region. Experimentally obtained magneto-optical resonance curves for the Fg=2 ⟶Fe=1 transition of the D1 line of 87Rb agree very well with the theoretical model up to a laser intensity of around 200 mW/cm2 for a transition whose saturation intensity is around 4.5 mW/cm2. We examine the spatial dependence of the fluorescence intensity in an intense laser beam experimentally and theoretically. We present and discuss the results of an experiment in which a broad, intense pump laser excites the Fg=4 ⟶Fe=4 transition of the D2 line of cesium while a narrow probe beam scans the atoms within the pump beam and excites the D1 line of cesium, whose fluorescence is recorded as a function of probe beam position. Experimentally obtained spatial profiles of the fluorescence intensity agree qualitatively with the predictions of the model.

  5. The fluorescence intermittency for quantum dots is not power-law distributed: a luminescence intensity resolved approach.

    PubMed

    Schmidt, Robert; Krasselt, Cornelius; Göhler, Clemens; von Borczyskowski, Christian

    2014-04-22

    The photoluminescence (PL) of single emitters like semiconductor quantum dots (QDs) shows PL intermittency, often called blinking. We explore the PL intensities of single CdSe/ZnS QDs in polystyrene (PS), on polyvenylalcohol (PVA), and on silicon oxide (SiOx) by the change-point analysis (CPA). By this, we relate results from the macrotime (sub-ms to 1000 s) and the microtime (0.1-100 ns) range to discrete PL intensities. We conclude that the intensity selected "on"-times in the ms range correspond to only a few (discrete) switching times, while the PL decays in the ns range are multiexponential even with respect to the same selected PL intensity. Both types of relaxation processes depend systematically on the PL intensity in course of a blinking time trace. The overall distribution of on-times does not follow a power law contrary to what has often been reported but can be compiled into 3-4 characteristic on-times. The results can be explained by the recently suggested multiple recombination centers model. Additionally, we can identify a well-defined QD state with a very low PL intensity above the noise level, which we assign to the strongly quenched exciton state. We describe our findings by a model of a hierarchical sequence of hole and electron trapping. Blinking events are the consequence of slow switching processes among these states and depend on the physicochemical properties of the heterogeneous nanointerface of the QDs. PMID:24580107

  6. Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions

    PubMed Central

    Sweeney, Elizabeth M.; Shinohara, Russell T.; Dewey, Blake E.; Schindler, Matthew K.; Muschelli, John; Reich, Daniel S.; Crainiceanu, Ciprian M.; Eloyan, Ani

    2015-01-01

    The formation of multiple sclerosis (MS) lesions is a complex process involving inflammation, tissue damage, and tissue repair — all of which are visible on structural magnetic resonance imaging (MRI) and potentially modifiable by pharmacological therapy. In this paper, we introduce two statistical models for relating voxel-level, longitudinal, multi-sequence structural MRI intensities within MS lesions to clinical information and therapeutic interventions: (1) a principal component analysis (PCA) and regression model and (2) function-on-scalar regression models. To do so, we first characterize the post-lesion incidence repair process on longitudinal, multi-sequence structural MRI from 34 MS patients as voxel-level intensity profiles. For the PCA regression model, we perform PCA on the intensity profiles to develop a voxel-level biomarker for identifying slow and persistent, long-term intensity changes within lesion tissue voxels. The proposed biomarker's ability to identify such effects is validated by two experienced clinicians (a neuroradiologist and a neurologist). On a scale of 1 to 4, with 4 being the highest quality, the neuroradiologist gave the score on the first PC a median quality rating of 4 (95% CI: [4,4]), and the neurologist gave the score a median rating of 3 (95% CI: [3,3]). We then relate the biomarker to the clinical information in a mixed model framework. Treatment with disease-modifying therapies (p < 0.01), steroids (p < 0.01), and being closer to the boundary of abnormal signal intensity (p < 0.01) are all associated with return of a voxel to an intensity value closer to that of normal-appearing tissue. The function-on-scalar regression model allows for assessment of the post-incidence time points at which the covariates are associated with the profiles. In the function-on-scalar regression, both age and distance to the boundary were found to have a statistically significant association with the lesion intensities at some time point

  7. Cytogenetic abnormality in patients with multiple myeloma analyzed by fluorescent in situ hybridization

    PubMed Central

    Hu, Ying; Chen, Wenming; Chen, Shilun; Huang, Zhongxia

    2016-01-01

    Objective To analyze the fluorescent in situ hybridization (FISH) data and the association with clinical characteristics, therapy response, and survival time in patients with multiple myeloma. Method We performed a retrospective review of patients with multiple myeloma from November 2010 to April 2014. Results Cytogenetic abnormalities by FISH were detectable in 66% of patients. One cytogenetic abnormality, two cytogenetic abnormalities, and complex abnormalities were detectable in 21.2%, 51.5%, and 27.3% of cases, respectively. 1q21 amplification, t(4p16.3/14q32), and 17p deletion were observed in 69.7%, 30.3%, and 21.2% of cases, respectively. Total response rates (complete response [CR] + near CR + partial response) were 93.8% and 82.1%, respectively, in cytogenetic normality group and abnormality group. CR rates were 50% and 32.1%, respectively. Median overall survival (OS) time was 51 months and 24 months, respectively, in cytogenetic normality group and abnormality group (P<0.05). Median OS time was not significantly different between 1q21 amplification group and no 1q21 amplification group in patients with FISH abnormalities (P>0.05). Median OS time was not significantly different between t(4;14) group and no t(4;14) group in patients with FISH abnormalities (P>0.05). Seven patients of 17p deletion died in 2 years. Conclusion Multiple myeloma is characterized by a high occurrence of chromosomal aberrations. 1q21 amplification and t(4;14) are the most common abnormalities. Multiple cytogenetic abnormalities are frequently observed in the same one patient. The total response rate, CR rate, and OS time are worse in cytogenetic abnormal patients compared with cytogenetic normal patients. Patients with 17p deletion have a very poor prognosis. Future goals of therapy will be to achieve minimal residual disease, biomarkers, and genomic data, which might provide a better estimate of the depth of response to therapy and OS. PMID:27042105

  8. A Solar-pumped Fluorescence Model for Line-by-line Emission Intensities in the B–X, A–X, and X–X Band Systems of 12C14N

    NASA Astrophysics Data System (ADS)

    Paganini, L.; Mumma, M. J.

    2016-09-01

    We present a new quantitative model for detailed solar-pumped fluorescent emission of the main isotopologue of CN. The derived fluorescence efficiencies permit estimation and interpretation of ro-vibrational infrared line intensities of CN in exospheres exposed to solar (or stellar) radiation. Our g-factors are applicable to astronomical observations of CN extending from infrared to optical wavelengths, and we compare them with previous calculations in the literature. The new model enables extraction of rotational temperature, column abundance, and production rate from astronomical observations of CN in the inner coma of comets. Our model accounts for excitation and de-excitation of rotational levels in the ground vibrational state by collisions, solar excitation to the {A}2{{{\\Pi }}}{{i}} and {B}2{{{Σ }}}+ electronically excited states followed by cascade to ro-vibrational levels of {X}2{{{Σ }}}+, and direct solar infrared pumping of ro-vibrational levels in the {X}2{{{Σ }}}+ state. The model uses advanced solar spectra acquired at high spectral resolution at the relevant infrared and optical wavelengths and considers the heliocentric radial velocity of the comet (the Swings effect) when assessing the exciting solar flux for a given transition. We present model predictions for the variation of fluorescence rates with rotational temperature and heliocentric radial velocity. Furthermore, we test our fluorescence model by comparing predicted and measured line-by-line intensities for {X}2{{{Σ }}}+ (1–0) in comet C/2014 Q2 (Lovejoy), thereby identifying multiple emission lines observed at IR wavelengths.

  9. Robust detection of multiple sclerosis lesions from intensity-normalized multi-channel MRI

    NASA Astrophysics Data System (ADS)

    Karpate, Yogesh; Commowick, Olivier; Barillot, Christian

    2015-03-01

    Multiple sclerosis (MS) is a disease with heterogeneous evolution among the patients. Quantitative analysis of longitudinal Magnetic Resonance Images (MRI) provides a spatial analysis of the brain tissues which may lead to the discovery of biomarkers of disease evolution. Better understanding of the disease will lead to a better discovery of pathogenic mechanisms, allowing for patient-adapted therapeutic strategies. To characterize MS lesions, we propose a novel paradigm to detect white matter lesions based on a statistical framework. It aims at studying the benefits of using multi-channel MRI to detect statistically significant differences between each individual MS patient and a database of control subjects. This framework consists in two components. First, intensity standardization is conducted to minimize the inter-subject intensity difference arising from variability of the acquisition process and different scanners. The intensity normalization maps parameters obtained using a robust Gaussian Mixture Model (GMM) estimation not affected by the presence of MS lesions. The second part studies the comparison of multi-channel MRI of MS patients with respect to an atlas built from the control subjects, thereby allowing us to look for differences in normal appearing white matter, in and around the lesions of each patient. Experimental results demonstrate that our technique accurately detects significant differences in lesions consequently improving the results of MS lesion detection.

  10. When R  >  0.8R 0: fluorescence anisotropy, non-additive intensity, and cluster size

    NASA Astrophysics Data System (ADS)

    Zolmajd-Haghighi, Z.; Hanley, Q. S.

    2016-06-01

    Assembly and clustering feature in many biological processes and homo-FRET and fluorescence anisotropy can assist in estimating the aggregation state of a system. The distance dependence of resonance energy transfer is well described and tested. Similarly, assessment of cluster size using steady state anisotropy is well described for non-oriented systems when R  <  0.8R 0, however, these methods break down when R  >  0.8R 0. Fused trimeric DNA clusters labelled with fluorescein were engineered to provide inter-fluorophore distances from 0.7 to 1.6 R/R 0 and intensity and anisotropy were measured. These constructs cover a range where anisotropy effects depend on distance. Analytical expressions were derived for fully labelled and fractionally labelled clusters and the experimental results analysed. The experimental results showed that: (1) the system underwent distance dependent quenching; (2) when incompletely labelled both doubly and triply labelled forms could be assessed to obtain distance dependent intensity factors; (3) the anisotropy behaviour of a multiply labelled cluster of a particular size depends on the behaviour of the fluorophores and their distance in a cluster. This work establishes that when emission intensity data are available the analytically useful range for investigating clusters does not have to be restricted to R  <  0.8R 0 and is applicable to cases where the anisotropy of a cluster of N fluorophores is not well approximated by r 1/N.

  11. Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser

    PubMed Central

    Brenner, Meredith H.; Cai, Dawen; Swanson, Joel A.; Ogilvie, Jennifer P.

    2013-01-01

    Imaging multiple fluorescent proteins (FPs) by two-photon microscopy has numerous applications for studying biological processes in thick and live samples. Here we demonstrate a setup utilizing a single broadband laser and a phase-only pulse-shaper to achieve imaging of three FPs (mAmetrine, TagRFPt, and mKate2) in live mammalian cells. Phase-shaping to achieve selective excitation of the FPs in combination with post-imaging linear unmixing enables clean separation of the fluorescence signal of each FP. This setup also benefits from low overall cost and simple optical alignment, enabling easy adaptation in a regular biomedical research laboratory. PMID:23938572

  12. High Mean Fluorescence Intensity Donor-Specific Anti-HLA Antibodies Associated With Chronic Rejection Postliver Transplant

    PubMed Central

    O’Leary, J. G.; Kaneku, H.; Susskind, B. M.; Jennings, L. W.; Neri, M. A.; Davis, G. L.; Klintmalm, G. B.; Terasaki, P. I.

    2015-01-01

    In contrast to kidney transplantation where donorspecific anti-HLA antibodies (DSA) negatively impact graft survival, correlation of DSA with clinical outcomes in patients after orthotopic liver transplantation (OLT) has not been clearly established. We hypothesized that DSA are present in patients who develop chronic rejection after OLT. Prospectively collected serial serum samples on 39 primary OLT patients with biopsy-proven chronic rejection and 39 comparator patients were blinded and analyzed for DSA using LABScreen single antigen beads test, where a 1000 mean fluorescence value was considered positive. In study patients, the median graft survival was 15 months, 74% received ≥ one retransplant, 20% remain alive and 87% had ≥ one episode of acute rejection. This is in contrast to comparator patients where 69% remain alive, and no patient needed retransplant or experienced rejection. Thirty-six chronic rejection patients (92%) and 24 (61%) comparator patients had DSA (p = 0.003). Chronic rejection versus comparator patients had higher mean fluorescence intensity (MFI) DSA. Although a further study with larger numbers of patients is needed to identify clinically significant thresholds, there is an association of high-MFI DSA with chronic rejection after OLT. PMID:21672151

  13. Exploration of the electron multiple recollision dynamics in intense laser fields with Bohmian trajectories

    NASA Astrophysics Data System (ADS)

    Jooya, Hossein Z.; Telnov, Dmitry A.; Chu, Shih-I.

    2016-06-01

    Electron multiple recollision dynamics under intense midinfrared laser fields is studied by means of the de Broglie-Bohm framework of Bohmian mechanics. Bohmian trajectories contain all the information embedded in the time-dependent wave function. This makes the method suitable to investigate the coherent dynamic processes for which the phase information is crucial. In this study, the appearance of the subpeaks in the high-harmonic-generation time-frequency profiles and the asymmetric fine structures in the above-threshold ionization spectrum are analyzed by the comprehensive and intuitive picture provided by Bohmian mechanics. The time evolution of the individual electron trajectories is closely studied to address some of the major structural features of the photoelectron angular distributions.

  14. Order dependence of the profile of the intensities of multiple-quantum coherences

    SciTech Connect

    Lundin, A. A.; Zobov, V. E.

    2015-05-15

    A modification of the widespread phenomenological model theory of multiple-quantum (MQ) nuclear magnetic resonance spectra of a single cluster of correlated spins has been developed. In contrast to the mentioned theory, the size distribution of such clusters has been consistently taken into account. To obtain the distribution, solutions for the amplitudes of the expansion in the complete set of orthogonal operators are used. Expressions specifying the dependence of the profile of the intensities of MQ coherences on their number n (order) have been obtained. The total form of the dependence has been evaluated by means of the numerical implementation of the resulting expressions. The asymptotic expressions for large n values (wings of the spectrum) have been obtained analytically by the saddle-point method. It has been shown that the dependence under study has a Gaussian central part and exponential wings. The results obtained are in agreement with the previous calculations for some model systems and existing experimental data.

  15. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    NASA Technical Reports Server (NTRS)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  16. Concurrent fluorescence macro-imaging across multiple spectral regions in the visible and the near infrared

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Haider, Shahid; Jin, Chao; Clausi, David A.; Wong, Alexander

    2015-09-01

    Fluorescent imaging, often synonymous with microscopic imaging, is an imaging modality whereby various features of a target are observed based on assignment of chemical labels. These labels are in most cases indirect tracers of specific structures or chemical compounds which cannot be otherwise identified. The tracers are excited by an illuminating source and they in turn emit light at specific wavelengths. This light is then captured by an imaging device and represented as an indirect observation of the specific feature in the sample. The process of excitation and imaging of the emitted light is performed sequentially and is proportional to the number of tracers or fluorescence species present in the sample. We present an imaging system that can image fluorescent tracers, in the visible and the near Infra-red, simultaneously. This system is capable of illuminating the target with different excitation light sources and capture the corresponding fluorescence images in one snapshot using a series of mirrors to capture different views of the sample. The simultaneously captured image are fused using a computational reconstruction process to present a coherent multispectral fluorescence image. The system is proposed for use in applications where the rapid enumeration of fluorescent species in a large field of view is paramount as opposed to their microscopic image in a narrow field of view. The system was tested using a controlled cocktail solution of four different types fluorescent microspheres and was able to enumerate the microspheres based on their different fluorescent signatures as captured by the system.

  17. The impact of relative intensity noise on the signal in multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Neuhaus, Kai; Subhash, Hrebesh; Alexandrov, Sergey; Dsouza, Roshan; Hogan, Josh; Wilson, Carol; Leahy, Martin; Slepneva, Svetlana; Huyet, Guillaume

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) applies a unique low-cost solution to enhance the scanning depth of standard time domain OCT by inserting an partial mirror into the reference arm of the interferometric system. This novel approach achieves multiple reflections for different layers and depths of an sample with minimal effort of engineering and provides an excellent platform for low-cost OCT systems based on well understood production methods for micro-mechanical systems such as CD/DVD pick-up systems. The direct integration of a superluminescent light-emitting diode (SLED) is a preferable solution to reduce the form- factor of an MR-OCT system. Such direct integration exposes the light source to environmental conditions that can increase fluctuations in heat dissipation and vibrations and affect the noise characteristics of the output spectrum. This work describes the impact of relative intensity noise (RIN) on the quality of the interference signal of MR-OCT related to a variety of environmental conditions, such as temperature.

  18. Simultaneous Visualization of Multiple mRNAs and Matrix Metalloproteinases in Living Cells Using a Fluorescence Nanoprobe.

    PubMed

    Pan, Wei; Yang, Huijun; Li, Na; Yang, Limin; Tang, Bo

    2015-04-13

    Simultaneous monitoring of multiple tumour markers is of great significance for improving the accuracy of early cancer detection. In this study, a fluorescence nanoprobe has been prepared that can simultaneously monitor and visualize multiple mRNAs and matrix metalloproteinases (MMPs) in living cells. Confocal fluorescence imaging results indicate that the nanoprobe could effectively distinguish between cancer cells and normal cells even if one tumour maker of normal cells was overexpressed. Furthermore, it can detect changes in the expression levels of mRNAs and MMPs in living cells. The current approach could provide new tools for early cancer detection and monitoring the changes in expression levels of biomarkers during tumour progression. PMID:25752514

  19. A reversible dual-response fluorescence switch for the detection of multiple analytes.

    PubMed

    Geng, Junlong; Liu, Ping; Liu, Bianhua; Guan, Guijian; Zhang, Zhongping; Han, Ming-Yong

    2010-03-22

    This paper reports a reversible dual fluorescence switch for the detection of a proton target and 2,4,6-trinitrotoluene (TNT) with opposite-response results, based on fluorophore derivatization of silica nanoparticles. Fluorescent silica nanoparticles were synthesized through modification of the surface with a nitrobenzoxadiazole (NBD) fluorophore and an organic amine to form a hybrid monolayer of fluorophores and amino ligands; the resultant nanoparticles showed different fluorescence responses to the proton target and TNT. Protonation of the amino ligands leads to fluorescence enhancement due to inhibition of photoinduced electron transfer (PET) between the amine and fluorophore. By contrast, addition of TNT results in fluorescence quenching because a fluorescence resonance energy transfer (FRET) happens between the NBD fluorophore and the formed TNT-amine complex. The fluorescence signal is reversible through washing with the proper solvents and the nanoparticles can be reused after centrifugal separation. Furthermore, these nanoparticles were assembled into chips on an etched silicon wafer for the detection of TNT and the proton target. The assembled chip can be used as a convenient indicator of herbicide (2,4-dichlorophenoxyacetic acid) and TNT residues with the use of only 10 microL of sample. The simple NBD-grafted silica nanoparticles reported here show a reversible signal and good assembly flexibility; thus, they can be applied in multianalyte detection. PMID:20151433

  20. Tracking graphene by fluorescence imaging: a tool for detecting multiple populations of graphene in solution

    NASA Astrophysics Data System (ADS)

    Guidetti, G.; Cantelli, A.; Mazzaro, R.; Ortolani, L.; Morandi, V.; Montalti, M.

    2016-04-01

    Most methods used for the characterization of graphene produced by liquid phase exfoliation require the deposition of the liquid sample on a substrate and subsequent drying. Because of this or other post-synthetic treatments, the reliability of the data in describing the actual features of the graphene particles in the pristine solution becomes questionable. Hence there is a need for new methods that permit the study of graphene directly in solution. Fluorescence imaging is at present the most convenient and sensitive method to visualize nanosized objects in solution. Here we report the development of a new method for visualizing and tracking exfoliated graphene directly in solution using a conventional set-up for fluorescence microscopy. We functionalized a fluorescent surfactant typically used for exfoliating graphite in aqueous phase (Pluronic P123) with two different fluorophores, in order to make graphene detectable by fluorescence microscopy. The photophysical interactions between the fluorescent surfactant and graphene were investigated at the bulk level. Finally, fluorescence microscopy allowed us to track the carbon particles produced and to identify two different populations of particles with sizes of 265 +/- 25 and 1100 +/- 200 nm respectively. The correlation of these results with TEM and DLS data is discussed.Most methods used for the characterization of graphene produced by liquid phase exfoliation require the deposition of the liquid sample on a substrate and subsequent drying. Because of this or other post-synthetic treatments, the reliability of the data in describing the actual features of the graphene particles in the pristine solution becomes questionable. Hence there is a need for new methods that permit the study of graphene directly in solution. Fluorescence imaging is at present the most convenient and sensitive method to visualize nanosized objects in solution. Here we report the development of a new method for visualizing and tracking

  1. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO42− Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System

    PubMed Central

    Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying

    2016-01-01

    A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO42− in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05′40′′ N, 120°31′32′′ E) in October 2014. To detect chl-a, CDOM, carotenoids and SO42−, the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO42−. To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO42− concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO42− in the ocean. PMID:27420071

  2. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO₄(2-) Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System.

    PubMed

    Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying

    2016-01-01

    A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO₄(2-) in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05'40'' N, 120°31'32'' E) in October 2014. To detect chl-a, CDOM, carotenoids and SO₄(2-), the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO₄(2-). To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO₄(2-) concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO₄(2-) in the ocean. PMID:27420071

  3. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants.

    PubMed Central

    Axelsen, P H; Bajzer, Z; Prendergast, F G; Cottam, P F; Ho, C

    1991-01-01

    Time correlated single photon counting measurements of tryptophan (Trp) fluorescence intensity decay and other spectroscopic studies were performed on glutamine-binding protein (GlnBP) from Escherichia coli. Using site-specifically mutated forms of the protein in which tyrosine (Tyr) and phenylalanine (Phe) substitute for the Trp residues at positions 32 and 220, we have examined whether wild-type (Wtyp) intensity decay components may be assigned to specific Trp residues. Results indicate that: (a) two exponential intensity decay components are recovered from the Wtyp protein (6.16 ns, 0.46 ns); (b) the long decay component arises from Trp-220 and comprises greater than 90% of the total fluorescence emission; (c) the short component arises from Trp-32 and is highly quenched; (d) all four single-Trp mutants exhibit multiexponential intensity decays, yet equimolar mixtures of two single-Trp mutants yield only two decay components which are virtually indistinguishable from the Wtyp protein; (e) the recovery of additional components in protein mixtures is obscured by statistical noise inherent in the technique of photon counting; (f) various spectroscopic measurements suggest that Trp-Trp interactions occur in the Wtyp protein, but the Wtyp intensity decay may be closely approximated by a linear combination of intensity decays from single-Trp mutants; and (g) inferences derived independently from fluorescence and NMR spectroscopy which pertain to the presence of Trp-Trp interactions and the relative solvent exposure of the two Trp residues are in agreement. PMID:1932553

  4. Tracking graphene by fluorescence imaging: a tool for detecting multiple populations of graphene in solution.

    PubMed

    Guidetti, G; Cantelli, A; Mazzaro, R; Ortolani, L; Morandi, V; Montalti, M

    2016-04-28

    Most methods used for the characterization of graphene produced by liquid phase exfoliation require the deposition of the liquid sample on a substrate and subsequent drying. Because of this or other post-synthetic treatments, the reliability of the data in describing the actual features of the graphene particles in the pristine solution becomes questionable. Hence there is a need for new methods that permit the study of graphene directly in solution. Fluorescence imaging is at present the most convenient and sensitive method to visualize nanosized objects in solution. Here we report the development of a new method for visualizing and tracking exfoliated graphene directly in solution using a conventional set-up for fluorescence microscopy. We functionalized a fluorescent surfactant typically used for exfoliating graphite in aqueous phase (Pluronic P123) with two different fluorophores, in order to make graphene detectable by fluorescence microscopy. The photophysical interactions between the fluorescent surfactant and graphene were investigated at the bulk level. Finally, fluorescence microscopy allowed us to track the carbon particles produced and to identify two different populations of particles with sizes of 265 ± 25 and 1100 ± 200 nm respectively. The correlation of these results with TEM and DLS data is discussed. PMID:27064427

  5. Intensity-modulated radiosurgery with rapidarc for multiple brain metastases and comparison with static approach

    SciTech Connect

    Wang Jiazhu; Pawlicki, Todd; Rice, Roger; Mundt, Arno J.; Sandhu, Ajay; Lawson, Joshua; Murphy, Kevin T.

    2012-04-01

    Rotational RapidArc (RA) and static intensity-modulated radiosurgery (IMRS) have been used for brain radiosurgery. This study compares the 2 techniques from beam delivery parameters and dosimetry aspects for multiple brain metastases. Twelve patients with 2-12 brain lesions treated with IMRS were replanned using RA. For each patient, an optimal 2-arc RA plan from several trials was chosen for comparison with IMRS. Homogeneity, conformity, and gradient indexes have been calculated. The mean dose to normal brain and maximal dose to other critical organs were evaluated. It was found that monitor unit (MU) reduction by RA is more pronounced for cases with larger number of brain lesions. The MU-ratio of RA and IMRS is reduced from 104% to 39% when lesions increase from 2 to 12. The dose homogeneities are comparable in both techniques and the conformity and gradient indexes and critical organ doses are higher in RA. Treatment time is greatly reduced by RA in intracranial radiosurgery, because RA uses fewer MUs, fewer beams, and fewer couch angles.

  6. Intravital Fluorescence Facilitates Measurement of Multiple Physiologic Functions and Gene Expression in Tumors of Live Animals

    PubMed Central

    Dewhirst, Mark W.; Shan, S.; Cao, Yiting; Moeller, Benjamin; Yuan, Fan; Li, Chuan-Yuan

    2002-01-01

    The purpose of this report is to present an overview of the use of fluorescence imaging in vivo, with particular emphasis on oncology. It is important to note, however, that many of the methods described herein have been applied to the study of non-malignant tissues as well. Modern medicine and biology research has benefited greatly from an ever-expanding assortment of fluorescent markers and labels. These markers and labels have allowed investigators to observe the behavior and properties of cell and molecular entities of interest in the context of complicated biological systems such as a mammalian cell or a whole mouse. Methods developed to image fluorescence in whole mice have been valuable in studying patterns of tumor growth and metastases. Alternatively, more detailed information and a wide variety of endpoints can be obtained using “intravital” preparations. This review focuses on use of fluorescence imaging for intravital preparations. For detail on fluorescence imaging of whole animals, refer to reviews on this subject [1,2]. For oncologic applications, studies have focused primarily on window chamber preparations that allow for real-time visualization of tumor growth, vascularity, vascular responses to stimulation, vascular permeability, vascular orientation, flow instability, and the like. These endpoints have been used to show that there are functional differences between tumor and normal tissues with respect to these functions under baseline conditions and after therapeutic manipulation. Examples of some of these differences are provided in this review as a means to illustrate how they can be used. PMID:14646042

  7. A dithienosilole-based fluorescent chemosensor for multiple logic operations at the molecular level.

    PubMed

    Zhang, Chen; Sun, Caixia; Lu, Yahong; Wang, Junxing; He, Xingxing; Lu, Junting; Yin, Shouchun; Qiu, Huayu

    2015-11-01

    A chemosensor consisting of two terpyridines covalently linked to a dithienosilole unit (1) has been synthesized, and its optical and metal sensing properties have been investigated. Due to the metal-organic coordination function, 1 can bind with many transition metal ions and display different fluorescence responses that cause it to function as a "turn-off" fluorescent chemosensor. A significant bathochromic shift in the fluorescence spectra is observed in the presence of Zn(2+). Meanwhile, the emission of 1 is weakened upon exposure to Ag(+) and Fe(2+) and completely quenched by Ni(2+), Co(2+), and Cu(2+). Based on the observed results, several logic gates, such as XNOR, INHIBIT, and IMPLICATION, have been achieved by controlling the chemical inputs. PMID:26099823

  8. Side-entry laser-beam zigzag irradiation of multiple channels in a microchip for simultaneous and highly sensitive detection of fluorescent analytes.

    PubMed

    Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi

    2015-09-01

    A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields. PMID:26296140

  9. [Single-donor protocol: Transfusion practices and multiple transfusion risk factors in neonatal intensive care unit].

    PubMed

    Dollat, C; Pierron, C; Keslick, A; Billoir, E; François, A; Jarreau, P-H

    2016-09-01

    In France since 2002, the single-donor transfusion protocol, using four pediatric units from the same adult donor's packed red blood cells (PRBCs) in multiply transfused newborns, is recommended in preterm neonates to reduce the risks of infection and alloimmunization. This protocol is controversial, however, because it causes the transfusion of stored blood, which could have adverse consequences. Before the new recommendations of the French Haute Autorité de santé (National authority for health) in 2015, we conducted a national practice survey in 63 neonatal intensive care units (NICU) and a retrospective study of the characteristics of 103 children transfused within our unit, to better target beneficiaries. The practice survey showed that 30 % of French NICUs no longer used the protocol in 2014, due to logistical or financial problems, or concerns about the transfusion of stored blood. The practices were heterogeneous. Few NICUs used a written protocol. In our NICU, the use of single-donor protocol involved the use of units stored for more than 20 days in half of the cases beginning with the third unit used. Six-term newborns were mainly transfused once, which does not seem to warrant the single-donor transfusion protocol. The use of this protocol caused the loss of 50 % of the manufactured units, which go unused. In multivariate analysis, two factors were predictive of multiple transfusion within our population of 95 premature neonates undergoing transfusion: low-term and a high Clinical Risk Index for Babies (CRIB) score. The risk of multiple transfusions would be reduced by about 15 % for each additional week of gestation and approximately 16 % per point within the CRIB score. These variables integrated into a statistical model predict the risk of multiplying transfusions. According to the ROC curve, a calculated risk higher than 50 % is the appropriate cut-off value to transfuse with the single-donor transfusion protocol. This would limit its

  10. From the Inside Looking Out--An Intensive Interaction Group for People with Profound and Multiple Learning Disabilities

    ERIC Educational Resources Information Center

    Leaning, Brian; Watson, Tessa

    2006-01-01

    This paper describes the use of a new project, "from the inside looking out" (FILO) (N. Richardson Unpublished data), to develop communication, interaction and emotional literacy skills with people with profound and multiple learning disabilities. The authors utilized tools derived from Intensive Interaction Therapy [D. Hewett & M. Nind (1994)…

  11. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  12. Characterization of Fluorescence of ANS–Tear Lipocalin Complex: Evidence for Multiple-Binding Modes

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Glasgow, Ben J.

    2010-01-01

    ANS is widely used as a probe for locating binding sites of proteins and studying structural changes under various external conditions. However, the nature of ANS-binding sites in proteins and the accompanying changes in fluorescence properties are controversial. We examined the steady-state and time-resolved fluorescence of the ANS–protein complexes for tear lipocalin (TL) and its mutants in order to discern the origin of lifetime components via analysis that included the multiexponential decay and the model-free maximum entropy methods. Fluorescence lifetimes of ANS–TL complexes can be grouped into two species, 14.01–17.42 ns and 2.72–4.37 ns. The log-normal analyses of fluorescence spectral shapes reveal the heterogeneous nature of both long- and short-lifetime species. The constructed time-resolved emission, amplitude (TRES) and area normalized (TRANES), and decay-associated spectra are consistent with a model that includes heterogeneous modes of ANS binding with two separate lifetime components. The two lifetime components are not derived from solvent relaxation, but rather may represent different binding modes. PMID:18028215

  13. Characterization of fluorescence of ANS-tear lipocalin complex: evidence for multiple-binding modes.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2007-01-01

    ANS is widely used as a probe for locating binding sites of proteins and studying structural changes under various external conditions. However, the nature of ANS-binding sites in proteins and the accompanying changes in fluorescence properties are controversial. We examined the steady-state and time-resolved fluorescence of the ANS-protein complexes for tear lipocalin (TL) and its mutants in order to discern the origin of lifetime components via analysis that included the multiexponential decay and the model-free maximum entropy methods. Fluorescence lifetimes of ANS-TL complexes can be grouped into two species, 14.01-17.42 ns and 2.72-4.37 ns. The log-normal analyses of fluorescence spectral shapes reveal the heterogeneous nature of both long- and short-lifetime species. The constructed time-resolved emission, amplitude (TRES) and area normalized (TRANES), and decay-associated spectra are consistent with a model that includes heterogeneous modes of ANS binding with two separate lifetime components. The two lifetime components are not derived from solvent relaxation, but rather may represent different binding modes. PMID:18028215

  14. Optimization of the design of a multiple-photon excitation laser scanning fluorescence imaging system

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; White, John G.

    1997-04-01

    Multi-photon (two or more photon) excitation imaging offers three significant advantages compared to laser-scanning confocal fluorescence microscopy for 3-D and 4-D fluorescence microscopy: considerable reduction in total sample excitation, increased depth penetration, and increased detection sensitivity. All-solid-state ultra-fast lasers offer tremendous potential for affordable, reliable, 'turn-key' multi-photon excitation sources. We have been developing a multi-photon system that utilizes an all-solid- state Nd:YLF excitation source. We have been evaluating the potential of this source for biological microscopy and have been optimizing system parameters for this application area. We have found that the 1047 nm radiation from these lasers can excite by two-photon fluorescence many commonly used fluorophores that are normally excited from blue to yellow light. In addition, we have found that this wavelength readily excites several normally UV excited fluorophores by the mechanism of three-photon excitation. The Nd:YLF laser has proven reliable in operation with nearly 6000 hours logged without significant loss of power. However, the original system produced rather long pulses for multi-photon excitation (300 fs) and a beam shape that was not ideal. We have recently commissioned the development of an improved pulse compressor from the manufacturers that gives narrower pulses (120 fs), improved beam shape, and a smaller insertion loss. This optimized excitation system has 6 times more potential two-photon excited fluorescence and 22 times more potential three-photon excited fluorescence than the prototype system. In addition, by optimizing coatings in the excitation and signal paths, we have improved the descanned detection sensitivity by 20% for two-photon excited fluorescence and 315% for three-photon excited fluorescence. The excitation optical transfer efficiency (1047 nm) of our imaging system is currently 60% to the back aperture of the objective. The

  15. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales

    PubMed Central

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-01-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO3-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (CODMn) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO3-N and CODMn, respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  16. A statistical assessment of the impact of agricultural land use intensity on regional surface water quality at multiple scales.

    PubMed

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-11-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO(3)-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (COD(Mn)) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO(3)-N and COD(Mn), respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  17. Automatic Tumor-Stroma Separation in Fluorescence TMAs Enables the Quantitative High-Throughput Analysis of Multiple Cancer Biomarkers

    PubMed Central

    Lahrmann, Bernd; Halama, Niels; Sinn, Hans-Peter; Schirmacher, Peter; Jaeger, Dirk; Grabe, Niels

    2011-01-01

    The upcoming quantification and automation in biomarker based histological tumor evaluation will require computational methods capable of automatically identifying tumor areas and differentiating them from the stroma. As no single generally applicable tumor biomarker is available, pathology routinely uses morphological criteria as a spatial reference system. We here present and evaluate a method capable of performing the classification in immunofluorescence histological slides solely using a DAPI background stain. Due to the restriction to a single color channel this is inherently challenging. We formed cell graphs based on the topological distribution of the tissue cell nuclei and extracted the corresponding graph features. By using topological, morphological and intensity based features we could systematically quantify and compare the discrimination capability individual features contribute to the overall algorithm. We here show that when classifying fluorescence tissue slides in the DAPI channel, morphological and intensity based features clearly outpace topological ones which have been used exclusively in related previous approaches. We assembled the 15 best features to train a support vector machine based on Keratin stained tumor areas. On a test set of TMAs with 210 cores of triple negative breast cancers our classifier was able to distinguish between tumor and stroma tissue with a total overall accuracy of 88%. Our method yields first results on the discrimination capability of features groups which is essential for an automated tumor diagnostics. Also, it provides an objective spatial reference system for the multiplex analysis of biomarkers in fluorescence immunohistochemistry. PMID:22164226

  18. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.

    PubMed

    Liu, Yong; Wu, Peiyi

    2013-06-26

    Gold nanoparticles (Au NPs) are very attractive candidate nanoparticles in biological assay because of their high chemical stabilities, high homogeneities, good biocompatibilities, and low toxicities. However, molecular beacon assays via encapsulating the combined fluorescence or surface-enhanced Raman scattering (SERS) signals of reporters and Au NPs in nanobarcodes particles usually suffer from fluorescence quenching or weak Raman enhancement when Au NPs are employed (especially with size smaller than 15 nm). Herein, we present a new design of simultaneously realizing metal-enhanced fluorescence and coenhanced surface-enhanced Raman scattering by facilely embedding Ag nanoparticle into the shell of two kinds of Au nanoaggregate (5 and 10 nm), meanwhile, fluorophore is located between the silver core and gold nanoparticle layers and the distance among them is adjusted by SiO2 spacer (Ag@first SiO2 spacer@FiTC+SiO2@second SiO2 spacer@Au nanoaggregate). In this architecture, Ag nanoparticle not only is utilized as an efficient fluorescence enhancer to overcome the common fluorescence quenching around Au nanoaggregates but also behaves like a mirror. Thus, incident light that passes through the SERS-active Au nanoaggregate and the intervening dielectric layer of SiO2 could be reflected multiply from the surface of Ag nanoparticle and coupled with the light at the nanogap between the Au nanoaggregates to further amplify Raman intensity. This results in enhancement factors for fluorescence and SERS ~1.6-fold and more than 300-fold higher than the control samples without silver core under identical experimental conditions, respectively. Moreover, fluorophore and SERS reporters are assembled onto different layers of the concentric hybrid microsphere, resulting in a feasible fabrication protocol when a large number of agents need to be involved into the dual-mode nanobarcodes. A proof-of-concept chip-based DNA sandwich hybridization assay using genetically modified

  19. Design of Multiple Logic Gates Based on Chemically Triggered Fluorescence Switching of Functionalized Polyethylenimine.

    PubMed

    Pan, Yi; Shi, Yupeng; Chen, Zhihua; Chen, Junying; Hou, Mengfei; Chen, Zhanpeng; Li, Cheuk-Wing; Yi, Changqing

    2016-04-13

    In this study, two new functionalized polyethylenimine (PEI), PEIR and PEIQ, have been synthesized by covalently conjugating rhodamine 6G (R6G) or 8-chloroacetyl-aminoquinoline (CAAQ) and have been investigated for their sensing capabilities toward metal ions and anions basing on fluorescence on-off and off-on mechanisms. When triggered by protons, metal ions, or anions, functionalized PEIs can behave as a fluorescence switch, leading to a multiaddressable system. Inspired by these results, functionalized PEI-based logic systems capable of performing elementary logic operations (YES, NOT, NOR, and INHIBIT) and integrative logic operations (OR + INHIBIT) have been constructed by observing the change in the fluorescence with varying the chemical inputs such as protons, metal ions, and anions. Due to its characteristics, such as high sensitivity and fast response, developing functionalized PEI as a new material to perform logic operations may pave a new avenue to construct the next generation of molecular devices with better applicability for biomedical research. PMID:27007856

  20. Palus Somni - Anomalies in the correlation of Al/Si X-ray fluorescence intensity ratios and broad-spectrum visible albedos. [lunar surface mineralogy

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Andre, C. G.; Adler, I.; Weidner, J.; Podwysocki, M.

    1976-01-01

    The positive correlation between Al/Si X-ray fluorescence intensity ratios determined during the Apollo 15 lunar mission and a broad-spectrum visible albedo of the moon is quantitatively established. Linear regression analysis performed on 246 1 degree geographic cells of X-ray fluorescence intensity and visible albedo data points produced a statistically significant correlation coefficient of .78. Three distinct distributions of data were identified as (1) within one standard deviation of the regression line, (2) greater than one standard deviation below the line, and (3) greater than one standard deviation above the line. The latter two distributions of data were found to occupy distinct geographic areas in the Palus Somni region.

  1. Predicting Distribution and Inter-Annual Variability of Tropical Cyclone Intensity from a Stochastic, Multiple-Linear Regression Model

    NASA Astrophysics Data System (ADS)

    Lee, C. Y.; Tippett, M. K.; Sobel, A. H.; Camargo, S. J.

    2014-12-01

    We are working towards the development of a new statistical-dynamical downscaling system to study the influence of climate on tropical cyclones (TCs). The first step is development of an appropriate model for TC intensity as a function of environmental variables. We approach this issue with a stochastic model consisting of a multiple linear regression model (MLR) for 12-hour intensity forecasts as a deterministic component, and a random error generator as a stochastic component. Similar to the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS), MLR relates the surrounding environment to storm intensity, but with only essential predictors calculated from monthly-mean NCEP reanalysis fields (potential intensity, shear, etc.) and from persistence. The deterministic MLR is developed with data from 1981-1999 and tested with data from 2000-2012 for the Atlantic, Eastern North Pacific, Western North Pacific, Indian Ocean, and Southern Hemisphere basins. While the global MLR's skill is comparable to that of the operational statistical models (e.g., SHIPS), the distribution of the predicted maximum intensity from deterministic results has a systematic low bias compared to observations; the deterministic MLR creates almost no storms with intensities greater than 100 kt. The deterministic MLR can be significantly improved by adding the stochastic component, based on the distribution of random forecasting errors from the deterministic model compared to the training data. This stochastic component may be thought of as representing the component of TC intensification that is not linearly related to the environmental variables. We find that in order for the stochastic model to accurately capture the observed distribution of maximum storm intensities, the stochastic component must be auto-correlated across 12-hour time steps. This presentation also includes a detailed discussion of the distributions of other TC-intensity related quantities, as well as the inter

  2. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints

    NASA Astrophysics Data System (ADS)

    Llacer, Jorge; Deasy, Joseph O.; Bortfeld, Thomas R.; Solberg, Timothy D.; Promberger, Claus

    2003-01-01

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  3. Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints.

    PubMed

    Llacer, Jorge; Deasy, Joseph O; Portfeld, Thomas R; Solberg, Timothy D; Promberger, Claus

    2003-01-21

    This paper reports on the analysis of intensity modulated radiation treatment optimization problems in the presence of non-convex feasible parameter spaces caused by the specification of dose-volume constraints for the organs-at-risk (OARs). The main aim was to determine whether the presence of those non-convex spaces affects the optimization of clinical cases in any significant way. This was done in two phases: (1) Using a carefully designed two-dimensional mathematical phantom that exhibits two controllable minima and with randomly initialized beamlet weights, we developed a methodology for exploring the nature of the convergence characteristics of quadratic cost function optimizations (deterministic or stochastic). The methodology is based on observing the statistical behaviour of the residual cost at the end of optimizations in which the stopping criterion is progressively more demanding and carrying out those optimizations to very small error changes per iteration. (2) Seven clinical cases were then analysed with dose-volume constraints that are stronger than originally used in the clinic. The clinical cases are two prostate cases differently posed, a meningioma case, two head-and-neck cases, a spleen case and a spine case. Of the 14 different sets of optimizations (with and without the specification of maximum doses allowed for the OARs), 12 fail to show any effect due to the existence of non-convex feasible spaces. The remaining two sets of optimizations show evidence of multiple minima in the solutions, but those minima are very close to each other in cost and the resulting treatment plans are practically identical, as measured by the quality of the dose-volume histograms (DVHs). We discuss the differences between fluence maps resulting from those similar treatment plans. We provide a possible reason for the observed results and conclude that, although the study is necessarily limited, the annealing characteristics of a simulated annealing method may not be

  4. Reasoning about Intensive Quantities in Whole-Number Multiplication? A Possible Basis for Ratio Understanding

    ERIC Educational Resources Information Center

    Simon, Martin A.; Placa, Nicora

    2012-01-01

    One of the challenges of learning ratio concepts is that it involves intensive quantities, a type of quantity that is more conceptually demanding than those that are evaluated by counting or measuring (extensive quantities). In this paper, we engage in an exploration of the possibility of developing reasoning about intensive quantities during the…

  5. Nanoscale energy-route selector consisting of multiple photo-switchable fluorescence-resonance-energy-transfer structures on DNA

    NASA Astrophysics Data System (ADS)

    Fujii, Ryo; Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2015-04-01

    We report on a nanoscale energy-route selector consisting of multiple fluorescence resonance energy transfer (FRET) structures switched by external signaling with multiple wavelengths of light. In each FRET structure, a specific activator molecule is incorporated to a FRET pair of a donor and an acceptor to control the activation of the acceptor. Owing to this configuration, the FRET structures are switched independently, and an energy route is selected. Two photo-switchable FRET structures, one consists of Alexa Fluor 568 (donor), Cy5 (acceptor), and Alexa Fluor 405 (activator), and the other consists of Alexa Fluor 568 (donor), Cy5.5 (acceptor), and Cy3 (activator), were constructed using DNA strands modified with fluorescence molecules. Switching rates for the individual FRET structures were measured as 64 and 49 %, respectively. An energy-route selector was then assembled with the FRET structures which share a single donor. Experimental results demonstrate that the energy route can be changed repeatedly by activation control using three wavelengths of light.

