Science.gov

Sample records for fluorescence lifetime imaging

  1. Fluorescence lifetime imaging of coral fluorescent proteins.

    PubMed

    Cox, Guy; Matz, Mikhail; Salih, Anya

    2007-03-01

    Corals, like many other coelenterates, contain fluorescent pigments that show considerable homology with the well known green fluorescent protein of the jellyfish Aequoria. In corals, unlike jellyfish, multiple proteins are present and the range of excitations and emissions suggest the possibility of energy transfer. The occurrence of Förster resonant energy transfer (FRET) between fluorescent proteins in corals has already been reported and time-resolved spectra have shown the effect on fluorescent lifetime, but without any spatial resolution. Lifetime confocal microscopy offers lower time resolution but excellent spatial resolution. Lifetimes of the isolated A. millepora pigments amilFP490, amilFP504, and amilFP593 (names indicate emission peaks) were 2.8, 2.9, and 2.9 ns, respectively. In the coral sample, imaging the entire emission spectrum from 420 nm, the mean lifetime was reduced to 1.5 ns, implying that FRET was occurring. Looking just at the fluorescence from FRET donors the lifetime was even shorter, at 1.3 ns, supporting this interpretation. In contrast, no reduction in lifetime is seen in the coral Euphyllia ancora, where the pigment distribution also suggests that the pigments are unlikely to be involved in photoprotection. This study set out to determine the extent of FRET between pigments in two corals, Acropora millepora and Euphyllia, ancora which differ in the arrangement of their pigments and hence possibly in pigment function. PMID:17279514

  2. Fluorescence Lifetime Imaging of Apoptosis

    PubMed Central

    Xiao, Annie; Gibbons, Anne E.; Luker, Kathryn E.; Luker, Gary D.

    2015-01-01

    Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity. PMID:26771007

  3. Fluorescence lifetime imaging of skin cancer

    NASA Astrophysics Data System (ADS)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  4. Combined fluorescence and phosphorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shcheslavskiy, V. I.; Neubauer, A.; Bukowiecki, R.; Dinter, F.; Becker, W.

    2016-02-01

    We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.

  5. Hadamard-transform fluorescence-lifetime imaging.

    PubMed

    Mizuno, Takahiko; Iwata, Tetsuo

    2016-04-18

    We discuss a Hadamard-transform-based fluorescence-lifetime-imaging (HT-FLI) technique for fluorescence-lifetime-imaging microscopy (FLIM). The HT-FLI uses a Fourier-transform phase-modulation fluorometer (FT-PMF) for fluorescence-lifetime measurements, where the modulation frequency of the excitation light is swept linearly in frequency from zero to a specific maximum during a fixed duration of time. Thereafter, fluorescence lifetimes are derived through Fourier transforms for the fluorescence and reference waveforms. The FT-PMF enables the analysis of multi-component samples simultaneously. HT imaging uses electronic exchange of HT illumination mask patterns, and a high-speed, high-sensitivity photomultiplier, to eliminate frame-rate issues that accompany two-dimensional image detectors. PMID:27137259

  6. Fluorescence lifetime imaging in turbid media

    NASA Astrophysics Data System (ADS)

    O'Leary, M. A.; Boas, D. A.; Li, X. D.; Chance, B.; Yodh, A. G.

    1996-01-01

    The lifetime of a fluorophore generally varies in different environments, making the molecule a sensitive indicator of tissue oxygenation, pH, and glucose. However, lifetime measurements are complicated when the fluorophore is embedded in an optically thick, highly scattering medium such as human tissue. We formulate the inverse problem for fluorescence lifetime tomography using diffuse photon density waves, and we demonstrate the technique by deriving spatial images of heterogeneous fluorophore distribution and lifetime, using simulated measurements in heterogeneous turbid media.

  7. High frame rate fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Agronskaia, A. V.; Tertoolen, L.; Gerritsen, H. C.

    2003-07-01

    A fast time-domain based fluorescence lifetime imaging (FLIM) microscope is presented that can operate at frame rates of hundreds of frames per second. A beam splitter in the detection path of a wide-field fluorescence microscope divides the fluorescence in two parts. One part is optically delayed with respect to the other. Both parts are viewed with a single time-gated intensified CCD camera with a gate width of 5 ns. The fluorescence lifetime image is obtained from the ratio of these two images. The fluorescence lifetime resolution of the FLIM microscope is verified both with dye solutions and fluorescent latex beads. The fluorescence lifetimes obtained from the reference specimens are in good agreement with values obtained from time correlated single photon counting measurements on the same specimens. The acquisition speed of the FLIM system is evaluated with a measurement of the calcium fluxes in neonatal rat myocytes stained with the calcium probe Oregon Green 488-Bapta. Fluorescence lifetime images of the calcium fluxes related to the beating of the myocytes are acquired with frame rates of up to 100 Hz.

  8. Fluorescence lifetime-based optical molecular imaging.

    PubMed

    Kumar, Anand T N

    2011-01-01

    Fluorescence lifetime is a powerful contrast mechanism for in vivo molecular imaging. In this chapter, we describe instrumentation and methods to optimally exploit lifetime contrast using a time domain fluorescence tomography system. The key features of the system are the use of point excitation in free-space using ultrashort laser pulses and non-contact detection using a gated, intensified CCD camera. The surface boundaries of the imaging volume are acquired using a photogrammetric camera integrated with the imaging system, and implemented in theoretical models of light propagation in biological tissue. The time domain data are optimally analyzed using a lifetime-based tomography approach, which is based on extracting a tomographic set of lifetimes and decay amplitudes from the long time decay portion of the time domain data. This approach improves the ability to locate in vivo targets with a resolution better than conventional optical methods. The application of time domain lifetime multiplexing and tomography are illustrated using phantoms and tumor bearing mouse model of breast adenocarcinoma. In the latter application, the time domain approach allows an improved detection of fluorescent protein signals from intact nude mice in the presence of background autofluorescence. This feature has potential applications for longitudinal pre-clinical evaluation of drug treatment response as well as to address fundamental questions related to tumor physiology and metastasis. PMID:21153381

  9. Molecular Probes for Fluorescence Lifetime Imaging

    PubMed Central

    Sarder, Pinaki; Maji, Dolonchampa; Achilefu, Samuel

    2015-01-01

    Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely rely on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems, and outlines areas of potential high impact in the future. PMID:25961514

  10. Hyperspectral fluorescence lifetime imaging for optical biopsy.

    PubMed

    Nie, Zhaojun; An, Ran; Hayward, Joseph E; Farrell, Thomas J; Fang, Qiyin

    2013-09-01

    A hyperspectral fluorescence lifetime imaging (FLIM) instrument is developed to study endogenous fluorophores in biological tissue as an optical biopsy tool. This instrument is able to spectrally, temporally, and spatially resolve fluorescence signal, thus providing multidimensional information to assist clinical tissue diagnosis. An acousto-optic tunable filter (AOTF) is used to realize rapid wavelength switch, and a photomultiplier tube and a high-speed digitizer are used to collect the time-resolved fluorescence decay at each wavelength in real time. The performance of this instrument has been characterized and validated on fluorescence tissue phantoms and fresh porcine skin specimens. This dual-arm AOTF design achieves high spectral throughput while allowing microsecond nonsequential, random wavelength switching, which is highly desirable for time-critical applications. In the results reported here, a motorized scanning stage is used to realize spatial scanning for two-dimensional images, while a rapid beam steering technique is feasible and being developed in an ongoing project. PMID:24002188

  11. Fluorescence lifetime imaging of oxygen in dental biofilm

    NASA Astrophysics Data System (ADS)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  12. Fluorescence lifetime to image epidermal ionic concentrations

    NASA Astrophysics Data System (ADS)

    Behne, Martin J.; Barry, Nicholas P.; Moll, Ingrid; Gratton, Enrico; Mauro, Theodora M.

    2004-09-01

    Measurements of ionic concentrations in skin have traditionally been performed with an array of methods which either did not reveal detailed localization information, or only provided qualitative, not quantitative information. FLIM combines a number of advantages into a method ideally suited to visualize concentrations of ions such as H+ in intact, unperturbed epidermis and stratum corneum (SC). Fluorescence lifetime is dye concentration-independent, the method requires only low light intensities and is therefore not prone to photobleaching or phototoxic artifacts, and because multiphoton lasers of IR wavelength are used, light penetrates deep into intact tissue. The standard method to measure SC pH is the flat pH electrode, which provides reliable information only about surface pH changes, without further vertical or subcellular spatial resolution; i.e., specific microdomains such as the corneocyte interstices are not resolved, and the deeper SC is inaccessible without resorting to inherently disruptive stripping methods. Furthermore, the concept of a gradient of pH through the SC stems from such stripping experiments, but other confirmation for this concept is lacking. Our investigations into the SC pH distribution so far have revealed the crucial role of the Sodium/Hydrogen Antiporter NHE1 in generation of SC acidity, the colocalization of enzymatic lipid processing activity in the SC with acidic domains of the SC, and the timing and localization of emerging acidity in the SC of newborns. Together, these results have led to an improved understanding of the SC pH, its distribution, origin, and regulation. Future uses for this method include measurements of other ions important for epidermal processes, such as Ca2+, and a quantitative approach to topical drug penetration.

  13. Biological applications of fluorescence lifetime imaging beyond microscopy

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Guo, Kevin; Almutairi, Adah; Fréchet, Jean M. J.; Fischer, Georg M.; Daltrozzo, Ewald; Achilefu, Samuel

    2010-02-01

    Fluorescence lifetime is a relatively new contrast mechanism for optical imaging in living subjects that relies on intrinsic properties of fluorophores rather than concentration dependent intensity. Drawing upon the success of fluorescence lifetime imaging microscopy (FLIM) for investigation of protein-protein interactions and intracellular physiology, in vivo fluorescence lifetime imaging (FLI) promises to dramatically increase the utility of fluorescencebased imaging in preclinical and clinical applications. Intrinsic fluorescence lifetime measurements in living tissues can distinguish pathologies such as cancer from healthy tissue. Unfortunately, intrinsic FLT contrast is limited to superficial measurements. Conventional intensity-based agents have been reported for measuring these phenomena in vitro, but translation into living animals is difficult due to optical properties of tissues. For this reason, contrast agents that can be detected in the near infrared (NIR) wavelengths are being developed by our lab and others to enhance the capabilities of this modality. FLT is less affected by concentration and thus is better for detecting small changes in physiology, as long as sufficient fluorescence signal can be measured. FLT can also improve localization of signals for improved deep tissue imaging. Examples of the utility of exogenous contrast agents will be discussed, including applications in monitoring physiologic functions, controlled drug release and cancer biology. Instrumentation for FLI will also be discussed, including planar and diffuse optical imaging in time and frequency domains. Future applications will also be discussed that are being developed in this exciting field that complement other optical modalities.

  14. Clinical results of fluorescence lifetime imaging in ophthalmology

    NASA Astrophysics Data System (ADS)

    Schweitzer, D.; Quick, S.; Klemm, M.; Hammer, M.; Jentsch, S.; Dawczynski, J.; Becker, W.

    2009-07-01

    A laser scanner ophthalmoscope was developed for in vivo fluorescence lifetime measurements at the human retina. Measurements were performed in 30 degree fundus images. The fundus was excited by pulses of 75 ps (FWHM). The dynamic fluorescence was detected in two spectral channels K1(490-560nm), K2(560-700 nm) by time-correlated single photon counting. The decay of fluorescence was three-exponentially. Local and global alterations in lifetimes were found between healthy subjects and patients suffering from age-related macular degeneration, diabetic retinopathy, and vessel occlusion. The lifetimes T1, T2, and T3 in both channels are changed to longer values in AMD and diabetic retinopathy in comparison with healthy subjects. The lifetime T2 in K1 is most sensitive to metabolic alterations in branch arterial vessel occlusion.

  15. Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J.; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda

    2013-01-01

    Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell

  16. In vivo imaging with near-infrared fluorescence lifetime contrast

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Achilefu, Samuel

    2009-02-01

    Fluorescence imaging is a mainstay of biomedical research, allowing detection of molecular events in both fixed and living cells, tissues and whole animals. Such high resolution fluorescence imaging is hampered by unwanted signal from intrinsic background fluorescence and scattered light. The signal to background ratio can be improved by using extrinsic contrast agents and greatly enhanced by multispectral imaging methods. Unfortunately, these methods are insufficient for deep tissue imaging where high contrast and speedy acquisition are necessary. Fluorescence lifetime (FLT) is an inherent characteristic of each fluorescent species that can be independent of intensity and spectral properties. Accordingly, FLT-based detection provides an additional contrast mechanism to optical measurements. This contrast is particularly important in the near-infrared (NIR) due to relative transparency of tissue as well as the broad absorption and emission spectra of dyes that are active in this region. Here we report comparative analysis of signal distribution of several NIR fluorescent polymethine dyes in living mice and their correlations with lifetimes obtained in vitro using solution models. The FLT data obtained from dyes dissolved in serum albumin solution correlated well with FLTs measured in vivo. Thus the albumin solution model could be used as a good predictive model for in vivo FLT behavior of newly developed fluorescent reporters. Subsequent experiments in vivo, including monitoring slow release kinetics and detecting proteinuria, demonstrate the complementary nature of FLT for fluorescence intensity imaging.

  17. Artificial neural network approaches for fluorescence lifetime imaging techniques.

    PubMed

    Wu, Gang; Nowotny, Thomas; Zhang, Yongliang; Yu, Hong-Qi; Li, David Day-Uei

    2016-06-01

    A novel high-speed fluorescence lifetime imaging (FLIM) analysis method based on artificial neural networks (ANN) has been proposed. In terms of image generation, the proposed ANN-FLIM method does not require iterative searching procedures or initial conditions, and it can generate lifetime images at least 180-fold faster than conventional least squares curve-fitting software tools. The advantages of ANN-FLIM were demonstrated on both synthesized and experimental data, showing that it has great potential to fuel current revolutions in rapid FLIM technologies. PMID:27244414

  18. Fluorescence lifetime imaging microscopy of nanodiamonds in vivo

    NASA Astrophysics Data System (ADS)

    Kuo, Yung; Hsu, Tsung-Yuan; Wu, Yi-Chun; Hsu, Jui-Hung; Chang, Huan-Cheng

    2013-03-01

    The negatively charged nitrogen-vacancy (NV-) center in bulk diamond is a photostable fluorophore with a radiative lifetime of 11.6 ns at room temperature. The lifetime substantially increases to ~20 ns for diamond nanoparticles (size ~ 100 nm) suspended in water due to the change in refractive index of the surrounding medium of the NV- centers. This fluorescence decay time is much longer than that (typically 1 - 4 ns) of endogenous and exogenous fluorophores commonly used in biological imaging, making it possible to detect NV--containing nanodiamonds in vivo at the single particle level by fluorescence lifetime imaging microscopy (FLIM). We demonstrate the feasibility of this approach using Caenorhabditis elegans (C. elegans) as a model organism.

  19. Fluorescence lifetime imaging of human skin and hair

    NASA Astrophysics Data System (ADS)

    Ehlers, A.; Riemann, I.; Anhut, T.; Kaatz, M.; Elsner, P.; König, K.

    2006-02-01

    Multiphoton imaging has developed into an important technique for in-vivo research in life sciences. With the laser System DermaInspect (JenLab, Germany) laser radiation from a Ti:Sapphire laser is used to generate multiphotonabsorption deep in the human skin in vivo. The resulting autofluorescence radiation arises from endogenous fluorophores such as NAD(P)H, flavines, collagen, elastin, porphyrins und melanin. Second harmonic generation (SHG) was used to detect collagen structures in the dermal layer. Femtosecond laser multiphoton imaging offers the possibility of high resolution optical tomography of human skin as well as fluorescence lifetime imaging (FLIM) with picosecond time resolution. In this work a photon detector with ultrashort rise time of less than 30ps was applied to FLIM measurements of human skin and hair with different pigmentation. Fluorescence lifetime images of different human hair types will be discussed.

  20. Handheld multispectral fluorescence lifetime imaging system for in vivo applications.

    PubMed

    Cheng, Shuna; Cuenca, Rodrigo M; Liu, Boang; Malik, Bilal H; Jabbour, Joey M; Maitland, Kristen C; Wright, John; Cheng, Yi-Shing Lisa; Jo, Javier A

    2014-03-01

    There is an increasing interest in the application of fluorescence lifetime imaging (FLIM) for medical diagnosis. Central to the clinical translation of FLIM technology is the development of compact and high-speed clinically compatible systems. We present a handheld probe design consisting of a small maneuverable box fitted with a rigid endoscope, capable of continuous lifetime imaging at multiple emission bands simultaneously. The system was characterized using standard fluorescent dyes. The performance was then further demonstrated by imaging a hamster cheek pouch in vivo, and oral mucosa tissue both ex vivo and in vivo, all using safe and permissible exposure levels. Such a design can greatly facilitate the evaluation of FLIM for oral cancer imaging in vivo. PMID:24688824

  1. TOPICAL REVIEW: Fluorescence lifetime imaging microscopy in life sciences

    NASA Astrophysics Data System (ADS)

    Willem Borst, Jan; Visser, Antonie J. W. G.

    2010-10-01

    Fluorescence lifetime imaging microscopy (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) are versatile tools for the investigation of the molecular environment of fluorophores in living cells. Owing to nanometre-scale interactions via Förster resonance energy transfer (FRET), FLIM and FAIM are powerful microscopy methods for the detection of conformational changes and protein-protein interactions reflecting the biochemical status of live cells. This review provides an overview of recent advances in photonics techniques, quantitative data analysis methods and applications in the life sciences.

  2. Normalized fluorescence lifetime imaging for tumor identification and margin delineation

    NASA Astrophysics Data System (ADS)

    Sherman, Adria J.; Papour, Asael; Bhargava, Siddharth; Taylor, Zach; Grundfest, Warren S.; Stafsudd, Oscar M.

    2013-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a technique that has been proven to produce quantitative and qualitative differentiation and identification of substances with good specificity and sensitivity based on lifetime extracted information. This technique has shown the ability to also differentiate between a wide range of tissue types to identify malignant from benign tissue in vivo and ex vivo. However, the complexity, long duration and effort required to generate this information has limited the adoption of these techniques in a clinical setting. Our group has developed a time-resolved imaging system (patent pending) that does not require the extraction of lifetimes or use of complex curve fitting algorithms to display the needed information. The technique, entitled Lifetime Fluorescence Imaging (LFI, or NoFYI), converts fluorescence lifetime decay information directly into visual contrast. Initial studies using Fluorescein and Rhodamine-B demonstrated the feasibility of this approach. Subsequent studies demonstrated the ability to separate collagen and elastin powders. The technique uses nanosecond pulsed UV LEDs at 375 nm for average illumination intensities of ~4.5 μW on the tissue surface with detection by a gated CCD camera. To date, we have imaged 11 surgical head and neck squamous cell carcinoma and brain cancer biopsy specimens including 5 normal and 6 malignant samples. Images at multiple wavelengths clearly demonstrate differentiation between benign and malignant tissue, which was later confirmed by histology. Contrast was obtained between fluorophores with 35 μm spatial resolution and an SNR of ~30 dB allowing us to clearly define tumor margins in these highly invasive cancers. This method is capable of providing both anatomical and chemical information for the pathologist and the surgeon. These results suggest that this technology has a possible role in identifying tumors in tissue specimens and detecting tumor margins

  3. Photon budget analysis for fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Qiaole; Young, Ian T.; de Jong, Jan Geert Sander

    2011-08-01

    We have constructed a mathematical model to analyze the photon efficiency of frequency-domain fluorescence lifetime imaging microscopy (FLIM). The power of the light source needed for illumination in a FLIM system and the signal-to-noise ratio of the detector have led us to a photon ``budget.'' These measures are relevant to many fluorescence microscope users and the results are not restricted to FLIM but applicable to widefield fluorescence microscopy in general. Limitations in photon numbers, however, are more of an issue with FLIM compared to other less quantitative types of imaging. By modeling a typical experimental configuration, examples are given for fluorophores whose absorption peaks span the visible spectrum from Fura-2 to Cy5. We have performed experiments to validate the assumptions and parameters used in our mathematical model. The influence of fluorophore concentration on the intensity of the fluorescence emission light and the Poisson distribution assumption of the detected fluorescence emission light have been validated. The experimental results agree well with the mathematical model. This photon budget is important in order to characterize the constraints involved in current fluorescent microscope systems that are used for lifetime as well as intensity measurements and to design and fabricate new systems.

  4. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    PubMed Central

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  5. Singlet oxygen phosphorescence lifetime imaging based on a fluorescence lifetime imaging microscope.

    PubMed

    Tian, Wenming; Deng, Liezheng; Jin, Shengye; Yang, Heping; Cui, Rongrong; Zhang, Qing; Shi, Wenbo; Zhang, Chunlei; Yuan, Xiaolin; Sha, Guohe

    2015-04-01

    The feasibility of singlet oxygen phosphorescence (SOP) lifetime imaging microscope was studied on a modified fluorescence lifetime imaging microscope (FLIM). SOP results from the infrared radiative transition of O2(a(1)Δg → X(3)Σg(-)) and O2(a(1)Δg) was produced in a C60 powder sample via photosensitization process. To capture the very weak SOP signal, a dichroic mirror was placed between the objective and tube lens of the FLIM and used to divide the luminescence returning from the sample into two beams: the reflected SOP beam and the transmitted photoluminescence of C60 (C60-PL) beam. The C60-PL beam entered the scanner of the FLIM and followed the normal optical path of the FLIM, while the SOP steered clear of the scanner and directly entered a finely designed SOP detection channel. Confocal C60-PL images and nonconfocal SOP images were then simultaneously obtained by using laser-scanning mode. Experimental results show that (1) under laser-scanning mode, the obstacle to confocal SOP imaging is the infrared-incompatible scanner, which can be solved by using an infrared-compatible scanner. Confocal SOP imaging is also expected to be realized under stage-scanning mode when the laser beam is parked and meanwhile a pinhole is added into the SOP detection channel. (2) A great challenge to SOP imaging is its extraordinarily long imaging time, and selecting only a few interesting points from fluorescence images to measure their SOP time-dependent traces may be a correct compromise. PMID:25781060

  6. Fluorescence lifetime imaging of endogenous biomarker of oxidative stress.

    PubMed

    Datta, Rupsa; Alfonso-García, Alba; Cinco, Rachel; Gratton, Enrico

    2015-01-01

    Presence of reactive oxygen species (ROS) in excess of normal physiological level results in oxidative stress. This can lead to a range of pathological conditions including inflammation, diabetes mellitus, cancer, cardiovascular and neurodegenerative disease. Biomarkers of oxidative stress play an important role in understanding the pathogenesis and treatment of these diseases. A number of fluorescent biomarkers exist. However, a non-invasive and label-free identification technique would be advantageous for in vivo measurements. In this work we establish a spectroscopic method to identify oxidative stress in cells and tissues by fluorescence lifetime imaging (FLIM). We identified an autofluorescent, endogenous species with a characteristic fluorescent lifetime distribution as a probe for oxidative stress. To corroborate our hypothesis that these species are products of lipid oxidation by ROS, we correlate the spectroscopic signals arising from lipid droplets by combining FLIM with THG and CARS microscopy which are established techniques for selective lipid body imaging. Further, we performed spontaneous Raman spectral analysis at single points of the sample which provided molecular vibration information characteristics of lipid droplets. PMID:25993434

  7. GPU acceleration of time-domain fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Nowotny, Thomas; Chen, Yu; Li, David Day-Uei

    2016-01-01

    Fluorescence lifetime imaging microscopy (FLIM) plays a significant role in biological sciences, chemistry, and medical research. We propose a graphic processing unit (GPU) based FLIM analysis tool suitable for high-speed, flexible time-domain FLIM applications. With a large number of parallel processors, GPUs can significantly speed up lifetime calculations compared to CPU-OpenMP (parallel computing with multiple CPU cores) based analysis. We demonstrate how to implement and optimize FLIM algorithms on GPUs for both iterative and noniterative FLIM analysis algorithms. The implemented algorithms have been tested on both synthesized and experimental FLIM data. The results show that at the same precision, the GPU analysis can be up to 24-fold faster than its CPU-OpenMP counterpart. This means that even for high-precision but time-consuming iterative FLIM algorithms, GPUs enable fast or even real-time analysis.

  8. Fluorescence lifetime imaging with near-infrared dyes

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavskiy, Vladislav

    2013-02-01

    Near-infrared (NIR) dyes are used as fluorescence markers in small-animal imaging and in diffuse optical tomography of the human brain. In these applications it is important to know whether the dyes bind to proteins or other tissue constituents, and whether their fluorescence lifetimes depend on the targets they are bound to. Unfortunately, neither the lasers nor the detectors of commonly used confocal and multiphoton laser scanning microscopes allow for excitation and detection of NIR fluorescence. We therefore upgraded existing confocal TCSPC FLIM systems with NIR lasers and NIR sensitive detectors. In multiphoton systems we used the Ti:Sa laser as a one-photon excitation source in combination with an NIR-sensitive detector in the confocal beam path. We tested a number of NIR dyes in biological tissue. Some of them showed clear lifetime changes depending on the tissue structures they are bound to. We therefore believe that NIR FLIM can deliver supplementary information on the tissue constitution and on local biochemical parameters.

  9. Quantitative Lifetime Unmixing of Multiexponentially Decaying Fluorophores Using Single-Frequency Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Kremers, Gert-Jan; van Munster, Erik B.; Goedhart, Joachim; Gadella, Theodorus W. J.

    2008-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is a quantitative microscopy technique for imaging nanosecond decay times of fluorophores. In the case of frequency-domain FLIM, several methods have been described to resolve the relative abundance of two fluorescent species with different fluorescence decay times. Thus far, single-frequency FLIM methods generally have been limited to quantifying two species with monoexponential decay. However, multiexponential decays are the norm rather than the exception, especially for fluorescent proteins and biological samples. Here, we describe a novel method for determining the fractional contribution in each pixel of an image of a sample containing two (multiexponentially) decaying species using single-frequency FLIM. We demonstrate that this technique allows the unmixing of binary mixtures of two spectrally identical cyan or green fluorescent proteins, each with multiexponential decay. Furthermore, because of their spectral identity, quantitative images of the relative molecular abundance of these fluorescent proteins can be generated that are independent of the microscope light path. The method is rigorously tested using samples of known composition and applied to live cell microscopy using cells expressing multiple (multiexponentially decaying) fluorescent proteins. PMID:18359789

  10. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells.

    PubMed

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-01-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. PMID:26390855

  11. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  12. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    PubMed Central

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-01-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. PMID:26390855

  13. Fluorescence Lifetime Imaging Microscopy of Intracellular Glucose Dynamics

    PubMed Central

    Veetil, Jithesh V.; Jin, Sha; Ye, Kaiming

    2012-01-01

    Background One of the major hurdles in studying diabetes pathophysiology is the lack of adequate methodology that allows for direct and real-time determination of glucose transport and metabolism in cells and tissues. In this article, we present a new methodology that adopts frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) to visualize and quantify the dynamics of intracellular glucose within living cells using a biosensor protein based on fluorescence resonance energy transfer (FRET). Method The biosensor protein was developed by fusing a FRET pair, an AcGFP1 donor and a mCherry acceptor to N- and C- termini of a mutant glucose-binding protein (GBP), respectively. The probe was expressed and biosynthesized inside the cells, offering continuous monitoring of glucose dynamics in real time through fluorescence lifetime imaging microscopy (FLIM) measurement. Results We transfected the deoxyribonucleic acid of the AcGFP1-GBP-mCherry sensor into murine myoblast cells, C2C12, and continuously monitored the changes in intracellular glucose concentrations in response to the variation in extracellular glucose, from which we determined glucose uptake and clearance rates. The distribution of intracellular glucose concentration was also characterized. We detected a high glucose concentration in a region close to the cell membrane and a low glucose concentration in a region close to the nucleus. The monoexponential decay of AcGFP1 was distinguished using FD-FLIM. Conclusions This work enables continuous glucose monitoring (CGM) within living cells using FD-FLIM and a biosensor protein. The sensor protein developed offers a new means for quantitatively analyzing glucose homeostasis at the cellular level. Data accumulated from these studies will help increase our understanding of the pathology of diabetes. PMID:23294772

  14. Analysis of human aorta using fluorescence lifetime imaging microscopy (FLIM)

    NASA Astrophysics Data System (ADS)

    Vieira-Damiani, Gislaine; Adur, J.; Ferro, D. P.; Adam, R. L.; Pelegati, V.; Thomáz, A.; Cesar, C. L.; Metze, K.

    2012-03-01

    The use of photonics has improved our understanding of biologic phenomena. For the study of the normal and pathologic architecture of the aorta the use of Two-Photon Excited Fluorescence (TPEF) and Second Harmonic Generation showed interesting details of morphologic changes of the elastin-collagen architecture during aging or development of hypertension in previous studies. In this investigation we tried to apply fluorescence lifetime imaging (FLIM) for the morphologic analysis of human aortas. The aim of our study was to use FLIM in non-stained formalin-fixed and paraffin-embedded samples of the aorta ascendants in hypertensive and normotensive patients of various ages, examining two different topographical regions. The FLIM-spectra of collagen and elastic fibers were clearly distinguishable, thus permitting an exact analysis of unstained material on the microscopic level. Moreover the FLIM spectrum of elastic fibers revealed variations between individual cases, which indicate modifications on a molecular level and might be related to FLIM age or diseases states and reflect modifications on a molecular level.

  15. Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging

    PubMed Central

    Giacomelli, Michael G.; Sheikine, Yuri; Vardeh, Hilde; Connolly, James L.; Fujimoto, James G.

    2015-01-01

    Two photon fluorescent lifetime imaging is a modality that enables depth-sectioned, molecularly-specific imaging of cells and tissue using intrinsic contrast. However, clinical applications have not been well explored due to low imaging speed and limited field of view, which make evaluating large pathology samples extremely challenging. To address these limitations, we have developed direct temporal sampling two photon fluorescent lifetime imaging (DTS-FLIM), a method which enables a several order of magnitude increase in imaging speed by capturing an entire lifetime decay in a single fluorescent excitation. We use this greatly increased speed to perform a preliminary study using gigapixel-scale imaging of human breast pathology surgical specimens. PMID:26600997

  16. Optical imaging for brain tissue characterization using relative fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Papour, Asael; Taylor, Zach; Sherman, Adria; Sanchez, Desiree; Lucey, Gregory; Liau, Linda; Stafsudd, Oscar; Yong, William; Grundfest, Warren

    2013-06-01

    An autofluorescence lifetime wide-field imaging system that can generate contrast in underlying tissue structures of normal and malignant brain tissue samples with video rate acquisition and processing time is presented. Images of the investigated tissues were acquired with high resolution (˜35 μm) using an algorithm to produce contrast based on differences in relative lifetimes. Sufficient contrast for delineation was produced without the computation of fluorescence decay times or Laguerre coefficients. The imaged tissues were sent for histological analysis that confirmed the detected imaged tissues morphological findings and correlations between relative lifetime maps and histology identified.

  17. Picosecond fluorescence lifetime imaging microscope for imaging of living glioma cells

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Wang, Jingjing; Sun, Yinghua; Vernier, Thomas; Papaioannou, Thanassis; Jo, Javier; Thu, Mya M.; Gundersen, Martin A.; Marcu, Laura

    2005-03-01

    In this communication, we report the imaging of living glioma cells using fluorescence lifetime imaging (FLIM) technique. The growing interests in developing novel techniques for diagnosis and minimally invasive therapy of brain tumor have led to microscopic studies of subcellular structures and intracellular processes in glioma cells. Fluorescence microscopy has been used with a number of exogenous molecular probes specific for certain intracellular structures such as mitochondria, peripheral benzodiazepine receptor (PBR), and calcium concentration. When probes with overlapping emission spectra being used, separate samples are required to image each probe individually under conventional fluorescence microscopy. We have developed a wide-field FLIM microscope that uses fluorescence lifetime as an additional contrast for resolving multiple markers in the same essay. The FLIM microscope consists of a violet diode laser and a nitrogen-pumped dye laser to provide tunable sub-nanosecond excitation from UV to NIR. The detection system is based on a time-gated ICCD camera with minimum 80 ps gate width. The performance of the system was evaluated using fluorescence dyes with reported lifetime values. Living rat glioma C6 cells were stained with JC-1 and Rhodamine 123. FLIM images were acquired and their lifetimes in living cells were found in good agreements with values measured in solutions by a time-domain fluorescence spectrometer. These results indicate that imaging of glioma cells using FLIM can resolve multiple spectrally-overlapping probes and provide quantitative functional information about the intracellular environment.

  18. Applying fluorescence lifetime imaging microscopy to evaluate the efficacy of anticancer drugs

    NASA Astrophysics Data System (ADS)

    Kawanabe, Satoshi; Araki, Yoshie; Uchimura, Tomohiro; Imasaka, Totaro

    2015-06-01

    Fluorescence lifetime imaging microscopy was applied to evaluate the efficacy of anticancer drugs. A decrease in the fluorescence lifetime of the nucleus in apoptotic cancer cells stained by SYTO 13 dye was detected after treatment with antitumor antibiotics such as doxorubicin or epirubicin. It was confirmed that the change in fluorescence lifetime occurred earlier than morphological changes in the cells. We found that the fluorescence lifetime of the nucleus in the cells treated with epirubicin decreased more rapidly than that of the cells treated with doxorubicin. This implies that epirubicin was more efficacious than doxorubicin in the treatment of cancer cells. The change in fluorescence lifetime was, however, not indicated when the cells were treated with cyclophosphamide. The decrease in fluorescence lifetime was associated with the processes involving caspase activation and chromatin condensation. Therefore, this technique would provide useful information about apoptotic cells, particularly in the early stages.

  19. Fluorescence-lifetime molecular imaging can detect invisible peritoneal ovarian tumors in bloody ascites

    PubMed Central

    Nakajima, Takahito; Sano, Kohei; Sato, Kazuhide; Watanabe, Rira; Harada, Toshiko; Hanaoka, Hirofumi; Choyke, Peter L; Kobayashi, Hisataka

    2014-01-01

    Blood contamination, such as bloody ascites or hemorrhages during surgery, is a potential hazard for clinical application of fluorescence imaging. In order to overcome this problem, we investigate if fluorescence-lifetime imaging helps to overcome this problem. Samples were prepared at concentrations ranging 0.3–2.4 μm and mixed with 0–10% of blood. Fluorescence intensities and lifetimes of samples were measured using a time-domain fluorescence imager. Ovarian cancer SHIN3 cells overexpressing the D-galactose receptor were injected into the peritoneal cavity 2.5 weeks before the experiments. Galactosyl serum albumin-rhodamine green (GSA-RhodG), which bound to the D-galactose receptor and was internalized thereafter, was administered intraperitoneally to peritoneal ovarian cancer-bearing mice with various degrees of bloody ascites. In vitro study showed a linear correlation between fluorescence intensity and probe concentration (r2 > 0.99), whereas the fluorescence lifetime was consistent (range, 3.33 ± 0.15–3.75 ± 0.04 ns). By adding 10% of blood to samples, fluorescence intensities decreased to <1%, while fluorescence lifetimes were consistent. In vivo fluorescence lifetime of GSA-RhodG stained tumors was longer than the autofluorescence lifetime (threshold, 2.87 ns). Tumor lesions under hemorrhagic peritonitis were not depicted using fluorescence intensity imaging; however, fluorescence-lifetime imaging clearly detected tumor lesions by prolonged lifetimes. In conclusion, fluorescence-lifetime imaging with GSA-RhodG depicted ovarian cancer lesions, which were invisible in intensity images, in hemorrhagic ascites. PMID:24479901

  20. Fluorescence and fluorescence-lifetime imaging microscopy (FLIM) to characterize yeast strains by autofluorescence

    NASA Astrophysics Data System (ADS)

    Bhatta, H.; Goldys, E. M.; Ma, J.

    2006-02-01

    We characterised populations of wild type baking and brewing yeast cells using intrinsic fluorescence and fluorescence lifetime microscopy, in order to obtain quantitative identifiers of different strains. The cell autofluorescence was excited at 405 nm and observed within 440-540 nm range where strong cell to cell variability was observed. The images were analyzed using customised public domain software, which provided information on cell size, intensity and texture-related features. In light of significant diversity of the data, statistical methods were utilized to assess the validity of the proposed quantitative identifiers for strain differentiation. The Kolmogorov-Smirnov test was applied to confirm that empirical distribution functions for size, intensity and entropy for different strains were statistically different. These characteristics were followed with culture age of 24, 48 and 72 h, (the latter corresponding to a stationary growth phase) and size, and to some extent entropy, were found to be independent of age. The fluorescence intensity presented a distinctive evolution with age, different for each of the examined strains. The lifetime analysis revealed a short decay time component of 1.4 ns and a second, longer one with the average value of 3.5 ns and a broad distribution. High variability of lifetime values within cells was observed however a lifetime texture feature in the studied strains was statistically different.

  1. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    PubMed Central

    Li, David Day-Uei; Ameer-Beg, Simon; Arlt, Jochen; Tyndall, David; Walker, Richard; Matthews, Daniel R.; Visitkul, Viput; Richardson, Justin; Henderson, Robert K.

    2012-01-01

    We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast. PMID:22778606

  2. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining. PMID:26830089

  3. Fluorescence lifetime images of different green fluorescent proteins in fly brain

    NASA Astrophysics Data System (ADS)

    Lai, Sih-Yu; Lin, Y. Y.; Chiang, A. S.; Huang, Y. C.

    2009-02-01

    The mechanisms of learning and memory are the most important functions in an animal brain. Investigating neuron circuits and network maps in a brain is the first step toward understanding memory and learning behavior. Since Drosophila brain is the major model for understanding brain functions, we measure the florescence lifetimes of different GFP-based reporters expressed in a fly brain. In this work, two Gal4 drivers, OK 107 and MZ 19 were used. Intracellular calcium ([Ca2+]) concentration is an importation indicator of neuronal activity. Therefore, several groups have developed GFP-based calcium sensors, among which G-CaMP is the most popular and reliable. The fluorescence intensity of G-CaMP will increase when it binds to calcium ion; however, individual variation from different animals prevents quantitative research. In this work, we found that the florescence lifetime of G-CaMP will shrink from 1.8 ns to 1.0 ns when binding to Ca2+. This finding can potentially help us to understand the neuron circuits by fluorescence lifetime imaging microscopy (FLIM). Channelrhodopsin-2 (ChR2) is a light-activated ion-channel protein on a neuron cell membrane. In this work, we express ChR2 and G-CaMP in a fly brain. Using a pulsed 470-nm laser to activate the neurons, we can also record the fluorescence lifetime changes in the structure. Hence, we can trace and manipulate a specific circuit in this animal. This method provides more flexibility in brain research.

  4. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    NASA Astrophysics Data System (ADS)

    Elson, D. S.; Jo, J. A.; Marcu, L.

    2007-05-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues.

  5. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity

    NASA Astrophysics Data System (ADS)

    Levitt, James A.; Chung, Pei-Hua; Suhling, Klaus

    2015-09-01

    Spectrally resolved confocal microscopy and fluorescence lifetime imaging have been used to measure the polarity of lipid-rich regions in living HeLa cells stained with Nile red. The emission peak from the solvatochromic dye in lipid droplets is at a shorter wavelength than other, more polar, stained internal membranes, and this is indicative of a low polarity environment. We estimate that the dielectric constant, ɛ, is around 5 in lipid droplets and 25<ɛ<40 in other lipid-rich regions. Our spectrally resolved fluorescence lifetime imaging microscopy (FLIM) data show that intracellular Nile red exhibits complex, multiexponential fluorescence decays due to emission from a short lifetime locally excited state and a longer lifetime intramolecular charge transfer state. We measure an increase in the average fluorescence lifetime of the dye with increasing emission wavelength, as shown using phasor plots of the FLIM data. We also show using these phasor plots that the shortest lifetime decay components arise from lipid droplets. Thus, fluorescence lifetime is a viable contrast parameter for distinguishing lipid droplets from other stained lipid-rich regions. Finally, we discuss the FLIM of Nile red as a method for simultaneously mapping both polarity and relative viscosity based on fluorescence lifetime measurements.

  6. Development of a hyperspectral fluorescence lifetime imaging microscope and its application to tissue imaging

    NASA Astrophysics Data System (ADS)

    Owen, Dylan M.; Manning, Hugh B.; de Beule, Pieter; Talbot, Clifford; Requejo-Isidro, Jose; Dunsby, Chris; McGinty, James; Benninger, Richard K. P.; Elson, Dan S.; Munro, Ian; Galletly, Neil P.; Lever, M. Jon; Stamp, Gordon W.; Anand, Praveen; Neil, Mark A. A.; French, Paul M. W.

    2007-02-01

    We present the design, characterization and application of a novel, rapid, optically sectioned hyperspectral fluorescence lifetime imaging (FLIM) microscope. The system is based on a line scanning confocal configuration and uses a highspeed time-gated detector to extract lifetime information from many pixels in parallel. This allows the full spectraltemporal profiles of a fluorescence decay to be obtained from every pixel in an image. Line illumination and slit detection also gives the microscope a confocal optical sectioning ability. The system is applied to test samples and unstained biological tissue. In future, this microscope will be combined with recently-developed continuously electronically tunable, pulsed light sources based on tapered, micro-structured optical fibers. This will allow hyperspectral FLIM to be combined with the advantages of excitation spectroscopy to gain further insight into complex biological specimens including tissue and live cell imaging.

  7. In Situ Monitoring of the Intracellular Stability of Nanoparticles by Using Fluorescence Lifetime Imaging.

    PubMed

    Shang, Li; Yang, Linxiao; Wang, Haixia; Nienhaus, Gerd Ulrich

    2016-02-01

    FLIMaging nanoparticle degradation: semiconductor and metal nanoparticle degradation has been observed in live cells over 3 d via the change of the characteristic luminescence lifetime using fluorescence lifetime imaging microscopy (FLIM). Thus, FLIM is a simple yet robust tool to examine the intracellular stability of photoluminescent nanoparticles in live cells, tissues, and organisms. PMID:26708212

  8. Fluorescence Lifetime Imaging of Membrane Lipid Order with a Ratiometric Fluorescent Probe

    PubMed Central

    Kilin, Vasyl; Glushonkov, Oleksandr; Herdly, Lucas; Klymchenko, Andrey; Richert, Ludovic; Mely, Yves

    2015-01-01

    To monitor the lateral segregation of lipids into liquid-ordered (Lo) and -disordered (Ld) phases in lipid membranes, environment-sensitive dyes that partition in both phases but stain them differently have been developed. Of particular interest is the dual-color F2N12S probe, which can discriminate the two phases through the ratio of its two emission bands. These bands are associated with the normal (N∗) and tautomer (T∗) excited-state species that result from an excited-state intramolecular proton transfer. In this work, we investigated the potency of the time-resolved fluorescence parameters of F2N12S to discriminate lipid phases in model and cell membranes. Both the long and mean lifetime values of the T∗ form of F2N12S were found to differ by twofold between Ld and Lo phases as a result of the restriction in the relative motions of the two aromatic moieties of F2N12S imposed by the highly packed Lo phase. This differed from the changes in the ratio of the two emission bands between the two phases, which mainly resulted from the decreased hydration of the N∗ form in the Lo phase. Importantly, the strong difference in lifetimes between the two phases was preserved when cholesterol was added to the Ld phase. The two phases could be imaged with high contrast by fluorescence lifetime imaging microscopy (FLIM) on giant unilamellar vesicles. FLIM images of F2N12S-labeled live HeLa cells confirmed that the plasma membrane was mainly in the Lo-like phase. Furthermore, the two phases were found to be homogeneously distributed all over the plasma membrane, indicating that they are highly mixed at the spatiotemporal resolution of the FLIM setup. Finally, FLIM could also be used to sensitively monitor the change in lipid phase upon cholesterol depletion and apoptosis. PMID:25992730

  9. Fluorescence-Lifetime Imaging Microscopy for Visualization of Quantum Dots’ Endocytic Pathway

    PubMed Central

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Rotomskis, Ricardas

    2016-01-01

    Accumulation of carboxylated polyethylene glycol (PEG) CdSe/ZnSquantum dots (QDs) has been monitored in living fibroblasts using confocal microscopy for fluorescence intensity and fluorescence-lifetime imaging (FLIM). The wide range of mean photoluminescence (PL) lifetime values was observed for the intracellular QDs in different intracellular microenvironment, which revealed structural heterogeneity of endosomes and enabled the distinguishing among endosomes of different maturity.

  10. Two-photon excited fluorescence lifetime imaging microscopy for FRET study on protein interactions

    NASA Astrophysics Data System (ADS)

    Qu, Junle; Lin, Ziyang; Liu, Lixin; Guo, Xuan; Chen, Danni; Niu, Hanben

    2005-01-01

    Two-photon excited fluorescence lifetime imaging (2P-FLIM) provides a more direct and precise approach to fluorescence resonance energy transfer (FRET), which allows studying the dynamic behavior of protein-protein interactions in living cells. In this paper, we describe the combination of a Leica TCS SP2 laser scanning microscope and a time-correlated single photon counting (TCSPC) lifetime imaging module developed by Becker & Hickl for two-photon excited fluorescence lifetime imaging. This 2P-FLIM system was used for FRET study on the interaction of heat shock protein hsp27 with p38 MAP kinase in the single living cell. Results show that the reduction in donor (CFP) lifetime in the presence of acceptor (YFP) reveals interactions between the two proteins.

  11. Development of a time-gated fluorescence lifetime microscope for in vivo corneal metabolic imaging

    NASA Astrophysics Data System (ADS)

    Silva, Susana F.; Batista, Ana; Castejón, Olga C.; Quadrado, Maria João.; Domingues, José Paulo; Morgado, Miguel

    2015-07-01

    Metabolic imaging can be a valuable tool in the early diagnosis of corneal diseases. Cell metabolic changes can be assessed through non-invasive optical methods due to the autofluorescence of metabolic co-factors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). Both molecules exhibit double exponential fluorescence decays, with well-separated short and long lifetime components, which are related to their protein-bound and free states. Corneal metabolism can be monitored by measuring the relative contribution of these two components. Here we report on the development of a fluorescence lifetime imaging microscope for in vivo measurement of FAD fluorescence lifetimes in corneal cells. The microscope is based on one-photon fluorescence excitation, through a pulsed blue diode laser. Fluorescence lifetime imaging is achieved using the Time-Gated technique. Structured illumination is used to improve the low axial resolution of wide-field time-gated FLIM. A Digital Micromirror Device (DMD) is used to produce the sinusoidal patterns required by structural illumination. The DMD control is integrated with the acquisition software of the imaging system which is based on an ultra-high speed gated image intensifier coupled to a CCD camera. We present preliminary results concerning optical and timing performance of the fluorescence lifetime microscope. Preliminary tests with ex-vivo bovine corneas are also described.

  12. Imaging intracellular viscosity by a new molecular rotor suitable for phasor analysis of fluorescence lifetime.

    PubMed

    Battisti, Antonella; Panettieri, Silvio; Abbandonato, Gerardo; Jacchetti, Emanuela; Cardarelli, Francesco; Signore, Giovanni; Beltram, Fabio; Bizzarri, Ranieri

    2013-07-01

    The arsenal of fluorescent probes tailored to functional imaging of cells is rapidly growing and benefits from recent developments in imaging strategies. Here, we present a new molecular rotor, which displays strong absorption in the green region of the spectrum, very little solvatochromism, and strong emission sensitivity to local viscosity. The emission increase is paralleled by an increase in emission lifetime. Owing to its concentration-independent nature, fluorescence lifetime is particularly suitable to image environmental properties, such as viscosity, at the intracellular level. Accordingly, we demonstrate that intracellular viscosity measurements can be efficiently carried out by lifetime imaging with our probe and phasor analysis, an efficient method for measuring lifetime-related properties (e.g., bionalyte concentration or local physicochemical features) in living cells. Notably, we show that it is possible to monitor the partition of our probe into different intracellular regions/organelles and to follow mitochondrial de-energization upon oxidative stress. PMID:23780224

  13. Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy

    PubMed Central

    Sun, Yuansheng; Day, Richard N; Periasamy, Ammasi

    2011-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is now routinely used for dynamic measurements of signaling events inside living cells, including detection of protein-protein interactions. An understanding of the basic physics of fluorescence lifetime measurements is required to use this technique. In this protocol, we describe both the time-correlated single photon counting and the frequency-domain methods for FLIM data acquisition and analysis. We describe calibration of both FLIM systems, and demonstrate how they are used to measure the quenched donor fluorescence lifetime that results from Förster resonance energy transfer (FRET ). We then show how the FLIM-FRET methods are used to detect the dimerization of the transcription factor CCAAT/enhancer binding protein-α in live mouse pituitary cell nuclei. Notably, the factors required for accurate determination and reproducibility of lifetime measurements are described. With either method, the entire protocol including specimen preparation, imaging and data analysis takes ~2 d. PMID:21886099

  14. Lipophilic porphyrin microparticles induced by AOT reverse micelles: a fluorescence lifetime imaging study.

    PubMed

    Togashi, Denisio M; Costa, Sílvia M B; Sobral, Abílio J F N

    2006-01-20

    Fluorescence Lifetime Imaging Microscopy (FLIM) technique was applied to investigate the fluorescence dynamics and structural features of large colloidal aggregates of meso-tetra(N-dodecyl-4-amino sulfonyl-phenyl)porphyrin (PC12) induced by Sodium 1,4-bis(2-ethyl hexyl)sulfosuccinate (AOT) reverse micelles. The aggregate's particle sizes (down to 1 microm) obtained from the confocal fluorescence images matched with the particle sizes measured in the images obtained from Scanning Electron Microscopy (SEM). The fluorescence decays for those aggregates in the micro spatial domain show triexponential fluorescence lifetimes (tau1 approximately 12 ns, tau2 approximately 3 ns and tau3 approximately 1 ns) which are independent of the aggregate's size. PMID:16154681

  15. In-vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment

    PubMed Central

    Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir

    2015-01-01

    Purpose Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in-vivo fluorescence lifetime imaging with HER2 targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. Experimental Design HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice, bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pre-treatment size. Results Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (~0.13ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment) the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03ns. Conclusions The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in-vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. PMID:24671949

  16. High-speed confocal fluorescence lifetime imaging microscopy by analog mean-delay method

    NASA Astrophysics Data System (ADS)

    Won, Youngjae; Kim, Donguk; Yang, Wenzhong; Kim, Dug Y.

    2010-02-01

    We have demonstrated the high-speed confocal fluorescence lifetime imaging microscopy (FLIM) by analog mean-delay (AMD) method. The AMD method is a new signal processing technique for calculation of fluorescence lifetime and it is very suitable for the high-speed confocal FLIM with good accuracy and photon economy. We achieved the acquisition speed of 7.7 frames per second for confocal FLIM imaging. Here, the highest photon detection rate for one pixel was larger than 125 MHz and averaged photon detection rate was more than 62.5 MHz. Based on our system, we successfully obtained a sequence of confocal fluorescence lifetime images of RBL-2H3 cell labeled with Fluo-3/AM and excited by 4αPDD (TRPV channel agonist) within one second.