  6. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk.

    PubMed

    Song, Erqun; Yu, Mengqun; Wang, Yunyun; Hu, Weihua; Cheng, Dan; Swihart, Mark T; Song, Yang

    2015-10-15

    Antibiotic residues, which are among the most common contaminants in animal-based food products such as milk, have become a significant public health concern. Here, we combine a multicolor quantum dot (QD)-based immunofluorescence assay and an array analysis method to achieve simultaneous, sensitive and visual detection of streptomycin (SM), tetracycline (TC), and penicillin G (PC-G) in milk. Antibodies (Abs) for SM, TC and PC-G were conjugated to QDs with different emission wavelengths (QD 520 nm, QD 565 nm and QD 610 nm) to serve as detection probes (QD-Ab). Then a direct competitive fluorescent immunoassay was performed in antigen-coated microtiter plate wells for simultaneous qualitative and quantitative detection of SM, TC, and PC-G residues, based on fluorescence of the QD-Ab probes. The linear ranges for SM, TC and PC-G were 0.01-25 ng/mL, 0.01-25 ng/mL and 0.01-10 ng/mL, respectively, with detection limit of 5 pg/mL for each of them. Based on fluorescence of the QD-Ab probes, residues of the three antibiotics were determined visually and simultaneously. Compared with a commercial enzyme-linked immunosorbent assay kit, our method could achieve simultaneous analysis of multiple target antibiotics in multiple samples in a single run (high-throughput analysis) and improved accuracy and sensitivity for analysis of residues of the three antibiotics in authentic milk samples. This new analytical tool can play an important role in ameliorating the negative impact of the residual antibiotics on human health and the ecosystem. PMID:26002016

  7. A Record of the Sequence and Intensity of Multiple Impacts in the NWA 7298 H Chondrite

    NASA Astrophysics Data System (ADS)

    Friedrich, J. M.; Weisberg, M. K.; Rivers, M. L.

    2013-09-01

    We demonstrate evidence for the sequence and intensity of at least three distinct impact events affecting NWA 7298. These observations yield new opportunities for investigating the dynamic collisional evolution of asteroids.

  8. Chemically Induced Fluorescence Switching of Carbon-Dots and Its Multiple Logic Gate Implementation

    PubMed Central

    Dhenadhayalan, Namasivayam; Lin, King-Chuen

    2015-01-01

    Investigations were carried out on the carbon-dots (C-dots) based fluorescent off - on (Fe3 + - S2O32−) and on - off (Zn2 + - PO43−) sensors for the detection of metal ions and anions. The sensor system exhibits excellent selectivity and sensitivity towards the detection of biologically important Fe3 + , Zn2 +  metal ions and S2O32−, PO43− anions. It was found that the functional group on the C-dots surface plays crucial role in metal ions and anions detection. Inspired by the sensing results, we demonstrate C-dots based molecular logic gates operation using metal ions and anions as the chemical input. Herein, YES, NOT, OR, XOR and IMPLICATION (IMP) logic gates were constructed based on the selection of metal ions and anions as inputs. This carbon-dots sensor can be utilized as various logic gates at the molecular level and it will show better applicability for the next generation of molecular logic gates. Their promising properties of C-dots may open up a new paradigm for establishing the chemical logic gates via fluorescent chemosensors. PMID:25943914

  9. Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence

    PubMed Central

    Ingaramo, Maria; York, Andrew G.; Andrade, Eric J.; Rainey, Kristin; Patterson, George H.

    2015-01-01

    We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron's quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non-linearity, further improving imaging in challenging samples. With further improvements, two-step fluorophores could replace conventional fluorophores for many imaging applications. PMID:26333365

  10. Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence

    NASA Astrophysics Data System (ADS)

    Ingaramo, Maria; York, Andrew G.; Andrade, Eric J.; Rainey, Kristin; Patterson, George H.

    2015-09-01

    We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron's quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non-linearity, further improving imaging in challenging samples. With further improvements, two-step fluorophores could replace conventional fluorophores for many imaging applications.

  11. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations.

    PubMed

    Halfhill, M D; Millwood, R J; Weissinger, A K; Warwick, S I; Stewart, C N

    2003-11-01

    The level of transgene expression in crop x weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T(1) single-locus insert GFP/ Bacillus thuringiensis (Bt) transgenic canola ( Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC(1)F(1), BC(2)F(1)) were produced by backcrossing various GFP/Bt transgenic canola ( B. napus, cv Westar) and birdseed rape ( Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC(2)F(2) Bulk) were generated by crossing BC(2)F(1) individuals in the presence of a pollinating insect ( Musca domestica L.). The ploidy of plants in the BC(2)F(2) Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F(1) hybrid generations contained 95-97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15-29% presence in the BC(2)F(2) Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC(2)F(2) Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid

  12. [Research on the Relationship between Surface Structure and Fluorescence Intensity of Ca(1-x)Al2Si2O8 : Eu(x)].

    PubMed

    He, Xiao; Zhang, Li-sheng; Zu, En-dong; Yang, Xiao-yun; Dong, Kun

    2016-01-01

    Ca(1-x)Al2Si2O8 : Eu(x)(x = 0, 0.01, 0.05, 0.15) were synthesized by solid-state reaction respectively at 1 150, 1 250 1350 and 1 450 degrees C. With X-ray diffraction(XRD), Raman spectroscopy(Raman), photoluminescence spectroscopy(PL) and X-ray fluorescence spectrometer(XRF), the relationship between surface structure and fluorescence intensity of Ca(1-x) Al2Si2O8: Eu(x) were studied. XRD and Raman results show that, CaAl2Si2O8 anorthite single-phase has formed gradually along with the temperature rising in the process of synthesis. Raman spectroscopy is clear that when the Eu doping amount is the same, Si-O amorphous phase disappear gradually and the CaAl2Si2O8 phase form gradually with the temperature increases. As the temperature increases, vibration peaks position silicon oxygen tetrahedron shift to lower wave number. When 1 450 degrees C, the temperature is too high to destroy the structure of silicon oxygen tetrahedron. At the same time, there is a broadening amorphous peak appears in Raman spectroscopy. The procedure of Al to replace Si is hindered with Eu doped in. It is the result that the peak at 1 620 cm(-1) decreases after the first increases. The change of surface structure associated with the scattering amount of Eu. PL and XRF results show that: as the temperature increases, the amount of Eu atom scattering on the material surface increases gradually, this change lead to the fluorescence intensity raise. Therefore, there is proportional relationship between the fluorescence intensity of the samples and the number of samples per unit surface area of Eu atoms. PMID:27228758

  13. Fluorescent intensity-based differential counting of FITC-doped silica nanoparticles: applications of CD4+ T-cell detection in microchip-type flowcytometers

    NASA Astrophysics Data System (ADS)

    Yun, Hoyoung; Bang, Hyunwoo; Lee, Won Gu; Lim, Hyunchang; Park, Junha; Lee, Joonmo; Riaz, Asif; Cho, Keunchang; Chung, Chanil; Han, Dong-Chul; Chang, Jun Keun

    2007-12-01

    Although CD4+ T-cells are an important target of HIV detection, there have been still major problems in making a diagnosis and monitoring in the third world and the region with few medical facilities. Then, it is necessary to use portable diagnosis devices at low cost when you put an enumeration of CD4+ T-cells. In general, the counting of CD4 below 200cells/uL makes it necessary to initiate antiretroviral treatment in adults (over 13 years old). However, lymphocyte subsets (including CD4 counts) of infants and young children are higher than those of adults. This fact shows the percentage of CD4+ T-cells of blood subsets, i.e., CD4/CD45%, CD4/CD8% or CD4/CD3% means a more reliable indicator of HIV infection than absolute counts in children. To know the percentage of CD4+ T-cell by using two fluorescent dyes of different emission wavelength, at least, one laser and two PMT detectors are in general needed. Then, it is so hard to develop a portable device like a 'toaster size' because this makes such a device more complex including many peripheral modules. In this study, we developed a novel technique to control the intensity of fluorescent dye-doped silica nanoparticles. I synthesized FITC-doped silica nanoparticles conjugated CD4 antibody 10 times brighter than FITC-conjugated CD45 antibody. With the difference of intensity of two fluorescent dyes, we measured two parameters by using only a single detector and laser. Most experiments were achieved with uFACS (microfabricated fluorescence-activated cell sorter) on an inverted microscope (IX71, Olympus). In conclusion, this method enables us to discriminate the difference between CD4 and CD45 in an intensity domain simultaneously. Furthermore, this technique would make it possible develop much cheaper and smaller devices which can count the number of CD4 T-cells.

  14. Determination of plume temperature distribution based on the ratios of the radiation intensities of multiple CO2 lines

    NASA Astrophysics Data System (ADS)

    Cieszczyk, S.

    2015-05-01

    New inversion scheme for gas temperature distribution retrieval utilized CO2 spectrum between 2350 cm-1 and 2400 cm-1 is proposed. Inversion model is build base on neural networks. Considered spectral remote sensing method is commonly used for industrial and environmental monitoring. It is a passive single-ended sensor technique in which radiation intensity emerging from a studied object is analyzed. Quantitative investigation of heated gas radiation emission to determine temperature and gas mixture by infrared spectroscopy requires two components apart from optical radiation sensor. First appropriate spectral database and second efficient inversion techniques. In this study calculation of one-dimensional radiative transfer equation have been used for simulation of spectral radiation intensity. To increase quality of retrieval a spectrum preprocessing and feature extraction method is applied. Simulated spectra were parameterized and expressed as ratios of intensities of multiple rotational lines. Each neural network estimates temperature (NN response) at one point on studied path basing on given spectrum (NN input).

  15. Intensity distribution of Fizeau fringes in transmission with the real path of the interfered multiple-beams

    NASA Astrophysics Data System (ADS)

    Ramadan, W. A.

    2014-07-01

    In this paper, a theory is presented to estimate the intensity distribution of Fizeau fringes in transmission. In this theory the real path of the interfered light beams, through the wedge interferometer, has been considered. Interference of multiple beams has been estimated up to 12 beams considering the phase and amplitude for each beam. The summation of these waves has been done using the vector summation theory. The numerical construction of Fizeau fringes in space has been calculated considering the superposition of different number of beams. The influence of the wedge angle, number of the interfered beams and the wedge gap on the intensity distribution has been investigated. The most interesting observation in this study is the intensity distribution in different planes above the interferometer in both calculated and experimental Fizeau fringes using a He-Ne laser. Some experimental interferograms have been illustrated to confirm the validity of the proposed theory.

  16. Effects of ferrofluid and phytoalexin spirobrassinin on thioflavin-T-based fluorescence in cerebrospinal fluid of the elderly and multiple sclerosis patients.

    PubMed

    Kristofikova, Zdena; Gazova, Zuzana; Siposova, Katarina; Bartos, Ales; Ricny, Jan; Kotoucova, Jolana; Sirova, Jana; Ripova, Daniela

    2014-08-01

    It is well known that misfolded peptides/proteins can play a role in processes of normal ageing and in the pathogenesis of many diseases including Alzheimer's disease. Previously, we evaluated samples of cerebrospinal fluid from patients with Alzheimer's disease and multiple sclerosis by means of thioflavin-T-based fluorescence. We observed attenuated effects of magnetite nanoparticles operated via anti-aggregation actions on peptides/proteins from patients with Alzheimer's disease but not from those with multiple sclerosis when compared to age-related controls. In this study, we have evaluated the in vitro effects of anti-aggregation operating ferrofluid and phytoalexin spirobrassinin in the cerebrospinal fluid of patients with multiple sclerosis and Alzheimer's disease. We have found significant differences in native fluorescence (λ excitation = 440 nm, λ emission = 485 nm) of samples among particular groups (young controls < multiple sclerosis, Alzheimer's disease < old controls). Differences among groups were observed also in thioflavin-T-based fluorescence (young controls = multiple sclerosis < Alzheimer's disease < old controls) and the most marked change from native to thioflavin-T-based fluorescence was found in young controls (28-40 years old people). Both ferrofluid and spirobrassinin evoked drops in thioflavin-T-based fluorescence; however, ferrofluid was more efficient in old controls (54-75 years old people) and spirobrassinin in multiple sclerosis patients, both compared to young controls. The results are discussed especially in relation to aggregated peptides/proteins and liposoluble fluorescent products of lipid peroxidation. Based on the significant effect of spirobrassinin in vitro, we suggest that spirobrassinin may be of therapeutic value in multiple sclerosis. PMID:24858241

  17. The sensitive capillary electrophoretic-LIF method for simultaneous determination of curcuminoids in turmeric by enhancing fluorescence intensities of molecules upon inclusion into (2-hydroxypropyl)-β-cyclodextrin.

    PubMed

    Kalaycıoğlu, Zeynep; Hashemi, Parya; Günaydın, Keriman; Erim, F Bedia

    2015-10-01

    Curcuminoids have received great attention in the past decades due to their health benefit properties. The aim of this study is to develop a very simple, rapid, and sensitive capillary zone electrophoresis technique coupled with a laser induced fluorescence detector (LIF) for the simultaneous determination of three major curcuminoids of turmeric, namely, curcumin, demethoxy curcumin (DMC), and bisdemethoxy curcumin (BDMC). Background electrolyte was selected as borate at pH 9.6 and (2-hydroxypropyl)-β-cyclodextrin (2-HP-β-CD) was added to prevent rapid alkali degradation of curcuminoids in buffer and to increase fluorescence intensities of molecules. With the addition of 2-HP-β-CD to the separation electrolyte, the fluorescence signal intensities of curcuminoids were enhanced considerably by 30, 40, and 54 fold for curcumin, DMC, and BDMC, respectively. The three curcuminoids of turmeric were fully separated and quantified in less than 4.5 min. The repeatability of the peak areas of curcuminoids for intra-day and inter-day experiments was in the satisfactory range of 2.26 and 2.55%, respectively. The LOD and LOQ values for the developed method were equal to or less than 0.081 and 0.270 μg/mL, respectively, for all curcuminoids. The developed method was successfully applied to find curcuminoids amount in turmeric samples and herbal supplements. PMID:26178140

  18. Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.

    PubMed

    Konold, Patrick E; Yoon, Eunjin; Lee, Junghwa; Allen, Samantha L; Chapagain, Prem P; Gerstman, Bernard S; Regmi, Chola K; Piatkevich, Kiryl D; Verkhusha, Vladislav V; Joo, Taiha; Jimenez, Ralph

    2016-08-01

    Far-red fluorescent proteins are critical for in vivo imaging applications, but the relative importance of structure versus dynamics in generating large Stokes-shifted emission is unclear. The unusually red-shifted emission of TagRFP675, a derivative of mKate, has been attributed to the multiple hydrogen bonds with the chromophore N-acylimine carbonyl. We characterized TagRFP675 and point mutants designed to perturb these hydrogen bonds with spectrally resolved transient grating and time-resolved fluorescence (TRF) spectroscopies supported by molecular dynamics simulations. TRF results for TagRFP675 and the mKate/M41Q variant show picosecond time scale red-shifts followed by nanosecond time blue-shifts. Global analysis of the TRF spectra reveals spectrally distinct emitting states that do not interconvert during the S1 lifetime. These dynamics originate from photoexcitation of a mixed ground-state population of acylimine hydrogen bond conformers. Strategically tuning the chromophore environment in TagRFP675 might stabilize the most red-shifted conformation and result in a variant with a larger Stokes shift. PMID:27447848

  19. Waste reduction process improvements in the analysis of plutonium by x-ray fluorescence: results from multiple data sets

    SciTech Connect

    Worley, Christopher G; Soderberg, Constance B; Townsend, Lisa E

    2010-01-01

    To minimize waste, improve process safety, and minimize costs, modifications were implemented to a method for quantifying gallium in plutonium metal using wavelength dispersive X-ray fluorescence. These changes included reducing sample sizes, reducing ion exchange process volumes, using cheaper reagent grade acids, eliminating the use of HF acid, and using more robust containment film for sample analysis. Relative precision and accuracy achieved from analyzing multiple aliquots from a single parent sample were {approx}0.2% and {approx}0.1% respectively. The same precision was obtained from analyzing a total of four parent materials, and the average relative accuracy from all the samples was 0.4%, which is within programmatic uncertainty requirements.

  20. Understanding walking activity in multiple sclerosis: step count, walking intensity and uninterrupted walking activity duration related to degree of disability.

    PubMed

    Neven, An; Vanderstraeten, Annelien; Janssens, Davy; Wets, Geert; Feys, Peter

    2016-09-01

    In multiple sclerosis (MS), physical activity (PA) is most commonly measured as number of steps, while also walking intensity and walking activity duration are keys for a healthy lifestyle. The aim of this study was to investigate (1) the number of steps persons with MS (PwMS) take; (2) the number of steps they take at low and moderate intensity; and (3) their walking activity duration for 2, 3, 6, 10, 12 and 14 uninterrupted minutes; all related to the degree of disability. 64 PwMS participated, distinguished in a mild (n = 31) and moderate MS subgroup (n = 34) based on their ambulatory dysfunction (Disease Steps). Standardized clinical tests were performed, and step data from the StepWatch Activity Monitor were collected for seven consecutive days. The results showed that (1) step count in PwMS was lower than PA recommendations, and is negatively influenced by a higher disability degree. (2) No walking was registered during 77 % of the day. PwMS are making steps for 22 % at low and only 1 % at moderate intensity. (3) Both MS subgroups rarely walk for more than six uninterrupted minutes, especially not at moderate intensity. PwMS need to be encouraged to make steps at moderate intensity, and to make steps for longer periods of time (minimal ten uninterrupted minutes). PMID:27207680

  1. Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries

    PubMed Central

    Imai, Natsuko; Dorigatti, Ilaria; Cauchemez, Simon; Ferguson, Neil M.

    2016-01-01

    Background Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions. Methodology/Principle Findings We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries. Conclusions/Significance As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available. PMID:27399793

  2. Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries

    PubMed Central

    Imai, Natsuko; Dorigatti, Ilaria; Cauchemez, Simon; Ferguson, Neil M.

    2015-01-01

    Background Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. Methodology/Principal Findings The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1–4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. Conclusions/Significance Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings. PMID:25881272

  3. Onsite naked eye determination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio.

    PubMed

    Wang, Kan; Qian, Jing; Jiang, Ding; Yang, Zhengting; Du, Xiaojiao; Wang, Kun

    2015-03-15

    Simple, inexpensive, portable sensing strategies for those clinically relevant molecules have attained a significant positive impact on the health care system. Herein, we have prepared a dual-emission ratiometric fluorescence probe with desired intensity ratio and demonstrated its efficiency for onsite naked eye determination of cysteine (Cys) and homocysteine (Hcy). The hybrid probe has been designed by hybridizing two differently sized CdTe quantum dots (QDs), in which the red-emitting CdTe QDs (rQDs) entrapped in the silica sphere acting as the reference signal, and the green-emitting CdTe QDs (gQDs) covalently attached on the silica surface serving as the response signal. When 1,10-phenanthroline with strong coordination ability to Cd atoms in gQDs was introduced, the fluorescence of the gQDs was effectively quenched, while the fluorescence of the rQDs stayed constant. Upon exposure to different contents of Cys or Hcy, the fluorescence of gQDs can be recovered gradually due to the displacement of the quencher. Based on the background signal of rQDs, the variations of the sensing system display continuous fluorescence color changes from red to green, which can be easily observed by the naked eye. The assay requires ∼20min and has a detection limit of 2.5 and 1.7μM for Cys and Hcy, respectively. Furthermore, we demonstrate that this sensing scheme can be fully integrated in a filter paper-based assay, thus enabling a potential point-of-care application featuring easy operation, low power consumption, and low fabrication costs. PMID:25461142

  4. High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial

    PubMed Central

    Vandenabeele, Frank; Grevendonk, Lotte; Verboven, Kenneth; Hansen, Dominique

    2015-01-01

    Introduction Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS). The impact of high intensity exercise remains unknown. Methods Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11) and 2 exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12) or high intensity continuous cardiovascular training (HCTR, n = 11), both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA) and proportion, knee-flexor/extensor strength, body composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks. Results Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21±7%, HCTR: +23±5%). Furthermore, fiber type I CSA increased in HCTR (+29±6%), whereas type II (+23±7%) and IIa (+23±6%,) CSA increased in HITR. Muscle strength improved in HITR and HCTR (between +13±7% and +45±20%) and body fat percentage tended to decrease (HITR: -3.9±2.0% and HCTR: -2.5±1.2%). Furthermore, endurance capacity (Wmax +21±4%, time to exhaustion +24±5%, VO2max +17±5%) and lean tissue mass (+1.4±0.5%) only increased in HITR. Finally self-reported physical activity levels increased 73±19% and 86±27% in HCTR and HITR, respectively. Conclusion High intensity cardiovascular exercise combined with resistance training was safe, well tolerated and improved muscle contractile characteristics and endurance capacity in MS. Trial Registration ClinicalTrials.gov NCT01845896 PMID:26418222

  5. Fluorescence excitation involving multiple electron transition states of N{sub 2} and CO{sub 2}

    SciTech Connect

    Wu, C.Y.R.; Chen, F.Z.; Hung, T.; Judge, D.L.

    1997-04-01

    The electronic states and electronic structures of N{sub 2} and CO{sub 2} in the 8-50 eV energy region have been studied extensively both experimentally and theoretically. In the energy region higher than 25 eV there exists many electronic states including multiple electron transition (MET) states which are responsible for producing most of the dissociative photoionization products. The electronic states at energies higher than 50 eV have been mainly determined by Auger spectroscopy, double charge transfer, photofragment spectroscopy and ion-ion coincidence spectroscopy. The absorption and ionization spectra of these molecules at energies higher than 50 eV mainly show a monotonic decrease in cross section values and exhibit structureless features. The decay channels of MET and Rydberg (or superexcited) states include autoionization, ionization, dissociative ionization, predissociation, and dissociation while those of single ion and multiple ion states may involve predissociation. and dissociation processes. The study of fluorescence specifically probes electronically excited species resulting from the above-mentioned decay channels and provides information for understanding the competition among these channels.

  6. Enhanced intensity variation for multiple-plane phase retrieval using a spatial light modulator as a convenient tunable diffuser.

    PubMed

    Almoro, Percival F; Pham, Quang Duc; Serrano-Garcia, David Ignacio; Hasegawa, Satoshi; Hayasaki, Yoshio; Takeda, Mitsuo; Yatagai, Toyohiko

    2016-05-15

    In the multiple-plane phase retrieval method, a tedious-to-fabricate phase diffuser plate is used to increase the axial intensity variation for a nonstagnating iterative reconstruction of a smooth object wavefront. Here we show that a spatial light modulator (SLM) can be used as an easily controllable diffuser for phase retrieval. The polarization modulation at the SLM facilitates independent formation of orthogonally polarized scattered and specularly reflected beams. Through an analyzer, the polarization states are filtered enabling beam interference, thereby efficiently encoding the phase information in the axially diverse speckle intensity measurements. The technique is described using wave propagation and Jones calculus, and demonstrated experimentally on technical and biological samples. PMID:27176952

  7. A Technique for Estimating Intensity of Emotional Expressions and Speaking Styles in Speech Based on Multiple-Regression HSMM

    NASA Astrophysics Data System (ADS)

    Nose, Takashi; Kobayashi, Takao

    In this paper, we propose a technique for estimating the degree or intensity of emotional expressions and speaking styles appearing in speech. The key idea is based on a style control technique for speech synthesis using a multiple regression hidden semi-Markov model (MRHSMM), and the proposed technique can be viewed as the inverse of the style control. In the proposed technique, the acoustic features of spectrum, power, fundamental frequency, and duration are simultaneously modeled using the MRHSMM. We derive an algorithm for estimating explanatory variables of the MRHSMM, each of which represents the degree or intensity of emotional expressions and speaking styles appearing in acoustic features of speech, based on a maximum likelihood criterion. We show experimental results to demonstrate the ability of the proposed technique using two types of speech data, simulated emotional speech and spontaneous speech with different speaking styles. It is found that the estimated values have correlation with human perception.

  8. Changes to processes in estuaries and coastal waters due to intense multiple pressures - An introduction and synthesis

    NASA Astrophysics Data System (ADS)

    Mitchell, Steven B.; Jennerjahn, Tim C.; Vizzini, Salvatrice; Zhang, Weiguo

    2015-04-01

    From the 2013 ECSA conference 'Estuaries and Coastal Areas in Times of Intense Change' a theme emerged that has ended up being the focus of this Special Issue of Estuarine Coastal and Shelf Science, namely 'Changes to processes in estuaries and coastal waters due to intense multiple pressures'. Many parts of the world are continuing to experience unprecedented rates of economic growth, and those responsible for managing coastal and estuarine areas must respond accordingly. At the same time, global climate change and sea level rise are also continuing, placing new or more intense pressures on coastal areas that must be dealt with in ways that are as far as possible managed as a result of good scientific understanding. There are other pressures too, which depend on the system concerned. This article provides an overview of the papers contained within the Special Issue and provides a discussion of how these fit within the main theme of intense multiple stressors, considering how a balance can be achieved between the needs of various different stakeholders and interest groups, and the sustainability of the system concerned. We categorise the papers in four main groupings: (1) stressors related to sea level rise; (2) stressors related to changes in fresh water inputs; (3) stressors related to anthropogenic pollution; and (4) the use of indicators as a means of assessing the effects of stressors, and reflect on the fact that despite the diversity of different challenges and geographical regions involved many of the approaches and discussions contained within the Special Issue have strong similarities, leading to a set of overarching principles that should be considered when making recommendations on management strategies.

  9. A declaration of independence for Mg/Si. [Al/Si intensity ratio predictive usefulness for Mg/Si intensity ratio in lunar X-ray fluorescence

    NASA Technical Reports Server (NTRS)

    Hubbard, N.; Keith, J. E.

    1978-01-01

    The weak covariation that exists between Al/Si and Mg/Si for large areas of the lunar surface is little, if any, stronger than that forced on a random set of numbers that are subject to closure. The Mg and Al variations implied by the Mg/Si and Al/Si intensity ratio data are qualitatively like those seen in lunar soil sample data. Two petrogenetic provinces are suggested for terra materials; one appears to have 50% higher Mg values than the other. Using the improved data, Mg/Si variations can be studied at a signal-to-noise ratio greater than 5/1.

  10. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-08-01

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion.

  11. Duration of an intense laser pulse can determine the breakage of multiple chemical bonds.

    PubMed

    Xie, Xinhua; Lötstedt, Erik; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Midorikawa, Katsumi; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus

    2015-01-01

    Control over the breakage of a certain chemical bond in a molecule by an ultrashort laser pulse has been considered for decades. With the availability of intense non-resonant laser fields it became possible to pre-determine femtosecond to picosecond molecular bond breakage dynamics by controlled distortions of the electronic molecular system on sub-femtosecond time scales using field-sensitive processes such as strong-field ionization or excitation. So far, all successful demonstrations in this area considered only fragmentation reactions, where only one bond is broken and the molecule is split into merely two moieties. Here, using ethylene (C2H4) as an example, we experimentally investigate whether complex fragmentation reactions that involve the breakage of more than one chemical bond can be influenced by parameters of an ultrashort intense laser pulse. We show that the dynamics of removing three electrons by strong-field ionization determines the ratio of fragmentation of the molecular trication into two respectively three moieties. We observe a relative increase of two-body fragmentations with the laser pulse duration by almost an order of magnitude. Supported by quantum chemical simulations we explain our experimental results by the interplay between the dynamics of electron removal and nuclear motion. PMID:26271602

  12. Correlation of tryptophan fluorescence intensity decay parameters with sup 1 H NMR-determined rotamer conformations: (tryptophan sup 2 )oxytocin

    SciTech Connect

    Ross, J.B.A.; Schwartz, G.P.; Laws, W.R. ); Wyssbrod, H.R.; Porter, R.A. ); Michaels, C.A. )

    1992-02-18

    While the fluorescence decay kinetics of tyrosine model compounds can be explained in terms of heterogeneity derived from the three ground-state {chi}{sup 1} rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from {chi}{sup 2} rotations. In this paper, the time-resolved and steady-state fluorescence properties of (tryptophan{sup 2})oxytocin at pH 3 are presented and compared with {sup 1}H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength-independent decay constants, only three exponential terms are required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the {sup 1}H NMR-determined {chi}{sup 1} rotamer populations of the indole side chain. {sup 15}N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the {chi}{sup 1} rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two {chi}{sup 2} populations.

  13. Development of indirect competitive fluorescence immunoassay for 2,2',4,4'-tetrabromodiphenyl ether using DNA/dye conjugate as antibody multiple labels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An indirect competitive fluorescence immunoassay using DNA/dye conjugate as antibody multiple labels was developed on 96-well plates for the identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in aqueous samples. A hapten, 2,4,2'-tribromodiphenyl ether-4’-aldehyde was sy...

  14. A fluorescence-based centrifugal microfluidic system for parallel detection of multiple allergens

    NASA Astrophysics Data System (ADS)

    Chen, Q. L.; Ho, H. P.; Cheung, K. L.; Kong, S. K.; Suen, Y. K.; Kwan, Y. W.; Li, W. J.; Wong, C. K.

    2010-02-01

    This paper reports a robust polymer based centrifugal microfluidic analysis system that can provide parallel detection of multiple allergens in vitro. Many commercial food products (milk, bean, pollen, etc.) may introduce allergy to people. A low-cost device for rapid detection of allergens is highly desirable. With this as the objective, we have studied the feasibility of using a rotating disk device incorporating centrifugal microfluidics for performing actuationfree and multi-analyte detection of different allergen species with minimum sample usage and fast response time. Degranulation in basophils or mast cells is an indicator to demonstrate allergic reaction. In this connection, we used acridine orange (AO) to demonstrate degranulation in KU812 human basophils. It was found that the AO was released from granules when cells were stimulated by ionomycin, thus signifying the release of histamine which accounts for allergy symptoms [1-2]. Within this rotating optical platform, major microfluidic components including sample reservoirs, reaction chambers, microchannel and flow-control compartments are integrated into a single bio-compatible polydimethylsiloxane (PDMS) substrate. The flow sequence and reaction time can be controlled precisely. Sequentially through varying the spinning speed, the disk may perform a variety of steps on sample loading, reaction and detection. Our work demonstrates the feasibility of using centrifugation as a possible immunoassay system in the future.

  15. A methodology to study multiple sclerosis (MS) based on distributions of standardized intensities in segmented tissue regions

    NASA Astrophysics Data System (ADS)

    Lei, T.; Udupa, J. K.; Odhner, D.; Mishra, S.; Wu, G.; Schwartz, E.; Ying, G.-S.; Iwanaga, T.; Desiderio, L.; Balcer, L.

    2006-03-01

    This paper presents (1) an improved hierarchical method for segmenting the component tissue regions in fast spin echo T2 and PD images of the brain of Multiple Sclerosis (MS) patients, and (2) a methodology to characterize the disease utilizing the distributions of standardized T2 and PD intensities in the segmented tissue regions. First, the background intensity inhomogeneities are corrected and the intensity scales are standardized for all acquired images. The segmentation method imposes a feedback-like procedure on our previously developed hierarchical brain tissue segmentation method. With gradually simplified patterns in images and stronger evidences, pathological objects are recognized and segmented in an interplay fashion. After the brain parenchymal (BP) mask is generated, an under-estimated gray matter mask (uGM) and an over-estimated white matter mask (oWM) are created. Pure WM (PWM) and lesion (LS) masks are extracted from the all-inclusive oWM mask. By feedback, accurate GM and WM masks are subsequently formed. Finally, partial volume regions of GM and WM as well as Dirty WM (DWM) masks are generated. Intensity histograms and their parameters (peak height, peak location, and 25th, 50th and 75th percentile values) are computed for both T2 and PD images within each tissue region. Tissue volumes are also estimated. Spearman correlation coefficient rank test is then utilized to assess if there exists a trend between clinical states and the image-based parameters. This image analysis method has been applied to a data set consisting of 60 patients with MS and 20 normal controls. LS related parameters and clinical Extended Disability Status Scale (EDSS) scores demonstrate modest correlations. Almost every intensity-based parameter shows statistical difference between normal control and patient groups with a level better than 5%. These results can be utilized to monitor disease progression in MS.

  16. Application of novel low-intensity nonscanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus

    2006-10-01

    Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.

  17. Endocrine, metabolic, nutritional and body composition abnormalities are common in advanced intensively-treated (transplanted) multiple myeloma.

    PubMed

    Greenfield, D M; Boland, E; Ezaydi, Y; Ross, R J M; Ahmedzai, S H; Snowden, J A

    2014-07-01

    Modern treatment strategies have increased life expectancy in multiple myeloma, but little is known about the endocrine, metabolic and nutritional status of long-term survivors. We performed endocrine, metabolic, bone, body composition and nutritional evaluations in 32 patients with intensively-treated, advanced but stable, myeloma a median duration of 6 years from diagnosis and three lines of intensive treatment, including at least one haematopoietic SCT procedure. All patients were off active treatment. There was a high prevalence of endocrine dysfunction: hypothyroidism (9%), hypogonadism (65% males) and elevated prolactin (19%). Adrenocortical function was preserved despite large cumulative corticosteroid pretreatment. Biochemical markers were consistent with postmenopausal status in all females and infertility in males. Nutritionally, 59% were vitamin D insufficient/deficient, reduced serum folate in 25% and vitamin B12 in 6%. Total body DEXA scanning confirmed 'sarcopenic-obesity' in 65%, but reduced bone density was seen in a minority. We conclude that potentially correctable endocrine, metabolic and nutritional abnormalities are prevalent in heavily-treated patients with stable multiple myeloma. Preservation of bone supports the efficacy of bisphosphonate treatment from diagnosis, but sarcopenic-obesity may contribute to frailty. Ultimately, multi-system screening and appropriate interventions may optimise quality of long-term survival and further studies are warranted. PMID:24710566

  18. A conspiracy of optimism: Sustained yield, multiple use, and intensive management on the national forests, 1945-1991

    SciTech Connect

    Hirt, P.W.

    1991-01-01

    This study focuses on two core national forest management policies; sustained yield and multiple use. Public and elected officials attempt to apply principles of sustainable development to publicly-owned forest lands to ensure that a wide variety of both market and nonmarket forest values are preserved for the benefit of present and future generations. Interest groups, the Forest Service, and policy makers have conceived of sustained yield and multiple use in different and evolving ways over the years. This study explores how these principles have been variously defined and either implemented or thwarted. After World War Two, with escalating demands on national forest resources, the US Forest Service turned to intensive management as a technological method of enhancing natural forest productivity and mitigating the environmental effects of increased use. But the agency's optimistic vision of efficient, sustained production of forest commodities through technical mastery over nature has met overwhelming fiscal, environmental, technical, and political obstacles. Changing public values since the 1960s and popularization of ecology have initiated a growing skepticism toward the premises of intensive management.

  19. Intensity based methods for brain MRI longitudinal registration. A study on multiple sclerosis patients.

    PubMed

    Diez, Yago; Oliver, Arnau; Cabezas, Mariano; Valverde, Sergi; Martí, Robert; Vilanova, Joan Carles; Ramió-Torrentà, Lluís; Rovira, Alex; Lladó, Xavier

    2014-07-01

    Registration is a key step in many automatic brain Magnetic Resonance Imaging (MRI) applications. In this work we focus on longitudinal registration of brain MRI for Multiple Sclerosis (MS) patients. First of all, we analyze the effect that MS lesions have on registration by synthetically eliminating some of the lesions. Our results show how a widely used method for longitudinal registration such as rigid registration is practically unconcerned by the presence of MS lesions while several non-rigid registration methods produce outputs that are significantly different. We then focus on assessing which is the best registration method for longitudinal MRI images of MS patients. In order to analyze the results obtained for all studied criteria, we use both descriptive statistics and statistical inference: one way ANOVA, pairwise t-tests and permutation tests. PMID:24338728

  20. Modelling and implementation of a fixed-length-extension to measure fluorescent intensity in bioprocesses using an optical sensor

    NASA Astrophysics Data System (ADS)

    Sardesai, Neha; Al-Adhami, Mustafa; Rao, Govind; Kostov, Yordan

    2016-05-01

    Fluorescent proteins are often used as reporters of protein concentration in biology and biomedicine applications. They can be detected using a fluorimeter equipped with fiber optics for ease of access. However, small changes in the path length due to change in the position, or immersion depth of the optical fiber results in large changes in readings. To alleviate the situation, the fiber is equipped with a fixed-length-extension that provides constant path length. The operation of the fiber equipped fluorimeter is theoretically modelled and practically verified in this paper.

  1. Automatic Registration of Multiple Laser Scans Using Panoramic RGB and Intensity Images

    NASA Astrophysics Data System (ADS)

    Alba, M.; Barazzetti, L.; Scaioni, M.; Remondino, F.

    2011-09-01

    This paper presents an automated methodology able to register laser scanning point clouds using their panoramic images derived from intensity values or RGB data, the latter obtained from a co-registered camera. Starting from the panorama of each laser scan, a Feature-Based Matching (FBM) algorithm is pairwise applied to extract corresponding key-points. Robust estimators are then used to remove outliers through a generalized rejection procedure encompassing several geometric models. After tracking the twofold key- points across different scan pairs in order to increase the local redundancies, a global Least Squares block adjustment is computed for all scans. Ground control points can also be included at this stage for datum definition and control of block's stability. The proposed method was tested on real case studies and the experiments showed that the procedure is able to deliver the registration of all scans in a fully automatic way. On the other hand, if a higher accuracy is required this solution needs a further ICP refinement.

  2. Direct spectroscopic observation of multiple-charged-ion acceleration by an intense femtosecond-pulse laser.

    PubMed

    Zhidkov, A G; Sasaki, A; Tajima, T; Auguste, T; D'Olivera, P; Hulin, S; Monot, P; Faenov, A Y; Pikuz, T A; Skobelev, I Y

    1999-09-01

    We have observed evidence of the emission of energetic He-and H-like ions of fluorine more than 1 MeV produced via the optical field ionization (OFI) from a solid target irradiated by an intense I=(2-4)x10(18) W/cm(2) (60 fs, lambda=800 nm), obliquely incident p-polarized pulse laser. The measured blue wing of He(alpha), He(beta), and Ly(alpha) lines of fluorine shows a feature of the Doppler-shifted spectrum due to the self-similar ion expansion dominated by superthermal electrons with the temperature T(h) approximately 100 keV. Using a collisional particle-in-cell simulation, which incorporates the nonlocal-thermodynamic-equilibrium ionization including OFI, we have obtained the plasma temperature, line shape, and maximal energy of accelerated ions, which agree well with those determined from the experimental spectra. The red wing of ion spectra gives the temperature of bulk plasma electrons. PMID:11970139

  3. Heterodimerization, Altered Subcellular Localization, and Function of Multiple Zinc Transporters in Viable Cells Using Bimolecular Fluorescence Complementation

    PubMed Central

    Golan, Yarden; Berman, Bluma; Assaraf, Yehuda G.

    2015-01-01

    Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions. PMID:25657003

  4. Land-Use Intensity of Electricity Production: Comparison Across Multiple Sources

    NASA Astrophysics Data System (ADS)

    Swain, M.; Lovering, J.; Blomqvist, L.; Nordhaus, T.; Hernandez, R. R.

    2015-12-01

    Land is an increasingly scarce global resource that is subject to competing pressures from agriculture, human settlement, and energy development. As countries concerned about climate change seek to decarbonize their power sectors, renewable energy sources like wind and solar offer obvious advantages. However, the land needed for new energy infrastructure is also an important environmental consideration. The land requirement of different electricity sources varies considerably, but there are very few studies that offer a normalized comparison. In this paper, we use meta-analysis to calculate the land-use intensity (LUI) of the following electricity generation sources: wind, solar photovoltaic (PV), concentrated solar power (CSP), hydropower, geothermal, nuclear, biomass, natural gas, and coal. We used data from existing studies as well as original data gathered from public records and geospatial analysis. Our land-use metric includes land needed for the generation facility (e.g., power plant or wind farm) as well as the area needed to mine fuel for natural gas, coal, and nuclear power plants. Our results found the lowest total LUI for nuclear power (115 ha/TWh/y) and the highest LUI for biomass (114,817 ha/TWh/y). Solar PV and CSP had a considerably lower LUI than wind power, but both were an order of magnitude higher than fossil fuels (which ranged from 435 ha/TWh/y for natural gas to 579 ha/TWh/y for coal). Our results suggest that a large build-out of renewable electricity, though it would offer many environmental advantages over fossil fuel power sources, would require considerable land area. Among low-carbon energy sources, relatively compact sources like nuclear and solar have the potential to reduce land requirements.

  5. Psychosocial factors associated with pain intensity, pain-related interference, and psychological functioning in persons with multiple sclerosis and pain.

    PubMed

    Osborne, Travis L; Jensen, Mark P; Ehde, Dawn M; Hanley, Marisol A; Kraft, George

    2007-01-01

    Biopsychosocial models of chronic pain that recognize psychological and environmental factors as important aspects of adjustment to pain have been proposed for understanding chronic pain and related suffering in persons with multiple sclerosis (MS), but such models have not been empirically tested. The objective of this study was to test such a model by evaluating the associations of several psychosocial variables (i.e., pain-related catastrophizing, perceived social support, pain beliefs, and pain coping) with pain intensity, pain interference with functioning, and psychological functioning in persons with chronic pain and MS, after controlling for demographic and disease-related factors. Participants were 125 community-dwelling persons with MS and pain who completed a mailed questionnaire that included measures of pain intensity and interference, psychological functioning, catastrophizing, social support, and pain beliefs and coping. The psychosocial variables accounted for an additional 25% of the variance in average pain intensity after controlling for demographic and disease-related variables (p<.001). These variables explained an additional 22% of the variance in pain-related interference (p<.001) and 43% of the variance in psychological functioning (p<.001), after adjusting for demographic and MS-related variables and average pain intensity. Catastrophizing was consistently and independently associated with all criterion measures, whereas social support, pain beliefs, and pain coping were associated with some criterion measures but not others. The results provide empirical support for a biopsychosocial understanding of chronic pain in MS and suggest that specific psychosocial factors (e.g., catastrophizing) may be important regarding adjustment to pain in persons with MS. PMID:16950570

  6. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging

    PubMed Central

    Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.

    2016-01-01

    We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322

  7. Fast-electron transport and heating of solid targets in high-intensity laser interactions measured by Kα fluorescence

    NASA Astrophysics Data System (ADS)

    Martinolli, E.; Koenig, M.; Baton, S. D.; Santos, J. J.; Amiranoff, F.; Batani, D.; Perelli-Cippo, E.; Scianitti, F.; Gremillet, L.; Mélizzi, R.; Decoster, A.; Rousseaux, C.; Hall, T. A.; Key, M. H.; Snavely, R.; MacKinnon, A. J.; Freeman, R. R.; King, J. A.; Stephens, R.; Neely, D.; Clarke, R. J.

    2006-04-01

    We present experimental results on fast-electron energy deposition into solid targets in ultrahigh intensity laser-matter interaction. X-ray Kα emission spectroscopy with absolute photon counting served to diagnose fast-electron propagation in multilayered targets. Target heating was measured from ionization-shifted Kα emission. Data show a 200μm fast-electron range in solid Al. The relative intensities of spectrally shifted AlKα lines imply a mean temperature of a few tens of eV up to a 100μm depth. Experimental results suggest refluxing of the electron beam at target rear side. They were compared with the predictions of both a collisional Monte Carlo and a collisional-electromagnetic, particle-fluid transport code. The validity of the code modeling of heating in such highly transient conditions is discussed.

  8. Intense red upconversion fluorescence emission in NIR-excited erbium-ytterbium doped laponite-derived phosphor

    NASA Astrophysics Data System (ADS)

    da Silva, Andréa F.; Moura, Diógenes S.; Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Bueno, Luciano A.; Costa, Ernande B.; Azevedo, Eduardo N.

    2011-02-01

    In this report the optical properties and energy-transfer frequency upconversion luminescence of Er3+/Yb3+-codoped laponite-derived powders under 975 nm infrared excitation is investigated. The 75%(laponite):25%(PbF2) samples doped with erbium and ytterbium ions, generated high intensity red emission around 660 nm and lower intensity green emission around 525, and 545 nm. The observed emission signals were examined as a function of the excitation power and annealing temperature. The results indicate that energy-transfer, and excited-state absorption are the major upconversion excitation mechanism for the erbium excited-state red emitting level. The precursor glass samples were also heat treated at annealing temperatures of 300 °C, 400 °C, 500 °C, and 600 °C, for a 2h period. The dependence of the visible upconversion luminescence emission upon the annealing temperature indicated the existence of an optimum temperature which leads to the generation of the most intense and spectrally pure red emission signal.

  9. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  10. Theoretical and Experimental Study on Boron β-Diketonate Complexes with Intense Two-Photon-Induced Fluorescence in Solution and in the Solid State.

    PubMed

    Lanoë, Pierre-Henri; Mettra, Bastien; Liao, Yuan Yuan; Calin, Nathalie; D'Aléo, Anthony; Namikawa, Tomotaka; Kamada, Kenji; Fages, Fréderic; Monnereau, Cyrille; Andraud, Chantal

    2016-07-18

    Three boron diketonate chromophores with extended π-conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two-photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two-photon absorption was clearly established, and it was shown that the two-photon absorption properties were dominated by the quadrupolar term. For one of the synthesized compounds, intense one- and two-photon-induced solid-state emission (fluorescence quantum yield of 0.65 with maximum wavelength of 610 nm) was obtained as a result of antiparallel J-aggregate crystal packing. PMID:26990918

  11. Fast electron heating in ultra-intense laser-solid interaction by shifted Kα line fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Martinolli, E.; Koenig, M.; Santos, J. J.; Amiranoff, F.; Baton, S. D.; Batani, D.; Perelli, E.; Scianitti, F.; Gremillet, L.; Rabec, M.; Rousseaux, C.; Hall, T. A.; Key, M. H.; MacKinnon, A. J.; Koch, J. A.; Freeman, R. R.; Snavely, R. A.; King, J. A.; Andersen, C.; Hill, J. M.; Stephens, R. B.; Cowan, T. E.; Ng, A.; Ao, T.

    2002-11-01

    In the context of the fast ignition studies[1], the heating of the dense fuel by fast electrons appears to be one of the most relevant aspects currently investigated [2]. In order to estimate the energy deposition and the efficiency of the fast electron transport in solid targets, we have performed experiments on LULI and RAL high power lasers, at irradiances up to a few 10^19 W/cm^2. Shifted Kα lines from an aluminum fluorescer layer buried at different depths in multilayered targets were detected using a Bragg conical-crystal spectrograph. The results were used to infer the ionization stage of the Al layer. Monte Carlo and hybrid transport codes[3] were used to study fast electron energy release by collisions and ohmic effect. The energy coupling to the target is described within an ionization model for dense matter[4] and compared to the experimental data. Despite some uncertainties of the modeling, the results give an indication of a deep heating of the target up to 30 eV after propagation in 100 μm Al. [1] M Tabak et al., Phys. of Plasmas 1, 1626 (1994) [2] E Martinolli et al., submitted to PRL, may 2002 [3] L Gremillet et al. Phys. of Plasmas 9, 941, (2002) [4] G Chiu and A Ng, PRE 59, 1024, (1999)

  12. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis

    NASA Technical Reports Server (NTRS)

    Kitaya, Y.; Azuma, H.; Kiyota, M.

    2005-01-01

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  13. Effects of temperature, CO 2/O 2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Azuma, H.; Kiyota, M.

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO 2 to O 2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 °C), three levels of CO 2 concentrations (2-6%), five levels of O 2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 μmol m -2 s -1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 °C, CO 2 concentration of 4%, O 2 concentration of 20% and photosynthetic photon flux of about 100 μmol m -2 s -1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO 2 to O 2 under relatively low light intensities in aquatic food production modules.

  14. SU-E-J-70: Evaluation of Multiple Isocentric Intensity Modulated and Volumetric Modulated Arc Therapy Techniques Using Portal Dosimetry

    SciTech Connect

    Muralidhar, K Raja; Pangam, S; Kolla, J; Ponaganti, S; Ali, M; Vuba, S; Mariyappan, P; Babaiah, M; Komanduri, K

    2015-06-15

    Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence of beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.

  15. A simple but efficient strategy to enhance hydrostability of intensely fluorescent Mg-based coordination polymer (CP) via forming a composite of CP with hydrophobic PVDF.

    PubMed

    Zhai, Lu; Zhang, Wen-Wei; Zuo, Jing-Lin; Ren, Xiao-Ming

    2016-02-28

    A coordination polymer (CP) of Mg(2+) with 1,3,5-benzenetricarboxylate (BTC(3-)) was synthesized using a solvothermal method. The Mg-CP, with a formula of Mg3(BTC)(HCOO)3(DMF)3, crystallizes in the trigonal space group P3[combining macron], with cell parameters of a = b = 13.972(5) Å, c = 8.090(5) Å and V = 1367.6(11) Å(3), and shows a lamella structure built from planar rosette-type hexanuclear architectures. The Mg-CP emits intense blue fluorescence arising from π* → π transition of intra-ligand of BTC(3-) with 21.69% quantum yield, yet it exhibits poor stability to water. The composites of Mg-CP with hydrophobic polyvinylidene fluoride (PVDF) were sequentially prepared by mechanically mixed, tableted and annealed processes, which showed good compatibility between Mg-CP and PVDF, high hydrostability, and intense blue emission. This study suggests a simple but efficient method to solve the drawbacks of some functional CPs unstable to water and to promote them as practical applications in the field of functional materials. PMID:26790523

  16. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas.

    PubMed

    Lau, Darryl; Hervey-Jumper, Shawn L; Chang, Susan; Molinaro, Annette M; McDermott, Michael W; Phillips, Joanna J; Berger, Mitchel S

    2016-05-01

    OBJECT There is evidence that 5-aminolevulinic acid (ALA) facilitates greater extent of resection and improves 6-month progression-free survival in patients with high-grade gliomas. But there remains a paucity of studies that have examined whether the intensity of ALA fluorescence correlates with tumor cellularity. Therefore, a Phase II clinical trial was undertaken to examine the correlation of intensity of ALA fluorescence with the degree of tumor cellularity. METHODS A single-center, prospective, single-arm, open-label Phase II clinical trial of ALA fluorescence-guided resection of high-grade gliomas (Grade III and IV) was held over a 43-month period (August 2010 to February 2014). ALA was administered at a dose of 20 mg/kg body weight. Intraoperative biopsies from resection cavities were collected. The biopsies were graded on a 4-point scale (0 to 3) based on ALA fluorescence intensity by the surgeon and independently based on tumor cellularity by a neuropathologist. The primary outcome of interest was the correlation of ALA fluorescence intensity to tumor cellularity. The secondary outcome of interest was ALA adverse events. Sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and Spearman correlation coefficients were calculated. RESULTS A total of 211 biopsies from 59 patients were included. Mean age was 53.3 years and 59.5% were male. The majority of biopsies were glioblastoma (GBM) (79.7%). Slightly more than half (52.5%) of all tumors were recurrent. ALA intensity of 3 correlated with presence of tumor 97.4% (PPV) of the time. However, absence of ALA fluorescence (intensity 0) correlated with the absence of tumor only 37.7% (NPV) of the time. For all tumor types, GBM, Grade III gliomas, and recurrent tumors, ALA intensity 3 correlated strongly with cellularity Grade 3; Spearman correlation coefficients (r) were 0.65, 0.66, 0.65, and 0.62, respectively. The specificity and PPV of ALA intensity 3 correlating

  17. Using a low-order model to detect and characterize intense vortices in multiple-Doppler radar data

    NASA Astrophysics Data System (ADS)

    Potvin, Corey Keith

    A new multiple-Doppler radar analysis technique is presented for the objective detection and characterization of intense vortices. The technique consists of fitting radial wind data from two or more radars to a simple analytical model of a vortex and its near-environment. The model combines a uniform flow, linear shear flow, linear divergence flow (all of which comprise a broadscale flow), and modified combined Rankine vortex. The vortex and its environment are allowed to translate. A cost-function accounting for the discrepancy between the model and observed radial winds is evaluated over space and time so that observations can be used at the actual times and locations they were acquired. The parameters in the low-order model are determined by minimizing this cost function. The development of the method is initially guided by emulated radial velocity observations of analytical vortices. A high-resolution Advanced Regional Prediction System (ARPS) simulation of a supercellular tornado is then used to generate more realistic pseudo-observations. Finally, the technique is tested using real dual-Doppler tornado and mesocyclone observations from a variety of radar platforms including Weather Surveillance Radar - 1988 Doppler (WSR-88D), Terminal Doppler Weather Radar (TDWR), Shared Mobile Atmospheric Research and Teaching Radar (SMART-R), and Doppler on Wheels (DOW). The technique shows skill in detecting intense vortices and, when the vortex is well-resolved, in retrieving key model parameters including vortex location, translational velocity, radius and maximum tangential wind speed. In cases where the vortex is not well-resolved, additional vortex characteristics computed from the retrieved model parameters and verified against radial velocity observations can still provide useful information about vortex size and strength.

  18. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients

    PubMed Central

    Farup, Jean; Dalgas, Ulrik; Keytsman, Charly; Eijnde, Bert O.; Wens, Inez

    2016-01-01

    Multiple sclerosis (MS) is associated with loss of skeletal muscle mass and function. The myogenic stem cells (satellite cells—SCs) are instrumental to accretion of myonuclei, but remain to be investigated in MS. The present study aimed to compare the SC and myonuclei content between MS patients (n = 23) and age matched healthy controls (HC, n = 18). Furthermore, the effects of 12 weeks of high intensity training on SC and myonuclei content were explored in MS. Muscle biopsies were obtained from m. Vastus Lateralis at baseline (MS and HC) and following 12 weeks of training (MS only). Frozen biopsies were sectioned followed by immunohistochemical analysis for fiber type specific SCs (Pax7+), myonuclei (MN) and central nuclei content and fiber cross-sectional area (fCSA) was quantified using ATPase histochemistry. At baseline the SCs per fiber was lower in type II compared to type I fibers in both MS (119%, p < 0.01) and HC (69%, p < 0.05), whereas the SCs per fCSA was lower in type II fibers compared to type I only in MS (72%, p < 0.05). No differences were observed in MN or central nuclei between MS and HC. Following training the type II fiber SCs per fiber and per fCSA in MS patients increased by 165% (p < 0.05) and 135% (p < 0.05), respectively. Furthermore, the type II fiber MN content tended (p = 0.06) to be increased by 35% following training. In conclusion, the SC content is lower in type II compared to type I fibers in both MS and HC. Furthermore, high intensity training was observed to selectively increase the SC and myonuclei content in type II fibers in MS patients. PMID:27303309

  19. High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients.

    PubMed

    Farup, Jean; Dalgas, Ulrik; Keytsman, Charly; Eijnde, Bert O; Wens, Inez

    2016-01-01

    Multiple sclerosis (MS) is associated with loss of skeletal muscle mass and function. The myogenic stem cells (satellite cells-SCs) are instrumental to accretion of myonuclei, but remain to be investigated in MS. The present study aimed to compare the SC and myonuclei content between MS patients (n = 23) and age matched healthy controls (HC, n = 18). Furthermore, the effects of 12 weeks of high intensity training on SC and myonuclei content were explored in MS. Muscle biopsies were obtained from m. Vastus Lateralis at baseline (MS and HC) and following 12 weeks of training (MS only). Frozen biopsies were sectioned followed by immunohistochemical analysis for fiber type specific SCs (Pax7(+)), myonuclei (MN) and central nuclei content and fiber cross-sectional area (fCSA) was quantified using ATPase histochemistry. At baseline the SCs per fiber was lower in type II compared to type I fibers in both MS (119%, p < 0.01) and HC (69%, p < 0.05), whereas the SCs per fCSA was lower in type II fibers compared to type I only in MS (72%, p < 0.05). No differences were observed in MN or central nuclei between MS and HC. Following training the type II fiber SCs per fiber and per fCSA in MS patients increased by 165% (p < 0.05) and 135% (p < 0.05), respectively. Furthermore, the type II fiber MN content tended (p = 0.06) to be increased by 35% following training. In conclusion, the SC content is lower in type II compared to type I fibers in both MS and HC. Furthermore, high intensity training was observed to selectively increase the SC and myonuclei content in type II fibers in MS patients. PMID:27303309

  20. Advantages of estimating parameters of photosynthesis model by fitting A-Ci curves at multiple subsaturating light intensities

    NASA Astrophysics Data System (ADS)

    Fu, W.; Gu, L.; Hoffman, F. M.

    2013-12-01

    The photosynthesis model of Farquhar, von Caemmerer & Berry (1980) is an important tool for predicting the response of plants to climate change. So far, the critical parameters required by the model have been obtained from the leaf-level measurements of gas exchange, namely the net assimilation of CO2 against intercellular CO2 concentration (A-Ci) curves, made at saturating light conditions. With such measurements, most points are likely in the Rubisco-limited state for which the model is structurally overparameterized (the model is also overparameterized in the TPU-limited state). In order to reliably estimate photosynthetic parameters, there must be sufficient number of points in the RuBP regeneration-limited state, which has no structural over-parameterization. To improve the accuracy of A-Ci data analysis, we investigate the potential of using multiple A-Ci curves at subsaturating light intensities to generate some important parameter estimates more accurately. Using subsaturating light intensities allow more RuBp regeneration-limited points to be obtained. In this study, simulated examples are used to demonstrate how this method can eliminate the errors of conventional A-Ci curve fitting methods. Some fitted parameters like the photocompensation point and day respiration impose a significant limitation on modeling leaf CO2 exchange. The multiple A-Ci curves fitting can also improve over the so-called Laisk (1977) method, which was shown by some recent publication to produce incorrect estimates of photocompensation point and day respiration. We also test the approach with actual measurements, along with suggested measurement conditions to constrain measured A-Ci points to maximize the occurrence of RuBP regeneration-limited photosynthesis. Finally, we use our measured gas exchange datasets to quantify the magnitude of resistance of chloroplast and cell wall-plasmalemma and explore the effect of variable mesophyll conductance. The variable mesophyll conductance

  1. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect.

    PubMed

    Hatakeyama, Takuji; Shiren, Kazushi; Nakajima, Kiichi; Nomura, Shintaro; Nakatsuka, Soichiro; Kinoshita, Keisuke; Ni, Jingping; Ono, Yohei; Ikuta, Toshiaki

    2016-04-01

    Ultrapure blue-fluorescent molecules based on thermally activated delayed fluorescence are developed. Organic light-emitting diode (OLED) devices employing the new emitters exhibit a deep blue emission at 467 nm with a full-width at half-maximum of 28 nm, CIE coordinates of (0.12, 0.13), and an internal quantum efficiency of ≈100%, which represent record-setting performance for blue OLED devices. PMID:26865384

  2. Single-Isocenter Frameless Intensity-Modulated Stereotactic Radiosurgery for Simultaneous Treatment of Multiple Brain Metastases: Clinical Experience

    SciTech Connect

    Nath, Sameer K.; Lawson, Joshua D.; Simpson, Daniel R.

    2010-09-01

    Purpose: To describe our clinical experience using a unique single-isocenter technique for frameless intensity-modulated stereotactic radiosurgery (IM-SRS) to treat multiple brain metastases. Methods and Materials: Twenty-six patients with a median of 5 metastases (range, 2-13) underwent optically guided frameless IM-SRS using a single, centrally located isocenter. Median prescription dose was 18 Gy (range, 14-25). Follow-up magnetic resonance imaging (MRI) and clinical examination occurred every 2-4 months. Results: Median follow-up for all patients was 3.3 months (range, 0.2-21.3), with 20 of 26 patients (77%) followed up until their death. For the remaining 6 patients alive at the time of analysis, median follow-up was 14.6 months (range, 9.3-18.0). Total treatment time ranged from 9.0 to 38.9 minutes (median, 21.0). Actuarial 6- and 12-month overall survivals were 50% (95% confidence interval [C.I.], 31-70%) and 38% (95% C.I., 19-56%), respectively. Actuarial 6- and 12-month local control (LC) rates were 97% (95% C.I., 93-100%) and 83% (95% C.I., 71-96%), respectively. Tumors {<=}1.5 cm had a better 6-month LC than those >1.5 cm (98% vs. 90%, p = 0.008). New intracranial metastatic disease occurring outside of the treatment volume was observed in 7 patients. Grade {>=}3 toxicity occurred in 2 patients (8%). Conclusion: Frameless IM-SRS using a single-isocenter approach for treating multiple intracranial metastases can produce clinical outcomes that compare favorably with those of conventional SRS in a much shorter treatment time (<40 minutes). Given its faster treatment time, this technique is appealing to both patients and personnel in busy clinics.

  3. Fluorescence lifetime excitation cytometry by kinetic dithering.

    PubMed

    Li, Wenyan; Vacca, Giacomo; Castillo, Maryann; Houston, Kevin D; Houston, Jessica P

    2014-07-01

    Flow cytometers are powerful high-throughput devices that capture spectroscopic information from individual particles or cells. These instruments provide a means of multi-parametric analyses for various cellular biomarkers or labeled organelles and cellular proteins. However, the spectral overlap of fluorophores limits the number of fluorophores that can be used simultaneously during experimentation. Time-resolved parameters enable the quantification of fluorescence decay kinetics, thus circumventing common issues associated with intensity-based measurements. This contribution introduces fluorescence lifetime excitation cytometry by kinetic dithering (FLECKD) as a method to capture multiple fluorescence lifetimes using a hybrid time-domain approach. The FLECKD approach excites fluorophores by delivering short pulses of light to cells or particles by rapid dithering and facilitates measurement of complex fluorescence decay kinetics by flow cytometry. Our simulations demonstrated a resolvable fluorescence lifetime value as low as 1.8 ns (±0.3 ns) with less than 20% absolute error. Using the FLECKD instrument, we measured the shortest average fluorescence lifetime value of 2.4 ns and found the system measurement error to be ±0.3 ns (SEM), from hundreds of monodisperse and chemically stable fluorescent microspheres. Additionally, we demonstrate the ability to detect two distinct excited state lifetimes from fluorophores in single cells using FLECKD. This approach presents a new ability to resolve multiple fluorescence lifetimes while retaining the fluidic throughput of a cytometry system. The ability to discriminate more than one average fluorescence lifetime expands the current capabilities of high-throughput and intensity-based cytometry assays as the need to tag one single cell with multiple fluorophores is now widespread. PMID:24668857

  4. Fluorescence lifetime excitation cytometry by kinetic dithering

    PubMed Central

    Li, Wenyan; Vacca, Giacomo; Castillo, Maryann; Houston, Kevin D; Houston, Jessica P

    2014-01-01

    Flow cytometers are powerful high-throughput devices that capture spectroscopic information from individual particles or cells. These instruments provide a means of multi-parametric analyses for various cellular biomarkers or labeled organelles and cellular proteins. However, the spectral overlap of fluorophores limits the number of fluorophores that can be used simultaneously during experimentation. Time-resolved parameters enable the quantification of fluorescence decay kinetics, thus circumventing common issues associated with intensity-based measurements. This contribution introduces fluorescence lifetime excitation cytometry by kinetic dithering (FLECKD) as a method to capture multiple fluorescence lifetimes using a hybrid time-domain approach. The FLECKD approach excites fluorophores by delivering short pulses of light to cells or particles by rapid dithering and facilitates measurement of complex fluorescence decay kinetics by flow cytometry. Our simulations demonstrated a resolvable fluorescence lifetime value as low as 1.8 ns (±0.3 ns) with less than 20% absolute error. Using the FLECKD instrument, we measured the shortest average fluorescence lifetime value of 2.4 ns and found the system measurement error to be ±0.3 ns (SEM), from hundreds of monodisperse and chemically stable fluorescent microspheres. Additionally, we demonstrate the ability to detect two distinct excited state lifetimes from fluorophores in single cells using FLECKD. This approach presents a new ability to resolve multiple fluorescence lifetimes while retaining the fluidic throughput of a cytometry system. The ability to discriminate more than one average fluorescence lifetime expands the current capabilities of high-throughput and intensity-based cytometry assays as the need to tag one single cell with multiple fluorophores is now widespread. PMID:24668857

  5. Detection of Formaldehyde Emission in Comet C/2002 T7 (LINEAR) at Infrared Wavelengths: Line-by-Line Validation of Modeled Fluorescent Intensities

    NASA Astrophysics Data System (ADS)

    DiSanti, M. A.; Bonev, B. P.; Magee-Sauer, K.; Dello Russo, N.; Mumma, M. J.; Reuter, D. C.; Villanueva, G. L.

    2006-10-01

    Formaldehyde (H2CO) was observed in comet C/2002 T7 (LINEAR) with spectral resolving power λ/Δλ~2.5×104 using the Cryogenic Echelle Spectrometer (CSHELL) at the NASA Infrared Telescope Facility, on UT 2004 May 5, 7, and 9. The observations, which sampled emission in the ν1 and ν5 rovibrational bands between 3.53 and 3.62 μm, represent the first spectrally resolved detection, at infrared wavelengths, of monomeric H2CO spanning a range of rotational energies. A comparison of measured line intensities with an existing fluorescence model permitted extraction of rotational temperatures and production rates. Two complementary approaches were used: (1) a correlation analysis that provided a direct global comparison of the observed cometary emissions with the model and (2) an excitation analysis that provided a robust line-by-line comparison. Our results validate the fluorescence model. The overall correlation coefficient was near or above 0.9 in our two principal grating settings. The excitation analysis provided accurate measures of rotational excitation (rotational temperature) on all three dates, with retrieved values of Trot clustering near 100 K. Through simultaneous measurement of OH prompt emission, which we use as a proxy for H2O, we obtained native production rates and mixing ratios for H2CO. The native production of H2CO varied from day to day, but its abundance relative to H2O, Xnative, remained approximately constant within the errors, which may suggest an overall homogeneous composition of the nucleus. We measured a mean mixing ratio Xnative= (0.79+/-0.09) × 10-2 for the three dates.

  6. Fluorescence characteristics of 5-carboxytetramethylrhodamine linked covalently to the 5' end of oligonucleotides: multiple conformers of single-stranded and double-stranded dye-DNA complexes.

    PubMed Central

    Vámosi, G; Gohlke, C; Clegg, R M

    1996-01-01

    Fluorescence steady-state and lifetime experiments have been carried out on duplex and single-stranded DNA molecules labeled at the 5' ends with 5-carboxytetramethylrhodamine (TMRh). The temperature and ionic strength of the solutions were varied over large ranges. The results reveal at least three well-defined states of the TMRh-DNA molecules for the single-stranded as well as for the double-stranded DNA molecules. Two states are fluorescent, with lifetimes in the range of 0.5-1 ns and 2.5-3 ns. A third state of TMRh-DNA does not fluoresce (a dark species of TMRh-DNA). The distribution of the TMRh-DNA molecules among these three states is strongly temperature and ionic strength dependent. Estimates are made of some reaction parameters of the multistate model. The results are discussed in terms of the photophysics of TMRh, and consequences of the multiple conformers of TMRh-DNA for studies involving fluorescence studies with TMRh-labeled DNA are considered. PMID:8842236

  7. Fate of biopolymers during rapeseed meal and wheat bran composting as studied by two-dimensional correlation spectroscopy in combination with multiple fluorescence labeling techniques.

    PubMed

    Wang, Li-Ping; Shen, Qi-Rong; Yu, Guang-Hui; Ran, Wei; Xu, Yang-Chun

    2012-02-01

    Detailed knowledge of the molecular events during composting is important in improving the efficiency of this process. By combining two-dimensional Fourier transform infrared (FTIR) correlation spectroscopy and multiple fluorescent labeling, it was possible to study the degradation of biopolymers during rapeseed meal and wheat bran composting. Two-dimensional FTIR correlation spectroscopy provided structural information and was used to deconvolute overlapping bands found in the compost FTIR spectra. The degradation of biopolymers in rapeseed meal and wheat bran composts followed the sequence: cellulose, heteropolysaccharides, and proteins. Fluorescent labeling suggested that cellulose formed an intact network-like structure and the other biopolymers were embedded in the core of this structure. The sequence of degradation of biopolymers during composting was related to their distribution patterns. PMID:22182472

  8. UvrD limits the number and intensities of RecA-green fluorescent protein structures in Escherichia coli K-12.

    PubMed

    Centore, Richard C; Sandler, Steven J

    2007-04-01

    RecA is important for recombination, DNA repair, and SOS induction. In Escherichia coli, RecBCD, RecFOR, and RecJQ prepare DNA substrates onto which RecA binds. UvrD is a 3'-to-5' helicase that participates in methyl-directed mismatch repair and nucleotide excision repair. uvrD deletion mutants are sensitive to UV irradiation, hypermutable, and hyper-rec. In vitro, UvrD can dissociate RecA from single-stranded DNA. Other experiments suggest that UvrD removes RecA from DNA where it promotes unproductive reactions. To test if UvrD limits the number and/or the size of RecA-DNA structures in vivo, an uvrD mutation was combined with recA-gfp. This recA allele allows the number of RecA structures and the amount of RecA at these structures to be assayed in living cells. uvrD mutants show a threefold increase in the number of RecA-GFP foci, and these foci are, on average, nearly twofold higher in relative intensity. The increased number of RecA-green fluorescent protein foci in the uvrD mutant is dependent on recF, recO, recR, recJ, and recQ. The increase in average relative intensity is dependent on recO and recQ. These data support an in vivo role for UvrD in removing RecA from the DNA. PMID:17259317

  9. Temporal and spatial changes in dissolved organic carbon concentration and fluorescence intensity of fulvic acid like materials in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Terajima, Tomomi; Moriizumi, Mihoko

    2013-02-01

    SummaryDissolved organic carbon (DOC) such as humic substances are key to understanding the aquatic environment in catchments, because they, containing a large number of phenolic and carboxylic acid groups, adsorb many kinds of inorganic materials and also affect nutrition and carbon transport in catchments. To understand the detailed DOC dynamics, we conducted hydrological observations at mountainous headwater catchments dominated by different vegetation types (planted evergreen coniferous forest of 1.29 ha and natural deciduous broadleaf forest of 1.28 ha). The relationship between DOC concentrations and fluorescence intensity of fulvic acid-like materials (F-FAM) were positively correlated in both catchments but different between soil extracts, baseflow, and near surface flow represented by biomat flow. The ratios of change in F-FAM to that in DOC concentration (F-FAM/DOC) were higher in the baseflow (about 6 in both catchments) and lower in the soil extracts (about 4.5 in both catchments, respectively). However, the relationship in stormflow was distributed between the trends of baseflow and soil extracts. The higher F-FAM/DOC in baseflow may thus indicate that DOC (and FAM) in groundwater discharge mainly contributed to the stream flow, and the stormflow mainly reflect subsurface flow through soil during most rainstorms. In contrast, a high F-FAM/DOC ratio (>6) appeared in the stormflow of both catchments especially during large storms of short duration and high intensity following a dry antecedent period. The F-FAM/DOC in biomat flow developing distinctly in the coniferous catchment was high (about 6.5). Thus, rapid shallow subsurface flow through the biomat or near-surface of slopes might explain the unique transport dynamics of DOC and FAM in stormflows with the high F-FAM/DOC ratio. These results imply that the DOC and FAM relationship responds variably depending on both the distribution of soil organic matter and rainwater flow paths in steep slopes as

  10. Assessment of crop productivity over intensively managed agriculture regions in India and Australia using solar-induced fluorescence remote sensing data

    NASA Astrophysics Data System (ADS)

    Devadas, R.; Huete, A. R.; Patel, N. R.; Padalia, H.; Restrepo-Coupe, N.; Kuruvilla, A.

    2015-12-01

    Satellite based estimation of solar-induced terrestrial fluorescence (SIF) is considered to be a direct measure of photosynthetic functional status of the vegetation. Prior studies have shown SIF to more accurately retrieve the productivity of intensively managed croplands, as in the U.S. corn belt. In this study, we assessed and compared agricultural productivity over two intensive crop production regions in Australia and India using SIF data, traditional spectral measures, and crop yield data. Regional level wheat yield data were obtained for the Indo-Gangetic Plains (IGP) in India and the Murray Darling Basin (MDB) in Australia for analyses with GOME-2 SIF satellite and MODIS VI measurements, and gross primary productivity from flux towers. We investigated the importance of integrating traditional meteorological parameters and ground based data with time-series vegetation indices for scaling of SIF to obtain robust yield prediction models for application across years and continents. This study further explored the relationship of inter annual variations in crop phenology metrics through SIF retrievals and its relationship with crop yields. The IGP study region showed systematic cycles of double cropping. MDB region on the other hand showed cycles of pronounced winter cropping and a weaker and variable second cropping over the analysis period. For various winter wheat crop seasons in IGP, from 2007 to 2012, SIF explained and accounted between 48 to 74 per cent of the variations in regional wheat yields. Similar results were obtained in the case of MDB also, however, the relationship between SIF and yield estimates was weaker (R2 = 0.44). SIF measurements, as a surrogate of crop productivity, were considerably higher over the highly productive IGP region in almost all the years considered. The SIF data shows immense potential for modelling agricultural productivity, particularly as the resolution of SIF retrievals continues to improve.

  11. Uranium enrichment measurements using the intensity ratios of self-fluorescence X-rays to 92* keV gamma ray in UXK alpha spectral region.

    PubMed

    Yücel, H; Dikmen, H

    2009-04-30

    In this paper, the known multigroup gamma-ray analysis method for uranium (MGAU) as one of the non-destructive gamma-ray spectrometry methods has been applied to certified reference nuclear materials (depleted, natural and enriched uranium) containing (235)U isotope in the range of 0.32-4.51% atom (235)U. Its analysis gives incorrect results for the low component (235)U in depleted and natural uranium samples where the build-up of the decay products begins to interfere with the analysis. The results reveal that the build-up of decay products seems to be significant and thus the algorithms for the presence of decay products should be improved to resulting in the correct enrichment value. For instance, for the case of (235)U analysis in depleted uranium or natural ore samples, self-induced X-rays such as 94.6 keV and 98.4 keV lying in UXK(alpha) spectral region used by MGAU can be excluded from the calculation. Because the significant increases have been observed in the intensities of uranium self-induced X-rays due to gamma-ray emissions with above 100 keV energy arising from decay products of (238)U and (235)U and these parents. Instead, the use of calibration curve to be made between the intensity ratios of self-fluorescence X-rays to 92(*)keV gamma-ray and the certified (235)U abundances is suggested for the determination of (235)U when higher amounts of decay products are detected in the gamma-ray spectrum acquired for the MGAU analysis. PMID:19203602

  12. Multi-wavelength fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Lo, Pei-An; Cho, Jaedu; Nouizi, Farouk; Chiang, Huihua K.; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    The strong scattering and absorption of light in biological tissue makes it challenging to model the propagation of light, especially in deep tissue. This is especially true in fluorescent tomography, which aims to recover the internal fluorescence source distribution from the measured light intensities on the surface of the tissue. The inherently ill-posed and underdetermined nature of the inverse problem along with strong tissue scattering makes Fluorescence Tomography (FT) extremely challenging. Previously, multispectral detection fluorescent tomography (FT) has been shown to improve the image quality of FT by incorporating the spectral filtering of biological tissue to provide depth information to overcome the inherent absorption and scattering limitations. We investigate whether multi-wavelength fluorescent tomography can be used to distinguish the signals from multiple fluorophores with overlapping fluorescence spectrums using a unique near-infrared (NIR) swept laser. In this work, a small feasibility study was performed to see whether multi-wavelength FT can be used to detect subtle shifts in the absorption spectrum due to differences in fluorophore microenvironment.

  13. Fluorescence study of sugars

    NASA Astrophysics Data System (ADS)

    Thongjamroon, Sunida; Pattanaporkratana, Apichart

    2015-07-01

    We studied photoemission of monosaccharides and disaccharides using laser-induced fluorescence spectroscopy. A 532- nm, 10 mW, laser was used to excite the samples and back-scattering signals were collected by a spectrometer. We found that most sugars show weak fluorescence in solid phase but do not fluoresce when dissolved in water solutions. The emission spectra show similar peak intensity at 590 nm, but they are different in emission intensities. We suggest that the fluorescence spectra may be used to differentiate sugar type, even though the origin of the fluorescence is unclear and needed further study.

  14. Robust effects of cloud superparameterization on simulated daily rainfall intensity statistics across multiple versions of the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; Branson, Mark D.; Randall, David A.

    2016-03-01

    This study evaluates several important statistics of daily rainfall based on frequency and amount distributions as simulated by a global climate model whose precipitation does not depend on convective parameterization—Super-Parameterized Community Atmosphere Model (SPCAM). Three superparameterized and conventional versions of CAM, coupled within the Community Earth System Model (CESM1 and CCSM4), are compared against two modern rainfall products (GPCP 1DD and TRMM 3B42) to discriminate robust effects of superparameterization that emerge across multiple versions. The geographic pattern of annual-mean rainfall is mostly insensitive to superparameterization, with only slight improvements in the double-ITCZ bias. However, unfolding intensity distributions reveal several improvements in the character of rainfall simulated by SPCAM. The rainfall rate that delivers the most accumulated rain (i.e., amount mode) is systematically too weak in all versions of CAM relative to TRMM 3B42 and does not improve with horizontal resolution. It is improved by superparameterization though, with higher modes in regions of tropical wave, Madden-Julian Oscillation, and monsoon activity. Superparameterization produces better representations of extreme rates compared to TRMM 3B42, without sensitivity to horizontal resolution seen in CAM. SPCAM produces more dry days over land and fewer over the ocean. Updates to CAM's low cloud parameterizations have narrowed the frequency peak of light rain, converging toward SPCAM. Poleward of 50°, where more rainfall is produced by resolved-scale processes in CAM, few differences discriminate the rainfall properties of the two models. These results are discussed in light of their implication for future rainfall changes in response to climate forcing.

  15. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.

    PubMed

    Mielke, Marcelo S; Schaffer, Bruce

    2010-01-01

    The interactive effects of changing light intensity and soil flooding on the photosynthetic performance of Eugenia uniflora L. (Myrtaceae) seedlings in containers were examined. Two hypotheses were tested: (i) the photosynthetic apparatus of shade-adapted leaves can be rapidly acclimated to high light after transfer from shade to full sun, and (ii) photosynthetic acclimation to changing light intensity may be influenced by soil flooding. Seedlings cultivated in a shade house (40% of full sun, approximately 12 mol m(-)(2) day(-)(1)) for 6 months were transferred to full sun (20-40 mol m(-2) day(-1)) or shade (30% of full sun, approximately 8 mol m(-2) day(-1)) and subjected to soil flooding for 23 days or not flooded. Chlorophyll content index (CCI), chlorophyll fluorescence, leaf weight per area (LWA), photosynthetic light-response curves and leaf reflectance indexes were measured during soil flooding and after plants were unflooded. The CCI values increased throughout the experiment in leaves of shaded plants and decreased in leaves of plants transferred to full sun. There were no significant interactions between light intensity and flooding treatments for most of the variables analyzed, with the exception of Fv/Fm 22 days after plants were flooded and 5 days after flooded plants were unflooded. The light environment significantly affected LWA, and light environment and soil flooding significantly affected the light-saturated gross CO(2) assimilation rate expressed on area and dry weight bases (A(max-area) and A(max-wt), respectively), stomatal conductance of water vapor (g(ssat)) and intrinsic water use efficiency (A/g(s)). Five days after flooded plants were unflooded, the normalized difference vegetation index (NDVI) and the scaled photochemical reflectance index (sPRI) were significantly higher in shade than in sun leaves. Thirty days after transferring plants from the shade house to the light treatment, LWA was 30% higher in sun than in shade leaves, and A

  16. The Cyan Fluorescent Protein (CFP) Transgenic Mouse as a Model for Imaging Pancreatic Exocrine Cells

    PubMed Central

    Cao, Hop S Tran; Kimura, Hiroaki; Kaushal, Sharmeela; Snyder, Cynthia S; Reynoso, Jose; Hoffman, Robert M; Bouvet, Michael

    2015-01-01

    Context The use of fluorescent proteins for in vivo imaging has opened many new areas of research. Among the important advances in the field have been the development of transgenic mice expressing various fluorescent proteins. Objective To report whole-body and organ-specific fluorescence imaging to characterize the transgenic cyan fluorescent protein mouse. Design Mice were imaged using two devices. Brightfield images were obtained with the OV100 Small Animal Imaging System (Olympus Corp., Tokyo, Japan). Fluorescence imaging was performed under the cyan fluorescent protein filter using the iBox Small Animal Imaging System (UVP, Upland, CA, USA). Intervention All animals were sacrificed immediately before imaging. They were imaged before and throughout multiple steps of a complete necropsy. Harvested organs were also imaged with both devices. Selected organs were then frozen and processed for histology, fluorescence microscopy, and H&E staining. Fluorescence microscopy was performed with an Olympus IMT-2 inverted fluorescence microscope. Main outcome measure Determination of fluorescence intensity of different organs. Results Surprisingly, we found that there is differential enhancement of fluorescence among organs; most notably, the pancreas stands out from the rest of the gastrointestinal tract, displaying the strongest fluorescence of all organs in the mouse. Fluorescence microscopy demonstrated that the cyan fluorescent protein fluorescence resided in the acinar cells of the pancreas and not the islet cells. Conclusions The cyan fluorescent protein mouse should lead to a deeper understanding of pancreatic function and pathology, including cancer. PMID:19287108

  17. Multiple temperature effects on up-conversion fluorescences of Er{sup 3+}-Y b{sup 3+}-Mo{sup 6+} codoped TiO{sub 2} and high thermal sensitivity

    SciTech Connect

    Cao, B. S.; Wu, J. L.; Wang, X. H.; He, Y. Y.; Feng, Z. Q.; Dong, B. E-mail: bscao@dlnu.edu.cn; Rino, L.

    2015-08-15

    We report multiple temperature effects on green and red up-conversion emissions in Er{sup 3+}-Y b{sup 3+}-Mo{sup 6+} codoped TiO{sub 2} phosphors. With increasing temperature, the decrease of the red emission from {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2}, the increase of green emission from {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and another unchanged green emission from {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} were simultaneously observed, which are explained by steady-state rate equations analysis. Due to different evolution with temperature of the two green emissions, higher thermal sensitivity of optical thermal sensor was obtained based on the transitions with the largest fluorescence intensity ratio. Two parameters, maximum theoretical sensitivity (S{sub max}) and optimum operating temperature (T{sub max}) are given to describe thermal sensing properties of the produced sensors. The intensity ratio and energy difference ΔE of a pair of energy levels are two main factors for the sensitivity and accuracy of sensors, which should be referred to design sensors with optimized sensing properties.

  18. Encodable multiple-fluorescence CdTe@carbon nanoparticles from nanocrystal/colloidal crystal guest-host ensembles

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Cai-Feng; Mao, Li-Hua; Zhang, Jing; Yu, Zi-Yi; Chen, Su

    2013-04-01

    We report herein the controllable generation of encodable multi-fluorescence CdTe@carbon nanoparticles (CdTe@C NPs) via the pyrolysis of quantum dot/photonic crystal (QD/PC) guest-host ensembles. The precursors of CdTe/poly(styrene-co-glycidylmethacrylate) (PS-co-PGMA) QD/PC guest-host ensembles were initially formed via the assembly of epoxy groups of PCs and carboxyl groups on the surface of CdTe QDs, followed by a pyrolysis process to generate CdTe@C NPs. The as-prepared CdTe@C NPs not only integrate the optical properties for both the carbon and CdTe QD constituents, but also enable an impressive enhancement of the fluorescence lifetime for CdTe QDs. The multifarious fluorescent spectra coding for CdTe@C NPs was further generated through regulating the embedded sizes or concentrations of CdTe QDs and the excitation wavelength, and their applications in DNA detection and luminescent patterns were achieved.

  19. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-10-04

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  20. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  1. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  2. The on-line each hour and each minute automatically correction data of total NM intensity and different multiplicities on snow effect

    NASA Astrophysics Data System (ADS)

    Lev, Dorman; Zukerman, Igor; Pustilnik, Lev; Dai, Uri; Shternlib, Abracham; Shai Applbaum, David; Kazantsev, Vasilii; Kozliner, Lev; Ben Israel, Isaac

    In our report Dorman et al. “Snow effect for total NM intensity and different multiplicities on Mt. Hermon during 1998 - 2014”, we described the method to determine the snow effect in the total NM intensity and different multiplicities. By using regression coefficients obtained for the long period of observations, obtained in this paper, we developed method of automatically correction on-line each hour and each minute data of total NM intensity and different multiplicities on snow effect. We show that expected average errors in this method for one hour observation is about 0.2%, what is comparable with the statistical error. We show also how to correct on-line automatically one-minute data on snow effect. Corrected on-line one minute data can be now used for the forecasting of great radiation hazards from solar flares and estimation of expected total fluency and radiation hazards for satellites electronics and astronauts health, as well as for people and electronics on regular airlines at altitudes about 10 km. Corrected on-line one hour data can be now used for the forecasting of great magnetic storms, dangerous for satellites, technologies, and people health. https://www.cospar-assembly.org/user/download2.php?id=29566&type=preview

  3. Decay of multispin multiple-quantum coherent states in the NMR of a solid and the stabilization of their intensity profile with time

    SciTech Connect

    Zobov, V. E.; Lundin, A. A.

    2011-12-15

    Variations, experimentally observed in [14], in the intensity profiles of multiple-quantum (MQ) coherences in the presence of two special types of perturbations are explained on the basis of the theory, earlier developed by the authors, of the growth of the effective size of correlated clusters (the number of correlated spins) and the relaxation of MQ coherent states [23]. The intensity and the character of perturbation were controlled by the experimenters. It is shown that the observed stabilization of profiles with time is not associated with the stabilization of the cluster size. Quite the contrary, a cluster of correlated spins monotonically grows, while the observed variations in the intensity profile and its stabilization with time are attributed to the dependence of the decay rate of an MQ coherence on its order (its position in the MQ spectrum). The results of the theory are in good agreement with the experimental data.