  17. In-vivo validation of fluorescence lifetime imaging (FLIm) of coronary arteries in swine

    NASA Astrophysics Data System (ADS)

    Bec, Julien; Ma, Dinglong; Yankelevich, Diego R.; Gorpas, Dimitris S.; Ferrier, William T.; Southard, Jeffrey; Marcu, Laura

    2015-02-01

    We report a scanning imaging system that enables high speed multispectral fluorescence lifetime imaging (FLIm) of coronary arteries. This system combines a custom low profile (3 Fr) imaging catheter using a 200 μm core side viewing UV-grade silica fiber optic, an acquisition system able to measure fluorescence decays over four spectral bands at 20 kHz and a fast data analysis and display module. In vivo use of the system has been optimized, with particular emphasis on clearing blood from the optical pathway. A short acquisition time (5 seconds for a 20 mm long coronary segment) enabled data acquisition during a bolus saline solution injection through the 7 Fr catheter guide. The injection parameters were precisely controlled using a power injector and optimized to provide good image quality while limiting the bolus injection duration and volume (12 cc/s, 80 cc total volume). The ability of the system to acquire data in vivo was validated in healthy swine by imaging different sections of the left anterior descending (LAD) coronary. A stent coated with fluorescent markers was placed in the LAD and imaged, demonstrating the ability of the system to discriminate in vivo different fluorescent features and structures from the vessel background fluorescence using spectral and lifetime information. Intensity en face images over the four bands of the instrument were available within seconds whereas lifetime images were computed in 2 minutes, providing efficient feedback during the procedure. This successful demonstration of FLIm in coronaries enables future study of atherosclerotic cardiovascular diseases.

  18. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    NASA Astrophysics Data System (ADS)

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V.; Roberts, Michael S.

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  19. Quantitative sensing of microviscosity in protocells and amyloid materials using fluorescence lifetime imaging of molecular rotors

    NASA Astrophysics Data System (ADS)

    Thompson, Alex J.; Tang, T.-Y. Dora; Herling, Therese W.; Che Hak, C. Rohaida; Mann, Stephen; Knowles, Tuomas P. J.; Kuimova, Marina K.

    2014-03-01

    Molecular rotors are fluorophores that have a fluorescence quantum yield that depends upon intermolecular rotation. The fluorescence quantum yield, intensity and lifetime of molecular rotors all vary as functions of viscosity, as high viscosities inhibit intermolecular rotation and cause an increase in the non-radiative decay rate. As such, molecular rotors can be used to probe viscosity on microscopic scales. Here, we apply fluorescence lifetime imaging microscopy (FLIM) to measure the fluorescence lifetimes of three different molecular rotors, in order to determine the microscopic viscosity in two model systems with significant biological interest. First, the constituents of a novel protocell - a model of a prebiotic cell - were studied using the molecular rotors BODIPY C10 and kiton red. Second, amyloid formation was investigated using the molecular rotor Cy3.

  20. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes.

    PubMed

    Estandarte, Ana Katrina; Botchway, Stanley; Lynch, Christophe; Yusuf, Mohammed; Robinson, Ian

    2016-01-01

    Chromatin undergoes dramatic condensation and decondensation as cells transition between the different phases of the cell cycle. The organization of chromatin in chromosomes is still one of the key challenges in structural biology. Fluorescence lifetime imaging (FLIM), a technique which utilizes a fluorophore's fluorescence lifetime to probe changes in its environment, was used to investigate variations in chromatin compaction in fixed human chromosomes. Fixed human metaphase and interphase chromosomes were labeled with the DNA minor groove binder, DAPI, followed by measurement and imaging of the fluorescence lifetime using multiphoton excitation. DAPI lifetime variations in metaphase chromosome spreads allowed mapping of the differentially compacted regions of chromatin along the length of the chromosomes. The heteromorphic regions of chromosomes 1, 9, 15, 16, and Y, which consist of highly condensed constitutive heterochromatin, showed statistically significant shorter DAPI lifetime values than the rest of the chromosomes. Differences in the DAPI lifetimes for the heteromorphic regions suggest differences in the structures of these regions. DAPI lifetime variations across interphase nuclei showed variation in chromatin compaction in interphase and the formation of chromosome territories. The successful probing of differences in chromatin compaction suggests that FLIM has enormous potential for application in structural and diagnostic studies. PMID:27526631

  1. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes

    PubMed Central

    Estandarte, Ana Katrina; Botchway, Stanley; Lynch, Christophe; Yusuf, Mohammed; Robinson, Ian

    2016-01-01

    Chromatin undergoes dramatic condensation and decondensation as cells transition between the different phases of the cell cycle. The organization of chromatin in chromosomes is still one of the key challenges in structural biology. Fluorescence lifetime imaging (FLIM), a technique which utilizes a fluorophore’s fluorescence lifetime to probe changes in its environment, was used to investigate variations in chromatin compaction in fixed human chromosomes. Fixed human metaphase and interphase chromosomes were labeled with the DNA minor groove binder, DAPI, followed by measurement and imaging of the fluorescence lifetime using multiphoton excitation. DAPI lifetime variations in metaphase chromosome spreads allowed mapping of the differentially compacted regions of chromatin along the length of the chromosomes. The heteromorphic regions of chromosomes 1, 9, 15, 16, and Y, which consist of highly condensed constitutive heterochromatin, showed statistically significant shorter DAPI lifetime values than the rest of the chromosomes. Differences in the DAPI lifetimes for the heteromorphic regions suggest differences in the structures of these regions. DAPI lifetime variations across interphase nuclei showed variation in chromatin compaction in interphase and the formation of chromosome territories. The successful probing of differences in chromatin compaction suggests that FLIM has enormous potential for application in structural and diagnostic studies. PMID:27526631

  2. Multiphoton fluorescence lifetime imaging of metabolic status in mesenchymal stem cell during adipogenic differentiation

    NASA Astrophysics Data System (ADS)

    Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.

    2016-03-01

    Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.

  3. Fluorescence lifetime imaging microscopy reveals quenching of fluorescein within corneal epithelium.

    PubMed

    Glasgow, Ben J

    2016-06-01

    Topical application of fluorescein results in background fluorescence of normal corneal epithelial cells. The fluorescence appears relatively weak and is often ignored clinically. The concentrations of fluorescein applied clinically exceed the threshold for self quenching. The possibility that exuberant topical concentrations of fluorescein result in quenching of fluorescence in tears and normal corneal epithelium is explored. Fluorescence lifetime measurements are sensitive to quenching and are less vulnerable to inner filter effect than steady state measurements. The types of fluorescence lifetime quenching often report informative molecular interactions. Therefore, fluorescence lifetime confocal imaging was performed in solutions, tears and corneal epithelium removed by membrane cytology following applied fluorescein. Amplitude averaged fluorescence lifetimes (τamp) were measured with time resolved single photon counting using a pulsed diode laser for excitation of fluorescein. Lifetime decays were fit to multi-exponential models with least squares analysis. Stern-Volmer plots for both intensity (I) and (τamp) were determined. Stern-Volmer plots demonstrated both dynamic and static quenching components (R(2) = 0.98 exponential fit, I0/I). Plots of τamp versus concentration of fluorescein revealed a linear relationship. Immediately after fluorescein application, quenching was evident in tears (τamp < 1 ns) versus tears sampled after 5 min (τamp = 3.7 ns). Corneal epithelium showed quenching (τamp ≤ 2 ns) from 1 to 16 min post fluorescein instillation. Clinical concentrations of fluorescein show self-quenching but rapidly dilute as tears turnover. Intracellular quenching occurs in normal corneal epithelium. Lifetime decay curves suggest complex mechanisms are involved. Quenching is a plausible explanation for the low fluorescence background observed clinically. PMID:27106141

  4. Video-rate two-photon excited fluorescence lifetime imaging system with interleaved digitization

    PubMed Central

    Dow, Ximeng Y.; Sullivan, Shane Z.; Muir, Ryan D.; Simpson, Garth J.

    2016-01-01

    A fast (up to video rate) two-photon excited fluorescence lifetime imaging system based on interleaved digitization is demonstrated. The system is compatible with existing beam-scanning microscopes with minor electronics and software modification. Proof-of-concept demonstrations were performed using laser dyes and biological tissue. PMID:26176453

  5. Video-rate two-photon excited fluorescence lifetime imaging system with interleaved digitization.

    PubMed

    Dow, Ximeng Y; Sullivan, Shane Z; Muir, Ryan D; Simpson, Garth J

    2015-07-15

    A fast (up to video rate) two-photon excited fluorescence lifetime imaging system based on interleaved digitization is demonstrated. The system is compatible with existing beam-scanning microscopes with minor electronics and software modification. Proof-of-concept demonstrations were performed using laser dyes and biological tissue. PMID:26176453

  6. Fluorescence Lifetime Imaging of Nanoflares for mRNA Detection in Living Cells.

    PubMed

    Shi, Jing; Zhou, Ming; Gong, Aihua; Li, Qijun; Wu, Qian; Cheng, Gary J; Yang, Mingyang; Sun, Yaocheng

    2016-02-16

    The expression level of tumor-related mRNA can reveal significant information about tumor progression and prognosis, so specific mRNA in cells provides an important approach for biological and disease studies. Here, fluorescence lifetime imaging of nanoflares in living cells was first employed to detect specific intracellular mRNA. We characterized the lifetime changes of the prepared nanoflares before and after the treatment of target mRNA and also compared the results with those of fluorescence intensity-based measurements both intracellularly and extracellularly. The nanoflares released the cy5-modified oligonucleotides and bound to the targets, resulting in a fluorescence lifetime lengthening. This work puts forward another dimension of detecting specific mRNA in cells and can also open new ways for detection of many other biomolecules. PMID:26813157

  7. Multispectral fluorescence lifetime imaging of feces-contaminated apples by time-resolved laser-induced fluorescence imaging system with tunable excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Cho, Byoung-Kwan; Lefcourt, Alan M.; Chen, Yud-Ren; Kang, Sukwon

    2008-04-01

    We recently developed a time-resolved multispectral laser-induced fluorescence (LIF) imaging system capable of tunable wavelengths in the visible region for sample excitation and nanosecond-scale characterizations of fluorescence responses (lifetime imaging). Time-dependent fluorescence decay characteristics and fluorescence lifetime imaging of apples artificially contaminated with a range of diluted cow feces were investigated at 670 and 685 nm emission bands obtained by 418, 530, and 630 nm excitations. The results demonstrated that a 670 nm emission with a 418 nm excitation provided the greatest difference in time-dependent fluorescence responses between the apples and feces-treated spots. The versatilities of the time-resolved LIF imaging system, including fluorescence lifetime imaging of a relatively large biological object in a multispectral excitation-emission wavelength domain, were demonstrated.

  8. Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability

    NASA Astrophysics Data System (ADS)

    Powolny, F.; Homicsko, K.; Sinisi, R.; Bruschini, Claudio E.; Grigoriev, E.; Homulle, H.; Prior, John O.; Hanahan, D.; Dubikovskaya, E.; Charbon, E.

    2014-05-01

    We present a single-photon camera for fluorescence imaging, with a time resolution better than 100ps, capable of providing both intensity and lifetime images. the camera was fabricated in standard CMOS technology. With this FluoCam we show the possibility to study sub-nanosecond fluorescence mechanisms. The FluoCam was used to characterize a near-infrared probe, indocyanine green, conjugated with multimeric cyclic pentapeptide (cRGD). The fluorescent probe-conjugated was used to target and mark tumors with better specificity, in particular aiming at targeting the integrins αvβ3 and αvβ5. As a first step towards clinical studies, preliminary results obtained in-vivo are presented. The first envisioned clinical application would be image-guided surgical oncology to help the surgeon to remove tumor tissue by a better discrimination from normal tissues and also to improve the detection of metastatic lymph nodes. A further application could be the in-vivo determination of the αvβ3 and αvβ5 targets to select patients for therapy with RGD chemotherapy conjugates.

  9. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  10. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  11. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging

    PubMed Central

    Poland, Simon P.; Krstajić, Nikola; Monypenny, James; Coelho, Simao; Tyndall, David; Walker, Richard J.; Devauges, Viviane; Richardson, Justin; Dutton, Neale; Barber, Paul; Li, David Day-Uei; Suhling, Klaus; Ng, Tony; Henderson, Robert K.; Ameer-Beg, Simon M.

    2015-01-01

    We demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein. The applicability of the technique to imaging protein-protein interactions in live cells is exemplified by observation of time-dependent FRET between the epidermal growth factor receptor (EGFR) and the adapter protein Grb2 following stimulation with the receptor ligand. Furthermore, ligand-dependent association of HER2-HER3 receptor tyrosine kinases was observed on a similar timescale and involved the internalisation and accumulation or receptor heterodimers within endosomes. These data demonstrate the broad applicability of this novel FLIM technique to the spatio-temporal dynamics of protein-protein interaction. PMID:25780724

  12. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells

    NASA Astrophysics Data System (ADS)

    Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana

    2014-09-01

    Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.

  13. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  14. Cholesterol efflux monitoring in macrophage form cells by using fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Lee, Sang Hak; Park, Byoung Hee; Kim, Soo Hyeok; Hwang, Won Sang; Kim, Dug Young

    2015-03-01

    Macrophages play a key role in atherosclerotic plaque destabilization and rupture, since they accumulate large amounts of lipid through the uptake of modified lipoproteins which results in foam cell formation. Cholesterol efflux is the process of removing cholesterol from macrophages in the subintima of the vessel wall, and efflux mechanism in a cell is one of the critical issues for the prevention of cardiovascular diseases. High density lipoproteins (HDL) stimulate cholesterol efflux from macrophage foam cells in the arterial wall. Radioisotope-labeled cholesterol analysis method is well known conventional method for observing cholesterol efflux. The major drawback of this method is its long and complicated process. Fluorescence intensity imaging schemes are replacing the radioisotope-labeled method in recent years for cholesterol efflux monitoring. Various spectroscopic methods are also adapted for cholesterol efflux imaging. Here we present a fluorescence lifetime imaging method for more quantitative observation of cholesterol efflux process in macrophages, which enables us to observe cholesterol level changes with various conditions. We used J774 macrophage cell and 25-NBD-cholesterol which is a famous cholesterol specific dye. Our lifetime imaging results clearly show cholesterol efflux rate very effectively. We believe that fluorescence lifetime analysis is new and very powerful for cholesterol imaging or monitoring.

  15. Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Goiffon, Reece J.; Akers, Walter J.; Berezin, Mikhail Y.; Lee, Hyeran; Achilefu, Samuel

    2009-03-01

    Kidneys normally filter the blood of excess salts and metabolic products, such as urea, while retaining plasma proteins. In diseases such as multiple myeloma and diabetes mellitus, the renal function is compromised and protein escapes into the urine. In this study, we present the use of fluorescence lifetime imaging (FLI) to image excess serum protein in urine (proteinuria). The near-infrared fluorescent dye LS-288 has distinct lifetimes when bound to protein versus free in solution, providing contrast between the protein-rich viscera and the mostly protein-free bladder. FLI with LS-288 in mice revealed that fluorescence lifetime (FLT) differences in the bladder relative to surrounding tissues was due to the fractional contributions of the bound and unbound dye molecules. The FLT of LS-288 decreased in the case of proteinuria while fluorescence intensity was unchanged. The results show that FLI can be useful for the dynamic imaging of protein-losing nephropathy due to diabetes mellitus and other renal diseases and suggest the potential use of the FLI to distinguish tumors from fluid-filled cysts in the body.

  16. High-Speed Fluorescence Microscopy: Lifetime Imaging in the Biomedical Sciences

    NASA Astrophysics Data System (ADS)

    Periasamy, Ammasi; Wang, Xue F.; Wodnick, Pawel; Gordon, Gerald W.; Kwon, Seongwook; Diliberto, Pamela A.; Herman, Brian

    1995-02-01

    The ability to observe the behavior of living cells and tissues provides unparalleled access to information regarding the organization and dynamics of complex cellular structures. While great strides have been made over the past 30 to 40 years in the design and application of a variety of novel optical microscopic techniques, until recently, it has not been possible to image biological phenomena that occur over very short time periods (nanosecond to millisecond) or over short distances (10 to 1000 [Angstrom capital A, ring]). However, the recent combination of (1) very rapidly gated and sensitive image intensifiers and (2) the ability to deliver fluorescence excitation energy to intact living biological specimens in a pulsed or sinusoidally modulated fashion has allowed such measurements to become a reality through the imaging of the lifetimes of fluorescent molecules. This capability has resulted in the ability to observe the dynamic organization and interaction of cellular components on a spatial and temporal scale previously not possible using other microscopic techniques. This paper discusses the implementation of a fluorescence lifetime imaging microscope (FLIM) and provides a review of some of the applications of such an instrument. These include measurements of receptor topography and subunit interactions using fluorescence resonance energy transfer (FRET), fluorescence anisotropy of phospholipids in cell membranes, cytosolic free calcium (Ca2+)i and the detection of human papillomavirus (HPV) infection in clinical cervicovaginal smears.

  17. Fluorescence lifetime imaging to quantify sub-cellular oxygen measurements in live macrophage during bacterial invasion

    NASA Astrophysics Data System (ADS)

    Dragavon, Joe; Amiri, Megdouda; Marteyn, Benoit; Sansonetti, Philipe; Shorte, Spencer

    2011-03-01

    Fluorophore concentration, the surrounding microenvironment, and photobleaching greatly influence the fluorescence intensity of a fluorophore, increasing the difficulty to directly observe micro-environmental factors such as pH and oxygen. However, the fluorescence lifetime of a fluorophore is essentially independent of both the fluorophore concentration and photobleaching, providing a viable alternative to intensity measurements. The development of fluorescence lifetime imaging (FLI) allows for the direct measurement of the microenvironment surrounding a fluorophore. Pt-porphyrin is a fluorophore whose optical properties include a very stable triplet excited state. This energy level overlaps strongly with the ground triplet state of oxygen, making the phosphorescent lifetime directly proportional to the surrounding oxygen concentration. Initial experiments using this fluorophore involved the use of individual microwells coated with the porphyrin. Cells were allowed to enter the micro-wells before being sealed to create a diffusionally isolated volume. The decrease in the extracellular oxygen concentration was observed using FLI. However, this isolation technique provides only the consumption rate but cannot indicate the subcellular oxygen distribution. To improve upon this, live macrophages are loaded with the porphyrin and the fluorescence lifetime determined using a Lambert Instruments Lifa-X FLI system. Initial results indicate that an increase in subcellular oxygen is observed upon initial exposure to invasive bacteria. A substantial decrease in oxygen is observed after about 1 hour of exposure. The cells remain in this deoxygenated state until the bacteria are removed or cell death occurs.

  18. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  19. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    PubMed Central

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  20. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.

    2016-04-01

    Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.

  1. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy.

    PubMed

    Alfonso-García, Alba; Smith, Tim D; Datta, Rupsa; Luu, Thuy U; Gratton, Enrico; Potma, Eric O; Liu, Wendy F

    2016-04-30

    Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images. PMID:27086689

  2. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.

    PubMed

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L

    2008-11-21

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  3. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  4. A wide field fluorescence lifetime imaging system using a light sheet microscope

    NASA Astrophysics Data System (ADS)

    Birch, Phil M.; Moore, Lamar; Li, Xiaofei; Phillips, Roger; Young, Rupert; Chatwin, Chris

    2016-04-01

    Fluorescence lifetime imaging microscopy (FLIM) has allowed scientists to discern information about the chemical properties of biological processes and has become a vital tool in the life sciences and medical research communities. Measuring the spatial lifetime distribution of the fluorophores as well as the intensity distribution enables users to discern vital information about the chemical environment. It however, remains challenging and often involves slow scanning. We present a new microscope system based on light sheet illumination that uses a micro channel plate (MCP) device called a Capacitive Division Imaging Readout (CDIR) which has been developed by Photek Ltd. The device uses an array of capacitors to move the charge site from the MCP to four pre-amplifiers and time-over-threshold discriminators. This camera has the ability to image photons as well as measure the arrival time, enabling high speed FLIM imaging of biological samples.

  5. Quantitative diagnosis of cervical neoplasia using fluorescence lifetime imaging on haematoxylin and eosin stained tissue sections.

    PubMed

    Gu, Jun; Fu, Chit Yaw; Ng, Beng Koon; Gulam Razul, Sirajudeen so; Lim, Soo Kim

    2014-07-01

    The use of conventional fluorescence microscopy for characterizing tissue pathological states is limited by overlapping spectra and the dependence on excitation power and fluorophore concentration. Fluorescence lifetime imaging microscopy (FLIM) can overcome these limitations due to its insensitivity to fluorophore concentration, excitation power and spectral similarity. This study investigates the diagnosis of early cervical cancer using FLIM and a neural network extreme learning machine classifier. A concurrently high sensitivity and specificity of 92.8% and 80.2%, respectively, were achieved. The results suggest that the proposed technique can be used to supplement the traditional histopathological examination of early cervical cancer. PMID:23281280

  6. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    NASA Astrophysics Data System (ADS)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  7. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico; Tromberg, Bruce J.

    2013-03-01

    Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.

  8. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo

    PubMed Central

    Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico

    2012-01-01

    Abstract. Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000  nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo. PMID:23235925

  9. Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging.

    PubMed

    Kumar, S; Dunsby, C; De Beule, P A A; Owen, D M; Anand, U; Lanigan, P M P; Benninger, R K P; Davis, D M; Neil, M A A; Anand, P; Benham, C; Naylor, A; French, P M W

    2007-10-01

    We report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleaching- and movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor. PMID:19550524

  10. Deep-tissue multiphoton fluorescence lifetime microscopy for intravital imaging of protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Fruhwirth, G. O.; Matthews, D. R.; Brock, A.; Keppler, M.; Vojnovic, B.; Ng, T.; Ameer-Beg, S.

    2009-02-01

    Fluorescent lifetime imaging microscopy (FLIM) has proven to be a valuable tool in beating the Rayleigh criterion for light microscopy by measuring Förster resonance energy transfer (FRET) between two fluorophores. Applying multiphoton FLIM, we previously showed in a human breast cancer cell line that recycling of a membrane receptorgreen fluorescent protein fusion is enhanced concomitantly with the formation of a receptor:protein kinase C α complex in the endosomal compartment. We have extended this established technique to probe direct protein-protein interactions also in vivo. Therefore, we used various expressible fluorescent tags fused to membrane receptor molecules in order to generate stable two-colour breast carcinoma cell lines via controlled retroviral infection. We used these cell lines for establishing a xenograft tumour model in immune-compromised Nude mice. Using this animal model in conjunction with scanning Ti:Sapphire laser-based two-photon excitation, we established deep-tissue multiphoton FLIM in vivo. For the first time, this novel technique enables us to directly assess donor fluorescence lifetime changes in vivo and we show the application of this method for intravital imaging of direct protein-protein interactions.

  11. Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques

    PubMed Central

    Fatakdawala, Hussain; Poti, Shannon; Zhou, Feifei; Sun, Yang; Bec, Julien; Liu, Jing; Yankelevich, Diego R.; Tinling, Steven P.; Gandour-Edwards, Regina F.; Farwell, D. Gregory; Marcu, Laura

    2013-01-01

    This work reports a multimodal system for label-free tissue diagnosis combining fluorescence lifetime imaging (FLIm), ultrasound backscatter microscopy (UBM), and photoacoustic imaging (PAI). This system provides complementary biochemical, structural and functional features allowing for enhanced in vivo detection of oral carcinoma. Results from a hamster oral carcinoma model (normal, precancer and carcinoma) are presented demonstrating the ability of FLIm to delineate biochemical composition at the tissue surface, UBM and related radiofrequency parameters to identify disruptions in the tissue microarchitecture and PAI to map optical absorption associated with specific tissue morphology and physiology. PMID:24049693

  12. Deconvolution of fluorescence lifetime imaging microscopy by a library of exponentials.

    PubMed

    Campos-Delgado, Daniel U; Navarro, O Gutierrez; Arce-Santana, E R; Walsh, Alex J; Skala, Melissa C; Jo, Javier A

    2015-09-01

    Fluorescence lifetime microscopy imaging (FLIM) is an optic technique that allows a quantitative characterization of the fluorescent components of a sample. However, for an accurate interpretation of FLIM, an initial processing step is required to deconvolve the instrument response of the system from the measured fluorescence decays. In this paper, we present a novel strategy for the deconvolution of FLIM data based on a library of exponentials. Our approach searches for the scaling coefficients of the library by non-negative least squares approximations plus Thikonov/l(2) or l(1) regularization terms. The parameters of the library are given by the lower and upper bounds in the characteristic lifetimes of the exponential functions and the size of the library, where we observe that this last variable is not a limiting factor in the resulting fitting accuracy. We compare our proposal to nonlinear least squares and global non-linear least squares estimations with a multi-exponential model, and also to constrained Laguerre-base expansions, where we visualize an advantage of our proposal based on Thikonov/l(2) regularization in terms of estimation accuracy, computational time, and tuning strategy. Our validation strategy considers synthetic datasets subject to both shot and Gaussian noise and samples with different lifetime maps, and experimental FLIM data of ex-vivo atherosclerotic plaques and human breast cancer cells. PMID:26368470

  13. Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer; Sun, Yinghua; Saroufeem, Ramez; Hatami, Nisa; Fishbein, Michael C.; Marcu, Laura

    2011-09-01

    This study investigates the ability of a flexible fiberoptic-based fluorescence lifetime imaging microscopy (FLIM) technique to resolve biochemical features in plaque fibrotic cap associated with plaque instability and based solely on fluorescence decay characteristics. Autofluorescence of atherosclerotic human aorta (11 autopsy samples) was measured at 48 locations through two filters, F377: 377/50 and F460: 460/60 nm (center wavelength/bandwidth). The fluorescence decay dynamic was described by average lifetime (τ) and four Laguerre coefficients (LECs) retrieved through a Laguerre deconvolution technique. FLIM-derived parameters discriminated between four groups [elastin-rich (ER), elastin and macrophage-rich (E+M), collagen-rich (CR), and lipid-rich (LR)]. For example, τF377 discriminated ER from CR (R = 0.84); τF460 discriminated E+M from CR and ER (R = 0.60 and 0.54, respectively); LEC-1F377 discriminated CR from LR and E+M (R = 0.69 and 0.77, respectively); P < 0.05 for all correlations. Linear discriminant analysis was used to classify this data set with specificity >87% (all cases) and sensitivity as high as 86%. Current results demonstrate for the first time that clinically relevant features (e.g., ratios of lipid versus collagen versus elastin) can be evaluated with a flexible-fiber based FLIM technique without the need for fluorescence intensity information or contrast agents.

  14. Optimizing Laguerre expansion based deconvolution methods for analysing bi-exponential fluorescence lifetime images.

    PubMed

    Zhang, Yongliang; Chen, Yu; Li, David Day-Uei

    2016-06-27

    Fast deconvolution is an essential step to calibrate instrument responses in big fluorescence lifetime imaging microscopy (FLIM) image analysis. This paper examined a computationally effective least squares deconvolution method based on Laguerre expansion (LSD-LE), recently developed for clinical diagnosis applications, and proposed new criteria for selecting Laguerre basis functions (LBFs) without considering the mutual orthonormalities between LBFs. Compared with the previously reported LSD-LE, the improved LSD-LE allows to use a higher laser repetition rate, reducing the acquisition time per measurement. Moreover, we extended it, for the first time, to analyze bi-exponential fluorescence decays for more general FLIM-FRET applications. The proposed method was tested on both synthesized bi-exponential and realistic FLIM data for studying the endocytosis of gold nanorods in Hek293 cells. Compared with the previously reported constrained LSD-LE, it shows promising results. PMID:27410552

  15. CMOS image sensor with lateral electric field modulation pixels for fluorescence lifetime imaging with sub-nanosecond time response

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2016-04-01

    This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.

  16. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  17. A versatile fluorescence lifetime imaging system for scanning large areas with high time and spatial resolution

    NASA Astrophysics Data System (ADS)

    Bernardo, César; Belsley, Michael; de Matos Gomes, Etelvina; Gonçalves, Hugo; Isakov, Dmitry; Liebold, Falk; Pereira, Eduardo; Pires, Vladimiro; Samantilleke, Anura; Vasilevskiy, Mikhail; Schellenberg, Peter

    2014-08-01

    We present a flexible fluorescence lifetime imaging device which can be employed to scan large sample areas with a spatial resolution adjustable from many micrometers down to sub-micrometers and a temporal resolution of 20 picoseconds. Several different applications of the system will be presented including protein microarrays analysis, the scanning of historical samples, evaluation of solar cell surfaces and nanocrystalline organic crystals embedded in electrospun polymeric nanofibers. Energy transfer processes within semiconductor quantum dot superstructures as well as between dye probes and graphene layers were also investigated.

  18. Statistical properties of amplitude and decay parameter estimators for fluorescence lifetime imaging.

    PubMed

    Kim, Jeongtae; Seok, Jiyeong

    2013-03-11

    We analyze the statistical properties of the maximum likelihood estimator, least squares estimator, and Pearson's χ(2)-based and Neyman's χ(2)-based estimators for the estimation of decay constants and amplitudes for fluorescence lifetime imaging. Our analysis is based on the linearization of the gradient of the objective functions around true parameters. The analysis shows that only the maximum likelihood estimator based on the Poisson likelihood function yields unbiased and efficient estimation. All other estimators yield either biased or inefficient estimations. We validate our analysis by using simulations. PMID:23482174

  19. Automated High-Throughput Fluorescence Lifetime Imaging Microscopy to Detect Protein-Protein Interactions.

    PubMed

    Guzmán, Camilo; Oetken-Lindholm, Christina; Abankwa, Daniel

    2016-04-01

    Fluorescence resonance energy transfer (FRET) is widely used to study conformational changes of macromolecules and protein-protein, protein-nucleic acid, and protein-small molecule interactions. FRET biosensors can serve as valuable secondary assays in drug discovery and for target validation in mammalian cells. Fluorescence lifetime imaging microscopy (FLIM) allows precise quantification of the FRET efficiency in intact cells, as FLIM is independent of fluorophore concentration, detection efficiency, and fluorescence intensity. We have developed an automated FLIM system using a commercial frequency domain FLIM attachment (Lambert Instruments) for wide-field imaging. Our automated FLIM system is capable of imaging and analyzing up to 50 different positions of a slide in less than 4 min, or the inner 60 wells of a 96-well plate in less than 20 min. Automation is achieved using a motorized stage and controller (Prior Scientific) coupled with a Zeiss Axio Observer body and full integration into the Lambert Instruments FLIM acquisition software. As an application example, we analyze the interaction of the oncoprotein Ras and its effector Raf after drug treatment. In conclusion, our automated FLIM imaging system requires only commercial components and may therefore allow for a broader use of this technique in chemogenomics projects. PMID:26384400

  20. Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center.

    PubMed

    Beams, Ryan; Smith, Dallas; Johnson, Timothy W; Oh, Sang-Hyun; Novotny, Lukas; Vamivakas, A Nick

    2013-08-14

    Solid-state quantum emitters, such as artificially engineered quantum dots or naturally occurring defects in solids, are being investigated for applications ranging from quantum information science and optoelectronics to biomedical imaging. Recently, these same systems have also been studied from the perspective of nanoscale metrology. In this letter, we study the near-field optical properties of a diamond nanocrystal hosting a single nitrogen vacancy center. We find that the nitrogen vacancy center is a sensitive probe of the surrounding electromagnetic mode structure. We exploit this sensitivity to demonstrate nanoscale fluorescence lifetime imaging microscopy (FLIM) with a single nitrogen vacancy center by imaging the local density of states of an optical antenna. PMID:23815462

  1. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  2. Fluorescence lifetime imaging system with nm-resolution and single-molecule sensitivity

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Rahn, Hans-Juergen; Ortmann, Uwe; Erdmann, Rainer; Boehmer, Martin; Enderlein, Joerg

    2002-03-01

    Fluorescence lifetime measurement of organic fluorophores is a powerful tool for distinguishing molecules of interest from background or other species. This is of interest in sensitive analysis and Single Molecule Detection (SMD). A demand in many applications is to provide 2-D imaging together with lifetime information. The method of choice is then Time-Correlated Single Photon Counting (TCSPC). We have devloped a compact system on a single PC board that can perform TCSPC at high throughput, while synchronously driving a piezo scanner holding the immobilized sample. The system allows count rates up to 3 MHz and a resolution down to 30 ps. An overall Instrument Response Function down to 300ps is achieved with inexpensive detectors and diode lasers. The board is designed for the PCI bus, permitting high throughput without loss of counts. It is reconfigurable to operate in different modes. The Time-Tagged Time-Resolved (TTTR) mode permits the recording of all photon events with a real-time tag allowing data analysis with unlimited flexibility. We use the Time-Tag clock for an external piezo scanner that moves the sample. As the clock source is common for scanning and tagging, the individual photons can be matched to pixels. Demonstrating the capablities of the system we studied single molecule solutions. Lifetime imaging can be performed at high resolution with as few as 100 photons per pixel.

  3. A UV-Visible-NIR fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution

    NASA Astrophysics Data System (ADS)

    Urayama, P.; Zhong, W.; Beamish, J. A.; Minn, F. K.; Sloboda, R. D.; Dragnev, K. H.; Dmitrovsky, E.; Mycek, M.-A.

    This article describes the design and characterization of a wide-field, time-domain fluorescence lifetime imaging microscopy (FLIM) system developed for picosecond time-resolved biological imaging. The system consists of a nitrogen-pumped dye laser for UV-visible-NIR excitation (337.1-960 nm), an epi-illuminated microscope with UV compatible optics, and a time-gated intensified CCD camera with an adjustable gate width (200 ps-10-3 s) for temporally resolved, single-photon detection of fluorescence decays with 9.6-bit intensity resolution and 1.4-μm spatial resolution. Intensity measurements used for fluorescence decay calculations are reproducible to within 2%, achieved by synchronizing the ICCD gate delay to the excitation laser pulse via a constant fraction optical discriminator and picosecond delay card. A self-consistent FLIM system response model is presented, allowing for fluorescence lifetimes (0.6 ns) significantly smaller than the FLIM system response (1.14 ns) to be determined to 3% of independently determined values. The FLIM system was able to discriminate fluorescence lifetime differences of at least 50 ps. The spectral tunability and large temporal dynamic range of the system are demonstrated by imaging in living human cells: UV-excited endogenous fluorescence from metabolic cofactors (lifetime 1.4 ns) and 460-nm excited fluorescence from an exogenous oxygen-quenched ruthenium dye (lifetime 400 ns).

  4. Fluorescence lifetime imaging to differentiate bound from unbound ICG-cRGD both in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Stegehuis, Paulien L.; Boonstra, Martin C.; de Rooij, Karien E.; Powolny, François E.; Sinisi, Riccardo; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Vahrmeijer, Alexander L.; Dijkstra, Jouke; van de Giessen, Martijn

    2015-03-01

    Excision of the whole tumor is crucial, but remains difficult for many tumor types. Fluorescence lifetime imaging could be helpful intraoperative to differentiate normal from tumor tissue. In this study we investigated the difference in fluorescence lifetime imaging of indocyanine green coupled to cyclic RGD free in solution/serum or bound to integrins e.g. in tumors. The U87-MG glioblastoma cell line, expressing high integrin levels, was cultured to use in vitro and to induce 4 subcutaneous tumors in a-thymic mice (n=4). Lifetimes of bound and unbound probe were measured with an experimental time-domain single-photon avalanche diode array (time resolution <100ps). In vivo measurements were taken 30-60 minutes after intravenous injection, and after 24 hours. The in vitro lifetime of the fluorophores was similar at different concentrations (20, 50 and 100μM) and showed a statistically significant higher lifetime (p<0.001) of bound probe compared to unbound probe. In vivo, lifetimes of the fluorophores in tumors were significantly higher (p<0.001) than at the control site (tail) at 30-60 minutes after probe injection. Lifetimes after 24 hours confirmed tumor-specific binding (also validated by fluorescence intensity images). Based on the difference in lifetime imaging, it can be concluded that it is feasible to separate between bound and unbound probes in vivo.

  5. Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging

    PubMed Central

    Wang, Haolu; Liang, Xiaowen; Mohammed, Yousuf H.; Thomas, James A.; Bridle, Kim R.; Thorling, Camilla A.; Grice, Jeffrey E.; Xu, Zhi Ping; Liu, Xin; Crawford, Darrell H. G.; Roberts, Michael S.

    2015-01-01

    Conventional histology with light microscopy is essential in the diagnosis of most liver diseases. Recently, a concept of real-time histology with optical biopsy has been advocated. In this study, live mice livers (normal, with fibrosis, steatosis, hepatocellular carcinoma and ischemia-reperfusion injury) were imaged by MPM-FLIM for stain-free real-time histology. The acquired MPM-FLIM images were compared with conventional histological images. MPM-FLIM imaged subsurface cellular and subcellular histopathological hallmarks of live liver in mice models at high resolution. Additional information such as distribution of stellate cell associated autofluorescence and fluorescence lifetime changes was also gathered by MPM-FLIM simultaneously, which cannot be obtained from conventional histology. MPM-FLIM could simultaneously image and quantify the cellular morphology and microenvironment of live livers without conventional biopsy or fluorescent dyes. We anticipate that in the near future MPM-FLIM will be evaluated from bench to bedside, leading to real-time histology and dynamic monitoring of human liver diseases. PMID:25798303

  6. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778

  7. Three-dimensional fluorescence lifetime tomography

    SciTech Connect

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-04-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.

  8. Two-photon fluorescence lifetime imaging of primed SNARE complexes in presynaptic terminals and β cells

    NASA Astrophysics Data System (ADS)

    Takahashi, Noriko; Sawada, Wakako; Noguchi, Jun; Watanabe, Satoshi; Ucar, Hasan; Hayashi-Takagi, Akiko; Yagishita, Sho; Ohno, Mitsuyo; Tokumaru, Hiroshi; Kasai, Haruo

    2015-10-01

    It remains unclear how readiness for Ca2+-dependent exocytosis depends on varying degrees of SNARE complex assembly. Here we directly investigate the SNARE assembly using two-photon fluorescence lifetime imaging (FLIM) of Förster resonance energy transfer (FRET) between three pairs of neuronal SNAREs in presynaptic boutons and pancreatic β cells in the islets of Langerhans. These FRET probes functionally rescue their endogenous counterparts, supporting ultrafast exocytosis. We show that trans-SNARE complexes accumulated in the active zone, and estimate the number of complexes associated with each docked vesicle. In contrast, SNAREs were unassembled in resting state, and assembled only shortly prior to insulin exocytosis, which proceeds slowly. We thus demonstrate that distinct states of fusion readiness are associated with SNARE complex formation. Our FRET/FLIM approaches enable optical imaging of fusion readiness in both live and chemically fixed tissues.

  9. Two-photon fluorescence lifetime imaging of primed SNARE complexes in presynaptic terminals and β cells

    PubMed Central

    Takahashi, Noriko; Sawada, Wakako; Noguchi, Jun; Watanabe, Satoshi; Ucar, Hasan; Hayashi-Takagi, Akiko; Yagishita, Sho; Ohno, Mitsuyo; Tokumaru, Hiroshi; Kasai, Haruo

    2015-01-01

    It remains unclear how readiness for Ca2+-dependent exocytosis depends on varying degrees of SNARE complex assembly. Here we directly investigate the SNARE assembly using two-photon fluorescence lifetime imaging (FLIM) of Förster resonance energy transfer (FRET) between three pairs of neuronal SNAREs in presynaptic boutons and pancreatic β cells in the islets of Langerhans. These FRET probes functionally rescue their endogenous counterparts, supporting ultrafast exocytosis. We show that trans-SNARE complexes accumulated in the active zone, and estimate the number of complexes associated with each docked vesicle. In contrast, SNAREs were unassembled in resting state, and assembled only shortly prior to insulin exocytosis, which proceeds slowly. We thus demonstrate that distinct states of fusion readiness are associated with SNARE complex formation. Our FRET/FLIM approaches enable optical imaging of fusion readiness in both live and chemically fixed tissues. PMID:26439845

  10. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging

    PubMed Central

    Spagnol, Stephen T.; Dahl, Kris Noel

    2016-01-01

    The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes. PMID:26765322

  11. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging.

    PubMed

    Spagnol, Stephen T; Dahl, Kris Noel

    2016-01-01

    The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes. PMID:26765322

  12. Fluorescence Lifetime Imaging and Intravascular Ultrasound: Co-Registration Study Using Ex Vivo Human Coronaries

    PubMed Central

    Gorpas, Dimitris; Fatakdawala, Hussain; Bec, Julien; Ma, Dinglong; Yankelevich, Diego R.; Qi, Jinyi

    2015-01-01

    Fluorescence lifetime imaging (FLIM) has demonstrated potential for robust assessment of atherosclerotic plaques biochemical composition and for complementing conventional intravascular ultrasound (IVUS), which provides information on plaque morphology. The success of such a bi-modal imaging modality depends on accurate segmentation of the IVUS images and proper angular registration between these two modalities. This paper reports a novel IVUS segmentation methodology addressing this issue. The image preprocessing consisted of denoising, using the Wiener filter, followed by image smoothing, implemented through the application of the alternating sequential filter on the edge separability metric images. Extraction of the lumen/intima and media/adventitia boundaries was achieved by tracing the gray-scale peaks over the A-lines of the IVUS preprocessed images. Cubic spline interpolation, in both cross-sectional and longitudinal directions, ensured boundary smoothness and continuity. The detection of the guide-wire artifact in both modalities is used for angular registration. Intraluminal studies were conducted in 13 ex vivo segments of human coronaries. The IVUS segmentation accuracy was assessed against independent manual tracings, providing 91.82% sensitivity and 97.55% specificity. The proposed methodology makes the bi-modal FLIM and IVUS approach feasible for comprehensive intravascular diagnosis by providing co-registered biochemical and morphological information of atherosclerotic plaques. PMID:25163056

  13. Fluorescence lifetime imaging and intravascular ultrasound: co-registration study using ex vivo human coronaries.

    PubMed

    Gorpas, Dimitris; Fatakdawala, Hussain; Bec, Julien; Ma, Dinglong; Yankelevich, Diego R; Qi, Jinyi; Marcu, Laura

    2015-01-01

    Fluorescence lifetime imaging (FLIM) has demonstrated potential for robust assessment of atherosclerotic plaques biochemical composition and for complementing conventional intravascular ultrasound (IVUS), which provides information on plaque morphology. The success of such a bi-modal imaging modality depends on accurate segmentation of the IVUS images and proper angular registration between these two modalities. This paper reports a novel IVUS segmentation methodology addressing this issue. The image preprocessing consisted of denoising, using the Wiener filter, followed by image smoothing, implemented through the application of the alternating sequential filter on the edge separability metric images. Extraction of the lumen/intima and media/adventitia boundaries was achieved by tracing the gray-scale peaks over the A-lines of the IVUS preprocessed images. Cubic spline interpolation, in both cross-sectional and longitudinal directions, ensured boundary smoothness and continuity. The detection of the guide-wire artifact in both modalities is used for angular registration. Intraluminal studies were conducted in 13 ex vivo segments of human coronaries. The IVUS segmentation accuracy was assessed against independent manual tracings, providing 91.82% sensitivity and 97.55% specificity. The proposed methodology makes the bi-modal FLIM and IVUS approach feasible for comprehensive intravascular diagnosis by providing co-registered biochemical and morphological information of atherosclerotic plaques. PMID:25163056

  14. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging.

    PubMed

    Deka, Gitanjal; Wu, Wei-Wen; Kao, Fu-Jen

    2013-06-01

    Skin wounds heal when a series of cell lineages are triggered, followed by collagen deposition, to reconstruct damaged tissues. This study evaluates the regeneration of collagen and change in cellular metabolic rate in vivo during wound healing in rats, with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy respectively. The metabolic rate of cells is reflected through the lifetime of the autofluorescence from the co-enzyme protein, reduced nicotinamide adenine dinucleotide, due to its change in the relative concentration of bound and free forms. A higher than normal cellular metabolic rate is observed during the first week of healing, which decreases gradually after eight days of wound formation. SHG signal intensity change indicates the net degradation of collagen during the inflammatory phase, and net regeneration begins on day five. Eventually, the quantity of collagen increases gradually to form a scar tissue as the final product. Importantly, this work demonstrates the feasibility of an in vivo imaging approach for a normal wound on rat skin, which has the potential to supplement the noninvasive clinical diagnosis of wounds. PMID:23264966

  15. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging.

    PubMed

    Deka, Gitanjal; Wu, Wei-Wen; Kao, Fu-Jen

    2013-06-01

    Skin wounds heal when a series of cell lineages are triggered, followed by collagen deposition, to reconstruct damaged tissues. This study evaluates the regeneration of collagen and change in cellular metabolic rate in vivo during wound healing in rats, with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy respectively. The metabolic rate of cells is reflected through the lifetime of the autofluorescence from the co-enzyme protein, reduced nicotinamide adenine dinucleotide, due to its change in the relative concentration of bound and free forms. A higher than normal cellular metabolic rate is observed during the first week of healing, which decreases gradually after eight days of wound formation. SHG signal intensity change indicates the net degradation of collagen during the inflammatory phase, and net regeneration begins on day five. Eventually, the quantity of collagen increases gradually to form a scar tissue as the final product. Importantly, this work demonstrates the feasibility of an in vivo imaging approach for a normal wound on rat skin, which has the potential to supplement the noninvasive clinical diagnosis of wounds. PMID:23748703

  16. In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Wu, Wei-Wen; Kao, Fu-Jen

    2013-06-01

    Skin wounds heal when a series of cell lineages are triggered, followed by collagen deposition, to reconstruct damaged tissues. This study evaluates the regeneration of collagen and change in cellular metabolic rate in vivo during wound healing in rats, with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy respectively. The metabolic rate of cells is reflected through the lifetime of the autofluorescence from the co-enzyme protein, reduced nicotinamide adenine dinucleotide, due to its change in the relative concentration of bound and free forms. A higher than normal cellular metabolic rate is observed during the first week of healing, which decreases gradually after eight days of wound formation. SHG signal intensity change indicates the net degradation of collagen during the inflammatory phase, and net regeneration begins on day five. Eventually, the quantity of collagen increases gradually to form a scar tissue as the final product. Importantly, this work demonstrates the feasibility of an in vivo imaging approach for a normal wound on rat skin, which has the potential to supplement the noninvasive clinical diagnosis of wounds.

  17. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    PubMed Central

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D.; Wilkinson, Martin G.; Panek, Jiri; Auty, Mark A. E.; Periasamy, Ammasi; Sheehan, Jeremiah J.

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening. PMID:25798136

  18. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy.

    PubMed

    Iermak, Ievgeniia; Vink, Jochem; Bader, Arjen N; Wientjes, Emilie; van Amerongen, Herbert

    2016-09-01

    Two-photon fluorescence lifetime imaging microscopy (FLIM) was used to analyse the distribution and properties of Photosystem I (PSI) and Photosystem II (PSII) in palisade and spongy chloroplasts of leaves from the C3 plant Arabidopsis thaliana and the C4 plant Miscanthus x giganteus. This was achieved by separating the time-resolved fluorescence of PSI and PSII in the leaf. It is found that the PSII antenna size is larger on the abaxial side of A. thaliana leaves, presumably because chloroplasts in the spongy mesophyll are "shaded" by the palisade cells. The number of chlorophylls in PSI on the adaxial side of the A. thaliana leaf is slightly higher. The C4 plant M. x giganteus contains both mesophyll and bundle sheath cells, which have a different PSI/PSII ratio. It is shown that the time-resolved fluorescence of bundle sheath and mesophyll cells can be analysed separately. The relative number of chlorophylls, which belong to PSI (as compared to PSII) in the bundle sheath cells is at least 2.5 times higher than in mesophyll cells. FLIM is thus demonstrated to be a useful technique to study the PSI/PSII ratio and PSII antenna size in well-defined regions of plant leaves without having to isolate pigment-protein complexes. PMID:27239747

  19. Investigation of signal-to-noise ratio in frequency-domain multiphoton fluorescence lifetime imaging microscopy.

    PubMed

    Zhang, Yide; Khan, Aamir A; Vigil, Genevieve D; Howard, Scott S

    2016-07-01

    Multiphoton microscopy (MPM) combined with fluorescence lifetime imaging microscopy (FLIM) has enabled three-dimensional quantitative molecular microscopy in vivo. The signal-to-noise ratio (SNR), and thus the imaging rate of MPM-FLIM, which is fundamentally limited by the shot noise and fluorescence saturation, has not been quantitatively studied yet. In this paper, we investigate the SNR performance of the frequency-domain (FD) MPM-FLIM with two figures of merit: the photon economy in the limit of shot noise, and the normalized SNR in the limit of saturation. The theoretical results and Monte Carlo simulations find that two-photon FD-FLIM requires 50% fewer photons to achieve the same SNR as conventional one-photon FLIM. We also analytically show that the MPM-FD-FLIM can exploit the DC and higher harmonic components generated by nonlinear optical mixing of the excitation light to improve SNR, reducing the required number of photons by an additional 50%. Finally, the effect of fluorophore saturation on the experimental SNR performance is discussed. PMID:27409702

  20. Real-time analysis of metabolic activity within Lactobacillus acidophilus by phasor fluorescence lifetime imaging microscopy of NADH.

    PubMed

    Torno, Keenan; Wright, Belinda K; Jones, Mark R; Digman, Michelle A; Gratton, Enrico; Phillips, Michael

    2013-04-01

    Nicotinamide adenine dinucleotide (NADH) is an endogenous fluorescent molecule commonly used as a metabolic biomarker. Fluorescence lifetime imaging microscopy (FLIM) is a method in which the fluorescence decay is measured at each pixel of an image. While the fluorescence spectrum of free and protein-bound NADH is very similar, free and protein-bound NADH display very different decay profiles. Therefore, FLIM can provide a way to distinguish free/bound NADH at the level of single bacteria within biological samples. The phasor technique is a graphical method to analyse the entire image and to produce a histogram of pixels with different decay profile. In this study, NADH fluorescence decay profiles within Lactobacillus acidophilus samples treated using different protocols indicated discernible variations. Clear distinctions between fluorescence decay profiles of NADH in samples of artificially heightened metabolic activity in comparison to those of samples lacking an accessible carbon source were obtained. PMID:23233088

  1. Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy

    PubMed Central

    2013-01-01

    Background Delignification pretreatments of biomass and methods to assess their efficacy are crucial for biomass-to-biofuels research and technology. Here, we applied confocal and fluorescence lifetime imaging microscopy (FLIM) using one- and two-photon excitation to map the lignin distribution within bagasse fibers pretreated with acid and alkali. The evaluated spectra and decay times are correlated with previously calculated lignin fractions. We have also investigated the influence of the pretreatment on the lignin distribution in the cell wall by analyzing the changes in the fluorescence characteristics using two-photon excitation. Eucalyptus fibers were also analyzed for comparison. Results Fluorescence spectra and variations of the decay time correlate well with the delignification yield and the lignin distribution. The decay dependences are considered two-exponential, one with a rapid (τ1) and the other with a slow (τ2) decay time. The fastest decay is associated to concentrated lignin in the bagasse and has a low sensitivity to the treatment. The fluorescence decay time became longer with the increase of the alkali concentration used in the treatment, which corresponds to lignin emission in a less concentrated environment. In addition, the two-photon fluorescence spectrum is very sensitive to lignin content and accumulation in the cell wall, broadening with the acid pretreatment and narrowing with the alkali one. Heterogeneity of the pretreated cell wall was observed. Conclusions Our results reveal lignin domains with different concentration levels. The acid pretreatment caused a disorder in the arrangement of lignin and its accumulation in the external border of the cell wall. The alkali pretreatment efficiently removed lignin from the middle of the bagasse fibers, but was less effective in its removal from their surfaces. Our results evidenced a strong correlation between the decay times of the lignin fluorescence and its distribution within the cell

  2. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy.