  4. Effect of polarization and geometric factors on quantitative laser-induced fluorescence- to-Raman intensity ratios of water samples and a new calibration technique

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Killinger, Dennis K.

    2003-09-01

    A 266-nm laser-induced fluorescence system was used to study the effect of polarization of the excitation source and geometry of the collection optics on the ratio of the signal from a fluorescence standard, quinine sulfate, and the Raman scatter from water. Although the ratio is sometimes considered to be a constant and is used for intersystem comparisons, our studies showed that the Raman signal and, thus, the ratio can vary by a factor of up to 3.6. These experimental values agree with previous studies by others involving gas and flame Raman spectroscopy and suggest a new calibration method for intersystem comparison of different fluorescence systems.

  5. COMPARISON OF RANDOM SITE SELECTION AT MULTIPLE INTENSITIES FOR THE ASSESSMENT OF THE OHIO RIVER FISH COMMUNITY

    EPA Science Inventory

    The Ohio River Valley Sanitation Commission (ORSANCO) is a compact of eight states representing interests in the Ohio River basin that has been instrumental in the development of biological monitoring of the Ohio River. In the past, ORSANCO has conducted intensive surveys by samp...

  6. Fluorescent dendritic organogels based on 2-(2'-hydroxyphenyl)benzoxazole: emission enhancement and multiple stimuli-responsive properties.

    PubMed

    Chen, Hui; Feng, Yu; Deng, Guo-Jun; Liu, Zhi-Xiong; He, Yan-Mei; Fan, Qing-Hua

    2015-07-27

    A new highly efficient and versatile poly(benzyl ether) dendritic organogelator HPB-G1 with 2-(2'-hydroxyphenyl)benzoxazole (HPB) at the focal point has been designed and synthesized. HPB-G1 can form stable organogels toward various apolar and polar organic solvents. Further studies revealed that intermolecular multiple π-π stacking interactions are the main driving forces for the formation of the organogels. Notably, dendron HPB-G1 exhibited a significantly enhanced emission in the gel state in contrast to weak emission in solution. Most interestingly, these dendritic organogels exhibited multiple stimuli-responsive behaviors upon exposure to environmental stimuli, including temperature, sonication, shear stress, and the presence of anions, metal cations, acids/bases, thus leading to reversible sol-gel phase transitions. PMID:26095320

  7. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection

    PubMed Central

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-01-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  8. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection.

    PubMed

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-06-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  9. Effects of self-hypnosis training and cognitive restructuring on daily pain intensity and catastrophizing in individuals with multiple sclerosis and chronic pain.

    PubMed

    Jensen, Mark P; Ehde, Dawn M; Gertz, Kevin J; Stoelb, Brenda L; Dillworth, Tiara M; Hirsh, Adam T; Molton, Ivan R; Kraft, George H

    2011-01-01

    Fifteen adults with multiple sclerosis were given 16 sessions of treatment for chronic pain that included 4 sessions each of 4 different treatment modules: (a) an education control intervention; (b) self-hypnosis training (HYP); (c) cognitive restructuring (CR); and (d) a combined hypnosis-cognitive restructuring intervention (CR-HYP). The findings supported the greater beneficial effects of HYP, relative to CR, on average pain intensity. The CR-HYP treatment appeared to have beneficial effects greater than the effects of CR and HYP alone. Future research examining the efficacy of an intervention that combines CR and HYP is warranted. PMID:21104484

  10. The detectability of nitrous oxide mitigation efficacy in intensively grazed pastures using a multiple plot micrometeorological technique

    NASA Astrophysics Data System (ADS)

    McMillan, A. M. S.; Harvey, M. J.; Martin, R. J.; Bromley, A. M.; Evans, M. J.; Mukherjee, S.; Laubach, J.

    2013-10-01

    Methodologies are required to verify agricultural greenhouse gas mitigation at scales relevant to farm management. Micrometeorological techniques provide a viable approach for comparing fluxes between fields receiving mitigation treatments and control fields. However, they have rarely been applied to spatially verifying treatments aimed at mitigating nitrous oxide emission from intensively grazed pastoral systems. We deployed a micrometeorological system to compare N2O flux among several ~ 1.5 ha plots in intensively grazed dairy pasture. The sample collection and measurement system is referred to as the Field-Scale Nitrous Oxide Mitigation Assessment System (FS-NOMAS) and used a tuneable diode laser absorption spectrometer to measure N2O gradients to high precision at four locations along a 300 m transect. The utility of the FS-NOMAS to assess mitigation efficacy depends largely on its ability to resolve very small vertical N2O gradients. The performance of the FS-NOMAS was assessed in this respect in laboratory and field-based studies. The FS-NOMAS could reliably resolve gradients of 0.039 ppb between a height of 0.5 m and 1.0 m. The gradient resolution achieved corresponded to the ability to detect an inter-plot N2O flux difference of 26.4 μg N2O-N m-2 h-1 under the most commonly encountered conditions of atmospheric mixing (quantified here by a turbulent transfer coefficient), but this ranged from 11 to 59 μg N2O-N m-2 h-1 as the transfer coefficient ranged between its 5th and 95th percentile. Assuming a likely value of 100 μg N2O-N m-2 h-1 for post-grazing N2O fluxes from intensively grazed New Zealand dairy pasture, the system described here would be capable of detecting a mitigation efficacy of 26% for a single (40 min) comparison. We demonstrate that the system has considerably greater sensitivity to treatment effects by measuring cumulative fluxes over extended periods.

  11. Effect of light intensity on in vitro multiple shoot induction and regeneration of cotton (Gossypium hirsutum L. cv Khandawa-2).

    PubMed

    Gupta, S K; Singh, P K; Sawant, S V; Chaturvedi, R; Tuli, R

    2000-04-01

    Cotyledonary nodes taken alongwith shoot apex from seedlings of cotton (G. hirsutum) proliferated into shoots on nutrient agar medium supplemented with cytokinins. In the presence of optimal plant growth regulators, low light intensity enhanced the number of shoots initiated per explant in cotton. An average of 33.5 +/- 2.9 shoots were obtained from a single explant cultured for 8 weeks which is about four fold higher than the values reported in earlier protocols. The isolated shoots were rooted on nutrient agar medium supplemented with alpha-naphthalene acetic acid and transferred to soil after acclimatization. Regenerated plants were morphologically identical to the seed-germinated plants and were fertile. PMID:11218821

  12. Fluorescence lidar method for remote monitoring of effects on vegetation

    NASA Astrophysics Data System (ADS)

    Matvienko, Gennady; Timofeev, Valery; Grishin, Anatoly; Fateyeva, Natalia

    2006-09-01

    Plants constantly interact with environment, mainly, by means of photosynthesis and soil nutrition. The state of plant photosynthetic apparatus that reflects the general physiological state of a plant, can be analyzed remotely on a basis of laser-induced fluorescence using a fluorescence lidar. In this respect, a fluorescence lidar can be a technical means of remote sensing of the effects on vegetation including chemical soil pollution. Among a series of applications, of interest is development of a lidar technique for detecting the effects of oil products and mechanical disturbances. This paper is devoted to the application of the fluorescence lidar technique to monitoring mechanical and chemical impacts on the woody vegetation typical of Siberia. A physical basis of this technique is the red fluorescence of chlorophyll of green plants excited by the second harmonic (532 nm) of Nd:YAG laser. Red fluorescence of plants consists of two bands centered at 685 and 740 nm which is conditioned by functioning of two photosystems. As in situ experiments show, the indicated photosystems and, respectively, the fluorescence on these bands respond differently to feeding disturbances and mechanical impacts, making the increase in the fluorescence intensity informative. Time criteria of fluorescence characteristics were obtained at single and multiple effects on the vegetation. The paper describes a lidar system that meets the requirements for detecting the effects on vegetation.

  13. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students

    PubMed Central

    Stevens, Leslie M.

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and piloted at the City College of New York (CCNY), a 4-yr, minority-serving institution, with both upper-level biology majors and first-year students interested in science, technology, engineering, and mathematics. To test the extent to which CREATE strategies are broadly applicable to students at private, public, research-intensive, and/or primarily undergraduate colleges/universities, we trained a cohort of faculty from the New York/New Jersey/Pennsylvania area in CREATE pedagogies, then followed a subset, the CREATE implementers (CIs), as they taught all or part of an existing course on their home campuses using CREATE approaches. Evaluation of the workshops, the CIs, and their students was carried out both by the principal investigators and by an outside evaluator working independently. Our data indicate that: intensive workshops change aspects of faculty attitudes about teaching/learning; workshop-trained faculty can effectively design and teach CREATE courses; and students taught by such faculty on multiple campuses make significant cognitive and affective gains that parallel the changes documented previously at CCNY. PMID:26086655

  14. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students.

    PubMed

    Stevens, Leslie M; Hoskins, Sally G

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and piloted at the City College of New York (CCNY), a 4-yr, minority-serving institution, with both upper-level biology majors and first-year students interested in science, technology, engineering, and mathematics. To test the extent to which CREATE strategies are broadly applicable to students at private, public, research-intensive, and/or primarily undergraduate colleges/universities, we trained a cohort of faculty from the New York/New Jersey/Pennsylvania area in CREATE pedagogies, then followed a subset, the CREATE implementers (CIs), as they taught all or part of an existing course on their home campuses using CREATE approaches. Evaluation of the workshops, the CIs, and their students was carried out both by the principal investigators and by an outside evaluator working independently. Our data indicate that: intensive workshops change aspects of faculty attitudes about teaching/learning; workshop-trained faculty can effectively design and teach CREATE courses; and students taught by such faculty on multiple campuses make significant cognitive and affective gains that parallel the changes documented previously at CCNY. PMID:26086655

  15. The paradox between low shock-stage and evidence for compaction in CM carbonaceous chondrites explained by multiple low-intensity impacts

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Hanna, Romy D.; Dobson, Katherine J.; Tomkinson, Tim; Lee, Martin R.

    2015-01-01

    Petrographic analysis of eight CM carbonaceous chondrites (EET 96029, LAP 031166, LON 94101, MET 01072, Murchison, Murray, SCO 06043, QUE 93005) by electron imaging and diffraction, and X-ray computed tomography, reveals that six of them have a petrofabric defined by shock flattened chondrules. With the exception of Murchison, those CMs that have a strong petrofabric also contain open or mineralized fractures, indicating that tensional stresses accompanying the impacts were sufficient to locally exceed the yield strength of the meteorite matrix. The CMs studied span a wide range of petrologic subtypes, and in common with Rubin (2012) we find that the strength of their petrofabrics increases with their degree of aqueous alteration. This correspondence suggests that impacts were responsible for enhancing alteration, probably because the fracture networks they formed tapped fluid reservoirs elsewhere in the parent body. Two meteorites that do not fit this pattern are MET 01072 and Murchison; both have a strong petrofabric but are relatively unaltered. In the case of MET 01072, impact deformation is likely to have postdated parent body aqueous activity. The same may also be true for Murchison, but as this meteorite also lacks fractures and veins, its chondrules were most likely flattened by multiple low intensity impacts. Multiphase deformation of Murchison is also revealed by the microstructures of calcite grains, and chondrule-defined petrofabrics as revealed by X-ray computed tomography. The contradiction between the commonplace evidence for impact-deformation of CMs and their low shock stages (most belong to S1) can be explained by most if not all having been exposed to multiple low intensity (i.e., <5 GPa) shock events. Aqueous alteration was enhanced by those impacts that were of sufficient intensity to open high permeability fracture networks that could connect to fluid reservoirs.

  16. An echolocation model for range discrimination of multiple closely spaced objects: Transformation of spectrogram into the reflected intensity distribution

    NASA Astrophysics Data System (ADS)

    Matsuo, Ikuo; Kunugiyama, Kenji; Yano, Masafumi

    2004-02-01

    Using frequency-modulated echolocation, bats can discriminate the range of objects with an accuracy of less than a millimeter. However, bats' echolocation mechanism is not well understood. The delay separation of three or more closely spaced objects can be determined through analysis of the echo spectrum. However, delay times cannot be properly correlated with objects using only the echo spectrum because the sequence of delay separations cannot be determined without information on temporal changes in the interference pattern of the echoes. To illustrate this, Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The delay time for object 1, T1, can be estimated from the echo spectrum around the onset time. The delay time for object 2 is obtained by adding T1 to the delay separation between objects 1 and 2 (extracted from the first appearance of interference effects). Further objects can be located in sequence by this same procedure. This model can determine delay times for three or more closely spaced objects with an accuracy of about 1 μs, when all the objects are located within 30 μs of delay separation. This model is applicable for the range discrimination of objects having different reflected intensities and in a noisy environment (0-dB signal-to-noise ratio) while the cross-correlation method is hard to apply to these problems.

  17. Amobarbital treatment of multiple personality. Use of structured video tape interviews as a basis for intensive psychotherapy.

    PubMed

    Hall, R C; LeCann, A F; Schoolar, J C

    1978-09-01

    The case of a 30-year-old woman with five distinct personalities is presented. The patient was treated, using a system of structured video taped sodium amobarbital interviews, in which areas to be explored were developed in psychotherapy. Tapes were played for the patient after each session. The taped material was used as the basis for psychotherapeutic investigation. The patient evidenced many of the features previously reported in cases of multiple personality, specifically: being the product of an unwanted pregnancy in a repressively rigid family; emotional distancing by one parent; strong sibling rivalry with an adopted sib; family history of mental illness; a traumatic first sexual experience (rape); a marriage to a maladjusted individual in an attempt to escape the parental home; a high internalized standard of performance and an inability to display anger or negative feelings toward the parents. In the course of treatment, the patient's personalties fused and she was able to accept each component as part of herself. No further fragmentation has occurred during the year following discharge. The therapy technique minimized dependency, and the possiblity of addiction to amobarbital interviews permitted more active patient therapy involvement, and set clear-cut goals and expectations for improvement before further amobarbital interviews could be conducted. PMID:690626

  18. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders

    PubMed Central

    Lange-Consiglio, A.; Meucci, A.; Cremonesi, F.

    2013-01-01

    The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS) and computer assisted semen analyzer (CASA). Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19°C for 6 days (short-term) or 12 days (long-term). The integrity of spermatozoa membranes was analyzed by FMS using propidium iodide, 5,5’,6,6’-tetrachloro-1,1’,3,3’ tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) and fluorescein isothiocyanate-conjugated peanut agglutinin (PNA). The results obtained from this staining were compared with spermatozoa motility assessed by CASA. Our study showed that the number of viable spermatozoa with non-reacted acrosomes and intact mitochondria was positively correlated with the rate of motile spermatozoa (r2>0.9) irrespective of the extender used. In all extenders the number of motile spermatozoa significantly decreased as preservation period increased (P<0.05). FMS test is a potent indicator of sperm motility because it analyses mitochondrial integrity independently from observable alterations in motility. The best performing extenders were BTS for short-term storage and TRI-x-Cell for long-term storage. PMID:26623308

  19. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation.

    PubMed

    Zhang, Laining; Yang, Xiaoyu; Tian, Li; Chen, Lei; Yu, Weichang

    2016-09-01

    The cultivated peanut Arachis hypogaea (AABB) is thought to have originated from the hybridization of Arachis duranensis (AA) and Arachis ipaënsis (BB) followed by spontaneous chromosome doubling. In this study, we cloned and analyzed chromosome markers from cultivated peanut and its wild relatives. A fluorescence in situ hybridization (FISH)-based karyotyping cocktail was developed with which to study the karyotypes and chromosome evolution of peanut and its wild relatives. Karyotypes were constructed in cultivated peanut and its two putative progenitors using our FISH-based karyotyping system. Comparative karyotyping analysis revealed that chromosome organization was highly conserved in cultivated peanut and its two putative progenitors, especially in the B genome chromosomes. However, variations existed between A. duranensis and the A genome chromosomes in cultivated peanut, especially for the distribution of the interstitial telomere repeats (ITRs). A search of additional A. duranensis varieties from different geographic regions revealed both numeric and positional variations of ITRs, which were similar to the variations in tetraploid peanut varieties. The results provide evidence for the origin of cultivated peanut from the two diploid ancestors, and also suggest that multiple hybridization events of A. ipaënsis with different varieties of A. duranensis may have occurred during the origination of peanut. PMID:27176118

  20. Evaluation of a High-Intensity Green Fluorescent Protein Fluorophage Method for Drug- Resistance Diagnosis in Tuberculosis for Isoniazid, Rifampin, and Streptomycin

    PubMed Central

    Yu, Xia; Gu, Yunting; Jiang, Guanglu; Ma, Yifeng; Zhao, Liping; Sun, Zhaogang; Jain, Paras; O'Donnell, Max; Larsen, Michelle; Jacobs, William R.; Huang, Hairong

    2016-01-01

    A novel method for detecting drug resistance in Mycobacterium tuberculosis using mycobacteriophage Φ2GFP10 was evaluated with clinical isolates. The phage facilitates microscopic fluorescence detection due to the high expression of green fluorescence protein which also simplifies the operative protocol as well. A total of 128 clinical isolates were tested by the phage assay for isoniazid (INH), rifampin (RIF), and streptomycin (STR) resistance while conventional drug susceptibility test, by MGIT960, was used as reference. The sensitivities of Φ2GFP10 assay for INH, RIF, and STR resistance detection were 100, 98.2, and 89.3%, respectively while their specificities were 85.1, 98.6, and 95.8%, respectively. The agreement between phage and conventional assay for detecting INH, RIF, and STR resistance was 92.2, 98.4, and 93.0%, respectively. The Φ2GFP10-phage results could be available in 2 days for RIF and STR, while it takes 3 days for INH, with an estimated cost of less than $2 to test all the three antibiotics. The Φ2GFP10-phage method has the potential to be a valuable, rapid and economical screening method for detecting drug-resistant tuberculosis. PMID:27379052

  1. Nosocomial outbreak of septicaemia in neonatal intensive care unit due to extended spectrum β-lactamase producing Klebsiella pneumoniae showing multiple mechanisms of drug resistance.

    PubMed

    Rastogi, V; Nirwan, P S; Jain, S; Kapil, A

    2010-01-01

    A total of 14 phenotypically similar clinical isolates of Klebsiella pneumoniae, resistant to multiple drugs including cefotaxime and ceftazidime, were isolated from blood of neonates admitted to neonatal intensive care unit (NICU) within a short span of 10 days. Alarmed at the possibility of occurrence of outbreak, a thorough investigation was done. Microbiological sampling of the NICU and labour room (LR) environment yielded 12 K. pneumoniae isolates. The presence of extended spectrum β-lactamase (ESBL) in the clinical and environmental strains was detected by double-disk synergy test (DDST), CLSI phenotypic confirmatory disk diffusion test (PCDDT) and E-test ESBL strips. Amp-C screen (disk) test was done to determine Amp-C β-lactamase production. 100% clinical strains, 57% NICU strains and 80% LR strains were ESBL positive. 57% clinical, 43% NICU and 20% LR strains were Amp-C screen positive. Polymerase chain reaction (PCR) of representative ESBL positive (10 clinical and 5 environmental) strains showed CTX gene and TEM and/or SHV gene in all. K. pneumoniae showing multiple mechanisms of drug resistance was responsible for the outbreak. PMID:20966575

  2. Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells.

    PubMed

    Lubbeck, Jennifer L; Dean, Kevin M; Ma, Hairong; Palmer, Amy E; Jimenez, Ralph

    2012-05-01

    Traditional flow cytometers are capable of rapid cellular assays on the basis of fluorescence intensity and light scatter. Microfluidic flow cytometers have largely followed the same path of technological development as their traditional counterparts; however, the significantly smaller transport distance and resulting lower cell speeds in microchannels provides for the opportunity to detect novel spectroscopic signatures based on multiple, nontemporally coincident excitation beams. Here, we characterize the design and operation of a cytometer with a three-beam, probe/bleach/probe geometry, employing HeLa suspension cells expressing fluorescent proteins. The data collection rate exceeds 20 cells/s under a range of beam intensities (5 kW to 179 kW/cm(2)). The measured percent photobleaching (ratio of fluorescence intensities excited by the first and third beams: S(beam3)/S(beam1)) partially resolves a mixture of four red fluorescent proteins in mixed samples. Photokinetic simulations are presented and demonstrate that the percent photobleaching reflects a combination of the reversible and irreversible photobleaching kinetics. By introducing a photobleaching optical signature, which complements traditional fluorescence intensity-based detection, this method adds another dimension to multichannel fluorescence cytometry and provides a means for flow-cytometry-based screening of directed libraries of fluorescent protein photobleaching. PMID:22424298

  3. SynPAnal: Software for Rapid Quantification of the Density and Intensity of Protein Puncta from Fluorescence Microscopy Images of Neurons

    PubMed Central

    Danielson, Eric; Lee, Sang H.

    2014-01-01

    Continuous modification of the protein composition at synapses is a driving force for the plastic changes of synaptic strength, and provides the fundamental molecular mechanism of synaptic plasticity and information storage in the brain. Studying synaptic protein turnover is not only important for understanding learning and memory, but also has direct implication for understanding pathological conditions like aging, neurodegenerative diseases, and psychiatric disorders. Proteins involved in synaptic transmission and synaptic plasticity are typically concentrated at synapses of neurons and thus appear as puncta (clusters) in immunofluorescence microscopy images. Quantitative measurement of the changes in puncta density, intensity, and sizes of specific proteins provide valuable information on their function in synaptic transmission, circuit development, synaptic plasticity, and synaptopathy. Unfortunately, puncta quantification is very labor intensive and time consuming. In this article, we describe a software tool designed for the rapid semi-automatic detection and quantification of synaptic protein puncta from 2D immunofluorescence images generated by confocal laser scanning microscopy. The software, dubbed as SynPAnal (for Synaptic Puncta Analysis), streamlines data quantification for puncta density and average intensity, thereby increases data analysis throughput compared to a manual method. SynPAnal is stand-alone software written using the JAVA programming language, and thus is portable and platform-free. PMID:25531531

  4. SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons.

    PubMed

    Danielson, Eric; Lee, Sang H

    2014-01-01

    Continuous modification of the protein composition at synapses is a driving force for the plastic changes of synaptic strength, and provides the fundamental molecular mechanism of synaptic plasticity and information storage in the brain. Studying synaptic protein turnover is not only important for understanding learning and memory, but also has direct implication for understanding pathological conditions like aging, neurodegenerative diseases, and psychiatric disorders. Proteins involved in synaptic transmission and synaptic plasticity are typically concentrated at synapses of neurons and thus appear as puncta (clusters) in immunofluorescence microscopy images. Quantitative measurement of the changes in puncta density, intensity, and sizes of specific proteins provide valuable information on their function in synaptic transmission, circuit development, synaptic plasticity, and synaptopathy. Unfortunately, puncta quantification is very labor intensive and time consuming. In this article, we describe a software tool designed for the rapid semi-automatic detection and quantification of synaptic protein puncta from 2D immunofluorescence images generated by confocal laser scanning microscopy. The software, dubbed as SynPAnal (for Synaptic Puncta Analysis), streamlines data quantification for puncta density and average intensity, thereby increases data analysis throughput compared to a manual method. SynPAnal is stand-alone software written using the JAVA programming language, and thus is portable and platform-free. PMID:25531531

  5. Fluorescent Applications to Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    By covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and tests with model proteins have shown that labeling u to 5 percent of the protein molecules does not affect the X-ray data quality obtained . The presence of the trace fluorescent label gives a number of advantages. Since the label is covalently attached to the protein molecules, it "tracks" the protein s response to the crystallization conditions. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a darker background. Non-protein structures, such as salt crystals, do not show up under fluorescent illumination. Crystals have the highest protein concentration and are readily observed against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. Preliminary tests, using model proteins, indicates that we can use high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that more rapid amorphous precipitation kinetics may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Experiments are now being carried out to test this approach using a wider range, of proteins. The trace fluorescently labeled crystals will also

  6. The Rate Constant for Fluorescence Quenching

    ERIC Educational Resources Information Center

    Legenza, Michael W.; Marzzacco, Charles J.

    1977-01-01

    Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)

  7. Energy transfer in the inhomogeneously broadened core antenna of purple bacteria: a simultaneous fit of low-intensity picosecond absorption and fluorescence kinetics.

    PubMed Central

    Pullerits, T; Visscher, K J; Hess, S; Sundström, V; Freiberg, A; Timpmann, K; van Grondelle, R

    1994-01-01

    The excited state decay kinetics of chromatophores of the purple photosynthetic bacterium Rhodospirillum rubrum have been recorded at 77 K using picosecond absorption difference spectroscopy under strict annihilation free conditions. The kinetics are shown to be strongly detection wavelength dependent. A simultaneous kinetic modeling of these experiments together with earlier fluorescence kinetics by numerical integration of the appropriate master equation is performed. This model, which accounts for the spectral inhomogeneity of the core light-harvesting antenna of photosynthetic purple bacteria, reveals three qualitatively distinct stages of excitation transfer with different time scales. At first a fast transfer to a local energy minimum takes place (approximately 1 ps). This is followed by a much slower transfer between different energy minima (10-30 ps). The third component corresponds to the excitation transfer to the reaction center, which depends on its state (60 and 200 ps for open and closed, respectively) and seems also to be the bottleneck in the overall trapping time. An acceptable correspondence between theoretical and experimental decay kinetics is achieved at 77 K and at room temperature by assuming that the width of the inhomogeneous broadening is 10-15 nm and the mean residence time of the excitation in the antenna lattice site is 2-3 ps. PMID:8130341

  8. Use of high-intensity sonication for pre-treatment of biological tissues prior to multielemental analysis by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    La Calle, Inmaculada De; Costas, Marta; Cabaleiro, Noelia; Lavilla, Isela; Bendicho, Carlos

    2012-01-01

    In this work, two ultrasound-based procedures are developed for sample preparation prior to determination of P, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Sr in biological tissues by total reflection X-ray fluorescence spectrometry. Ultrasound-assisted extraction by means of a cup-horn sonoreactor and ultrasonic-probe slurry sampling were compared with a well-established procedure such as magnetic agitation slurry sampling. For that purpose, seven certified reference materials and different real samples of animal tissue were used. Similar accuracy and precision is obtained with the three sample preparation approaches tried. Limits of detection were dependent on both the sample matrix and the sample pre-treatment used, best values being achieved with ultrasound-assisted extraction. Advantages of ultrasound-assisted extraction include reduced sample handling, decreased contamination risks (neither addition of surfactants nor use of foreign objects inside the extraction vial), simpler background (no solid particles onto the sample carrier) and improved recovery for some elements such as P. A mixture of 10% v/v HNO3 + 20-40% v/v HCl was suitable for extraction from biological tissues.

  9. FRET enhanced fluorescent nanodiamonds.

    PubMed

    Fudala, Rafal; Raut, Sangram; Maliwal, Badri P; Zerda, T W; Gryczynski, Ignacy; Simanek, Eric; Borejdo, Julian; Rich, Ryan; Akopova, Irina; Gryczynski, Zygmunt

    2014-01-01

    Fluorescent nanodiamonds (FNDs) are one of the new and very promising biocompatible nanomaterials that can be used both as a fluorescence imaging agent and a highly versatile platform for controlled functionalization to target and deliver a wide spectrum of therapeutic agents. Among the remarkable fluorescence properties are excellent photostability, emission between 600-700nm, quantum yield of 1 and moderately long fluorescence lifetimes. However the low absorption cross section of fluorescent (N-V)(-) centers limits FNDs' brightness. In this work we show that an approach based on the Forster resonance energy transfer (FRET) may significantly enhance the fluorescence signal observed from a single ND. We demonstrate that organic dyes (fluorophores) attached to the FND surface can efficiently transfer the excitation energy to (N-V)(-) centers. Multiple dyes positioned in close proximity to the ND facile surface may serve as harvesting antennas transferring excitation energy to the fluorescent centers. We propose that, with the help of some of the functional groups present on the FND surface, we can either directly link flurophores or use scalable dendrimer chemistry to position many organic dyes at a calibrated distance. Also, the remaining multiple functional groups will be still available for particle targeting and drug delivery. This opens a new way for designing a new type of theranostics particles of ultrahigh brightness, high photostability, specific targeting, and high capacity for drug delivery. PMID:22394126

  10. A computational model of echolocation: Transformation of spectrogram into the reflected intensity distribution for range discrimination of multiple closely spaced objects

    NASA Astrophysics Data System (ADS)

    Matsuo, Ikuo; Kunugiyama, Kenji; Yano, Masafumi

    2001-05-01

    Using frequency-modulated echolocation, bats can discriminate the range of objects with an accuracy of less than a millimeter. However, the echolocation mechanism is not well understood. The delay separation of three or more closely spaced objects can be determined through analysis of the echo spectrum. However, delay times cannot be properly correlated with objects using only the echo spectrum because the sequence of delay separations cannot be determined without information on temporal changes in the interference pattern of the echoes. To illustrate this, Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The delay time for object 1, T1, can be estimated from the echo spectrum around the onset time. The delay time for object 2 is obtained by adding T1 to the delay separation between objects 1 and 2 (extracted from the first appearance of interference effects). Further objects can be located in sequence by this same procedure. This model can determine delay times for multiple closely spaced objects with an accuracy of about 1 microsecond, when all the objects are located within 30 microseconds of delay separation. This accuracy is possible even with objects having different reflected intensities and in a noisy environment.

  11. Time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted multiple-active-space model for multielectron dynamics in intense laser fields

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Ishikawa, Kenichi L.

    2015-02-01

    The time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted multiple-active-space model is proposed (TD-ORMAS) for multielectron dynamics in intense laser fields. Extending the previously proposed time-dependent complete-active-space self-consistent-field method [TD-CASSCF; Phys. Rev. A 88, 023402 (2013), 10.1103/PhysRevA.88.023402], which divides the occupied orbitals into core and active orbitals, the TD-ORMAS method further subdivides the active orbitals into an arbitrary number of subgroups and poses the occupation restriction by giving the minimum and maximum number of electrons distributed in each subgroup. This enables highly flexible construction of the configuration-interaction (CI) space, allowing a large-active-space simulation of dynamics, e.g., the core excitation or ionization. The equations of motion for both CI coefficients and spatial orbitals are derived based on the time-dependent variational principle, and an efficient algorithm is proposed to solve for the orbital time derivatives. In-depth descriptions of the computational implementation are given in a readily programmable manner. The numerical application to the one-dimensional lithium hydride cluster models demonstrates that the high flexibility of the TD-ORMAS framework allows for the cost-effective simulations of multielectron dynamics by exploiting systematic series of approximations to the TD-CASSCF method.

  12. A phase 2 study of three low-dose intensity subcutaneous bortezomib regimens in elderly frail patients with untreated multiple myeloma.

    PubMed

    Larocca, A; Bringhen, S; Petrucci, M T; Oliva, S; Falcone, A P; Caravita, T; Villani, O; Benevolo, G; Liberati, A M; Morabito, F; Montefusco, V; Passera, R; De Rosa, L; Omedé, P; Vincelli, I D; Spada, S; Carella, A M; Ponticelli, E; Derudas, D; Genuardi, M; Guglielmelli, T; Nozzoli, C; Aghemo, E; De Paoli, L; Conticello, C; Musolino, C; Offidani, M; Boccadoro, M; Sonneveld, P; Palumbo, A

    2016-06-01

    This phase 2 trial evaluated three low-dose intensity subcutaneous bortezomib-based treatments in patients ⩾75 years with newly diagnosed multiple myeloma (MM). Patients received subcutaneous bortezomib plus oral prednisone (VP, N=51) or VP plus cyclophosphamide (VCP, N=51) or VP plus melphalan (VMP, N=50), followed by bortezomib maintenance, and half of the patients were frail. Response rate was 64% with VP, 67% with VCP and 86% with VMP, and very good partial response rate or better was 26%, 28.5% and 49%, respectively. Median progression-free survival was 14.0, 15.2 and 17.1 months, and 2-year OS was 60%, 70% and 76% in VP, VCP, VMP, respectively. At least one drug-related grade ⩾3 non-hematologic adverse event (AE) occurred in 22% of VP, 37% of VCP and 33% of VMP patients; the discontinuation rate for AEs was 12%, 14% and 20%, and the 6-month rate of toxicity-related deaths was 4%, 4% and 8%, respectively. The most common grade ⩾3 AEs included infections (8-20%), and constitutional (10-14%) and cardiovascular events (4-12%); peripheral neuropathy was limited (4-6%). Bortezomib maintenance was effective and feasible. VP, VCP and VMP regimens demonstrated no substantial difference. Yet, toxicity was higher with VMP, suggesting that a two-drug combination followed by maintenance should be preferred in frail patients. PMID:26898189

  13. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  14. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  15. Ethynyl-linked (pyreno)pyrrole-naphthyridine and aniline-naphthyridine molecules as fluorescent sensors of guanine via multiple hydrogen bondings.

    PubMed

    Lu, Shao-Hung; Selvi, Srinivasan; Fang, Jim-Min

    2007-01-01

    New fluorescent molecular sensors for 9-alkylguanines were constructed by conjugation of 2-acetamido-1,8-naphthyridine with N-Boc-pyrrole, N-Boc-pyreno[2,1-b]pyrrole, or acetanilide moieties via an ethynyl bridge. In combination with the triple hydrogen-bonding motif of 2-acetamidonaphthyridine toward alkylguanine, an additional binding site was provided by the substituent properly located on the pyrrole or aniline ring to enhance the affinity of these receptor molecules. Besides the ESI-MS analyses, the binding events were readily monitored by the absorption and fluorescence changes in the visible region. PMID:17194089

  16. Fluorescence and lasing in liquid crystalline photonic bandgap materials

    NASA Astrophysics Data System (ADS)

    Cao, Wenyi

    Cholesteric liquid crystals (CLCs) and cholesteric blue phases (BPs) are one-dimensional and three-dimensional photonic bandgap (PGB) materials. In this work, fluorescence and lasing are experimentally studied in dye-doped CLC films and BPs, together with the calculations of density of states rho in CLC films. The normal modes of light propagation in a CLC film in the direction along the helical axis have been obtained analytically, using transfer matrix method. Two normal modes are elliptically polarized and their rho differ greatly. The value and wavelength of the largest rho depend on the CLC film thickness. The fluorescence spectra of dye DCM in CLC films are greatly altered: suppressed in the stop band and enhanced at band edges with intensity oscillations. The altered fluorescence spectra are in good agreement with the calculated spectra from rho. The fluorescence lifetimes, however, have no measurable difference. At high dye concentration, the fluorescence intensity is quenched by the formation of dye excimers. Mirrorless lasing in CLC films has been studied systematically. The lasing wavelengths and thresholds are in good agreement with the calculated values from rho. The threshold is optimized over CLC film thickness and dye concentration. Lasing at defect modes has been observed in CLC composite structures. Photon-counting statistics confirms the transition from the incoherent fluorescence to coherent laser emission with increasing pump energy. The totally coherent emitting area is estimated from the diffraction pattern of the CLC laser emission. The structures of BPs are characterized through textures and reflection measurements. In BP I, the stimulated emission is due to the multiple reflection of the fluorescence by small BP I crystals. In large BP II single crystals, the fluorescence is altered and lasing occurs at edges of the reflection peak or at defect modes. Lasing in three dimensions has been observed for the first time in PGB materials, and

  17. Initial Sequential Organ Failure Assessment score versus Simplified Acute Physiology score to analyze multiple organ dysfunction in infectious diseases in Intensive Care Unit

    PubMed Central

    Nair, Remyasri; Bhandary, Nithish M.; D’Souza, Ashton D.

    2016-01-01

    Aims: To investigate initial Sequential Organ Failure Assessment (SOFA) score of patients in Intensive Care Unit (ICU), who were diagnosed with infectious disease, as an indicator of multiple organ dysfunction and to examine if initial SOFA score is a better mortality predictor compared to Simplified Acute Physiology Score (SAPS). Materials and Methods: Hospital-based study done in medical ICU, from June to September 2014 with a sample size of 48. Patients aged 18 years and above, diagnosed with infectious disease were included. Patients with history of chronic illness (renal/hepatic/pulmonary/  cardiovascular), diabetes, hypertension, chronic obstructive pulmonary disease, heart disease, those on immunosuppressive therapy/chemoradiotherapy for malignancy and patients in immunocompromised state were excluded. Blood investigations were obtained. Six organ dysfunctions were assessed using initial SOFA score and graded from 0 to 4. SAPS was calculated as the sum of points assigned to each of the 17 variables (12 physiological, age, type of admission, and three underlying diseases). The outcome measure was survival status at ICU discharge. Results: We categorized infectious diseases into dengue fever, leptospirosis, malaria, respiratory tract infections, and others which included undiagnosed febrile illness, meningitis, urinary tract infection and gastroenteritis. Initial SOFA score was both sensitive and specific; SAPS lacked sensitivity. We found no significant association between age and survival status. Both SAPS and initial SOFA score were found to be statistically significant as mortality predictors. There is significant association of initial SOFA score in analyzing organ dysfunction in infectious diseases (P < 0.001). SAPS showed no statistical significance. There was statistically significant (P = 0.015) percentage of nonsurvivors with moderate and severe dysfunction, based on SOFA score. Nonsurvivors had higher SAPS but was not statistically significant (P

  18. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment. PMID:27556995

  19. Mean frequency and relative fluorescence intensity measurement of γ-H2AX foci dose response in PBL exposed to γ-irradiation: An inter- and intra-laboratory comparison and its relevance for radiation triage.

    PubMed

    Venkateswarlu, Raavi; Tamizh, Selvan G; Bhavani, Manivannan; Kumar, Arun; Alok, Amit; Karthik, Kanagaraj; Kalra, Namita; Vijayalakshmi, J; Paul, Solomon F D; Chaudhury, N K; Venkatachalam, Perumal

    2015-12-01

    Measurement of γ-H2AX protein changes in the peripheral blood lymphocytes (PBL) of individuals exposed to ionizing radiation is a simple, sensitive, and rapid assay for radiation triage and early marker of dose estimation. The qualitative and quantitative measurements of the protein changes were examined using flow cytometry and microscopy. Whole blood and isolated lymphocytes were exposed in vitro between 0.1 and 5 Gy doses of (60) Co γ-radiation at a dose rate of 1 Gy/min. Radiation induced γ-H2AX foci frequency (n = 3) and relative fluorescence intensity (n = 7) in PBL was measured at 0.5 and 2 hrs postexposure. The observed dose response for γ-H2AX foci frequency at both time points, for whole blood and isolated lymphocytes did not show any significant (P > 0.05) differences. However, when compared with γ-H2AX foci frequency scored manually (microscopy), the semiautomated analysis (captured images) showed a better correlation (r(2) = 0.918) than that obtained with automated (Metafer) scoring (r(2) = 0.690). It is noteworthy to mention that, the γ-H2AX foci frequency quantified using microscopy showed a dose dependent increase up to 2 Gy and the relative fluorescence intensity (RFI) measured with flow cytometry revealed an increase up to 5 Gy in the PBL exposed in vitro. Moreover, a better correlation was observed between the γ-H2AX foci frequency obtained by manual scoring and RFI (r(2) = 0.910). Kinetic studies showed that the γ-H2AX foci remain more or less unchanged up to 4 hrs and reduces gradually over 48 hrs of postexposure at 37°C. Further, inter and intra-laboratory comparisons showed consistency in the scoring of γ-H2AX foci frequency by manual and semiautomated scoring. The overall results suggest that measurement of γ-H2AX (microscopy and flow cytometry) should be employed within 4 to 6 hrs for a reliable dosimetry either by sharing the work load between the laboratories or investing more manpower; however, triage can be possible even up

  20. Fluorescence lifetime imaging of coral fluorescent proteins.

    PubMed

    Cox, Guy; Matz, Mikhail; Salih, Anya

    2007-03-01

    Corals, like many other coelenterates, contain fluorescent pigments that show considerable homology with the well known green fluorescent protein of the jellyfish Aequoria. In corals, unlike jellyfish, multiple proteins are present and the range of excitations and emissions suggest the possibility of energy transfer. The occurrence of Förster resonant energy transfer (FRET) between fluorescent proteins in corals has already been reported and time-resolved spectra have shown the effect on fluorescent lifetime, but without any spatial resolution. Lifetime confocal microscopy offers lower time resolution but excellent spatial resolution. Lifetimes of the isolated A. millepora pigments amilFP490, amilFP504, and amilFP593 (names indicate emission peaks) were 2.8, 2.9, and 2.9 ns, respectively. In the coral sample, imaging the entire emission spectrum from 420 nm, the mean lifetime was reduced to 1.5 ns, implying that FRET was occurring. Looking just at the fluorescence from FRET donors the lifetime was even shorter, at 1.3 ns, supporting this interpretation. In contrast, no reduction in lifetime is seen in the coral Euphyllia ancora, where the pigment distribution also suggests that the pigments are unlikely to be involved in photoprotection. This study set out to determine the extent of FRET between pigments in two corals, Acropora millepora and Euphyllia, ancora which differ in the arrangement of their pigments and hence possibly in pigment function. PMID:17279514

  1. Fluorescence lifetime imaging of skin cancer

    NASA Astrophysics Data System (ADS)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  2. Visual outdoor response of multiple wild bee species: highly selective stimulation of a single photoreceptor type by sunlight-induced fluorescence.

    PubMed

    Rao, Sujaya; Ostroverkhova, Oksana

    2015-07-01

    Bees have ultraviolet (UV), blue and green photoreceptor types in their compound eyes with which they locate food sources in landscapes that change continuously in cues emanating from plants and backgrounds against which they are perceived. The complexity of bee vision has been elucidated through studies examining individual species under laboratory conditions. Here, we used a bee-attractive fluorescent blue trap as a model for analyzing visual signals in operation outdoors, and across bee species. We manipulated trap color (appearance to humans under light with weak UV component) and UV-induced fluorescence emission, and aligned field capture results with bee vision models. Our studies show that the bees were attracted to traps that under solar illumination exhibited strong fluorescence emission exclusively in the blue spectral region. Through quantitative analysis, we established that strong spectral overlap of trap emittance with the photosensitivity characteristic of the blue receptor type and minimal overlap with those of the other two receptor types is the most critical property of attractive traps. A parameter has been identified which predicts the degree of attractiveness of the traps and which captures trends in the field data across wild bee species and for a diversity of backgrounds. PMID:25666705

  3. Quantitative evaluation of local pulmonary distribution of TiO2 in rats following single or multiple intratracheal administrations of TiO2 nanoparticles using X-ray fluorescence microscopy.

    PubMed

    Zhang, Guihua; Shinohara, Naohide; Kano, Hirokazu; Senoh, Hideki; Suzuki, Masaaki; Sasaki, Takeshi; Fukushima, Shoji; Gamo, Masashi

    2016-10-01

    Uneven pulmonary nanoparticle (NP) distribution has been described when using single-dose intratracheal administration tests. Multiple-dose intratracheal administrations with small quantities of NPs are expected to improve the unevenness of each dose. The differences in local pulmonary NP distribution (called microdistribution) between single- and multiple-dose administrations may cause differential pulmonary responses; however, this has not been evaluated. Here, we quantitatively evaluated the pulmonary microdistribution (per mesh: 100 μm × 100 μm) of TiO2 in lung sections from rats following one, two, three, or four doses of TiO2 NPs at a same total dosage of 10 mg kg(-1) using X-ray fluorescence microscopy. The results indicate that: (i) multiple-dose administrations show lower variations in TiO2 content (ng mesh(-1) ) for sections of each lobe; (ii) TiO2 appears to be deposited more in the right caudal and accessory lobes located downstream of the administration direction of NP suspensions, and less so in the right middle lobes, irrespective of the number of doses; (iii) there are not prominent differences in the pattern of pulmonary TiO2 microdistribution between rats following single and multiple doses of TiO2 NPs. Additionally, the estimation of pulmonary TiO2 deposition for multiple-dose administrations imply that every dose of TiO2 would be randomly deposited only in part of the fixed 30-50% of lung areas. The evidence suggests that multiple-dose administrations do not offer remarkable advantages over single-dose administration on the pulmonary NP microdistribution, although multiple-dose administrations may reduce variations in the TiO2 content for each lung lobe. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26879685

  4. Fluorescent image tracking velocimeter

    DOEpatents

    Shaffer, Franklin D.

    1994-01-01

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  5. Flow cytometric fluorescence lifetime analysis of DNA binding fluorochromes

    SciTech Connect

    Crissman, Harry A.; Cui, H. H.; Steinkamp, J. A.

    2002-01-01

    Most flow cytometry (FCM) applications monitor fluorescence intensity to quantitate the various cellular parameters; however, the fluorescence emission also contains information relative to the fluorescence lifetime. Recent developments in FCM (Pinsky et al., 1993; Steinkamp & Crissman, 1993; Steinkamp et al., 1993), provide for the measurement of fluorescence lifetime which is also commonly referred to as fluorescence decay, or the time interval in which a fluorochrome remains in the excited state. Many unbound fluorochromes have characteristic lifetime values that are determined by their molecular structure; however, when the probe becomes bound, the lifetime value is influenced by a number of factors that affect the probe interaction with a target molecule. Monitoring the changes in the lifetime of the probe yields information relating to the molecular conformation, the functional state or activity of the molecular target. In addition, the lifetime values can be used as signatures to resolve the emissions of multiple fluorochrome labels with overlapping emission spectra that cannot be resolved by conventional FCM methodology. Such strategies can increase the number of fluorochrome combinations used in a flow cytometer with a single excitation source. Our studies demonstrate various applications of lifetime measurements for the analysis of the binding of different fluorochromes to DNA in single cells. Data presented in this session will show the utility of lifetime measurements for monitoring changes in chromatin structure associated with cell cycle progression, cellular differentiation, or DNA damage, such as induced during apoptosis. Several studies show that dyes with specificity for nucleic acids display different lifetime values when bound to DNA or to dsRNA. The Phase Sensitive Flow Cytometer is a multiparameter instrument, capable of performing lifetime measurements in conjunction with all the conventional FCM measurements. Future modifications of this

  6. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  7. Identification of a ring chromosome as a ring 8 using fluorescent in situ hybridization (FISH) in a child with multiple congenital anomalies

    SciTech Connect

    Butler, M.G.; Roback, E.W.; Allen, G.A.

    1995-07-03

    We read with interest the report by Melnyk and Dewald of a small supernumerary ring chromosome 8 identified by fluorescence in situ hybridization (FISH) in a child with developmental delay and minor anomalies. Although ring chromosomes resulting in loss of parts of chromosome 8 have been reported, Melnyk and Dewald reported the first small ring chromosome 8 diagnosed by FISH. Previously nonsatellited markers derived from chromosomes 1, 3, 6, 9, 11, 13-16, 18, 20, 21, and X have been identified using FISH. Their study illustrated the value of FISH techniques in identifying the chromosomal source of markers or rings.

  8. Fast fluorescence holographic microscopy

    PubMed Central

    Qin, Wan; Yang, Xiaoqi; Li, Yingying; Peng, Xiang; Qu, Xinghua; Yao, Hai; Gao, Bruce Z.

    2015-01-01

    FINCHSCOPE is a new technology of fluorescence holographic microscopy. It has been successfully applied to recording high-resolution three-dimensional fluorescence images of biological specimens without the need for scanning. In this study, we revealed and analyzed an intrinsic phenomenon, called ghost lens effect, on spatial light modulator which is the core element enabling the incoherent correlation in the FINCHSCOPE. The ghost lens effect can degrade the imaging quality by introducing multiple spherical waves with different focal lengths into the correlation and thus increasing the noise in the recorded holograms. PMID:25767693

  9. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging.

    PubMed

    Ughi, Giovanni J; Verjans, Johan; Fard, Ali M; Wang, Hao; Osborn, Eric; Hara, Tetsuya; Mauskapf, Adam; Jaffer, Farouc A; Tearney, Guillermo J

    2015-02-01

    Intravascular optical coherence tomography (IVOCT) is a well-established method for the high-resolution investigation of atherosclerosis in vivo. Intravascular near-infrared fluorescence (NIRF) imaging is a novel technique for the assessment of molecular processes associated with coronary artery disease. Integration of NIRF and IVOCT technology in a single catheter provides the capability to simultaneously obtain co-localized anatomical and molecular information from the artery wall. Since NIRF signal intensity attenuates as a function of imaging catheter distance to the vessel wall, the generation of quantitative NIRF data requires an accurate measurement of the vessel wall in IVOCT images. Given that dual modality, intravascular OCT-NIRF systems acquire data at a very high frame-rate (>100 frames/s), a high number of images per pullback need to be analyzed, making manual processing of OCT-NIRF data extremely time consuming. To overcome this limitation, we developed an algorithm for the automatic distance-correction of dual-modality OCT-NIRF images. We validated this method by comparing automatic to manual segmentation results in 180 in vivo images from six New Zealand White rabbit atherosclerotic after indocyanine-green injection. A high Dice similarity coefficient was found (0.97 ± 0.03) together with an average individual A-line error of 22 µm (i.e., approximately twice the axial resolution of IVOCT) and a processing time of 44 ms per image. In a similar manner, the algorithm was validated using 120 IVOCT clinical images from eight different in vivo pullbacks in human coronary arteries. The results suggest that the proposed algorithm enables fully automatic visualization of dual modality OCT-NIRF pullbacks, and provides an accurate and efficient calibration of NIRF data for quantification of the molecular agent in the atherosclerotic vessel wall. PMID:25341407

  10. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging

    PubMed Central

    Ughi, Giovanni J.; Verjans, Johan; Fard, Ali M.; Wang, Hao; Osborn, Eric; Hara, Tetsuya; Mauskapf, Adam; Jaffer, Farouc A.; Tearney, Guillermo J.

    2015-01-01

    Intravascular optical coherence tomography (IVOCT) is a well-established method for the high-resolution investigation of atherosclerosis in vivo. Intravascular near-infrared fluorescence (NIRF) imaging is a novel technique for the assessment of molecular processes associated with coronary artery disease. Integration of NIRF and IVOCT technology in a single catheter provides the capability to simultaneously obtain co-localized anatomical and molecular information from the artery wall. Since NIRF signal intensity attenuates as a function of imaging catheter distance to the vessel wall, the generation of quantitative NIRF data requires an accurate measurement of the vessel wall in IVOCT images. Given that dual modality, intravascular OCT-NIRF systems acquire data at a very high frame-rate (>100 frames/second), a high number of images per pullback need to be analyzed, making manual processing of OCT-NIRF data extremely time consuming. To overcome this limitation, we developed an algorithm for the automatic distance-correction of dual-modality OCT-NIRF images. We validated this method by comparing automatic to manual segmentation results in 180 in vivo images from 6 New Zealand White rabbit atherosclerotic after indocyanine-green (ICG) injection. A high Dice similarity coefficient was found (0.97 ± 0.03) together with an average individual A-line error of 22 μm (i.e., approximately twice the axial resolution of IVOCT) and a processing time of 44 ms per image. In a similar manner, the algorithm was validated using 120 IVOCT clinical images from 8 different in vivo pullbacks in human coronary arteries. The results suggest that the proposed algorithm enables fully automatic visualization of dual modality OCT-NIRF pullbacks, and provides an accurate and efficient calibration of NIRF data for quantification of the molecular agent in the atherosclerotic vessel wall. PMID:25341407

  11. Influence of fluorescent tag on the motility properties of kinesin-1 in single-molecule assays.

    PubMed

    Norris, Stephen R; Núñez, Marcos F; Verhey, Kristen J

    2015-03-10

    Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays. PMID:25762325

  12. Fluorescent sensors based on bacterial fusion proteins

    NASA Astrophysics Data System (ADS)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  13. Method of determining the optimal dilution ratio for fluorescence fingerprint of food constituents.

    PubMed

    Trivittayasil, Vipavee; Tsuta, Mizuki; Kokawa, Mito; Yoshimura, Masatoshi; Sugiyama, Junichi; Fujita, Kaori; Shibata, Mario

    2015-01-01

    Quantitative determination by fluorescence spectroscopy is possible because of the linear relationship between the intensity of emitted fluorescence and the fluorophore concentration. However, concentration quenching may cause the relationship to become nonlinear, and thus, the optimal dilution ratio has to be determined. In the case of fluorescence fingerprint (FF) measurement, fluorescence is measured under multiple wavelength conditions and a method of determining the optimal dilution ratio for multivariate data such as FFs has not been reported. In this study, the FFs of mixed solutions of tryptophan and epicatechin of different concentrations and composition ratios were measured. Principal component analysis was applied, and the resulting loading plots were found to contain useful information about each constituent. The optimal concentration ranges could be determined by identifying the linear region of the PC score plotted against total concentration. PMID:25485961

  14. Fluorescence dynamics of green fluorescent protein in AOT reversed micelles.

    PubMed

    Uskova, M A; Borst, J W; Hink, M A; van Hoek, A; Schots, A; Klyachko, N L; Visser, A J

    2000-09-15

    We have used the enhanced green fluorescent protein (EGFP) to investigate the properties of surfactant-entrapped water pools in organic solvents (reversed micelles) with steady-state and time-resolved fluorescence methods. The surfactant used was sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and the organic solvents were isooctane and (the more viscous) dodecane, respectively. The water content of the water pools could be controlled through the parameter w0, which is the water-to-surfactant molar ratio. With steady-state fluorescence, it was observed that subtle fluorescence changes could be noted in reversed micelles of different water contents. EGFP can be used as a pH-indicator of the water droplets in reversed micelles. Time-resolved fluorescence methods also revealed subtle changes in fluorescence decay times when the results in bulk water were compared with those in reversed micelles. The average fluorescence lifetimes of EGFP scaled with the relative fluorescence intensities. Time-resolved fluorescence anisotropy of EGFP in aqueous solution and reversed micelles yielded single rotational correlation times. Geometrical considerations could assign the observed correlation times to dehydrated protein at low w0 and internal EGFP rotation within the droplet at the highest w0. PMID:11036971

  15. Changes in the fluorescence composition of multiple DOM sources over pH gradients assessed by combining parallel factor analysis and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Cuss, C. W.; Shi, Y. X.; McConnell, S. M.; Guéguen, C.

    2014-09-01

    Dissolved organic matter is a ubiquitous constituent of natural waters that plays key roles in several important processes. The fluorescence properties of DOM have been linked to its functionality, but these properties may vary with pH. In this study Kohonen's self-organizing maps (SOMs) were applied to excitation-emission matrices (EEMs) of fresh dissolved organic matter (DOM) from three sources: senescent sugar-maple leaves and white spruce needles, and humified white spruce needles, over a pH range of ~4.5 - 12.5. SOMs were applied to raw EEMs, EEMs reduced in dimensionality by pre-processing using parallel factor analysis (PARAFAC), and PARAFAC loading proportions normalized to values at initial pH. Some separation of EEMs into source-based clusters was achieved in the SOM of raw EEMs, but commingling was apparent and evidence of changes over pH gradients was overshadowed. SOMs of PARAFAC component proportions demonstrated clear source-based clustering, and pH-based gradients were visible for DOM from senescent and humified spruce needles. Changes in optical properties were obvious over pH gradients in the SOM of components normalized to starting condition. Component proportions decreased to values as low as 5% of the initial values for microbial humic-like peak M and increased to as high as 278% for a humic-like component. Tyrosine-like fluorescence increased to 112% of initial over increasing pH in humified spruce leachates but decreased to as low as 45% in the other leachates. The combination of PARAFAC and SOM drastically enhanced visualization and interpretability of pH-induced changes in DOM compared to either method alone.

  16. Chromosome characterization using single fluorescent dye

    DOEpatents

    Crissman, Harry A.; Hirons, Gregory T.

    1995-01-01

    Chromosomes are characterized by fluorescent emissions from a single fluorescent dye that is excited over two different wavelengths. A mixture containing chromosomes is stained with a single dye selected from the group consisting of TOTO and YOYO and the stained chromosomes are placed in a flow cytometer. The fluorescent dye is excited sequentially by a first light having a wavelength in the ultraviolet range to excite the TOTO or YOYO to fluoresce at a first intensity and by a second light having a wavelength effective to excite the TOTO or YOYO dye to fluoresce at a second intensity. Specific chromosomes may be identified and sorted by intensity relationships between the first and second fluorescence emissions.

  17. Parent-child attitude congruence on type and intensity of physical activity: Testing multiple mediators of sedentary behavior in older children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined parent–child attitudes on value of specific types and intensities of physical activity, which may explain gender differences in child activity, and evaluated physical activity as a mechanism to reduce time spent in sedentary behaviors. A community sample of 681 parents and 433 ch...

  18. The influence of breeding intensity on above- and below-average sexual performance rams in single- and multiple-sire breeding environments.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two studies were conducted to evaluate the relationship between serving capacity scores and breeding performance of rams. The first study was conducted to determine whether rams with above or below mean serving capacity scores could perform equally in high and low breeding intensity, single-sire mat...

  19. The CREATE Strategy for Intensive Analysis of Primary Literature Can Be Used Effectively by Newly Trained Faculty to Produce Multiple Gains in Diverse Students

    ERIC Educational Resources Information Center

    Stevens, Leslie M.; Hoskins, Sally G.

    2014-01-01

    The CREATE (Consider Read, Elucidate the hypotheses, Analyze and interpret the data, and Think of the next Experiment) strategy aims to demystify scientific research and scientists while building critical thinking, reading/analytical skills, and improved science attitudes through intensive analysis of primary literature. CREATE was developed and…

  20. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  1. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  2. Laser-excited fluorescence for measuring atmospheric pollution

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1975-01-01

    System measures amount of given pollutant at specific location. Infrared laser aimed at location has wavelength that will cause molecules of pollutant to fluoresce. Detector separates fluorescence from other radiation and measures its intensity to indicate concentration of pollutant.

  3. [Synthesis and spectrum of novel pyrazoline fluorescent compounds].

    PubMed

    Liu, Qiu-Jun; Gao, Lei; Wang, Lei; Xie, Zhi-Yuan; Li, Dong-Feng

    2009-10-01

    Pyrazoline derivatives have been used widely in dyeing industry as fluorescent whitening agents due to their excellent capability. According to Schellhammer theory of the relation between chemical structure and fluorescent quality, six new fluorescent compounds were designed and synthesized which contained the benzothiazole group in the 1-pyrazoline, the indole group in the 3-pyrazoline and the derivatives of phenyl in the 5-pyrazoline. The structure of target compounds was confirmed by IR, 1H NMR, MS and elementary analysis. The fluorescence spectra showed that these compounds had good fluorescence. They could absorb ultraviolet light at near 353 nm. The fluorescence maximum emission wavelengths were about 430-443 nm. It was a kind of promising fluorescence compounds. The largest fluorescence emission wavelength and the fluorescence intensity were related to the substituted group of the compounds. When the 6-Br group was introduced into benzothiazole, the fluorescence emission wavelength exhibited a blue shift, and the fluorescence intensity increased. Otherwise, the CH3 group was introduced into benzothiazole, the fluorescence emission wavelength red-shift occurred, and the intensity was lower. The fluorescence quantum yield of the compounds was little affected by the substituted group and polarity of the solvent The relative fluorescence intensity and fluorescence quantum yield were not directly related. PMID:20038066

  4. Tightly-coupled plant-soil nitrogen cycling: Implications for multiple ecosystem services on organic farms across an intensively managed agricultural landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variability among farms across an agricultural landscape may reveal diverse biophysical contexts and experiences that show innovations and insights to improve nitrogen (N) cycling and yields, and thus the potential for multiple ecosystem services. In order to assess potential tradeoffs between yield...

  5. Osteoclastome-like giant cell thyroid carcinoma controlled by intensive radiation and adriamycin, in a patient with meningioma and multiple myeloma treated by radiation and cytoxan

    SciTech Connect

    Vizel-Schwartz, M.

    1981-01-01

    The eighth cases of osteoclastome-like giant cell carcinoma of the thyroid, and the first one to be treated with adriamycin in addition to surgery and radiation, is reported. This rare variant of anaplastic thyroid carcinoma appeared in a patient operated on for meningioma and treated for multiple myeloma with cranial radiation and chronic administration of cytoxan.

  6. 5-color multiplexed microwave-accelerated metal-enhanced fluorescence: detection and analysis of multiple DNA sequences from within one sample well within a few seconds.

    PubMed

    Dragan, Anatoliy; Geddes, Chris D

    2014-11-01

    We present a potentially highly sensitive and selective bio-assay for the potential detection of any five different DNA sequences from one sample in one well. The assay is based on a DNA "rapid catch and signal" (DNA-RCS) technology developed for the detection of different DNA sequences from a sample well area. Our signal amplification utilizes the metal-enhanced fluorescence (MEF) of dyes attached to the probe-DNAs, which hybridizes with the pre-formed mixture of anchor-DNA scaffolds on silver island films (SiFs). Low-power microwave irradiation accelerates both the formation of the anchor-DNA scaffold on the SiF-surface and anchor/probe DNA hybridization, i.e. "rapid catch" of target DNAs from a bulk solution, decreasing the assay run time from hours to only a few seconds. Localization of signaling dye-labels close to the SiFs make them extremely photostable, which allows for collecting/integrating the signal over a long time period. To demonstrate a 5 color DNA assay (5-plex) we have used a range of readily available Alexa™ dyes. Advantages and perspectives of the RCS-technologies ability to detect 5 different DNA sequences from within one plate-well are discussed. PMID:25263097

  7. Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline.

    PubMed

    Yang, Xiaoming; Zhu, Shanshan; Dou, Yao; Zhuo, Yan; Luo, Yawen; Feng, Yuanjiao

    2014-05-01

    Tetracycline and Eu(3+), while coexisting, usually appear as a complex by chelating. This complex shows low fluorescence intensity, leading to its limitation of analytical goals. Gold nanoclusters (AuNCs), emerging as novel nano-material, are attracting increasing attentions in multiple fields. Herein, gold nanoclusters first function as a fluorescence-enhanced reagent rather than a conventional fluorescent-probe, and a dramatic enhanced-fluorescence system was built based on Eu(3+)-Tetracycline complex (EuTC) by introducing gold nanoclusters. Simultaneously, three types of gold nanoclusters were employed for exploring various conditions likely affecting the system, which demonstrate that no other gold nanoclusters than DNA-templated gold nanoclusters enormously caused fluorescence-enhancement of EuTC. Moreover, this enhanced-fluorescence system permitted available detection of tetracycline (TC) in a linear range of 0.01-5 μM, with a detection limit of 4 nM at a signal-to-noise ratio of 3. Significantly, the practicality of this method for detection of TC in human urine and milk samples was validated, demonstrating its advantages of simplicity, sensitivity and low cost. Interestingly, this system described here is probably promising for kinds of applications based on its dramatically enhanced-fluorescence. PMID:24720959

  8. Overcoming compound fluorescence in the FLiK screening assay with red-shifted fluorophores.

    PubMed

    Schneider, Ralf; Gohla, Anne; Simard, Jeffrey R; Yadav, Dharmendra B; Fang, Zhizhou; van Otterlo, Willem A L; Rauh, Daniel

    2013-06-01

    In the attempt to discover novel chemical scaffolds that can modulate the activity of disease-associated enzymes, such as kinases, biochemical assays are usually deployed in high-throughput screenings. First-line assays, such as activity-based assays, often rely on fluorescent molecules by measuring a change in the total emission intensity, polarization state, or energy transfer to another fluorescent molecule. However, under certain conditions, intrinsic compound fluorescence can lead to difficult data analysis and to false-positive, as well as false-negative, hits. We have reported previously on a powerful direct binding assay called fluorescent labels in kinases ('FLiK'), which enables a sensitive measurement of conformational changes in kinases upon ligand binding. In this assay system, changes in the emission spectrum of the fluorophore acrylodan, induced by the binding of a ligand, are translated into a robust assay readout. However, under the excitation conditions of acrylodan, intrinsic compound fluorescence derived from highly conjugated compounds complicates data analysis. We therefore optimized this method by identifying novel fluorophores that excite in the far red, thereby avoiding compound fluorescence. With this advancement, even rigid compounds with multiple π-conjugated ring systems can now be measured reliably. This study was performed on three different kinase constructs with three different labeling sites, each undergoing distinct conformational changes upon ligand binding. It may therefore serve as a guideline for the establishment of novel fluorescence-based detection assays. PMID:23672540

  9. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.

    PubMed

    Burnette, Dylan T; Sengupta, Prabuddha; Dai, Yuhai; Lippincott-Schwartz, Jennifer; Kachar, Bechara

    2011-12-27

    Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes. PMID:22167805

  10. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  11. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  12. Quantum dot imaging in the second near-infrared optical window: studies on reflectance fluorescence imaging depths by effective fluence rate and multiple image acquisition

    NASA Astrophysics Data System (ADS)

    Jung, Yebin; Jeong, Sanghwa; Nayoun, Won; Ahn, Boeun; Kwag, Jungheon; Geol Kim, Sang; Kim, Sungjee

    2015-04-01

    Quantum dot (QD) imaging capability was investigated by the imaging depth at a near-infrared second optical window (SOW; 1000 to 1400 nm) using time-modulated pulsed laser excitations to control the effective fluence rate. Various media, such as liquid phantoms, tissues, and in vivo small animals, were used and the imaging depths were compared with our predicted values. The QD imaging depth under excitation of continuous 20 mW/cm2 laser was determined to be 10.3 mm for 2 wt% hemoglobin phantom medium and 5.85 mm for 1 wt% intralipid phantom, which were extended by more than two times on increasing the effective fluence rate to 2000 mW/cm2. Bovine liver and porcine skin tissues also showed similar enhancement in the contrast-to-noise ratio (CNR) values. A QD sample was inserted into the abdomen of a mouse. With a higher effective fluence rate, the CNR increased more than twofold and the QD sample became clearly visualized, which was completely undetectable under continuous excitation. Multiple acquisitions of QD images and averaging process pixel by pixel were performed to overcome the thermal noise issue of the detector in SOW, which yielded significant enhancement in the imaging capability, showing up to a 1.5 times increase in the CNR.

  13. Integrated fluorescence analysis system

    DOEpatents

    Buican, Tudor N.; Yoshida, Thomas M.

    1992-01-01

    An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

  14. Ultraviolet fluorescence monitor

    SciTech Connect

    Hargis, P.J. Jr.; Preppernau, B.L.; Aragon, B.P.

    1997-05-01

    A multispectral ultraviolet (UV) fluorescence imaging fluorometer and a pulsed molecular beam laser fluorometer were developed to detect volatile organic compounds of interest in environmental monitoring and drug interdiction applications. The UV fluorescence imaging fluorometer is a relatively simple instrument which uses multiple excitation wavelengths to measure the excitation/emission matrix for irradiated samples. Detection limits in the high part-per-million to low part-per-million range were measured for a number of volatile organic vapors in the atmosphere. Detection limits in the low part-per-million range were obtained using cryogenic cooling to pre-concentrate unknown samples before introducing them into the imaging fluorometer. A multivariate analysis algorithm was developed to analyze the excitation/emission matrix and used to determine the relative concentrations of species in computer synthesized mixtures containing up to five organic compounds. Analysis results demonstrated the utility of multispectral UV fluorescence in analytical measurements. A transportable UV fluorescence imaging fluorometer was used in two field tests. Field test results demonstrated that detection limits in the part-per-billion range were needed to reliably identify volatile organic compounds in realistic field test measurements. The molecular beam laser fluorometer, a more complex instrument with detection limits in the part-per-billion to part-per-trillion range, was therefore developed to satisfy detection sensitivity requirements for field test measurements. High-resolution spectroscopic measurements made with the molecular beam laser fluorometer demonstrated its utility in identifying volatile organic compounds in the atmosphere.

  15. Fluorescence Imaging in Surgery

    PubMed Central

    Orosco, Ryan K.; Tsien, Roger Y.; Nguyen, Quyen T.

    2013-01-01

    Although the modern surgical era is highlighted by multiple technological advances and innovations, one area that has remained constant is the dependence of the surgeon's vision on white-light reflectance. This renders different body tissues in a limited palette of various shades of pink and red, thereby limiting the visual contrast available to the operating surgeon. Healthy tissue, anatomic variations, and diseased states are seen as slight discolorations relative to each other and differences are inherently limited in dynamic range. In the upcoming years, surgery will undergo a paradigm shift with the use of targeted fluorescence imaging probes aimed at augmenting the surgical armamentarium by expanding the “visible” spectrum available to surgeons. Such fluorescent “smart probes” will provide real-time, intraoperative, pseudo-color, high-contrast delineation of both normal and pathologic tissues. Fluorescent surgical molecular guidance promises another major leap forward to improve patient safety and clinical outcomes, and to reduce overall healthcare costs. This review provides an overview of current and future surgical applications of fluorescence imaging in diseased and nondiseased tissues and focus on the innovative fields of image processing and instrumentation. PMID:23335674

  16. Quantitative approach of speleothems fluorescence

    NASA Astrophysics Data System (ADS)

    Quiers, Marine; Perrette, Yves; Poulenard, Jérôme; Chalmin, Emilie; Revol, Morgane

    2014-05-01

    In this study, we propose a framework to interpret quantitatively the fluorescence of speleothems organic matter (OM) by the way of a bank of water-extracted organic matter. Due to its efficiency to described dissolved organic matter (DOM) characteritics, fluorescence has been used to determined DOM signatures in natural systems, water circulations, OM transfer from soils, OM evolution in soils or recently, DOM changes in engineered treatment systems. Fluorescence has also been used in speleothems studies, mainly as a growth indicator. Only few studies interpret it as an environmental proxy. Indeed, the fluorescence of OM provides information on the type of organic molecules trapped in speleothems and their evolutions. But the most direct information given by fluorescence is the variation of OM quantities. Actually, increase of fluorescence intensity is generally related to an increase in OM quantity but may also be induced by calcite optical effect or qualitative change of OM. However, analytical technics used in water environments cannot be used for speleothem samples. In this study we propose to give a frame to interpret quantitatively the fluorescence signal of speleothems. 3 different samples of stalagmites from french northern Prealps were used. To allow the quantification of the fluorescence signal, we need to measure the fluorescence and the quantity of organic matter on the same sample. OM of speleothems was extracted by an acid digestion method and analysed with a spectrofluorimeter. However, it was not possible to quantify directly the OM, as the extract solvant was a high-concentrated acid. To solve this problem, a calibration using soil extracts was realised. Soils were chosen in order to represent the diversity of OM present in the environment above the caves. Attention was focused on soil and vegetation types, and landuse. Organic material was water extracted from soils and its fluorescence was also measured. Total organic carbon was performed on the

  17. Measurement of event-by-event transverse momentum and multiplicity fluctuations using strongly intensive measures Δ [PT,N ] and Σ [PT,N ] in nucleus-nucleus collisions at the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Anticic, T.; Baatar, B.; Bartke, J.; Beck, H.; Betev, L.; Białkowska, H.; Blume, C.; Boimska, B.; Book, J.; Botje, M.; Bunčić, P.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gaździcki, M.; Grebieszkow, K.; Höhne, C.; Kadija, K.; Karev, A.; Kolesnikov, V.; Kowalski, M.; Kresan, D.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Maćkowiak-Pawłowska, M.; Makariev, M.; Malakhov, A.; Melkumov, G.; Mitrovski, M.; Mrówczyński, S.; Pálla, G.; Panagiotou, A.; Pluta, J.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczyński, M.; Rybicki, A.; Sandoval, A.; Rustamov, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Skrzypczak, E.; Słodkowski, M.; Stefanek, G.; Stock, R.; Ströbele, H.; Susa, T.; Szuba, M.; Varga, D.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Vranić, D.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; NA49 Collaboration

    2015-10-01

    Results from the NA49 experiment at the CERN Super Proton Synchrotron (SPS) are presented on event-by-event transverse momentum and multiplicity fluctuations of charged particles, produced at forward rapidities in central Pb + Pb interactions at beam momenta 20 A , 30 A , 40 A , 80 A , and 158 A GeV/c, as well as in systems of different sizes (p +p , C + C, Si + Si, and Pb + Pb) at 158 A GeV/c. This publication extends the previous NA49 measurements of the strongly intensive measure Φp T by a study of the recently proposed strongly intensive measures of fluctuations Δ [PT,N ] and Σ [PT,N ] . In the explored kinematic region transverse momentum and multiplicity fluctuations show no significant energy dependence in the SPS energy range. However, a remarkable system size dependence is observed for both Δ [PT,N ] and Σ [PT,N ] , with the largest values measured in peripheral Pb + Pb interactions. The results are compared with NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) measurements in p +p collisions, as well as with predictions of The Ultrarelativistic Quantum Molecular Dynamics and EPOS models.

  18. LIMITATIONS OF THE FLUORESCENT PROBE VIABILITY ASSAY

    EPA Science Inventory

    Cell viability commonly is determined flow cytometrically by the carboxyfluorescein diacetate (CFDA)/propidium iodide (PI) assay. FDA is taken up by the viable cell and converted via cytoplasmic esterase-catalyzed hydrolysis to carboxyfluorescein (CF). F fluorescence intensity is...

  19. Effects of collisions on uranium hexafluoride fluorescence

    NASA Astrophysics Data System (ADS)

    Menghini, M.; Montone, A.; Morales, P.; Nencini, L.; Dore, P.

    1988-09-01

    Laser-induced fluorescence intensities and quenching are used to probe collisional relaxation of UF 6. Buffer gases used are rare gases, N 2, O 2, CO 2, N 2O, SO 2, SiF 4 and SF 6. Energy transfer associated with anisotropic interactions is important in determining the UF 6 fluorescence quenching.

  20. Studying Photosynthesis by Measuring Fluorescence

    ERIC Educational Resources Information Center

    Sanchez, Jose Francisco; Quiles, Maria Jose

    2006-01-01

    This paper describes an easy experiment to study the absorption and action spectrum of photosynthesis, as well as the inhibition by heat, high light intensity and the presence of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the photosynthetic process. The method involves measuring the chlorophyll fluorescence emitted by intact…

  1. SU-E-T-450: Dosimetric Impact of Rotational Error On Multiple-Target Intensity-Modulated Radiosurgery (IMRS) with Single-Isocenter

    SciTech Connect

    Jang, S; Huq, M

    2014-06-01

    Purpose: Evaluating the dosimetric-impact on multiple-targets placed away from the isocenter-target with varying rotational-error introduced by initial setup uncertainty and/or intrafractional-movement Methods: CyberKnife-Phantom was scanned with the Intracranial SRS-protocol of 1.25mm slice-thickness and the multiple-targets(GTV) of 1mm and 10mm in diameter were contoured on the Eclipse. PTV for distal-target only was drawn with 1mm expansion around the GTV to find out how much margin is needed to compensate for the rotational-error. The separation between the isocenter-target and distal-target was varied from 3cm to 7cm. RapidArc-based IMRS plans of 16Gy single-fraction were generated with five non-coplanar arcs by using Varian TrueBeam-STx equipped with high resolution MLC leaves of 2.5mm at center and with dose-rate of 1400MU/min at 6MV for flatteringfilter- free(FFF). An identical CT image with intentionally introduced 1° rotational-error was registered with the planning CT image, and the isodose distribution and Dose-Volume-Histogram(DVH) were compared with the original plans. Additionally, the dosimetric-impact of rotational error was evaluated with that of 6X photon energy which was generated with the same target-coverage. Results: For the 1mm-target with 6X-FFF, PTV-coverage(D100) of the distal-target with 1° rotational-error decreased from 1.00 to 0.35 as the separation between isocenter-target and distal-target increased from 3cm to 7cm. However, GTV-coverage(D100) was 1.0 except that of 7cm-separation(0.55), which resulted from the 1mm-margin around the distal-target. For 6X photon, GTV-coverage remained at 1.0 regardless of the separation of targets, showing that the dosimetric-impact of rotational error depends on the degree of rotational-error, separation of targets, and dose distribution around targets. For 10mm-target, PTV-coverage of distaltarget located 3cm-away was better than that of 1mm-target(0.93 versus 0.7) and GTV-coverage was 1

  2. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence

    PubMed Central

    Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T.

    2013-01-01

    Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers. PMID:23624689

  3. Fluorescence analyzer for lignin

    DOEpatents

    Berthold, John W.; Malito, Michael L.; Jeffers, Larry

    1993-01-01

    A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

  4. Metal enhanced fluorescence with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mattingly, Shaina LaRissa Strating

    A novel hybrid nanocomposite of Au nanoparticle-modified silicon nanowire was developed for surface enhanced fluorescence applications. The designed nanocomposite contained a silicon nanowire, gold nanoparticles and a silica layer doped with dye molecules. The hybrid nanomaterial was characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), fluorescence measurements, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results showed that the gold nanoparticles were uniformly adhered on the silicon nanowires and covered by a thin silica layer. The nanostructure exhibited strong capacity for surface enhanced fluorescence. Different enhancement factors were obtained by changing synthetic conditions. The second goal of the project was to determine if the shape of gold nanoparticles affects the extent of its fluorescence enhancement under constant external factors. Two shapes of gold nanoparticles were synthesized and characterized by SEM, STEM, zeta potential and absorbance measurements. Then they were coated with fluorescent dye-doped silica and the fluorescence intensity was measured and compared to the pure fluorescent dye. Gold nanorods enhanced fluorescence more than gold nanostars and that the fluorescent dye Alexafluor 700 showed a greater fluorescence intensity change in the presence of nanoparticles than methylene blue.

  5. VTD is superior to VCD prior to intensive therapy in multiple myeloma: results of the prospective IFM2013-04 trial.

    PubMed

    Moreau, Philippe; Hulin, Cyrille; Macro, Margaret; Caillot, Denis; Chaleteix, Carine; Roussel, Murielle; Garderet, Laurent; Royer, Bruno; Brechignac, Sabine; Tiab, Mourad; Puyade, Mathieu; Escoffre, Martine; Stoppa, Anne-Marie; Facon, Thierry; Pegourie, Brigitte; Chaoui, Driss; Jaccard, Arnaud; Slama, Borhane; Marit, Gerald; Laribi, Karim; Godmer, Pascal; Luycx, Odile; Eisenmann, Jean-Claude; Allangba, Olivier; Dib, Mamoun; Araujo, Carla; Fontan, Jean; Belhadj, Karim; Wetterwald, Marc; Dorvaux, Véronique; Fermand, Jean-Paul; Rodon, Philippe; Kolb, Brigitte; Glaisner, Sylvie; Malfuson, Jean-Valere; Lenain, Pascal; Biron, Laetitia; Planche, Lucie; Caillon, Helene; Avet-Loiseau, Herve; Dejoie, Thomas; Attal, Michel

    2016-05-26

    The Intergroupe Francophone du Myélome conducted a randomized trial to compare bortezomib-thalidomide-dexamethasone (VTD) with bortezomib-cyclophosphamide-dexamethasone (VCD) as induction before high-dose therapy and autologous stem cell transplantation (ASCT) in patients with newly diagnosed multiple myeloma. Overall, a total of 340 patients were centrally randomly assigned to receive VTD or VCD. After 4 cycles, on an intent-to-treat basis, 66.3% of the patients in the VTD arm achieved at least a very good partial response (primary end point) vs 56.2% in the VCD arm (P = .05). In addition, the overall response rate was significantly higher in the VTD arm (92.3% vs 83.4% in the VCD arm; P = .01). Hematologic toxicity was higher in the VCD arm, with significantly increased rates of grade 3 and 4 anemia, thrombocytopenia, and neutropenia. On the other hand, the rate of peripheral neuropathy (PN) was significantly higher in the VTD arm. With the exception of hematologic adverse events and PN, other grade 3 or 4 toxicities were rare, with no significant differences between the VTD and VCD arms. Our data support the preferential use of VTD rather than VCD in preparation for ASCT. This trial was registered at www.clinicaltrials.gov as #NCT01564537 and at EudraCT as #2013-003174-27. PMID:27002117

  6. Multicolor fluorescence enhancement from a photonics crystal surface

    PubMed Central

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-01-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ∼3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ=632.8 nm laser (cyanine-5) and a dye excited by a λ=532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays. PMID:20957067

  7. Multicolor fluorescence enhancement from a photonics crystal surface

    NASA Astrophysics Data System (ADS)

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-09-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ˜3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ =632.8 nm laser (cyanine-5) and a dye excited by a λ =532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays.

  8. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-06-01

    Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding.

  9. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  10. Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals–A Multifunctional Fluorescence-Based Sensor Platform

    PubMed Central

    Eftekhari, Ehsan; Li, Xiang; Kim, Tak H.; Gan, Zongsong; Cole, Ivan S.; Zhao, Dongyuan; Kielpinski, Dave; Gu, Min; Li, Qin

    2015-01-01

    Augmenting fluorescence intensity is of vital importance to the development of chemical and biochemical sensing, imaging and miniature light sources. Here we report an unprecedented fluorescence enhancement with a novel architecture of multilayer three-dimensional colloidal photonic crystals self-assembled from polystyrene spheres. The new technique uses a double heterostructure, which comprises a top and a bottom layer with a periodicity overlapping the excitation wavelength (E) of the emitters, and a middle layer with a periodicity matching the fluorescence wavelength (F) and a thickness that supports constructive interference for the excitation wavelength. This E-F-E double heterostructure displays direction-dependent light trapping for both excitation and fluorescence, coupling the modes of photonic crystal with multiple-beam interference. The E-F-E double heterostructure renders an additional 5-fold enhancement to the extraordinary FL amplification of Rhodamine B in monolithic E CPhCs, and 4.3-fold acceleration of emission dynamics. Such a self-assembled double heterostructue CPhCs may find significant applications in illumination, laser, chemical/biochemical sensing, and solar energy harvesting. We further demonstrate the multi-functionality of the E-F-E double heterostructure CPhCs in Hg (II) sensing. PMID:26400503

  11. Tissue damage within normal appearing white matter in early multiple sclerosis: assessment by the ratio of T1- and T2-weighted MR image intensity.

    PubMed

    Beer, A; Biberacher, V; Schmidt, P; Righart, R; Buck, D; Berthele, A; Kirschke, J; Zimmer, C; Hemmer, B; Mühlau, M

    2016-08-01

    Histopathological and magnetic resonance imaging (MRI) studies have shown white matter (WM) damage in early stages of multiple sclerosis (MS) beyond the apparent T2-hyperintense lesions. These changes in normal appearing WM (NAWM) are important with regard to the clinical picture and prognosis. However, the detection of changes within NAWM has so far required special imaging techniques commonly not available in clinical routine and, hence, at large scale. The purpose of this study was to detect MS-related damage of NAWM by conventional MRI. As, within NAWM, the myelin content mainly drives the T1-weighted (T1w) signal, we scaled it by the T2w signal. We tested the hypothesis that the mean T1w/T2w ratio of NAWM is decreased in MS compared to healthy controls (HC) and that it correlates with clinical measures. We developed a pipeline to determine the individual mean values of this ratio within NAWM. We studied 244 patients in early disease stages of MS (mean age 37 ± 10 years, mean disease duration 3.1 ± 2.3, Expanded Disability Status Scale 1.3 ± 1), and 78 HC (mean age 31 ± 8 years). Compared to HC, the mean T1w/T2w ratio was lowered in the patient group (P < 0.001). The difference remained significant after restricting the analysis to patients with a disease duration of 5 years or less and without disease modifying drugs. Our measures also correlated with clinical scores. We believe that the mean T1w/T2w ratio is a promising candidate to assess MS-related tissue damage within NAWM at large scale. PMID:27178000

  12. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  13. Assessment of Interfraction Patient Setup for Head-and-Neck Cancer Intensity Modulated Radiation Therapy Using Multiple Computed Tomography-Based Image Guidance

    SciTech Connect

    Qi, X. Sharon; Hu, Angie Y.; Lee, Steve P.; Lee, Percy; DeMarco, John; Li, X. Allen; Steinberg, Michael L.; Kupelian, Patrick; Low, Daniel

    2013-07-01

    Purpose: Various image guidance systems are commonly used in conjunction with intensity modulated radiation therapy (IMRT) in head-and-neck cancer irradiation. The purpose of this study was to assess interfraction patient setup variations for 3 computed tomography (CT)-based on-board image guided radiation therapy (IGRT) modalities. Methods and Materials: A total of 3302 CT scans for 117 patients, including 53 patients receiving megavoltage cone-beam CT (MVCBCT), 29 receiving kilovoltage cone-beam CT (KVCBCT), and 35 receiving megavoltage fan-beam CT (MVFBCT), were retrospectively analyzed. The daily variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. The clinical target volume-to-planned target volume (CTV-to-PTV) margins were calculated using 2.5Σ + 0.7 σ, where Σ and σ were systematic and random positioning errors, respectively. Various patient characteristics for the MVCBCT group, including weight, weight loss, tumor location, and initial body mass index, were analyzed to determine their possible correlation with daily patient setup. Results: The average interfraction displacements (± standard deviation) in the ML, CC, and AP directions were 0.5 ± 1.5, −0.3 ± 2.0, and 0.3 ± 1.7 mm (KVCBCT); 0.2 ± 1.9, −0.2 ± 2.4, and 0.0 ± 1.7 mm (MVFBCT); and 0.0 ± 1.8, 0.5 ± 1.7, and 0.8 ± 3.0 mm (MVCBCT). The day-to-day random errors for KVCBCT, MVFBCT, and MVCBCT were 1.4-1.6, 1.7, and 2.0-2.1 mm. The interobserver variations were 0.8, 1.1, and 0.7 mm (MVCBCT); 0.5, 0.4, and 0.8 mm (MVFBCT); and 0.5, 0.4, and 0.6 mm (KVCBCT) in the ML, CC, and AP directions, respectively. The maximal calculated uniform CTV-to-PTV margins were 5.6, 6.9, and 8.9 mm for KVCBCT, MVFBCT, and MVCBCT, respectively. For the evaluated patient characteristics, the calculated margins for different patient parameters appeared to differ; analysis of variance (ANOVA) and/or t test analysis found no statistically significant setup

  14. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions.

    PubMed

    Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-09-01

    Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis. PMID:25144824

  15. Quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging method optimized for analysis of multicolor microarrays.

    PubMed

    Liu, Zhiyi; Ma, Suihua; Ji, Yanhong; Liu, Le; Hu, Zhaoxu; Guo, Jihua; Ma, Hui; He, Yonghong

    2010-09-15

    The microarray technique, which can provide parallel detection with high throughput in biomedical research, has generated considerable interest since the end of the 20th century. A number of instruments have been reported for microarray detection. In this paper, we have developed a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for multicolor microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. When coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. This system is improved with a specifically designed, high performance spectrometer which can offer a spectral resolution of 0.2 nm and operates with spatial resolutions ranging from 2 to 30 μm. We demonstrate the application of the system by reading out arrays for identification of bacteria. PMID:20718427

  16. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery

    PubMed Central

    Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.

    2015-01-01

    The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI

  17. Effects of scattering and absorbing medium in the fluorescence conversion efficiency of physical tissue models

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Sujatha, N.

    2015-03-01

    Auto-fluorescence spectroscopy based on spectral line shape and intensity has been in use as a promising technique for detecting varying degrees of tissue malignancy. Tissue is a turbid medium with multi-layered structure constituting of different fluorophores, absorbers and scattering molecules. Tumor progression in tissues is ac- companied by varying degrees of biochemical and morphological changes. These include changes in nuclear size and density, epithelial thickness and increase in the hemoglobin (Hb) concentration associated with changes in metabolic activity. These variations in overall tissue scattering and absorption properties in turn modulate the fluorescence spectrum emitted and derived from tissues. Estimation of fluorescence conversion efficiency in the turbid tissue needs to take into account these effects of absorption and scattering in order to be evolved as a parameter for tissue discrimination. In this study, we set to investigate the factors affecting tissue fluorescence conversion efficiency by making use of physical models of the tissue. Liquid tissue models were prepared with different concentrations of absorbing and scattering media to simulate biological tissues of various degrees of malignancy. The results indicate that emitted fluorescence from the tissue model is subjected to variations by multiple scattering events and absorption. The fluorescence conversion efficiency of the models were derived and correlated to the experimental results with possible diagnostic significance.