    PubMed

    Day, Richard N

    2014-03-15

    The method of fluorescence lifetime imaging microscopy (FLIM) is a quantitative approach that can be used to detect Förster resonance energy transfer (FRET). The use of FLIM to measure the FRET that results from the interactions between proteins labeled with fluorescent proteins (FPs) inside living cells provides a non-invasive method for mapping interactomes. Here, the use of the phasor plot method to analyze frequency domain (FD) FLIM measurements is described, and measurements obtained from cells producing the 'FRET standard' fusion proteins are used to validate the FLIM system for FRET measurements. The FLIM FRET approach is then used to measure both homologous and heterologous protein-protein interactions (PPI) involving the CCAAT/enhancer-binding protein alpha (C/EBPα). C/EBPα is a transcription factor that controls cell differentiation, and localizes to heterochromatin where it interacts with the heterochromatin protein 1 alpha (HP1α). The FLIM-FRET method is used to quantify the homologous interactions between the FP-labeled basic leucine zipper (BZip) domain of C/EBPα. Then the heterologous interactions between the C/EBPa BZip domain and HP1a are quantified using the FRET-FLIM method. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. PMID:23806643

  3. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer.

    PubMed

    Zhang, Lei; Lei, Jianping; Liu, Jintong; Ma, Fengjiao; Ju, Huangxian

    2015-10-01

    Time-resolved fluorescence technique can reduce the short-lived background luminescence and auto-fluorescence interference from cells and tissues by exerting the delay time between pulsed excitation light and signal acquisition. Here, we prepared persistent luminescence nanoparticles (PLNPs) to design a universal time-resolved fluorescence resonance energy transfer (TR-FRET) platform for biosensing, lifetime imaging of cell apoptosis and in situ lifetime quantification of intracellular caspase-3. Three kinds of PLNPs-based nanoprobes are assembled by covalently binding dye-labeled peptides or DNA to carboxyl-functionalized PLNPs for the efficient detection of caspase-3, microRNA and protein. The peptides-functionalized nanoprobe is also employed for fluorescence lifetime imaging to monitor cell apoptosis, which shows a dependence of cellular fluorescence lifetime on caspase-3 activity and thus leads to an in situ quantification method. This work provides a proof-of-concept for PLNPs-based TR-FRET analysis and demonstrates its potential in exploring dynamical information of life process. PMID:26232881

  4. Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy

    PubMed Central

    Campos-Delgado, Daniel U.; Navarro, O. Gutiérrez; Arce-Santana, E. R.; Jo, Javier A.

    2015-01-01

    In this paper, we investigate novel low-dimensional and model-free representations for multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) data. We depart from the classical definition of the phasor in the complex plane to propose the extended output phasor (EOP) and extended phasor (EP) for multi-spectral information. The frequency domain properties of the EOP and EP are analytically studied based on a multiexponential model for the impulse response of the imaged tissue. For practical implementations, the EOP is more appealing since there is no need to perform deconvolution of the instrument response from the measured m-FLIM data, as in the case of EP. Our synthetic and experimental evaluations with m-FLIM datasets of human coronary atherosclerotic plaques show that low frequency indexes have to be employed for a distinctive representation of the EOP and EP, and to reduce noise distortion. The tissue classification of the m-FLIM datasets by EOP and EP also improves with low frequency indexes, and does not present significant differences by using either phasor. PMID:26114031

  5. Fluorescence Characteristics and Lifetime Images of Photosensitizers of Talaporfin Sodium and Sodium Pheophorbide a in Normal and Cancer Cells

    PubMed Central

    Awasthi, Kamlesh; Yamamoto, Kazuhito; Furuya, Kazunari; Nakabayashi, Takakazu; Li, Liming; Ohta, Nobuhiro

    2015-01-01

    Fluorescence spectra and fluorescence lifetime images of talaporfin sodium and sodium-pheophorbide a, which can be regarded as photosensitizers for photodynamic therapy, were measured in normal and cancer cells. The reduction of the fluorescence intensity by photoirradiation was observed for both photosensitizers in both cells, but the quenching rate was much faster in cancer cells than in normal cells. These results are explained in terms of the excessive generation of reactive oxygen species via photoexcitation of these photosensitizers in cancer cells. The fluorescence lifetimes of both photosensitizers in cancer cells are different from those in normal cells, which originates from the different intracellular environments around the photosensitizers between normal and cancer cells. PMID:25993516

  6. Detection of enzyme activity in orthotopic murine breast cancer by fluorescence lifetime imaging using a fluorescence resonance energy transfer-based molecular probe

    NASA Astrophysics Data System (ADS)

    Solomon, Metasebya; Guo, Kevin; Sudlow, Gail P.; Berezin, Mikhail Y.; Edwards, W. Barry; Achilefu, Samuel; Akers, Walter J.

    2011-06-01

    Cancer-related enzyme activity can be detected noninvasively using activatable fluorescent molecular probes. In contrast to ``always-on'' fluorescent molecular probes, activatable probes are relatively nonfluorescent at the time of administration due to intramolecular fluorescence resonance energy transfer (FRET). Enzyme-mediated hydrolysis of peptide linkers results in reduced FRET and increase of fluorescence yield. Separation of signal from active and inactive probe can be difficult with conventional intensity-based fluorescence imaging. Fluorescence lifetime (FLT) measurement is an alternative method to detect changes in FRET. Thus, we investigate FLT imaging for in vivo detection of FRET-based molecular probe activation in an orthotopic breast cancer model. Indeed, the measured FLT of the enzyme-activatable molecular probe increases from 0.62 ns just after injection to 0.78 ns in tumor tissue after 4 h. A significant increase in FLT is not observed for an always-on targeted molecular probe with the same fluorescent reporter. These results show that FLT contrast is a powerful addition to preclinical imaging because it can report molecular activity in vivo due to changes in FRET. Fluorescence lifetime imaging exploits unique characteristics of fluorescent molecular probes that can be further translated into clinical applications, including noninvasive detection of cancer-related enzyme activity.

  7. Support vector machine based classification and mapping of atherosclerotic plaques using fluorescence lifetime imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fatakdawala, Hussain; Gorpas, Dimitris S.; Bec, Julien; Ma, Dinglong M.; Yankelevich, Diego R.; Bishop, John W.; Marcu, Laura

    2016-02-01

    The progression of atherosclerosis in coronary vessels involves distinct pathological changes in the vessel wall. These changes manifest in the formation of a variety of plaque sub-types. The ability to detect and distinguish these plaques, especially thin-cap fibroatheromas (TCFA) may be relevant for guiding percutaneous coronary intervention as well as investigating new therapeutics. In this work we demonstrate the ability of fluorescence lifetime imaging (FLIm) derived parameters (lifetime values from sub-bands 390/40 nm, 452/45 nm and 542/50 nm respectively) for generating classification maps for identifying eight different atherosclerotic plaque sub-types in ex vivo human coronary vessels. The classification was performed using a support vector machine based classifier that was built from data gathered from sixteen coronary vessels in a previous study. This classifier was validated in the current study using an independent set of FLIm data acquired from four additional coronary vessels with a new rotational FLIm system. Classification maps were compared to co-registered histological data. Results show that the classification maps allow identification of the eight different plaque sub-types despite the fact that new data was gathered with a different FLIm system. Regions with diffuse intimal thickening (n=10), fibrotic tissue (n=2) and thick-cap fibroatheroma (n=1) were correctly identified on the classification map. The ability to identify different plaque types using FLIm data alone may serve as a powerful clinical and research tool for studying atherosclerosis in animal models as well as in humans.

  8. Flavin fluorescence lifetime imaging of living peripheral blood mononuclear cells on micro and nano-structured surfaces

    NASA Astrophysics Data System (ADS)

    Teplicky, T.; Horilova, J.; Bruncko, J.; Gladine, C.; Lajdova, I.; Mateasik, A.; Chorvat, D.; Marcek Chorvatova, A.

    2015-03-01

    Fabricated micro- and nano-structured surfaces were evaluated for use with living cells. Metabolic state was tested by means of endogenous flavin fluorescence of living peripheral blood mononuclear cells (PBMC) positioned on a coverslip, non-covered, or covered with micro- or nano-structured surfaces (OrmoComp polymer structures produced by 2-photon photopolymerisation, or Zinc Oxide (ZnO) layer fabricated by pulsed laser deposition). Confocal microscopy and Fluorescence Lifetime Imaging Microscopy (FLIM) were employed to gather flavin fluorescence lifetime images of living PBMC on structured surfaces. Gathered data are the first step towards monitoring of the live cell interaction with different micro/nano-structured surfaces and thus evaluate their potential applicability in the biomedical field.

  9. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols.

    PubMed

    Mueller-Harvey, Irene; Feucht, Walter; Polster, Juergen; Trnková, Lucie; Burgos, Pierre; Parker, Anthony W; Botchway, Stanley W

    2012-03-16

    Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were ~1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime (τ(2)=1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there is significant nuclear absorption of flavanols. This advanced imaging using two-photon excitation and biophysical techniques described here will prove valuable for probing the intracellular trafficking and functions of flavanols, such as EGCG, which is the major flavanol of green tea. PMID:22340533

  10. Nuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Shastry, Sathvik; Bradforth, Stephen E.; Nadeau, Jay L.

    2014-11-01

    Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in Dox-resistant cancers.Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in

  11. Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation

    PubMed Central

    Radbruch, Helena; Andresen, Volker; Mossakowski, Agata; Siffrin, Volker; Seelemann, Thomas; Spiecker, Heinrich; Moll, Ingrid; Herz, Josephine; Hauser, Anja E.; Zipp, Frauke; Behne, Martin J.; Niesner, Raluca

    2013-01-01

    Two-photon laser-scanning microscopy has revolutionized our view on vital processes by revealing motility and interaction patterns of various cell subsets in hardly accessible organs (e.g. brain) in living animals. However, current technology is still insufficient to elucidate the mechanisms of organ dysfunction as a prerequisite for developing new therapeutic strategies, since it renders only sparse information about the molecular basis of cellular response within tissues in health and disease. In the context of imaging, Förster resonant energy transfer (FRET) is one of the most adequate tools to probe molecular mechanisms of cell function. As a calibration-free technique, fluorescence lifetime imaging (FLIM) is superior for quantifying FRET in vivo. Currently, its main limitation is the acquisition speed in the context of deep-tissue 3D and 4D imaging. Here we present a parallelized time-correlated single-photon counting point detector (p-TCSPC) (i) for dynamic single-beam scanning FLIM of large 3D areas on the range of hundreds of milliseconds relevant in the context of immune-induced pathologies as well as (ii) for ultrafast 2D FLIM in the range of tens of milliseconds, a scale relevant for cell physiology. We demonstrate its power in dynamic deep-tissue intravital imaging, as compared to multi-beam scanning time-gated FLIM suitable for fast data acquisition and compared to highly sensitive single-channel TCSPC adequate to detect low fluorescence signals. Using p-TCSPC, 256×256 pixel FLIM maps (300×300 µm2) are acquired within 468 ms while 131×131 pixel FLIM maps (75×75 µm2) can be acquired every 82 ms in 115 µm depth in the spinal cord of CerTN L15 mice. The CerTN L15 mice express a FRET-based Ca-biosensor in certain neuronal subsets. Our new technology allows us to perform time-lapse 3D intravital FLIM (4D FLIM) in the brain stem of CerTN L15 mice affected by experimental autoimmune encephalomyelitis and, thereby, to truly quantify neuronal

  12. From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin.

    PubMed

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R; Feger, Julia S; Fallah, Mohammad A; Metze, Dieter; Ständer, Sonja; Luger, Thomas A; Koenig, Karsten; Mess, Christian; Schneider, Stefan W

    2016-01-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients' bedsides. These 'optical biopsies' generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy. PMID:27004454

  13. Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels

    PubMed Central

    Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Neil, Mark A. A.; König, Karsten; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-01-01

    We explore the diagnostic potential of imaging endogenous fluorophores using two photon microscopy and fluorescence lifetime imaging (FLIM) in human skin with two spectral detection channels. Freshly excised benign dysplastic nevi (DN) and malignant nodular Basal Cell Carcinomas (nBCCs) were excited at 760 nm. The resulting fluorescence signal was binned manually on a cell by cell basis. This improved the reliability of fitting using a double exponential decay model and allowed the fluorescence signatures from different cell populations within the tissue to be identified and studied. We also performed a direct comparison between different diagnostic groups. A statistically significant difference between the median mean fluorescence lifetime of 2.79 ns versus 2.52 ns (blue channel, 300-500 nm) and 2.08 ns versus 1.33 ns (green channel, 500-640 nm) was found between nBCCs and DN respectively, using the Mann-Whitney U test (p < 0.01). Further differences in the distribution of fluorescence lifetime parameters and inter-patient variability are also discussed. PMID:22162820

  14. Fluorescence Lifetime Techniques in Medical Applications

    PubMed Central

    Marcu, Laura

    2012-01-01

    This article presents an overview of time-resolved (lifetime) fluorescence techniques used in biomedical diagnostics. In particular, we review the development of time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) instrumentation and associated methodologies which allows for in vivo characterization and diagnosis of biological tissues. Emphasis is placed on the translational research potential of these techniques and on evaluating whether intrinsic fluorescence signals provide useful contrast for the diagnosis of human diseases including cancer (gastrointestinal tract, lung, head and neck, and brain), skin and eye diseases, and atherosclerotic cardiovascular disease. PMID:22273730

  15. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm.

    PubMed

    Li, David D-U; Arlt, Jochen; Tyndall, David; Walker, Richard; Richardson, Justin; Stoppa, David; Charbon, Edoardo; Henderson, Robert K

    2011-09-01

    A high-speed and hardware-only algorithm using a center of mass method has been proposed for single-detector fluorescence lifetime sensing applications. This algorithm is now implemented on a field programmable gate array to provide fast lifetime estimates from a 32 × 32 low dark count 0.13 μm complementary metal-oxide-semiconductor single-photon avalanche diode (SPAD) plus time-to-digital converter array. A simple look-up table is included to enhance the lifetime resolvability range and photon economics, making it comparable to the commonly used least-square method and maximum-likelihood estimation based software. To demonstrate its performance, a widefield microscope was adapted to accommodate the SPAD array and image different test samples. Fluorescence lifetime imaging microscopy on fluorescent beads in Rhodamine 6G at a frame rate of 50 fps is also shown. PMID:21950926

  16. Evaluation of the oxidative stress of psoriatic fibroblasts based on spectral two-photon fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Kapsokalyvas, Dimitrios; Barygina, Victoria; Cicchi, Riccardo; Fiorillo, Claudia; Pavone, Francesco S.

    2013-02-01

    Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Metabolic activity is increased in the epidermis and the dermis. Oxidative stress is high mainly due to reactive oxygen species (ROS) originating from the skin environment and cellular metabolism. We employed a custom multiphoton microscope coupled with a FLIM setup to image primary culture fibroblast cells from perilesional and lesional psoriatic skin in-vitro. Twophoton excited fluorescence images revealed the morphological differences between healthy and psoriatic fibroblasts. Based on the spectral analysis of the NADH and FAD components the oxidative stress was assessed and found to be higher in psoriatic cells. Furthermore the fluorescence lifetime properties were investigated with a TCSPC FLIM module. Mean fluorescence lifetime was found to be longer in psoriatic lesional cells. Analysis of the fast (τ1) and slow (τ2) decay lifetimes revealed a decrease of the ratio of the contribution of the fast (α1) parameter to the contribution of the slow (α2) parameter. The fluorescence in the examined part of the spectrum is attributed mainly to NADH. The decrease of the ratio (α1)/ (α2) is believed to correlate strongly with the anti-oxidant properties of NADH which can lead to the variation of its population in high ROS environment. This methodology could serve as an index of the oxidative status in cells and furthermore could be used to probe the oxidative stress of tissues in-vivo.

  17. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  18. phiFLIM: a new method to avoid aliasing in frequency-domain fluorescence lifetime imaging microscopy.

    PubMed

    Van Munster, E B; Gadella, T W J

    2004-01-01

    In conventional wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM), excitation light is intensity-modulated at megahertz frequencies. Emitted fluorescence is recorded by a CCD camera through an image intensifier, which is modulated at the same frequency. From images recorded at various phase differences between excitation and intensifier gain modulation, the phase and modulation depth of the emitted light is obtained. The fluorescence lifetime is determined from the delay and the decrease in modulation depth of the emission relative to the excitation. A minimum of three images is required, but in this case measurements become susceptible to aliasing caused by the presence of higher harmonics. Taking more images to avoid this is not always possible owing to phototoxicity or movement. A method is introduced, phiFLIM, requiring only three recordings that is not susceptible to aliasing. The phase difference between the excitation and the intensifier is scanned over the entire 360 degrees range following a predefined phase profile, during which the image produced by the intensifier is integrated onto the CCD camera, yielding a single image. Three different images are produced following this procedure, each with a different phase profile. Measurements were performed with a conventional wide-field frequency-domain FLIM system based on an acousto-optic modulator for modulation of the excitation and a microchannel-plate image intensifier coupled to a CCD camera for the detection. By analysis of the harmonic content of measured signals it was found that the third harmonic was effectively the highest present. Using the conventional method with three recordings, phase errors due to aliasing of up to +/- 29 degrees and modulation depth errors of up to 30% were found. Errors in lifetimes of YFP-transfected HeLa cells were as high as 100%. With phiFLIM, using the same specimen and settings, systematic errors due to aliasing did not occur. PMID:14678510

  19. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles.

    PubMed

    Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit

    2015-11-01

    Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). PMID:25755202

  20. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    NASA Astrophysics Data System (ADS)

    Skala, Melissa Caroline

    2007-12-01

    Cancer morbidity and mortality is greatly reduced when the disease is diagnosed and treated early in its development. Tissue biopsies are the gold standard for cancer diagnosis, and an accurate diagnosis requires a biopsy from the malignant portion of an organ. Light, guided through a fiber optic probe, could be used to inspect regions of interest and provide real-time feedback to determine the optimal tissue site for biopsy. This approach could increase the diagnostic accuracy of current biopsy procedures. The studies in this thesis have characterized changes in tissue optical signals with carcinogenesis, increasing our understanding of the sensitivity of optical techniques for cancer detection. All in vivo studies were conducted on the dimethylbenz[alpha]anthracene treated hamster cheek pouch model of epithelial carcinogenesis. Multiphoton microscopy studies in the near infrared wavelength region quantified changes in tissue morphology and fluorescence with carcinogenesis in vivo. Statistically significant morphological changes with precancer included increased epithelial thickness, loss of stratification in the epithelium, and increased nuclear diameter. Fluorescence changes included a statistically significant decrease in the epithelial fluorescence intensity per voxel at 780 nm excitation, a decrease in the fluorescence lifetime of protein-bound nicotinamide adenine dinucleotide (NADH, an electron donor in oxidative phosphorylation), and an increase in the fluorescence lifetime of protein-bound flavin adenine dinucleotide (FAD, an electron acceptor in oxidative phosphorylation) with precancer. The redox ratio (fluorescence intensity of FAD/NADH, a measure of the cellular oxidation-reduction state) did not significantly change with precancer. Cell culture experiments (MCF10A cells) indicated that the decrease in protein-bound NADH with precancer could be due to increased levels of glycolysis. Point measurements of diffuse reflectance and fluorescence spectra in

  1. In vivo fluorescence lifetime optical projection tomography

    PubMed Central

    McGinty, James; Taylor, Harriet B.; Chen, Lingling; Bugeon, Laurence; Lamb, Jonathan R.; Dallman, Margaret J.; French, Paul M. W.

    2011-01-01

    We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions. PMID:21559145

  2. Quantification of the Metabolic State in Cell-Model of Parkinson’s Disease by Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Chakraborty, Sandeep; Nian, Fang-Shin; Tsai, Jin-Wu; Karmenyan, Artashes; Chiou, Arthur

    2016-01-01

    Intracellular endogenous fluorescent co-enzymes, reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), play a pivotal role in cellular metabolism; quantitative assessment of their presence in living cells can be exploited to monitor cellular energetics in Parkinson’s disease (PD), a neurodegenerative disorder. Here, we applied two-photon fluorescence lifetime imaging microscopy (2P-FLIM) to noninvasively measure the fluorescence lifetime components of NADH and FAD, and their relative contributions in MPP+ (1-methyl-4-phenylpyridinium) treated neuronal cells, derived from PC12 cells treated with nerve growth factor (NGF), to mimic PD conditions. A systematic FLIM data analysis showed a statistically significant (p < 0.001) decrease in the fluorescence lifetime of both free and protein-bound NADH, as well as free and protein-bound FAD in MPP+ treated cells. On the relative contributions of the free and protein-bound NADH and FAD to the life time, however, both the free NADH contribution and the corresponding protein-bound FAD contribution increase significantly (p < 0.001) in MPP+ treated cells, compared to control cells. These results, which indicate a shift in energy production in the MPP+ treated cells from oxidative phosphorylation towards anaerobic glycolysis, can potentially be used as cellular metabolic metrics to assess the condition of PD at the cellular level. PMID:26758390

  3. Mapping of intracellular concentrations of macromolecules by two-photon excited fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Liu, Lixin; Pliss, Artem; Peng, Xiao; Kuzmin, Andrey; Qu, Junle; Prasad, Paras N.

    2016-03-01

    Measurements and monitoring of concentrations of macromolecules in live cells and sub-cellular structures is of tremendous interest in cell biology and translational medicine. In this report we demonstrate a breakthrough potential of FLIM for real-time quantitative mapping of macromolecular distribution in the cell. In our approach we exploit a correlation existing between the fluorescence lifetime of fluorophores, refractive index and local concentrations of cellular macromolecules in the of fluorophore's microenvironment. We show a value of our approach for fundamental cell science and cellular diagnostic assays.

  4. Spectral variation of fluorescence lifetime near single metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jia; Krasavin, Alexey V.; Webster, Linden; Segovia, Paulina; Zayats, Anatoly V.; Richards, David

    2016-02-01

    We explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations. The explicit comparison between experiment and simulation, that we obtain, offers an insight into the spectral engineering of LSP mediated fluorescence and may lead to optimized application in sensing and biomedicine.

  5. pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten

    2010-02-01

    Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.

  6. Fluorescence lifetime imaging using a compact, low-cost, diode-based all-solid-state regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Mendez, E.; Elson, D. S.; Koeberg, M.; Dunsby, C.; Bradley, D. D. C.; French, P. M. W.

    2004-05-01

    A fluorescence lifetime imaging (FLIM) system is described that utilizes a new compact and low-cost ultrafast laser source based on a gain-switched laser diode-seeded all-solid-state Cr:LiSAF regenerative amplifier that has been designed for this application. The pulse parameters of this source (0.5 μJ, 827 nm, 100 ps, 5 kHz) are shown to be appropriate to time-domain FLIM using a gated optical intensifier and the application to functional imaging of biological tissue is demonstrated, as well as the first evaluation of organic light emitting diodes using FLIM.

  7. Combined nonlinear laser imaging (two-photon excitation fluorescence, second and third-harmonic generation, and fluorescence lifetime imaging microscopies) in ovarian tumors

    NASA Astrophysics Data System (ADS)

    Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Almeida, D. B.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    We applied Two-photon Excited Fluorescence (TPEF), Second/Third Harmonic Generation (SHG and THG) and Fluorescence Lifetime Imaging (FLIM) Non Linear Optics (NLO) Laser-Scanning Microscopy within the same imaging platform to evaluate their use as a diagnostic tool in ovarian tumors. We assess of applicability of this multimodal approach to perform a pathological evaluation of serous and mucinous tumors in human samples. The combination of TPEF-SHG-THG imaging provided complementary information about the interface epithelium/stromal, such as the transformation of epithelium surface (THG) and the overall fibrillar tissue architecture (SHG). The fact that H&E staining is the standard method used in clinical pathology and that the stored samples are usually fixed makes it important a re-evaluation of these samples with NLO microscopy to compare new results with a library of already existing samples. FLIM, however, depends on the chemical environment around the fluorophors that was completely changed after fixation; therefore it only makes sense in unstained samples. Our FLIM results in unstained samples demonstrate that it is possible to discriminate healthy epithelia from serous or mucinous epithelia. Qualitative and quantitative analysis of the different imaging modalities used showed that multimodal nonlinear microscopy has the potential to differentiate between cancerous and healthy ovarian tissue.

  8. Phasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector

    PubMed Central

    Colyer, R.; Siegmund, O.; Tremsin, A.; Vallerga, J.; Weiss, S.; Michalet, X.

    2011-01-01

    Fluorescence lifetime imaging (FLIM) is a powerful approach to studying the immediate environment of molecules. For example, it is used in biology to study changes in the chemical environment, or to study binding processes, aggregation, and conformational changes by measuring Förster resonance energy transfer (FRET) between donor and acceptor fluorophores. FLIM can be acquired by time-domain measurements (time-correlated single-photon counting) or frequency-domain measurements (with PMT modulation or digital frequency domain acquisition) in a confocal setup, or with wide-field systems (using time-gated cameras). In the best cases, the resulting data is analyzed in terms of multicomponent fluorescence lifetime decays with demanding requirements in terms of signal level (and therefore limited frame rate). Recently, the phasor approach has been proposed as a powerful alternative for fluorescence lifetime analysis of FLIM, ensemble, and single-molecule experiments. Here we discuss the advantages of combining phasor analysis with a new type of FLIM acquisition hardware presented previously, consisting of a high temporal and spatial resolution wide-field single-photon counting device (the H33D detector). Experimental data with live cells and quantum dots will be presented as an illustration of this new approach. PMID:21625298

  9. Fluorescence lifetime distributions in proteins.

    PubMed Central

    Alcala, J. R.; Gratton, E.; Prendergast, F. G.

    1987-01-01

    The fluorescence lifetime value of tryptophan residues varies by more than a factor of 100 in different proteins and is determined by several factors, which include solvent exposure and interactions with other elements of the protein matrix. Because of the variety of different elements that can alter the lifetime value and the sensitivity to the particular environment of the tryptophan residue, it is likely that non-unique lifetime values result in protein systems. The emission decay of most proteins can be satisfactorily described only using several exponential components. Here it is proposed that continuous lifetime distributions can better represent the observed decay. An approach based on protein dynamics is presented, which provides fluorescence lifetime distribution functions for single tryptophan residue proteins. First, lifetime distributions for proteins interconverting between two conformations, each characterized by a different lifetime value, are derived. The evolution of the lifetime values as a function of the interconversion rate is studied. In this case lifetime distributions can be obtained from a distribution of rates of interconversion between the two conformations. Second, the existence of a continuum of energy substates within a given conformation was considered. The occupation of a particular energy substate at a given temperature is proportional to the Boltzmann factor. The density of energy states of the potential well depends upon the width of the well, which determines the degree of freedom the residue can move in the conformational space. Lifetime distributions can be obtained by association of each energy substate with a different lifetime value and assuming that the average conformation can change as the energy of the substate is increased. Finally, lifetime distributions for proteins interconverting between two conformations, each characterized by a quasi-continuum of energy substates, are presented. The origin of negative components

  10. Pinhole shifting lifetime imaging microscopy.

    PubMed

    Ramshesh, Venkat K; Lemasters, John J

    2008-01-01

    Lifetime imaging microscopy is a powerful tool to probe biological phenomena independent of luminescence intensity and fluorophore concentration. We describe time-resolved imaging of long-lifetime luminescence with an unmodified commercial laser scanning confocal/multiphoton microscope. The principle of the measurement is displacement of the detection pinhole to collect delayed luminescence from a position lagging the rasting laser beam. As proof of principle, luminescence from microspheres containing europium (Eu(3+)), a red emitting probe, was compared to that of short-lifetime green-fluorescing microspheres and/or fluorescein and rhodamine in solution. Using 720-nm two-photon excitation and a pinhole diameter of 1 Airy unit, the short-lifetime fluorescence of fluorescein, rhodamine and green microspheres disappeared much more rapidly than the long-lifetime phosphorescence of Eu(3+) microspheres as the pinhole was repositioned in the lagging direction. In contrast, repositioning of the pinhole in the leading and orthogonal directions caused equal loss of short- and long-lifetime luminescence. From measurements at different lag pinhole positions, a lifetime of 270 micros was estimated for the Eu(3+) microspheres, consistent with independent measurements. This simple adaptation is the basis for quantitative 3-D lifetime imaging microscopy. PMID:19123648

  11. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound

    PubMed Central

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R.; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph

    2012-01-01

    Abstract. We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques. PMID:23224011

  12. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound

    NASA Astrophysics Data System (ADS)

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R.; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  13. Spectroscopy and Fluorescence Lifetime Imaging Microscopy To Probe the Interaction of Bovine Serum Albumin with Graphene Oxide.

    PubMed

    Kuchlyan, Jagannath; Kundu, Niloy; Banik, Debasis; Roy, Arpita; Sarkar, Nilmoni

    2015-12-29

    The interaction of graphene oxide (GO) with bovine serum albumin (BSA) in aqueous buffer solution has been investigated with various spectroscopic and imaging techniques. At single molecular resolution this interaction has been performed using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging microscopy (FLIM) techniques. The conformational dynamics of BSA on GO's influence have been explored by FCS and circular dichroism (CD) spectroscopy. For the FCS studies BSA was labeled covalently by a fluorophore, Alexa Fluor 488. On the addition of GO in phosphate buffer of 10 mM at pH 7.4 the diffusion time (τD) and the hydrodynamic radius (Rh) of BSA increase due to adsorption of BSA. Conformational relaxation time components of native BSA drastically vary with the addition of GO, signifying the change of conformational dynamics of BSA after addition of GO. The adsorption isotherm also indicates significant adsorption of BSA on the GO surface. Adsorption of BSA on the GO surface has shown in direct images of atomic force microscopy (AFM) and FLIM. Fluorescence quenching study of BSA with addition of GO also indicates that there is strong interaction between BSA and GO. PMID:26646418

  14. Time-domain fluorescence lifetime imaging microscopy: a quantitative method to follow transient protein-protein interactions in living cells.

    PubMed

    Padilla-Parra, Sergi; Audugé, Nicolas; Tramier, Marc; Coppey-Moisan, Maïté

    2015-06-01

    Quantitative analysis in Förster resonance energy transfer (FRET) imaging studies of protein-protein interactions within live cells is still a challenging issue. Many cellular biology applications aim at the determination of the space and time variations of the relative amount of interacting fluorescently tagged proteins occurring in cells. This relevant quantitative parameter can be, at least partially, obtained at a pixel-level resolution by using fluorescence lifetime imaging microscopy (FLIM). Indeed, fluorescence decay analysis of a two-component system (FRET and no FRET donor species), leads to the intrinsic FRET efficiency value (E) and the fraction of the donor-tagged protein that undergoes FRET (fD). To simultaneously obtain fD and E values from a two-exponential fit, data must be acquired with a high number of photons, so that the statistics are robust enough to reduce fitting ambiguities. This is a time-consuming procedure. However, when fast-FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are unreliable, even for single lifetime donors. We introduce the concept of a minimal fraction of donor molecules involved in FRET (mfD), obtained from the mathematical minimization of fD. Here, we discuss different FLIM techniques and the compromises that must be made between precision and time invested in acquiring FLIM measurements. We show that mfD constitutes an interesting quantitative parameter for fast FLIM because it gives quantitative information about transient interactions in live cells. PMID:26034312

  15. Screening for protein-protein interactions using Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM)

    PubMed Central

    Margineanu, Anca; Chan, Jia Jia; Kelly, Douglas J.; Warren, Sean C.; Flatters, Delphine; Kumar, Sunil; Katan, Matilda; Dunsby, Christopher W.; French, Paul M. W.

    2016-01-01

    We present a high content multiwell plate cell-based assay approach to quantify protein interactions directly in cells using Förster resonance energy transfer (FRET) read out by automated fluorescence lifetime imaging (FLIM). Automated FLIM is implemented using wide-field time-gated detection, typically requiring only 10 s per field of view (FOV). Averaging over biological, thermal and shot noise with 100’s to 1000’s of FOV enables unbiased quantitative analysis with high statistical power. Plotting average donor lifetime vs. acceptor/donor intensity ratio clearly identifies protein interactions and fitting to double exponential donor decay models provides estimates of interacting population fractions that, with calibrated donor and acceptor fluorescence intensities, can yield dissociation constants. We demonstrate the application to identify binding partners of MST1 kinase and estimate interaction strength among the members of the RASSF protein family, which have important roles in apoptosis via the Hippo signalling pathway. KD values broadly agree with published biochemical measurements. PMID:27339025

  16. Screening for protein-protein interactions using Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM).

    PubMed

    Margineanu, Anca; Chan, Jia Jia; Kelly, Douglas J; Warren, Sean C; Flatters, Delphine; Kumar, Sunil; Katan, Matilda; Dunsby, Christopher W; French, Paul M W

    2016-01-01

    We present a high content multiwell plate cell-based assay approach to quantify protein interactions directly in cells using Förster resonance energy transfer (FRET) read out by automated fluorescence lifetime imaging (FLIM). Automated FLIM is implemented using wide-field time-gated detection, typically requiring only 10 s per field of view (FOV). Averaging over biological, thermal and shot noise with 100's to 1000's of FOV enables unbiased quantitative analysis with high statistical power. Plotting average donor lifetime vs. acceptor/donor intensity ratio clearly identifies protein interactions and fitting to double exponential donor decay models provides estimates of interacting population fractions that, with calibrated donor and acceptor fluorescence intensities, can yield dissociation constants. We demonstrate the application to identify binding partners of MST1 kinase and estimate interaction strength among the members of the RASSF protein family, which have important roles in apoptosis via the Hippo signalling pathway. KD values broadly agree with published biochemical measurements. PMID:27339025

  17. Asante Calcium Green and Asante Calcium Red--novel calcium indicators for two-photon fluorescence lifetime imaging.

    PubMed

    Jahn, Karolina; Hille, Carsten

    2014-01-01

    For a comprehensive understanding of cellular processes and potential dysfunctions therein, an analysis of the ubiquitous intracellular second messenger calcium is of particular interest. This study examined the suitability of the novel Ca2+-sensitive fluorescent dyes Asante Calcium Red (ACR) and Asante Calcium Green (ACG) for two-photon (2P)-excited time-resolved fluorescence measurements. Both dyes displayed sufficient 2P fluorescence excitation in a range of 720-900 nm. In vitro, ACR and ACG exhibited a biexponential fluorescence decay behavior and the two decay time components in the ns-range could be attributed to the Ca(2+)-free and Ca(2+)-bound dye species. The amplitude-weighted average fluorescence decay time changed in a Ca(2+)-dependent way, unraveling in vitro dissociation constants K(D) of 114 nM and 15 nM for ACR and ACG, respectively. In the presence of bovine serum albumin, the absorption and steady-state fluorescence behavior of ACR was altered and its biexponential fluorescence decay showed about 5-times longer decay time components indicating dye-protein interactions. Since no ester derivative of ACG was commercially available, only ACR was evaluated for 2P-excited fluorescence lifetime imaging microscopy (2P-FLIM) in living cells of American cockroach salivary glands. In living cells, ACR also exhibited a biexponential fluorescence decay with clearly resolvable short (0.56 ns) and long (2.44 ns) decay time components attributable to the Ca(2+)-free and Ca(2+)-bound ACR species. From the amplitude-weighted average fluorescence decay times, an in situ K(D) of 180 nM was determined. Thus, quantitative [Ca(2+)]i recordings were realized, unraveling a reversible dopamine-induced [Ca(2+)]i elevation from 21 nM to 590 nM in salivary duct cells. It was concluded that ACR is a promising new Ca(2+) indicator dye for 2P-FLIM recordings applicable in diverse biological systems. PMID:25140519

  18. Asante Calcium Green and Asante Calcium Red—Novel Calcium Indicators for Two-Photon Fluorescence Lifetime Imaging

    PubMed Central

    Jahn, Karolina; Hille, Carsten

    2014-01-01

    For a comprehensive understanding of cellular processes and potential dysfunctions therein, an analysis of the ubiquitous intracellular second messenger calcium is of particular interest. This study examined the suitability of the novel Ca2+-sensitive fluorescent dyes Asante Calcium Red (ACR) and Asante Calcium Green (ACG) for two-photon (2P)-excited time-resolved fluorescence measurements. Both dyes displayed sufficient 2P fluorescence excitation in a range of 720–900 nm. In vitro, ACR and ACG exhibited a biexponential fluorescence decay behavior and the two decay time components in the ns-range could be attributed to the Ca2+-free and Ca2+-bound dye species. The amplitude-weighted average fluorescence decay time changed in a Ca2+-dependent way, unraveling in vitro dissociation constants KD of 114 nM and 15 nM for ACR and ACG, respectively. In the presence of bovine serum albumin, the absorption and steady-state fluorescence behavior of ACR was altered and its biexponential fluorescence decay showed about 5-times longer decay time components indicating dye-protein interactions. Since no ester derivative of ACG was commercially available, only ACR was evaluated for 2P-excited fluorescence lifetime imaging microscopy (2P-FLIM) in living cells of American cockroach salivary glands. In living cells, ACR also exhibited a biexponential fluorescence decay with clearly resolvable short (0.56 ns) and long (2.44 ns) decay time components attributable to the Ca2+-free and Ca2+-bound ACR species. From the amplitude-weighted average fluorescence decay times, an in situ KD of 180 nM was determined. Thus, quantitative [Ca2+]i recordings were realized, unraveling a reversible dopamine-induced [Ca2+]i elevation from 21 nM to 590 nM in salivary duct cells. It was concluded that ACR is a promising new Ca2+ indicator dye for 2P-FLIM recordings applicable in diverse biological systems. PMID:25140519

  19. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. PMID:26500051

  20. In vivo and in vitro investigations of retinal fluorophores in age-related macular degeneration by fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Hammer, M.; Quick, S.; Klemm, M.; Schenke, S.; Mata, N.; Eitner, A.; Schweitzer, D.

    2009-02-01

    Ocular fundus autofluorescence imaging has been introduced into clinical diagnostics recently for the observation of the age pigment lipofuscin, a precursor of age-related macular degeneration (AMD). However, a deeper understanding of the generation of single compounds contributing to the lipofuscin as well as of the role of other fluorophores such as FAD, glycated proteins, and collagen needs their discrimination by fluorescence lifetime imaging (FLIM). FLIM at the ocular fundus is performed using a scanning laser ophthalmoscope equipped with a picosecond laser source (448nm or 468nm respectively, 100ps, 80 MHz repetition rate) and dual wavelength (490-560nm and 560-7600nm) time-correlated single photon counting. A three-exponential fit of the fluorescence decay revealed associations of decay times to anatomical structures. Disease-related features are identified from alterations in decay times and-amplitudes. The in-vivo investigations in patients were paralleled by experiments in an organ culture of the porcine ocular fundus. Photo-oxidative stress was induced by exposure to blue light (467nm, 0.41 mW/mm2). Subsequent analysis (fluorescence microscopy, HPLC, LC-MS) indicated the accumulation of the pyridinium bis-retinoid A2E and its oxidation products as well as oxidized phospholipids. These compounds contribute to the tissue auto-fluorescence and may play a key role in the pathogenesis of AMD. Thus, FLIM observation at the ocular fundus in vivo enhances our knowledge on the etiology of AMD and may become a diagnostic tool.

  1. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging

    PubMed Central

    Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.

    2016-01-01

    We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322

  2. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization

    PubMed Central

    Park, Jesung; Jo, Javier A.; Shrestha, Sebina; Pande, Paritosh; Wan, Qiujie; Applegate, Brian E.

    2010-01-01

    Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue characterization. We have developed a dual-modality system, incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM), that is capable of simultaneously characterizing the 3-D tissue morphology and its biochemical composition. The Fourier domain OCT subsystem, at an 830 nm center wavelength, provided high-resolution morphological volumetric tissue images with an axial and lateral resolution of 7.3 and 13.4 µm, respectively. The multispectral FLIM subsystem, based on a direct pulse-recording approach (upon 355 nm laser excitation), provided two-dimensional superficial maps of the tissue autofluorescence intensity and lifetime at three customizable emission bands with 100 µm lateral resolution. Both subsystems share the same excitation/illumination optical path and are simultaneously raster scanned on the sample to generate coregistered OCT volumes and FLIM images. The developed OCT/FLIM system was capable of a maximum A-line rate of 59 KHz for OCT and a pixel rate of up to 30 KHz for FLIM. The dual-modality system was validated with standard fluorophore solutions and subsequently applied to the characterization of two biological tissue types: postmortem human coronary atherosclerotic plaques, and in vivo normal and cancerous hamster cheek pouch epithelial tissue. PMID:21258457

  3. Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.

    2013-02-01

    The epigenetic control of heterochromatin deposition is achieved through a network of protein interactions mediated by the heterochromatin protein 1 (HP1). In earlier studies, we showed that the CCAAT/enhancer-binding protein alpha (C/EBPα), a transcription factor that controls cell differentiation, localizes to heterochromatin, and interacts with HP1α. Here, deletion and mutagenesis are combined with live-cell imaging approaches to characterize these protein interactions. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. Fluorescence correlation spectroscopy and cross-correlation (FCS and FCCS) revealed very different diffusion profiles for HP1α and the BZip protein, and co-expression studies indicated that the mobile fractions of these nuclear proteins diffuse independently of one another. The steady-state interactions of these proteins in regions of heterochromatin were monitored using Förster resonance energy transfer (FRET). A point mutation in HP1α, W174A, which disrupts the interactions with proteins containing the common PxVxL motif did not affect the interaction with the BZip protein. In contrast, the HP1α W41A mutation, which prevents binding to methylated histones, exhibited greatly reduced FRET efficiency when compared to the wild type HP1α or HP1αW174A. The functional significance of these interactions is discussed.

  4. Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis

    PubMed Central

    Barber, P.R.; Ameer-Beg, S.M.; Gilbey, J.; Carlin, L.M.; Keppler, M.; Ng, T.C.; Vojnovic, B.

    2008-01-01

    Förster resonance energy transfer (FRET) detected via fluorescence lifetime imaging microscopy (FLIM) and global analysis provide a way in which protein–protein interactions may be spatially localized and quantified within biological cells. The FRET efficiency and proportion of interacting molecules have been determined using bi-exponential fitting to time-domain FLIM data from a multiphoton time-correlated single-photon counting microscope system. The analysis has been made more robust to noise and significantly faster using global fitting, allowing higher spatial resolutions and/or lower acquisition times. Data have been simulated, as well as acquired from cell experiments, and the accuracy of a modified Levenberg–Marquardt fitting technique has been explored. Multi-image global analysis has been used to follow the epidermal growth factor-induced activation of Cdc42 in a short-image-interval time-lapse FLIM/FRET experiment. Our implementation offers practical analysis and time-resolved-image manipulation, which have been targeted towards providing fast execution, robustness to low photon counts, quantitative results and amenability to automation and batch processing.

  5. Microtubule Affinity Regulating Kinase Activity in Living Neurons Was Examined by a Genetically Encoded Fluorescence Resonance Energy Transfer/Fluorescence Lifetime Imaging-based Biosensor

    PubMed Central

    Timm, Thomas; von Kries, Jens Peter; Li, Xiaoyu; Zempel, Hans; Mandelkow, Eckhard; Mandelkow, Eva-Maria

    2011-01-01

    Protein kinases of the microtubule affinity regulating kinase (MARK)/Par-1 family play important roles in the establishment of cellular polarity, cell cycle control, and intracellular signal transduction. Disturbance of their function is linked to cancer and brain diseases, e.g. lissencephaly and Alzheimer disease. To understand the biological role of MARK family kinases, we searched for specific inhibitors and a biosensor for MARK activity. A screen of the ChemBioNet library containing ∼18,000 substances yielded several compounds with inhibitory activity in the low micromolar range and capable of inhibiting MARK activity in cultured cells and primary neurons, as judged by MARK-dependent phosphorylation of microtubule-associated proteins and its consequences for microtubule integrity. Four of the compounds share a 9-oxo-9H-acridin-10-yl structure as a basis that will serve as a lead for optimization of inhibition efficiency. To test these inhibitors, we developed a cellular biosensor for MARK activity based on a MARK target sequence attached to the 14-3-3 scaffold protein and linked to enhanced cyan or teal and yellow fluorescent protein as FRET donor and acceptor pairs. Transfection of the teal/yellow fluorescent protein sensor into neurons and imaging by fluorescence lifetime imaging revealed that MARK was particularly active in the axons and growth cones of differentiating neurons. PMID:21984823

  6. Single Cell Assay for Molecular Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by Two-photon Fluorescence Lifetime Imaging.

    PubMed

    Pliss, Artem; Peng, Xiao; Liu, Lixin; Kuzmin, Andrey; Wang, Yan; Qu, Junle; Li, Yuee; Prasad, Paras N

    2015-01-01

    Molecular organization of a cell is dynamically transformed along the course of cellular physiological processes, pathologic developments or derived from interactions with drugs. The capability to measure and monitor concentrations of macromolecules in a single cell would greatly enhance studies of cellular processes in heterogeneous populations. In this communication, we introduce and experimentally validate a bio-analytical single-cell assay, wherein the overall concentration of macromolecules is estimated in specific subcellular domains, such as structure-function compartments of the cell nucleus as well as in nucleoplasm. We describe quantitative mapping of local biomolecular concentrations, either intrinsic relating to the functional and physiological state of a cell, or altered by a therapeutic drug action, using two-photon excited fluorescence lifetime imaging (FLIM). The proposed assay utilizes a correlation between the fluorescence lifetime of fluorophore and the refractive index of its microenvironment varying due to changes in the concentrations of macromolecules, mainly proteins. Two-photon excitation in Near-Infra Red biological transparency window reduced the photo-toxicity in live cells, as compared with a conventional single-photon approach. Using this new assay, we estimated average concentrations of proteins in the compartments of nuclear speckles and in the nucleoplasm at ~150 mg/ml, and in the nucleolus at ~284 mg/ml. Furthermore, we show a profound influence of pharmaceutical inhibitors of RNA synthesis on intracellular protein density. The approach proposed here will significantly advance theranostics, and studies of drug-cell interactions at the single-cell level, aiding development of personal molecular medicine. PMID:26155309

  7. Single Cell Assay for Molecular Diagnostics and Medicine: Monitoring Intracellular Concentrations of Macromolecules by Two-photon Fluorescence Lifetime Imaging

    PubMed Central

    Pliss, Artem; Peng, Xiao; Liu, Lixin; Kuzmin, Andrey; Wang, Yan; Qu, Junle; Li, Yuee; Prasad, Paras N

    2015-01-01

    Molecular organization of a cell is dynamically transformed along the course of cellular physiological processes, pathologic developments or derived from interactions with drugs. The capability to measure and monitor concentrations of macromolecules in a single cell would greatly enhance studies of cellular processes in heterogeneous populations. In this communication, we introduce and experimentally validate a bio-analytical single-cell assay, wherein the overall concentration of macromolecules is estimated in specific subcellular domains, such as structure-function compartments of the cell nucleus as well as in nucleoplasm. We describe quantitative mapping of local biomolecular concentrations, either intrinsic relating to the functional and physiological state of a cell, or altered by a therapeutic drug action, using two-photon excited fluorescence lifetime imaging (FLIM). The proposed assay utilizes a correlation between the fluorescence lifetime of fluorophore and the refractive index of its microenvironment varying due to changes in the concentrations of macromolecules, mainly proteins. Two-photon excitation in Near-Infra Red biological transparency window reduced the photo-toxicity in live cells, as compared with a conventional single-photon approach. Using this new assay, we estimated average concentrations of proteins in the compartments of nuclear speckles and in the nucleoplasm at ~150 mg/ml, and in the nucleolus at ~284 mg/ml. Furthermore, we show a profound influence of pharmaceutical inhibitors of RNA synthesis on intracellular protein density. The approach proposed here will significantly advance theranostics, and studies of drug-cell interactions at the single-cell level, aiding development of personal molecular medicine. PMID:26155309

  8. In vivo detection of oral epithelial cancer using endogenous fluorescence lifetime imaging: a pilot human study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jo, Javier A.; Hwang, Dae Yon; Palma, Jorge; Cheng, Shuna; Cuenca, Rodrigo; Malik, Bilal; Jabbour, Joey; Cheng, Lisa; Wright, John; Maitland, Kristen

    2016-03-01

    Endogenous fluorescence lifetime imaging (FLIM) provides direct access to the concomitant functional and biochemical changes accompanying tissue transition from benign to precancerous and cancerous. Since FLIM can noninvasively measure different and complementary biomarkers of precancer and cancer, we hypothesize that it will aid in clinically detecting early oral epithelial cancer. Our group has recently demonstrated the detection of benign from premalignant and malignant lesions based on endogenous multispectral FLIM in the hamster cheek-pouch model. Encouraged by these positive preliminary results, we have developed a handheld endoscope capable of acquiring multispectral FLIM images in real time from the oral mucosa. This novel FLIM endoscope is being used for imaging clinically suspicious pre-malignant and malignant lesions from patients before undergoing tissue biopsy for histopathological diagnosis of oral epithelial cancer. Our preliminary results thus far are already suggesting the potential of endogenous FLIM for distinguishing a variety of benign lesions from advanced dysplasia and squamous cell carcinoma (SCC). To the best of out knowledge, this is the first in vivo human study aiming to demonstrate the ability to predict the true malignancy of clinically suspicious lesions using endogenous FLIM. If successful, the resulting clinical tool will allow noninvasive real-time detection of epithelial precancerous and cancerous lesions in the oral mucosa and could potentially be used to assist at every step involved on the clinical management of oral cancer patients, from early screening and diagnosis, to treatment and monitoring of recurrence.

  9. Spectral variation of fluorescence lifetime near single metal nanoparticles

    PubMed Central

    Li, Jia; Krasavin, Alexey V.; Webster, Linden; Segovia, Paulina; Zayats, Anatoly V.; Richards, David

    2016-01-01

    We explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations. The explicit comparison between experiment and simulation, that we obtain, offers an insight into the spectral engineering of LSP mediated fluorescence and may lead to optimized application in sensing and biomedicine. PMID:26876780

  10. Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Schweitzer, Dietrich; Deutsch, Lydia; Klemm, Matthias; Jentsch, Susanne; Hammer, Martin; Peters, Sven; Haueisen, Jens; Müller, Ulrich A.; Dawczynski, Jens

    2015-06-01

    The time-resolved autofluorescence of the eye is used for the detection of metabolic alteration in diabetic patients who have no signs of diabetic retinopathy. One eye from 37 phakic and 11 pseudophakic patients with type 2 diabetes, and one eye from 25 phakic and 23 pseudophakic healthy subjects were included in the study. After a three-exponential fit of the decay of autofluorescence, histograms of lifetimes τi, amplitudes αi, and relative contributions Qi were statistically compared between corresponding groups in two spectral channels (490lifetimes. Median and mean of the histograms of τ2, τ3, and α3 in ch1 show the greatest differences between phakic diabetic patients and age-matched controls (p<0.000004). The lack of pixels with a τ2 of ˜360 ps, the increased number of pixels with τ2>450 ps, and the shift of τ3 from ˜3000 to 3700 ps in ch1 of diabetic patients when compared with healthy subjects indicate an increased production of free flavin adenine dinucleotide, accumulation of advanced glycation end products (AGE), and, probably, a change from free to protein-bound reduced nicotinamide adenine dinucleotide at the fundus. AGE also accumulated in the crystalline lens.

  11. Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy.

    PubMed

    Schweitzer, Dietrich; Deutsch, Lydia; Klemm, Matthias; Jentsch, Susanne; Hammer, Martin; Peters, Sven; Haueisen, Jens; Müller, Ulrich A; Dawczynski, Jens

    2015-06-01

    The time-resolved autofluorescence of the eye is used for the detection of metabolic alteration in diabetic patients who have no signs of diabetic retinopathy. One eye from 37 phakic and 11 pseudophakic patients with type 2 diabetes, and one eye from 25 phakic and 23 pseudophakic healthy subjects were included n the study. After a three-exponential fit of the decay of autofluorescence, histograms of lifetimes τ(i), amplitudes α(i), and relative contributions Q(i) were statistically compared between corresponding groups in two spectral channels (490 < ch1 < 560 nm, 560 < ch2 < 700 nm). The change in single fluorophores was estimated by applying the Holm–Bonferroni method and by calculating differences in the sum histograms of lifetimes. Median and mean of the histograms of τ(2), τ(3), and α(3) in ch1 show the greatest differences between phakic diabetic patients and age-matched controls (p < 0.000004). The lack of pixels with a τ(2) of ∼360 ps, the increased number of pixels with τ(2) > 450 ps, and the shift of τ(3) from ∼3000 to 3700 ps in ch1 of diabetic patients when compared with healthy subjects indicate an increased production of free flavin adenine dinucleotide, accumulation of advanced glycation end products (AGE), and, probably, a change from free to protein-bound reduced nicotinamide adenine inucleotide at the fundus. AGE also accumulated in the crystalline lens. PMID:25769278

  12. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.

    2010-03-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging.

  13. Nanodimentional Aggregates In Organic Monolayers Studied With Atomic Force Microscopy (AFM) And Fluorescence Lifetime Imaging Microscopy (FLIM)

    NASA Astrophysics Data System (ADS)

    Ivanov, George R.; Burov, Julian

    2007-04-01

    Organic monolayers from a fluorescently labeled phospholipid (DPPE-NBD) were deposited on solid supports under special conditions that form stable nanometer wide bilayers cylinders that protrude from the monolayer. This molecule was frequently used in sensor applications due to its sensitivity to environment changes. The proposed configuration should provide both fast response times (ultra thin film) and increased sensitivity (greatly increased surface area). AFM can clearly distinguish between the different phases. The height difference between the solid-expanded and the liquid-expanded phase was measured to be 1.4 nm while the bilayer thickness was 5.6 nm. The solid domains show a 20 % decrease in fluorescence lifetime in comparison to the monolayer as measured by FLIM. This difference in lifetimes is explained in the model of fluorescence self quenching in the solid phase due to the molecules being closer to each other.

  14. Fluorescence lifetimes of some Rauwolfia alkaloids

    NASA Astrophysics Data System (ADS)

    Hidalgo, J.; Arjona, D. Gonzalez; Roldan, E.; Sanchez, M.

    1986-03-01

    The natural fluorescence lifetimes of the following Rauwolfia alkaloids, Reserpine, Rescinnamine, Corynanthine, Yohimbine, --- Ajmalicine, Serpentine and Ajmaline, have been calculated from a modified form of the Strickler-Berg equation. The actual lifetimes were derived from the quantum yields and the calculated natural lifetimes.

  15. Bi-modal imaging of atherosclerotic plaques: Automated method for co-registration between fluorescence lifetime imaging and intravascular ultrasound data

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Fatakdawala, Hussain; Bec, Julien; Ma, Dinglong; Yankelevich, Diego R.; Bishop, John W.; Qi, Jinyi; Marcu, Laura

    2014-03-01

    The risk of atherosclerosis plaque rupture cannot be assessed by the current imaging systems and thus new multi-modal technologies are under investigation. This includes combining a new fluorescence lifetime imaging (FLIm) technique, which is sensitive to plaque biochemical features, with conventional intravascular ultrasound (IVUS), which provides information on plaque morphology. In this study we present an automated method allowing for the co-registration of imaging data acquired based on these two techniques. Intraluminal studies were conducted in ex-vivo segments of human coronaries with a multimodal catheter integrating a commercial IVUS (40 MHz) and a rotational side-viewing fiber based multispectral FLIm system (355 nm excitation, 390+/-20, 452+/-22 and 542+/-25 nm acquisition wavelengths). The proposed method relies on the lumen/intima boundary extraction from the IVUS polar images. Image restoration is applied for the noise reduction and edge enhancement, while gray-scale peak tracing over the A-lines of the IVUS polar images is applied for the lumen boundary extraction. The detection of the guide-wire artifact is used for the angular registration between FLIm and IVUS data, after which the lifetime values can be mapped onto the segmented lumen/intima interface. The segmentation accuracy has been assessed against manual tracings, providing 0.120+/-0.054 mm mean Hausdorff distance. This method makes the bi-modal FLIm and IVUS approach feasible for comprehensive intravascular diagnostic by providing co-registered biochemical and morphological information about atherosclerotic plaques.

  16. From morphology to biochemical state – intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    PubMed Central

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-01-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy. PMID:27004454

  17. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers. PMID:27430158

  18. From morphology to biochemical state – intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    NASA Astrophysics Data System (ADS)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-03-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.

  19. Fluorescence lifetime imaging microscopy (FLIM) to quantify protein-protein interactions inside cells.

    PubMed

    Duncan, R R

    2006-11-01

    Recent developments in cellular imaging spectroscopy now permit the minimally invasive study of protein dynamics inside living cells. These advances are of interest to cell biologists, as proteins rarely act in isolation, but rather in concert with others in forming cellular machinery. Until recently, all protein interactions had to be determined in vitro using biochemical approaches: this biochemical legacy has provided cell biologists with the basis to test defined protein-protein interactions not only inside cells, but now also with high spatial resolution. These techniques can detect and quantify protein behaviours down to the single-molecule level, all inside living cells. More recent developments in TCSPC (time-correlated single-photon counting) imaging are now also driving towards being able to determine protein interaction rates with similar spatial resolution, and together, these experimental advances allow investigators to perform biochemical experiments inside living cells. PMID:17052173

  20. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    PubMed Central

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-01-01

    Abstract. Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs. PMID:25688541

  1. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  2. Fluorescence lifetime excitation cytometry by kinetic dithering.

    PubMed

    Li, Wenyan; Vacca, Giacomo; Castillo, Maryann; Houston, Kevin D; Houston, Jessica P

    2014-07-01

    Flow cytometers are powerful high-throughput devices that capture spectroscopic information from individual particles or cells. These instruments provide a means of multi-parametric analyses for various cellular biomarkers or labeled organelles and cellular proteins. However, the spectral overlap of fluorophores limits the number of fluorophores that can be used simultaneously during experimentation. Time-resolved parameters enable the quantification of fluorescence decay kinetics, thus circumventing common issues associated with intensity-based measurements. This contribution introduces fluorescence lifetime excitation cytometry by kinetic dithering (FLECKD) as a method to capture multiple fluorescence lifetimes using a hybrid time-domain approach. The FLECKD approach excites fluorophores by delivering short pulses of light to cells or particles by rapid dithering and facilitates measurement of complex fluorescence decay kinetics by flow cytometry. Our simulations demonstrated a resolvable fluorescence lifetime value as low as 1.8 ns (±0.3 ns) with less than 20% absolute error. Using the FLECKD instrument, we measured the shortest average fluorescence lifetime value of 2.4 ns and found the system measurement error to be ±0.3 ns (SEM), from hundreds of monodisperse and chemically stable fluorescent microspheres. Additionally, we demonstrate the ability to detect two distinct excited state lifetimes from fluorophores in single cells using FLECKD. This approach presents a new ability to resolve multiple fluorescence lifetimes while retaining the fluidic throughput of a cytometry system. The ability to discriminate more than one average fluorescence lifetime expands the current capabilities of high-throughput and intensity-based cytometry assays as the need to tag one single cell with multiple fluorophores is now widespread. PMID:24668857

  3. Fluorescence lifetime excitation cytometry by kinetic dithering

    PubMed Central

    Li, Wenyan; Vacca, Giacomo; Castillo, Maryann; Houston, Kevin D; Houston, Jessica P

    2014-01-01

    Flow cytometers are powerful high-throughput devices that capture spectroscopic information from individual particles or cells. These instruments provide a means of multi-parametric analyses for various cellular biomarkers or labeled organelles and cellular proteins. However, the spectral overlap of fluorophores limits the number of fluorophores that can be used simultaneously during experimentation. Time-resolved parameters enable the quantification of fluorescence decay kinetics, thus circumventing common issues associated with intensity-based measurements. This contribution introduces fluorescence lifetime excitation cytometry by kinetic dithering (FLECKD) as a method to capture multiple fluorescence lifetimes using a hybrid time-domain approach. The FLECKD approach excites fluorophores by delivering short pulses of light to cells or particles by rapid dithering and facilitates measurement of complex fluorescence decay kinetics by flow cytometry. Our simulations demonstrated a resolvable fluorescence lifetime value as low as 1.8 ns (±0.3 ns) with less than 20% absolute error. Using the FLECKD instrument, we measured the shortest average fluorescence lifetime value of 2.4 ns and found the system measurement error to be ±0.3 ns (SEM), from hundreds of monodisperse and chemically stable fluorescent microspheres. Additionally, we demonstrate the ability to detect two distinct excited state lifetimes from fluorophores in single cells using FLECKD. This approach presents a new ability to resolve multiple fluorescence lifetimes while retaining the fluidic throughput of a cytometry system. The ability to discriminate more than one average fluorescence lifetime expands the current capabilities of high-throughput and intensity-based cytometry assays as the need to tag one single cell with multiple fluorophores is now widespread. PMID:24668857

  4. Fluorescence lifetime imaging and FRET-induced intracellular redistribution of Tat-conjugated quantum dot nanoparticles through interaction with a phthalocyanine photosensitiser.

    PubMed

    Yaghini, Elnaz; Giuntini, Francesca; Eggleston, Ian M; Suhling, Klaus; Seifalian, Alexander M; MacRobert, Alexander J

    2014-02-26

    The interaction of Tat-conjugated PEGylated CdSe/ZnS quantum dots (QD) with the amphiphilic disulfonated aluminium phthalocyanine photosensitiser is investigated in aqueous solution and in a human breast cancer cell line. In aqueous solution, the QDs and phthalocyanine form stable nanocomposites. Using steady-state and time-resolved fluorescence measurements combined with singlet oxygen detection, efficient Förster resonance energy transfer (FRET) is observed with the QDs acting as donors, and the phthalocyanine photosensitiser, which mediates production of singlet oxygen, as acceptors. In cells, the Tat-conjugated QDs localise in lysosomes and the QD fluorescence lifetimes are close to values observed in aqueous solution. Strong FRET-induced quenching of the QD lifetime is observed in cells incubated with the nanocomposites using fluorescence lifetime imaging microscopy (FLIM). Using excitation of the QDs at wavelengths where phthalocyanine absorption is negligible, FRET-induced release of QDs from endo/lysosomes is confirmed using confocal imaging and FLIM, which is attributed to photooxidative damage to the endo/lysosomal membranes mediated by the phthalocyanine acceptor. PMID:24031023

  5. Optimal estimator for tomographic fluorescence lifetime multiplexing

    PubMed Central

    Hou, Steven S.; Bacskai, Brian J.; Kumar, Anand T. N.

    2016-01-01

    We use the model resolution matrix to analytically derive an optimal Bayesian estimator for multiparameter inverse problems that simultaneously minimizes inter-parameter cross talk and the total reconstruction error. Application of this estimator to time-domain diffuse fluorescence imaging shows that the optimal estimator for lifetime multiplexing is identical to a previously developed asymptotic time-domain (ATD) approach, except for the inclusion of a diagonal regularization term containing decay amplitude uncertainties. We show that, while the optimal estimator and ATD provide zero cross talk, the optimal estimator provides lower reconstruction error, while ATD results in superior relative quantitation. The framework presented here is generally applicable to other multiplexing problems where the simultaneous and accurate relative quantitation of multiple parameters is of interest. PMID:27192234

  6. Fluorescence lifetime measurements in flow cytometry

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Klocke, Axel

    1997-05-01

    Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.

  7. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  8. Combined fiber probe for fluorescence lifetime and Raman spectroscopy

    PubMed Central

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-01-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. PMID:26093843

  9. Fluorescence lifetime spectroscopy of glioblastoma multiforme.

    PubMed

    Marcu, Laura; Jo, Javier A; Butte, Pramod V; Yong, William H; Pikul, Brian K; Black, Keith L; Thompson, Reid C

    2004-01-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. We investigated the use of time-resolved, laser-induced fluorescence spectroscopy for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas. The fluorescence of human brain samples (glioblastoma multiforme, cortex and white matter: six patients, 23 sites) was induced ex vivo with a pulsed nitrogen laser (337 nm, 3 ns). The time-resolved spectra were detected in a 360-550 nm wavelength range using a fast digitizer and gated detection. Parameters derived from both the spectral- (intensities from narrow spectral bands) and the time domain (average lifetime) measured at 390 and 460 nm were used for tissue characterization. We determined that high-grade gliomas are characterized by fluorescence lifetimes that varied with the emission wavelength (>3 ns at 390 nm, <1 ns at 460 nm) and their emission is overall longer than that of normal brain tissue. Our study demonstrates that the use of fluorescence lifetime not only improves the specificity of fluorescence measurements but also allows a more robust evaluation of data collected from brain tissue. Combined information from both the spectral- and the time domain can enhance the ability of fluorescence-based techniques to diagnose and detect brain tumor margins intraoperatively. PMID:15339216

  10. Measurement of Rydberg positronium fluorescence lifetimes

    NASA Astrophysics Data System (ADS)

    Deller, A.; Alonso, A. M.; Cooper, B. S.; Hogan, S. D.; Cassidy, D. B.

    2016-06-01

    We report measurements of the fluorescence lifetimes of positronium (Ps) atoms with principal quantum numbers n =10 -19 . Ps atoms in Rydberg-Stark states were produced via a two-color two-step 1 3S→2 3P→n 3S/n lifetimes of the Rydberg levels, yielding values ranging from 3 μ s to 26 μ s . Our data are in accord with the expected radiative lifetimes of Rydberg-Stark states of Ps.

  11. Fluorescence lifetime resolution with phase fluorometry

    NASA Astrophysics Data System (ADS)

    Ide, Geert; Engelborghs, Yves; Persoons, Andre

    1983-07-01

    A phase fluorometer for the measurement of fluorescence lifetimes was constructed from commercially available components. The instrument was tested by using optical delays of 4 and 2 cm, showing an accuracy of 10 ps. Lifetimes, as short as 0.3 ns, obtained by the quenching of fluorescein by KI, were analyzed with a standard deviation of 3 ps. The lifetime resolving power was checked using mixtures of acridine and quinine-sulphate and least-squares fitting procedures. Accurate amplitude ratios were obtained with the technique of phase-sensitive detection [J. R. Lakowicz and H. Cherek, J. Biochem. Biophys. Methods 5, 19 (1981)].

  12. Fluorescence lifetime measurements in heterogeneous scattering medium

    NASA Astrophysics Data System (ADS)

    Nishimura, Goro; Awasthi, Kamlesh; Furukawa, Daisuke

    2016-07-01

    Fluorescence lifetime in heterogeneous multiple light scattering systems is analyzed by an algorithm without solving the diffusion or radiative transfer equations. The algorithm assumes that the optical properties of medium are constant in the excitation and emission wavelength regions. If the assumption is correct and the fluorophore is a single species, the fluorescence lifetime can be determined by a set of measurements of temporal point-spread function of the excitation light and fluorescence at two different concentrations of the fluorophore. This method is not dependent on the heterogeneity of the optical properties of the medium as well as the geometry of the excitation-detection on an arbitrary shape of the sample. The algorithm was validated by an indocyanine green fluorescence in phantom measurements and demonstrated by an in vivo measurement.

  13. Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power.

    PubMed

    Nozue, Shuho; Mukuno, Akira; Tsuda, Yumi; Shiina, Takashi; Terazima, Masahide; Kumazaki, Shigeichi

    2016-01-01

    Fluorescence Lifetime Imaging Microscopy (FLIM) has been applied to plants, algae and cyanobacteria, in which excitation laser conditions affect the chlorophyll fluorescence lifetime due to several mechanisms. However, the dependence of FLIM data on input laser power has not been quantitatively explained by absolute excitation probabilities under actual imaging conditions. In an effort to distinguish between photosystem I and photosystem II (PSI and PSII) in microscopic images, we have obtained dependence of FLIM data on input laser power from a filamentous cyanobacterium Anabaena variabilis and single cellular green alga Parachlorella kessleri. Nitrogen-fixing cells in A. variabilis, heterocysts, are mostly visualized as cells in which short-lived fluorescence (≤0.1 ns) characteristic of PSI is predominant. The other cells in A. variabilis (vegetative cells) and P. kessleri cells show a transition in the status of PSII from an open state with the maximal charge separation rate at a weak excitation limit to a closed state in which charge separation is temporarily prohibited by previous excitation(s) at a relatively high laser power. This transition is successfully reproduced by a computer simulation with a high fidelity to the actual imaging conditions. More details in the fluorescence from heterocysts were examined to assess possible functions of PSII in the anaerobic environment inside the heterocysts for the nitrogen-fixing enzyme, nitrogenase. Photochemically active PSII:PSI ratio in heterocysts is tentatively estimated to be typically below our detection limit or at most about 5% in limited heterocysts in comparison with that in vegetative cells. PMID:26474523

  14. Phytoplankton-Fluorescence-Lifetime Vertical Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.; St. Louis, Ernest

    2004-01-01

    A battery-operated optoelectronic instrument is designed to be lowered into the ocean to measure the intensity and lifetime of fluorescence of chlorophyll A in marine phytoplankton as a function of depth from 0 to 300 m. Fluorescence lifetimes are especially useful as robust measures of photosynthetic productivity of phytoplankton and of physical and chemical mechanisms that affect photosynthesis. The knowledge of photosynthesis in phytoplankton gained by use of this and related instruments is expected to contribute to understanding of global processes that control the time-varying fluxes of carbon and associated biogenic elements in the ocean. The concentration of chlorophyll in the ocean presents a major detection challenge because in order to obtain accurate values of photosynthetic parameters, the intensity of light used to excite fluorescence must be kept very low so as not to disturb the photosynthetic system. Several innovations in fluorometric instrumentation were made in order to make it possible to reach the required low detection limit. These innovations include a highly efficient optical assembly with an integrated flow-through sample interface, and a high-gain, low-noise electronic detection subsystem. The instrument also incorporates means for self-calibration during operation, and electronic hardware and software for control, acquisition and analysis of data, and communications. The electronic circuitry is highly miniaturized and designed to minimize power demand. The instrument is housed in a package that can withstand the water pressure at the maximum depth of 300 m. A light-emitting diode excites fluorescence in the sample flow cell, which is placed at one focal point of an ellipsoidal reflector. A photomultiplier tube is placed at the other focal point. This optical arrangement enables highly efficient collection of fluorescence emitted over all polar directions. Fluorescence lifetime is measured indirectly, by use of a technique based on the

  15. Influence of the refractive index on EGFP fluorescence lifetimes in mixtures of water and glycerol

    NASA Astrophysics Data System (ADS)

    Suhling, Klaus; Davis, Daniel M.; Petrasek, Zdenek; Siegel, Jan; Phillips, David

    2001-07-01

    As a precursor to applying fluorescence lifetime imaging (FLIM) to studies of intercellular communication in molecular immunology, we have investigated the fluorescence lifetime of enhanced green fluorescent protein (EGFP) in mixtures of water and glycerol using time-correlated single photon counting (TCSPC). We find that the EGFP lifetime decreases with increasing glycerol content. This is accounted for quantitatively by the refractive index dependence of the fluorescence lifetime as predicted by the Strickler Berg formula which relates the fluorescence lifetime to the absorption spectrum. The solvent viscosity has no influence on the fluorescence lifetime. We also discuss the refractive index dependence of the GFP fluorescence lifetime in more complex systems. The findings are particularly relevant for the interpretation of FLIM of GFP expressed in environments such as bacteria and cells.

  16. Application of novel low-intensity nonscanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus

    2006-10-01

    Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.

  17. Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy.

    PubMed

    Boens, Noël; Qin, Wenwu; Basarić, Nikola; Hofkens, Johan; Ameloot, Marcel; Pouget, Jacques; Lefèvre, Jean-Pierre; Valeur, Bernard; Gratton, Enrico; vandeVen, Martin; Silva, Norberto D; Engelborghs, Yves; Willaert, Katrien; Sillen, Alain; Rumbles, Garry; Phillips, David; Visser, Antonie J W G; van Hoek, Arie; Lakowicz, Joseph R; Malak, Henryk; Gryczynski, Ignacy; Szabo, Arthur G; Krajcarski, Don T; Tamai, Naoto; Miura, Atsushi

    2007-03-01

    A series of fluorophores with single-exponential fluorescence decays in liquid solution at 20 degrees C were measured independently by nine laboratories using single-photon timing and multifrequency phase and modulation fluorometry instruments with lasers as excitation source. The dyes that can serve as fluorescence lifetime standards for time-domain and frequency-domain measurements are all commercially available, are photostable under the conditions of the measurements, and are soluble in solvents of spectroscopic quality (methanol, cyclohexane, water). These lifetime standards are anthracene, 9-cyanoanthracene, 9,10-diphenylanthracene, N-methylcarbazole, coumarin 153, erythrosin B, N-acetyl-l-tryptophanamide, 1,4-bis(5-phenyloxazol-2-yl)benzene, 2,5-diphenyloxazole, rhodamine B, rubrene, N-(3-sulfopropyl)acridinium, and 1,4-diphenylbenzene. At 20 degrees C, the fluorescence lifetimes vary from 89 ps to 31.2 ns, depending on fluorescent dye and solvent, which is a useful range for modern pico- and nanosecond time-domain or mega- to gigahertz frequency-domain instrumentation. The decay times are independent of the excitation and emission wavelengths. Dependent on the structure of the dye and the solvent, the excitation wavelengths used range from 284 to 575 nm, the emission from 330 to 630 nm. These lifetime standards may be used to either calibrate or test the resolution of time- and frequency-domain instrumentation or as reference compounds to eliminate the color effect in photomultiplier tubes. Statistical analyses by means of two-sample charts indicate that there is no laboratory bias in the lifetime determinations. Moreover, statistical tests show that there is an excellent correlation between the lifetimes estimated by the time-domain and frequency-domain fluorometries. Comprehensive tables compiling the results for 20 (fluorescence lifetime standard/solvent) combinations are given. PMID:17269654

  18. Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model

    PubMed Central

    Pande, Paritosh; Shrestha, Sebina; Park, Jesung; Gimenez-Conti, Irma; Brandon, Jimi; Applegate, Brian E.; Jo, Javier A.

    2016-01-01

    It is known that the progression of oral cancer is accompanied by changes in both tissue biochemistry and morphology. A multimodal imaging approach combining functional and structural imaging modalities could therefore provide a more comprehensive prognosis of oral cancer. This idea forms the central theme of the current study, wherein this premise is examined in the context of a multimodal imaging system that combines fluorescence lifetime imaging (FLIM) and optical coherence tomography (OCT). Towards this end, in the first part of the present study, the diagnostic advantage obtained by using both fluorescence intensity and lifetime information is assessed. In the second part of the study, the diagnostic potential of FLIM-derived biochemical features is compared with that of OCT-derived morphological features. For an objective assessment, several quantitative biochemical and morphological features from FLIM and OCT data, respectively, were obtained using signal and image processing techniques. These features were subsequently used in a statistical classification framework to quantify the diagnostic potential of different features. The classification accuracy for combined FLIM and OCT features was estimated to be 87.4%, which was statistically higher than accuracy based on only FLIM (83.2%) or OCT (81.0%) features. Moreover, the complimentary information provided by FLIM and OCT features, resulted in highest sensitivity and specificity for the combined FLIM and OCT features for discriminating benign (88.2% sens., 92.0% spec.), pre-cancerous (81.5% sens., 96.0% spec.), and cancerous (90.1% sens., 92.0% spec.) classes. PMID:27231638

  19. Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, Washington Y.; Prow, Tarl W.; Sanchez, Washington H.; Grice, Jeffrey E.; Roberts, Michael S.

    2010-07-01

    Ex vivo human skin has been used extensively for cosmeceutical and drug delivery studies, transplantable skin allografts, or skin flaps. However, it has a half-life of a few days due to ischemic necrosis. Traditional methods of assessing viability can be time-consuming and provide limited metabolic information. Using multiphoton tomography and fluorescence lifetime imaging (MPT-FLIM) we assess ischemic necrosis of ex vivo skin by NAD(P)H autofluorescence intensity and fluorescence lifetime. Ex vivo skin is stored in the presence and absence of nutrient media (Dulbecco Modified Eagle Medium) at -20, 4, and 37 °C and room temperature over a 7-day time course to establish different rates of metabolic deterioration. At higher temperatures we observe a decrease in NAD(P)H autofluorescence, higher image noise, and a significant increase in the average fluorescence lifetime (τm) from ~1000 to 2000 ps. Additionally, significant distortions in NAD(P)H fluorescence lifetime histograms correspond to the reduction in autofluorescence. Skin kept at 4 °C, with or without media, showed the least change. Our findings suggest that MPT-FLIM enables useful noninvasive optical biopsies to monitor the metabolic state and deterioration of human skin for research and clinical purposes.

  20. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Burri, Samuel; Powolny, François; Bruschini, Claudio E.; Michalet, Xavier; Regazzoni, Francesco; Charbon, Edoardo

    2014-05-01

    This paper presents our work on a 65k pixel single-photon avalanche diode (SPAD) based imaging sensor realized in a 0.35μm standard CMOS process. At a resolution of 512 by 128 pixels the sensor is read out in 6.4μs to deliver over 150k monochrome frames per second. The individual pixel has a size of 24μm2 and contains the SPAD with a 12T quenching and gating circuitry along with a memory element. The gating signals are distributed across the chip through a balanced tree to minimize the signal skew between the pixels. The array of pixels is row-addressable and data is sent out of the chip on 128 lines in parallel at a frequency of 80MHz. The system is controlled by an FPGA which generates the gating and readout signals and can be used for arbitrary real-time computation on the frames from the sensor. The communication protocol between the camera and a conventional PC is USB2. The active area of the chip is 5% and can be significantly improved with the application of a micro-lens array. A micro-lens array, for use with collimated light, has been designed and its performance is reviewed in the paper. Among other high-speed phenomena the gating circuitry capable of generating illumination periods shorter than 5ns can be used for Fluorescence Lifetime Imaging (FLIM). In order to measure the lifetime of fluorophores excited by a picosecond laser, the sensor's illumination period is synchronized with the excitation laser pulses. A histogram of the photon arrival times relative to the excitation is then constructed by counting the photons arriving during the sensitive time for several positions of the illumination window. The histogram for each pixel is transferred afterwards to a computer where software routines extract the lifetime at each location with an accuracy better than 100ps. We show results for fluorescence lifetime measurements using different fluorophores with lifetimes ranging from 150ps to 5ns.

  1. Compact imaging system with single-photon sensitivity and picosecond time resolution for fluorescence-guided surgery with lifetime imaging capability

    NASA Astrophysics Data System (ADS)

    Powolny, F.; Bruschini, C.; Dubikovskaya, E.; Grigoriev, E.; Michielin, O.; Muehlethaler, K.; Prior, J. O.; Rimoldi, D.; Sinisi, R.; Charbon, E.

    2013-06-01

    We present a single-photon camera for fluorescence imaging capable of providing both intensity and images, with an accuracy better than 100ps; the camera was fabricated in standard CMOS technology. As a first step towards the study of biologically relevant samples, it was used to characterize in-vitro cultured melanoma cells labeled with indocyanine green (ICG) and ICG conjugated with cyclic pentapeptide (RGDfK). The application field would be fluorescence-guided surgical oncology.

  2. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  3. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.

    PubMed

    George Abraham, Bobin; Sarkisyan, Karen S; Mishin, Alexander S; Santala, Ville; Tkachenko, Nikolai V; Karp, Matti

    2015-01-01

    Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM). PMID:26237400

  4. Triplet lifetime and delayed fluorescence of azulene

    NASA Astrophysics Data System (ADS)

    Kray, Hans-Joachim; Nickel, Bernhard

    1980-11-01

    With solutions of azulene (Az) and fluoranthene (Fl) in isopentane a delayed fluorescence (DF) S 2(Az) → S 0(Az), resulting from hetero-triplet—triplet annihilation T 1(Az) + T 1(Fl) → S 2(Az) + S 0(Fl), can be observed. From the time-dependence of this DF after laser flash excitation the triplet lifetime of azulene can be calculated. The triplet lifetime has been determined in the temperature range from 131 K to 201 K. The temperature-dependence of the triplet lifetime is explained by thermally activated intersystem crossing (ISC) T 1 ⇝ S 1, followed by internal conversion S 1 ⇝ S 0; the corresponding activation energy approximately equals the difference of the excitation energies of S 1 and T 1. The extrapolated low-temperature value of the triplet lifetime (48 ± 2) μs. The quantum efficiency of the ISC S 1 ⇝ T 1 is estimated to be of the order of magnitude of 4 × 10 -6, and for the quantum efficiency of the ISC S 2 ⇝ T 1 an upper bound of 0.04 is obtained. The experimental conditions for the observation of the phosphorescence T 1 ⇝ S 0 and the E-type DF S 1 → S 0 are discussed.

  5. Fluorescence lifetime imaging of DAPI-stained nuclei as a novel diagnostic tool for the detection and classification of B-cell chronic lymphocytic leukemia.

    PubMed

    Yahav, Gilad; Hirshberg, Abraham; Salomon, Ophira; Amariglio, Ninette; Trakhtenbrot, Luba; Fixler, Dror

    2016-07-01

    B-cell chronic lymphocytic leukaemia (B-CLL) and B-cell precursor acute lymphoblastic leukaemia (B-ALL) are the most common type of leukaemia in adults and children, respectively. Today, fluorescence in situ hybridization (FISH) is the standard for detecting chromosomal aberrations that reflect adverse and favorable outcome. This study revealed a new, simple, and fast diagnostic tool to detect pathological cells by measuring and imaging the fluorescence lifetime (FLT) using FLT imaging microscopy (FLIM) of the peripheral blood (PB) cells of B-CLL samples that were labeled with the DNA binder, DAPI. The FLT of DAPI in healthy individuals was found to be 2.66 ± 0.12 ns. In contrast, PB cells of B-CLL and BM cells of B-ALL patients were characterized by a specific group distribution of the FLT values. The FLT of DAPI was divided into four subgroups, relative to 2.66 ns: short+, normal, prolonged, and prolonged+. These alterations could be related to different chromatin arrangements of B-CLL and B-ALL interphase nuclei. Notably, extremely long FLT of nuclear DAPI correlate with the presence of extra chromosome 12, while moderate increases compared to normal characterize the deletion of p53. Such correlations potentially enable a FLT-based rapid automatic diagnosis and classification of B-CLL even when the frequency of genetic and chromosomal abnormalities is low. © 2016 International Society for Advancement of Cytometry. PMID:27315046

  6. Green Fluorescent Protein with Anionic Tryptophan-Based Chromophore and Long Fluorescence Lifetime

    PubMed Central

    Sarkisyan, Karen S.; Goryashchenko, Alexander S.; Lidsky, Peter V.; Gorbachev, Dmitry A.; Bozhanova, Nina G.; Gorokhovatsky, Andrey Yu.; Pereverzeva, Alina R.; Ryumina, Alina P.; Zherdeva, Victoria V.; Savitsky, Alexander P.; Solntsev, Kyril M.; Bommarius, Andreas S.; Sharonov, George V.; Lindquist, Jake R.; Drobizhev, Mikhail; Hughes, Thomas E.; Rebane, Aleksander; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-01-01

    Spectral diversity of fluorescent proteins, crucial for multiparameter imaging, is based mainly on chemical diversity of their chromophores. Recently we have reported, to our knowledge, a new green fluorescent protein WasCFP—the first fluorescent protein with a tryptophan-based chromophore in the anionic state. However, only a small portion of WasCFP molecules exists in the anionic state at physiological conditions. In this study we report on an improved variant of WasCFP, named NowGFP, with the anionic form dominating at 37°C and neutral pH. It is 30% brighter than enhanced green fluorescent protein (EGFP) and exhibits a fluorescence lifetime of 5.1 ns. We demonstrated that signals of NowGFP and EGFP can be clearly distinguished by fluorescence lifetime in various models, including mammalian cells, mouse tumor xenograft, and Drosophila larvae. NowGFP thus provides an additional channel for multiparameter fluorescence lifetime imaging microscopy of green fluorescent proteins. PMID:26200874

  7. Non-Invasive In Vivo Imaging of Near Infrared-labeled Transferrin in Breast Cancer Cells and Tumors Using Fluorescence Lifetime FRET

    PubMed Central

    Periasamy, Ammasi; Intes, Xavier; Barroso, Margarida

    2013-01-01

    The conjugation of anti-cancer drugs to endogenous ligands has proven to be an effective strategy to enhance their pharmacological selectivity and delivery towards neoplasic tissues. Since cell proliferation has a strong requirement for iron, cancer cells express high levels of transferrin receptors (TfnR), making its ligand, transferrin (Tfn), of great interest as a delivery agent for therapeutics. However, a critical gap exists in the ability to non-invasively determine whether drugs conjugated to Tfn are internalized into target cells in vivo. Due to the enhanced permeability and retention (EPR) effect, it remains unknown whether these Tfn-conjugated drugs are specifically internalized into cancer cells or are localized non-specifically as a result of a generalized accumulation of macromolecules near tumors. By exploiting the dimeric nature of the TfnR that binds two molecules of Tfn in close proximity, we utilized a Förster Resonance Energy Transfer (FRET) based technique that can discriminate bound and internalized Tfn from free, soluble Tfn. In order to non-invasively visualize intracellular amounts of Tfn in tumors through live animal tissues, we developed a novel near infrared (NIR) fluorescence lifetime FRET imaging technique that uses an active wide-field time gated illumination platform. In summary, we report that the NIR fluorescence lifetime FRET technique is capable of non-invasively detecting bound and internalized forms of Tfn in cancer cells and tumors within a live small animal model, and that our results are quantitatively consistent when compared to well-established intensity-based FRET microscopy methods used in in vitro experiments. PMID:24278268

  8. A Macrocyclic Fluorophore Dimer with Flexible Linkers: Bright Excimer Emission with a Long Fluorescence Lifetime.

    PubMed

    Osaki, Hiroshi; Chou, Chih-Ming; Taki, Masayasu; Welke, Kai; Yokogawa, Daisuke; Irle, Stephan; Sato, Yoshikatsu; Higashiyama, Tetsuya; Saito, Shohei; Fukazawa, Aiko; Yamaguchi, Shigehiro

    2016-06-13

    Bright fluorescent molecules with long fluorescence lifetimes are important for the development of lifetime-based fluorescence imaging techniques. Herein, a molecular design is described for simultaneously attaining long fluorescence lifetime (τ) and high brightness (ΦF ×ɛ) in a system that features macrocyclic dimerization of fluorescent π-conjugated skeletons with flexible linkers. An alkylene-linked macrocyclic dimer of bis(thienylethynyl)anthracene was found to show excimer emission with a long fluorescence lifetime (τ≈19 ns) in solution, while maintaining high brightness. A comparison with various relevant derivatives revealed that the macrocyclic structure and the length of the alkylene chains play crucial roles in attaining these properties. In vitro time-gated imaging experiments were conducted as a proof-of-principle for the superiority of this macrocyclic fluorophore relative to the commercial fluorescent dye Alexa Fluor 488. PMID:27121201

  9. Fluorescence Lifetime Imaging of Physiological Free Cu(II) Levels in Live Cells with a Cu(II)-Selective Carbonic Anhydrase-Based Biosensor

    PubMed Central

    McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.

    2014-01-01

    Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220

  10. eGFP-pHsens as a highly sensitive fluorophore for cellular pH determination by fluorescence lifetime imaging microscopy (FLIM).

    PubMed

    Schmitt, Franz-Josef; Thaa, Bastian; Junghans, Cornelia; Vitali, Marco; Veit, Michael; Friedrich, Thomas

    2014-09-01

    The determination of pH in the cell cytoplasm or in intracellular organelles is of high relevance in cell biology. Also in plant cells, organelle-specific pH monitoring with high spatial precision is an important issue, since e.g. ΔpH across thylakoid membranes is the driving force for ATP synthesis critically regulating photoprotective mechanisms like non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence or the xanthophyll cycle. In animal cells, pH determination can serve to monitor proton permeation across membranes and, therefore, to assay the efficiency of drugs against proton-selective transporters or ion channels. In this work, we demonstrate the applicability of the pH-sensitive GFP derivative (eGFP-pHsens, originally termed deGFP4 by Hanson et al. [1]) for pH measurements using fluorescence lifetime imaging microscopy (FLIM) with excellent precision. eGFP-pHsens was either expressed in the cytoplasm or targeted to the mitochondria of Chinese hamster ovary (CHO-K1) cells and applied here for monitoring activity of the M2 proton channel from influenza A virus. It is shown that the M2 protein confers high proton permeability of the plasma membrane upon expression in CHO-K1 cells resulting in rapid and strong changes of the intracellular pH upon pH changes of the extracellular medium. These pH changes are abolished in the presence of amantadine, a specific blocker of the M2 proton channel. These results were obtained using a novel multi-parameter FLIM setup that permits the simultaneous imaging of the fluorescence amplitude ratios and lifetimes of eGFP-pHsens enabling the quick and accurate pH determination with spatial resolution of 500 nm in two color channels with time resolution of below 100 ps. With FLIM, we also demonstrate the simultaneous determination of pH in the cytoplasm and mitochondria showing that the pH in the mitochondrial matrix is slightly higher (around 7.8) than that in the cytoplasm (about 7.0). The results obtained for CHO

  11. Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy

    NASA Astrophysics Data System (ADS)

    Jyothikumar, Vinod; Sun, Yuansheng; Periasamy, Ammasi

    2013-06-01

    A method to investigate the metabolic activity of intracellular tryptophan (TRP) and coenzyme-NADH using three-photon (3P) fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET) is presented. Through systematic analysis of FLIM data from tumorigenic and nontumorigenic cells, a statistically significant decrease in the fluorescence lifetime of TRP was observed in response to the increase in protein-bound NADH as cells were treated with glucose. The results demonstrate the potential use of 3P-FLIM-FRET as a tool for label-free screening of the change in metabolic flux occurring in human diseases or other clinical conditions.

  12. Angiotensin II-induced angiotensin II type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2009-02-01

    Upon activation, the angiotensin (Ang) II type 1 receptor (AT1Rs) rapidly undergoes endocytosis. After a series of intracellular processes, the internalized AT1Rs recycle back to the plasma membrane or are trafficked to proteasomes or lysosomes for degradation. We recently reported that AT1Rs degrades in proteasomes upon stimulation of the D5 dopamine receptor (D5R) in human renal proximal tubule and HEK-293 cells. This is in contrast to the degradation of AT1R in lysosomes upon binding Ang II. However, the dynamic regulation of the AT1Rs in lysosomes is not well understood. Here we investigated the AT1Rs lysosomal degradation using FRET-FLIM in HEK 293 cells heterologously expressing the human AT1R tagged with EGFP as the donor fluorophore. Compared to its basal state, the lifetime of AT1Rs decreased after a 5-minute treatment with Ang II treatment and colocalized with Rab5 but not Rab7 and LAMP1. With longer Ang II treatment (30 min), the AT1Rs lifetime decreased and co-localized with Rab5, as well as Rab7 and LAMP1. The FLIM data are corroborated with morphological and biochemical co-immunoprecipitation studies. These data demonstrate that Ang II induces the internalization of AT1Rs into early sorting endosomes prior to trafficking to late endosomes and subsequent degradation in lysosomes.

  13. Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time.

    PubMed

    Andrews, Natalie; Ramel, Marie-Christine; Kumar, Sunil; Alexandrov, Yuriy; Kelly, Douglas J; Warren, Sean C; Kerry, Louise; Lockwood, Nicola; Frolov, Antonina; Frankel, Paul; Bugeon, Laurence; McGinty, James; Dallman, Margaret J; French, Paul M W

    2016-04-01

    Fluorescence lifetime imaging (FLIM) combined with optical projection tomography (OPT) has the potential to map Förster resonant energy transfer (FRET) readouts in space and time in intact transparent or near transparent live organisms such as zebrafish larvae, thereby providing a means to visualise cell signalling processes in their physiological context. Here the first application of FLIM OPT to read out biological function in live transgenic zebrafish larvae using a genetically expressed FRET biosensor is reported. Apoptosis, or programmed cell death, is mapped in 3-D by imaging the activity of a FRET biosensor that is cleaved by Caspase 3, which is a key effector of apoptosis. Although apoptosis is a naturally occurring process during development, it can also be triggered in a variety of ways, including through gamma irradiation. FLIM OPT is shown here to enable apoptosis to be monitored over time, in live zebrafish larvae via changes in Caspase 3 activation following gamma irradiation at 24 hours post fertilisation. Significant apoptosis was observed at 3.5 hours post irradiation, predominantly in the head region. PMID:26753623

  14. Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy.

    PubMed

    Hickey, James L; James, Janine L; Henderson, Clare A; Price, Katherine A; Mot, Alexandra I; Buncic, Gojko; Crouch, Peter J; White, Jonathan M; White, Anthony R; Smith, Trevor A; Donnelly, Paul S

    2015-10-01

    The intracellular distribution of fluorescently labeled copper and zinc bis(thiosemicarbazonato) complexes was investigated in M17 neuroblastoma cells and primary cortical neurons with a view to providing insights into the neuroprotective activity of a copper bis(thiosemicarbazonato) complex known as Cu(II)(atsm). Time-resolved fluorescence measurements allowed the identification of the Cu(II) and Zn(II) complexes as well as the free ligand inside the cells by virtue of the distinct fluorescence lifetime of each species. Confocal fluorescent microscopy of cells treated with the fluorescent copper(II)bis(thiosemicarbazonato) complex revealed significant fluorescence associated with cytoplasmic puncta that were identified to be lysosomes in primary cortical neurons and both lipid droplets and lysosomes in M17 neuroblastoma cells. Fluorescence lifetime imaging microscopy confirmed that the fluorescence signal emanating from the lipid droplets could be attributed to the copper(II) complex but also that some degree of loss of the metal ion led to diffuse cytosolic fluorescence that could be attributed to the metal-free ligand. The accumulation of the copper(II) complex in lipid droplets could be relevant to the neuroprotective activity of Cu(II)(atsm) in models of amyotrophic lateral sclerosis and Parkinson's disease. PMID:26397162

  15. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C.; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E.

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1±2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6±8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  16. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    PubMed

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment. PMID:25394476

  17. Estimation of Fluorescence Lifetimes Via Rotational Invariance Techniques.

    PubMed

    Yu, Hongqi; Saleeb, Rebecca; Dalgarno, Paul; Day-Uei Li, David

    2016-06-01

    Estimation of signal parameters via rotational invariance techniques is a classical algorithm widely used in array signal processing for direction-of-arrival estimation of emitters. Inspired by this method, a new signal model and new fluorescence lifetime estimation via rotational invariance techniques (FLERIT) were developed for multiexponential fluorescence lifetime imaging (FLIM) experiments. The FLERIT only requires a few time bins of a histogram generated by a time-correlated single-photon counting FLIM system, greatly reducing the data throughput from the imager to the signal processing units. As a noniterative method, the FLERIT does not require initial conditions, prior information nor model selection that are usually required by widely used traditional fitting methods, including nonlinear least square methods or maximum-likelihood methods. Moreover, its simplicity means it is suitable for implementations in embedded systems for real-time applications. FLERIT was tested on synthesized and experimental fluorescent cell data showing the potentials to be widely applied in FLIM data analysis. PMID:26571506

  18. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector

    NASA Astrophysics Data System (ADS)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J. E.; Weiss, S.

    2006-10-01

    We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and highspatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions.

  19. Flow cytometric fluorescence lifetime analysis of DNA binding fluorochromes

    SciTech Connect

    Crissman, Harry A.; Cui, H. H.; Steinkamp, J. A.

    2002-01-01

    Most flow cytometry (FCM) applications monitor fluorescence intensity to quantitate the various cellular parameters; however, the fluorescence emission also contains information relative to the fluorescence lifetime. Recent developments in FCM (Pinsky et al., 1993; Steinkamp & Crissman, 1993; Steinkamp et al., 1993), provide for the measurement of fluorescence lifetime which is also commonly referred to as fluorescence decay, or the time interval in which a fluorochrome remains in the excited state. Many unbound fluorochromes have characteristic lifetime values that are determined by their molecular structure; however, when the probe becomes bound, the lifetime value is influenced by a number of factors that affect the probe interaction with a target molecule. Monitoring the changes in the lifetime of the probe yields information relating to the molecular conformation, the functional state or activity of the molecular target. In addition, the lifetime values can be used as signatures to resolve the emissions of multiple fluorochrome labels with overlapping emission spectra that cannot be resolved by conventional FCM methodology. Such strategies can increase the number of fluorochrome combinations used in a flow cytometer with a single excitation source. Our studies demonstrate various applications of lifetime measurements for the analysis of the binding of different fluorochromes to DNA in single cells. Data presented in this session will show the utility of lifetime measurements for monitoring changes in chromatin structure associated with cell cycle progression, cellular differentiation, or DNA damage, such as induced during apoptosis. Several studies show that dyes with specificity for nucleic acids display different lifetime values when bound to DNA or to dsRNA. The Phase Sensitive Flow Cytometer is a multiparameter instrument, capable of performing lifetime measurements in conjunction with all the conventional FCM measurements. Future modifications of this

  20. Revisit laser scanning fluorescence microscopy performance under fluorescence-lifetime-limited regime

    NASA Astrophysics Data System (ADS)

    Chan, Antony C.; Wong, Terence T. W.; Wong, Kenneth K. Y.; Lam, Edmund Y.; Tsia, Kevin K.

    2014-03-01

    Continuing desire for higher-speed laser scanning fluorescence microscopy (LSFM) and progressive advancement in ultrafast and sensitive photodetectors might imply that our conventional understanding of LSFM is not adequate when approaching to the intrinsic speed limit — fluorescence lifetime. In this regard, we here revisit the theoretical framework of LSFM and evaluate its general performance in lifetime-limited and noise-limited regimes. Our model suggests that there still exists an order-of-magnitude gap between the current LSFM speed and the intrinsic limit. An imaging frame rate of > 100 kHz could be viable with the emerging laser-scanning techniques using ultrafast wavelength-swept sources, or optical time-stretch.

  1. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.

    PubMed Central

    Alcala, J R; Gratton, E; Prendergast, F G

    1987-01-01

    The decay of the tryptophanyl emission in proteins is often complex due to the sensitivity of the tryptophan excited state to its surroundings. The traditional analysis of the decay curve using exponential components is based on the identification of each component with a particular protein conformation. An alternative approach assumes that proteins can exhibit a large number of conformations and that, at room temperature, the interconversion rate between conformations can be of the same order of magnitude as the excited-state decay rate. Following this assumption, the analysis of the protein emission was performed using continuous distributions of lifetime values. The number of average protein conformations, the range of mobility around each conformation, and the rate of interconversion between conformations determines the characteristics of the lifetime distribution. The fluorescence decay from some single tryptophan proteins was measured using multifrequency phase fluorometry and analyzed using a sum of exponentials, unimodal and bimodal probability-density functions, and the analytical form for lifetime distribution obtained for a model in which the tryptophan residue can move in a single potential well. For ribonuclease T1 and neurotoxin variant 3, the sum of two exponentials and bimodal probability-density functions gave comparable results, whereas for phospholipase A2, the description of the decay required three exponentials or bimodal probability-density functions. Also the temperature dependence of the fluorescence decay was investigated. It was found that the lifetime distribution was broader and shifted toward longer lifetime values at lower temperature. The analysis of the decay of tryptophan in buffer and of some tryptophan derivatives gave single-exponential decays. The single-potential well lifetime distribution, which has only three adjustable parameters, gave good fits for all cases investigated, but in the case of phopholipase A2, the temperature

  2. Development of a Time Domain Fluorimeter for Fluorescent Lifetime Multiplexing Analysis

    PubMed Central

    Weissleder, Ralph; Mahmood, Umar

    2009-01-01

    We show that a portable, inexpensive USB-powered time domain fluorimeter (TDF) and analysis scheme were developed for use in evaluating a new class of fluorescent lifetime multiplexed dyes. Fluorescent proteins, organic dyes, and quantum dots allow the labeling of more and more individual features within biological systems, but the wide absorption and emission spectra of these fluorophores limit the number of distinct processes which may be simultaneously imaged using spectral separation alone. By additionally separating reporters in a second dimension, fluorescent lifetime multiplexing provides a means to multiply the number of available imaging channels. PMID:19830273

  3. Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry

    PubMed Central

    Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.

    2010-01-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively

  4. Fluorescence Lifetimes of Normal and Carcinomatous Human Nasopharyngeal Tissues

    NASA Astrophysics Data System (ADS)

    Chen, M.; Li, H.; Li, B.; Chen, R.; Zheng, G.; Song, C.

    2016-03-01

    Time-resolved fluorescence spectra of normal and carcinomatous in vitro human nasopharyngeal tissues are compared. By fitting the time-resolved emission with exponential decays, mean lifetimes were obtained. There were marked differences between the lifetimes of the carcinomatous and the normal tissues. Thus, early diagnosis of nasopharyngeal carcinoma is possible. In general, comprehensive information from human tissue autofluorescence can be acquired via both time-resolved and steady-state fluorescence spectra.

  5. Anomalous temperature dependence of the fluorescence lifetime of phycobiliproteins

    NASA Astrophysics Data System (ADS)

    Maksimov, E. G.; Schmitt, F.-J.; Hätti, P.; Klementiev, K. E.; Paschenko, V. Z.; Renger, G.; Rubin, A. B.

    2013-05-01

    Using a single photon counting technique we have investigated fluorescence decay spectra of phycobiliproteins with picosecond time resolution. The studies were performed in a wide range of temperatures—from 4 to 300 K. Comparing the fluorescence decay kinetics of samples rapidly frozen in liquid nitrogen with samples that were frozen slowly revealed that the temperature-dependent changes of phycobiliproteins fluorescence lifetime reflect the presence of three different stages, with a phase transition between 273 and 263 K that strongly depends on the rate of freezing. When the temperature decreases from 300 to 273 K, the fluorescence lifetime increases from 1.6 to 1.8 ns. In the region from 273 to 263 K we observed a decrease of the fluorescence lifetime, which strongly depends on the freezing rate: a slight decrease at high freezing rate and a drop down to 200 ps lifetime at slow freezing rate. In the low-temperature regime from 263 to 4 K a linear increase in the fluorescence lifetime was observed for all samples. It was found that the strong temperature dependence of the phycobiliprotein fluorescence, especially in the range between 263 and 273 K, is due to the interaction of the solvent with the chromophore bound to the protein. This feature is explained by a photoisomerization of the phycobiliproteins into a quenching form which is naturally prevented by the protein environment. The formation of ice microcrystals at low freezing rate eliminates this ‘protective’ effect of the protein environment.

  6. Temperature Dependent Fluorescence Lifetime Measurements in a Phosphor

    NASA Astrophysics Data System (ADS)

    Nettles, Charles J.; Smith, R. Seth; Heath, Jonathan J.