  18. Fluorescent properties of low-molecular-weight fractions from chernozem humic acids

    NASA Astrophysics Data System (ADS)

    Trubetskoi, O. A.; Demin, D. V.; Trubetskaya, O. E.

    2013-10-01

    The polyacrylamide gel electrophoresis of chernozem humic acids (HAs) followed by ultraviolet detection (λ = 312 nm) has revealed a new highly fluorescent fraction that has the highest electrophoretic mobility and the lowest nominal molecular weight (NMW). The preparative isolation of the fraction has been performed using the multiple microfiltration of the same HA sample in a 7 M carbamide solution on a membrane with a nominal pore size of 5 kDa. Thirty ultrafiltrates with NMW < 5 kDa and different fluorescence maximums in the region of 475-505 nm have been prepared, as well as a nonfluorescent concentrate with NMW > 5 kDa. Fluorescence maximums at and below 490 nm have been noted only in the first four ultrafiltrates. All the ultrafiltrates have been combined into the fraction with NMW < 5 kDa, which has been successively passed through membranes of 3 and 1 kDa. Solutions of subfractions F 3-5 kDa, F 1-3 kDa, and F < 1 kDa with fluorescence maximums at 505, 488, and 465 nm, respectively, have been prepared. The F < 1 kDa subfraction with the lowest NMW had the highest fluorescence intensity. The distribution of the fluorescence maximums in the ultrafiltrates has indicated the presence of at least two groups of fluorophores and has confirmed the supramolecular organization of the extracted soil HAs.

  19. Hydrogen-Bond and Supramolecular-Contact Mediated Fluorescence Enhancement of Electrochromic Azomethines.

    PubMed

    Wałęsa-Chorab, Monika; Tremblay, Marie-Hélène; Skene, William G

    2016-08-01

    An electronic push-pull fluorophore consisting of an intrinsically fluorescent central fluorene capped with two diaminophenyl groups was prepared. An aminothiophene was conjugated to the two flanking diphenylamines through a fluorescent quenching azomethine bond. X-ray crystallographic analysis confirmed that the fluorophore formed multiple intermolecular supramolecular bonds. It formed two hydrogen bonds involving a terminal amine, resulting in an antiparallel supramolecular dimer. Hydrogen bonding was also confirmed by FTIR and NMR spectroscopic analyses, and further validated theoretically by DFT calculations. Intrinsic fluorescence quenching modes could be reduced by intermolecular supramolecular contacts. These contacts could be engaged at high concentrations and in thin films, resulting in fluorescence enhancement. The fluorescence of the fluorophore could also be restored to an intensity similar to its azomethine-free counterpart with the addition of water in >50 % v/v in tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and acetonitrile. The fluorophore also exhibited reversible oxidation and its color could be switched between yellow and blue when oxidized. Reversible electrochemically mediated fluorescence turn-off on turn-on was also possible. PMID:27388588

  20. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    NASA Astrophysics Data System (ADS)

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-11-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5-10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications.

  1. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    PubMed Central

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-01-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5–10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications. PMID:25430092

  2. Relaxed Intensity

    ERIC Educational Resources Information Center

    Ramey, Kyle

    2004-01-01

    Relaxed intensity refers to a professional philosophy, demeanor, and way of life. It is the key to being an effective educational leader. To be successful one must be relaxed, which means managing stress efficiently, having fun, and enjoying work. Intensity allows one to get the job done and accomplish certain tasks or goals. Educational leaders…

  3. A single fluorophore to address multiple logic gates.

    PubMed

    Sahu, Saugata; Sil, Timir Baran; Das, Minati; Krishnamoorthy, G

    2015-09-01

    Logic gates with different radixes have been constructed using a biologically active molecule, 2-(4'-N,N-dimethylaminophenyl)imidazo[4,5-b]pyridine (DMAPIP-b). Taking advantage of the multiple binding sites of the fluorophore, a series of different molecular logic gates are developed using fluorescence intensities at different wavelengths. The high emission of the molecule is drastically quenched in the presence of Fe(3+). It is regained by the addition of an equivalent amount of F(-). The fluorescence On-Off nature has been used to construct molecular full subtractor and molecular keypad lock system with Boolean logic. A ternary system is generated by considering three defined fluorescence intensities at particular wavelengths. The smooth dependency of emission intensities with analyte concentration is utilized to construct an infinite-valued fuzzy logic system. The fuzzy logic system is further coupled with a neuro-adaptation method to predict more accurately the dependency of molecular intensity on external inputs. PMID:26215476

  4. Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope.

    PubMed

    Ohsugi, Yu; Kinjo, Masataka

    2009-01-01

    We report simultaneous determination of diffusion coefficients at different points of a cell membrane using a multipoint fluorescence correlation spectroscopy (FCS) system. A system carrying seven detection areas in the evanescent field is achieved by using seven optical fibers on the image plane in the detection port of an objective-type total internal reflection FCS (TIR-FCS) system. Fluctuation of fluorescence intensity is monitored and evaluated using seven photomultiplier tubes (PMTs) and a newly constructed multichannel correlator. We demonstrate simultaneous-multipoint FCS, with a 3-mus time resolution, to investigate heterogeneous structures such as cell membranes and membrane-binding molecular dynamics near glass surfaces in live cells. PMID:19256718

  5. Biochemical Applications Of 3-Dimensional Fluorescence Spectrometry

    NASA Astrophysics Data System (ADS)

    Leiner, Marc J.; Wolfbeis, Otto S.

    1988-06-01

    We investigated the 3-dimensional fluorescence of complex mixtures of bioloquids such as human serum, serum ultrafiltrate, human urine, and human plasma low density lipoproteins. The total fluorescence of human serum can be divided into a few peaks. When comparing fluorescence topograms of sera, from normal and cancerous subjects, we found significant differences in tryptophan fluorescence. Although the total fluorescence of human urine can be resolved into 3-5 distinct peaks, some of them. do not result from single fluorescent urinary metabolites, but rather from. several species having similar spectral properties. Human plasma, low density lipoproteins possess a native fluorescence that changes when submitted to in-vitro autoxidation. The 3-dimensional fluorescence demonstrated the presence of 7 fluorophores in the lipid domain, and 6 fluorophores in the protein. dovain- The above results demonstrated that 3-dimensional fluorescence can resolve the spectral properties of complex ,lxtures much better than other methods. Moreover, other parameters than excitation and emission wavelength and intensity (for instance fluorescence lifetime, polarization, or quenchability) may be exploited to give a multidl,ensio,a1 matrix, that is unique for each sample. Consequently, 3-dimensio:Hhal fluorescence as such, or in combination with separation techniques is therefore considered to have the potential of becoming a useful new H.ethod in clinical chemistry and analytical biochemistry.

  6. Monitoring dynamic systems with multiparameter fluorescence imaging.

    PubMed

    Kudryavtsev, Volodymyr; Felekyan, Suren; Woźniak, Anna K; König, Marcelle; Sandhagen, Carl; Kühnemuth, Ralf; Seidel, Claus A M; Oesterhelt, Filipp

    2007-01-01

    A new general strategy based on the use of multiparameter fluorescence detection (MFD) to register and quantitatively analyse fluorescence images is introduced. Multiparameter fluorescence imaging (MFDi) uses pulsed excitation, time-correlated single-photon counting and a special pixel clock to simultaneously monitor the changes in the eight-dimensional fluorescence information (fundamental anisotropy, fluorescence lifetime, fluorescence intensity, time, excitation spectrum, fluorescence spectrum, fluorescence quantum yield, distance between fluorophores) in real time. The three spatial coordinates are also stored. The most statistically efficient techniques known from single-molecule spectroscopy are used to estimate fluorescence parameters of interest for all pixels, not just for the regions of interest. Their statistical significance is judged from a stack of two-dimensional histograms. In this way, specific pixels can be selected for subsequent pixel-based subensemble analysis in order to improve the statistical accuracy of the parameters estimated. MFDi avoids the need for sequential measurements, because the registered data allow one to perform many analysis techniques, such as fluorescence-intensity distribution analysis (FIDA) and fluorescence correlation spectroscopy (FCS), in an off-line mode. The limitations of FCS for counting molecules and monitoring dynamics are discussed. To demonstrate the ability of our technique, we analysed two systems: (i) interactions of the fluorescent dye Rhodamine 110 inside and outside of a glutathione sepharose bead, and (ii) microtubule dynamics in live yeast cells of Schizosaccharomyces pombe using a fusion protein of Green Fluorescent Protein (GFP) with Minichromosome Altered Loss Protein 3 (Mal3), which is involved in the dynamic cycle of polymerising and depolymerising microtubules. PMID:17160654

  7. Spectral line discriminator for passive detection of fluorescence

    NASA Technical Reports Server (NTRS)

    Kebabian, Paul L. (Inventor)

    1996-01-01

    A method and apparatus for detecting fluorescence from sunlit plants is based on spectral line discrimination using the A-band and B-band absorption of atmospheric oxygen. Light from a plant including scattered sunlight and the fluorescence from chlorophyll is passed through a chopper into a cell containing low-pressure, high-purity oxygen. A-band or B-band wavelengths present in the light are absorbed by the oxygen in the cell. When the chopper is closed, the absorbed light is remitted as fluorescence into a detector. The intensity of the fluorescence from the oxygen is proportional to the intensity of fluorescence from the plant.

  8. Fluorescence from polystyrene - Photochemical processes in polymeric systems, 7

    NASA Technical Reports Server (NTRS)

    Gupta, M. C.; Gupta, A.

    1983-01-01

    Results are presented for measurements of the fluorescence spectra of polystyrene in dilute solution and in pure solid films. It is determined that a major potential source of experimental error is the concurrent photooxidative degradation in air which may obscure fluorescence emission from monomeric sites in solid films at 25 C. The fluorescence spectra of oriented films are evaluated in terms of the monomer to excimer fluorescence intensity ratio and the excimer 'red shift'. The monomer to excimer fluorescence intensity ratio is determined to be significantly higher in fluid solution than in solid film.

  9. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider

  10. Multichromophoric sugar for fluorescence photoswitching

    PubMed Central

    Maisonneuve, Stéphane; Yu, Pei; Nakatani, Keitaro

    2014-01-01

    Summary A multichromophoric glucopyranoside 2 bearing three dicyanomethylenepyran (DCM) fluorophores and one diarylethene (DAE) photochrome has been prepared by Cu(I)-catalyzed alkyne–azide cycloaddition reaction. The fluorescence of 2 was switched off upon UV irradiation, in proportion with the open to closed form (OF to CF) conversion extent of the DAE moiety. A nearly 100% Förster-type resonance energy transfer (FRET) from all three DCM moieties to a single DAE (in its CF) moiety was achieved. Upon visible irradiation, the initial fluorescence intensity was recovered. The observed photoswiching is reversible, with excellent photo resistance. PMID:24991302

  11. Multiparameter single-molecule fluorescence measurements of DNA intercalating fluorophores

    NASA Astrophysics Data System (ADS)

    Bowen, Benjamin P.; Enderlein, Jorg; Woodbury, Neal W. T.

    2003-06-01

    Experiments using single-molecules of TOTO-1 intercalated into dsDNA were performed to investigate the DNA sequence dependence on the fluorescence detectable with single-molecule fluorescence spectroscopy. Previous work has shown that there is a difference in the fluorescence lifetime when TOTO-1 is intercalated in poly-AT DNA or in poly-GC DNA. The fluorescence detected from single-molecules in this work for poly-GC and poly-AT DNA showed fluorescence lifetimes of 2.1 and 1.8 nsec, respectively. Analysis of the fluorescence intensity detected from single-molecules of TOTO-1 was performed by fluorescence cross-correlation spectroscopy. TOTO-1 is shown to spend large amounts of time in dark states. These dark states reduce the detectable fluorescence intensity to approximately 10 photons per millisecond on average.

  12. Multiphoton excitation fluorescence correlation spectroscopy of fluorescent DNA base analogs

    NASA Astrophysics Data System (ADS)

    Katilius, Evaldas; Woodbury, Neal W.

    2004-06-01

    Two- and three-photon excitation was used to investigate the properties of two fluorescent DNA base analogs: 2-aminopurine and 6-methylisoxanthopterin. 2-aminopurine is a widely used fluorescent analog of the DNA base adenine. Three-photon excitation of 2-aminopurine is achievable by using intense femtosecond laser pulses in 850-950 nm spectral region. Interestingly, the three-photon excitation spectrum is blue-shifted relative to the three-times-wavelength single-photon excitation spectrum. The maximum of the absorbance band in the UV is at 305 nm, while the three-photon excitation spectrum has a maximum at around 880 nm. Fluorescence correlation measurements were attempted to evaluate the feasibility of using three-photon excitation of 2-aminopurine for DNA-protein interaction studies. However, due to relatively small three-photon absorption cross-section, a good signal-to-noise fluorescence correlation curves take very long time to obtain. Fluorescence properties of 6-methylisoxanthopterin, the fluorescent analog of guanine, were investigated using two-photon excitation. This molecule has the lowest energy absorption band centered around 350 nm, thus, two-photon excitation is attainable using 700 to 760 nm output of Ti-sapphire laser. The excitation spectrum of this molecule in the infrared well matches the doubled-wavelength single-photon excitation spectrum in the UV. The high fluorescence quantum yield of 6-methylisoxanthopterin allows efficient fluorescence correlation measurements and makes this molecule a very good candidate for using in in vitro DNA-protein interaction studies.

  13. CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction

    NASA Astrophysics Data System (ADS)

    Munro, Troy; Liu, Liwang; Glorieux, Christ; Ban, Heng

    2016-06-01

    As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the sensor contacts, thermal characterization by means of contact temperature measurements becomes cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable relationship between the temperature and the detected signal is available. In this work, exploiting the temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural networks that use different spectral shape characteristics as inputs (peak-based—peak intensity, peak wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from neural networks trained on fluorescence spectra acquired in steady state temperature conditions, numerical simulations are performed to assess the quality of the reconstruction of dynamical temperature changes that are photothermally induced by illuminating the fiber with periodically intensity-modulated light. Comparison of the five neural networks investigated to multiple types of curve fits showed that using neural networks trained on a combination of the spectral characteristics improves the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that included both intensity-based measurements (peak intensity) and shape-based measurements (normalized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation based on experimental observations. The implications are that quantum dots can be used as a more stable and accurate fluorescence thermometer for solid materials and that use of

  14. A comparative study of fluorescence in malignant melanoma and nevocellular nevus using a fluorescence microscope and formalin-fixed specimens.

    PubMed

    Shukuwa, T; Nonaka, S; Yoshida, H

    1990-09-01

    Fluorescence in malignant melanoma cells was investigated. The specimens from 18 cases of malignant melanoma and 26 cases of nevocellular nevus, which were fixed with formalin and embedded in paraffin wax, were studied by the fluorescence microscopic method. On the fluorescence microscope, the malignant melanoma cells emitted intense fluorescence from the cytoplasm. The nevus cells with large amounts of melanin granules showed moderate fluorescence. The tumor cells of melanoma in situ and nevus cells with few melanin granules emitted little fluorescence. Not only malignant melanoma cells but also nevus cells in the formalin fixed specimens had various degrees of fluorescence. Many cases of malignant melanoma emitted intense fluorescence, but this was rarely found in nevocellular nevus. This method is also useful in differentiating melanoma from nevocellular nevus. PMID:2277143

  15. Photon Antibunching in Complex Intermolecular Fluorescence Quenching Kinetics.

    PubMed

    Sharma, Arjun; Enderlein, Jörg; Kumbhakar, Manoj

    2016-08-18

    We present a novel fluorescence spectroscopic method, which combines fluorescence antibunching, time-correlated single-photon counting (TCSPC), and steady-state emission spectroscopy, to study chemical reactions at the single molecule level. We exemplify our method on investigating intermolecular fluorescence quenching of Rhodamine110 by aniline. We demonstrate that the combination of measurements of fluorescence antibunching, fluorescence lifetime, and fluorescence steady state intensity, captures the full picture of the complex quenching kinetics, which involves static and dynamics quenching, and which cannot be seen by steady-state or lifetime measurements alone. PMID:27468007

  16. Sensing Metal Ions with DNA Building Blocks: Fluorescent Pyridobenzimidazole Nucleosides

    PubMed Central

    Kim, Su Jeong; Kool, Eric T.

    2008-01-01

    We describe novel fluorescent N-deoxyribosides (1 and 2) having 2-pyrido-2-benzimidazole and 2-quino-2-benzimidazole as aglycones. The compounds were prepared from the previously unknown heterocyclic precursors and Hoffer’s chlorosugar, yielding alpha anomers as the chief products. X-ray crystal structures confirmed the geometry, and showed that the pyridine and benzimidazole ring systems deviated from coplanarity in the solid state by 154° and 140°, respectively. In methanol the compounds 1 and 2 had absorption maxima at 360 and 370 nm respectively, and emission maxima at 494 and 539 nm. Experiments revealed varied fluorescence responses of the nucleosides to a panel of seventeen monovalent, divalent and trivalent metal ions in methanol. One or both of the nucleosides showed significant changes with ten of the metal ions. The most pronounced spectral changes for ligand-nucleoside 1 included red shifts in fluorescence (Au+, Au3+), strong quenching (Cu2+, Ni2+, Pt2+), and in substantial enhancements in emission intensity coupled with redshifts (Ag+, Cd2+, Zn2+). The greatest spectral changes for ligand-nucleoside 2 included a redshift in fluorescence (Ag+), a blueshift (Cd2+), strong quenching (Pd2+, Pt2+), and in substantial enhancements in emission intensity coupled with a blueshift (Zn2+). The compounds could be readily incorporated into oligodeoxynucleotides, where an initial study revealed that they retained sensitivity to metal ions in aqueous solution, and demonstrated possible cooperative sensing behavior with several ions. The two free nucleosides alone can act as differential sensors for at multiple metal ions, and they are potentially useful monomers for contributing metal ion sensing capability to DNAs. PMID:16669686

  17. Real-time fluorescence microscopy monitoring of porphyrin biodistribution

    NASA Astrophysics Data System (ADS)

    Kimel, Sol; Gottfried, Varda; Kunzi-Rapp, Karin; Akguen, Nermin; Schneckenburger, Herbert

    1996-01-01

    In vivo uptake of the natural porphyrins, uroporphyrin III (UP), coproporphyrin III (CP) and protoporphyrin IX (PP), was monitored by fluorescence microscopy. Experiments were performed using the chick chorioallantoic membrane (CAM) model, which allowed video documentation of fluorescence both in real time and after integration over a chosen time interval (usually 2 s). Sensitizers at a concentration of 50 (mu) M (100 (mu) L) were injected into a medium-sized vein (diameter approximately 40 micrometer) using an ultra-fine 10 micrometer diameter needle. Fluorescence images were quantitated by subtracting the fluorescence intensity of surrounding CAM tissue (Fmatrix) from the intravascular fluorescence intensity (Fintravascular), after transformation of the video frames into digital form. The differential fluorescence intensity, Fintravascular - Fmatrix, is a measure of the biodistribution. Real time measurements clearly showed that CP and UP fluorescence is associated with moving erythrocytes and not with endothelial cells of the vessel wall. Fluorescence intensity was monitored, up to 60 minutes after injection, by averaging the fluorescence over time intervals of 2 s and recording the integrated images. The fluorescence intensity reached its maximum in about 20 - 30 min after injection, presumably after monomerization inside erythrocyte membranes. The results are interpreted in terms of physical-chemical characteristics (e.g. hydrophilicity) and correlated with the photodynamically induced hemostasis in CAM blood vessels.

  18. Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults.

    PubMed

    Berryman, Nicolas; Bherer, Louis; Nadeau, Sylvie; Lauzière, Séléna; Lehr, Lora; Bobeuf, Florian; Lussier, Maxime; Kergoat, Marie Jeanne; Vu, Thien Tuong Minh; Bosquet, Laurent

    2014-01-01

    The effects of physical activity on cognition in older adults have been extensively investigated in the last decade. Different interventions such as aerobic, strength, and gross motor training programs have resulted in improvements in cognitive functions. However, the mechanisms underlying the relationship between physical activity and cognition are still poorly understood. Recently, it was shown that acute bouts of exercise resulted in reduced executive control at higher relative exercise intensities. Considering that aging is characterized by a reduction in potential energy ([Formula: see text] max - energy cost of walking), which leads to higher relative walking intensity for the same absolute speed, it could be argued that any intervention aimed at reducing the relative intensity of the locomotive task would improve executive control while walking. The objective of the present study was to determine the effects of a short-term (8 weeks) high-intensity strength and aerobic training program on executive functions (single and dual task) in a cohort of healthy older adults. Fifty-one participants were included and 47 (age, 70.7 ± 5.6) completed the study which compared the effects of three interventions: lower body strength + aerobic training (LBS-A), upper body strength + aerobic training (UBS-A), and gross motor activities (GMA). Training sessions were held 3 times every week. Both physical fitness (aerobic, neuromuscular, and body composition) and cognitive functions (RNG) during a dual task were assessed before and after the intervention. Even though the LBS-A and UBS-A interventions increased potential energy to a higher level (Effect size: LBS-A-moderate, UBS-A-small, GMA-trivial), all groups showed equivalent improvement in cognitive function, with inhibition being more sensitive to the intervention. These findings suggest that different exercise programs targeting physical fitness and/or gross motor skills may lead to equivalent improvement in

  19. Fluorescence applications in molecular neurobiology

    PubMed Central

    Taraska, Justin W.; Zagotta, William N.

    2012-01-01

    Summary Macromolecules drive the complex behavior of neurons. For example, channels and transporters control the movements of ions across membranes, SNAREs direct the fusion of vesicles at the synapse, and motors move cargo throughout the cell. Understanding the structure, assembly, and conformational movements of these and other neuronal proteins is essential to understanding the brain. Developments in fluorescence have allowed the architecture and dynamics of proteins to be studied in real time and in a cellular context with great accuracy. In this review, we cover classic and recent methods for studying protein structure, assembly, and dynamics with fluorescence. These methods include fluorescence and luminescence resonance energy transfer, single molecule bleaching analysis, intensity measurements, co-localization microscopy, electron transfer, and bi-molecular complementation analysis. We present the principles of these methods, highlight recent work that uses the methods, and discuss a framework for interpreting results as they apply to molecular neurobiology. PMID:20434995

  20. Lasing from fluorescent protein crystals.

    PubMed

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 μm and lengths of 100-200 μm. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment. PMID:25607090

  1. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  2. A PDMS-Based Cylindrical Hybrid Lens for Enhanced Fluorescence Detection in Microfluidic Systems

    PubMed Central

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-01-01

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light. PMID:24531300

  3. Research on fluorescence spectra of cancer blood

    NASA Astrophysics Data System (ADS)

    Liu, Kunxiang; He, Wenliang; Zhao, Wenyan; Liu, Ying

    2007-11-01

    The fluorescence spectral characteristic of tumor blood was studied by laser-induced fluorescence technology, and compared with the fluorescence spectra of the same type healthy mice blood, the differences between them are distinct. When the whole blood solutions were induced by 407nm laser, they radiate fluorescence band from 420nm to 750 nm, which spectral peak located at 620nm. In high concentration solutions (blood concentration is higher than 4%), the fluorescence intensity are lower than normal blood, but in those low concentration solutions (blood concentration is lower than 2%) the fluorescence intensity of the tumor blood are higher than the normal ones. It is analyzed that the change of the fluorescence characteristic between the tumor blood and the normal is caused by the concentration difference of the tumor identification-porphyrin. The experimental results showed that the obvious difference of the fluorescence spectral characteristic between the forepart tumor and normal blood can offer some value assistance to clinical diagnosis on cancer.

  4. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, John C.; Jett, James H.

    1986-01-01

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle.

  5. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, J.C.; Jett, J.H.

    1984-01-06

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser which excites a different stained component of the same biological particle.

  6. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, J.C.; Jett, J.H.

    1986-03-04

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle. 8 figs.

  7. Fluorescence of dental porcelain.

    PubMed

    Monsénégo, G; Burdairon, G; Clerjaud, B

    1993-01-01

    This study of the fluorescence of natural enamel and of dental ceramics shows the fluorescence of ceramics not containing rare earths decreases when the color saturation increases; the fluorescence of samples of the same shade guide are not homogenous; some guides show a strong green fluorescence; and two shade guides of the same origin can present completely different fluorescence. The cementing medium can affect the fluorescence of a ceramic prosthesis. PMID:8455155

  8. Cryo-imaging of fluorescently labeled single cells in a mouse

    NASA Astrophysics Data System (ADS)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  9. Oligonucleotides, part 5+: synthesis and fluorescence studies of DNA oligomers d(AT)5 containing adenines covalently linked at C-8 with dansyl fluorophore.

    PubMed Central

    Singh, D; Kumar, V; Ganesh, K N

    1990-01-01

    The synthesis of oligodeoxynucleotides d(AT)5 in which specific adenines are linked at C-8 position with dansyl fluorophores via a variable polymethylene spacer chain are reported. This was achieved by a strategy involving prelabelling at the monomeric stage followed by solid phase assembly of oligonucleotides to obtain regiospecifically labeled oligonucleotides. Several mono and polydansyl d(AT)5 derivatives in which the fluorophore is linked via ethylene, tetramethylene and hexamethylene spacer arms were synthesised for a systematic study of their fluorescence characteristics. It was observed that (i) enhancements in fluorescence intensity and emission quantum yields are seen due to multiple labelling, (ii) the magnitude of enhancements are related to labelling configuration and (iii) quenching efficiency is minimal with shorter and rigid spacer arms. The results may aid rational design of multiple fluorescent DNA probes for nonradioactive detection of nucleic acids. PMID:2356124

  10. Single molecule fluorescence studies of ribosome dynamics: An application of metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bharill, Shashank

    Metal enhanced fluorescence (MEF), in which a surface plasmon near a noble metal alters the spectral properties of an organic fluorophore, has been reported to increase fluorescence intensity without a concomitant increase in photobleaching rate. The fluorescence intensities of Cy3- and Cy5-labeled ribosomal initiation complexes (ICs) near 50 nm silver particles were increased 4 - 7-fold compared to ICs in the absence of silver colloids. Photobleaching lifetime was not significantly decreased, resulting in 4 - 5.5-fold enhancement in total photon emission prior to photobleaching. Fluorophores showing enhanced fluorescence were located within ˜280 nm of the colloidal particles, as detected by light scattering and scanning probe microscopy. Aggregates of silver particles or larger colloids themselves produced wavelength-shifted luminescence similar to fluorescence, presumably due to resonant extinction between nearby metal particles. Intensity fluctuations above shot noise, at 0.1 - 5 Hz, were greater from slides containing colloidal particles than from plain glass. Overall signal to noise ratio was similar or slightly better near the silver particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA to the A site of fluorescent labeled ribosomes, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosomal A and P sites, and elongation factor G catalyzed translocation.

  11. Size fractionated characterization of freshwater organic matter fluorescence

    NASA Astrophysics Data System (ADS)

    Baker, A.; Lead, J.; Elliott, S.; Demomi, A.; Liu, R.; Seredynska-Sobecka, B.; Hudson, N. J.

    2006-12-01

    We employ a range of optical (fluorescence, absorbance) techniques to freshwater organic matter, focusing on samples from urban catchments and using both traditional (filtration, cross flow ultrafiltration) and novel (split cell thin flow (SPLITT)) fractionation techniques to investigate the fluorescence characteristics of both dissolved and colloidal organic matter and to probe different fractions of the size range. We find: (1) As with previous studies, urban freshwaters have high tryptophan-like fluorescence in comparison to humic-like fluorescence. (2) After conventional filtration, our samples demonstrate that humic-like fluorescence is predominantly within the <25 nm fraction and pH dependent, suggesting that it is predominantly `dissolved'. Tryptophan-like fluorescence is associated with either dissolved, colloidal and particulate fractions, and is less pH dependent, depending on the sample, suggesting a variety of sources that are known to include microbial and biological cells and their exudates and the products of decomposition and feeding. (3) When the thermal quenching of fluorescence is investigated at different filter fractions, humic-like fluorescence quenching does not vary with filter fraction, whereas tryptophan-like fluorescence quenching exhibits a size dependency. This confirms at least two sources of tryptophan-like fluorescence that have different sizes and different thermal quenching properties. (4) SPLITT also shows that tryptophan-like fluorescence intensity is found mainly in the particulate material and is not pH dependent, while humic-like fluorescence intensities are dependent on pH but not on size. However, humic-like fluorescence intensity normalised to absorbance, related to fluorescence efficiency and molar mass, varies with size in the SPLITT samples. (5) Cross flow ultrafiltration confirms that, compared with tryptophan standards, freshwater tryptophan-like fluorescence is not dissolved and `free'. However, it is related to the

  12. Probing intrinsic anisotropies of fluorescence: Mueller matrix approach.

    PubMed

    Saha, Sudipta; Soni, Jalpa; Chandel, Shubham; Kumar, Uday; Ghosh, Nirmalya

    2015-08-01

    We demonstrate that information on “intrinsic” anisotropies of fluorescence originating from preferential orientation/organization of fluorophore molecules can be probed using a Mueller matrix of fluorescence. For this purpose, we have developed a simplified model to decouple and separately quantify the depolarization property and the intrinsic anisotropy properties of fluorescence from the experimentally measured fluorescence Mueller matrix. Unlike the traditionally defined fluorescence anisotropy parameter, the Mueller matrix-derived fluorescence polarization metrics, namely, fluorescence diattenuation and polarizance parameters, exclusively deal with the intrinsic anisotropies of fluorescence. The utility of these newly derived fluorescence polarimetry parameters is demonstrated on model systems exhibiting multiple polarimetry effects, and an interesting example is illustrated on biomedically important fluorophores, collagen. PMID:26301796

  13. Time-resolved fluorescence of thioredoxin single-tryptophan mutants: modeling experimental results with minimum perturbation mapping

    NASA Astrophysics Data System (ADS)

    Silva, Norberto D., Jr.; Haydock, Christopher; Prendergast, Franklyn G.

    1994-08-01

    The time-resolved fluorescence decay of single tryptophan (Trp) proteins is typically described using either a distribution of lifetimes or a sum of two or more exponential terms. A possible interpretation for this fluorescence decay heterogeneity is the existence of different isomeric conformations of Trp about its (chi) +1) and (chi) +2) dihedral angles. Are multiple Trp conformations compatible with the remainder of the protein in its crystallographic configuration or do they require repacking of neighbor side chains? It is conceivable that isomers of the neighbor side chains interconvert slowly on the fluorescence timescale and contribute additional lifetime components to the fluorescence intensity. We have explored this possibility by performing minimum perturbation mapping simulations of Trp 28 and Trp 31 in thioredoxin (TRX) using CHARMm 22. Mappings of Trp 29 and Trp 31 give the TRX Trp residue energy landscape as a function of (chi) +1) and (chi) +2) dihedral angles. Time-resolved fluorescence intensity and anisotropy decay of mutant TRX (W28F and W31F) are measured and interpreted in light of the above simulations. Relevant observables, like order parameters and isomerization rates, can be derived from the minimum perturbation maps and compared with experiment.

  14. Surface enhanced fluorescence by porous alumina with nanohole arrays

    NASA Astrophysics Data System (ADS)

    Zhang, ZhengLong; Zheng, HaiRong; Dong, Jun; Yan, XiaoQing; Sun, Yu; Xu, HongXing

    2012-05-01

    The fluorescence enhancement of Rhodamine 6G (Rh6G) fluorophore in the close vicinity of porous alumina film with ordered nanohole arrays is investigated. Experimental observations show that the nonmetallic substrate with hole arrays enhances the fluorescence intensity. By comparing the fluorescence emissions that are excited with 325 nm and 532 nm, better fluorescence enhancement is obtained with excitation at a shorter wavelength. The study suggests that higher fluorescence excitation efficiency due to the energy transfer from oxygen vacancies to Rh6G fluorophore molecules is responsible for better fluorescence enhancement. The contribution of the scattering of nanohole arrays to the fluorescence enhancement is also proposed based on the intensity increase and reduced lifetime when the energy transfer from oxygen vacancy is absent. The result of the current study is useful for developing non-metal substrates in the study of spectroscopic enhancement, and is expected to advance the applications of porous alumina to microanalysis.

  15. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe.

    PubMed

    Yan, Xu; Li, Hongxia; Zheng, Weishi; Su, Xingguang

    2015-09-01

    In this work, we designed a dual-emission ratiometric fluorescence probe by hybridizing two differently colored quantum dots (QDs), which possess a built-in correction that eliminates the environmental effects and increases sensor accuracy. Red emissive QDs were embedded in the silica nanoparticle as reference while the green emissive QDs were covalently linked to the silica nanoparticle surface to form ratiometric fluorescence probes (RF-QDs). Dopamine (DA) was then conjugated to the surface of RF-QDs via covalent bonding. The ratiometric fluorescence probe functionalized with dopamine (DA) was highly reactive toward tyrosinase (TYR), which can catalyze the oxidization of DA to dopamine quinine and therefore quenched the fluorescence of the green QDs on the surface of ratiometric fluorescence probe. With the addition of different amounts of TYR, the ratiometric fluorescence intensity of the probe continually varied, leading to color changes from yellow-green to red. So the ratiometric fluorescence probe could be utilized for sensitive and selective detection of TYR activity. There was a good linear relationship between the ratiometric fluorescence intensity and TYR concentration in the range of 0.05-5.0 μg mL(-1), with the detection limit of 0.02 μg mL(-1). Significantly, the ratiometric fluorescence probe has been used to fabricate paper-based test strips for visual detection of TYR activity, which validates the potential on-site application. PMID:26249217

  16. Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters' fluorescence.

    PubMed

    Yang, Xiaoming; Zhuo, Yan; Zhu, Shanshan; Luo, Yawen; Feng, Yuanjiao; Xu, Yan

    2015-02-15

    Herein, we have successfully built up connections between nanoparticles and nanoclusters, and further constructed a surface-enhanced fluorescence (SEF) strategy based on the two types of nanomaterials for selectively assaying carcinoembryonic antigen (CEA). Specifically, silver nanoclusters provided the original fluorescence signal, while gold nanoparticles modified with DNA served as the fluorescence enhancer simultaneously. On the basis of this proposed nano-system, the two nanomaterials were linked by CEA-aptamer, thus facilitating SEF occurring. Nevertheless, more competitive interactions between CEA and CEA-aptamer emerged once CEA added, leading to SEF failed and their fluorescence decreased. Significantly, this creative method was further applied to detect CEA, and showed the linear relationship between the fluorescence intensity and CEA concentrations in the range of 0.01-1 ng mL(-1) with a detection limit of 3 pg mL(-1) at a signal-to-noise ratio of 3, demonstrating its sensitivity and promising towards multiple applications. On the whole, this approach we established may broaden potential ways of combining nanoparticles and nanoclusters for detecting trace targets in bioanalytical fields. PMID:25259877

  17. Medium effects on fluorescence of ciprofloxacin hydrochloride

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Fu, Yan; Li, Long-Di; Liu, Jia-Ming

    2003-10-01

    The medium (pH, organic solvents, cyclodextrin (CD) or surfactants) effects on the fluorescence of ciprofloxacin hydrochloride (CPFX·HCl) were studied in detail. It is found that the three acid constants of ciprofloxacin (CPFX) are near to each other. Therefore the relation curve between pH and fluorescence intensity has no strident change and keeps relative stable in the pH range of 2-7. When pH was in the range of 5.5-6.0, the fluorescence intensity of CPFX reached the max. The kind and amount of organic solvent added to the luminescent system have various effects. Ethanol quenched fluorescence and the fluorescence excitation wavelength is red shift at first and then blue shift. Acetone has complicated effects on the fluorescence properties of CPFX·HCl solution. The experiment result shows that acetone is really a quencher when its volume content in the system is from 0 to 20%, but when its content is 90%, the signal intensity is unexpectedly one and a half times as much as that of no acetone. This means that there is a strong interaction between the acetone and CPFX; CPFX·H + could be included into the γ-CD but the capping effect is not notable. The effect of cationic surfactant cetyltrimethylammonium bromide and non-ionic surfactant TX-100 and TX-80 on CPFX fluorescence was unimpressive, but the anionic surfactant's effect is aberrant. The fluorescence intensity of CPFX·HCl solution experiences three stages of increasing, decreasing and increasing in turn, as sodium dodecyl sulfate is adding gradually. But for sodium lauryl sulfonate, there are only two stages of decreasing and increasing with the concentration increasing. It is problematic to illustrate clearly the effect mechanism of acetone and anionic surfactant at present. Undoubtedly, the experimental results in this paper should be useful in practice works and the research is worth studying still further.

  18. Fluorescence optical imaging in anticancer drug delivery.

    PubMed

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. PMID:26892751

  19. Fluorescence imaging using synthetic GFP chromophores.

    PubMed

    Walker, Christopher L; Lukyanov, Konstantin A; Yampolsky, Ilia V; Mishin, Alexander S; Bommarius, Andreas S; Duraj-Thatte, Anna M; Azizi, Bahareh; Tolbert, Laren M; Solntsev, Kyril M

    2015-08-01

    Green fluorescent protein and related proteins carry chromophores formed within the protein from their own amino acids. Corresponding synthetic compounds are non-fluorescent in solution due to photoinduced isomerization of the benzylideneimidiazolidinone core. Restriction of this internal rotation by binding to host molecules leads to pronounced, up to three orders of magnitude, increase of fluorescence intensity. This property allows using GFP chromophore analogs as fluorogenic dyes to detect metal ions, proteins, nucleic acids, and other hosts. For example, RNA aptamer named Spinach, which binds to and activates fluorescence of some GFP chromophores, was proved to be a unique label for live-cell imaging of specific RNAs, endogenous metabolites and target proteins. Chemically locked GFP chromophores are brightly fluorescent and represent potentially useful dyes due to their small size and high water solubility. PMID:26117808

  20. Fluorescence diagnostics for foods subjected to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kulawansa, Digala M.; Menzel, E. R.; Banford, H. M.

    1996-03-01

    We have examined the inherent fluorescence of pepper and cinnamon samples exposed to radiation from a 60Co gamma source. We find that in the pepper the fluorescence intensity increases with radiation dose and the ratio of fluorescence intensity at two specific wavelengths, 566 and 674 nm, increases with radiation dose. In contrast, in the cinnamon the distinction between unirradiated and irradiated is not clear. Our preliminary work on gamma ray irradiated pepper indicates that laser-induced fluorescence may be utilized to detect the absorbed dose of irradiation of food samples.

  1. Diagnostics of gastric pathology by means of laser fluorescence

    NASA Astrophysics Data System (ADS)

    Moysyuk, T. G.

    2012-10-01

    This article presents the principles of laser fluorescence diagnostic method used to diagnose pathological conditions of the stomach. In it, the new criteria are proposed - the total area and integrated fluorescence intensity as the differentiation of pathological conditions. The results of investigating the interrelation between the values of intensity and area of laser fluorescence are presented. They characterize the coordinate distributions of reradiation in the points of polarizationally filtered laser images of stomach histological sections. The criteria of laser polarization fluorescent diagnostics of stomach cancer nascency and its severity degree differentiation are determined.

  2. A Passive Method for Detecting Vegetation Stress from Orbit: Chlorophyll Fluorescence Spectra from Fraunhofer Lines

    NASA Technical Reports Server (NTRS)

    Theisen, Arnold F.

    2000-01-01

    Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A

  3. Prolonged irradiation of enhanced cyan fluorescent protein or Cerulean can invalidate Forster resonance energy transfer measurements.

    PubMed

    Hoffmann, Birgit; Zimmer, Thomas; Klöcker, Nikolaj; Kelbauskas, Laimonas; König, Karsten; Benndorf, Klaus; Biskup, Christoph

    2008-01-01

    Since its discovery, green fluorescent protein (GFP) and its variants have proven to be a good and convenient fluorescent label for proteins: GFP and other visible fluorescent proteins (VFPs) can be fused selectively to the protein of interest by simple cloning techniques and develop fluorescence without additional cofactors. Among the steadily growing collection of VFPs, several pairs can be chosen that can serve as donor and acceptor fluorophores in Forster resonance energy transfer (FRET) experiments. Among them, the cyan fluorescent proteins (ECFP/Cerulean) and the enhanced yellow fluorescent protein (EYFP) are most commonly used. We show that ECFP and Cerulean have some disadvantages despite their common use: Upon irradiation with light intensities that are commonly used for intensity- and lifetime-based FRET measurements, both the fluorescence intensity and the fluorescence lifetime of ECFP and Cerulean decrease. This can hamper both intensity- and lifetime-based FRET measurements and emphasizes the need for control measurements to exclude these artifacts. PMID:18601529

  4. Intense violet-blue-emitting Ba(2)AlB(4)O(9)Cl:Eu(2+) phosphors for applications in fluorescent lamps and ultraviolet-light-emitting diodes.

    PubMed

    Kuo, Te-Wen; Huang, Chien-Hao; Chen, Teng-Ming

    2010-08-01

    We synthesized a violet-blue phosphor Ba(2)AlB(4)O(9)Cl:Eu(2+) with a solid-state reaction. The excitation and emission spectra of this phosphor showed that all were broadband due to 4f(7)-4f(6)d(1) transitions of Eu(2+). The phosphors with different Eu(2+) concentrations presented violet-blue luminescence for ultraviolet [(UV) 250-390nm] excitation. The optimum concentration of Eu(2+) in Ba(2)AlB(4)O(9)Cl:Eu(2+) is determined to be 6mol.%. The luminous efficiency was found to be 8.1lm/W for the violet-blue fluorescent lamp and 3.2lm/W for the violet-blue phosphor-converted light-emitting diode, respectively. Ba(2)AlB(4)O(9)Cl:Eu(2+) would be a promising phosphor for converting the UV radiation to violet-blue emission for a novel high light-conversion efficiency phototherapy illuminator. PMID:20676174

  5. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  6. Fluorescence spectra shape based dynamic thermometry

    NASA Astrophysics Data System (ADS)

    Liu, Liwang; Creten, Sebastiaan; Firdaus, Yuliar; Agustin Flores Cuautle, Jose Jesus; Kouyaté, Mansour; Van der Auweraer, Mark; Glorieux, Christ

    2014-01-01

    An entirely optical, dynamic thermometry technique based on the temperature dependence of a fluorescence spectrum is presented. Different from conventional intensity-based fluorescence thermometry, in this work, neural network recognition is employed to extract the sample temperature from the magnitude and shape of recorded fluorescence spectra. As a demonstration to determine the depth profile of dynamical temperature variations and of the thermal and optical properties of semitransparent samples, in-depth photothermally induced periodical temperature oscillations of a rhodamine B and copper chloride dyed glycerol sample were measured with an accuracy of 4.2 mK.Hz-1/2 and fitted well by a 1D thermal diffusion model.

  7. Alloying effect on K shell X-ray fluorescence cross-sections and intensity ratios of Cu and Sn in Cu1Sn1-x alloys using the 59.5 keV gamma rays

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Olgar, M. A.; Cengiz, E.; Tıraşoglu, E.

    2016-09-01

    Kβ/Kα, intensity ratios and σKα,β production cross-sections of Cu and Sn were measured in pure metals and in different alloys which have different compositions (CuxSn1-x x=0.48, 0.41, 0.14 and 0.06). The samples were excited by 59.5 keV γ-rays from 241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. Comparison of the σKβ production cross-sections and Kβ/Kα X-ray intensity ratio values for Cu and Sn with the theoretical and semi-empirical calculations indicates that they are in the inverse direction with concentration of constituent element in the alloys. The results show that variations in these parameters can be explained with the charge transfer process between the elements which constitute the alloys.