    2012-03-01

    This poster will describe an undergraduate senior research project involving fluorescence lifetime measurements in a LaSO4:Eu phosphor compound. Specifically, this project seeks to determine the temperature dependence of the lifetime. The temperature of the phosphor will be varied using a heater block with temperature control. The phosphor will be excited with the 337 nm output of a Nitrogen Laser. An Oriel Monochromator will be used to disperse the fluorescence, and the lifetime for a particular wavelength will be determined from a photomultiplier tube signal. At the time of the presentation, this project will be nearing completion; and I will discuss my progress, successes, and challenges.

  7. Time-Domain Microfluidic Fluorescence Lifetime Flow Cytometry for High-Throughput Förster Resonance Energy Transfer Screening

    PubMed Central

    Nedbal, Jakub; Visitkul, Viput; Ortiz-Zapater, Elena; Weitsman, Gregory; Chana, Prabhjoat; Matthews, Daniel R; Ng, Tony; Ameer-Beg, Simon M

    2015-01-01

    Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5–5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving

  8. Fluorescence lifetime-based glucose sensor using NADH

    NASA Astrophysics Data System (ADS)

    von Ketteler, A.; Siegberg, D.; Herten, D. P.; Horn, C.; Petrich, W.

    2012-03-01

    Fluorescence lifetime-based glucose sensing does not depend on fluctuations of the intensity of the light source, light scattering, or changes in the transmission of optical components. Here we demonstrate the sensing of glucose based on the fluorescence lifetime properties of dihydro nicotinamide adenine dinucleotide (NADH), which is reduced from NAD in the presence of glucose and glucose dehydrogenase. In particular we use the difference in the fluorescence properties of free and protein-bound NADH and calculate an average fluorescence lifetime, which arises from the two short lifetimes τ1=0.28ns and τ2=0.60ns (representing free NADH) and the longer lifetime of τ3=2.9ns (for the protein-bound NADH). While initial results were derived from measurements in aqueous solution, we also demonstrate the suitability of this method for determining the concentration of glucose in blood using test strips. We find that the average fluorescence lifetime changes linearly by a factor of 0.17 per 100mg/dl change in glucose concentration. As an alternative the ratio between free and protein-bound components Rs/l may also be used for quantification. Rs/l increases by a factor of 0.74 per 100mg/dl change in glucose concentration.

  9. Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy.

    PubMed Central

    Barzda, V; de Grauw, C J; Vroom, J; Kleima, F J; van Grondelle, R; van Amerongen, H; Gerritsen, H C

    2001-01-01

    Two-photon excitation, time-resolved fluorescence microscopy was used to investigate the fluorescence quenching mechanisms in aggregates of light-harvesting chlorophyll a/b pigment protein complexes of photosystem II from green plants (LHCII). Time-gated microscopy images show the presence of large heterogeneity in fluorescence lifetimes not only for different LHCII aggregates, but also within a single aggregate. Thus, the fluorescence decay traces obtained from macroscopic measurements reflect an average over a large distribution of local fluorescence kinetics. This opens the possibility to resolve spatially different structural/functional units in chloroplasts and other heterogeneous photosynthetic systems in vivo, and gives the opportunity to investigate individually the excited states dynamics of each unit. We show that the lifetime distribution is sensitive to the concentration of quenchers contained in the system. Triplets, which are generated at high pulse repetition rates of excitation (>1 MHz), preferentially quench domains with initially shorter fluorescence lifetimes. This proves our previous prediction from singlet-singlet annihilation investigations (Barzda, V., V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van Amerongen, R. van Grondelle, and L. Valkunas. 2001. Biophys. J. 80:2409-2421) that shorter fluorescence lifetimes originate from larger domains in LHCII aggregates. We found that singlet-singlet annihilation has a strong effect in time-resolved fluorescence microscopy of connective systems and has to be taken into consideration. Despite that, clear differences in fluorescence decays can be detected that can also qualitatively be understood. PMID:11423435

  10. Dynamic nuclear protein interactions investigated using fluorescence lifetime and fluorescence fluctuation spectroscopy

    NASA Astrophysics Data System (ADS)

    Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.

    2012-03-01

    The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for Förster resonance energy transfer (FRET) microscopy and fluorescence fluctuation spectroscopy (FFS) provide important tools for monitoring dynamic protein interactions inside living cells. Fluorescence lifetime imaging microscopy (FLIM) quantitatively maps changes in the spatial distribution of donor FP lifetimes that result from FRET with acceptor FPs. FFS probes dynamic protein associations through its capacity to monitor localized protein diffusion. Here, we use FRET-FLIM combined with FFS in living cells to investigate changes in protein mobility due to protein-protein interactions involving transcription factors and chromatin modifying proteins that function in anterior pituitary gene regulation. The heterochromatin protein 1 alpha (HP1α) plays a key role in the establishment and maintenance of heterochromatin through its interactions with histone methyltransferases. Recent studies, however, also highlight the importance of HP1α as a positive regulator of active transcription in euchromatin. Intriguingly, we observed that the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) interacts with HP1α in regions of pericentromeric heterochromatin in mouse pituitary cells. These observations prompted us to investigate the relationship between HP1α dynamic interactions in pituitary specific gene regulation.

  11. Fluorescence lifetime as a new parameter in analytical cytology measurements

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.

    1996-05-01

    A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.

  12. Digital analysis and sorting of fluorescence lifetime by flow cytometry.

    PubMed

    Houston, Jessica P; Naivar, Mark A; Freyer, James P

    2010-09-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal-processing capabilities of the open reconfigurable cytometric acquisition system (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency (RF)-modulated detector signals, implementing Fourier analysis programming with ORCAS' digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5-25 ns simulated lifetime), pulse widths ranging from 2 to 15 micros, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142 degrees to 1.6 degrees. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 micros and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells, and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a RF-modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to approximately 98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to

  13. Emission Lifetimes of a Fluorescent Dye under Shock Compression.

    PubMed

    Liu, Wei-long; Bassett, Will P; Christensen, James M; Dlott, Dana D

    2015-11-01

    The emission lifetimes of rhodamine 6G (R6G) were measured under shock compression to 9.1 GPa, with the dual intents of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly(methyl methacrylate) (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and the emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0 to 9 GPa, with a slope of -0.22 ns·GPa(-1). The linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, because lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure. PMID:26469397

  14. Measuring and Sorting Cell Populations Expressing Isospectral Fluorescent Proteins with Different Fluorescence Lifetimes

    PubMed Central

    Naivar, Mark; Houston, Jessica P.; Brent, Roger

    2014-01-01

    Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼1.5 ns vs ∼3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a “pseudophasor” that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation. PMID:25302964

  15. Characterization of porcine eyes based on autofluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2015-03-01

    Multiphoton microscopy is a non-invasive imaging technique with ideal characteristics for biological applications. In this study, we propose to characterize three major structures of the porcine eye, the cornea, crystalline lens, and retina using two-photon excitation fluorescence lifetime imaging microscopy (2PE-FLIM). Samples were imaged using a laser-scanning microscope, consisting of a broadband sub-15 femtosecond (fs) near-infrared laser. Signal detection was performed using a 16-channel photomultiplier tube (PMT) detector (PML-16PMT). Therefore, spectral analysis of the fluorescence lifetime data was possible. To ensure a correct spectral analysis of the autofluorescence lifetime data, the spectra of the individual endogenous fluorophores were acquired with the 16-channel PMT and with a spectrometer. All experiments were performed within 12h of the porcine eye enucleation. We were able to image the cornea, crystalline lens, and retina at multiple depths. Discrimination of each structure based on their autofluorescence intensity and lifetimes was possible. Furthermore, discrimination between different layers of the same structure was also possible. To the best of our knowledge, this was the first time that 2PE-FLIM was used for porcine lens imaging and layer discrimination. With this study we further demonstrated the feasibility of 2PE-FLIM to image and differentiate three of the main components of the eye and its potential as an ophthalmologic technique.

  16. Fluorescence lifetime measurements of boronate derivatives to determine glucose concentration

    SciTech Connect

    Gable, J H

    2000-06-01

    A novel investigation into the fluorescence lifetimes of molecules, both established and newly designed, was performed. These molecules are the basis of a continuous, minimally invasive, glucose sensor based on fluorescence lifetime measurements. This sensor, if coupled with an automated insulin delivery device, would effectively create an artificial pancreas allowing for the constant monitoring and control of glucose levels in a person with diabetes. The proposed sensor includes a fluorescent molecule that changes its' fluorescence properties upon binding selectively and reversibly to glucose. One possible sensor molecule is N-methyl-N-(9-methylene anthryl)-2-methylenephenylboronic acid (AB). The fluorescence intensity of AB was shown to change in response to changing glucose concentrations. (James, 1994) James proposed that when glucose binds to AB the fluorescence intensity increases due to an enhancement of the N{yields}B dative bond which prevents photoinduced electron transfer (PET). PET from the amine (N) to the fluorophore (anthracene) quenches the fluorescence. The dative bond between the boron and the amine can prevent PET by involving the lone pair of electrons on the amine in interactions with the boron rather than allowing them to be transferred to the fluorophore. Results of this research show the average fluorescence lifetime of AB also changes with glucose concentration. It is proposed that fluorescence is due to two components: (1) AB with an enhanced N{yields}B interaction, and no PET, and (2) AB with a weak N{yields}B interaction, resulting in fluorescence quenching by PET. Lifetime measurements of AB as a function of both the pH of the solvent and glucose concentration in the solution were made to characterize this two component system and investigate the nature of the N{yields}B bond. Measurements of molecules similar to AB were also performed in order to isolate behavior of specific AB constituents. These molecules are 9-(Methylaminomethyl

  17. Fluorescence lifetimes of molecular dye ensembles near interfaces

    SciTech Connect

    Danz, Norbert; Heber, Joerg; Braeuer, Andreas; Kowarschik, Richard

    2002-12-01

    Fluorescence lifetimes of thin, rhodamine 6G-doped polymer layers in front of a mirror have been determined as a function of the emitter-mirror separation and the conditions of excitation and observation. Lifetime is well known to depend on the spatial emitter-mirror separation. The explanation of experimental data needs to consider direction, polarization, and numerical aperture of the experimental system. As predicted theoretically, experimental results depend on the conditions of illumination and observation, because of the different lifetimes of emitters aligned horizontally or vertically with respect to the plane of interfaces and their selection by the experimental system. This effect is not observable when ions are used as a source of fluorescence, because ensemble averaging depends on the properties of sources.

  18. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    PubMed

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-01

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution. PMID:23977902

  19. NIR fluorescence lifetime sensing through a multimode fiber for intravascular molecular probing

    NASA Astrophysics Data System (ADS)

    Ingelberts, H.; Hernot, S.; Debie, P.; Lahoutte, T.; Kuijk, M.

    2016-04-01

    Coronary artery disease (CAD) contributes to millions of deaths each year. The identification of vulnerable plaques is essential to the diagnosis of CAD but is challenging. Molecular probes can improve the detection of these plaques using intravascular imaging methods. Fluorescence lifetime sensing is a safe and robust method to image these molecular probes. We present two variations of an optical system for intravascular near-infrared (NIR) fluorescence lifetime sensing through a multimode fiber. Both systems are built around a recently developed fast and efficient CMOS detector, the current-assisted photonic sampler (CAPS) that is optimized for sub-nanosecond NIR fluorescence lifetime sensing. One system mimics the optical setup of an epifluorescence microscope while the other uses a practical fiber optic coupler to separate fluorescence excitation and emission. We test both systems by measuring the lifetime of several NIR dyes in DMSO solutions and we show that these systems are capable of detecting lifetimes of solutions with concentrations down to 370 nM and this with short acquisition times. These results are compared with time-correlated single photon counting (TCSPC) measurements for reference.

  20. The Number of Accumulated Photons and the Quality of Stimulated Emission Depletion Lifetime Images

    SciTech Connect

    Syed, Aleem; Lesoine, Michael D; Bhattacharjee, Ujjal; Petrich, Jacob W; Smith, Emily A

    2014-03-03

    Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion (STED) fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F-actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a tenfold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel-by-pixel fluorescence lifetime measurements and error analysis show that an average of 40 ± 30 photon counts in the peak channel with a signal-to-noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40- to 400-nm spatial regime.

  1. Fluorescent image tracking velocimeter

    DOEpatents

    Shaffer, Franklin D.

    1994-01-01

    A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.

  2. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  3. Photoacoustic imaging of the excited state lifetime of fluorophores

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Schmitt, Franz-Josef; Laufer, Jan

    2016-05-01

    Photoacoustic (PA) imaging using pump-probe excitation has been shown to allow the detection and visualization of fluorescent contrast agents. The technique relies upon inducing stimulated emission using pump and probe pulses at excitation wavelengths that correspond to the absorption and fluorescence spectra. By changing the time delay between the pulses, the excited state lifetime of the fluorophore is modulated to vary the amount of thermalized energy, and hence PA signal amplitude, to provide fluorophore-specific PA contrast. In this study, this approach was extended to the detection of differences in the excited state lifetime of fluorophores. PA waveforms were measured in solutions of a near-infrared fluorophore using simultaneous and time-delayed pump-probe excitation. The lifetime of the fluorophore solutions was varied by using different solvents and quencher concentrations. By calculating difference signals and by plotting their amplitude as a function of pump-probe time delay, a correlation with the excited state lifetime of the fluorophore was observed. The results agreed with the output of a forward model of the PA signal generation in fluorophores. The application of this method to tomographic PA imaging of differences in the excited state lifetime was demonstrated in tissue phantom experiments.

  4. A fluorescence high-temperature sensor based on fluorescence lifetime

    NASA Astrophysics Data System (ADS)

    Wu, Jinling; Wang, Yutian; Wang, Xinian

    2006-11-01

    A kind of fluorescence optic-fiber temperature sensor is devised based on the alexandrite crystal. In this system, a new optic- fiber probe fabrication techniques is proposed. This system is particularly adapted to the temperature measurement in the range of room temperature to 650°C. During the cause of experimentation, using the PLD-PMTR (termed the Pulse Modulated Phase-locked detection with Two References) signal processing scheme. This temperature measurement method is proved to be effective and useful for its highly resolution and precision. It ensured the detected fluorescence signal to noise ratio was high enough to be measurable when the temperature is raised to 650°C.

  5. Online multispectral fluorescence lifetime values estimation and overlay onto tissue white-light video frames

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Marcu, Laura

    2016-03-01

    Fluorescence lifetime imaging has been shown to be a robust technique for biochemical and functional characterization of tissues and to present great potential for intraoperative tissue diagnosis and guidance of surgical procedures. We report a technique for real-time mapping of fluorescence parameters (i.e. lifetime values) onto the location from where the fluorescence measurements were taken. This is achieved by merging a 450 nm aiming beam generated by a diode laser with the excitation light in a single delivery/collection fiber and by continuously imaging the region of interest with a color CMOS camera. The interrogated locations are then extracted from the acquired frames via color-based segmentation of the aiming beam. Assuming a Gaussian profile of the imaged aiming beam, the segmentation results are fitted to ellipses that are dynamically scaled at the full width of three automatically estimated thresholds (50%, 75%, 90%) of the Gaussian distribution's maximum value. This enables the dynamic augmentation of the white-light video frames with the corresponding fluorescence decay parameters. A fluorescence phantom and fresh tissue samples were used to evaluate this method with motorized and hand-held scanning measurements. At 640x512 pixels resolution the area of interest augmented with fluorescence decay parameters can be imaged at an average 34 frames per second. The developed method has the potential to become a valuable tool for real-time display of optical spectroscopy data during continuous scanning applications that subsequently can be used for tissue characterization and diagnosis.

  6. Near-infrared spark source excitation for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Birch, D. J. S.; Hungerford, G.; Imhof, R. E.

    1991-10-01

    We have extended the range of excitation wavelengths from spark sources used in single photon timing fluorometry into the near infrared by means of the all-metal coaxial flashlamp filled with an argon-hydrogen gas mixture. At 750 nm this mixture gives ˜15 times the intensity available from pure hydrogen for a comparable pulse duration. Measurements are demonstrated by using the laser dye IR-140 in acetone, for which a fluorescence lifetime of 1.20 ns is recorded.

  7. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  8. Principles and applications of fluorescence lifetime correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Beranová, Lenka; Humpolícková, Jana; Hof, Martin

    2009-05-01

    Two fluorescence spectroscopy concepts, fluorescence correlation spectroscopy and time correlated single photon counting (TCSPC) are employed in fluorescence lifetime correlation spectroscopy (FLCS) - a relatively new technique with several experimental benefits. In FLCS experiments, pulsed excitation is used and data are stored in a special time-tagged time-resolved mode. Mathematical treatment of TCSPC decay patterns of distinct fluorophores and their mixture enables to calculate autocorrelation functions of each of the fluorophores and thus their diffusion properties and concentrations can be determined separately. Moreover, crosscorrelation of the two signals can be performed and information on interaction of the species can be obtained. This technique is particularly helpful for distinguishing different states of the same fluorophore in different microenvironments. The first application of that concept represents the simultaneous determination of two-dimensional diffusion in planar lipid layers and three-dimensional vesicle diffusion in bulk above the lipid layers. The lifetime in both investigated systems differed because the lifetime of the dye is considerably quenched in the layer near the light-absorbing surface. This concept was also used in other applications: a) investigation of a conformational change of a labeled protein, b) detection of small amounts of labeled oligonucleotides bound to metal particles or c) elucidation of the compaction mechanism of different sized labeled DNA molecules. Moreover, it was demonstrated that FLCS can help to overcome some FCS experimental drawbacks.

  9. Fluorescence lifetime of normal, benign, and malignant thyroid tissues

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana; Iwakura, Ricardo; Basilio, Fagne; Haleplian, Kaique; Ito, Amando; de Freitas, Luiz Carlos Conti; Bachmann, Luciano

    2015-06-01

    Fine-needle aspiration cytology is the standard technique to diagnose thyroid pathologies. However, this method results in a high percentage of inconclusive and false negatives. The use of time-resolved fluorescence techniques to detect biochemical composition and tissue structure alterations could help to develop a portable, minimally invasive, and nondestructive method to assist during surgical procedures. This study aimed to use fluorescence lifetimes to differentiate healthy and benign tissues from malignant thyroid tissue. The thyroid tissue was excited at 298-300 nm and the fluorescence decay registered at 340 and 450 nm. We observed fluorescence lifetimes at 340 nm emission of 0.80±0.26 and 3.94±0.47 ns for healthy tissue; 0.90±0.24 and 4.05±0.46 ns for benign lesions; and 1.21±0.14 and 4.63±0.25 ns for malignant lesions. For 450 nm emissions, we obtain lifetimes of 0.25±0.18 and 3.99±0.39 ns for healthy tissue, 0.24±0.17 and 4.20±0.48 ns for benign lesions, 0.33±0.32 and 4.55±0.55 ns for malignant lesions. Employing analysis of variance, we differentiate malignant lesions from benign and healthy tissues. In addition, we use quadratic discriminant analysis to distinguish malignant from benign and healthy tissues with an accuracy of 76.1%, sensitivity of 74.7%, and specificity of 83.3%. These results indicate that time-resolved fluorescence can assist medical evaluation of thyroid pathologies during surgeries.

  10. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  11. Photoacoustic lifetime imaging and its biomedical applications

    NASA Astrophysics Data System (ADS)

    Shao, Qi

    Even though oxygen plays a crucial role in body function and cancer biology, methods of measuring oxygen level in tissue are all limited. The current gold standard relies on an invasive electrode for only single-point reading at a time. The photoacoustic lifetime imaging (PALI) approach overcomes these major limitations by applying photoacoustic probing to oxygen-sensitive optical transient absorption. The capability of assessing oxygen distribution is demonstrated by imaging tumor hypoxia in a small animal model, and monitoring changes of tissue oxygen induced by external modulations. Proposed applications of this imaging technique includes imaging-guided photodynamic therapy (PDT) and activatable probes for molecular imaging.

  12. A hyperspectral fluorescence lifetime probe for skin cancer diagnosis.

    PubMed

    De Beule, P A A; Dunsby, C; Galletly, N P; Stamp, G W; Chu, A C; Anand, U; Anand, P; Benham, C D; Naylor, A; French, P M W

    2007-12-01

    The autofluorescence of biological tissue can be exploited for the detection and diagnosis of disease but, to date, its complex nature and relatively weak signal levels have impeded its widespread application in biology and medicine. We present here a portable instrument designed for the in situ simultaneous measurement of autofluorescence emission spectra and temporal decay profiles, permitting the analysis of complex fluorescence signals. This hyperspectral fluorescence lifetime probe utilizes two ultrafast lasers operating at 355 and 440 nm that can excite autofluorescence from many different biomolecules present in skin tissue including keratin, collagen, nicotinamide adenine dinucleotide (phosphate), and flavins. The instrument incorporates an optical fiber probe to provide sample illumination and fluorescence collection over a millimeter-sized area. We present a description of the system, including spectral and temporal characterizations, and report the preliminary application of this instrument to a study of recently resected (<2 h) ex vivo skin lesions, illustrating its potential for skin cancer detection and diagnosis. PMID:18163714

  13. A hyperspectral fluorescence lifetime probe for skin cancer diagnosis

    NASA Astrophysics Data System (ADS)

    De Beule, P. A. A.; Dunsby, C.; Galletly, N. P.; Stamp, G. W.; Chu, A. C.; Anand, U.; Anand, P.; Benham, C. D.; Naylor, A.; French, P. M. W.

    2007-12-01

    The autofluorescence of biological tissue can be exploited for the detection and diagnosis of disease but, to date, its complex nature and relatively weak signal levels have impeded its widespread application in biology and medicine. We present here a portable instrument designed for the in situ simultaneous measurement of autofluorescence emission spectra and temporal decay profiles, permitting the analysis of complex fluorescence signals. This hyperspectral fluorescence lifetime probe utilizes two ultrafast lasers operating at 355 and 440nm that can excite autofluorescence from many different biomolecules present in skin tissue including keratin, collagen, nicotinamide adenine dinucleotide (phosphate), and flavins. The instrument incorporates an optical fiber probe to provide sample illumination and fluorescence collection over a millimeter-sized area. We present a description of the system, including spectral and temporal characterizations, and report the preliminary application of this instrument to a study of recently resected (<2h) ex vivo skin lesions, illustrating its potential for skin cancer detection and diagnosis.

  14. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using

  15. Transient Fluorescence Spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Makoui, Anali

    We have investigated the use of deep UV laser induced fluorescence for the sensitive detection and spectroscopic lifetime studies of terbium doped dipicolinic acid (DPA-Tb) and used this to study the optical characteristics of DPA which is a chemical surrounding most bacterial spores. Background absorption spectra, fluorescence spectra, and Excitation Emission Matrix (EEM) spectra were made of the DPA-Tb complex, using both fixed 266 nm wavelength and tunable (220 nm--280 nm) UV laser excitations. Of importance, the fluorescence lifetimes of the four main fluorescence peaks (488 nm, 543 nm, 581 nm, and 618 nm) of the DPA-Tb complex have been measured for the first time to our knowledge. The lifetimes of all the fluorescing lines have been measured as a function of DPA-Tb concentration, solvent pH, and solvent composition, including that for the weakest fluorescing line of DPA-Tb at 618 nm. In addition, a new spectroscopic lifetime measurement technique, which we call "Transient Fluorescence Spectroscopy", was developed. In this technique, a weak, quasi-CW, amplitude modulated UV laser (8.5 kHz) was used to measure the lifetimes of the fluorescence lines, and yields insight into energy transfer and excitation lifetimes within the system. This technique is especially useful when a high power laser is not either available or not suitable. In the latter case, this would be when a high power pulsed deep-UV laser could produce bleaching or destruction of the biological specimen. In addition, this technique simulated the excitation and fluorescence emission of the DPA-Tb using a 4-level energy model, and solved the dynamic transient rate equations to predict the temporal behavior of the DPA-Tb emitted fluorescence. Excellent agreement between the experiments and the simulation were found. This technique has the potential to provide a more accurate value for the fluorescence lifetime values. In addition, with the use of asymmetric excitation waveforms, the dynamic

  16. Fluorescence Imaging in Surgery

    PubMed Central

    Orosco, Ryan K.; Tsien, Roger Y.; Nguyen, Quyen T.

    2013-01-01

    Although the modern surgical era is highlighted by multiple technological advances and innovations, one area that has remained constant is the dependence of the surgeon's vision on white-light reflectance. This renders different body tissues in a limited palette of various shades of pink and red, thereby limiting the visual contrast available to the operating surgeon. Healthy tissue, anatomic variations, and diseased states are seen as slight discolorations relative to each other and differences are inherently limited in dynamic range. In the upcoming years, surgery will undergo a paradigm shift with the use of targeted fluorescence imaging probes aimed at augmenting the surgical armamentarium by expanding the “visible” spectrum available to surgeons. Such fluorescent “smart probes” will provide real-time, intraoperative, pseudo-color, high-contrast delineation of both normal and pathologic tissues. Fluorescent surgical molecular guidance promises another major leap forward to improve patient safety and clinical outcomes, and to reduce overall healthcare costs. This review provides an overview of current and future surgical applications of fluorescence imaging in diseased and nondiseased tissues and focus on the innovative fields of image processing and instrumentation. PMID:23335674

  17. Bloodstain age analysis: toward solid state fluorescent lifetime measurements

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Zhegalova, Natalia; Achilefu, Samuel; Berezin, Mikhail Y.

    2013-03-01

    One of the most pressing unsolved challenges in forensic science is the determination of time since deposition (TSD) of bloodstains at crime scenes. Despite a number of high profile cases over the past couple hundred years involving controversy over TSD methods, no reliable quantitative method has been established. We present here an approach that has yet to be explored by forensic scientist: measuring the fluorescence lifetime of solid-state blood. Such a method would allow for on-site measurements of bloodstains utilizing the appropriate device, and would allow for rapid results returned in real-time to investigators.

  18. Real-Time Visualization of Tissue Surface Biochemical Features Derived From Fluorescence Lifetime Measurements.

    PubMed

    Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R; Marcu, Laura

    2016-08-01

    Fiber based fluorescence lifetime imaging has shown great potential for intraoperative diagnosis and guidance of surgical procedures. Here we describe a novel method addressing a significant challenge for the practical implementation of this technique, i.e., the real-time display of the quantified biochemical or functional tissue properties superimposed on the interrogated area. Specifically, an aiming beam (450 nm) generated by a continuous-wave laser beam was merged with the pulsed fluorescence excitation light in a single delivery/collection fiber and then imaged and segmented using a color-based algorithm. We demonstrate that this approach enables continuous delineation of the interrogated location and dynamic augmentation of the acquired frames with the corresponding fluorescence decay parameters. The method was evaluated on a fluorescence phantom and fresh tissue samples. Current results demonstrate that 34 frames per second can be achieved for augmenting videos of 640 × 512 pixels resolution. Also we show that the spatial resolution of the fluorescence lifetime map depends on the tissue optical properties, the scanning speed, and the frame rate. The dice similarity coefficient between the fluorescence phantom and the reconstructed maps was estimated to be as high as 93%. The reported method could become a valuable tool for augmenting the surgeon's field of view with diagnostic information derived from the analysis of fluorescence lifetime data in real-time using handheld, automated, or endoscopic scanning systems. Current method provides also a means for maintaining the tissue light exposure within safety limits. This study provides a framework for using an aiming beam with other point spectroscopy applications. PMID:26890641

  19. siFLIM: single-image frequency-domain FLIM provides fast and photon-efficient lifetime data.

    PubMed

    Raspe, Marcel; Kedziora, Katarzyna M; van den Broek, Bram; Zhao, Qiaole; de Jong, Sander; Herz, Johan; Mastop, Marieke; Goedhart, Joachim; Gadella, Theodorus W J; Young, Ian T; Jalink, Kees

    2016-06-01

    We developed single-image fluorescence lifetime imaging microscopy (siFLIM), a method for acquiring quantitative lifetime images from a single exposure. siFLIM takes advantage of a new generation of dedicated cameras that simultaneously record two 180°-phase-shifted images, and it allows for video-rate lifetime imaging with minimal phototoxicity and bleaching. siFLIM is also inherently immune to artifacts stemming from rapid cellular movements and signal transients. PMID:27088314

  20. Fluorescence Lifetime Correlation Spectroscopy (FLCS): Concepts, Applications and Outlook

    PubMed Central

    Kapusta, Peter; Macháň, Radek; Benda, Aleš; Hof, Martin

    2012-01-01

    Fluorescence Lifetime Correlation Spectroscopy (FLCS) is a variant of fluorescence correlation spectroscopy (FCS), which uses differences in fluorescence intensity decays to separate contributions of different fluorophore populations to FCS signal. Besides which, FLCS is a powerful tool to improve quality of FCS data by removing noise and distortion caused by scattered excitation light, detector thermal noise and detector after pulsing. We are providing an overview of, to our knowledge, all published applications of FLCS. Although these are not numerous so far, they illustrate possibilities for the technique and the research topics in which FLCS has the potential to become widespread. Furthermore, we are addressing some questions which may be asked by a beginner user of FLCS. The last part of the text reviews other techniques closely related to FLCS. The generalization of the idea of FLCS paves the way for further promising application of the principle of statistical filtering of signals. Specifically, the idea of fluorescence spectral correlation spectroscopy is here outlined. PMID:23202928

  1. Correlation of NADH fluorescence lifetime and oxidative phosphorylation metabolism in the osteogenic differentiation of human mesenchymal stem cell

    NASA Astrophysics Data System (ADS)

    Guo, Han-Wen; Yu, Jia-Sin; Hsu, Shu-Han; Wei, Yau-Huei; Lee, Oscar K.; Dong, Chen-Yuan; Wang, Hsing-Wen

    2015-01-01

    Reduced nicotinamide dinucleotide (NADH) fluorescence lifetime has been broadly used as a metabolic indicator for stem cell imaging. However, the direct relationship between NADH fluorescence lifetime and metabolic pathway and activity remains to be clarified. In this study, we measured the NADH fluorescence lifetime of human mesenchymal stem cells (hMSCs) as well as the metabolic indictors, such as adenosine triphosphate (ATP) level, oxygen consumption, and lactate release, up to 4 weeks under normal osteogenic differentiation and oxidative phosphorylation-attenuated/inhibited differentiation by oligomycin A (OA) treatment. NADH fluorescence lifetime was positively correlated with oxygen consumption and ATP level during energy transformation from glycolysis to oxidative phosphorylation. Under OA treatment, oxidative phosphorylation was attenuated/inhibited (i.e., oxygen consumption remained the same as controls or lower), cells showed attenuated differentiation under glycolysis, and NADH fluorescence lifetime change was not detected. Increased expression of the overall complex proteins was observed in addition to Complex I. We suggested special caution needs to be exercised while interpreting NADH fluorescence lifetime signal in terms of stem cell differentiation.

  2. Fluorescence lifetime spectroscopy for breast cancer margins assessment

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Fatakdawala, Hussain; Zhang, Yanhong; Bold, Richard; Marcu, Laura

    2015-03-01

    During breast conserving surgery (BCS), which is the preferred approach to treat most early stage breast cancers, the surgeon attempts to excise the tumor volume, surrounded by thin margin of normal tissue. The intra-operative assessment of cancerous areas is a challenging procedure, with the surgeon usually relying on visual or tactile guidance. This study evaluates whether time-resolved fluorescence spectroscopy (TRFS) presents the potential to address this problem. Point TRFS measurements were obtained from 19 fresh tissue slices (7 patients) and parameters that characterize the transient signals were quantified via constrained least squares deconvolution scheme. Fibrotic tissue (FT, n=69), adipose tissue (AT, n=76), and invasive ductal carcinoma (IDC, n=27) were identified in histology and univariate statistical analysis, followed by multi-comparison test, was applied to the corresponding lifetime data. Significant differentiation between the three tissue types exists at 390 nm and 500 nm bands. The average lifetime is 3.23+/-0.74 ns for AT, 4.21+/-0.83 ns for FT and 4.71+/-0.35 ns (p<0.05) for IDC at 390 nm. Due to the smaller contribution of collagen in AT the average lifetime value is different from FT and IDC. Additionally, although intensity measurements do not show difference between FT and IDC, lifetime can distinguish them. Similarly, in 500 nm these values are 7.01+/-1.08 ns, 5.43+/-1.05 ns and 4.39+/-0.88 ns correspondingly (p<0.05) and this contrast is due to differentiation in retinol or flavins relative concentration, mostly contributing to AT. Results demonstrate the potential of TRFS to intra-operatively characterize BCS breast excised tissue in real-time and assess tumor margins.

  3. Fluorescence Microscopy Imaging in Biomedical Sciences

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Periasamy, Ammasi

    Fluorescence microscopy is an important tool in biological sciences which provides excellent sensitivity for detecting very low concentrations of molecules over broad spatial and temporal dimensions. With fast developments of new fluorescent probes, advanced electronic and optical devices, and sophisticated data acquisition and analysis software, fluorescence microscopy resides on the central stage of life-sciences research. This chapter covers several commonly used and advanced fluorescence microscopy techniques and focuses on fluorescence lifetime imaging microscopy (FLIM). A number of FLIM systems and their applications are reviewed. As an example, we describe how we built and calibrated a two-photon excitation time-correlated single-photon counting (TPE-TCSPC) FLIM system and employed the system to investigate protein-protein interactions in living cells.

  4. Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources.

    PubMed

    Elder, A D; Frank, J H; Swartling, J; Dai, X; Kaminski, C F

    2006-11-01

    High brightness light emitting diodes are an inexpensive and versatile light source for wide-field frequency-domain fluorescence lifetime imaging microscopy. In this paper a full calibration of an LED based fluorescence lifetime imaging microscopy system is presented for the first time. A radio-frequency generator was used for simultaneous modulation of light emitting diode (LED) intensity and the gain of an intensified charge coupled device (CCD) camera. A homodyne detection scheme was employed to measure the demodulation and phase shift of the emitted fluorescence, from which phase and modulation lifetimes were determined at each image pixel. The system was characterized both in terms of its sensitivity to measure short lifetimes (500 ps to 4 ns), and its capability to distinguish image features with small lifetime differences. Calibration measurements were performed in quenched solutions containing Rhodamine 6G dye and the results compared to several independent measurements performed with other measurement methodologies, including time correlated single photon counting, time gated detection, and acousto optical modulator (AOM) based modulation of excitation sources. Results are presented from measurements and simulations. The effects of limited signal-to-noise ratios, baseline drifts and calibration errors are discussed in detail. The implications of limited modulation bandwidth of high brightness, large area LED devices ( approximately 40 MHz for devices used here) are presented. The results show that phase lifetime measurements are robust down to sub ns levels, whereas modulation lifetimes are prone to errors even at large signal-to-noise ratios. Strategies for optimizing measurement fidelity are discussed. Application of the fluorescence lifetime imaging microscopy system is illustrated with examples from studies of molecular mixing in microfluidic devices and targeted drug delivery research. PMID:17204064

  5. Fluorescent microthermographic imaging

    SciTech Connect

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  6. Monitoring dynamic systems with multiparameter fluorescence imaging.

    PubMed

    Kudryavtsev, Volodymyr; Felekyan, Suren; Woźniak, Anna K; König, Marcelle; Sandhagen, Carl; Kühnemuth, Ralf; Seidel, Claus A M; Oesterhelt, Filipp

    2007-01-01

    A new general strategy based on the use of multiparameter fluorescence detection (MFD) to register and quantitatively analyse fluorescence images is introduced. Multiparameter fluorescence imaging (MFDi) uses pulsed excitation, time-correlated single-photon counting and a special pixel clock to simultaneously monitor the changes in the eight-dimensional fluorescence information (fundamental anisotropy, fluorescence lifetime, fluorescence intensity, time, excitation spectrum, fluorescence spectrum, fluorescence quantum yield, distance between fluorophores) in real time. The three spatial coordinates are also stored. The most statistically efficient techniques known from single-molecule spectroscopy are used to estimate fluorescence parameters of interest for all pixels, not just for the regions of interest. Their statistical significance is judged from a stack of two-dimensional histograms. In this way, specific pixels can be selected for subsequent pixel-based subensemble analysis in order to improve the statistical accuracy of the parameters estimated. MFDi avoids the need for sequential measurements, because the registered data allow one to perform many analysis techniques, such as fluorescence-intensity distribution analysis (FIDA) and fluorescence correlation spectroscopy (FCS), in an off-line mode. The limitations of FCS for counting molecules and monitoring dynamics are discussed. To demonstrate the ability of our technique, we analysed two systems: (i) interactions of the fluorescent dye Rhodamine 110 inside and outside of a glutathione sepharose bead, and (ii) microtubule dynamics in live yeast cells of Schizosaccharomyces pombe using a fusion protein of Green Fluorescent Protein (GFP) with Minichromosome Altered Loss Protein 3 (Mal3), which is involved in the dynamic cycle of polymerising and depolymerising microtubules. PMID:17160654

  7. On-the-fly fluorescence lifetime detection of humic substances in capillary electrophoresis.

    PubMed

    Hewitt, Joseph D; McGown, Linda B

    2003-03-01

    On-the-fly fluorescence lifetime detection was investigated as a tool for studying humic substances in capillary zone electrophoresis (CZE). Humic substances are complex, heterogeneous mixtures of natural products that tend to migrate in a single, broad CZE peak. The intrinsic fluorescence lifetime of five humic substances from the International Humic Substances Society (IHSS) was monitored using excitation at 488 or 364 nm to produce intensity-lifetime electropherograms for each of the substances. Each frequency-domain lifetime measurement, collected at subsecond intervals during the CZE run, contains the equivalent of a complete decay profile. Lifetime analysis of each decay profile was used to construct a lifetime-resolved electropherogram for each lifetime component, from which the variation in relative intensity contributions of each lifetime across the broad CZE peak could be determined. Absorption spectra, fluorescence excitation-emission spectra, and lifetime profiles of batch solutions of the samples were determined as well. It was found that, whereas absorption and fluorescence spectral characteristics tended to discriminate between humic acids and fulvic acids, the batch solution lifetime profiles discriminated instead between samples from different sources, regardless of fraction. On-the-fly lifetime detection provided a more detailed view of the fluorescence decay of the samples, including greater resolution of lifetimes for two of the fulvic acids and greater discrimination among samples based on lifetime profiles across the CZE peaks. PMID:14658616

  8. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging.

    PubMed Central

    Marriott, G; Clegg, R M; Arndt-Jovin, D J; Jovin, T M

    1991-01-01

    An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:1723311

  9. Spectrally resolved multidepth fluorescence imaging

    PubMed Central

    Luo, Yuan; Zervantonakis, Ioannis K.; Oh, Se Baek; Kamm, Roger D.; Barbastathis, George

    2011-01-01

    We present a multicolor fluorescence imaging modality to visualize in real-time tissue structures emitting multispectral fluorescent light from different focal depths. Each designated spectrum of fluorescent emission from a specific depth within a volumetric tissue is probed by a depth-spectrum selective holographic grating. The grating for each fluorescent color are multiplexed within a volume hologram, which enables simultaneously obtaining multicolored fluorescent information at different depths within a biological tissue sample. We demonstrate the imaging modality's ability to obtain laser-induced multicolored fluorescence images of a biological sample from different depths without scanning. We also experimentally demonstrate that the imaging modality can be simultaneously operated at both fluorescent and bright field modes to provide complementary information of volumetric tissue structures at different depths in real-time. PMID:21950929

  10. Spectrally resolved multidepth fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Zervantonakis, Ioannis K.; Oh, Se Baek; Kamm, Roger D.; Barbastathis, George

    2011-09-01

    We present a multicolor fluorescence imaging modality to visualize in real-time tissue structures emitting multispectral fluorescent light from different focal depths. Each designated spectrum of fluorescent emission from a specific depth within a volumetric tissue is probed by a depth-spectrum selective holographic grating. The grating for each fluorescent color are multiplexed within a volume hologram, which enables simultaneously obtaining multicolored fluorescent information at different depths within a biological tissue sample. We demonstrate the imaging modality's ability to obtain laser-induced multicolored fluorescence images of a biological sample from different depths without scanning. We also experimentally demonstrate that the imaging modality can be simultaneously operated at both fluorescent and bright field modes to provide complementary information of volumetric tissue structures at different depths in real-time.

  11. Fiber-optic fluorescence imaging

    PubMed Central

    Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J

    2010-01-01

    Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479

  12. Multi-wavelength fluorescence lifetime spectroscopy: a new approach to the study of endogenous fluorescence in living cells and tissues

    NASA Astrophysics Data System (ADS)

    Chorvat, D., Jr.; Chorvatova, A.

    2009-03-01

    The study of biological systems in their real environmental conditions is crucial to decipher the true image of structures and processes underlying their functionality. In this regard, development of non-invasive optical techniques that do not require labelling, such as the investigation of tissue endogenous fluorescence, is particularly important and, as reflected in the increasing number of contributions published recently on this subject, was recognized by many leading groups. Multi-spectral and lifetime detection of fluorescence provides an effective experimental tool to discriminate between multiple naturally-occurring fluorophores in living tissues. At the same time, however, data analysis allowing us to understand the spectral, temporal and spatial information gathered, describing individual molecules involved in the autofluorescence of intact biological systems, represents a tough scientific challenge that has not yet been fully resolved. In this review, we discuss the latest advances in technologies that record and assess spectrally-resolved fluorescence lifetime data as well as their biological and clinical applications. We show how these methods provide efficient sensing of molecules correlated with changes in the mitochondrial metabolic redox state in pathological conditions and/or of cell ultrastructures in diseased tissue, based on the presence of oxidation/reduction-sensitive fluorophores and/or cell-specific chromophores. Future directions are also outlined.

  13. Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration.

    PubMed

    Mayer, R H; Reynolds, J S; Sevick-Muraca, E M

    1999-08-01

    A method is presented to determine fluorescence decay lifetimes within tissuelike scattering media. Fluorescence lifetimes are determined for micromolar concentrations of the dyes 3,3'-Diethylthiatricarbocyanine Iodide and Indocyanine Green by frequency-domain investigations of light propagating in turbid media. Dual-wavelength photon-migration measurements that use intensity-modulated sources at excitation and emission wavelengths of the fluorophores provide optical parameters of the media as well as fluorescence properties of the dyes. The deduction of fluorescence lifetimes requires no calibration with reference fluorophores, and the results are shown to be independent of dye concentration. PMID:18323983

  14. Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals

    PubMed Central

    Cao, Ruofan; Pankayatselvan, Varayini; Houston, Jessica P.

    2013-01-01

    Flow cytometry is a well-established and powerful high-throughput fluorescence measurement tool that also allows for the sorting and enrichment of subpopulations of cells expressing unique fluorescence signatures. Owing to the reliance on intensity-only signals, flow cytometry sorters cannot easily discriminate between fluorophores that spectrally overlap. In this paper we demonstrate a new method of cell sorting using a fluorescence lifetime-dependent methodology. This approach, referred to herein as phase-filtered cell sorting (PFCS), permits sorting based on the average fluorescence lifetime of a fluorophore by separating fluorescence signals from species that emit differing average fluorescence lifetimes. Using lifetime-dependent hardware, cells and microspheres labeled with fluorophores were sorted with purities up to 90%. PFCS is a practical approach for separating populations of cells that are stained with spectrally overlapping fluorophores or that have interfering autofluorescence signals. PMID:23787669

  15. Expanding the potential of standard flow cytometry by extracting fluorescence lifetimes from cytometric pulse shifts

    PubMed Central

    Cao, Ruofan; Naivar, Mark A; Wilder, Mark; Houston, Jessica P

    2014-01-01

    Fluorescence lifetime measurements provide information about the fluorescence relaxation, or intensity decay, of organic fluorophores, fluorescent proteins, and other inorganic molecules that fluoresce. The fluorescence lifetime is emerging in flow cytometry and is helpful in a variety of multiparametric, single cell measurements because it is not impacted by nonlinearity that can occur with fluorescence intensity measurements. Yet time-resolved cytometry systems rely on major hardware modifications making the methodology difficult to reproduce. The motivation of this work is, by taking advantage of the dynamic nature of flow cytometry sample detection and applying digital signal processing methods, to measure fluorescence lifetimes using an unmodified flow cytometer. We collect a new lifetime-dependent parameter, referred to herein as the fluorescence-pulse-delay (FPD), and prove it is a valid representation of the average fluorescence lifetime. To verify we generated cytometric pulses in simulation, with light emitting diode (LED) pulsation, and with true fluorescence measurements of cells and microspheres. Each pulse is digitized and used in algorithms to extract an average fluorescence lifetime inherent in the signal. A range of fluorescence lifetimes is measurable with this approach including standard organic fluorophore lifetimes (∼1 to 22 ns) as well as small, simulated shifts (0.1 ns) under standard conditions (reported herein). This contribution demonstrates how digital data acquisition and signal processing can reveal time-dependent information foreshadowing the exploitation of full waveform analysis for quantification of similar photo-physical events within single cells. © 2014 The Authors. Published by Wiley Periodicals, Inc. PMID:25274073

  16. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore.

    PubMed

    Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal

    2016-05-01

    In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase. PMID:26993308

  17. Assessing Photosynthesis by Fluorescence Imaging

    ERIC Educational Resources Information Center

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  18. Standard reference for instrument response function in fluorescence lifetime measurements in visible and near infrared

    NASA Astrophysics Data System (ADS)

    Chib, Rahul; Shah, Sunil; Gryczynski, Zygmunt; Fudala, Rafal; Borejdo, Julian; Zelent, Bogumil; Corradini, Maria G.; Ludescher, Richard D.; Gryczynski, Ignacy

    2016-02-01

    Allura red (AR) fluorophore, a common dye in the food industry, displays a broad emission spectrum in water (visible-to-near infrared region of the electromagnetic spectrum) and has a remarkably short fluorescence lifetime of about 10 ps. This short lifetime does not depend on the emission (observation) wavelength. We examined time responses of AR fluorescence across emission wavelengths from 550 nm to 750 nm and found that it is an ideal candidate for impulse response functions in fluorescence lifetime measurements.

  19. Alterations of single molecule fluorescence lifetimes in near-field optical microscopy

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Keller, R.A.; Martin, J.C. )

    1994-07-15

    Fluorescence lifetimes of single Rhodamine 6G molecules on silica surfaces were measured with pulsed laser excitation, time-correlated single photon counting, and near-field scanning optical microscopy (NSOM). The fluorescence lifetime varies with the position of a molecule relative to a near-field probe. Qualitative features of lifetime decreases are consistent with molecular excited state quenching effects near metal surfaces. The technique of NSOM provides a means of altering the environment of a single fluorescent molecule and its decay kinetics in a repeatable fashion.

  20. A Time Domain Fluorescence Tomography System for Small Animal Imaging

    PubMed Central

    Raymond, Scott B.; Dunn, Andrew K.; Bacskai, Brian J.; Boas, David A.

    2010-01-01

    We describe the application of a time domain diffuse fluorescence tomography system for whole body small animal imaging. The key features of the system are the use of point excitation in free space using ultrashort laser pulses and noncontact detection using a gated, intensified charge-coupled device (CCD) camera. Mouse shaped epoxy phantoms, with embedded fluorescent inclusions, were used to verify the performance of a recently developed asymptotic lifetime-based tomography algorithm. The asymptotic algorithm is based on a multiexponential analysis of the decay portion of the data. The multiexponential model is shown to enable the use of a global analysis approach for a robust recovery of the lifetime components present within the imaging medium. The surface boundaries of the imaging volume were acquired using a photogrammetric camera integrated with the imaging system, and implemented in a Monte-Carlo model of photon propagation in tissue. The tomography results show that the asymptotic approach is able to separate axially located fluorescent inclusions centered at depths of 4 and 10 mm from the surface of the mouse phantom. The fluorescent inclusions had distinct lifetimes of 0.5 and 0.95 ns. The inclusions were nearly overlapping along the measurement axis and shown to be not resolvable using continuous wave (CW) methods. These results suggest the practical feasibility and advantages of a time domain approach for whole body small animal fluorescence molecular imaging, particularly with the use of lifetime as a contrast mechanism. PMID:18672432

  1. FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye

    PubMed Central

    Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens

    2015-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX’s applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation. PMID:26192624

  2. Fluorescent eye test (image)

    MedlinePlus

    The fluorescent eye test is useful in determining if there is a scratch or other problem with the surface ... has thoroughly covered the eye a cobalt blue light is then directed on the eye. The light ...

  3. Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements.

    PubMed

    Boreham, Alexander; Pikkemaat, Jens; Volz, Pierre; Brodwolf, Robert; Kuehne, Christian; Licha, Kai; Haag, Rainer; Dernedde, Jens; Alexiev, Ulrike

    2015-01-01

    Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes. In the past, fluorescence lifetime measurements of fluorescently tagged nanoparticles at a molecular and cellular/tissue level have been proven to reveal valuable information on the local nanoparticle environment via characteristic fluorescent lifetime signatures of the nanoparticle bound dye. Here, we established fluorescence lifetime measurements as a tool to determine the binding affinity to fluorescently tagged dPGS (dPGS-ICC; ICC: indocarbocyanine). The binding to a cell adhesion molecule (L-selectin) and a human complement protein (C1q) to dPGS-ICC was evaluated by the concentration dependent change in the unique fluorescence lifetime signature of dPGS-ICC. The apparent binding affinity was found to be in the nanomolar range for both proteins (L-selectin: 87 ± 4 nM and C1q: 42 ± 12 nM). Furthermore, the effect of human serum on the unique fluorescence lifetime signature of dPGS-ICC was measured and found to be different from the interactions with the two proteins and lipid membranes. A comparison between the unique lifetime signatures of dPGS-ICC in different biological environments shows that fluorescence lifetime measurements of unique dPGS-ICC fluorescence lifetime signatures are a versatile tool to probe the microenvironment of dPGS in cells and tissue. PMID:26712722

  4. Frequency domain fluorescence lifetime microwell-plate platform for respirometry measurements

    NASA Astrophysics Data System (ADS)

    Chatni, M. R.; Yale, G.; Van Ryckeghem, A.; Porterfield, D. M.

    2010-04-01

    Traditionally micro-well plate based platforms used in biology utilize fluorescence intensity based methods to measure processes of biological relevance. However, fluorescence intensity measurements suffer from calibration drift due to a variety of factors. Photobleaching and self-quenching of the fluorescent dyes cause the intensity signal to drop over the lifetime of sensor immobilized inside the well. Variation in turbidity of the sample during the course of the measurement affects the measured fluorescence intensity. In comparison, fluorescence lifetime measurements are not significantly affected by these factors because fluorescence lifetime is a physico-chemical property of the fluorescent dye. Reliable and inexpensive frequency domain fluorescence lifetime instrumentation platforms are possible because the greater tolerance for optical alignment, and because they can be performed using inexpensive light sources such as LEDs. In this paper we report the development of a frequency domain fluorescence lifetime well-plate platform utilizing an oxygen sensitive transition-metal ligand complex fluorophore with a lifetime in the microsecond range. The fluorescence lifetime dye is incorporated in a polymer matrix and immobilized on the base of micro-well of a 60 well micro-well plate. Respiration measurements are performed in both aqueous and non-aqueous environment. Respirometry measurements were recorded from single Daphnia magna egg in hard water. Daphnia is an aquatic organism, important in environmental toxicology as a standard bioassay and early warning indicator for water quality monitoring. Also respirometry measurements were recorded from Tribolium castaneum eggs, which are common pests in the processed flour industry. These eggs were subjected to mitochondrial electron transport chain inhibitor such as potassium cyanide (KCN) and its effects on egg respiration were measured in real-time.