  8. Fluorescence lifetime measurements in flow cytometry

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Klocke, Axel

    1997-05-01

    Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.

  9. Fabrication of Indocyanine Green and 2H, 3H-perfluoropentane loaded microbubbles for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald

    2016-03-01

    As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.

  10. Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.

    2013-01-01

    Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521

  11. Explosive photodissociation of methane induced by ultrafast intense laser

    SciTech Connect

    Kong Fanao; Luo Qi; Xu Huailiang; Sharifi, Mehdi; Song Di; Chin, See Leang

    2006-10-07

    A new type of molecular fragmentation induced by femtosecond intense laser at the intensity of 2x10{sup 14} W/cm{sup 2} is reported. For the parent molecule of methane, ethylene, n-butane, and 1-butene, fluorescence from H (n=3{yields}2), CH (A {sup 2}{delta}, B {sup 2}{sigma}{sup -}, and C {sup 2}{sigma}{sup +}{yields}X {sup 2}{pi}), or C{sub 2} (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) is observed in the spectrum. It shows that the fragmentation is a universal property of neutral molecule in the intense laser field. Unlike breaking only one or two chemical bonds in conventional UV photodissociation, the fragmentation caused by the intense laser undergoes vigorous changes, breaking most of the bonds in the molecule, like an explosion. The fragments are neutral species and cannot be produced through Coulomb explosion of multiply charged ion. The laser power dependence of CH (A{yields}X) emission of methane on a log-log scale has a slope of 10{+-}1. The fragmentation is thus explained as multiple channel dissociation of the superexcited state of parent molecule, which is created by multiphoton excitation.

  12. Filter Enhances Fluorescent-Penetrant-Inspecting Borescope

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Slip-on eyepiece for commercial ultraviolet-light borescope reduces both amount of short-wave ultraviolet light that reaches viewer's eye and apparent intensity of unwanted reflections of white light from surfaces undergoing inspection. Fits on stock eyepiece of borescope, which illuminates surface inspected with intense ultraviolet light. Surface, which is treated with fluorescent dye, emits bright-green visible light wherever dye penetrates - in cracks and voids. Eyepiece contains deep-yellow Wratten 15 (G) filter, which attenuates unwanted light strongly but passes yellow-green fluorescence so defects seen clearly.

  13. Visualization of in vivo degradation of aliphatic polyesters by a fluorescent dendritic star macromolecule.

    PubMed

    Duan, Shun; Ma, Shiqing; Huang, Zhaohui; Zhang, Xu; Yang, Xiaoping; Gao, Ping; Yin, Meizhen; Cai, Qing

    2015-12-01

    In tissue engineering, most polymeric scaffolds should degrade along with the formation of the new tissues. Therefore, it is necessary to look into the in vivo degradation of scaffolds. In this study, a fluorescent perylenediimide-cored (PDI-cored) dendritic star macromolecule bearing multiple amines (d-p48) was incorporated into biodegradable polyester nanofibrous scaffolds by eletrospinning as an indicator. The polyester/d-p48 blend nanofibers could emit strong red fluorescence when they were irradiated under exciting light. Initially, using slowly degradable polyester, poly(L-lactide) (PLLA)/d-p48 nanofibers were soaked in phosphate buffered saline for various lengths of time to determine the possible diffusing release of d-p48 macromolecule from nanofibers. The PLLA/d-p48 nanofibers were then implanted subcutaneously into mice and left for up to 2 weeks. In both cases, no undesirable release of the incorporated d-p48 macromolecule was detected, and the nanofibers were clearly visualized in vivo by fluorescence microscopy. Using a fast degradable polyester, poly(lactide-co-glycolide) (PLGA)/d-p48 nanofibers were electrospun and implanted subcutaneously to determine the possibility of monitoring in vivo degradation by fluorescence during 12 weeks. The results showed that the location and the contour of PLGA/d-p48 nanofibrous scaffolds could be clearly visualized using an animal fluorescent imaging system. The fluorescent intensities decreased gradually with the degradation of the scaffolds. No side effects on liver and kidney were found during the detection. This study indicates that the fluorescent PDI-cored dendritic star macromolecule can be used as a stable bioimaging indicator for biodegradable aliphatic polyesters in vivo. PMID:26526346

  14. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  15. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  16. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  17. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  18. Fundamentals of fluorescence and fluorescence microscopy.

    PubMed

    Wolf, David E

    2013-01-01

    This chapter discusses the fundamental physics of fluorescence. The application of fluorescence to microscopy represents an important transition in the development of microscopy, particularly as it applies to biology. It enables quantitating the amounts of specific molecules within a cell, determining whether molecules are complexing on a molecular level, measuring changes in ionic concentrations within cells and organelles, and measuring molecular dynamics. This chapter also discusses the issues important to quantitative measurement of fluorescence and focuses on four of quantitative measurements of fluorescence--boxcar-gated detection, streak cameras, photon correlation, and phase modulation. Although quantitative measurement presents many pitfalls to the beginner, it also presents significant opportunities to one skilled in the art. This chapter also examines how fluorescence is measured in the steady state and time domain and how fluorescence is applied in the modern epifluorescence microscope. PMID:23931503

  19. Development of fluorescent materials for Diffuse Fluorescence Tomography standards and phantoms

    NASA Astrophysics Data System (ADS)

    Baeten, John; Niedre, Mark; Dunham, Joshua; Ntziachristos, Vasilis

    2007-07-01

    The availability of fluorescence standards is necessary in the development of systems and methods for fluorescence imaging. In this study, two approaches for developing diffuse fluorescence materials to be used as standards or phantoms in diffuse fluorescent tomography applications were investigated. Specifically, silicone rubber and polyester casting resin were used as base materials, and silicone pigments or TiO2 / India Ink were added respectively to vary the optical properties. Characterization of the optical properties achieved was performed using time-resolved methods. Subsequently, different near-infrared fluorochromes were examined for imparting controlled and stable fluorescence properties. It was determined that hydrophobic fluorophores (IR 676 and IR 780 Iodide) suspended in dichloromethane and hydrophilic fluorophores (Cy5.5 and AF 750) suspended in methanol produced diffusive silicone and resin fluorescent materials, respectively. However only the hydrophobic fluorophores embedded within silicone resulted in the construction of a material with the characteristics of a standard, i.e. stability of fluorescence intensity with time and a linear dependence of normalized fluorescence intensity to fluorophore concentration.

  20. Highly photoluminescent polysilsesquioxane hybrids based on weakly fluorescent 1,8-naphthalic anhydride derivatives

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Huang, Miao; Song, Jianhui; Wu, Meng; Xu, Min

    2016-07-01

    A series of highly fluorescent polysilsesquioxane materials based on 1,8-naphthalic anhydride derivatives(XNA) have been prepared. The XNAs were chemically bonded with the polysiloxane. Though the fluorescent intensities of the solution of XNAs with different substitutes make a great difference, some of them are even very weakly emissive, the fluorescent intensities of the corresponding solid polysilsesquioxane materials are strong. In this case, the electronic effect of the substitute became non-important. With restricted molecular motion and J-aggregation, some traditionally weakly fluorescent or non-fluorescent chromophoric organics due to the substituent effect may be used to prepare highly fluorescent materials.

  1. Fluorescence Lifetime Imaging of Apoptosis

    PubMed Central

    Xiao, Annie; Gibbons, Anne E.; Luker, Kathryn E.; Luker, Gary D.

    2015-01-01

    Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity. PMID:26771007

  2. Fluorescence Spectroscopy in a Shoebox

    NASA Astrophysics Data System (ADS)

    Farooq Wahab, M.

    2007-08-01

    This article describes construction of a simple, inexpensive fluorometer. It utilizes a flashlight or sunlight source, highlighter marker ink, bowl of water with mirror as dispersing element, and colored cellophane sheets as filters. The human eye is used as a detector. This apparatus is used to demonstrate important concepts related to fluorescence spectroscopy. Using ink from a highlighter marker, one can demonstrate the difference between light scattering and fluorescence emission, the need for an intense light source, phenomenon of the Stokes shift, the choice of filters, the preferred geometry of excitation source and emission detector, and the low detection limits that can be achieved by fluorescence measurements. By reflecting the fluorescence emission from a compact disk, it can be seen that the light emitted by molecules is not monochromatic. Furthermore, a spectrofluorometer is constructed using gratings made from a DVD or a CD. The shoebox fluorometer and spectrofluorometer can serve as useful teaching aids in places where commercial instruments are not available, and it avoids the black box problem of modern instruments.

  3. Chlorophyll fluorescence control in microalgae by biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuito; Iwasaka, Masakazu; Endo, Hirotoshi

    2015-05-01

    Magnetic fields were applied to water suspensions of guanine crystals to induce changes in light scattering as a possible way to control photosynthesis in microalgae. The effect of guanine microcrystals with and without an applied magnetic field on the photosynthesis of a unicellular microalgae (plant), Pleurochrysis. carterae (P. carterae), was investigated by examining chlorophyll fluorescence. The fluorescence intensity at 600-700 nm of the photosynthetic cells increased remarkably when the concentration ratio of guanine microcrystals was 10 times larger than that of the cells. This increase in fluorescence occurred reproducibly and was proportional to the amount of guanine microcrystals added. It is speculated that the guanine microcrystals enhance the intensity of the excitation light on the cells by concentrating the excitation light or prolonging the time of light exposure to the cells. Moreover, applying a 500-mT magnetic field allowed modulation of the fluorescence intensity, depending on the direction of the fluorescence light.

  4. IR-stimulated visible fluorescence in pink and brown diamond.

    PubMed

    Byrne, K S; Chapman, J G; Luiten, A N

    2014-03-19

    Irradiation of natural pink and brown diamond by middle-ultraviolet light (photon energy ϵ ≥ 4.1 eV ) is seen to induce anomalous fluorescence phenomena at N3 defect centres (structure N3-V). When diamonds primed in this fashion are subsequently exposed to infrared light (even with a delay of many hours), a transient burst of blue N3 fluorescence is observed. The dependence of this IR-triggered fluorescence on pump wavelength and intensity suggest that this fluorescence phenomena is intrinsically related to pink diamond photochromism. An energy transfer process between N3 defects and other defect species can account for both the UV-induced fluorescence intensity changes, and the apparent optical upconversion of IR light. From this standpoint, we consider the implications of this N3 fluorescence behaviour for the current understanding of pink diamond photochromism kinetics. PMID:24589842

  5. A naphthalimide-based fluorescent sensor for halogenated solvents.

    PubMed

    Dai, Li; Wu, Di; Qiao, Qinglong; Yin, Wenting; Yin, Jun; Xu, Zhaochao

    2016-02-01

    A fluorescent sensor for halogenated solvents termed AMN is reported. AMN shows strong fluorescence in most halogenated solvents (QE > 0.1) but weak fluorescence (QE<0.01) in most non-halogenated solvents. In chlorinated solvents, the fluorescence intensity decreased with the reduction of chlorine content. On the contrary, in brominated solvents the fluorescence intensity increased with the reduction of bromine content. It is worth mentioning that AMN displayed fluorescence emission centered at 520 nm in CCl4 with a quantum yield of 0.607, at 556 nm in CHCl3 with a quantum yield of 0.318, at 584 nm in CH2Cl2 with a quantum yield of 0.128, whereas in CHBr3 was centered at 441 nm with a quantum yield of 0.012. AMN was shown to have the ability to differentiate CCl4, CHCl3, CH2Cl2 and CHBr3 halogenated solvents. PMID:26691881

  6. A generalized model on the effects of nanoparticles on fluorophore fluorescence in solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanoparticles (NP) can modify fluorophore fluorescence in solution through multiple pathways that include fluorescence inner filter effect (IFE), dynamic and static quenching, surface enhancement, and fluorophore quantum yield variation associated with structural and conformational modifications ind...

  7. Fluorescence spectroscopy for neoplasms control

    NASA Astrophysics Data System (ADS)

    Bratchenko, I. A.; Kristoforova, Yu. A.; Myakinin, O. O.; Artemyev, D. N.; Kozlov, S. V.; Moryatov, A. A.; Zakharov, V. P.

    2016-04-01

    Investigation of malignant skin tumors diagnosis was performed involving two setups for native tissues fluorescence control in visible and near infrared regions. Combined fluorescence analysis for skin malignant melanomas and basal cell carcinomas was performed. Autofluorescence spectra of normal skin and oncological pathologies stimulated by 457 nm and 785 nm lasers were registered for 74 skin tissue samples. Spectra of 10 melanomas and 27 basal cell carcinomas were registered ex vivo. Skin tumors analysis was made on the basis of autofluorescence spectra intensity and curvature for analysis of porphyrins, lipo-pigments, flavins and melanin. Separation of melanomas and basal cell carcinomas was performed on the basis of discriminant analysis. Overall accuracy of basal cell carcinomas and malignant melanomas separation in current study reached 86.5% with 70% sensitivity and 92.6% specificity.

  8. Anorganic fluorescence reference materials for decay time of fluorescence emission

    NASA Astrophysics Data System (ADS)

    Engel, A.; Ottermann, C.; Klahn, J.; Korb, T.; Resch-Genger, U.; Hoffmann, K.; Kynast, U.; Rupertus, V.

    2008-02-01

    Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools, detection methods and imaging applications for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for steady state fluorescence diagnostics, a method having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers such as absorption/excitation cross sections and quantum yield. This has been done for different types of dopands in different materials such as glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Samples doped with several fluophores of different emission wavelengths and decay times are required for fluorescent multiplexing applications. Decay times shorter than 100 ns are of special interest. In addition, a proper knowledge is necessary of quantum efficiency in highly scattering media. Recently, quantum efficiency in YAG:Ce glass ceramics has been successfully investigated. Glass and glass ceramics doped with threefold charged rare earth elements are available. However, these samples have the disadvantage of emission decay times much longer than 1 microsecond, due to the excitation and emission of their optical forbidden electronic transitions. Therefore first attempts have been made to produce decay-time standards based on organic and inorganic fluophores. Stable LUMOGEN RED pigments and YAG:Ce phosphors are diluted simultaneously in silicone matrices using a wide range of concentrations between 0.0001 and 2 wt%. Organic LUMOGEN RED has decay times in the lower nanosecond range with a slight dependency on concentration

  9. Quantitative X-ray fluorescence analysis of samples of less than `infinite thickness': Difficulties and possibilities

    NASA Astrophysics Data System (ADS)

    Sitko, Rafał

    2009-11-01

    X-ray fluorescence spectrometry due to its nondestructive nature is widely applied in analysis of single layers and multiple layer films (e.g. semiconductors, electrooptic and solar cell devices, coatings, corrosion and paint layers), individual particles (airborne, fly ash, gunshot residue particles, etc.), art and archeological objects (manuscripts, paintings, icons) and many others. Quantitative analysis of these materials, frequently classified as samples of less than infinite thickness (thin or intermediate-thickness samples), required applying adequate matrix correction methods taking into account complex dependence of analyte fluorescent radiation intensity on full matrix composition and sample thickness. In this article, the matrix correction methods including fundamental parameters, Monte Carlo simulations, influence coefficients algorithms and methods based on X-ray transmission measurements are reviewed. The difficulties in the analysis of single layer and multiple layer films and the accuracy of fundamental parameter methods in simultaneous determination of their thickness and composition are discussed. The quantitative analysis of individual particles and inhomogeneous and/or complex structure materials using fundamental parameter and Monte Carlo simulation methods in micro-beam X-ray fluorescence spectrometry are also reviewed. Some references are devoted to the analysis of light matrix samples, e.g. geological, environmental and biological samples, in which undetectable low-Z elements are present (so-called 'dark matrix') using backscattered fundamental parameter methods. Since the samples of less than infinite thickness are partially transparent for X-ray beams, the transmission measurements present possibilities that are unattainable for bulk samples. Thus, the emission-transmission method and also new instruments allowing measurements of the primary X-ray beam transmitted through the sample together with measurements of X-ray fluorescence

  10. Detection of rheumatoid arthritis in humans by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Ebert, Bernd; Dziekan, Thomas; Weissbach, Carmen; Mahler, Marianne; Schirner, Michael; Berliner, Birgitt; Bauer, Daniel; Voigt, Jan; Berliner, Michael; Bahner, Malte L.; Macdonald, Rainer

    2010-02-01

    The blood pool agent indo-cyanine green (ICG) has been investigated in a prospective clinical study for detection of rheumatoid arthritis using fluorescence imaging. Temporal behavior as well as spatial distribution of fluorescence intensity are suited to differentiate healthy and inflamed finger joints after i.v. injection of an ICG bolus.

  11. Red fluorescent biofilm: the thick, the old, and the cariogenic

    PubMed Central

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Buijs, Mark J.; Zaura, Egija; ten Cate, Jacob (Bob) M.; van der Veen, Monique H.

    2016-01-01

    Background Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defined mucin medium (DMM) and eight pulses of sucrose/day. The influence of cariogenicity on red fluorescence was tested by growing biofilm on dentin disks receiving DMM, supplemented with three or eight pulses of sucrose/day. The biofilms were analyzed at different time points after inoculation, up to 24 days. Emission spectra were measured using a fluorescence spectrophotometer (λexc405 nm) and the biofilms were photographed with a fluorescence camera. The composition of the biofilms was assessed using 454-pyrosequecing of the 16S rDNA gene. Results From day 7 onward, the biofilms emitted increasing intensities of red fluorescence as evidenced by the combined red fluorescence peaks. The red fluorescence intensity correlated with biofilm thickness but not in a linear way. Biofilm fluorescence also correlated with the imposed cariogenicity, evidenced by the induced dentin mineral loss. Increasing the biofilm age or increasing the sucrose pulsing frequency led to a shift in the microbial composition. These shifts in composition were accompanied by an increase in red fluorescence. Conclusions The current study shows that a thicker, older, or more cariogenic biofilm results in a higher intensity of red fluorescence. PMID:27060056

  12. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  13. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  14. Safe biodegradable fluorescent particles

    DOEpatents

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  15. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  16. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization.

    PubMed

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2014-06-15

    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed. PMID:24767504

  17. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model

    PubMed Central

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-01-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation. PMID:27417083

  18. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model.

    PubMed

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-06-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation. PMID:27417083

  19. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    We have postulated that, in the case of tetragonal chicken egg white lysozyme, crystal growth occurs by the addition of pre-critical nuclei sized n-mers that form in the bulk solution, and that the n-mer growth units were multiples of the tetrameric 4(sub 3) helical structure. These have the strongest intermolecular bonds in the crystal and are therefore likely to be the first species formed. High resolution AFM studies provide strong supporting evidence for this model, but the data also suggest that the actual species in solution may not be identical in structure to that found in the crystal. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process, using covalent fluorescent derivatives which crystallize in the characteristic P4(sub 3)2(sub 1)2(sub 1) space group. FRET studies are being carried out between the cascade blue (CB-lys, donor, Ex(sub max) 366 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex(sub max) 430 nm, Em 528 nm) asp101 derivatives. The estimated R(sub 0) for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approx. 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 4(sub 3) helix. The short donor lifetime of 2.80 ns (chi(sup 2) = 0.644), coupled with the large average distances between the molecules (greater than or equal to 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Lifetime data show that CB-lys has a single lifetime when it is the only species in solution. Similarly, LY-lys also exhibits a single lifetime of 4.63 ns (chi(sup 2) = 0.42) when alone in solution. Addition of LY-lys to CB-lys results in the appearance of a third lifetime component of 0.348ns for the CB-lys. The fractional intensities of the different species present can be used to estimate the distribution of monomer and n-mers in solution. The self

  20. Design of fluorescent nanocapsules as ratiometric nanothermometers.

    PubMed

    Zhegalova, Natalia G; Dergunov, Sergey A; Wang, Steven T; Pinkhassik, Eugene; Berezin, Mikhail Y

    2014-08-11

    We have developed a novel design of optical nanothermometers that can measure the surrounding temperature in the range of 20-85 °C. The nanothermometers comprise two organic fluorophores encapsulated in a crosslinked polymethacrylate nanoshell. The role of the nanocapsule shell around the fluorophores is to form a well-defined and stable microenvironment to prevent other factors besides temperature from affecting the dyes' fluorescence. The two fluorophores feature different temperature-dependent emission profiles; a fluorophore with relatively insensitive fluorescence (rhodamine 640) serves as a reference whereas a sensitive fluorophore (indocyanine green) serves as a sensor. The sensitivity of the nanothermometers depends on the type of nanocapsule-forming lipid and is affected by the phase transition temperature. Both the fluorescence intensity and the fluorescence lifetime can be utilized to measure the temperature. PMID:25044240

  1. Discrete fluorescent saturation regimes in multilevel systems

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1988-01-01

    Using models of multilevel atoms, the fluorescent process was examined for the ratio of the photooxidation rate, Pij, to the collisional oxidation rate, Cij, in the pumped resonance transition i-j. It is shown that, in the full range of the parameter Pij/Cij, there exist three distinct regimes (I, II, and III) which may be usefully exploited. These regimes are defined, respectively, by the following conditions: Pij/Cij smaller than about 1; Pij/Cij much greater than 1 and Pij much lower than Cki; and Pij/Cij much greater than 1 and Pij much higher than Cki, where Cki is the collisional rate populating the source level i. The only regime which is characterized by the sensitivity of fluorescent-fluorescent line intensity ratios to Pij is regime I. If regime III is reached, even fluorescent-nonfluorescent line ratios become independent of Pij. The analysis is applied to the resonant photoexcitation of a carbonlike ion.

  2. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  3. Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent.

    PubMed

    Baker, Andy

    2002-04-01

    Fluorescence excitation-emission matrix (EEM) spectrophotometry was applied to five neighboring rivers, including one that is impacted by wastewater from a large tissue mill, to determine if fluorescence spectrophotometry could be used to differentiate between the river waters. River water samples from both the tissue mill effluent and the impacted river, the Park Burn, exhibited significantly higher fluorescence intensity than the other sites. This fluorescence was dominated by tryptophan fluorescence and a fluorescence center possibly due to the presence of fluorescent whitening agents. In contrast, the three other rivers exhibited lower fluorescence intensities typical of river systems with tryptophan (sewage), humic-like (peat derived color), and fulvic-like (natural organic matter) sources. It is suggested that fluorescence EEM spectrophotometry has the potential to provide a useful tool for pollution detection, monitoring, and control of paper industry impacts on river systems. PMID:11999038

  4. Photobleaching and Fluorescence Recovery of RPE Bisretinoids

    PubMed Central

    Liu, Zhao; Ueda, Keiko; Kim, Hye Jin; Sparrow, Janet R.

    2015-01-01

    The autofluorescence of the retina that originates primarily from lipofuscin fluorophores in retinal pigment epithelial cells, is observed to undergo photobleaching during the acquisition of fundus autofluorescence images. Bisretinoid fluorophores isolated from retinal pigment epithelial cells have the spectral characteristics consistent with their being the source of fundus autofluorescence. Clinically relevant experiments were designed to better understand conditions in the micromilieu of bisretinoid fluorophores that can influence fluorescence efficiencies, photobleaching, and subsequent fluorescence recovery of this fluorophore. The consumption of the bisretinoid A2E due to photooxidation-induced degradation was quantified in solvent systems of variable relative permittivity (formerly called dielectric constant), in micelles, and in phospholipid vesicles of varying composition. Reorganization within biphasic systems was also examined. A2E content was measured by high performance liquid chromatography (HPLC) and fluorescence intensity was quantified spectroscopically. As solvent polarity was increased, A2E fluorescent spectra exhibited red-shifted maxima and reduced intensity. A2E was depleted by light irradiation and the loss was more pronounced in less polar solvents, lower concentrations of anionic surfactant, and in gel- versus fluid-ordered phospholipid liposomes. Conditions that permit A2E aggregation promoted photooxidation/photodegradation, while movement of A2E between bisphasic systems was associated with fluorescence recovery after photobleaching. The fluorescence characteristics of A2E are subject to environmental modulation. Photooxidation and photodegradation of bisretinoid can account for fundus autofluorescence photobleaching. Return of fluorescence intensity after photobleaching likely occurs due to redistribution of A2E fractions amongst co-existing heterogeneous microdomains of the lysosomal compartment. PMID:26366866

  5. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo

    NASA Astrophysics Data System (ADS)

    Razansky, Daniel; Distel, Martin; Vinegoni, Claudio; Ma, Rui; Perrimon, Norbert; Köster, Reinhard W.; Ntziachristos, Vasilis

    2009-07-01

    Fluorescent proteins have become essential reporter molecules for studying life at the cellular and sub-cellular level, re-defining the ways in which we investigate biology. However, because of intense light scattering, most organisms and tissues remain inaccessible to current fluorescence microscopy techniques at depths beyond several hundred micrometres. We describe a multispectral opto-acoustic tomography technique capable of high-resolution visualization of fluorescent proteins deep within highly light-scattering living organisms. The method uses multiwavelength illumination over multiple projections combined with selective-plane opto-acoustic detection for artifact-free data collection. Accurate image reconstruction is enabled by making use of wavelength-dependent light propagation models in tissue. By performing whole-body imaging of two biologically important and optically diffuse model organisms, Drosophila melanogaster pupae and adult zebrafish, we demonstrate the facility to resolve tissue-specific expression of eGFP and mCherrry fluorescent proteins for precise morphological and functional observations in vivo.

  6. Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Goiffon, Reece J.; Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Achilefu, Samuel

    2009-03-01

    Kidneys normally filter the blood of excess salts and metabolic products, such as urea, while retaining plasma proteins. In diseases such as multiple myeloma and diabetes mellitus, the renal function is compromised and protein escapes into the urine. In this study, we present the use of fluorescence lifetime imaging (FLI) to image excess serum protein in urine (proteinuria). The near-infrared fluorescent dye LS-288 has distinct lifetimes when bound to protein versus free in solution, providing contrast between the protein-rich viscera and the mostly protein-free bladder. FLI with LS-288 in mice revealed that fluorescence lifetime (FLT) differences in the bladder relative to surrounding tissues was due to the fractional contributions of the bound and unbound dye molecules. The FLT of LS-288 decreased in the case of proteinuria while fluorescence intensity was unchanged. The results show that FLI can be useful for the dynamic imaging of protein-losing nephropathy due to diabetes mellitus and other renal diseases and suggest the potential use of the FLI to distinguish tumors from fluid-filled cysts in the body.

  7. Fluorescence lifetime spectroscopy of glioblastoma multiforme.

    PubMed

    Marcu, Laura; Jo, Javier A; Butte, Pramod V; Yong, William H; Pikul, Brian K; Black, Keith L; Thompson, Reid C

    2004-01-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. We investigated the use of time-resolved, laser-induced fluorescence spectroscopy for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas. The fluorescence of human brain samples (glioblastoma multiforme, cortex and white matter: six patients, 23 sites) was induced ex vivo with a pulsed nitrogen laser (337 nm, 3 ns). The time-resolved spectra were detected in a 360-550 nm wavelength range using a fast digitizer and gated detection. Parameters derived from both the spectral- (intensities from narrow spectral bands) and the time domain (average lifetime) measured at 390 and 460 nm were used for tissue characterization. We determined that high-grade gliomas are characterized by fluorescence lifetimes that varied with the emission wavelength (>3 ns at 390 nm, <1 ns at 460 nm) and their emission is overall longer than that of normal brain tissue. Our study demonstrates that the use of fluorescence lifetime not only improves the specificity of fluorescence measurements but also allows a more robust evaluation of data collected from brain tissue. Combined information from both the spectral- and the time domain can enhance the ability of fluorescence-based techniques to diagnose and detect brain tumor margins intraoperatively. PMID:15339216

  8. Fluorescence support in optical tweezers

    NASA Astrophysics Data System (ADS)

    Animas, J. G.; Arronte, M.; Flores, T.; Ponce, L.

    2013-11-01

    This paper presents the development of an installation for proves for characterization by fluorescence of micrometer and nanometer particles supported on the trapping and manipulation by optical trapping technique (optical tweezers). The system features an laser operating at 480 nm, CCD camera for image acquisition, Thor Labs micrometric table X, Y, Z for the movement of the sample and the trap in the visual field. The design includes the use of intensity modulated optical trap, with the option of being used in pulsed, opening up possibilities for the use of resonant phenomena optomechanical type for particle capture.

  9. Suitability of fluorescence measurements to quantify sulfate-reducing bacteria.

    PubMed

    Barton, Larry L; Carpenter, Claire M

    2013-06-01

    Fluorescence activity has been used to identify Desulfovibrio and has been termed the 'desulfoviridin test'. This fluorescence is attributed to the prosthetic group of bisulfite reductase, a key enzyme in dissimilatory sulfate reduction. We have pursued the use of fluorescence measurements to quantify sulfate-reducing bacteria. Cells of D. desulfuricans and D. gigas were treated with NaOH and produced two fluorescence spectra: one with maximum fluorescence with an excitation at 395 nm and an emission at 605 nm and another with an excitation at 320 nm and emission at 360 nm. Using the fluorescence with excitation at 395 nm and emission at 605 nm, we explored a series of parameters to measure Desulfovibrio in pure cultures and environmental samples. Fluorescence measurements are reliable provided the cells are treated with 1.75 N NaOH and the chromophore released from the cells is not exposed to strong light intensity, and is not exposed to temperatures greater than 20 °C, and measurements are done within a few minutes of extraction. Bleaching of fluorescence was attributed to metal ions in solution which was not observed until metal concentrations reached 1.5mM. We propose that D. desulfuricans is appropriate as the reference organism for measurement of sulfate-reducing bacteria by fluorescence and by using fluorescence intensity, 10(5) cells/ml can be readily detected in environmental samples. PMID:23566827

  10. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Amiruddha

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1 %, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low

  11. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, 51%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear hits. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics

  12. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Minamitani, Elizabeth Forsythe; Pusey, Marc L.

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of a macromolecules purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals will show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "bits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment

  13. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically can not reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low

  14. Constraining Simulated Photosynthesis with Fluorescence Observations

    NASA Astrophysics Data System (ADS)

    Baker, I. T.; Berry, J. A.; Lee, J.; Frankenberg, C.; Denning, S.

    2012-12-01

    The measurement of chlorophyll fluorescence from satellites is an emerging technology. To date, most applications have compared fluorescence to light use efficiency models of Gross Primary Productivity (GPP). A close correspondence between fluorescence and GPP has been found in these comparisons. Here, we 'go the other way' and calculate fluorescence using an enzyme kinetic photosynthesis model (the Simple Biosphere Model; SiB), and compare to spectral retrievals. We utilize multiple representations for model phenology as a sensitivity test, obtaining leaf area index (LAI) and fraction of photosynthetically active radiation absorbed (fPAR) from both MODIS-derived products as well as a prognostic model of LAI/fPAR based on growing season index (PGSI). We find that bidirectional reflectance distribution function (BRDF), canopy radiative transfer, and leaf-to-canopy scaling all contribute to variability in simulated fluorescence. We use our results to evaluate discrepancies between light use efficiency and enzyme kinetic models across latitudinal, vegetation and climatological gradients. Satellite retrievals of fluorescence will provide insight into photosynthetic process and constrain simulations of the carbon cycle across multiple spatiotemporal scales.

  15. Solvent-induced multicolour fluorescence of amino-substituted 2,3-naphthalimides studied by fluorescence and transient absorption measurements.

    PubMed

    Fujii, Mayu; Namba, Misa; Yamaji, Minoru; Okamoto, Hideki

    2016-07-01

    A series of amino-2,3-naphthalimide derivatives having the amino functionality at 1-, 5- and 6-positions (, and , respectively) were prepared, and their photophysical properties were systematically investigated based on the measurements of steady-state absorption and fluorescence spectra, fluorescence lifetimes as well as transient absorption spectra. The s efficiently fluoresced in solution, and the emission spectra appreciably shifted depending on the solvent polarity. displayed only a slight fluorescence red-shift upon increasing the solvent polarity. In contrast, and showed marked positive solvatofluorochromism with large Stokes shifts displaying multicolour fluorescence; the fluorescence colours of and varied from violet-blue in hexane to orange-red in methanol. and , thus, serve as micro-environment responding fluorophores. In methanol, the intensity of the fluorescence emission band of and significantly reduced. Based on the fluorescence quantum yields and lifetimes, and transient absorption measurements, it has been revealed that internal conversion from the S1 state of s to the ground state was accelerated by the protic medium, resulting in a reduction in their fluorescence efficiency, while intersystem crossing from the S1 state to a triplet state was not responsible for the decrease of fluorescence intensity. PMID:27251860

  16. Workflow for High-content, Individual Cell Quantification of Fluorescent Markers from Universal Microscope Data, Supported by Open Source Software

    PubMed Central

    Stockwell, Simon R.; Mittnacht, Sibylle

    2014-01-01

    Advances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy. These assays potentially generate large numbers of images of fluorescent biomarkers, which enabled by accompanying proprietary software packages, allows for multi-parametric measurements per cell. However, the relatively high capital costs and overspecialization of many of these devices have prevented their accessibility to many investigators. Described here is a universally applicable workflow for the quantification of multiple fluorescent marker intensities from specific subcellular regions of individual cells suitable for use with images from most fluorescent microscopes. Key to this workflow is the implementation of the freely available Cell Profiler software1 to distinguish individual cells in these images, segment them into defined subcellular regions and deliver fluorescence marker intensity values specific to these regions. The extraction of individual cell intensity values from image data is the central purpose of this workflow and will be illustrated with the analysis of control data from a siRNA screen for G1 checkpoint regulators in adherent human cells. However, the workflow presented here can be applied to analysis of data from other means of cell perturbation (e.g., compound screens) and other forms of fluorescence based cellular markers and thus should be useful for a wide range of laboratories. PMID:25549286

  17. A Fluorogenic Red Fluorescent Protein Heterodimer

    PubMed Central

    Alford, Spencer C.; Abdelfattah, Ahmed S.; Ding, Yidan; Campbell, Robert E.

    2012-01-01

    SUMMARY The expanding repertoire of genetically encoded biosensors constructed from variants of Aequorea victoria green fluorescent protein (GFP) enable the imaging of a variety of intracellular biochemical processes. To facilitate the imaging of multiple biosensors in a single cell, we undertook the development of a dimerization-dependent red fluorescent protein (ddRFP) that provides an alternative strategy for biosensor construction. An extensive process of rational engineering and directed protein evolution led to the discovery of a ddRFP with a Kd of 33 μM and a 10-fold increase in fluorescence upon heterodimer formation. We demonstrate that the dimerization-dependent fluorescence of ddRFP can be used for detection of a protein-protein interaction in vitro, imaging of the reversible Ca2+-dependent association of calmodulin and M13 in live cells, and imaging of caspase-3 activity during apoptosis. PMID:22444590

  18. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  19. Fluorescence lifetime measurements in heterogeneous scattering medium

    NASA Astrophysics Data System (ADS)

    Nishimura, Goro; Awasthi, Kamlesh; Furukawa, Daisuke

    2016-07-01

    Fluorescence lifetime in heterogeneous multiple light scattering systems is analyzed by an algorithm without solving the diffusion or radiative transfer equations. The algorithm assumes that the optical properties of medium are constant in the excitation and emission wavelength regions. If the assumption is correct and the fluorophore is a single species, the fluorescence lifetime can be determined by a set of measurements of temporal point-spread function of the excitation light and fluorescence at two different concentrations of the fluorophore. This method is not dependent on the heterogeneity of the optical properties of the medium as well as the geometry of the excitation-detection on an arbitrary shape of the sample. The algorithm was validated by an indocyanine green fluorescence in phantom measurements and demonstrated by an in vivo measurement.

  20. Continuous detection of glucose concentration by fluorescent indicator

    NASA Astrophysics Data System (ADS)

    Shi, Ting; Li, Dachao; Li, Guoqing; Lu, Lou; Xu, Kexin

    Continuous glucose detection has a great significance for diabetics. On the one hand, it can fully reflect the patient blood glucose change level. On the other hand, it can better guide the insulin dosage, and achieve closed-loop control of insulin pump. A continuous detection method of glucose concentration by borate polymer fluorescent indicator is proposed in the paper. The principle of this method is based on the competing reaction between alizarin, glucose and borate polymer. The borate polymer has high specific reaction with glucose, meanwhile reacts with non fluorescent alizarin. The product of the reaction between borate polymer and alizarin is fluorescent, called as fluorescent indicator. When glucose was introduced, the glucose molecules could react with the borate polymer in fluorescent indicator because of the high specificity. This competing process leads to the decomposition of fluorescent indicator into the non-fluorescent alizarin, and the fluorescent intensity gets loss. Therefore, the change of fluorescent intensity can reflect the glucose concentration level. In this method, the fluorescent indicator can well identify the glucose molecules. According to the experiment, we know that there is a high specific and good linear reaction between glucose and borate polymer. The linear fitting is up to 0.97 and the detection limitation can reach to 10 mg/dL. The fluorescent intensity reaches strongest with the optimal proportion of alizarin: borate polymer as 1:3. The reaction of the fluorescent indicator identifying glucose molecules has a good linear relationship, the linear fitting of which can reach to 0.98. The detection limitation can reach to 30 mg/dL, which fulfills the detection requirements of glucose concentration in vivo.

  1. Neoplasm diagnostics based on fluorescence of polymethine dyes

    NASA Astrophysics Data System (ADS)

    Samtsov, Michael P.; Voropay, Eugene S.; Chalov, Vadim N.; Zhavrid, Edvard A.

    2002-05-01

    Investigated polymethine dye TICS has near IR bands of fluorescence and absorption within the transparency region of biological tissues. It can be detected up to 1.5 cm from the surface of the skin. The intensity of a fluorescence signal of TICS is linear for doses up to 2 mg/kg in both tumor and muscle tissue. The ratio of an intensity of light induced fluorescence in tumor tissue to one in muscle tissue is up to 3.6 for rapidly growing tumors. The retention time of TICS is 7 days in all tissues. TICS can be used in the detection of tumor boundaries and tumor internal structure.

  2. Matrix-Metalloproteinases in Head and Neck Carcinoma–Cancer Genome Atlas Analysis and Fluorescence Imaging in Mice

    PubMed Central

    Hauff, Samantha J.; Raju, Sharat C.; Orosco, Ryan K.; Gross, Andrew M.; Diaz-Perez, Julio A.; Savariar, Elamprakash; Nashi, Nadia; Hasselman, Jonathan; Whitney, Michael; Myers, Jeffrey N.; Lippman, Scott M.; Tsien, Roger Y.; Ideker, Trey; Nguyen, Quyen T.

    2015-01-01

    Objective (1) Obtain matrix-metalloproteinase (MMP) expression profiles for head and neck squamous cell carcinoma (HNSCC) specimens from the Cancer Genomic Atlas (TCGA). (2) Demonstrate HNSCC imaging using MMP-cleavable, fluorescently labeled ratiometric activatable cell-penetrating peptide (RACPP). Study Design Retrospective human cohort study; prospective animal study. Setting Translational research laboratory. Subjects and Methods Patient clinical data and mRNA expression levels of MMP genes were downloaded from TCGA data portal. RACPP provides complementary ratiometric fluorescent contrast (increased Cy5 and decreased Cy7 intensities) when cleaved by MMP2/9. HNSCC–tumor bearing mice were imaged in vivo after RACPP injection. Histology was evaluated by a pathologist blinded to experimental conditions. Zymography confirmed MMP-2/9 activity in xenografts. RACPP was applied to homogenized human HNSCC specimens, and ratiometric fluorescent signal was measured on a microplate reader for ex vivo analysis. Results Expression of multiple MMPs including MMP2/9 is greater in patient HNSCC tumors than matched control tissue. In patients with human papilloma virus positive (HPV+) tumors, higher MMP2 and MMP14 expression correlates with worse 5-year survival. Orthotopic tongue HNSCC xenografts showed excellent ratiometric fluorescent labeling with MMP2/9-cleavable RACPP (sensitivity = 95.4%, specificity = 95.0%). Fluorescence ratios were greater in areas of higher tumor burden (P <.03), which is useful for intraoperative margin assessment. Ex vivo, human HNSCC specimens showed greater cleavage of RACPP when compared to control tissue (P = .009). Conclusions Human HNSCC tumors show increased mRNA expression of multiple MMPs including MMP2/9. We used RACPP, a ratiometric fluorescence assay of MMP2/9 activity, to show improved occult tumor identification and margin clearance. Ex vivo assays using RACPP in biopsy specimens may identify patients who will benefit from

  3. A novel pretreatment method of three-dimensional fluorescence data for quantitative measurement of component contents in mixture.

    PubMed

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Three-dimensional fluorescence technique is commonly used for the determination of component contents in the mixture. Fluorescence intensity data are used directly in the fluorescent spectrum data processing method. The relationship between fluorescence intensity values and concentrations is linear. Random noise is inevitable in the process of measuring due to fluorescence spectrometer. The measurement accuracy is reduced due to the existence of noise. To reduce random noise and improve the measurement sensitivity, a novel pretreatment method of three-dimensional fluorescence data is proposed. The method is based on Quasi-Monte-Carlo integral. Due to the increased slope of fluorescence intensity data during the integral, the measurement sensitivity is improved. At the same time, the sum of different exponentials of fluorescence intensity at the points reduces the random noise, so the measurement sensitivity is improved more. The recovery rates of the mixture mixed by gasoline, kerosene and diesel oil are calculated to validate the effectiveness of the method. PMID:25638431

  4. Double-excitation fluorescence spectral imaging: eliminating tissue auto-fluorescence from in vivo PPIX measurements

    NASA Astrophysics Data System (ADS)

    Torosean, Sason; Flynn, Brendan; Samkoe, Kimberley S.; Davis, Scott C.; Gunn, Jason; Axelsson, Johan; Pogue, Brian W.

    2012-02-01

    An ultrasound coupled handheld-probe-based optical fluorescence molecular tomography (FMT) system has been in development for the purpose of quantifying the production of Protoporphyrin IX (PPIX) in aminolevulinic acid treated (ALA), Basal Cell Carcinoma (BCC) in vivo. The design couples fiber-based spectral sampling of PPIX fluorescence emission with a high frequency ultrasound imaging system, allowing regionally localized fluorescence intensities to be quantified [1]. The optical data are obtained by sequential excitation of the tissue with a 633nm laser, at four source locations and five parallel detections at each of the five interspersed detection locations. This method of acquisition permits fluorescence detection for both superficial and deep locations in ultrasound field. The optical boundary data, tissue layers segmented from ultrasound image and diffusion theory are used to estimate the fluorescence in tissue layers. To improve the recovery of the fluorescence signal of PPIX, eliminating tissue autofluorescence is of great importance. Here the approach was to utilize measurements which straddled the steep Qband excitation peak of PPIX, via the integration of an additional laser source, exciting at 637 nm; a wavelength with a 2 fold lower PPIX excitation value than 633nm.The auto-fluorescence spectrum acquired from the 637 nm laser is then used to spectrally decouple the fluorescence data and produce an accurate fluorescence emission signal, because the two wavelengths have very similar auto-fluorescence but substantially different PPIX excitation levels. The accuracy of this method, using a single source detector pair setup, is verified through animal tumor model experiments, and the result is compared to different methods of fluorescence signal recovery.

  5. Monitoring the accumulation of lipofuscin in aging murine eyes by fluorescence spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrated fluorescence of murine eyes is collected as a function of age. This fluorescence is attributed to pigments generally referred to as lipofuscin and is observed to increase with age. No difference in fluorescence intensity is observed between the eyes of males or females. This work p...

  6. Protecting Quantum Dot Fluorescence from Quenching to Achieve a Reliable Automated Multiplex Fluorescence In Situ Hybridization Assay.