  5. Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene

    NASA Astrophysics Data System (ADS)

    Faust, Stephan; Tea, Gabrielle; Dreier, Thomas; Schulz, Christof

    2013-01-01

    Time-resolved fluorescence spectra of gas-phase toluene and naphthalene were investigated upon picosecond laser excitation at 266 nm as a function of temperature (toluene 296-1,025 K, naphthalene 374-1,123 K), pressure (1-10 bar), and bath gas composition (varying concentrations of N2, O2, and CO2) with a temporal resolution of 50 ps. In the investigated temperature range, the fluorescence spectra of both toluene and naphthalene show a significant red-shift, whereas the fluorescence lifetime decreases with increasing temperature, more pronounced for toluene than for naphthalene. Increasing the total pressure of either N2 or CO2 from atmospheric to 10 bar leads to an increase by about 20 % (naphthalene at 373 K) and a decrease by 60 % (toluene at 575 K) in fluorescence lifetimes, respectively. As expected, at atmospheric pressure collisions with O2 shorten the fluorescence lifetime of both toluene and naphthalene significantly, e.g., by a factor of 30 and 90 when changing O2 partial pressure at 373 K from 0 to 0.21 bar, respectively. The fluorescence model of Koban et al. (Appl Phys B 80: 777, 2005) for the dependence of the toluene quantum yield on temperature and O2 partial pressure at atmospheric pressure describes toluene fluorescence lifetimes well within its range of validity. The model is modified to satisfactorily predict effective toluene fluorescence lifetimes in N2 at pressures up to 10 bar. However, it still fails to predict the dependence at simultaneously elevated temperatures and pressures in air as bath gas. Similarly, an empirical model is presented for predicting (relative) fluorescence quantum yields and lifetimes of naphthalene. Although the fitting models have their shortcomings this publication presents a data set of great importance for practical LIF applications, e.g., in-cylinder mixture formation diagnostics in internal combustion engines.

  6. Tunable fluorescence lifetime of Eu-PMMA films with plasmonic nanostructures for multiplexing.

    PubMed

    Zhang, Jun; Song, Feng; Lin, Shangxin; Liu, Shujing; Liu, Yanling

    2016-04-18

    A method to tune fluorescence lifetime of Eu-PMMA films is proposed, which consists of self-assembled gold nanorods on glass substrate covered by Eu-PMMA shell. The fluorescence lifetime is tunable in a wide range, and depends on aspect ratio and mutual distance of gold nanorods. In a single red color emission channel, more than six distinct fluorescence lifetime populations ranging from 356 to 513 μs are obtained. Through theoretical calculation, we attribute tunable fluorescence lifetime to the change of radiative and nonradiative decay rate and density of photon states. In addition, we use these as-prepared Eu-PMMA films for security data storage to demonstrate optical multiplexing applications. The optical multiplexing experiments show an interesting pseudo-information "8" and conceal the real messages "2" and "6". PMID:27137261

  7. Combined fiber probe for fluorescence lifetime and Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Wachsmann-Hogiu, Sebastian; Marple, Eric; Urmey, Kirk; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-03-01

    Raman spectroscopy has been proven to have tremendous potential as biomedical analytical tool for spectroscopic disease diagnostics. The use of fiberoptic coupled Raman spectroscopy systems can enable in-vivo characterization of suspicious lesions. However, Raman spectroscopy has the drawback of rather long acquisition times of several hundreds of milliseconds which makes scanning of larger regions quite challenging. By combining Raman spectroscopy with a fast imaging technique this problem can be alleviate in part. Fluorescence lifetime imaging (FLIm) offers a great potential for such a combination. FLIm can allow for fast tissue area pre-segmentation and location of the points for Raman spectra acquisition. Here, we introduce an optical fiber probe combining FLIm and Raman spectroscopy with an outer diameter of 2 mm. Fluorescence is generated via excitation with a fiber laser at 355 nm. The fluorescence emission is spectrally resolved using a custom-made wavelength-selection module (WSM). The Raman excitation power at 785 nm was set to 50 mW for the in-vivo measurements to prevent sample drying. The lateral probe resolution was determined to be <250 μm for both modalities. This value was taken as step size for several raster scans of different tissue types which were conducted to show the overlap of both modalities under realistic conditions. Finally the probe was used for in vivo raster scans of a rat's brain and subsequently to acquire FLIm guided Raman spectra of several tissues in and around the craniotomy.

  8. Calibration approach for fluorescence lifetime determination for applications using time-gated detection and finite pulse width excitation.

    PubMed

    Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul

    2008-10-15

    Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation. PMID:18798652

  9. Radiative lifetimes in B I using ultraviolet and vacuum-ultraviolet laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    O'Brian, T. R.; Lawler, J. E.

    1992-01-01

    Radiative lifetimes of the eight lowest even parity levels in the doublet system of B I are measured using time-resolved laser-induced fluorescence in the UV and VUV on an atomic beam of boron. The accurate lifetimes provide a base for improved determination of absolute transition probabilities in B I. The techniques described are broadly applicable to measurement of lifetimes of levels with transitions in the visible, UV, and VUV in almost any element.

  10. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    NASA Astrophysics Data System (ADS)

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-11-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5-10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications.

  11. Fluorescence lifetime plate reader: Resolution and precision meet high-throughput

    PubMed Central

    Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.

    2014-01-01

    We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5–10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications. PMID:25430092

  12. Determination of biological activity from fluorescence-lifetime measurements in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Rudek, F.; Baselt, T.; Lempe, B.; Taudt, C.; Hartmann, P.

    2015-03-01

    The importance of fluorescence lifetime measurement as an optical analysis tool is growing. Many applications already exist in order to determine the fluorescence lifetime, but the majority of these require the addition of fluorescence-active substances to enable measurements. Every usage of such foreign materials has an associated risk. This paper investigates the use of auto-fluorescing substances in Saccharomyces cerevisiae (Baker's yeast) as a risk free alternative to fluorescence-active substance enabled measurements. The experimental setup uses a nitrogen laser with a pulse length of 350 ps and a wavelength of 337 nm. The excited sample emits light due to fluorescence of NADH/NADPH and collagen. A fast photodiode collects the light at the output of an appropriate high-pass edge-filter at 400 nm. Fluorescence lifetimes can be determined from the decay of the measurement signals, which in turn characterizes the individual materials and their surrounding environment. Information about the quantity of the fluorescence active substances can also be measured based on the received signal intensity. The correlation between the fluorescence lifetime and the metabolic state of Saccharomyces cerevisiae was investigated and is presented here.

  13. Frequency-domain flow cytometry: fluorescence-lifetime-based sensing technology for analyzing cells and chromosomes labeled with fluorescent probes

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Crissman, Harry A.; Lehnert, Bruce E.; Lehnert, Nancy M.; Deka, Chiranjit

    1997-05-01

    A flow cytometer has been developed that combines flow cytometry (FCM) and fluorescence lifetime spectroscopy measurement principles to provide unique capabilities for making frequency-domain, excited-state lifetime measurements on cells/chromosomes labeled with fluorescent probes, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine-wave) laser excitation beam. Fluorescence signals are processed by (1) low-pass filtering to obtain conventional FCM dc-excited signals and (2) phase-sensitive detection electronics to resolve heterogeneous fluorescence based on differences in lifetimes expressed as phase-shifts and to quantify fluorescence lifetimes in real time. Processed signals are displayed as frequency distribution histograms and bivariate contour diagrams. Recent examples of biological applications include: (1) lifetime histograms recorded on autofluorescent human lung fibroblasts, murine thymus cells labeled with antibodies conjugated to fluorophores for studying fluorescence quenching as a function of antibody dilution and F/P ratio, and on cultured cells, nuclei, and chromosomes stained with DNA-binding fluorochromes and (2) phase-resolved, fluorescence signal- intensity histograms recorded on autofluorescent HLFs labeled with immunofluorescence markers and on murine thymus cells labeled with Red 613-antiThy 1.2 and propidium iodide (PI positive `dead' cells) to demonstrate the resolution of signals from highly overlapping emission spectra. This technology will increase the number of fluorescent markers usable in multilabeling studies and lifetimes can be used as spectroscopic probes to study the interaction of markers with their targets, each other, and the surrounding microenvironment.

  14. Fluorescence Intensity- and Lifetime-Based Glucose Sensing Using Glucose/Galactose-Binding Protein

    PubMed Central

    Pickup, John C.; Khan, Faaizah; Zhi, Zheng-Liang; Coulter, Jonathan; Birch, David J. S.

    2013-01-01

    We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.Fluorescence technique is one of the major solutions for achieving the continuous and noninvasive glucose sensor for diabetes. In this article, a highly sensitive nanostructured sensor is developed to detect extremely small amounts of aqueous glucose by applying fluorescence energy transfer (FRET). A one-pot method is applied to produce the dextran-fluorescein isothiocyanate (FITC)-conjugating mesoporous silica nanoparticles (MSNs), which afterward interact with the tetramethylrhodamine isothiocyanate (TRITC)-labeled concanavalin A (Con A) to form the FRET nanoparticles (FITC-dextran-Con A-TRITC@MSNs). The nanostructured glucose sensor is then formed via the self-assembly of the FRET nanoparticles on a transparent, flexible, and biocompatible substrate, e.g., poly(dimethylsiloxane). Our results indicate the diameter of the MSNs is 60 ± 5 nm. The difference in the images before and after adding 20 μl of glucose (0.10 mmol/liter) on the FRET sensor can be detected in less than 2 min by the laser confocal laser scanning microscope. The correlation between the ratio of fluorescence intensity, I(donor)/I(acceptor), of the FRET sensor and the concentration of aqueous glucose in the range of 0.04–4 mmol/liter has been investigated; a linear relationship is found. Furthermore, the durability of the nanostructured FRET sensor is evaluated for 5 days. In addition, the recorded images can be converted to digital images by

  15. Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture

    NASA Technical Reports Server (NTRS)

    Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)

    1999-01-01

    The present invention is a system for chemometric analysis for the extraction of the individual component fluorescence spectra and fluorescence lifetimes from a target mixture. The present invention combines a processor with an apparatus for generating an excitation signal to transmit at a target mixture and an apparatus for detecting the emitted signal from the target mixture. The present invention extracts the individual fluorescence spectrum and fluorescence lifetime measurements from the frequency and wavelength data acquired from the emitted signal. The present invention uses an iterative solution that first requires the initialization of several decision variables and the initial approximation determinations of intermediate matrices. The iterative solution compares the decision variables for convergence to see if further approximation determinations are necessary. If the solution converges, the present invention then determines the reduced best fit error for the analysis of the individual fluorescence lifetime and the fluorescence spectrum before extracting the individual fluorescence lifetime and fluorescence spectrum from the emitted signal of the target mixture.

  16. Chlorophyll a fluorescence lifetime reveals reversible UV-induced photosynthetic activity in the green algae Tetraselmis.

    PubMed

    Kristoffersen, Arne S; Hamre, Børge; Frette, Øyvind; Erga, Svein R

    2016-04-01

    The fluorescence lifetime is a very useful parameter for investigating biological materials on the molecular level as it is mostly independent of the fluorophore concentration. The green alga Tetraselmis blooms in summer, and therefore its response to UV irradiation is of particular interest. In vivo fluorescence lifetimes of chlorophyll a were measured under both normal and UV-stressed conditions of Tetraselmis. Fluorescence was induced by two-photon excitation using a femtosecond laser and laser scanning microscope. The lifetimes were measured in the time domain by time-correlated single-photon counting. Under normal conditions, the fluorescence lifetime was 262 ps, while after 2 h of exposure to UV radiation the lifetime increased to 389 ps, indicating decreased photochemical quenching, likely caused by a damaged and down-regulated photosynthetic apparatus. This was supported by a similar increase in the lifetime to 425 ps when inhibiting photosynthesis chemically using DCMU. Furthermore, the UV-stressed sample was dark-adapted overnight, resulting in a return of the lifetime to 280 ps, revealing that the damage caused by UV radiation is repairable on a relatively short time scale. This reversal of photosynthetic activity was also confirmed by [Formula: see text] measurements. PMID:26538330

  17. Assessing the photoaging process at sun exposed and non-exposed skin using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Kurachi, Cristina

    2016-03-01

    Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.

  18. The Taser Induced Fluorescence Spectra And Decay Lifetime Of NI2+ Doped Chrysoberyl

    NASA Astrophysics Data System (ADS)

    Hanting, Ji; Genwang, Wen; Jun, Oian; Zhende, Chen; Wenbin, Gao; Songhao, Lui

    1985-12-01

    This paper reports the experimental results on the fluorescence spectra and decay lifetime of 3T2---3A2 vibronic transition of NI2+ : BeAl204 with LIFM. The center wavelength of fluorescence spectra is 1.33u , the bandwidth (FWHM) is 0.14u (1.26 - 1.40u), and the center red-shift of fluorescence spectra in relative to absorption spectra is 0.225u at room temperature (300k). The radiation lifetime is 3T2 band is 198 us.

  19. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    SciTech Connect

    Wang, Hongtao; Salthouse, Christopher D.; Qi, Ying; Mountziaris, T. J.

    2014-05-15

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.

  20. Low-pressure effective fluorescence lifetimes and photo-physical rate constants of one- and two-ring aromatics

    NASA Astrophysics Data System (ADS)

    Benzler, Thorsten; Faust, Stephan; Dreier, Thomas; Schulz, Christof

    2015-12-01

    One- and two-ring aromatics such as toluene and naphthalene are frequently used molecular tracer species in laser-induced fluorescence (LIF) imaging diagnostics. Quantifying LIF signal intensities requires knowledge of the photo-physical processes that determine the fluorescence quantum yield. Collision-induced and intramolecular energy transfer processes in the excited electronic state closely interact under practical conditions. They can be separated through experiments at variable low pressures. Effective fluorescence lifetimes of gaseous toluene, 1,2,4-trimethylbenzene, anisole, naphthalene, and 1-methylnaphthalene diluted in CO2 were measured after picosecond laser excitation at 266 nm and time-resolved detection of fluorescence intensities. Measurements in an optically accessible externally heated cell between 296 and 475 K and 0.010-1 bar showed that effective fluorescence lifetimes generally decrease with temperature, while the influence of the bath-gas pressure depends on the respective target species and temperature. The results provide non-radiative and fluorescence rate constants and experimentally validate the effect of photo-induced cooling.

  1. Assembly and characterization of a fluorescence lifetime spectroscopy system for skin lesions diagnostic

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Texiera Rosa, Ramon Gabriel; Pratavieira, Sebastião.; D´Almeida, Camila de Paula; Kurachi, Cristina

    2015-06-01

    The fluorescence spectra and fluorescence lifetime analysis in biological tissues has been presented as a technique of a great potential for tissue characterization for diagnostic purposes. The objective of this study is to assemble and characterize a fluorescence lifetime spectroscopy system for diagnostic of clinically similar skin lesions in vivo. The fluorescence lifetime measurements were performed using the Time Correlated Single Photon Counting (Becker & Hickl, Berlin, Germany) technique. Two lasers, one emitting at 378 nm and another at 445 nm, are used for excitation with 20, 50 and 80 MHz repetition rate. A bifurcated optical fiber probe conducts the excitation light to the sample, the collected light is transmitted through bandpass filters and delivered to a hybrid photomultiplier tube detector. The fluorescence spectra were obtained by using a portable spectrometer (Ocean Optics USB-2000-FLG) with the same excitation sources. An instrument response function of about 300 ps was obtained and the spectrum and fluorescence lifetime of a standard fluorescent molecule (Rhodamine 6G) was measured for the calibration of the system ((4.1 +/- 0.3) ns). The assembled system was considered robust, well calibrated and will be used for clinical measurements of skin lesions.

  2. Lifetime fluorescence spectroscopy for in situ investigation of osteogenic differentiation

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Elbarbary, Amir; Zuk, Patricia; De Ugarte, Daniel A.; Benhaim, Prosper; Kurt, Hamza; Hedrick, Marc H.; Ashjian, Peter

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) represents a potential tool for the in-situ characterization of bioengineered tissues. In this study, we evaluate the application of TR-LIFS to non-intrusive monitoring of matrix composition during osteogenetic differentiation. Human adipose-derived stem cells, harvested from 3 patients, were induced in osteogenic media for 3, 5, and 7 weeks. Samples were subsequently collected and probed for time-resolved fluorescence emission with a pulsed nitrogen laser. Fluorescence parameters, derived from both spectral- and time-domain, were used for sample characterization. The samples were further analyzed using Western blot analysis and computer-based densitometry. A significant change in the fluorescence parameters was detected for samples beyond 3 weeks of osteogenic differentiation. The spectroscopic observations: 1) show increase of collagen I when contrasted against the time-resolved fluorescence spectra of commercially available collagens; and 2) are in agreement with Western blot analysis that demonstrated significant increase in collagen I content between 3- vs. 5-weeks and 3- vs. 7-weeks and no changes for collagens III, IV, and V. Our results suggest that TR-LIFS can be used as a non-invasive means for the detection of specific collagens in maturing connective tissues.

  3. On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.

    1996-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  4. On the uncertainty in single molecule fluorescent lifetime and energy emission measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.

    1995-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  5. Multi Spectral Fluorescence Imager (MSFI)

    NASA Technical Reports Server (NTRS)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  6. Development of Next Generation Lifetime PSP Imaging Systems

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Jordan, Jeffrey D.; Leighty, Bradley D.; Ingram, JoAnne L.; Oglesby, Donald M.

    2002-01-01

    This paper describes a lifetime PSP system that has recently been developed using pulsed light-emitting diode (LED) lamps and a new interline transfer CCD camera technology. This system alleviates noise sources associated with lifetime PSP systems that use either flash-lamp or laser excitation sources and intensified CCD cameras for detection. Calibration curves have been acquired for a variety of PSP formulations using this system, and a validation test was recently completed in the Subsonic Aerodynamic Research Laboratory (SARL) at Wright-Patterson Air Force Base (WPAFB). In this test, global surface pressure distributions were recovered using both a standard intensity-based method and the new lifetime system. Results from the lifetime system agree both qualitatively and quantitatively with those measured using the intensity-based method. Finally, an advanced lifetime imaging technique capable of measuring temperature and pressure simultaneously is introduced and initial results are presented.

  7. Fluorescence lifetime fluctuations of single molecules probe local density fluctuations in disordered media: a bulk approach.

    PubMed

    Vallée, R A L; Tomczak, N; Vancso, G J; Kuipers, L; van Hulst, N F

    2005-03-15

    We investigated the nanometer scale mobility of polymers in the glassy state by monitoring the dynamics of embedded single fluorophores. Recently we reported on fluorescence lifetime fluctuations which reflect the segmental rearrangement dynamics of the polymer in the surroundings of the single molecule probe. Here we focus on the nature of these fluorescence lifetime fluctuations. First the potential role of quenching and molecular conformational changes is discussed. Next we concentrate on the influence of the radiative density of states on the spontaneous emission of individual dye molecules embedded in a polymer. To this end we present a theory connecting the effective-medium theory to a cell-hole model, originating from the Simha-Somcynsky free-volume theory. The relation between the derived distributions of free volume and fluorescence lifetime allows one to determine the number of segments involved in the local rearrangement directly from experimental data. Results for two different polymers as a function of temperature are presented. PMID:15836240

  8. Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer

    PubMed Central

    Omer, Travis; Zhao, Lingling; Intes, Xavier; Hahn, Juergen

    2014-01-01

    Abstract. Fluorescence lifetime imaging (FLIM) aims at quantifying the exponential decay rate of fluorophores to yield lifetime maps over the imaged sample. When combined with Förster resonance energy transfer (FRET), the technique can be used to indirectly sense interactions at the nanoscale such as protein–protein interactions, protein–DNA interactions, and protein conformational changes. In the case of FLIM-FRET, the fluorescence intensity decays are fitted to a biexponential model in order to estimate the lifetime and fractional amplitude coefficients of each component of the population of the donor fluorophore (quenched and nonquenched). Numerous time data points, also called temporal or time gates, are typically employed for accurately estimating the model parameters, leading to lengthy acquisition times and significant computational demands. This work investigates the effect of the number and location of time gates on model parameter estimation accuracy. A detailed model of a FLIM-FRET imaging system is used for the investigation, and the simulation outcomes are validated with in vitro and in vivo experimental data. In all cases investigated, it is found that 10 equally spaced time gates allow robust estimation of model-based parameters with accuracy similar to that of full temporal datasets (90 gates). PMID:25166472

  9. Quantitative carrier lifetime images optically measured on rough silicon wafers

    NASA Astrophysics Data System (ADS)

    Schubert, Martin C.; Pingel, Sebastian; The, Manuel; Warta, Wilhelm

    2007-06-01

    Results of optical carrier lifetime measurements like carrier density imaging significantly depend on surface conditions of the sample under test. Rough or textured surfaces have a severe impact on the measurement quality since they cause blurring and overestimation of the lifetime measurement. We propose a correction method for both, the adjustment of the absolute value and the restoration of the spatial distribution of the recombination lifetime. The absolute value is corrected by taking the emissivity of the sample into account. The unblurred signal distribution is obtained by mathematical deconvolution via Wiener filtering. For this purpose an appropriate point spread function is experimentally determined.

  10. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  11. Fluorescence lifetime measurement via a radionuclide-scintillation light source and analog cross correlation.

    PubMed

    Burden, D L; Hobbs, S E; Hieftje, G M

    1997-05-15

    beta-Emitting 90Sr is used with a plastic scintillator to produce excitation-light pulses for fluorescence lifetime analysis. This light source is less expensive, more compact, and much more reliable than traditionally employed excitation sources such as lasers or pulsed flash lamps. The pulse train from this light source varies randomly in amplitude and time. Cross-correlation signal analysis is ideal for such a source because, unlike other time domain techniques, cross correlation takes complete advantage of its random nature. Here we report on the construction of an instrument and the methods employed to make fluorescence lifetime measurements via the new source and an analog correlation processor. Although the light intensity of the scintillator-based excitation source is comparatively low, an adequate signal level can be generated. The fluorescence lifetimes of three fluorophores are measured with a 1-mCi radionuclide to demonstrate a lifetime range from less than 1.5 to 28 ns. Long-lifetime measurements require an extra calibration step in order to compensate for delay cable energy loss. The light collection efficiency of the current instrument was found to be undesirably low; improvements in the instrument optics are suggested that will increase the collection efficiency and enhance the detection capability. PMID:9164162

  12. The Use of Chlorophyll Fluorescence Lifetime to Assess Phytoplankton Physiology within a River-Dominated Environment

    NASA Technical Reports Server (NTRS)

    Hall, Callie M.; Miller, Richard L.; Redalje, Donald G.; Fernandez, Salvador M.

    2002-01-01

    Chlorophyll a fluorescence lifetime was measured for phytoplankton populations inhabiting the three physical zones surrounding the Mississippi River's terminus in the Gulf of Mexico. Observations of river discharge volume, nitrate + nitrite, silicate, phosphate, PAR (Photosynthetically Active Radiation) diffuse attenuation within the water column, salinity, temperature, SPM, and chl a concentration were used to characterize the distribution of chl fluorescence lifetime within a given region within restricted periods of time. 33 stations extending from the Mississippi River plume to the shelf break of the Louisiana coast were surveyed for analysis of chlorophyll fluorescence lifetime during two cruises conducted March 31 - April 6, 2000, and October 24 - November 1, 2000. At each station, two to three depths were chosen for fluorescence lifetime measurement to represent the vertical characteristics of the water column. Where possible, samples were taken from just below the surface and from just above and below the pycnocline. All samples collected were within the 1% light level of the water column (the euphotic zone). Upon collection, samples were transferred to amber Nalgene bottles and left in the dark for at least 15 minutes to reduce the effects of non-photochemical quenching and to insure that photosynthetic reaction centers were open. Before measurements within the phase fluorometer were begun, the instrument was allowed to warm up for no less than one hour.

  13. Real-time fluorescence lifetime actuation for cell sorting using a CMOS SPAD silicon photomultiplier.

    PubMed

    Rocca, Francescopaolo Mattioli Della; Nedbal, Jakub; Tyndall, David; Krstajić, Nikola; Li, David Day-Uei; Ameer-Beg, Simon M; Henderson, Robert K

    2016-02-15

    Time-correlated single photon counting (TCSPC) is a fundamental fluorescence lifetime measurement technique offering high signal to noise ratio (SNR). However, its requirement for complex software algorithms for histogram processing restricts throughput in flow cytometers and prevents on-the-fly sorting of cells. We present a single-point digital silicon photomultiplier (SiPM) detector accomplishing real-time fluorescence lifetime-activated actuation targeting cell sorting applications in flow cytometry. The sensor also achieves burst-integrated fluorescence lifetime (BIFL) detection by TCSPC. The SiPM is a single-chip complementary metal-oxide-semiconductor (CMOS) sensor employing a 32×32 single-photon avalanche diode (SPAD) array and eight pairs of time-interleaved time to digital converters (TI-TDCs) with a 50 ps minimum timing resolution. The sensor's pile-up resistant embedded center of mass method (CMM) processor accomplishes low-latency measurement and thresholding of fluorescence lifetime. A digital control signal is generated with a 16.6 μs latency for cell sorter actuation allowing a maximum cell throughput of 60,000 cells per second and an error rate of 0.6%. PMID:26872160

  14. Characterizing non-photochemical quenching in leaves through fluorescence lifetime snapshots.

    PubMed

    Sylak-Glassman, Emily J; Zaks, Julia; Amarnath, Kapil; Leuenberger, Michelle; Fleming, Graham R

    2016-01-01

    We describe a technique to measure the fluorescence decay profiles of intact leaves during adaptation to high light and subsequent relaxation to dark conditions. We show how to ensure that photosystem II reaction centers are closed and compare data for wild type Arabidopsis thaliana with conventional pulse-amplitude modulated (PAM) fluorescence measurements. Unlike PAM measurements, the lifetime measurements are not sensitive to photobleaching or chloroplast shielding, and the form of the fluorescence decay provides additional information to test quantitative models of excitation dynamics in intact leaves. PMID:25762378

  15. Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage.

    PubMed

    Brinks, Daan; Klein, Aaron J; Cohen, Adam E

    2015-09-01

    Genetically encoded voltage indicators (GEVIs) can report cellular electrophysiology with high resolution in space and time. Two-photon (2P) fluorescence has been explored as a means to image voltage in tissue. Here, we used the 2P electronic excited-state lifetime to probe absolute membrane voltage in a manner that is insensitive to the protein expression level, illumination intensity, or photon detection efficiency. First, we tested several GEVIs for 2P brightness, response speed, and voltage sensitivity. ASAP1 and a previously described citrine-Arch electrochromic Förster resonance energy transfer sensor (dubbed CAESR) showed the best characteristics. We then characterized the voltage-dependent lifetime of ASAP1, CAESR, and ArcLight under voltage-clamp conditions. ASAP1 and CAESR showed voltage-dependent lifetimes, whereas ArcLight did not. These results establish 2P fluorescence lifetime imaging as a viable means of measuring absolute membrane voltage. We discuss the prospects and improvements necessary for applications in tissue. PMID:26331249

  16. Azadioxatriangulenium (ADOTA+): A long fluorescence lifetime fluorophore for large biomolecule binding assay

    PubMed Central

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy have great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is in the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatics dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecules assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immuniglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time by more than 75 %, and a change in the steady-state anisotropy increase of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay for detecting binding events involving biomolecules of far larger size than what is possible with the other red emitting organic dyes. PMID:24058730

  17. Fluorescence imaging spectrometer optical design

    NASA Astrophysics Data System (ADS)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  18. Two-photon autofluorescence lifetime and SHG imaging of healthy and diseased human corneas

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Seitz, Berthold; Morgado, António Miguel; König, Karsten

    2015-03-01

    Corneal function can be drastically affected by several degenerations and dystrophies, leading to blindness. Early diagnosis of corneal disease is of major importance and it may be accomplished by monitoring changes of the metabolic state and structural organization, the first detectable pathological signs, by two-photon excitation autofluorescence lifetime and second-harmonic generation imaging. In this study, we propose to use these imaging techniques to differentiate between healthy and pathological corneas. Images were acquired using a laser-scanning microscope with a broadband sub-15 femtosecond near-infrared pulsed laser and a 16-channel photomultiplier tube detector for signal collection. This setup allows the simultaneous excitation of metabolic co-factors and to identify them based on their fluorescence spectra. We were able to discriminate between healthy and pathological corneas using two-photon excitation autofluorescence lifetime and second-harmonic generation imaging from corneal epithelium and stroma. Furthermore, differences between different pathologies were observed. Alterations in the metabolic state of corneal epithelial cells were observed using the autofluorescence lifetime of the metabolic co-factors. In the corneal stroma, we observed not only alterations in the collagen fibril structural organization but also alterations in the autofluorescence lifetime. Further tests are required as the number of pathological samples must be increased. In the future, we intend to establish a correlation between the metabolic and structural changes and the disease stage. This can be a step forward in achieving early diagnosis.

  19. Lifetimes of bacteriochlorophyll fluorescence in Rhodopseudomonas viridis and Heliobacterium chlorum at low temperatures

    NASA Technical Reports Server (NTRS)

    Kleinherenbrink, F. A.; Cheng, P.; Amesz, J.; Blankenship, R. E.

    1993-01-01

    Fluorescence lifetimes of isolated membranes of Rhodopseudomonas viridis were measured in the temperature range of 77 K to 25 K. At room temperature, the main component of the fluorescence decay of bacteriochlorophyll (BChl) b had a time constant of 50 ps. In contrast to other purple bacteria, the emission at low temperature was spectrally homogeneous and showed essentially single lifetimes of 140 ps at 77 K and 180 ps at 25 K, with the primary electron donor in the oxidized state. Taking into account the relative fluorescence yields with open and closed reaction centers, we arrive at numbers of 125 ps and 215 ps, respectively, for open reaction centers. These numbers are significantly smaller than expected on the basis of measurements of the efficiency of charge separation, perhaps suggesting that the excitation decay in the absence of reaction centers is considerably faster at low temperature than at room temperature. At least four different spectral components with different lifetimes were observed at 25 K in the emission of Heliobacterium chlorum, a short-wavelength component of about 30 ps and three longer-wavelength components of about 100 ps, 300 ps, and 900 ps. This indicates a strong heterogeneity in the emitting pigment, BChl g-808. The component with the shortest lifetime does not appear to be affected by the redox state of the reaction center and might reflect energy transfer to BChl g species which are connected to the reaction center.

  20. Lifetime of fluorescent dye molecules in dense aqueous suspensions of polystyrene nanoparticles.

    PubMed

    Scalia, Giuseppe; Scheffold, Frank

    2015-11-16

    We study the lifetime of two common fluorescent dye molecules from the Alexa Fluor NHS Ester family dissolved in water in an opaque aqueous dispersion of dielectric polystyrene nanoparticles. We investigate the role of the dispersion composition by varying the particle concentration and adding SDS (sodium dodecyl sulfate) surfactant molecules. The observed strong changes in lifetime of Alexa 430 can be attributed to the relative contribution of radiative and non-radiative decay channels while the lifetime of the Alexa 488 dye depends only weakly on the sample composition. For Alexa 430, a dye with a rather low quantum yield in aqueous solution, the addition of polystyrene nanoparticles leads to a significant enhancement in quantum yield and an associated increase of the fluorescent lifetime by up to 55 %. We speculate that the increased quantum yield can be attributed to the hydrophobic effect on the structure of water in the boundary layer around the polystyrene particles in suspension. Adding SDS acts as a quencher. Over a range of particle concentrations the particle induced increase of the lifetime can be completely compensated by adding SDS. PMID:26698418

  1. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  2. NADH fluorescence lifetime is an endogenous reporter of α-synuclein aggregation in live cells

    PubMed Central

    Plotegher, Nicoletta; Stringari, Chiara; Jahid, Sohail; Veronesi, Marina; Girotto, Stefania; Gratton, Enrico; Bubacco, Luigi

    2015-01-01

    α-Synuclein (aS) aggregation has been amply investigated for its involvement in Parkinson’s disease because its amyloid fibrils are the main constituent of Lewy bodies, one of the hallmarks of the disease. aS aggregation was studied here in vitro and in cellular models to correlate aggregation products with toxicity mechanisms. Independent results published elsewhere suggested that aS overexpression and/or aggregation may impair cellular metabolism and cause mitochondrial damage. In this context, we report the characterization of changes in NADH fluorescence properties in vitro and in human embryonic kidney 293 cells upon aS aggregation. The application of the phasor approach to study NADH fluorescence lifetime and emission allowed us to identify changes that correlate with aS aggregation. In particular, the fraction of bound NADH, characterized by longer lifetimes in comparison to free NADH, is increased, and the maximum of the NADH emission is shifted toward shorter wavelengths in the presence of aggregating aS both in vitro and in cells. These data suggest that NADH binds to aggregated aS. NMR experiments in vitro substantiate such binding, which occurs during aggregation. NADH fluorescence is thus useful to detect aS aggregation and by extension the associated oxidative stress.—Plotegher, N., Stringari, C., Jahid, S., Veronesi, M., Girotto, S., Gratton, E., Bubacco, L. NADH fluorescence lifetime is an endogenous reporter of α-synuclein aggregation in live cells. PMID:25713058

  3. Fluorescence optical imaging in anticancer drug delivery.

    PubMed

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. PMID:26892751

  4. Laser-induced fluorescence, dispersed fluorescence and lifetime measurements of jet-cooled chloro-substituted benzyl radicals

    NASA Astrophysics Data System (ADS)

    Hamatani, Satoshi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2002-07-01

    We measured the laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of jet-cooled α-, o- and m-chlorobenzyl radicals after they were generated by the 193 nm photolysis of the corresponding parent molecules. The vibronically resolved spectra were obtained to analyze their D1-D0 transitions. The fluorescence lifetimes of α-, o-, m- and p-chlorobenzyls in the zeroth vibrational levels of the D1 states were measured to estimate the oscillator strengths of a series of benzyl derivatives. It was found that the α-substitution is inefficient to break the `accidental forbiddenness' of the D1-D0 transition of benzyl, while the ring-substitution enhances the oscillator strength by 50%.

  5. Critical density fluctuations in lipid bilayers detected by fluorescence lifetime heterogeneity.

    PubMed Central

    Ruggiero, A; Hudson, B

    1989-01-01

    The heterogeneity of the decay of the fluorescence of transparinaric acid in single-component lipid bilayers at temperatures above their gel/liquid crystalline phase transition is shown to be due to the presence of regions of higher local density and higher acyl chain order than the predominant fluid regions. This conclusion is based on selective excitation behavior and the observation of time-resolved fluorescence anisotropies that increase at long times. The fractional amplitude of the long lifetime component of the fluorescence shows a temperature variation that conforms to conventional descriptions of critical behavior. The critical exponent extracted from this variation is 1.1, close to the value of 1.0 that describes ultrasonic data. We therefore conclude that liquid crystalline lipid bilayers exhibit critical behavior with significant density and order fluctuations. This behavior must be taken into account in the interpretation of fluorescence and other spectroscopic measurements of the properties of bilayers. PMID:2765649

  6. Development of Thermally Activated Delayed Fluorescence Materials with Shortened Emissive Lifetimes.

    PubMed

    Kretzschmar, Andreas; Patze, Christian; Schwaebel, S Thimon; Bunz, Uwe H F

    2015-09-18

    We have prepared a thermally activated delayed fluorescence (TADF) capable molecular system carrying halogen substituents at the carbazole units. The attachment of the halogen atoms considerably decreases the half-life of the delayed fluorescence. The effect is significant. The heavier the halogen, the greater the effect. Our materials have the shortest reported emissive lifetimes for TADF achieved to date. Intersystem crossing (ISC) is improved through the heavy atom effect, yet high quantum yields are achieved both in solution as well as in thin doped films. The simple and efficient synthesis of our targets uses inexpensive and easily obtained starting materials. PMID:26291027

  7. Fluorescence lifetimes of jet-cooled tryptophan: elimination of complications from 1La emission

    NASA Astrophysics Data System (ADS)

    Huang, Yuhui; Arnold, Steven; Sulkes, Mark

    1994-08-01

    Fluorescence lifetime measurements can be made on the decay of individual 'frozen' conformers of tryptophan analogs in supersonic gas expansions. These measurements have shown differences in single exponential lifetimes among conformers of a given analog, results which are strongly consistent with the presence of conformation-dependent charge transfer quenching. For jet cooled tryptophan, however, one of the conformers emits from 1La, thereby complicating any interpretation of the results. To remove this problem we considered tryptophan analogs with C-5 substituents, in which all the jet cooled conformers emit from 1Lb. We observed differences in conformer lifetimes similar to cases considered earlier. In the course of this work we discovered that, in contrast to tryptophan, 5- methoxytryptophan shows single exponential decay in solution. Based on additional data for jet cooled samples, we propose the most likely explanation to be substituent induced changes in conformer geometries and populations.

  8. Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime

    NASA Technical Reports Server (NTRS)

    Lin, C.; Dienes, A.

    1973-01-01

    By directly measuring the donor fluorescence lifetime as a function of acceptor concentration in the laser dye mixture Rhodamine 6G-Cresyl violet, we found that the Stern-Volmer relation is obeyed, from which the rate of excitation transfer is determined. The experimental results indicate that the dominant mechanism responsible for the efficient excitation transfer is that of resonance transfer due to long range dipole-dipole interaction.

  9. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  10. Three-dimensional printed miniaturized spectral system for collagen fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Koslakiewicz, Ronald; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe Fujiou

    2016-07-01

    Various types of collagens, e.g., type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes such as wound healing and fibrosis. When excited by ultraviolet light, collagens exhibit autofluorescence distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Here, we designed a miniaturized spectral-lifetime detection system as a noninvasive probe for monitoring tissue collagen compositions. A sine-modulated LED illumination was applied to enable frequency domain fluorescence lifetime measurements under three wavelength bands, separated via a series of longpass dichroics at 387, 409, and 435 nm. We employed a lithography-based three-dimensional (3-D) printer with <50 μm resolution to create a custom designed optomechanics in a handheld form factor. We examined the characteristics of the optomechanics with finite element modeling to simulate the effect of thermal (from LED) and mechanical (from handling) strain on the optical system. The geometry was further optimized with ray tracing to form the final 3-D printed structure. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes. This system represents a low cost, handheld probe for clinical tissue monitoring applications.

  11. 3D printed miniaturized spectral system for tissue fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe F.

    2016-04-01

    Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with <50 μm resolution to create a custom designed optical mount in a hand-held form factor. We examined the characteristics of the 3D printed optical system with finite element modeling to simulate the effect of thermal (LED) and mechanical (handling) strain on the optical system. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.

  12. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies

    SciTech Connect

    Lakowiz, J.R.; Weber, G.

    1980-10-01

    Steady-state and lifetime-resolved fluorescence anisotropy measurements of protein fluorescence were used to investigate the depolarizing motions of tryptophan residues in proteins. Lifetime resolution was achieved by oxygen quenching. The proteins investigated were carbonic anhydrase, carboxypeptidase A, ..cap alpha..-chymotrypsin, trypsin, pepsin, and bovine and human serum albumin. When corrected for overall protein rotation, the steady state anisotropies indicate that, on the average, the tryptophan residues in these proteins rotate 29/sup 0/ +- 6/sup 0/ during the unquenched excited state lifetimes of these proteins, which range from 1.7 to 6.1 ns. The lifetime-resolved anisotropies reveal correlation times for these displacements ranging from 1 to 12 ns. On the average these correlation times are tenfold shorter than that expected for overall protein rotation. We conclude that the tryptophan residues in these proteins display remarkable freedom of motion within the protein matrix, which implies that these matrices are highly flexible on the nanosecond time scale.

  13. Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo

    PubMed Central

    Matsubara, Shizue; Chow, Wah Soon

    2004-01-01

    Photosystem (PS) II centers, which split water into oxygen, protons, and electrons during photosynthesis, require light but are paradoxically inactivated by it. Prolonged light exposure concomitantly decreased both the functional fraction of PSII reaction centers and the integral PSII chlorophyll (Chl) a fluorescence lifetime in leaf segments of Capsicum annuum L. Acceleration of photoinactivation of PSII by a pretreatment with the inhibitors/uncoupler lincomycin, DTT, or nigericin further reduced PSII Chl a fluorescence lifetimes. A global analysis of fluorescence lifetime distributions revealed the presence of at least two distinct populations of photoinactivated PSII centers, one at 1.25 ns, and the other at 0.58 ns. Light treatment first increased the 1.25-ns component, a weak quencher, at the expense of a component at 2.22 ns corresponding to functional PSII centers. The 0.58-ns component, a strong quencher, emerged later than the 1.25-ns component. The strongly quenching PSII reaction centers could serve to avoid further damage to themselves and protect their functional neighbors by acting as strong energy sinks. PMID:15601775

  14. Temperature and bath gas composition dependence of effective fluorescence lifetimes of toluene excited at 266 nm

    NASA Astrophysics Data System (ADS)

    Faust, S.; Dreier, T.; Schulz, C.

    2011-05-01

    Time-resolved fluorescence spectra of gas-phase toluene upon picosecond excitation at 266 nm were investigated as a function of temperature (296-1074 K) and bath gas composition (varying amounts of N 2, O 2, and CO 2) at 1 bar total pressure with a temporal resolution of 50 ps. In the investigated temperature range the effective fluorescence lifetime drops with increasing temperature from 46 ± 3 ns to 0.05 ± 0.01 ns in N 2 and CO 2. In the presence of O 2 at constant temperature the lifetimes also decrease significantly (e.g., from 46 ± 3 ns without O 2 to 0.63 ± 0.05 ns in air at room temperature), whereas lifetimes are independent on the CO 2 concentration. The implications of the results for the existing phenomenological model of predicting temporally integrated fluorescence intensities in toluene [W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80 (2005) 777] are discussed.

  15. Fluorescence Lifetime Correlation Spectroscopic Study of Fluorophore-Labeled Silver Nanoparticles

    PubMed Central

    Ray, Krishanu; Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    In this paper, we introduce the use of fluorescence lifetime correlation spectroscopy (FLCS) to study the metal-fluorophore interactions in solution at single fluorophore level. A single-stranded oligonucleotide was chemically bound to a 50 nm diameter single silver particle and a Cy5-labeled complementary single-stranded oligonucleotide was hybridized with the silver particle-bound oligonucleotide. The distance between the fluorophore and silver particle was maintained by a rigid hybridized DNA duplex of 8 nm in length. The single Cy5-DNA-Ag-particles showed more than 10-fold increase in fluorescence intensity, 5-fold decrease in emission lifetimes as compared with Cy5-DNA free molecules in the absence of metal. The decrease of lifetime for the Cy5-DNA-Ag-particle allowed us to resolve the correlation functions of the two species based on the intensity decays. The increased brightness of Cy5-DNA-Ag-particle as compared to free Cy5-DNA resulted in an increased contribution of Cy5-DNA-Ag to the correlation function of the mixture. These results show that the effects of metal particles on fluorophores can be used to detect the small fractional populations of the metal-bound species in the presence of a larger number of less bright species. Our results also suggest that these bright fluorophores conjugated to silver particles could be used as the fluorescent probes for clinical detection in the biological samples with the high background. PMID:18771274

  16. Luminescence lifetime determination for oxygen imaging in human tissue

    NASA Astrophysics Data System (ADS)

    Lochmann, C.; Häupl, T.; Beuthan, J.

    2008-02-01

    Imaging and monitoring of biochemical parameters in vitro and in vivo have become the goal of many investigations in medical physics. The main imaging technique used is laser-induced luminescence due to its cost effectiveness and diversity of applications [1]. One key parameter in medical investigations, for instance to control photodynamic therapy, is the molecular oxygen concentration. The use of optical methods provides possible means of measuring molecular oxygen. The basis of such a method is the measurement of the luminescence lifetime of a dye which is quenched by molecular oxygen. The molecular oxygen concentration can be monitored two-dimensionally by pixel-wise determination of the luminescence lifetime with a CCD-camera. An oxygen imaging system based on this principle was built and tested with a commercially available oxygen sensitive sol gel-layer. The embedded ruthenium complex is quenched by molecular oxygen and because of the oxygen permeability of the layer; it is suitable for oxygen measurements. The characteristics and dependence on the pH-value and temperature of the luminescence lifetime of the layer were examined in preparation for measurements on tissue to exclude cross-correlation of other quenching processes.

  17. Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-TRFS)

    PubMed Central

    Ma, Dinglong; Bec, Julien; Gorpas, Dimitris; Yankelevich, Diego; Marcu, Laura

    2015-01-01

    We report a novel technique for continuous acquisition, processing and display of fluorescence lifetimes enabling real-time tissue diagnosis through a single hand held or biopsy fiber-optic probe. A scanning multispectral time-resolved fluorescence spectroscopy (ms-TRFS) with self-adjustable photon detection range was developed to account for the dynamic changes of fluorescence intensity typically encountered in clinical application. A fast algorithm was implemented in the ms-TRFS software platform, providing up to 15 Hz continuous display of fluorescence lifetime values. Potential applications of this technique, including biopsy guidance, and surgical margins delineation were demonstrated in proof-of-concept experiments. Current results showed accurate display of fluorescence lifetimes values and discrimination of distinct fluorescence markers and tissue types in real-time (< 100 ms per data point). PMID:25798320

  18. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel. PMID:25727072

  19. Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes

    PubMed Central

    Golfetto, Ottavia; Hinde, Elizabeth; Gratton, Enrico

    2013-01-01

    Detection of the fluorescent properties of Laurdan has been proven to be an efficient tool to investigate membrane packing and ordered lipid phases in model membranes and living cells. Traditionally the spectral shift of Laurdan’s emission from blue in the ordered lipid phase of the membrane (more rigid) toward green in the disordered lipid phase (more fluid) is quantified by the generalized polarization function. Here, we investigate the fluorescence lifetime of Laurdan at two different emission wavelengths and find that when the dipolar relaxation of Laurdan’s emission is spectrally isolated, analysis of the fluorescence decay can distinguish changes in membrane fluidity from changes in cholesterol content. Using the phasor representation to analyze changes in Laurdan’s fluorescence lifetime we obtain two different phasor trajectories for changes in polarity versus changes in cholesterol content. This gives us the ability to resolve in vivo membranes with different properties such as water content and cholesterol content and thus perform a more comprehensive analysis of cell membrane heterogeneity. We demonstrate this analysis in NIH3T3 cells using Laurdan as a biosensor to monitor changes in the membrane water content during cell migration. PMID:23528083

  20. Fluorescence lifetime dynamics of eGFP in protein aggregates with expanded polyQ

    NASA Astrophysics Data System (ADS)

    Ghukasyan, Vladimir; Hsu, Chih-Chun; Liu, Chia-Rung; Kao, Fu-Jen; Cheng, Tzu-Hao

    2009-02-01

    Expanding a polyglutamine (polyQ) stretch at the N-terminus of huntingtin protein is the main cause of the neurodegenerative disorder Huntington's disease (HD). Expansion of polyQ above 39 residues has an inherent propensity to form amyloid-like fibrils and aggregation of the mutant protein is found to be a critical component for abnormal pathology of HD. Using yeast Saccharomyces cerevisiae as a model system, we have observed a decrease in fluorescence lifetime of the enhanced green fluorescence protein (eGFP) fused to 97 successive glutamine residues (97Q). Compared to the sample expressing evenly distributed eGFP, the 97Q-eGFP fusion proteins show the formation of grain-like particles and the reduction of eGFP lifetime by ~250 ps as measured by time-correlated single-photon counting technique (TCSPC). More importantly, this phenomenon does not appear in Hsp104-deficient cells. The gene product of HSP104 is required for the formation of polyQ aggregates in yeast cells; therefore, the cellular 97Q-eGFP become soluble and evenly distributive in the absence of Hsp104. Under this condition, the lifetime value of 97Q-eGFP is close to the one exhibited by eGFP alone. The independence of the effect of the environmental parameters, such as pH and refraction index is demonstrated. These data indicate that the fluorescence lifetime dynamics of eGFP is linked to the process of polyQ protein aggregation per se.

  1. Single-Molecule Analysis of Cytochrome c Folding by Monitoring the Lifetime of an Attached Fluorescent Probe

    PubMed Central

    Stern, Harry A.; Bren, Kara L.; Krauss, Todd D.

    2013-01-01

    Conformational dynamics of proteins are important for function. However, obtaining information about specific conformations is difficult for samples displaying heterogeneity. Here, time-resolved fluorescence resonance energy transfer is used to characterize the folding of single cytochrome c molecules. In particular, measurements of the fluorescence lifetimes of individual cytochrome c molecules labeled with a single dye that is quenched by energy transfer to the heme were used to monitor conformational transitions of the protein under partially denaturing conditions. These studies indicate significantly more conformational heterogeneity than has been described previously. Importantly, the use of a purified singly-labeled sample made a direct comparison to ensemble data possible. The distribution of lifetimes of single-proteins was compared to the distribution of lifetimes determined from analysis of ensemble lifetime fluorescence data. The results show broad agreement between single-molecule and ensemble data, with a similar range of lifetimes. However, the single-molecule data reveal greater conformational heterogeneity. PMID:24116268

  2. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  3. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  4. Dynamics of water-in-oil nanoemulsions revealed by fluorescence lifetime correlation spectroscopy.

    PubMed

    Orte, Angel; Ruedas-Rama, Maria J; Paredes, Jose M; Crovetto, Luis; Alvarez-Pez, Jose M

    2011-11-01

    The size, diffusional properties, and dynamics of reverse water-in-oil nanoemulsions, or reverse micelles (RMs), have been widely investigated because of interest in this system as a model for biological compartmentalization. Here, we have employed fluorescence lifetime correlation spectroscopy (FLCS) to reveal the dynamics and sizes of aerosol-OT (AOT)/isooctane RMs using a fluorescent xanthene derivative called Tokyo Green II (TG-II). The dye undergoes a partition and a shift in its tautomeric equilibrium such that the TG-II anion remains in the inner micellar aqueous core, and the neutral quinoid form lies in the interfacial region. By applying FLCS, we specifically obtained the lifetime filtered autocorrelation curves of the anionic TG-II, which shows a characteristic lifetime of approximately 4 ns. Analysis of the FLCS curves provides the diffusion coefficient and hydrodynamic radius of the RMs as well as micelle dynamics in the same experiment. The FLCS curves show dynamics in the microsecond time range, which represents an interconversion rate that changes the distribution of the TG-II neutral and anionic forms in the hydrophobic interface and the water core. PMID:21913723

  5. Recent Progress in Fluorescent Imaging Probes.

    PubMed

    Pak, Yen Leng; Swamy, K M K; Yoon, Juyoung

    2015-01-01

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn(2+), Hg(2+), Cu(2+) and Au(3+), and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684

  6. Recent Progress in Fluorescent Imaging Probes

    PubMed Central

    Pak, Yen Leng; Swamy, K. M. K.; Yoon, Juyoung

    2015-01-01

    Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn2+, Hg2+, Cu2+ and Au3+, and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684

  7. Photoacoustic lifetime imaging for direct in vivo tissue oxygen monitoring

    PubMed Central

    Shao, Qi; Ashkenazi, Shai

    2015-01-01

    Abstract. Measuring the partial pressure of oxygen (pO2) in tissue may provide physicians with essential information about the physiological state of tissue. However, currently available methods for measuring or imaging tissue pO2 have significant limitations, preventing them from being widely used in clinics. Recently, we have reported a direct and noninvasive in vivo imaging modality based on the photoacoustic lifetime which overcomes certain drawbacks of the existing methods. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflecting the spatial and temporal distributions of tissue oxygen. Here, we present two studies which apply photoacoustic lifetime imaging (PALI) to monitor changes of tissue oxygen induced by external modulations. The first study modulates tissue oxygen by controlling the percentage of oxygen a normal mouse inhales. We demonstrate that PALI is able to reflect the change in oxygen level with respect to normal, oxygen-rich, and oxygen-poor breathing conditions. The second study involves an acute ischemia model using a thin thread tied around the hindlimb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of tissue pO2 and recovery from hypoxia due to reperfusion were tracked and observed by PALI. PMID:25748857

  8. Photoacoustic lifetime imaging for direct in vivo tissue oxygen monitoring

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Ashkenazi, Shai

    2015-03-01

    Measuring the partial pressure of oxygen (pO2) in tissue may provide physicians with essential information about the physiological state of tissue. However, currently available methods for measuring or imaging tissue pO2 have significant limitations, preventing them from being widely used in clinics. Recently, we have reported a direct and noninvasive in vivo imaging modality based on the photoacoustic lifetime which overcomes certain drawbacks of the existing methods. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflecting the spatial and temporal distributions of tissue oxygen. Here, we present two studies which apply photoacoustic lifetime imaging (PALI) to monitor changes of tissue oxygen induced by external modulations. The first study modulates tissue oxygen by controlling the percentage of oxygen a normal mouse inhales. We demonstrate that PALI is able to reflect the change in oxygen level with respect to normal, oxygen-rich, and oxygen-poor breathing conditions. The second study involves an acute ischemia model using a thin thread tied around the hindlimb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of tissue pO2 and recovery from hypoxia due to reperfusion were tracked and observed by PALI.

  9. Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence.

    PubMed

    Reichardt, T A; Klassen, M S; King, G B; Laurendeau, N M

    1996-04-20

    Picosecond time-resolved laser-induced fluorescence (PITLIF) can potentially be used to obtain measurements of minor species concentrations in rapidly fluctuating flames. Previous studies demonstrated this potential for atomic sodium by monitoring the temporal fluorescence signal with both an equivalent-time and a real-time sampling method. In this developmental study, PITLIF is used to determine hydroxyl concentrations in laminar CH(4)-O(2)-N(2) flames by the measurement of both the integrated fluorescence signal and the fluorescence lifetime. The quenching environment can be monitored with real-time sampling, and thus the necessary quenching rate coefficient is obtained in 348 us, which is fast enough for use in many turbulent flows. Fluorescence lifetimes of OH are also measured at different equivalence ratios in laminar flames by the use of the equivalent-time sampling technique. These results compare favorably with predicted lifetimes based on relevant quenching cross sections and calculated species concentrations. PMID:21085341

  10. [Study of cancer cells fluorescence lifetime based on picosecond time resolution].

    PubMed

    Chen, Bi-Fang; Liu, Tian-Fu

    2006-08-01

    The object of the present study was the ultrafast photodynamic processes of hematoporphyrin derivative (HPD) for diagnosis and therapy of cancer. Time-resolved fluorescence spectra of cancerous and normal cells were measured using an ultrashort pulse laser spectral technique and picosecond time-correlated single-photon counting system. The fast part of cancerous and normal cells fluorescence decay was approximately 150 and 300 ps, the fluorescence peak intensity of cancerous and normal cells decayed about 10% and 55% in 12 hour, the lifetime of cancerous and normal cells was about 824 and 1 798 ps by calculating date of fluorescence decay, and HPD stay time was about 17 and 6 days in the cancerous and normal cells sample respectively. The data show that cancerous cells were greatly intimate with HPD. The results obtained can be used as an important basis for the diagnosis of cancer based on ultrashort pulse laser spectral technique. The results will contribute to feebleness ultrafast fluorescence of biology sample for real time measurement. PMID:17058959

  11. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    SciTech Connect

    Gilmore, A.M.; Hazlett, T.L.; Govindjee

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  12. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System.

    PubMed

    Rae, Bruce R; Muir, Keith R; Gong, Zheng; McKendry, Jonathan; Girkin, John M; Gu, Erdan; Renshaw, David; Dawson, Martin D; Henderson, Robert K

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  13. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  14. Comprehensive phantom for interventional fluorescence molecular imaging.

    PubMed

    Anastasopoulou, Maria; Koch, Maximilian; Gorpas, Dimitris; Karlas, Angelos; Klemm, Uwe; Garcia-Allende, Pilar Beatriz; Ntziachristos, Vasilis

    2016-09-01

    Fluorescence imaging has been considered for over a half-century as a modality that could assist surgical guidance and visualization. The administration of fluorescent molecules with sensitivity to disease biomarkers and their imaging using a fluorescence camera can outline pathophysiological parameters of tissue invisible to the human eye during operation. The advent of fluorescent agents that target specific cellular responses and molecular pathways of disease has facilitated the intraoperative identification of cancer with improved sensitivity and specificity over nonspecific fluorescent dyes that only outline the vascular system and enhanced permeability effects. With these new abilities come unique requirements for developing phantoms to calibrate imaging systems and algorithms. We briefly review herein progress with fluorescence phantoms employed to validate fluorescence imaging systems and results. We identify current limitations and discuss the level of phantom complexity that may be required for developing a universal strategy for fluorescence imaging calibration. Finally, we present a phantom design that could be used as a tool for interlaboratory system performance evaluation. PMID:27304578

  15. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime

    PubMed Central

    Kurokawa, Hiromi; Ito, Hidehiro; Inoue, Mai; Tabata, Kenji; Sato, Yoshifumi; Yamagata, Kazuya; Kizaka-Kondoh, Shinae; Kadonosono, Tetsuya; Yano, Shigenobu; Inoue, Masahiro; Kamachi, Toshiaki

    2015-01-01

    Optical methods using phosphorescence quenching by oxygen are suitable for sequential monitoring and non-invasive measurements for oxygen concentration (OC) imaging within cells. Phosphorescence intensity measurement is widely used with phosphorescent dyes. These dyes are ubiquitously but heterogeneously distributed inside the whole cell. The distribution of phosphorescent dye is a major disadvantage in phosphorescence intensity measurement. We established OC imaging system for a single cell using phosphorescence lifetime and a laser scanning confocal microscope. This system had improved spatial resolution and reduced the measurement time with the high repetition rate of the laser. By the combination of ubiquitously distributed phosphorescent dye with this lifetime imaging microscope, we can visualize the OC inside the whole cell and spheroid. This system uses reversible phosphorescence quenching by oxygen, so it can measure successive OC changes from normoxia to anoxia. Lower regions of OC inside the cell colocalized with mitochondria. The time-dependent OC change in an insulin-producing cell line MIN6 by the glucose stimulation was successfully visualized. Assessing the detailed distribution and dynamics of OC inside cells achieved by the presented system will be useful to understanding a physiological and pathological oxygen metabolism. PMID:26065366

  16. Fluorescence goggle for intraoperative breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bauer, Adam Q.; Akers, Walter; Sudlow, Gail; Liang, Kexian; Charanya, Tauseef; Mondal, Suman; Culver, Joseph P.; Achilefu, Samuel

    2012-03-01

    We have developed a fluorescence goggle device for intraoperative oncologic imaging. With our system design, the surgeon can directly visualize the fluorescence information from the eyepieces in real time without any additional monitor, which can improve one's coordination and surgical accuracy. In conjunction with targeting fluorescent dyes, the goggle device can successfully detect tumor margins and small nodules that are not obvious to naked eye. This can potentially decrease the incidence of incomplete resection.

  17. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, Daniel L.; Tangyunyong, Paiboon

    1998-01-01

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  18. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, D.L.; Tangyunyong, P.

    1998-01-06

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  19. Ultra-portable explosives sensor based on a CMOS fluorescence lifetime analysis micro-system

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Rae, Bruce R.; Henderson, Robert K.; Gong, Zheng; Mckendry, Jonathan; Gu, Erdan; Dawson, Martin D.; Turnbull, Graham A.; Samuel, Ifor D. W.

    2011-09-01

    This work explores the use of a green-light-emitting copolymer as a chemosensor to detect nitroaromatic-based explosive vapors by recording photoluminescence (PL) and time-resolved PL decay. We show successful detection of 10 ppb 1,4-dinitrobenzene (DNB) vapor. Both a conventional time-correlated single photon counting (TCSPC) device and CMOS time-resolved fluorescence lifetime micro-system are used in the DNB detection. An ultra-portable on-site explosive sensor based on the micro-system has also been demonstrated. This gives rise to the potential for real-time, reliable, inexpensive organic/inorganic hybrid explosives detection.

  20. Determination of the modulation transfer function for a time-gated fluorescence imaging system.

    PubMed

    Gundy, Sarah; Van der Putten, Wil; Shearer, Andy; Buckton, Daniel; Ryder, Alan G

    2004-01-01

    The use of fluorescence for cancer detection is currently under investigation. Presently, steady-state fluorescence detection methods are in use, but have limitations due to poor contrast between the fluorescence of the tumor and background autofluorescence. Improved contrast can be obtained with time-resolved techniques because of the differing lifetimes between autofluorescence and exogenous photosensitizers that selectively accumulate within tumor tissue. An imaging system is constructed using a fast-gated (200-ps) charge-coupled device (CCD) camera and a pulsed 635-nm laser diode. To characterize the ability of the system to transfer object contrast to an image, the modulation transfer function (MTF) of the system is acquired by employing an extended knife-edge technique. A knife-edge target is assembled by drilling a rectangular well into a block of polymethyl methacrylate (PMMA). The imaging system records images of the photosensitizer, chloroaluminum phthalocyanine tetrasulfonate (AlPcTS), within the well. AlPcTS was chosen to test the system because of its strong absorption of 635-nm, high fluorescence yield, and relatively long fluorescence lifetime (approximately 7.5 ns). The results show that the system is capable of resolving 10(-4) M AlPcTS fluorescence as small as 1 mm. The findings of this study contribute to the development of a time-gated imaging system using fluorescence lifetimes. PMID:15568941

  1. Exogenous specific fluorescence marker location reconstruction using surface fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Avital, Garashi; Gannot, Israel; Chernomordik, Victor V.; Gannot, Gallya; Gandjbakhche, Amir H.

    2003-07-01

    Diseased tissue may be specifically marked by an exogenous fluorescent marker and then, following laser activation of the marker, optically and non-invasively detected through fluorescence imaging. Interaction of a fluorophore, conjugated to an appropriate antibody, with the antigen expressed by the diseased tissue, can indicate the presence of a specific disease. Using an optical detection system and a reconstruction algorithm, we were able to determine the fluorophore"s position in the tissue. We present 3D reconstructions of the location of a fluorescent marker, FITC, in the tongues of mice. One group of BALB/c mice was injected with squamous cell carcinoma (SqCC) cell line to the tongue, while another group served as the control. After tumor development, the mice"s tongues were injected with FITC conjugated to anti-CD3 and anti-CD 19 antibodies. An Argon laser excited the marker at 488 nm while a high precision fluorescent camera collected the emitted fluorescence. Measurements were performed with the fluorescent marker embedded at various simulated depths. The simulation was performed using agarose-based gel slabs applied to the tongue as tissue-like phantoms. A biopsy was taken from every mouse after the procedure and the excised tissue was histologically evaluated. We reconstruct the fluorescent marker"s location in 3D using an algorithm based on the random walk theory.

  2. Phase-sensitive flow cytometry: fluorescence lifetime-based sensing technology for analyzing free fluorophore and cells/particles labeled with fluorescent probes

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.

    1999-12-01

    A phase-sensitive cytometer has been developed that combines flow cytometry and fluorescence lifetime spectroscopy measurement principles to provide unique features for making frequency-domain lifetime measurements on free fluorophore (solution) and on fluorophore-labeled cells/particles in real time. No other instrument can quantify lifetimes directly and resolve heterogeneous fluorescence based on differences in lifetimes (expressed as phase shifts), while maintaining the capability to make conventional flow cytometric measurements. The technology has been characterized with respect to measurement precision, linearity, sensitivity, and dynamic range. Fluorescence lifetime distributions have been measured on autofluorescence lung cells, thymocytes labeled with antibody conjugated to fluorophores for studying fluorescence quenching as a function of antibody dilution and F/P ratio, cells stained with DNA-binding fluorochromes, and on particles labeled with fluorophores and free fluorophore (solution). Phase-resolved, fluorescence signal- intensity histograms have been recorded on thymocytes labeled with a phycoerythrin/Texas Red tandem conjugate and propidium iodide to demonstrate the resolution of signals from highly overlapping emission spectra. This technology adds a new dimension to flow analyses of free and cell/particle-bound fluorophore. Lifetimes can be used as spectroscopic probes to study the interaction of markers with their targets, each other, and the surrounding microenvironment.

  3. Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores

    PubMed Central

    Laine, Romain; Stuckey, Daniel W.; Manning, Hugh; Warren, Sean C.; Kennedy, Gordon; Carling, David

    2012-01-01

    We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that m

  4. Quantitative Fluorescence Correlation Spectroscopy Reveals a 1000-Fold Increase in Lifetime of Protein Functionality

    PubMed Central

    Zhang, Dianwen; Lans, Hannes; Vermeulen, Wim; Lenferink, Aufried; Otto, Cees

    2008-01-01

    We have investigated dilute protein solutions with fluorescence correlation spectroscopy (FCS) and have observed that a rapid loss of proteins occurs from solution. It is commonly assumed that such a loss is the result of protein adsorption to interfaces. A protocol was developed in which this mode of protein loss can be prevented. However, FCS on fluorescent protein (enhanced green fluorescent protein, mCherry, and mStrawberry) solutions enclosed by adsorption-protected interfaces still reveals a decrease of the fluorescent protein concentration, while the diffusion time is stable over long periods of time. We interpret this decay as a loss of protein functionality, probably caused by denaturation of the fluorescent proteins. We show that the typical lifetime of protein functionality in highly dilute, approximately single molecule per femtoliter solutions can be extended more than 1000-fold (typically from a few hours to >40 days) by adding compounds with surfactant behavior. No direct interactions between the surfactant and the fluorescent proteins were observed from the diffusion time measured by FCS. A critical surfactant concentration of more than 23 μM was required to achieve the desired protein stabilization for Triton X-100. The surfactant does not interfere with DNA-protein binding, because similar observations were made using DNA-cutting restriction enzymes. We associate the occurrence of denaturation of proteins with the activity of water at the water-protein interface, which was recently proposed in terms of the “water attack model”. Our observations suggest that soluble biomolecules can extend an influence over much larger distances than suggested by their actual volume. PMID:18586843

  5. Ion-induced fluorescence imaging of endosomes

    NASA Astrophysics Data System (ADS)

    Norarat, R.; Marjomäki, V.; Chen, X.; Zhaohong, M.; Minqin, R.; Chen, C.-B.; Bettiol, A. A.; Whitlow, H. J.; Watt, F.

    2013-07-01

    Imaging laboratories at Jyväskylä and Singapore are collaborating on the development of fluorescence imaging of cytoplasmic endosomes using a combination of proton induced fluorescence (PIF) with direct Scanning Transmission Ion Microscopy (direct-STIM) for sub-cellular structural imaging. A549 lung carcinoma cells were cultivated and stained for epidermal growth factor receptor (EGFR) and receptor α2β1 integrin. In this paper, we demonstrate that cells can be imaged at sub-150 nm resolution using the PIF technique. In addition, the same target cell was imaged at 50 and 25 nm resolution by using proton and He-STIM, respectively. The combination of both techniques offer a powerful tool to improve fluorescence imaging beyond optical diffraction limits.

  6. Quantitative in vivo imaging of the lung using time-domain fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Jean-Jacques, Muriel; Melanson-Drapeau, Lysanne; Khayat, Mario

    2009-02-01

    In this paper, nebulized or intravenous cetuximab (also known as Erbitux) labeled with NIR dyes is administered in the lungs of the mouse and imaged using a time-domain fluorescence imaging system (Optix(R)). Time resolved measurements provide lifetime of the fluorescent probes. In addition, through time-of-flight information contained in the data, one can also assess probe localization and concentration distribution quantitatively. Results shown include suppression of tissue autofluorescence by lifetime gating and recovery of targeted and non-targeted distributions of cetuximab labeled with the NIR fluorophores.

  7. Photocontrollable Fluorescent Proteins for Superresolution Imaging

    PubMed Central

    Shcherbakova, Daria M.; Sengupta, Prabuddha; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V.

    2014-01-01

    Superresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization–based and nonlinear ensemble–based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine. PMID:24895855

  8. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  9. Reflectance and fluorescence hyperspectral elastic image registration

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Baker, Ross; Hakansson, Johan; Gustafsson, Ulf P.

    2004-05-01

    Science and Technology International (STI) presents a novel multi-modal elastic image registration approach for a new hyperspectral medical imaging modality. STI's HyperSpectral Diagnostic Imaging (HSDI) cervical instrument is used for the early detection of uterine cervical cancer. A Computer-Aided-Diagnostic (CAD) system is being developed to aid the physician with the diagnosis of pre-cancerous and cancerous tissue regions. The CAD system uses the fusion of multiple data sources to optimize its performance. The key enabling technology for the data fusion is image registration. The difficulty lies in the image registration of fluorescence and reflectance hyperspectral data due to the occurrence of soft tissue movement and the limited resemblance of these types of imagery. The presented approach is based on embedding a reflectance image in the fluorescence hyperspectral imagery. Having a reflectance image in both data sets resolves the resemblance problem and thereby enables the use of elastic image registration algorithms required to compensate for soft tissue movements. Several methods of embedding the reflectance image in the fluorescence hyperspectral imagery are described. Initial experiments with human subject data are presented where a reflectance image is embedded in the fluorescence hyperspectral imagery.

  10. Time-domain imaging with quench-based fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Solomon, Metasebya; Sudlow, Gail P.; Berezin, Mikhail; Achilefu, Samuel

    2012-03-01

    Quench-based probes utilize unique characteristics of fluorescence resonance energy transfer (FRET) to enhance contrast upon de-quenching. This mechanism has been used in a variety of molecular probes for imaging of cancer related enzyme activity such as matrix metalloproteinases, cathepsins and caspases. While non-fluorescent upon administration, fluorescence can be restored by separation of donor and acceptor, resulting in higher intensity in the presence of activator. Along with decreased quantum yield, FRET also results in altered fluorescence lifetime. Time-domain imaging can further enhance contrast and information yield from quench-based probes. We present in vivo time-domain imaging for detecting activation of quench-based probes. Quench-based probes utilize unique characteristics of fluorescence resonance energy transfer (FRET) to enhance contrast upon de-quenching. This mechanism has been used in a variety of molecular probes for imaging of cancer related enzyme activity such as matrix metalloproteinases, cathepsins and caspases. While non-fluorescent upon administration, fluorescence can be restored by separation of donor and acceptor, resulting in higher intensity in the presence of activator. Along with decreased quantum yield, FRET also results in altered fluorescence lifetime. Time-domain imaging can further enhance contrast and information yield from quench-based probes. We present in vivo time-domain imaging for detecting activation of quench-based probes. Time-domain diffuse optical imaging was performed to assess the FRET and quenching in living mice with orthotopic breast cancer. Tumor contrast enhancement was accompanied by increased fluorescence lifetime after administration of quenched probes selective for matrix metalloproteinases while no significant change was observed for non-quenched probes for integrin receptors. These results demonstrate the utility of timedomain imaging for detection of cancer-related enzyme activity in vivo.

  11. Fluorescent Cell Imaging in Regenerative Medicine

    PubMed Central

    Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Murphy, Sean V.; Soker, Shay

    2016-01-01

    Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine. PMID:27158228

  12. Wide-Range Tunable Fluorescence Lifetime and Ultrabright Luminescence of Eu-Grafted Plasmonic Core-Shell Nanoparticles for Multiplexing.

    PubMed

    Zhang, Jun; Song, Feng; He, Zhubing; Liu, Yanling; Chen, Zhanyao; Lin, Shangxin; Huang, Ling; Huang, Wei

    2016-01-20

    Wide-range, well-separated, and tunable lifetime nanocomposites with ultrabright fluorescence are highly desirable for applications in optical multiplexing such as multiplexed biological detection, data storage, and security printing. Here, a synthesis of tunable fluorescence lifetime nanocomposites is reported featuring europium chelate grafted onto the surface of plasmonic core-shell nanoparticles, and systematically investigated their optical performance. In a single red color emission channel, more than 12 distinct fluorescence lifetime populations with high fluorescence efficiency (up to 73%) are reported. The fluorescence lifetime of Eu-grafted core-shell nanoparticles exhibits a wider tunable range, possesses larger lifetime interval and is more sensitive to separation distance than that of ordinary Eu-doping core-shell type. These superior performances are attributed to the unique nanostructure of Eu-grafed type. In addition, these as-prepared nanocomposites are used for security printing to demonstrate optical multiplexing applications. The optical multiplexing experiments show an interesting pseudo-information "a rabbit in a well" and conceal the real message "NKU." PMID:26618616

  13. Hyperspectral Fluorescence and Reflectance Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey

    2008-01-01

    The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete

  14. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    PubMed Central

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.

    2012-01-01

    Abstract. We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation. PMID:22559690

  15. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.; Gratton, Enrico

    2012-04-01

    We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.

  16. Electrogenerated Chemiluminescence and Fluorescence Lifetime Spatial Heterogeneity of Poly (2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene) in Presence of [6,6]-phenyl-C61-butyric Acid Methyl Ester

    SciTech Connect

    Geng, Hongwei; Pan, Shanlin; Hu, Dehong

    2013-04-01

    In this paper, we studied the luminescence property and fluorescence lifetime mapping of MEH-PPV/PCBM system by using electrogenerated chemiluminescence (ECL) and time-correlated single photo counting (TC-SPC) technologies. The ECL results showed that the oxidation peak of MEH-PPV near 0.7 V (vs. SCE) and ECL response of films shifted positively towards 1.2 V when in the presence of PCBM. At the same time, the oxidation peak current density of MEH-PPV increases while the ECL response decreased with the loading of PCBM in the composite films. The fluorescence lifetime images clearly show that the lifetime fluctuation is effected by different substrates and MEH-PPV/PCBM ratios. Meanwhile, the lifetime of MEH-PPV decreases with the increasing of film thickness. The lifetimes of MEH-PPV films on TiO2 substrate are lower than them of films on cover slips.

  17. Fluorescence imaging using synthetic GFP chromophores.

    PubMed

    Walker, Christopher L; Lukyanov, Konstantin A; Yampolsky, Ilia V; Mishin, Alexander S; Bommarius, Andreas S; Duraj-Thatte, Anna M; Azizi, Bahareh; Tolbert, Laren M; Solntsev, Kyril M

    2015-08-01

    Green fluorescent protein and related proteins carry chromophores formed within the protein from their own amino acids. Corresponding synthetic compounds are non-fluorescent in solution due to photoinduced isomerization of the benzylideneimidiazolidinone core. Restriction of this internal rotation by binding to host molecules leads to pronounced, up to three orders of magnitude, increase of fluorescence intensity. This property allows using GFP chromophore analogs as fluorogenic dyes to detect metal ions, proteins, nucleic acids, and other hosts. For example, RNA aptamer named Spinach, which binds to and activates fluorescence of some GFP chromophores, was proved to be a unique label for live-cell imaging of specific RNAs, endogenous metabolites and target proteins. Chemically locked GFP chromophores are brightly fluorescent and represent potentially useful dyes due to their small size and high water solubility. PMID:26117808

  18. Laser-induced fluorescence imaging of bacteria

    NASA Astrophysics Data System (ADS)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  19. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  20. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  1. Frequency-domain fluorescence lifetime measurements via frequency segmentation and recombination as applied to pyrene with dissolved humic materials.

    PubMed

    Marwani, Hadi M; Lowry, Mark; Xing, Baoshan; Warner, Isiah M; Cook, Robert L

    2009-01-01

    In this study, the association behavior of pyrene with different dissolved humic materials (DHM) was investigated utilizing the recently developed segmented frequency-domain fluorescence lifetime method. The humic materials involved in this study consisted of three commercially available International Humic Substances Society standards (Suwannee River fulvic acid reference, SRFAR, Leonardite humic acid standard, LHAS, and Florida peat humic acid standard, FPHAS), the peat derived Amherst humic acid (AHA), and a chemically bleached Amherst humic acid (BAHA). It was found that the three commercial humic materials displayed three lifetime components, while both Amherst samples displayed only two lifetime components. In addition, it was found that the chemical bleaching procedure preferentially removed red wavelength emitting fluorophores from AHA. In regards to pyrene association with the DHM, different behavior was found for all commercially available humics, while AHA and BAHA, which displayed strikingly similar behavior in terms of fluorescence lifetimes. It was also found that there was an enhancement of pyrene's measured lifetime (combined with a decrease in pyrene emission) in the presence of FPHAS. The implications of this long lifetime are discussed in terms of (1) quenching mechanism and (2) use of the fluorescence quenching method used to determine the binding of compounds to DHM. PMID:18546063

  2. Effect of relaxation processes on fluorescence lifetime and polarization characteristics of rhodamine 6G in glycerol

    SciTech Connect

    Levshin, L.V.; Struganova, I.A.; Tolevtaev, B.N.

    1986-11-01

    Some new phenomena which can be attributed to the relaxation kinetics of the distribution halfwidth over the 0-0 frequencies for organic dye solutions have been discovered in the present work. The kinetic and polarization characteristics of flourescence from the viscous dipolar solutions of the dyes exhibiting dynamic inhomogeneous broadening upon excitation near the absorption band center have been studied. The objects of the study are rhodamine 6G solutions in glycerol and ethanol at the concentration 10/sup -//sub 6/ mole/liter. It was concluded that the presence of the dip in the flourescence lifetime and the hump in the fluorescence polarization dependences on emission wavelength in the viscous dipolar solution of rhodamine 6G has been detected. The phenomena have been explained by the formation of the excited-state nonequilibrium distribution of the flourescence centers over the 0-0 transition frequencies upon monochromatic excitation and by the subsequent relaxation of the nonequilibrium distribution into the equilibrium one.

  3. Fluorescence imaging of early lung cancer

    NASA Astrophysics Data System (ADS)

    Lam, Stephen; MacAulay, Calum E.; Le Riche, Jean C.; Ikeda, Norihiko; Palcic, Branko

    1995-01-01

    The performance of a fluorescence imaging device was compared with conventional white-light bronchoscopy in 100 patients with lung cancer, 46 patients with resected State I nonsmall cell lung cancer, 10 patients with head and neck cancer, and 67 volunteers who had smoked at least one pack of cigarettes per day for twenty-five years or more. Using differences in tissue autofluorescence between premalignant, malignant and normal tissues, fluorescence bronchoscopy was found to detect more than twice as many moderate-severe dysplasia and carcinoma in situ sites than conventional white-light bronchoscopy. The use of fluorescence imaging to detect small peripheral lung nodules was investigated in a micro metastatic lung model of mice implanted with Lewis lung tumor cells. Fluorescence imaging was found to be able to detect small malignant lung lesions. The use of (delta) -aminolevulinic acid (ALA) to enhance fluorescence detection of CIS was investigated in a patient after oral administration of 60 mg/kg of ALA four hours prior to bronchoscopy, although ALA enhanced the tumor's visibility, multiple sites of false positive fluorescence were observed in areas of inflammation or metaplasia.

  4. Estimation of the fluorescence lifetime for optically inaccessible exciplexes in nonpolar solutions under ionizing irradiation.

    PubMed

    Melnikov, Anatoly R; Kalneus, Evgeny V; Korolev, Valeri V; Sherin, Peter S; Borovkov, Vsevolod I; Stass, Dmitri V

    2016-06-01

    X-irradiation of nonpolar solutions likely provides a possibility to create exciplexes for any donor-acceptor pair that would energetically and sterically allow this. Thorough study and characterization of X-radiation generated exciplexes usually cannot be carried out with conventional methods because of the complex and non-exponential formation and decay dynamics of these species. In this paper, we present a simple and universal experimental approach for the estimation of fluorescence lifetimes (τF) of X-radiation generated exciplexes. The suggested procedure is based on the comparison of quenching of the exciplex emission band and the emission band from a standard luminophore with a known excited state lifetime by dissolved oxygen. Using this approach we report the τF values for two systems with optically inaccessible exciplexes, diphenylacetylene-N,N-dimethylaniline (DMA) and p-terphenyl-DMA, and for two typical exciplex forming systems, naphthalene-DMA and anthracene-DMA. All the found τF values for the X-radiation generated exciplexes lie in the range of 50-70 ns. The accuracy of this approach was checked by time-resolved measurements under X- or near-UV irradiation for those pairs, whose properties make this feasible. The proposed method gives a possibility to avoid a complex numerical evaluation of the non-exponential kinetics of recombination luminescence, and can be used to estimate the characteristic τF values for luminophores and excited complexes formed under X-radiation. PMID:27142284

  5. High-efficiency and long-lifetime fluorescent blue organic-emitting device

    NASA Astrophysics Data System (ADS)

    Ho, Yu-Hsuan; Lin, Tien-Chun; Wu, Chia-Fang; Lee, Jiun-Haw

    2006-08-01

    In this paper, We have demonstrated a blue fluorescent organic light-emitting device (OLED) with a current efficiency of 19.2 cd/A at 100 cd/m2, an estimated half-lifetime of 15611 hours at an initial luminance of 1000 cd/m2, and a voltage of 4.9 V at 20 mA/cm2 with a high electron mobility electron transport layer (ETL) material and high efficiency dopant material. The external quantum efficiency (EQE) in this optimized OLED is 8.32%, which is very close to the theoretical limit. Carrier balance condition is achieved due to the incorporation of the high mobility ETL, bis(10- hydroxyben-zo[h]quinolinato)beryllium (Bebq2), which can not only effectively increase the current efficiency and elongate the operation lifetime, but also reduce the driving voltage and increase the power efficiency. The EML consisted of 4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl (DPAVBi) as the blue dopant and 9,10-bis(2'- naphthyl) anthracene (ADN) as the matrix. We found that the dopant concentration of DPAVBi did not affect the mobility value of the EML which is consistent with the J-V characteristics. Besides, although it is believed the bulk ADN is a kind of HTL materials, we found the electron mobility of ADN is one order of magnitude higher than its hole mobility in our blue OLEDs.

  6. Light emitting diode-based nanosecond ultraviolet light source for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Araki, Tsutomu; Misawa, Hiroaki

    1995-12-01

    A compact pulsed-light source is devised from an InGaN/AlGaN double heterostructure light-emitting diode (LED). The LED emits a 450-nm (blue) light under conventional dc operation below 30 mA. When a current larger than 50 mA is applied, the intensity of the 450-nm light saturates, but that of the 380-nm light due to the InGaN component continues to increase. This phenomenon is utilized to realize a nanosecond ultraviolet (UV) light source. Under repetitive, large current pulsing (frequency=10 kHz, pulse width=4 ns, peak current=2 A), the peak LED emission shifts from 450 to 380 nm. Intense light pulses (peak value=40 mW) of 4-ns duration were generated. To evaluate the potential of the pulsed LED as an excitation source, the fluorescence lifetime of a quinine-sulfate solution was measured. The observed lifetime characteristics agreed well with the generally accepted behavior.

  7. Nonlinear greedy sparsity-constrained algorithm for direct reconstruction of fluorescence molecular lifetime tomography

    PubMed Central

    Cai, Chuangjian; Zhang, Lin; Cai, Wenjuan; Zhang, Dong; Lv, Yanlu; Luo, Jianwen

    2016-01-01

    In order to improve the spatial resolution of time-domain (TD) fluorescence molecular lifetime tomography (FMLT), an accelerated nonlinear orthogonal matching pursuit (ANOMP) algorithm is proposed. As a kind of nonlinear greedy sparsity-constrained methods, ANOMP can find an approximate solution of L0 minimization problem. ANOMP consists of two parts, i.e., the outer iterations and the inner iterations. Each outer iteration selects multiple elements to expand the support set of the inverse lifetime based on the gradients of a mismatch error. The inner iterations obtain an intermediate estimate based on the support set estimated in the outer iterations. The stopping criterion for the outer iterations is based on the stability of the maximum reconstructed values and is robust for problems with targets at different edge-to-edge distances (EEDs). Phantom experiments with two fluorophores at different EEDs and in vivo mouse experiments demonstrate that ANOMP can provide high quantification accuracy, even if the EED is relatively small, and high resolution. PMID:27446648

  8. Fluorescence imaging in the last two decades

    PubMed Central

    Miyawaki, Atsushi

    2013-01-01

    In commemoration of the 20th anniversary of the molecular cloning of the gene for the green fluorescent protein from the jellyfish Aequorea victoria, I would like to reflect on the development of new fluorescence imaging technology in the last two decades. As this technology has become increasingly diversified, it has become more and more of a challenge to come up with a comprehensive and exhaustive review of it. Here I will focus on optogenetics and large-scale, three-dimensional reconstruction. Those two technological innovations have been achieved in the neuroscience community owing to the combined efforts of molecular biologists and light microscopists. In addition, modern fluorescence imaging has indeed improved our understanding of the spatiotemporal regulation of fundamental biological functions at cellular level. As an example, I will introduce some findings we made regarding the movement of biomolecules across the nuclear membrane. The above-mentioned imaging approaches are possible today but were impossible two decades ago. PMID:23393311

  9. ICG fluorescence imaging and its medical applications

    NASA Astrophysics Data System (ADS)

    Miwa, Mitsuharu; Shikayama, Takahiro

    2008-12-01

    This paper presents a novel optical angiography system, and introduces its medical applications. We developed the optical enhanced imaging system which can observe the blood and lymphatic vessels as the Indocyanine green (ICG) fluorescence image. The imaging system consists of 760nm light emitted diode (LED) as excite light, CCD camera as a detector, a high-pass optical filter in front of the CCD and video processing system. The advantage of ICG fluorescence method is safe (radiation free), high sensitive, real time monitoring of blood and/or lymphatic flow, small size, easy to operate and cost effective compared to conventional X-ray angiography or scintigraphy. We have applied this method to several clinical applications such as breast cancer sentinel lymph node (SLN) navigation, lymph edema diagnostic and identification of liver segmentation. In each application, ICG fluorescence method shows useful result. It's indicated that this method is promising technique as optical angiography.

  10. Optimized streak-camera system: wide excitation range and extended time scale for fluorescence lifetime measurement

    NASA Astrophysics Data System (ADS)

    Graf, Urs; Buehler, Christof; Betz, Michael; Zuber, Herbert; Anliker, M.

    1994-08-01

    A new versatile system for the measurement of time-resolved fluorescence emission spectra of biomolecules is presented. Frequency doubling and tripling of a Ti:Sapphire laser allows excitation over a wide wavelength range. The influence of increasing the spectral resolution on the time resolution has been investigated. System performance can be optimized for best resolution in the spectral or time domain, respectively. System performance can be optimized for best resolution in the spectral or time domain, respectively. The currently achieved temporal resolution is 6 psec, and the best spectral resolution is 3 nm. Long fluorescence decays can be resolved with optimal time resolution by way of taking into account the flyback of the streak camera. With the system described, the core complex ((alpha) (beta) )3APCLC8.9 of the phycobilisome from the photosynthetic cyanobacteria Mastigocladus laminosus has been analyzed. Lifetime analysis clearly demonstrated the influence of the linker polypeptide on the phycobiliprotein complex and the identity of native and reconstituted complex.

  11. Fluorescence lifetimes of anthracycline drugs in phospholipid bilayers determined by frequency-domain fluorometry

    NASA Astrophysics Data System (ADS)

    Burke, Thomas G.; Malak, Henryk M.; Doroshow, James H.

    1990-05-01

    Time-resolved fluorescence intensity decay data from anthracycline anticancer drugs present in model membranes were obtained using a gigahertz frequency-domain fluorometer [Lakowicz et al. (1986) Rev. Sci. Instrum. 57, 2499-2506]. Exciting light of 290 nm, modulated at multiple frequencies from 8 MHz to 400 MHz, was used to study the interactions of Adriamycin, daunomycin and related antibiotics with small unilamellar vesicles composed of dimyristoylphosphatidylcholine (DMPC) at 28°C. Fluorescence decay data for drug molecules free in solution as well as bound to membranes were best fit by exponentials requiring two terms rather than by single exponential decays. For example, one-component analysis of the decay data for Adriamycin free in phosphate buffered saline (PBS) solution resulted in a reduced x2 value of 140 ((tau) = 0.88 ns), while a two-component fit resulted in a substantially smaller reduced x2 value of 2.6 ((tau)1 = 1.13 ns, (alpha)1 = 0.60, (tau)2 = 0.30 ns). Upon association with membranes, each of the anthracyclines studied displayed a larger r1 value while the r2 value remained the same or increased (for example, DMPC-bound Adriamycin showed r1 = 1.68 ns , a1 = 0 . 64 , r2 = 0 . 33 ns) . Analyses of the fluorescence emission decays of anthracyclines were also made assuming each decay is composed of a single Lorentzian distribution of lifetimes. Data taken on Adriamycin in PBS, when fit using one continuous component, displayed (tau), (alpha), w, and reduced x2 values of 0.68 ns, 1, 0.60 ns, and 9.1, respectively. The distribution became quite broad upon drug association with membrane (DMPCbound Adriamycin: (tau) = 0.75 ns, (alpha) = 1, w = 2.24 ns, x2 = 13). For each anthracycline studied, continuous component fits showed significant broadening in the distributions upon drug association with membrane. Relatively large shifts in lifetime values were observed for the carminomycin and 4-demethoxydaunomycin analogues upon binding model lipid membranes

  12. Two photon fluorescence imaging of lipid membrane domains and potentials using advanced fluorescent probes

    NASA Astrophysics Data System (ADS)

    Kilin, Vasyl; Darwich, Zeinab; Richert, Ludovic; Didier, Pascal; Klymchenko, Andrey; Mély, Yves

    2013-02-01

    Biomembranes are ordered and dynamic nanoscale structures critical for cell functions. The biological functions of the membranes strongly depend on their physicochemical properties, such as electrostatics, phase state, viscosity, polarity and hydration. These properties are essential for the membrane structure and the proper folding and function of membrane proteins. To monitor these properties, fluorescence techniques and notably, two-photon microscopy appear highly suited due to their exquisite sensitivity and their capability to operate in complex biological systems, such as living cells and tissues. In this context, we have developed multiparametric environment-sensitive fluorescent probes tailored for precise location in the membrane bilayer. We notably developed probes of the 3-hydroxychromone family, characterized by an excited state intramolecular proton transfer reaction, which generates two tautomeric emissive species with well-separated emission bands. As a consequence, the response of these probes to changes in their environment could be monitored through changes in the ratios of the two bands, as well as through changes in the fluorescence lifetimes. Using two-photon ratiometric imaging and FLIM, these probes were used to monitor the surface membrane potential, and were applied to detect apoptotic cells and image membrane domains.

  13. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  14. Fluorescence lifetime imaging of induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Batista, Ana; König, Karsten

    2014-02-01

    The multiphoton FLIM tomograph MPTflex with its flexible scan head, articulated arm, and the tunable femtosecond laser source was employed to study cell monolayers and 3D cell clusters. FLIM was performed with 250 ps temporal resolution and submicron special resolution using time-correlated single photon counting. The autofluorescence based on NAD(P)H and flavins/flavoproteins has been measured in mouse embryonic fibroblasts, induced pluripotent stem cells (iPS cells) originated from mouse embryonic fibroblasts and non-proliferative mouse embryonic fibroblasts.

  15. Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection.

    PubMed

    Bouccara, Sophie; Fragola, Alexandra; Giovanelli, Emerson; Sitbon, Gary; Lequeux, Nicolas; Pons, Thomas; Loriette, Vincent

    2014-05-01

    Fluorescence imaging is a promising technique for the detection of individual cell migration. Its sensitivity is, however, limited by a high tissue autofluorescence and a poor visible light penetration depth. In order to solve this problem, the fluorescence signal peak wavelength should lie in an absorption and diffusion free region and should be distinguishable, either spectrally or temporally, from the autofluorescence background. We present, here, the synthesis and characterization of low toxicity Zn-Cu-In-Se/ZnS core/shell quantum dots. Their fluorescence emission wavelength peaks around 800 nm, where the absorption and scattering of tissues are minimal. They are coated with a new ligand, which yields small, stable, and bright individual probes in the live cell cytoplasm, even 48 h after the labeling. Furthermore, these near-infrared-emitting quantum dots have a long fluorescence lifetime component (around 150 ns) compared to autofluorescence (<5 ns). Taking the advantage of this property and coupling these probes to a time-gated detection, we demonstrate efficiently the discrimination between the signal and short lifetime fluorescence such as the autofluorescence. This technique is supported by a method we developed, to massively stain cells that preserves the quantum dot stability and brightness for 48 h. PMID:24395624

  16. Intraoperative imaging and fluorescence image guidance in oncologic surgery using a wearable fluorescence goggle system

    NASA Astrophysics Data System (ADS)

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liu, Yang; Sudlow, Gail P.; Akers, Walter J.; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-03-01

    We have developed a wearable, fluorescence goggle based system for intraoperative imaging of tumors and image guidance in oncologic surgery. Our system can detect fluorescence from cancer selective near infra-red (NIR) contrast agent, facilitating intraoperative visualization of surgical margins and tumors otherwise not apparent to the surgeon. The fluorescence information is displayed directly to the head mounted display (HMD) of the surgeon in real time, allowing unhindered surgical procedure under image guidance. This system has the potential of improving surgical outcomes in oncologic surgery and reduce the chances of cancer recurrence.

  17. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution

    NASA Astrophysics Data System (ADS)

    Betzig, Eric; Patterson, George H.; Sougrat, Rachid; Lindwasser, O. Wolf; Olenych, Scott; Bonifacino, Juan S.; Davidson, Michael W.; Lippincott-Schwartz, Jennifer; Hess, Harald F.

    2006-09-01

    We introduce a method for optically imaging intracellular proteins at nanometer spatial resolution. Numerous sparse subsets of photoactivatable fluorescent protein molecules were activated, localized (to ~2 to 25 nanometers), and then bleached. The aggregate position information from all subsets was then assembled into a superresolution image. We used this method-termed photoactivated localization microscopy-to image specific target proteins in thin sections of lysosomes and mitochondria; in fixed whole cells, we imaged vinculin at focal adhesions, actin within a lamellipodium, and the distribution of the retroviral protein Gag at the plasma membrane.

  18. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    SciTech Connect

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Marcu, Laura; Elson, Daniel S.

    2014-03-15

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  19. Fluorescent nanoparticle probes for imaging of cancer.

    PubMed

    Santra, Swadeshmukul; Malhotra, Astha

    2011-01-01

    Fluorescent nanoparticles (FNPs) have received immense popularity in cancer imaging in recent years because of their attractive optical properties. In comparison to traditional organic-based fluorescent dyes and fluorescent proteins, FNPs offer much improved sensitivity and photostability. FNPs in certain size range have a strong tendency to enter and retain in solid tumor tissue with abnormal (leaky) vasculature--a phenomenon known as Enhanced Permeation and Retention (EPR) effect, advancing their use for in vivo tumor imaging. Furthermore, large surface area of FNPs and their usual core-shell structure offer a platform for designing and fabricating multimodal/multifunctional nanoparticles (MMNPs). For effective cancer imaging, often the optical imaging modality is integrated with other nonoptical-based imaging modalities such as MRI, X-ray, and PET, thus creating multimodal nanoparticle (NP)-based imaging probes. Such multimodal NP probes can be further integrated with therapeutic drug as well as cancer targeting agent leading to multifunctional NPs. Biocompatibility of FNPs is an important criterion that must be seriously considered during FNP design. NP composition, size, and surface chemistry must be carefully selected to minimize potential toxicological consequences both in vitro and in vivo. In this article, we will mainly focus on three different types of FNPs: dye-loaded NPs, quantum dots (Qdots), and phosphores; briefly highlighting their potential use in translational research. PMID:21480546

  20. Noninvasive tumor oxygen imaging by photoacoustic lifetime imaging integrated with photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Biel, Merrill A.; Ashkenazi, Shai

    2014-03-01

    Oxygen plays a major role in cancer biology and tumor progression. In PDT, the reduction in efficacy is directly related to lack of oxygen because its molecular mechanism relies on oxygen as an energy mediator. Measuring tumor oxygenation can provide physicians with better diagnosis and optimization of treatment plans. However, clinical tools for directly assessing tissue oxygenation are limited. The gold standard is oxygen needle electrode, which is invasive and measures oxygen level at a single location. We present our work on developing a combined treatment-imaging modality that integrates PDT and photoacoustic oxygen imaging. We propose a system designed for clinical treatments of cancer of the oral cavity. Tissue oxygen imaging is performed by applying Photoacoustic Lifetime Imaging (PALI). This technology relies on photoacoustic probing of oxygen-dependent excitation lifetime of Methylene Blue. The dye is excited by the same wavelength of illumination source for PDT. Once excited, the population of photosensitizer molecules at triplet state has a lifetime depending on the oxygen level. The transition from excited triplet state to ground state can be probe by another laser, which generate photoacoustic signal that is used to map the lifetime. The lifetime map is then converted to pO2 distribution. We expect that PDT efficacy can be improved by applying PALI imaging feedback in real-time to determine, and individually optimize, O2-enriched gas breathing parameters and PDT light-dose during treatment. Successful implementation of PALI in PDT can also drive its application in guiding other cancer treatments that are affected by hypoxia.

  1. Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A. )

    1993-01-01

    A flow cytometric method has been developed that uses phase-sensitive detection to separate signals from simultaneous fluorescence emissions in cells labeled with fluorochromes having different fluorescence decay lifetimes. CHO cells were stained with propidium iodide (PI) and fluorescein isothiocyanate (FITC). These dyes bind to DNA and protein and the fluorescence lifetimes of the bound dyes are 15.0 and 3.6 ns, respectively. Cells were analyzed as they passed through a modulated (sinusoidal) laser excitation beam. Fluorescence was measured using only a long-pass filter to block scattered laser excitation light and a single photomultiplier tube detector. The fluorescence detector output signals were processed by dual-channel phase-sensitive detection electronics and the phase-resolved PI and FITC signals were displayed as frequency distribution histograms and bivariate plots. By shifting the phase of one detector channel reference signal by [pi]/2 + [phi][sub 1] degrees and the phase of the other detector channel reference signal by -[pi]/2 + [phi][sub 2] degrees, where [phi][sub 1] and [phi][sub 2] are the phase shifts associated with the PI and FITC lifetimes, the PI and FITC signals were separately resolved at their respective phase-sensitive detector outputs. This technology is also applicable to suppressing by cellular autofluorescence, unbound/free dye, nonspecific dye binding, and Raman and Rayleigh scattering. 21 refs., 2 figs.

  2. Investigation of Fluorescence Lifetime Quenching of Ru(bpy)[subscript 3][superscript 2+] by Oxygen Using a Pulsed Light-Emitting Diode

    ERIC Educational Resources Information Center

    Rusak, David A.; James, William H., III; Ferzola, Maria J.; Stefanski, Michael J.

    2006-01-01

    An experiment related to the measurement of fluorescence lifetime for an undergraduate instrumental analysis or physical chemistry laboratory that highlights relative rates of electronic transitions in molecules and introduces students to data collection of a pulsed signal is illustrated. The experiment of the long fluorescence lifetime of…

  3. Hyperspectral confocal fluorescence imaging of cells

    NASA Astrophysics Data System (ADS)

    Haaland, David M.; Jones, Howland D. T.; Sinclair, Michael B.; Carson, Bryan; Branda, Catherine; Poschet, Jens F.; Rebeil, Roberto; Tian, Bing; Liu, Ping; Brasier, Allan R.

    2007-09-01

    Confocal fluorescence imaging of biological systems is an important method by which researchers can investigate molecular processes occurring in live cells. We have developed a new 3D hyperspectral confocal fluorescence microscope that can further enhance the usefulness of fluorescence microscopy in studying biological systems. The new microscope can increase the information content obtained from the image since, at each voxel, the microscope records 512 wavelengths from the emission spectrum (490 to 800 nm) while providing optical sectioning of samples with diffraction-limited spatial resolution. When coupled with multivariate curve resolution (MCR) analyses, the microscope can resolve multiple spatially and spectrally overlapped emission components, thereby greatly increasing the number of fluorescent labels, relative to most commercial microscopes, that can be monitored simultaneously. The MCR algorithm allows the "discovery" of all emitting sources and estimation of their relative concentrations without cross talk, including those emission sources that might not have been expected in the imaged cells. In this work, we have used the new microscope to obtain time-resolved hyperspectral images of cellular processes. We have quantitatively monitored the translocation of the GFP-labeled RelA protein (without interference from autofluorescence) into and out of the nucleus of live HeLa cells in response to continuous stimulation by the cytokine, TNFα. These studies have been extended to imaging live mouse macrophage cells with YFP-labeled RelA and GFP-labeled IRF3 protein. Hyperspectral imaging coupled with MCR analysis makes possible, for the first time, quantitative analysis of GFP, YFP, and autofluorescence without concern for cross-talk between emission sources. The significant power and quantitative capabilities of the new hyperspectral imaging system are further demonstrated with the imaging of a simple fluorescence dye (SYTO 13) traditionally used to stain the

  4. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    NASA Astrophysics Data System (ADS)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  5. Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy

    PubMed Central

    Min, Wei; Freudiger, Christian W.; Lu, Sijia; Xie, X. Sunney

    2012-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy, including stimulated Raman scattering and two photon absorption, and pump-probe microscopy, including stimulated emission, excited state absorption and ground state depletion, provide distinct and powerful image contrasts for non-fluorescent species. Thanks to high-frequency modulation transfer scheme, they exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles, excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  6. Fluorescent metal nanoshell and CK19 detection on single cell image

    SciTech Connect

    Zhang, Jian; Fu, Yi; Li, Ge; Lakowicz, Joseph R.; Zhao, Richard Y.

    2011-09-16

    Highlights: {yields} Novel metal nanoshell as fluorescence imaging agent. {yields} Fluorescent mAb-metal complex with enhanced intensity and shortened lifetime. {yields} Immuno-interactions of mAb-metal complexes with CK19 molecules on CNCAP and HeLa cell surfaces. {yields} Isolation of conjugated mAb-metal complexes from cellular autofluorescence on cell image. -- Abstract: In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10 nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.