    PubMed

    Zhang, Wenjun; Hubbard, Antony; Pang, Lizhen; Parkinson, Leslie Baca; Brunhoeber, Patrick; Wang, Yixin; Tang, Lei

    2015-09-01

    Quantum dots (QD) are novel inorganic fluorochromes that are ultra-bright, photo-stable, and available in multiple, highly-resolvable colors. QDs represent an ideal detection material for in situ hybridization (ISH) because they may provide unprecedented resolution and strong signal intensities that are not attainable with traditional fluorophores. Unfortunately, lack of reliability has been an impediment to widespread adoption of QD-based fluorescence in situ hybridization (QD FISH) technology. By optimizing QD-to-target accessibility, we have developed a QD FISH staining procedure that dramatically improves the reliability of an automated ERG/PTEN QD FISH assay (91% 1st pass rate). Here, we report improvements to the assay that protects QD fluorescence from quenching due to trace amounts of heavy metals and minimizes QD background signals. When using this method, highly-consistent staining was observed with the ERG/PTEN QD FISH assay in prostate tissue. Successful staining of several other clinically-relevant genetic markers was also possible. We further demonstrated improved reliability for determining HER2 gene status in breast cancer, identifying anaplastic lymphoma kinase (ALK) gene break-apart in non-small cell lung cancer, and detecting human papillomavirus 16 (HPV16) in cervical intraepithelial neoplasia. The enhanced QD FISH assay allows for examining complicated genetic aberrances without use of enzymatic amplification. Our optimized methods now demonstrate reliability sufficient for QD FISH technology to be a diagnostic tool in a clinical setting. PMID:26485928

  7. Fluorescence-detected DNA sequencing

    SciTech Connect

    Haugland, R.P.

    1990-01-01

    Our research effort funded by this grant primarily focused on development of suitable fluorescent dyes for DNA sequencing studies. Prior to our efforts, the dyes being sued in commercial DNA sequencers were various versions of fluorescein dyes for the shorter wavelengths and of rhodamine dyes for the longer wavelengths. Our initial goal was to synthesize a set of four dyes that could all be excited by the 488 and 514 nm line of the argon laser lines and that have emission spectra that minimize spectral overlap. The specific result sought was higher fluorescent intensity, particularly of the longest wavelength dyes than was available using existing dyes. Another important property of the desired set of dyes was uniform ionic charge in order to have minimum interference on the electrophoretic mobility during the sequencing. During the period of this grant we prepared and characterized four types of dyes: fluorescent bifluorophores, derivatives of rhodamine dyes, derivatives of rhodol dyes and derivatives of boron dipyrromethene difluoride (BODIPY{trademark}) dyes.

  8. Multiple sort flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  9. Multiple sort flow cytometer

    DOEpatents

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  10. Fluorescence Approaches to Growing Macromolecule Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    Trace fluorescent labeling, typically < 1%, can be a powerful aid in macromolecule crystallization. Precipitation concentrates a solute, and crystals are the most densely packed solid form. The more densely packed the fluorescing material, the more brightly the emission from it, and thus fluorescence intensity of a solid phase is a good indication of whether one has crystals or not. The more brightly fluorescing crystalline phase is easily distinguishable, even when embedded in an amorphous precipitate. This approach conveys several distinct advantages: one can see what the protein is doing in response to the imposed conditions, and distinguishing between amorphous and microcrystalline precipitated phases are considerably simpler. The higher fluorescence intensity of the crystalline phase led us to test if we could derive crystallization conditions from screen outcomes which had no obvious crystalline material, but simply "bright spots" in the precipitated phase. Preliminary results show that the presence of these bright spots, not observable under white light, is indeed a good indicator of potential crystallization conditions.

  11. SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.

    SciTech Connect

    SUTHERLAND,J.C.

    2002-01-19

    Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

  12. A fluorescence spectroscopy study of traditional Chinese medicine Angelica

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyan; Song, Feng; Liu, Shujing; Chen, Guiyang; Wei, Chen; Liu, Yanling; Liu, Jiadong

    2013-10-01

    By measuring the fluorescence spectra of Chinese medicine (CM) Angelica water solutions with different concentrations from 0.025 to 2.5 mg/mL, results showed that the fluorescence intensity was proportional to the concentration. Through fluorescence spectra of Angelica solution under different pH values, results indicated coumarin compounds were the active ingredients of Angelica. We also observed fluorescence quenching of the Angelica solution in the presence of spherical silver nanoparticles with radius of 12 nm. Keeping a certain value for the volume of the silver nanoparticles, the fluorescence intensity at 402 nm was linearly proportional to the Angelica in the range of 1-3 mg/mL.

  13. Tailoring Cyanine Dark States for Improved Optically Modulated Fluorescence Recovery

    PubMed Central

    Mahoney, Daniel P.; Owens, Eric A.; Fan, Chaoyang; Hsiang, Jung-Cheng; Henary, Maged M.; Dickson, Robert M.

    2016-01-01

    Cyanine dyes are well known for their bright fluorescence and utility in biological imaging. Yet, cyanines also readily photoisomerize to produce non-emissive dark states. Co-illumination with a secondary, red-shifted light source on-resonance with the longer wavelength absorbing dark state reverses the photoisomerization and returns the cyanine dye to the fluorescent manifold, increasing steady-state fluorescence intensity. Modulation of this secondary light source dynamically alters emission intensity, drastically improving detection sensitivity and facilitating fluorescence signals to be recovered from otherwise overwhelming background. Red and near-IR emitting cyanine derivatives have been synthesized with varying alkyl chain lengths and halogen substituents to alter dual-laser fluorescence enhancement. Photophysical properties and enhancement with dual laser modulation were coupled with density functional calculations to characterize substituent effects on dark state photophysics, potentially improving detection in high background biological environments. PMID:25763888

  14. Normalized fluorescence lifetime imaging for tumor identification and margin delineation

    NASA Astrophysics Data System (ADS)

    Sherman, Adria J.; Papour, Asael; Bhargava, Siddharth; Taylor, Zach; Grundfest, Warren S.; Stafsudd, Oscar M.

    2013-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a technique that has been proven to produce quantitative and qualitative differentiation and identification of substances with good specificity and sensitivity based on lifetime extracted information. This technique has shown the ability to also differentiate between a wide range of tissue types to identify malignant from benign tissue in vivo and ex vivo. However, the complexity, long duration and effort required to generate this information has limited the adoption of these techniques in a clinical setting. Our group has developed a time-resolved imaging system (patent pending) that does not require the extraction of lifetimes or use of complex curve fitting algorithms to display the needed information. The technique, entitled Lifetime Fluorescence Imaging (LFI, or NoFYI), converts fluorescence lifetime decay information directly into visual contrast. Initial studies using Fluorescein and Rhodamine-B demonstrated the feasibility of this approach. Subsequent studies demonstrated the ability to separate collagen and elastin powders. The technique uses nanosecond pulsed UV LEDs at 375 nm for average illumination intensities of ~4.5 μW on the tissue surface with detection by a gated CCD camera. To date, we have imaged 11 surgical head and neck squamous cell carcinoma and brain cancer biopsy specimens including 5 normal and 6 malignant samples. Images at multiple wavelengths clearly demonstrate differentiation between benign and malignant tissue, which was later confirmed by histology. Contrast was obtained between fluorophores with 35 μm spatial resolution and an SNR of ~30 dB allowing us to clearly define tumor margins in these highly invasive cancers. This method is capable of providing both anatomical and chemical information for the pathologist and the surgeon. These results suggest that this technology has a possible role in identifying tumors in tissue specimens and detecting tumor margins

  15. Influence of Millimeter Electromagnetic Waves on Fluorescence of Water-Saline Solutions of Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Antonyan, A. P.; Shahinyan, M. A.; Mikaelyan, M. S.

    2016-07-01

    The effect of electromagnetic waves of the millimeter region on the conformation and fluorescence characteristics of human serum albumin was studied. It is shown that the irradiation of the albumin solution leads to an increase of the fluorescence intensity depending on the duration of irradiation. At an irradiation frequency of 48 GHz the fluorescence intensity of albumin hardly changes at all, while at 41.8 and 51.8 GHz it increases. It is also shown that when the irradiation frequency is 51.8 GHz, the intensity of the albumin solution fluorescence increases with increase of the irradiation time.

  16. When One Plus One Does Not Equal Two: Fluorescence Anisotropy in Aggregates and Multiply Labeled Proteins

    PubMed Central

    Zolmajd-Haghighi, Zahra; Hanley, Quentin S.

    2014-01-01

    The behavior of fluorescence anisotropy and polarization in systems with multiple dyes is well known. Homo-FRET and its consequent energy migration cause the fluorescence anisotropy to decrease as the number of like fluorophores within energy transfer distance increases. This behavior is well understood when all subunits within a cluster are saturated with fluorophores. However, incomplete labeling as might occur from a mixture of endogenous and labeled monomer units, incomplete saturation of binding sites, or photobleaching produces stochastic mixtures. Models in widespread and longstanding use that describe these mixtures apply an assumption of equal fluorescence efficiency for all sites first stated by Weber and Daniel in 1966. The assumption states that fluorophores have the same brightness when free in solution as they do in close proximity to each other in a cluster. The assumption simplifies descriptions of anisotropy trends as the fractional labeling of the cluster changes. However, fluorophores in close proximity often exhibit nonadditivity due to such things as self-quenching behavior or exciplex formation. Therefore, the anisotropy of stochastic mixtures of fluorophore clusters of a particular size will depend on the behavior of those fluorophores in clusters. We present analytical expressions for fractionally labeled clusters exhibiting a range of behaviors, and experimental results from two systems: an assembled tetrameric cluster of fluorescent proteins and stochastically labeled bovine serum albumin containing up to 24 fluorophores. The experimental results indicate that clustered species do not follow the assumption of equal fluorescence efficiency in the systems studied with clustered fluorophores showing reduced fluorescence intensity. Application of the assumption of equal fluorescence efficiency will underpredict anisotropy and consequently underestimate cluster size in these two cases. The theoretical results indicate that careful selection of

  17. Multispectral imaging fluorescence microscopy for lymphoid tissue analysis

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Mazzinghi, Piero; Romano, Salvatore; Pratesi, Riccardo; Alterini, Renato; Bernabei, Pietro A.; Rigacci, Luigi

    1999-01-01

    Multispectral imaging autofluorescence microscopy (MIAM) is used here for the analysis of lymphatic tissues. Lymph node biopsies, from patients with lympthoadenopathy of different origin have been examined. Natural fluorescence (NF) images of 3 micrometers sections were obtained using three filters peaked at 450, 550 and 680 nm with 50 nm bandpass. Monochrome images were combined together in a single RGB image. NF images of lymph node tissue sections show intense blue-green fluorescence of the connective stroma. Normal tissue shows follicles with faintly fluorescent lymphocytes, as expected fro the morphologic and functional characteristics of these cells. Other more fluorescent cells (e.g., plasma cells and macrophages) are evidenced. Intense green fluorescence if localized in the inner wall of the vessels. Tissues coming from patients affected by Hodgkin's lymphoma show spread fluorescence due to connective infiltration and no evidence of follicle organization. Brightly fluorescent large cells, presumably Hodgkin cells, are also observed. These results indicate that MIAM can discriminate between normal and pathological tissues on the basis of their natural fluorescence pattern, and, therefore, represent a potentially useful technique for diagnostic applications. Analysis of the fluorescence spectra of both normal and malignant lymphoid tissues resulted much less discriminatory than MIAM.

  18. Synthesis of Conjugated Polycyclic Quinoliniums by Rhodium(III)-Catalyzed Multiple C-H Activation and Annulation of Arylpyridiniums with Alkynes.

    PubMed

    Ge, Qingmei; Hu, Yang; Li, Bin; Wang, Baiquan

    2016-05-20

    A simple method for the efficient synthesis of highly substituted pyrido[1,2-a]quinolinium- and quinolizino[3,4,5,6-ija]quinolinium-based polyheteroaromatic compounds via rhodium(III)-catalyzed multiple C-H activation annulation reactions has been developed. Moreover, some of the quinolizino[3,4,5,6-ija]quinolinium salts exhibit intense fluorescence and have potential application in optoelectronic materials. PMID:27137134

  19. Fluorescence spectroscopy for wastewater monitoring: A review.

    PubMed

    Carstea, Elfrida M; Bridgeman, John; Baker, Andy; Reynolds, Darren M

    2016-05-15

    Wastewater quality is usually assessed using physical, chemical and microbiological tests, which are not suitable for online monitoring, provide unreliable results, or use hazardous chemicals. Hence, there is an urgent need to find a rapid and effective method for the evaluation of water quality in natural and engineered systems and for providing an early warning of pollution events. Fluorescence spectroscopy has been shown to be a valuable technique to characterize and monitor wastewater in surface waters for tracking sources of pollution, and in treatment works for process control and optimization. This paper reviews the current progress in applying fluorescence to assess wastewater quality. Studies have shown that, in general, wastewater presents higher fluorescence intensity compared to natural waters for the components associated with peak T (living and dead cellular material and their exudates) and peak C (microbially reprocessed organic matter). Furthermore, peak T fluorescence is significantly reduced after the biological treatment process and peak C is almost completely removed after the chlorination and reverse osmosis stages. Thus, simple fluorometers with appropriate wavelength selectivity, particularly for peaks T and C could be used for online monitoring in wastewater treatment works. This review also shows that care should be taken in any attempt to identify wastewater pollution sources due to potential overlapping fluorophores. Correlations between fluorescence intensity and water quality parameters such as biochemical oxygen demand (BOD) and total organic carbon (TOC) have been developed and dilution of samples, typically up to ×10, has been shown to be useful to limit inner filter effect. It has been concluded that the following research gaps need to be filled: lack of studies on the on-line application of fluorescence spectroscopy in wastewater treatment works and lack of data processing tools suitable for rapid correction and extraction of

  20. Comparative studies on the interaction of cefixime with bovine serum albumin by fluorescence quenching spectroscopy and synchronous fluorescence spectroscopy.

    PubMed

    Zhang, Lihui; Liu, Baosheng; Li, Zhiyun; Guo, Ying

    2015-08-01

    Under simulated physiological conditions, the reaction mechanism between cefixime and bovine serum albumin at different temperatures (293, 303 and 310 K) was investigated using a fluorescence quenching method and synchronous fluorescence method, respectively. The results indicated that the fluorescence intensity and synchronous fluorescence intensity of bovine serum albumin decreased regularly on the addition of cefixime. In addition, the quenching mechanism, binding constants, number of binding sites, type of interaction force and energy-transfer parameters of cefixime with bovine serum albumin obtained from two methods using the same equation were consistent. The results indicated that the synchronous fluorescence spectrometry could be used to study the binding mechanism between drug and protein, and was a useful supplement to the conventional method. PMID:25351241

  1. Laser-induced fluorescence in diagnosis of dental caries

    NASA Astrophysics Data System (ADS)

    Drakaki, Eleni A.; Makropoulou, Mersini I.; Khabbaz, Maruan; Serafetinides, Alexandros A.

    2003-09-01

    The autofluorescence spectra of hard dental tissues, both in normal and pathological areas were investigated in this study. The measurements were performed both on the intact hard tissues of the examined teeth, such as enamel, dentine, cementum, and root canal, and on the tissues pathologically affected by caries (superficial, intermediate, and deep). Various laser wavelengths (337 nm, 488 nm, and 514 nm) were used to irradiate the dental surfaces and a computer-controlled spectrograph captured the fluorescent spectra. The emission signals were stored, measured, analyzed and quantified in terms of wavelength distribution and the relative photon intensity. Results indicated that the fluorescent spectra from healthy enamel, dentine, and cementum were almost identical in form, depending on the excitation wavelength. The intact and affected hard tissues were greatly different in the integral fluorescent intensity. Healthy areas were found to produce the most pronounced fluorescent intensity, whereas the carious regions produced the weaker fluorescent intensity. Independently of the laser excitation wavelength, dentin regions were found to produce the most pronounced fluorescent intensity than any other dental component. The fluorescence signal of carious affected dental structure revealed a reed shifted spectral curve, more pronounced after 488 nm excitation. There was a pronounced red shift for deep caries (crown -- root caries), after ultraviolet laser excitation. Excitation with visible wavelengths did not produce such differences between intact and cervical, deep carious affected tissue. Using a monochromatic light source without any light output at the wavelengths of fluorescence, e.g. a laser with the appropriate filters, the difference in fluorescence between intact and carious enamel was generally easy to observe. Finally, we found that the blue line of an argon ion laser is preferable for superficial caries detection, while the ultraviolet emitting nitrogen

  2. Tryptophan content for monitoring breast cancer cell aggressiveness by native fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Pu, Yang; Xue, Jianpeng; Pratavieira, Sebastião.; Xu, Baogang; Achilefu, Samuel; Alfano, R. R.

    2014-03-01

    This study shows tryptophan as the key native marker in cells to determine the level of aggressive cancer in breast cell lines using native fluorescence spectroscopy. An algorithm based on the ratio of tryptophan fluorescence intensity at 340 nm to intensity at 460 nm is associated with aggressiveness of the cancer cells. The higher the ratio is, the more aggressive the tumor towards metastasis.

  3. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  4. [4-(n-Dimethylaminostyryl)-1-methylpyridinium fluorescence in a living cell].

    PubMed

    Morozova, G I; Dobretsov, G E; Dubur, G Ia; Dubur, R R; Golitsyn, V M

    1981-08-01

    A fluorescent compound 4-(p-dimethylinostyryl)-1-methylpyridinium (DSM) has been synthesized, having the absorption maximum about 450 nm and the fluorescence maximum about 590 nm in a water solution. A considerable increase of its fluorescence intensity is found in DNA solutions. The binding of DSM with membranes leads to a shift of its fluorescence maximum to 550 nm. Polychromatic properties of DSM (green fluorescence in membranes, rich yellow - in energized mitochondria, red-orange - in nuclei) are found in DSM stained cells. DSM fluorescence is sensitive to changes in the energized state of cells; the uncupler dinitrophenol or respiration inhibitors-cyanide and amital-cause a strong decrease in the DSM fluorescence intensity in mitochondria. It is ascertained that DSM itself has a low toxicity with respect to cell energy: it had no influence on the mobility of Tetrahymena pyriformis during 23 hours after staining. Thus, DSM may be used as a fluorescent probe for live cells. PMID:7029833

  5. Botany: floral fluorescence effect.

    PubMed

    Gandía-Herrero, Fernando; García-Carmona, Francisco; Escribano, Josefa

    2005-09-15

    The way flowers appear to insects is crucial for pollination. Here we describe an internal light-filtering effect in the flowers of Mirabilis jalapa, in which the visible fluorescence emitted by one pigment, a yellow betaxanthin, is absorbed by another, a violet betacyanin, to create a contrasting fluorescent pattern on the flower's petals. This finding opens up new possibilities for pollinator perception as fluorescence has not previously been considered as a potential signal in flowers. PMID:16163341

  6. Fluorescent minerals, a review

    USGS Publications Warehouse

    Modreski, P.J.; Aumente-Modreski, R.

    1996-01-01

    Fluorescent minerals are more than just an attractive novelty, and collecting them is a speciality for thousands of individuals who appreciate their beauty, rarity, and scientific value. Fluorescent properties can be used as an aid to mineral identification, locality determination, and distinction between natural and synthetic gemstones. This article gives an overview of those aspects of fluorescence that are of most interest to collectors, hobbyists, and mineralogists. -from Authors

  7. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  8. Chemiluminescence characteristics of cumarin derivatives as blue fluorescers in peroxyoxalate-hydrogen peroxide system.

    PubMed

    Chaichi, Mohammad Javad; Karami, Ali Reza; Shockravi, Abbas; Shamsipur, Mojtaba

    2003-04-01

    The chemiluminescence characteristics of seven different cumarin derivatives were studied in detail. The fluorescence and chemiluminescence spectra were compared; all cumarins used were found to act as blue fluorescers. The intensity and kinetic parameters for the chemiluminescent systems were evaluated from computer fitting of the resulting intensity-time plots. Among different cumarin derivatives used, 7-amino-4-trifluoromethylcumarin revealed the most promising characteristics as an efficient blue fluorescent emitter. PMID:12659882

  9. Chemiluminescence characteristics of cumarin derivatives as blue fluorescers in peroxyoxalate-hydrogen peroxide system

    NASA Astrophysics Data System (ADS)

    Chaichi, Mohammad Javad; Karami, Ali Reza; Shockravi, Abbas; Shamsipur, Mojtaba

    2003-04-01

    The chemiluminescence characteristics of seven different cumarin derivatives were studied in detail. The fluorescence and chemiluminescence spectra were compared; all cumarins used were found to act as blue fluorescers. The intensity and kinetic parameters for the chemiluminescent systems were evaluated from computer fitting of the resulting intensity-time plots. Among different cumarin derivatives used, 7-amino-4-trifluoromethylcumarin revealed the most promising characteristics as an efficient blue fluorescent emitter.

  10. Fluorescence sorting instrument for the removal of aflatoxin from large numbers of peanuts

    NASA Astrophysics Data System (ADS)

    Pelletier, M. J.; Spetz, W. L.; Aultz, T. R.

    1991-08-01

    A device capable of measuring fluorescence intensities from peanut surfaces and physically rejecting peanuts having undesired fluorescence properties is described. The device operates at a feed rate of 22 000 peanut halves per hour. The entire surface of each peanut is examined as 10 to 20 discrete spatial regions. Fluorescence intensities from each spatial region of each peanut are used to make accept/reject decisions in real time and are stored on an optical disk for off-line analysis.

  11. Absolute and relative quantification and calibration for sectioning fluorescence microscopy using standardized uniform fluorescent layers and SIPchart-based correction procedures

    NASA Astrophysics Data System (ADS)

    Zwier, J. M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G. J.

    2007-02-01

    The total or integrated fluorescence intensity of a through-focus series of a thin standardized uniform fluorescent or calibration layer is shown to be suitable for image intensity correction and calibration in sectioning microscopy. This integrated intensity can be derived from the earlier introduced SectionedImagingProperty or SIPcharts, derived from the 3D layer datasets. By correcting the 3D image of an object with the 3D image of the standardized uniform fluorescent layer obtained under identical conditions one is able to express the object fluorescence in units fluorescence of the calibration layer. With object fluorescence intensities in fluorescence layer unit's or FLU's the object image intensities becomes independent of microscope system and imaging conditions. A direct result is that the often-appreciable lateral intensity variations present in confocal microscopy are eliminated (shading correction). Of more general value is that images obtained with different objectives, magnifications or from different microscope systems can be quantitatively related to each other. The effectiveness of shading correction and relating images obtained under various microscope conditions is demonstrated on images of standard fluorocent beads. Expressing the object fluorescence in FLU units seems to be a promising approach for general quantification of sectioning imaging enabling cross-correlation of imaging results over time and between imaging systems.

  12. Fluorescence characterization of cross flow ultrafiltration derived freshwater colloidal and dissolved organic matter.

    PubMed

    Liu, Ruixia; Lead, Jamie R; Baker, Andy

    2007-07-01

    3-D fluorescence excitation-emission matrix (EEM) spectrophotometry was applied to investigate the fluorescence characterization of colloidal organic matter (COM) and truly dissolved organic matter (DOM) from an urban lake and a rural river fractionated by the cross flow ultrafiltration (CFUF) process with a 1kDa membrane. Relatively high tryptophan-like fluorescence intensity is found in the urban water, although the fluorescence of both water samples is mainly dominated by humic/fulvic-like fluorophores. During CFUF processing, the fluorescence intensities of humic/fulvic-like materials in the retentate increased rapidly, but a slight increase is also observed in the permeate fluorescence intensity. Very different ultrafiltration behaviour occurred with respect to the tryptophan-like fluorophore, where both permeate and retentate fluorescence intensities increase substantially at the beginning of the CFUF process, then tend to remain constant at high concentration factor (cf) values. Comparison with tryptophan standards demonstrates that freshwater tryptophan-like fluorescence is not dissolved and 'free', but is, in part, colloidal and related to the ultrafiltration behaviour of fulvic/humic-like matter. A good linear relationship between the retentate humic/fulvic-like fluorescence intensity and organic carbon concentration further reveals that fluorescent humic/fulvic-like substances are the dominant contributors to colloidal organic carbon, mainly in the colloidal fraction. PMID:17350076

  13. Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas.

    PubMed

    Alexander, Nathan S; Palczewska, Grazyna; Palczewski, Krzysztof

    2015-08-01

    Automated image segmentation is a critical step toward achieving a quantitative evaluation of disease states with imaging techniques. Two-photon fluorescence microscopy (TPM) has been employed to visualize the retinal pigmented epithelium (RPE) and provide images indicating the health of the retina. However, segmentation of RPE cells within TPM images is difficult due to small differences in fluorescence intensity between cell borders and cell bodies. Here we present a semi-automated method for segmenting RPE cells that relies upon multiple weak features that differentiate cell borders from the remaining image. These features were scored by a search optimization procedure that built up the cell border in segments around a nucleus of interest. With six images used as a test, our method correctly identified cell borders for 69% of nuclei on average. Performance was strongly dependent upon increasing retinosome content in the RPE. TPM image analysis has the potential of providing improved early quantitative assessments of diseases affecting the RPE. PMID:26309765

  14. Fluorescence imaging of early lung cancer

    NASA Astrophysics Data System (ADS)

    Lam, Stephen; MacAulay, Calum E.; Le Riche, Jean C.; Ikeda, Norihiko; Palcic, Branko

    1995-01-01

    The performance of a fluorescence imaging device was compared with conventional white-light bronchoscopy in 100 patients with lung cancer, 46 patients with resected State I nonsmall cell lung cancer, 10 patients with head and neck cancer, and 67 volunteers who had smoked at least one pack of cigarettes per day for twenty-five years or more. Using differences in tissue autofluorescence between premalignant, malignant and normal tissues, fluorescence bronchoscopy was found to detect more than twice as many moderate-severe dysplasia and carcinoma in situ sites than conventional white-light bronchoscopy. The use of fluorescence imaging to detect small peripheral lung nodules was investigated in a micro metastatic lung model of mice implanted with Lewis lung tumor cells. Fluorescence imaging was found to be able to detect small malignant lung lesions. The use of (delta) -aminolevulinic acid (ALA) to enhance fluorescence detection of CIS was investigated in a patient after oral administration of 60 mg/kg of ALA four hours prior to bronchoscopy, although ALA enhanced the tumor's visibility, multiple sites of false positive fluorescence were observed in areas of inflammation or metaplasia.

  15. Canopy Level Solar Induced Fluorescence for Vegetation in Controlled Experiments

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Campbell, P. K. Entcheva

    2007-01-01

    Solar induced chlorophyll fluorescence (SIF) was retrieved from high resolution reflectance spectra acquired one meter above saplings of three deciduous tree species during springtime (three weeks after leaf flush) and in late summer when foliage was mature. SIF was determined by application of the Fraunhofer Line Depth (FLD) Principal to above-canopy spectra acquired with an Analytical Spectral Devices (ASD) Fieldspec spectroradiometer (3.2 nm resolution with 1.2 nm sampling interval). SIF retrievals were made at the two atmospheric oxygen (O2) absorption features that occur in the chlorophyll fluorescence (ChlF) region (660 -780 nm). These telluric features are 02V, the broader and deeper feature centered at 760 nm, but located on the shoulder of the far-red ChlF peak at 740 nm; and 023, a narrow feature centered at 688 nm that is positioned near the red ChlF peak at 685 nm. Supporting, coincident leaf level fluorescence, reflectance, photochemical and other measurements were also made. At the leaf level, these measurements included in situ photosynthetic capacity (Pmax) and light adapted total chlorophyll fluorescence (Fs') collected at steady state under high light and controlled chamber conditions (e.g., temperature, PAR, humidity, and COz); optical properties (reflectance, transmittance, absorptance); chlorophyll and carotenoid content; specific leaf mass; carbon (C) and nitrogen (N) content; fluorescence emission spectra at multiple excitation wavelengths; the ChlF contribution to red (R) and far-red (FR) reflectance; fluorescence imagery; and fluorescence excitation-emission matrices (EEMs). The tree species examined were tulip poplar (Liriodendron tulipifera L.), red maple (Acer rubrum L.), and sweetgum (Liquidambar styraczflua L.), and each had been provided four levels of N augmentation (0, 19, 37, and 75 kg Nhectare seasonally) to simulate atmospheric deposition from air pollution. Whole-plant SIF measurements of these species were compared with SIF

  16. Conditions for NIR fluorescence-guided tumor resectioning in preclinical lung cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Minji; Quan, Yuhua; Choi, Byeong Hyun; Choi, Yeonho; Kim, Hyun Koo; Kim, Beop-Min

    2016-03-01

    Pulmonary nodule could be identified by intraoperative fluorescence imaging system from systemic injection of indocyanine green (ICG) which achieves enhanced permeability and retention (EPR) effects. This study was performed to evaluate optimal injection time of ICG for detecting cancer during surgery in rabbit lung cancer model. VX2 carcinoma cell was injected in rabbit lung under fluoroscopic computed tomography-guidance. Solitary lung cancer was confirmed on positron emitting tomography with CT (PET/CT) 2 weeks after inoculation. ICG was administered intravenously and fluorescent intensity of lung tumor was measured using the custom-built intraoperative color and fluorescence merged imaging system (ICFIS) for 15 hours. Solitary lung cancer was resected through thoracoscopic version of ICFIS. ICG was observed in all animals. Because Lung has fast blood pulmonary circulation, Fluorescent signal showed maximum intensity earlier than previous studies in other organs. Fluorescent intensity showed maximum intensity within 6-9 hours in rabbit lung cancer. Overall, Fluorescent intensity decreased with increasing time, however, all tumors were detectable using fluorescent images until 12 hours. In conclusion, while there had been studies in other organs showed that optimal injection time was at least 24 hours before operation, this study showed shorter optimal injection time at lung cancer. Since fluorescent signal showed the maximum intensity within 6-9 hours, cancer resection could be performed during this time. This data informed us that optimal injection time of ICG should be evaluated in each different solid organ tumor for fluorescent image guided surgery.

  17. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    PubMed

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer. PMID:15223288

  18. A Method for Chlorophyll Fluorescence Imaging Control of the Vegetation under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Krumov, A.; Vassilev, V.; Vassilev, N.

    , indicating the biostate of the plant cells, and of 690nm and 740nm, indicating the content of the chlorophyll, i.e. the physiological vitality. discontinuous spectrum light flux, two approaches can be applied. First, several light sources can be used in combination with corresponding optical filters to produce the required spectral sub-fluxes, fitted between the frequency bands in which the fluorescence will be measured. The second approach is to use diffracted light from a single source and to blank the required bands in its spectrum. In both cases the mixing of the bands is done by multiple diffusion reflection. The fluorescence detection is realized by a wide frame digital (14-16 bit) CCD sensor. A sequential switching of the narrow band optical filters is used to collect the images, representing the metric characteristics for the intensity and the spatial resolution of the fluorescent light. The images obtained without spectral filters, contain information for the position, size and the structure/texture of the plants. Adding an optical system for collection images from two different view angles allows 3D interpretation of the data. multifactor analysis of the physiological vegetation activities. The influence of the stress factors can be detected earlier and faster than by conventional methods. The express information achieved can be used in addition to improve and control the spacecraft systems supporting the vegetation chamber bio-environment conditions during long-term flights. The system can be applied for on-ground laboratory studies as well.

  19. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  20. Measurement of Fluorescence Spectra from Ambient Aerosol Particles Using Laser-induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.; Nakamura, T.; Moteki, N.; Takegawa, N.

    2011-12-01

    To obtain the information of composition of organic aerosol particles in atmosphere, we developed an instrument using laser-induced fluorescence (LIF) technique. To measure the fluorescence from a particle, we employed two lasers. Scattering light signal derived from a single particle upon crossing the 635nm-CW laser triggers the 266nm-pulsed laser to excite the particle. Fluorescence from the particle in the wavelength range 300-600nm is spectrally dispersed by a grating spectrometer and then detected by a 32-Ch photo-multiplier tube(PMT). The aerosol stream is surrounded by a coaxial sheath air flow and delivered to the optical chamber at atmospheric pressure. Using PSL particles with known sizes, we made a calibration curve to estimate particle size from scattering light intensity. With the current setup of the instrument we are able to detect both scattering and fluorescence from particles whose diameters are larger than 0.5um. Our system was able to differentiate particles composed of mono-aromatic species (e.g. Tryptophan) from those of Riboflavin, by their different fluorescence wavelengths. Also, measurements of fluorescence spectra of ambient particles were demonstrated in our campus in Yokosuka city, facing Tokyo bay in Japan. We obtained several types of florescence spectra in the 8 hours. Classification of the measured fluorescence spectra will be discussed in the presentation.

  1. Measuring initiator caspase activation by bimolecular fluorescence complementation.

    PubMed

    Parsons, Melissa J; Bouchier-Hayes, Lisa

    2015-01-01

    Initiator caspases, including caspase-2, -8, and -9, are activated by the proximity-driven dimerization that occurs after their recruitment to activation platforms. Here we describe the use of caspase bimolecular fluorescence complementation (caspase BiFC) to measure this induced proximity. BiFC assays rely on the use of a split fluorescent protein to identify protein-protein interactions in cells. When fused to interacting proteins, the fragments of the split fluorescent protein (which do not fluoresce on their own) can associate and fluoresce. In this protocol, we use the fluorescent protein Venus, a brighter and more photostable variant of yellow fluorescent protein (YFP), to detect the induced proximity of caspase-2. Plasmids encoding two fusion products (caspase-2 fused to either the amino- or carboxy-terminal halves of Venus) are transfected into cells. The cells are then treated with an activating (death) stimulus. The induced proximity (and subsequent activation) of caspase-2 in the cells is visualized as Venus fluorescence. The proportion of Venus-positive cells at a single time point can be determined using fluorescence microscopy. Alternatively, the increase in fluorescence intensity over time can be evaluated by time-lapse confocal microscopy. The caspase BiFC strategy described here should also work for other initiator caspases, such as caspase-8 or -9, as long as the correct controls are used. PMID:25561623

  2. VISUALIZATION OF MOLECULAR INTERACTIONS BY FLUORESCENCE COMPLEMENTATION

    PubMed Central

    Kerppola, Tom K.

    2008-01-01

    The visualization of protein complexes in living cells enables validation of protein interactions in their normal environment and determination of their subcellular localization. The bimolecular fluorescence complementation (BiFC) assay has been used to visualize interactions among multiple proteins in many cell types and organisms. This assay is based on the association between two fluorescent-protein fragments when they are brought together by an interaction between proteins fused to the fragments. Modified forms of this assay have been used to visualize the competition between alternative interaction partners and the covalent modification of proteins by ubiquitin family peptides. PMID:16625152

  3. Simplified and optimized multispectral imaging for 5-ALA-based fluorescence diagnosis of malignant lesions.

    PubMed

    Minamikawa, Takeo; Matsuo, Hisataka; Kato, Yoshiyuki; Harada, Yoshinori; Otsuji, Eigo; Yanagisawa, Akio; Tanaka, Hideo; Takamatsu, Tetsuro

    2016-01-01

    5-aminolevulinic acid (5-ALA)-based fluorescence diagnosis is now clinically applied for accurate and ultrarapid diagnosis of malignant lesions such as lymph node metastasis during surgery. 5-ALA-based diagnosis evaluates fluorescence intensity of a fluorescent metabolite of 5-ALA, protoporphyrin IX (PPIX); however, the fluorescence of PPIX is often affected by autofluorescence of tissue chromophores, such as collagen and flavins. In this study, we demonstrated PPIX fluorescence estimation with autofluorescence elimination for 5-ALA-based fluorescence diagnosis of malignant lesions by simplified and optimized multispectral imaging. We computationally optimized observation wavelength regions for the estimation of PPIX fluorescence in terms of minimizing prediction error of PPIX fluorescence intensity in the presence of typical chromophores, collagen and flavins. By using the fluorescence intensities of the optimized wavelength regions, we verified quantitative detection of PPIX fluorescence by using chemical mixtures of PPIX, flavins, and collagen. Furthermore, we demonstrated detection capability by using metastatic and non-metastatic lymph nodes of colorectal cancer patients. These results suggest the potential and usefulness of the background-free estimation method of PPIX fluorescence for 5-ALA-based fluorescence diagnosis of malignant lesions, and we expect this method to be beneficial for intraoperative and rapid cancer diagnosis. PMID:27149301

  4. Simplified and optimized multispectral imaging for 5-ALA-based fluorescence diagnosis of malignant lesions

    PubMed Central

    Minamikawa, Takeo; Matsuo, Hisataka; Kato, Yoshiyuki; Harada, Yoshinori; Otsuji, Eigo; Yanagisawa, Akio; Tanaka, Hideo; Takamatsu, Tetsuro

    2016-01-01

    5-aminolevulinic acid (5-ALA)-based fluorescence diagnosis is now clinically applied for accurate and ultrarapid diagnosis of malignant lesions such as lymph node metastasis during surgery. 5-ALA-based diagnosis evaluates fluorescence intensity of a fluorescent metabolite of 5-ALA, protoporphyrin IX (PPIX); however, the fluorescence of PPIX is often affected by autofluorescence of tissue chromophores, such as collagen and flavins. In this study, we demonstrated PPIX fluorescence estimation with autofluorescence elimination for 5-ALA-based fluorescence diagnosis of malignant lesions by simplified and optimized multispectral imaging. We computationally optimized observation wavelength regions for the estimation of PPIX fluorescence in terms of minimizing prediction error of PPIX fluorescence intensity in the presence of typical chromophores, collagen and flavins. By using the fluorescence intensities of the optimized wavelength regions, we verified quantitative detection of PPIX fluorescence by using chemical mixtures of PPIX, flavins, and collagen. Furthermore, we demonstrated detection capability by using metastatic and non-metastatic lymph nodes of colorectal cancer patients. These results suggest the potential and usefulness of the background-free estimation method of PPIX fluorescence for 5-ALA-based fluorescence diagnosis of malignant lesions, and we expect this method to be beneficial for intraoperative and rapid cancer diagnosis. PMID:27149301

  5. On the Intensity Profile of Electric Lamps and Light Bulbs

    ERIC Educational Resources Information Center

    Bacalla, Xavier; Salumbides, Edcel John

    2013-01-01

    We demonstrate that the time profile of the light intensity from domestic lighting sources exhibits simple yet interesting properties that foster lively student discussions. We monitor the light intensity of an industrial fluorescent lamp (also known as TL) and an incandescent bulb using a photodetector connected to an oscilloscope. The light…

  6. Novel functionalized fluorescent polymeric nanoparticles for immobilization of biomolecules

    NASA Astrophysics Data System (ADS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, C. K. V. Zainul; Singh, Harpal

    2013-07-01

    Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles.Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable

  7. The development of attenuation compensation models of fluorescence spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Dremin, Victor V.; Zherebtsov, Evgeny A.; Rafailov, Ilya E.; Vinokurov, Andrey Y.; Novikova, Irina N.; Zherebtsova, Angelina I.; Litvinova, Karina S.; Dunaev, Andrey V.

    2016-04-01

    This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.

  8. Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.

    2015-02-01

    The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.

  9. Fluorescence in insects

    NASA Astrophysics Data System (ADS)

    Welch, Victoria L.; Van Hooijdonk, Eloise; Intrater, Nurit; Vigneron, Jean-Pol

    2012-10-01

    Fluorescent molecules are much in demand for biosensors, solar cells, LEDs and VCSEL diodes, therefore, considerable efforts have been expended in designing and tailoring fluorescence to specific technical applications. However, naturally occurring fluorescence of diverse types has been reported from a wide array of living organisms: most famously, the jellyfish Aequorea victoria, but also in over 100 species of coral and in the cuticle of scorpions, where it is the rule, rather than the exception. Despite the plethora of known insect species, comparatively few quantitative studies have been made of insect fluorescence. Because of the potential applications of natural fluorescence, studies in this field have relevance to both physics and biology. Therefore, in this paper, we review the literature on insect fluorescence, before documenting its occurrence in the longhorn beetles Sternotomis virescens, Sternotomis variabilis var. semi rufescens, Anoplophora elegans and Stellognatha maculata, the tiger beetles Cicindela maritima and Cicindela germanica and the weevil Pachyrrhynchus gemmatus purpureus. Optical features of insect fluorescence, including emitted wavelength, molecular ageing and naturally occurring combinations of fluorescence with bioluminescence and colour-producing structures are discussed.

  10. Frequency Division Multiplexed Multichannel High-Speed Fluorescence Confocal Microscope

    PubMed Central

    Wu, Fei; Zhang, Xueqian; Cheung, Joseph Y.; Shi, Kebin; Liu, Zhiwen; Luo, Claire; Yin, Stuart; Ruffin, Paul

    2006-01-01

    In this article, we report a new type of fluorescence confocal microscope: frequency division multiplexed multichannel fluorescence confocal microscope, in which we encode the spatial location information into the frequency domain. In this microscope, the exciting laser beam is first split into multiple beams and each beam is modulated at a different frequency. These multiple beams are focused at different locations of the target to form multiple focal points, which further generate multiple fluorescent emission spots. The fluorescent emissions from different focal points are also modulated at different frequencies, because the exciting beams are modulated at different frequencies (or difference carrier frequency). Then, all the fluorescent emissions (modulated at different frequencies) are collected together and detected by a highly sensitive, large-dynamic-range photomultiplier tube. By demodulating the detected signal (i.e., via the Fourier transform), we can distinguish the fluorescent light emitted from the different locations by the corresponding carrier frequencies. The major advantage of this unique fluorescence confocal microscope is that it not only has a high sensitivity because of the use of photomultiplier tube but also can get multiple-point data simultaneously, which is crucial to study the dynamic behavior of many biological process. As an initial step, to verify the feasibility of the proposed multichannel confocal microscope, we have developed a two-channel confocal fluorescence microscope and applied it to study the dynamic behavior of the changes of the calcium ion concentration during the single cardiac myocyte contraction. Our preliminary experimental results demonstrated that we could indeed realize multichannel confocal fluorescence microscopy by utilizing the frequency division multiplexed microscope, which could become an effective tool to study the dynamic behavior of many biological processes. PMID:16815894

  11. Mapping membrane protein structure with fluorescence

    PubMed Central

    Taraska, Justin W.

    2012-01-01

    Membrane proteins regulate many cellular processes including signaling cascades, ion transport, membrane fusion, and cell-to-cell communications. Understanding the architecture and conformational fluctuations of these proteins is critical to understanding their regulation and functions. Fluorescence methods including intensity mapping, fluorescence resonance energy transfer, and photo-induced electron transfer, allow for targeted measurements of domains within membrane proteins. These methods can reveal how a protein is structured and how it transitions between different conformational states. Here, I will review recent work done using fluorescence to map the structures of membrane proteins, focusing on how each of these methods can be applied to understanding the dynamic nature of individual membrane proteins and protein complexes. PMID:22445227

  12. Multiband fluorescence spectral properties of QMOM

    NASA Astrophysics Data System (ADS)

    Tomin, V. I.; Jaworski, R.

    2011-02-01

    The spectral characteristics of the 1-methyl-2-(4-methoxyphenyl)-3-hydroxy-4(1 H)-quinolone (QMOM) dye with dual fluorescence in acetonitrile were studied under selective excitation in a wide temperature range. This dye is a structural analog of 3-hydroxyflavone and exhibits excited-state proton transfer, which forms a fluorescent tautomeric form, while the solution is characterized by dual fluorescence. The thermal behavior of the relative band intensities revealed the kinetic character of the proton transfer. The third form showed itself as a maximum between the bands of the normal and tautomeric forms upon excitation in several regions of the absorption spectrum and became dominant in solution at 60-80°C. The characteristics of the third form were studied. Additional experiments showed that this was possibly the anionic form of the dye.

  13. Synthesis and Characterization of Far-Red/NIR-Fluorescent BODIPY Dyes, Solid-State