  7. Fluorescence labeled microbubbles for multimodal imaging.

    PubMed

    Barrefelt, Åsa; Zhao, Ying; Larsson, Malin K; Egri, Gabriella; Kuiper, Raoul V; Hamm, Jörg; Saghafian, Maryam; Caidahl, Kenneth; Brismar, Torkel B; Aspelin, Peter; Heuchel, Rainer; Muhammed, Mamoun; Dähne, Lars; Hassan, Moustapha

    2015-08-28

    Air-filled polyvinyl alcohol microbubbles (PVA-MBs) were recently introduced as a contrast agent for ultrasound imaging. In the present study, we explore the possibility of extending their application in multimodal imaging by labeling them with a near infrared (NIR) fluorophore, VivoTag-680. PVA-MBs were injected intravenously into FVB/N female mice and their dynamic biodistribution over 24 h was determined by 3D-fluorescence imaging co-registered with 3D-μCT imaging, to verify the anatomic location. To further confirm the biodistribution results from in vivo imaging, organs were removed and examined histologically using bright field and fluorescence microscopy. Fluorescence imaging detected PVA-MB accumulation in the lungs within the first 30 min post-injection. Redistribution to a low extent was observed in liver and kidneys at 4 h, and to a high extent mainly in the liver and spleen at 24 h. Histology confirmed PVA-MB localization in lung capillaries and macrophages. In the liver, they were associated with Kupffer cells; in the spleen, they were located mostly within the marginal-zone. Occasional MBs were observed in the kidney glomeruli and interstitium. The potential application of PVA-MBs as a contrast agent was also studied using ultrasound (US) imaging in subcutaneous and orthotopic pancreatic cancer mouse models, to visualize blood flow within the tumor mass. In conclusion, this study showed that PVA-MBs are useful as a contrast agent for multimodal imaging. PMID:26187672

  8. Temporal resolution in fluorescence imaging

    PubMed Central

    Mondal, Partha Pratim

    2014-01-01

    Temporal resolution is a key factor for imaging rapidly occurring events in biology. In this feature article, I investigate an approximate estimate for determining the temporal resolution limit. The condition that led to this limit is, the time taken by the ensemble (99.9%) of excited molecules to relax to ground state, assuming all the emitted photons are detected. In a simplistic three-level system, the temporal resolution is, ≈3τp, where τp = (loge10)/(kf + knr) and, kf and knr are respectively the radiative and non-radiative emission rates. This further assumes the ideal condition that, the quantum efficiency of the detector is unity and there are no other loses. We discuss few state-of-art microscopy techniques that are capable of high temporal resolution. This includes techniques such as multifocal multiphoton microscopy (MMM), multifocal plane microscopy, multiple excitation spot optical microscopy (MESO), multiplane microscopy and multiple light-sheet microscopy (MLSM). PMID:25988152

  9. Hyperspectral fluorescence lifetime fibre probe spectroscopy for use in the study and diagnosis of osteoarthritis and skin cancer

    NASA Astrophysics Data System (ADS)

    Thompson, Alex; Manning, Hugh; Brydegaard, Mikkel; Coda, Sergio; Kennedy, Gordon; Patalay, Rakesh; Waitong-Braemming, Ulrika; De Beule, Pieter; Neil, Mark; Andersson-Engels, Stefan; Itoh, Yoshifumi; Bendsøe, Niels; Dunsby, Christopher; Svanberg, Katarina; French, Paul M.

    2011-03-01

    We present the application of two fibre-optic-coupled time-resolved spectrofluorometers and a compact steady-state diffuse reflected light/fluorescence spectrometer to in vivo and ex vivo studies of skin cancer and osteoarthritis. In a clinical study of skin cancer, 27 lesions on 25 patients were investigated in vivo before surgical excision of the region measured. Preliminary analysis reveals a statistically significant decrease in the autofluorescence lifetime of basal cell carcinomas compared to neighbouring healthy tissue. A study of autofluorescence signals associated with the onset of osteoarthritis indicates autofluorescence lifetime changes associated with collagen degradation.

  10. Application of multiphoton steady state and lifetime imaging to mapping of tumor vascular architecture in vivo

    NASA Astrophysics Data System (ADS)

    Ameer-Beg, Simon; Barber, Paul R.; Hodgkiss, R. J.; Locke, R. J.; Newman, Robert G.; Tozer, Gillian M.; Vojnovic, Borivoj; Wilson, J.

    2002-06-01

    Recent interest in vascular targeting and anti-angiogenic drug treatments for cancer has stimulated fundamental research regarding the modes of action of these drugs as well as studies of the development and re-modeling of the vascular network following treatment. Multiphoton fluorescence microscopy is employed for in vivo mapping of three-dimensional blood vessel distribution in tumors grown in rodent dorsal skin-flap window chamber preparations. Accurate visualization of the vasculature in three-dimensions allows us to perform dynamic experiments in thick biological specimens in vivo. Examples of in vivo imaging of tumor vasculature are given and compared to normal tissue vasculature. The dynamic responses of blood vessels to treatment with the vascular targeting drug combretastatin A4-P are presented and discussed. The implementation of time-domain imaging by reversed stop-start time-correlated single photon counting (RSS-TCSPC) is discussed as a method for feature extraction in the presence of exogenous and endogenous fluorophores. In particular, the segmentation of the vascular network is demonstrated. Additional contrast, indicative of probe environmental factors, may also be realized. We present examples of in vivo lifetime imaging as a method to elucidate the physiological processes of the tumor microenvironment.

  11. Radiometric calibration to consider in quantitative clinical fluorescence imaging measurements

    NASA Astrophysics Data System (ADS)

    Litorja, M.; Urbas, A.; Zong, Y.

    2015-03-01

    The fluorescent light detected by a clinical imager is assumed to be proportional only to the amount of fluorescent substance present in the sample and the level of excitation. Unfortunately, there are many factors that can add or subtract to the light signal directly attributable to the desired fluorescence emission, especially with fluorescence from inside the body imaged remotely. The quantification of fluorescence emission is feasible by calibrating the imager using international system of units (SI)-traceable physical and material calibration artifacts such that the detector's digital numbers (DN) can be converted to radiometric units. Here we discuss three calibration methods for quantitative clinical fluorescence imaging systems.

  12. Multispectral fluorescence imaging device for malignancy detection

    NASA Astrophysics Data System (ADS)

    Bocher, Thomas; Luhmann, Till; Baier, S.; Dierolf, Marc; Naumann, M.; Beuthan, Juergen; Berlien, Hans-Peter; Mueller, Gerhard J.

    1997-12-01

    In medical diagnosis of superficial lesions at inner or outer surfaces of the human body fluorescence imaging techniques are able to deliver additional information on the metabolic and structural state of the observed tissue. To subtract background fluorescence and to achieve a differential diagnosis a multispectral analysis in several wavelength windows is needed. Additionally, special image algorithms have to be applied which depend on the examined malignancy. For this purpose a multispectral fluorescence imaging device was developed. It can be used both endoscopically and in combination with a standard operational microscope from Carl Zeiss, Germany. In this paper, the device and first clinical results are presented. The device was built to detect superficial lesions like tumors, inflammations, etc. Target chromophores are NADH, Protoporphyrin IX, collagen and other. The measured optical bands are (405 plus or minus 5) nm, (442 plus or minus 5) nm, (458 plus or minus 5) nm, (550 plus or minus 5) nm, (630 plus or minus 5) nm and (690 plus or minus 5) nm. A special UV-source with a liquid light guide is used as the illumination source in two excitation bands of (365 plus or minus 10) nm and (420 plus or minus 20) nm. First clinical investigations of superficial malignancies like squamous cell carcinoma and basalioma are presented.

  13. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The

  14. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  15. Simultaneous high-speed measurement of temperature and lifetime-corrected OH laser-induced fluorescence in unsteady flames.

    PubMed

    Meyer, Terrence R; King, Galen B; Gluesenkamp, Matthew; Gord, James R

    2007-08-01

    A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80 MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2 ps) for Rayleigh-scattering thermometry at 460 nm and lifetime-corrected OH LIF at 306.5 nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown. PMID:17671590

  16. Design and characterization of a pulsed x-ray source for fluorescent lifetime measurements

    SciTech Connect

    Blankespoor, S.C. |

    1993-12-01

    To search for new, fast, inorganic scintillators, the author and his colleagues have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 HA maximum average cathode current. The laser produces 3 {times} 10{sup 7} photons at 650 nm per {approximately}100 ps pulse, with up to 10{sup 7} pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray photon energy, at tube biases of 20, 25, and 30 kV, is 9.4, 10.3, and 11.1 keV, respectively. They measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 {times} 10{sup 6} and 3 {times} 10{sup 6} photons/sec/steradian at tube biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented.

  17. Fluorescence confocal endomicroscopy in biological imaging

    NASA Astrophysics Data System (ADS)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of <1mm diameter to transfer the confocal imaging plane to tissue in intact small animal organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and

  18. In Vivo Fluorescence Reflectance Imaging with Subcutaneous Mouse Tumor Models.

    PubMed

    Cao, Jie; Zhou, Mingzhou

    2016-01-01

    Optical imaging is undoubtedly one of the most versatile and widely used imaging techniques in both research and clinical practice. Among optical imaging technologies, fluorescence imaging is the most popularly used and has become an essential tool in biomedical science. A key component of fluorescence imaging is fluorescence-producing reporters, including fluorescent dyes and conjugates, as well as fluorescent proteins. For in vivo imaging applications, fluorophores with long emission at the near-infrared (NIR) region are generally preferred to overcome the photon attenuation in living tissue. Here, we describe the in vivo fluorescence imaging of an integrin αυβ3 targeted NIR fluorescent probe (cRGD-ICG-Der-02) using subcutaneous mouse tumor models. PMID:27283414

  19. Picosecond planar laser-induced fluorescence measurements of OH A 2 ( 2) lifetime and energy transfer in atmospheric pressure flames

    NASA Astrophysics Data System (ADS)

    Bormann, Frank C.; Nielsen, Tim; Burrows, Michael; Andresen, Peter

    1997-08-01

    A picosecond, excimer-Raman laser (268 nm, 400 ps FWHM) was used for laser sheet excitation of OH in the (2, 0) band. The fluorescence was detected with a fast-gated, intensified camera (400-ps gate width). The effective collisional lifetime of the spectrally integrated fluorescence was measured in two dimensions by shifting the intensifier gate across the decay curve. The average lifetime is 2.0 ns for a stoichiometric methane air flame with spatial variations of 10 . Shorter collisional lifetimes were measured for rich flame conditions that are due to a higher number density of the quenchers. Vibrational energy transfer (VET) was observed in premixed methane air and methane oxygen flames by putting the fast-gated camera behind a spectrometer. The spectrum of the methane air flame shows strong VET in contrast with the methane oxygen flame. This is because N 2 is a weak electronic quencher but a strong VET agent. By fitting the measured time dependence of the different vibrational populations ( 2, 1, 0) to a four-level model, rate constants for quenching and VET were determined. For the lower states ( 0, 1) our results are in good agreement with literature values. For a prediction of a spectrally integrated, collisional lifetime in a known collisional environment it is important to consider not only the quenching but also the amount of energy transfer in the excited state as well as the spectral detection sensitivity.

  20. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    SciTech Connect

    Yuan, C. T. Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-12-21

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution.

  1. Fluorescence imaging to quantify crop residue cover

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.

    1994-01-01

    Crop residues, the portion of the crop left in the field after harvest, can be an important management factor in controlling soil erosion. Methods to quantify residue cover are needed that are rapid, accurate, and objective. Scenes with known amounts of crop residue were illuminated with long wave ultraviolet (UV) radiation and fluorescence images were recorded with an intensified video camera fitted with a 453 to 488 nm band pass filter. A light colored soil and a dark colored soil were used as background for the weathered soybean stems. Residue cover was determined by counting the proportion of the pixels in the image with fluorescence values greater than a threshold. Soil pixels had the lowest gray levels in the images. The values of the soybean residue pixels spanned nearly the full range of the 8-bit video data. Classification accuracies typically were within 3(absolute units) of measured cover values. Video imaging can provide an intuitive understanding of the fraction of the soil covered by residue.

  2. Characterization of a New Series of Fluorescent Probes for Imaging Membrane Order

    PubMed Central

    Abu-Siniyeh, Ahmed; Yan, Ping; Loew, Leslie M.; Gaus, Katharina

    2013-01-01

    Visualization and quantification of lipid order is an important tool in membrane biophysics and cell biology, but the availability of environmentally sensitive fluorescent membrane probes is limited. Here, we present the characterization of the novel fluorescent dyes PY3304, PY3174 and PY3184, whose fluorescence properties are sensitive to membrane lipid order. In artificial bilayers, the fluorescence emission spectra are red-shifted between the liquid-ordered and liquid-disordered phases. Using ratiometric imaging we demonstrate that the degree of membrane order can be quantitatively determined in artificial liposomes as well as live cells and intact, live zebrafish embryos. Finally, we show that the fluorescence lifetime of the dyes is also dependent on bilayer order. These probes expand the current palate of lipid order-sensing fluorophores affording greater flexibility in the excitation/emission wavelengths and possibly new opportunities in membrane biology. PMID:23390489

  3. Motion corrected photoacoustic difference imaging of fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Wagener, Asja; Pönick, Sarah; Grötzinger, Carsten; Zhang, Edward; Laufer, Jan

    2016-03-01

    In fluorophores, such as exogenous dyes and genetically expressed proteins, the excited state lifetime can be modulated using pump-probe excitation at wavelengths corresponding to the absorption and fluorescence spectra. Simultaneous pump-probe pulses induce stimulated emission (SE) which, in turn, modulates the thermalized energy, and hence the photoacoustic (PA) signal amplitude. For time-delayed pulses, by contrast, SE is suppressed. Since this is not observed in endogenous chromophores, the location of the fluorophore can be determined by subtracting images acquired using simultaneous and time-delayed pump-probe excitation. This simple experimental approach exploits a fluorophorespecific contrast mechanism, and has the potential to enable deep-tissue molecular imaging at fluences below the MPE. In this study, some of the challenges to its in vivo implementation are addressed. First, the PA signal amplitude generated in fluorophores in vivo is often much smaller than that in blood. Second, tissue motion can give rise to artifacts that correspond to endogenous chromophores in the difference image. This would not allow the unambiguous detection of fluorophores. A method to suppress motion artifacts based on fast switching between simultaneous and time-delayed pump-probe excitation was developed. This enables the acquisition of PA signals using the two excitation modes with minimal time delay (20 ms), thus minimizing the effects of tissue motion. The feasibility of this method is demonstrated by visualizing a fluorophore (Atto680) in tissue phantoms, which were moved during the image acquisition to mimic tissue motion.

  4. Fluorescent metal nanoshell and CK19 detection on single cell image.

    PubMed

    Zhang, Jian; Fu, Yi; Li, Ge; Lakowicz, Joseph R; Zhao, Richard Y

    2011-09-16

    In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells. PMID:21867692

  5. Lifetime-based tomographic multiplexing

    NASA Astrophysics Data System (ADS)

    Raymond, Scott B.; Boas, David A.; Bacskai, Brian J.; Kumar, Anand T. N.

    2010-07-01

    Near-infrared (NIR) fluorescence tomography of multiple fluorophores has previously been limited by the bandwidth of the NIR spectral regime and the broad emission spectra of most NIR fluorophores. We describe in vivo tomography of three spectrally overlapping fluorophores using fluorescence lifetime-based separation. Time-domain images are acquired using a voltage-gated, intensified charge-coupled device (CCD) in free-space transmission geometry with 750 nm Ti:sapphire laser excitation. Lifetime components are fit from the asymptotic portion of fluorescence decay curve and reconstructed separately with a lifetime-adjusted forward model. We use this system to test the in vivo lifetime multiplexing suitability of commercially available fluorophores, and demonstrate lifetime multiplexing in solution mixtures and in nude mice. All of the fluorophores tested exhibit nearly monoexponential decays, with narrow in vivo lifetime distributions suitable for lifetime multiplexing. Quantitative separation of two fluorophores with lifetimes of 1.1 and 1.37 ns is demonstrated for relative concentrations of 1:5. Finally, we demonstrate tomographic imaging of two and three fluorophores in nude mice with fluorophores that localize to distinct organ systems. This technique should be widely applicable to imaging multiple NIR fluorophores in 3-D.

  6. Fluorescence Ratio Imaging Of Dynamic Intracellular Signals

    NASA Astrophysics Data System (ADS)

    Harootunian, Alec T.; Kao, J. P.; Tsien, Roger Y.

    1989-12-01

    Traditional biochemical assays of cellular messengers require grinding up thousands or millions of cells for each data point. Such destructive measurements use up large amounts of tissue, have poor time resolution, and cannot assess heterogeneity between individual cells or dynamic spatial localizations. Recent technical advances now enable important ionic signals to be continuously imaged inside individual living cells with micron spatial resolution and subsecond time resolution. This methodology relies on the molecular engineering of indicator dyes whose fluorescence is strong and highly sensitive to ions such as Ca2+, H+, or Na+. Binding of these ions shifts the fluorescence excitation spectrum of the corresponding indicator. The ratio of excitation amplitudes at two wavelengths measures the free ion concentration while canceling out intensity variations due to nonuniform cell thickness or dye content. By rapidly alternating between the two ion-sensitive excitation wavelengths, a fluorescence microscope equipped with a low-light television camera and digital image processor can produce dynamic images of intracellular messenger levels. In many populations of cells traditionally assumed to be homogeneous, we find that neighboring individual cells can differ enormously in their cytosolic Ca2+ response to agonist stimulation, some ignoring the stimulus, others raising cytosolic Ca2+ transiently, others showing oscillations. Oscillations have been speculated to be important as a basis for frequency-coding of oscillations. Oscillations have been speculated to be important as a basis for frequency-coding of graded inputs; we are investigating the mechanism of their generation using light flashes to generate pulses of intracellular messengers. Spatial gradients of cytosolic Ca t+ within single cells have been observed in embryos during fertilization and development, neurons exposed to electrical or drug stimulation and in cytotoxic T lymphocytes during killing of target

  7. Development of Ultrasound-switchable Fluorescence Imaging Contrast Agents based on Thermosensitive Polymers and Nanoparticles

    PubMed Central

    Cheng, Bingbing; Wei, Ming-Yuan; Liu, Yuan; Pitta, Harish; Xie, Zhiwei; Hong, Yi; Nguyen, Kytai T.; Yuan, Baohong

    2015-01-01

    In this work we first introduced a recently developed high-resolution, deep-tissue imaging technique, ultrasound-switchable fluorescence (USF). The imaging principles based on two types of USF contrast agents were reviewed. To improve USF imaging techniques further, excellent USF contrast agents were developed based on high-performance thermoresponsive polymers and environment-sensitive fluorophores. Herein, such contrast agents were synthesized and characterized with five key parameters: (1) peak excitation and emission wavelengths (λex and λem), (2) the fluorescence intensity ratio between on and off states (IOn/IOff), (3) the fluorescence lifetime ratio between on and off states (τOn/τOff), (4) the temperature threshold to switch on fluorophores (Tth), and (5) the temperature transition bandwidth (TBW). We mainly investigated fluorescence intensity and lifetime changes of four environment-sensitive dyes [7-(2-Aminoethylamino)-N,N-dimethyl-4-benzofurazansulfonamide (DBD-ED), St633, Sq660, and St700] as a function of temperature, while the dye was attached to poly(N-isopropylacrylamide) linear polymers or encapsulated in nanoparticles. Six fluorescence resonance energy transfer systems were invented in which both the donor (DBD-ED or ST425) and the acceptor (Sq660) were adopted. Our results indicate that three Förster resonance energy transfer systems, where both IOn/IOff and τOn/τOff are larger than 2.5, are promising for application in future surface tissue bioimaging by USF technique. PMID:26052192

  8. Pressure and low temperature effects on the fluorescence emission spectra and lifetimes of the photosynthetic components of cyanobacteria.

    PubMed Central

    Foguel, D; Chaloub, R M; Silva, J L; Crofts, A R; Weber, G

    1992-01-01

    The effects of hydrostatic pressure on the excited state reactions of the photosynthetic system of cyanobacteria were studied with the use of stationary and dynamic fluorescence spectroscopy. When the cells were excited with blue light (442 nm), hydrostatic pressure promoted a large increase in the fluorescence emission of the phycobilisomes (PBS). When PBS were excited at 565 nm, the shoulder originating from photosystem II (PSII) emission (F685) disappeared under 2.4 kbar compression, suggesting suppression of the energy transfer from PBS to PSII. At atmospheric pressure, the excited state decay was complex due to energy transfer processes, and the best fit to the data consisted of a broad Lorentzian distribution of short lifetimes. At 2.4 kbar, the decay data changed to a narrower distribution of longer lifetimes, confirming the pressure-induced suppression of the energy transfer between the PBS and PSII. When the cells were excited with blue light, the decay at atmospheric pressure was even more complex and the best fit to the data consisted of a two-component Lorentzian distribution of short lifetimes. Under compression, the broad distribution of lifetimes spanning the region 100-1,000 ps disappeared and gave rise to the appearance of a narrow distribution characteristic of the PBS centered at 1.2 ns. The emission of photosystem I underwent 2.2-fold increase at 2.4 kbar and room temperature. A decrease in temperature from 20 to -10 degrees C at 2.4 kbar promoted a further increase in the fluorescence emission from photosystem I to a level comparable with that obtained at temperatures below 120 degrees K and atmospheric pressure. On the other hand, when the temperature was decreased under pressure, the PBS emission diminished to very low value at blue or green excitation, suggesting the disassembly into the phycobiliprotein subunits. PMID:1489915

  9. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes.

    PubMed

    Kim, Mounggon; Jeon, Sang Kyu; Hwang, Seok-Ho; Lee, Jun Yeob

    2015-04-17

    High quantum efficiency above 18% and extended lifetime three times longer than that of phosphorescent organic light-emitting diodes (OLEDs) are demonstrated in blue thermally activated delayed fluorescent OLEDs. PMID:25757226

  10. A novel multiwavelength fluorescence image-guided surgery imaging system

    NASA Astrophysics Data System (ADS)

    Volpi, D.; Tullis, I. D. C.; Laios, A.; Pathiraja, P. N. J.; Haldar, K.; Ahmed, A. A.; Vojnovic, B.

    2014-02-01

    We describe the development and performance analysis of two clinical near-infrared fluorescence image-guided surgery (FIGS) devices that aim to overcome some of the limitations of current FIGS systems. The devices operate in a widefield-imaging mode and can work (1) in conjunction with a laparoscope, during minimally invasive surgery, and (2) as a hand-held, open surgery imaging system. In both cases, narrow-band excitation light, delivered at multiple wavelengths, is efficiently combined with white reflectance light. Light is delivered to ~100 cm2 surgical field at 1-2 mW/cm2 for white light and 3-7 mW/cm2 (depending on wavelength) of red - near infrared excitation, at a typical working distance of 350 mm for the hand-held device and 100 mm for the laparoscope. A single, sensitive, miniaturized color camera collects both fluorescence and white reflectance light. The use of a single imager eliminates image alignment and software overlay complexity. A novel filtering and illumination arrangement allows simultaneous detection of white reflectance and fluorescence emission from multiple dyes in real-time. We will present both fluorescence detection sensitivity modeling and practical performance data. We have demonstrated the efficiency and the advantages of the devices both pre-clinically and during live surgery on humans. Both the hand-held and the laparoscopic systems have proved to be reliable and beneficial in an ongoing clinical trial involving sentinel lymph node detection in gynecological cancers. We will show preliminary results using two clinically approved dyes, Methylene blue and indocyanine green. We anticipate that this technology can be integrated and routinely used in a larger variety of surgical procedures.

  11. Carbon Quantum Dots for Zebrafish Fluorescence Imaging.

    PubMed

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  12. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    PubMed Central

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  13. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-07-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.

  14. Multimodal light-sheet microscopy for fluorescence live imaging

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Kajiura-Kobayashi, H.; Nonaka, S.

    2012-03-01

    Light-sheet microscopy, it is known as single plane illumination microscope (SPIM), is a fluorescence imaging technique which can avoid phototoxic effects to living cells and gives high contrast and high spatial resolution by optical sectioning with light-sheet illumination in developmental biology. We have been developed a multifunctional light-sheet fluorescence microscopy system with a near infrared femto-second fiber laser, a high sensitive image sensor and a high throughput spectrometer. We performed that multiphoton fluorescence images of a transgenic fish and a mouse embryo were observed on the light-sheet microscope. As the results, two photon images with high contrast and high spatial resolution were successfully obtained in the microscopy system. The system has multimodality, not only mutiphoton fluorescence imaging, but also hyperspectral imaging, which can be applicable to fluorescence unmixing analysis and Raman imaging. It enables to obtain high specific and high throughput molecular imaging in vivo and in vitro.

  15. Random Terpolymer Designed with Tunable Fluorescence Lifetime for Efficient Organic/Inorganic Hybrid Solar Cells.

    PubMed

    Li, Qinghua; Jin, Xiao; Song, Yinglin; Zhang, Qin; Xu, Zhongyuan; Chen, Zihan; Cheng, Yuanyuan; Luo, Xubiao

    2015-08-12

    The long photoluminescence lifetime of the organic semiconductor materials is of great importance in assuring the photoexcited extion to have enough time to achieve successful separation at the interface and improving the performances of organic/inorganic hybrid solar cells. Unfortunately, many efforts have been devoted to the bandgap or molecular energy level control, whereas this viewpoint is rarely referred. Herein, we prepare a random D-A terpolymers based on PZT and BDT cores in conjugation with electron withdrawing BT unit and explore their applications in HSCs. Except for the energy level and the bandgap, the role that monomers ratio plays in photoluminescence lifetime is particularly involved. As a result, the average PL lifetimes of the terpolymer are significantly tuned. The optimized terpolymer exhibits a longer PL lifetime and prominent charge transfer ability, thus leading to a notable enhancement of PCE when compared with its counterparts, although their bandgaps and molecular energy levels are almost the same. PMID:26196279

  16. Cramer-Rao analysis of steady-state and time-domain fluorescence diffuse optical imaging

    PubMed Central

    Boffety, M.; Allain, M.; Sentenac, A.; Massonneau, M.; Carminati, R.

    2011-01-01

    Using a Cramer-Rao analysis, we study the theoretical performances of a time and spatially resolved fDOT imaging system for jointly estimating the position and the concentration of a point-wide fluorescent volume in a diffusive sample. We show that the fluorescence lifetime is a critical parameter for the precision of the technique. A time resolved fDOT system that does not use spatial information is also considered. In certain cases, a simple steady-state configuration may be as efficient as this time resolved fDOT system. PMID:21698024

  17. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy.

    PubMed

    Dziuba, Dmytro; Jurkiewicz, Piotr; Cebecauer, Marek; Hof, Martin; Hocek, Michal

    2016-01-01

    Fluorescent probes for detecting the physical properties of cellular structures have become valuable tools in life sciences. The fluorescence lifetime of molecular rotors can be used to report on variations in local molecular packing or viscosity. We used a nucleoside linked to a meso-substituted BODIPY fluorescent molecular rotor (dC(bdp)) to sense changes in DNA microenvironment both in vitro and in living cells. DNA incorporating dC(bdp) can respond to interactions with DNA-binding proteins and lipids by changes in the fluorescence lifetimes in the range 0.5-2.2 ns. We can directly visualize changes in the local environment of exogenous DNA during transfection of living cells. Relatively long fluorescence lifetimes and extensive contrast for detecting changes in the microenvironment together with good photostability and versatility for DNA synthesis make this probe suitable for analysis of DNA-associated processes, cellular structures, and also DNA-based nanomaterials. PMID:26768820

  18. Compact solid-state CMOS single-photon detector array for in vivo NIR fluorescence lifetime oncology measurements.

    PubMed

    Homulle, H A R; Powolny, F; Stegehuis, P L; Dijkstra, J; Li, D-U; Homicsko, K; Rimoldi, D; Muehlethaler, K; Prior, J O; Sinisi, R; Dubikovskaya, E; Charbon, E; Bruschini, C

    2016-05-01

    In near infrared fluorescence-guided surgical oncology, it is challenging to distinguish healthy from cancerous tissue. One promising research avenue consists in the analysis of the exogenous fluorophores' lifetime, which are however in the (sub-)nanosecond range. We have integrated a single-photon pixel array, based on standard CMOS SPADs (single-photon avalanche diodes), in a compact, time-gated measurement system, named FluoCam. In vivo measurements were carried out with indocyanine green (ICG)-modified derivatives targeting the αvβ 3 integrin, initially on a genetically engineered mouse model of melanoma injected with ICG conjugated with tetrameric cyclic pentapeptide (ICG-E[c(RGD f K)4]), then on mice carrying tumour xenografts of U87-MG (a human primary glioblastoma cell line) injected with monomeric ICG-c(RGD f K). Measurements on tumor, muscle and tail locations allowed us to demonstrate the feasibility of in vivo lifetime measurements with the FluoCam, to determine the characteristic lifetimes (around 500 ps) and subtle lifetime differences between bound and unbound ICG-modified fluorophores (10% level), as well as to estimate the available photon fluxes under realistic conditions. PMID:27231622

  19. Compact solid-state CMOS single-photon detector array for in vivo NIR fluorescence lifetime oncology measurements

    PubMed Central

    Homulle, H. A. R.; Powolny, F.; Stegehuis, P. L.; Dijkstra, J.; Li, D.-U.; Homicsko, K.; Rimoldi, D.; Muehlethaler, K.; Prior, J. O.; Sinisi, R.; Dubikovskaya, E.; Charbon, E.; Bruschini, C.

    2016-01-01

    In near infrared fluorescence-guided surgical oncology, it is challenging to distinguish healthy from cancerous tissue. One promising research avenue consists in the analysis of the exogenous fluorophores’ lifetime, which are however in the (sub-)nanosecond range. We have integrated a single-photon pixel array, based on standard CMOS SPADs (single-photon avalanche diodes), in a compact, time-gated measurement system, named FluoCam. In vivo measurements were carried out with indocyanine green (ICG)-modified derivatives targeting the αvβ3 integrin, initially on a genetically engineered mouse model of melanoma injected with ICG conjugated with tetrameric cyclic pentapeptide (ICG−E[c(RGD f K)4]), then on mice carrying tumour xenografts of U87-MG (a human primary glioblastoma cell line) injected with monomeric ICG−c(RGD f K). Measurements on tumor, muscle and tail locations allowed us to demonstrate the feasibility of in vivo lifetime measurements with the FluoCam, to determine the characteristic lifetimes (around 500 ps) and subtle lifetime differences between bound and unbound ICG-modified fluorophores (10% level), as well as to estimate the available photon fluxes under realistic conditions. PMID:27231622

  20. A fluorescent Arg-Gly-Asp (RGD) peptide-naphthalenediimide (NDI) conjugate for imaging integrin α(v)β(3) in vitro.

    PubMed

    Hu, Zhiyuan; Arrowsmith, Rory L; Tyson, James A; Mirabello, Vincenzo; Ge, Haobo; Eggleston, Ian M; Botchway, Stanley W; Pantos, G Dan; Pascu, Sofia I

    2015-04-25

    We have developed a fluorescent peptide conjugate (TrpNDIRGDfK) based on the coupling of cyclo(RGDfK) to a new tryptophan-tagged amino acid naphthalenediimide (TrpNDI). Confocal fluorescence microscopy coupled with fluorescence lifetime imaging (FLIM) mapping, single and two-photon fluorescence excitation, lifetime components and corresponding decay profiles were used as parameters able to investigate qualitatively the cellular behavior regarding the molecular environment and biolocalisation of TrpNDI and TrpNDI-RGDfK in cancer cells. PMID:25647279

  1. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde dehydrogenase 2 (ALDH2) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements monitor the blue shift of the NADH fluorescence spectrum to study ...

  2. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ALDH2 catalyzes oxidation of toxic aldehydes to their corresponding carboxylic acids. Magnesium ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements have monitored the blue shift of the NADH fluorescence spectrum to elucidate the extent of...

  3. Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium

    NASA Astrophysics Data System (ADS)

    Meltzer, R. S.; Feofilov, S. P.; Tissue, B.; Yuan, H. B.

    1999-11-01

    The radiative lifetime, τR, of the 5D0 metastable excited state of Eu3+ ions in nanocrystalline monoclinic Y2O3 samples is about four times longer than that in the micron size powder of the same material. The Eu3+ radiative lifetime was measured in nanocrystals surrounded with air as well as those immersed in different liquids. It is shown that the radiative lifetime changes with the index of refraction of the immersion medium and provides a unique test of the standard formula relating τR and the oscillator strength. The magnitude of the effect is determined by the ``filling factor'' (the fraction of the sample volume occupied by nanocrystals) which can therefore be determined.

  4. Dual-modal MRI contrast agent with aggregation-induced emission characteristic for liver specific imaging with long circulation lifetime.

    PubMed

    Chen, Yilong; Li, Min; Hong, Yuning; Lam, Jacky W Y; Zheng, Qichang; Tang, Ben Zhong

    2014-07-01

    We herein report a novel dual-modal MRI contrast agent, TPE-2Gd, for both magnetic and fluorescence imaging. TPE-2Gd consists of a hydrophobic tetraphenylethene (TPE) fluorophore and two hydrophilic gadolinium (Gd) diethylenetriaminepentaacetic acid moieties. As an amphiphilic molecule, TPE-2Gd aggregates into micelles at a high concentration in aqueous medium. These aggregates are highly emissive, showing an aggregation-induced emission (AIE) characteristic. TPE-2Gd is used as a fluorescent agent for cell imaging, which demonstrates negligible cytotoxicity and excellent photostability owing to its AIE property. As a magnetic resonance imaging (MRI) contrast agent, TPE-2Gd exhibits similar longitudinal relaxivity in water (R1,TPE-2Gd = 3.36 ± 0.10 s(-1) per mM of Gd(3+)) as those commercial agents (e.g., Magnevist, R1,magnevist = 3.70 ± 0.02 s(-1) per mM of Gd(3+)). Compared with Magnevist, the circulation lifetime of TPE-2Gd nanoaggregates in living rats is extended from 10 min to 1 h. With relatively high specificity to the liver, the MR imaging could remain hyperintense in liver even after 150 min post injection. These TPE-2Gd nanoparticles can be excreted gradually via renal filtration due to the disassembly of the nanoparticles into small molecules during circulation. TPE-2Gd could thus potentially be used as a liver specific MRI contrast agent for clinical diagnosis. PMID:24942209

  5. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, Tudor N.

    1993-01-01

    Apparatus and method for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochomes in the sample.

  6. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, T.N.

    1993-05-04

    Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.

  7. Autoregressive-model-based fluorescence-lifetime measurements by phase-modulation fluorometry using a pulsed-excitation light source and a high-gain photomultiplier tube.

    PubMed

    Iwata, Tetsuo; Ito, Ritsuki; Mizutani, Yasuhiro; Araki, Tsutomu

    2009-11-01

    We propose a novel method for measuring fluorescence lifetimes by use of a pulsed-excitation light source and an ordinary or a high-gain photomultiplier tube (PMT) with a high-load resistor. In order to obtain the values of fluorescence lifetimes, we adopt a normal data-processing procedure used in phase-modulation fluorometry. We apply an autoregressive (AR)-model-based data-analysis technique to fluorescence- and reference-response time-series data obtained from the PMT in order to derive plural values of phase differences at a repetition frequency of the pulsed-excitation light source and its harmonic ones. The connection of the high-load resistor enhances sensitivity in signal detection in a certain condition. Introduction of the AR-model-based data-analysis technique improves precision in estimating the values of fluorescence lifetimes. Depending on the value of the load resistor and that of the repetition frequency, plural values of fluorescence lifetimes are obtained at one time by utilizing the phase information of harmonic frequencies. Because the proposed measurement system is simple to construct, it might be effective when we need to know approximate values of fluorescence lifetimes readily, such as in the field of biochemistry for a screening purpose. PMID:19891834

  8. Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging

    PubMed Central

    Wu, Changfeng; Bull, Barbara; Szymanski, Craig; Christensen, Kenneth; McNeill, Jason

    2009-01-01

    Highly fluorescent conjugated polymer dots were developed for demanding applications such as fluorescence imaging in live cells. These nanoparticles exhibit small particle diameters, extraordinary fluorescence brightness, and excellent photostability. Single particle fluorescence imaging and kinetic studies indicate much higher emission rates (∼108 s-1) and little or no blinking of the nanoparticles as compared to typical results for single dye molecules and quantum dots. Analysis of single particle photobleaching trajectories reveals excellent photostability — as many as 109 or more photons emitted per nanoparticle prior to irreversible photobleaching. The superior figures of merit of these new fluorescent probes, together with the demonstration of cellular imaging, indicate their enormous potential for demanding fluorescence-based imaging and sensing applications such as high speed super-resolution single molecule/particle tracking and highly sensitive assays. PMID:19206410

  9. Incorporating a Piperidinyl Group in the Fluorophore Extends the Fluorescence Lifetime of Click-Derived Cyclam-Naphthalimide Conjugates

    PubMed Central

    Yu, Mingfeng; Ast, Sandra; Yu, Qun; Lo, Anthony T. S.; Flehr, Roman; Todd, Matthew H.; Rutledge, Peter J.

    2014-01-01

    Ligands incorporating a tetraazamacrocycle receptor, a ‘click’- derived triazole and a 1,8-naphthalimide fluorophore have proven utility as probes for metal ions. Three new cyclam-based molecular probes are reported, in which a piperidinyl group has been introduced at the 4-position of the naphthalimide fluorophore. These compounds have been synthesized using the copper(I)-catalyzed azide-alkyne Huisgen cycloaddition and their photophysical properties studied in detail. The alkylamino group induces the expected red-shift in absorption and emission spectra relative to the simple naphthalimide derivatives and gives rise to extended fluorescence lifetimes in aqueous buffer. The photophysical properties of these systems are shown to be highly solvent-dependent. Screening the fluorescence responses of the new conjugates to a wide variety of metal ions reveals significant and selective fluorescence quenching in the presence of copper(II), yet no fluorescence enhancement with zinc(II) as observed previously for the simple naphthalimide derivatives. Reasons for this different behaviour are proposed. Cytotoxicity testing shows that these new cyclam-triazole-dye conjugates display little or no toxicity against either DLD-1 colon carcinoma cells or MDA-MB-231 breast carcinoma cells, suggesting a potential role for these and related systems in biological sensing applications. PMID:24983863

  10. Fluorescence Imaging Study of Impinging Underexpanded Jets

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  11. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  12. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  13. Clinical application of indocyanine green-fluorescence imaging during hepatectomy.

    PubMed

    Ishizawa, Takeaki; Saiura, Akio; Kokudo, Norihiro

    2016-08-01

    In hepatobiliary surgery, the fluorescence and bile excretion of indocyanine green (ICG) can be used for real-time visualization of biological structure. Fluorescence cholangiography is used to obtain fluorescence images of the bile ducts following intrabiliary injection of 0.025-0.5 mg/mL ICG or intravenous injection of 2.5 mg ICG. Recently, the latter technique has been used in laparoscopic/robotic cholecystectomy. Intraoperative fluorescence imaging can be used to identify subcapsular hepatic tumors. Primary and secondary hepatic malignancy can be identified by intraoperative fluorescence imaging using preoperative intravenous injection of ICG through biliary excretion disorders that exist in cancerous tissues of hepatocellular carcinoma (HCC) and in non-cancerous hepatic parenchyma around adenocarcinoma foci. Intraoperative fluorescence imaging may help detect tumors to be removed, especially during laparoscopic hepatectomy, in which visual inspection and palpation are limited, compared with open surgery. Fluorescence imaging can also be used to identify hepatic segments. Boundaries of hepatic segments can be visualized following injection of 0.25-2.5 mg/mL ICG into the portal veins or by intravenous injection of 2.5 mg ICG following closure of the proximal portal pedicle toward hepatic regions to be removed. These techniques enable identification of hepatic segments before hepatectomy and during parenchymal transection for anatomic resection. Advances in imaging systems will increase the use of fluorescence imaging as an intraoperative navigation tool that can enhance the safety and accuracy of open and laparoscopic/robotic hepatobiliary surgery. PMID:27500144

  14. Reflectance and Fluorescence Spectral Recovery via Actively Lit RGB Images.

    PubMed

    Fu, Ying; Lam, Antony; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2016-07-01

    In recent years, fluorescence analysis of scenes has received attention in computer vision. Fluorescence can provide additional information about scenes, and has been used in applications such as camera spectral sensitivity estimation, 3D reconstruction, and color relighting. In particular, hyperspectral images of reflective-fluorescent scenes provide a rich amount of data. However, due to the complex nature of fluorescence, hyperspectral imaging methods rely on specialized equipment such as hyperspectral cameras and specialized illuminants. In this paper, we propose a more practical approach to hyperspectral imaging of reflective-fluorescent scenes using only a conventional RGB camera and varied colored illuminants. The key idea of our approach is to exploit a unique property of fluorescence: the chromaticity of fluorescent emissions are invariant under different illuminants. This allows us to robustly estimate spectral reflectance and fluorescent emission chromaticity. We then show that given the spectral reflectance and fluorescent chromaticity, the fluorescence absorption and emission spectra can also be estimated. We demonstrate in results that all scene spectra can be accurately estimated from RGB images. Finally, we show that our method can be used to accurately relight scenes under novel lighting. PMID:27295456

  15. Lipid dynamics in boar sperm studied by advanced fluorescence imaging techniques.

    PubMed

    Schröter, Filip; Jakop, Ulrike; Teichmann, Anke; Haralampiev, Ivan; Tannert, Astrid; Wiesner, Burkhard; Müller, Peter; Müller, Karin

    2016-03-01

    The (re)organization of membrane components is of special importance to prepare mammalian sperm to fertilization. Establishing suitable methods to examine physico-chemical membrane parameters is of high interest. We characterized the behavior of fluorescent (NBD) analogs of sphingomyelin (SM), phosphatidylserine (PS), and cholesterol (Ch) in the acrosomal and postacrosomal macrodomain of boar sperm. Due to their specific transverse membrane distribution, a leaflet-specific investigation of membrane properties is possible. The behavior of lipid analogs in boar sperm was investigated by fluorescence lifetime imaging microscopy (FLIM), fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS). The results were compared with regard to the different temporal and spatial resolution of the methods. For the first time, fluorescence lifetimes of lipid analogs were determined in sperm cell membrane and found to be in a range characteristic for the liquid-disordered phase in artificial lipid membranes. FLIM analyses further indicate a more fluid microenvironment of NBD-Ch and NBD-PS in the postacrosomal compared to the acrosomal region. The concept of a more fluid cytoplasmic leaflet is supported by lower fluorescence lifetime and higher average D values (FCS) for NBD-PS in both head compartments. Whereas FLIM analyses did not indicate coexisting distinct liquid-ordered and -disordered domains in any of the head regions, comparisons between FRAP and FCS measurements suggest the incorporation of NBD-SM as well as NBD-PS in postacrosomal subpopulations with different diffusion velocity. The analog-specific results indicate that the lipid analogs used are suitable to report on the various physicochemical properties of different microenvironments. PMID:26481472

  16. Fluorescent lifetime measurements of rare-earth elements in gallium arsenide. Master's thesis

    SciTech Connect

    Topp, D.J.

    1990-12-01

    Lifetime measurements of the excited states of three GaAs semiconductors doped with the rare earth elements Erbium (Er), Praseodymium (Pr), and Thulium (Tm) has been studied using a pulsed nitrogen laser and germanium detector. The measurements were made with an experimental set up with a system response time of 0.34 microseconds. A 330 milliwatt nitrogen laser with a wavelength of 3370 angstroms was used to excite transitions of the rare earth elements.

  17. Advances in fluorescence labeling strategies for dynamic cellular imaging

    PubMed Central

    Dean, Kevin M; Palmer, Amy E

    2014-01-01

    Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein– and bio-orthogonal–based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging. PMID:24937069

  18. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS.

    PubMed

    Tyndall, David; Rae, Bruce R; Li, David Day-Uei; Arlt, Jochen; Johnston, Abigail; Richardson, Justin A; Henderson, Robert K

    2012-12-01

    We describe a miniaturized, high-throughput, time-resolved fluorescence lifetime sensor implemented in a 0.13 m CMOS process, combining single photon detection, multiple channel timing and embedded pre-processing of fluorescence lifetime estimations on a single device. Detection is achieved using an array of single photon avalanche diodes (SPADs) arranged in a digital silicon photomultiplier (SiPM) architecture with 400 ps output pulses and a 10% fill-factor. An array of time-to-digital converters (TDCs) with ≈50 ps resolution records up to 8 photon events during each excitation period. Data from the TDC array is then processed using a centre-of-mass method (CMM) pre-calculation to produce fluorescence lifetime estimations in real-time. The sensor is believed to be the first reported implementation of embedded fluorescence lifetime estimation. The system is demonstrated in a practical laboratory environment with measurements of a variety of fluorescent dyes with different single exponential lifetimes, successfully showing the sensor's ability to overcome the classic pile-up limitation of time-correlated single photon counting (TCSPC) by over an order of magnitude. PMID:23853257

  19. Multispectral imaging fluorescence microscopy for lymphoid tissue analysis

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Mazzinghi, Piero; Romano, Salvatore; Pratesi, Riccardo; Alterini, Renato; Bernabei, Pietro A.; Rigacci, Luigi

    1999-01-01

    Multispectral imaging autofluorescence microscopy (MIAM) is used here for the analysis of lymphatic tissues. Lymph node biopsies, from patients with lympthoadenopathy of different origin have been examined. Natural fluorescence (NF) images of 3 micrometers sections were obtained using three filters peaked at 450, 550 and 680 nm with 50 nm bandpass. Monochrome images were combined together in a single RGB image. NF images of lymph node tissue sections show intense blue-green fluorescence of the connective stroma. Normal tissue shows follicles with faintly fluorescent lymphocytes, as expected fro the morphologic and functional characteristics of these cells. Other more fluorescent cells (e.g., plasma cells and macrophages) are evidenced. Intense green fluorescence if localized in the inner wall of the vessels. Tissues coming from patients affected by Hodgkin's lymphoma show spread fluorescence due to connective infiltration and no evidence of follicle organization. Brightly fluorescent large cells, presumably Hodgkin cells, are also observed. These results indicate that MIAM can discriminate between normal and pathological tissues on the basis of their natural fluorescence pattern, and, therefore, represent a potentially useful technique for diagnostic applications. Analysis of the fluorescence spectra of both normal and malignant lymphoid tissues resulted much less discriminatory than MIAM.

  20. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology

    PubMed Central

    An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard

    2016-01-01

    OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168

  1. Intraoperative fluorescent imaging of intracranial tumors: a review.

    PubMed

    Behbahaninia, Milad; Martirosyan, Nikolay L; Georges, Joseph; Udovich, Joshua A; Kalani, M Yashar S; Feuerstein, Burt G; Nakaji, Peter; Spetzler, Robert F; Preul, Mark C

    2013-05-01

    A review of fluorescent imaging for intracranial neoplasms is presented. Complete resection of brain cancer is seldom possible because of the goal to preserve brain tissue and the inability to visualize individual infiltrative tumor cells. Verification of histology and identification of tumor invasion in macroscopically normal-appearing brain tissue determine prognosis after resection of malignant gliomas. Therefore, imaging modalities aim to facilitate intraoperative decision-making. Intraoperative fluorescent imaging techniques have the potential to enable precise histopathologic diagnosis and to detect tumor remnants in the operative field. Macroscopic fluorescence imaging is effective for gross tumor detection. Microscopic imaging techniques enhance the sensitivity of the macroscopic observations and provide real-time histological information. Further development of clinical grade fluorescent agents specifically targeting tumor cells could improve the diagnostic and prognostic yield of intraoperative imaging. PMID:23523009

  2. Optical fiber-based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors.

    PubMed

    Piffaretti, Filippo; Piffaretti, Filippo M; Santhakumar, Kanappan; Forte, Eddy; van den Bergh, Hubert E; Wagnières, Georges A

    2011-03-01

    A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy. PMID:21456878

  3. Optical fiber-based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Piffaretti, Filippo M.; Santhakumar, Kanappan; Forte, Eddy; van den Bergh, Hubert E.; Wagnières, Georges A.

    2011-03-01

    A new optical-fiber-based spectrofluorometer for in vivo or in vitro detection of delayed fluorescence is presented and characterized. This compact setup is designed so that it can be readily adapted for future clinical use. Optical excitation is done with a nitrogen laser-pumped, tunable dye laser, emitting in the UV-vis part of the spectrum. Excitation and luminescence signals are carried to and from the biological tissues under investigation, located out of the setup enclosure, by a single optical fiber. These measurements, as well as measurements performed without a fiber on in vitro samples in a thermostable quartz cell, in a controlled-atmosphere enclosure, are possible due to the efficient collection of the laser-induced luminescence light which is collected and focused on the detector with a high aperture parabolic mirror. The detection is based on a gated photomultiplier which allows for time-resolved measurements of the delayed fluorescence intensity. Thus, relevant luminescence lifetimes, typically in the sub-microsecond-to-millisecond range, can be measured with near total rejection of the sample's prompt fluorescence. The instrument spectral and temporal resolution, as well as its sensitivity, is characterized and measurement examples are presented. The primary application foreseen for this setup is the monitoring and adjustment of the light dose delivered during photodynamic therapy.

  4. Fluorescence lifetime measurements of NADH and tryptophan in intact ischemic, intact rabbit myocardium

    NASA Astrophysics Data System (ADS)

    Hamburger, Adrian; Gryczynski, Zygmunt; Lakowicz, Joseph R.; Sommers, Keith

    1999-07-01

    Ischemia-reperfusion injury is the leading cause of early dysfunction following transplantation. Currently, there are no techniques available to accurately measure ischemic changes during organ storage. Therefore, the interest exists in developing non-invasive monitoring techniques. We used NADH and tryptophan as fluorescent markers, since both are intrinsic fluorophores and excellent indicators for levels of hypoxia and protein denaturation, respectively.

  5. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  6. Imaging Septum Formation by Fluorescence Microscopy.

    PubMed

    Ribas, Juan Carlos; Cortés, Juan Carlos G

    2016-01-01

    Fungal cleavage furrow formation during cytokinesis relays in the coordinated contraction of an actomyosin-based ring and the centripetal synthesis of both new plasma membrane and a special wall structure named division septum. Through transmission electron microscopy, the septum exhibits a three-layered structure with a central primary septum, flanked at both sides by the secondary septum. In contrast to the chitinous primary septum present in most of fungi, the fission yeast Schizosaccharomyces pombe does not contain chitin, instead it divides through the formation of a linear β(1,3)glucan-rich primary septum, which has been shown to be specifically stained by the fluorochrome Calcofluor white. Recent findings in S. pombe have revealed the importance of septum synthesis for the steady contraction of the ring during cytokinesis. Therefore, to study the molecular mechanisms that connect the extracellular septum wall with the other components of the cytokinetic machinery located in the plasma membrane and cytoplasm, new experimental approaches are needed. Here we describe the methods developed to image the septum structure by fluorescence microscopy, with a special focus in the analysis of septum progression by the use of time-lapse microscopy. PMID:26519306

  7. Tissue oxygen monitoring by photoacoustic lifetime imaging (PALI) and its application to image-guided photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2015-03-01

    The oxygen partial pressure (pO2), which results from the balance between oxygen delivery and its consumption, is a key component of the physiological state of a tissue. Images of oxygen distribution can provide essential information for identifying hypoxic tissue and optimizing cancer treatment. Previously, we have reported a noninvasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor on small animals to identify hypoxia area. We also showed that PALI is able monitor changes of tissue oxygen, in an acute ischemia and breathing modulation model. Here we present our work on developing a treatment/imaging modality (PDT-PALI) that integrates PDT and a combined ultrasound/photoacoustic imaging system. The system provides real-time feedback of three essential parameters namely: tissue oxygen, light penetration in tumor location, and distribution of photosensitizer. Tissue oxygen imaging is performed by applying PALI, which relies on photoacoustic probing of oxygen-dependent, excitation lifetime of Methylene Blue (MB) photosensitizer. Lifetime information can also be used to generate image showing the distribution of photosensitizer. The level and penetration depth of PDT illumination can be deduced from photoacoustic imaging at the same wavelength. All images will be combined with ultrasound B-mode images for anatomical reference.

  8. Fluorescence imaging of historical buildings by lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Raimondi, Valentina; Weibring, Petter K. A.; Cecchi, Giovanna; Edner, Hans; Johansson, Thomas; Pantani, Luca; Sundner, Barbro; Svanberg, Sune

    1998-10-01

    This paper reports on the first lidar imaging experiments carried out on a historical monument. The measurements were carri