Science.gov

Sample records for fluorescence spectroscopic studies

  1. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  2. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  3. Fluorescence spectroscopic study on the interaction of resveratrol with lipoxygenase

    NASA Astrophysics Data System (ADS)

    Pinto, María del Carmen; Duque, Antonio Luis; Macías, Pedro

    2010-09-01

    The interaction of lipoxygenase with (E)-resveratrol was investigated by fluorescence spectroscopy. The data obtained revealed that the quenching of intrinsic fluorescence of lipoxygenase is produced by the formation of a complex lipoxygenase-(E)-resveratrol. From the value obtained for the binding constant, according to the Stern-Volmer modified equation, was deduced the existence of static quenching mechanism and, as consequence, the existence of a strong interaction between (E)-resveratrol and lipoxygenase. The values obtained for the thermodynamic parameter Δ H (-3.58 kJ mol -1) and Δ S (87.97 J mol -1K -1) suggested the participation of hydrophobic interactions and hydrogen bonds in the stabilization of the complex ligand-protein. From the static quenching we determined that only exist one independent binding site. Based on the Förster energy transfer theory, the distance between the acceptor ((E)-resveratrol) and the donor (Trp residues of lipoxygenase) was calculated to be 3.42 nm. Finally, based on the information obtained from the evaluation of synchronous and three-dimensional fluorescence spectroscopy, we deduced that the interaction of (E)-resveratrol with lipoxygenase produces micro-environmental and conformational alterations of protein in the binding region.

  4. New fluorescence reactions in DNA cytochemistry. 2. Microscopic and spectroscopic studies on fluorescent aluminum complexes

    SciTech Connect

    Del Castillo, P.; Llorente, A.R.; Gomez, A.; Gosalvez, J.; Goyanes, V.J.; Stockert, J.C. )

    1990-02-01

    Metal-dye complexes are widely applied in light microscopic techniques for chromatin staining (e.g., hematoxylin and carmine), but fluorescent complexes between phosphate-binding cations and suitable ligands have been little used. Preformed and postformed Al complexes with different anionic dyes induced strong and selective fluorescence reactions in nuclei from chicken blood smears, frozen sections, paraffin-embedded sections and Epon-embedded sections of mouse and rat tissues, mitotic chromosomes, meiotic chromosomes and kinetoplasts of Trypanosoma cruzi epimastigotes. The DNA-dependent fluorescence of these structures showed a very low fading rate. The emission colors were related to the ligand. The most suitable compounds for forming fluorescent Al chelates were 8-hydroxyquinoline, morin, nuclear fast red and purpurin. Staining with diluted carmine solutions and InCl3 mordanting, followed by 8-hydroxyquinoline, also induced chromatin fluorescence. After treating isolated mouse chromosomes with the preformed complex Al-nuclear fast red, x-ray microanalysis indicated a P:Al:dye binding ratio of about 40:15:1. The selectivity, stability and easy formation of these fluorescent Al complexes are obvious advantages for their use as new cytochemical probes in cytologic studies.

  5. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  6. A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.

    2009-06-01

    In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.

  7. Fluorescence spectroscopic studies of tyrosine environment and ligand binding of plant calmodulin

    NASA Astrophysics Data System (ADS)

    Sanyal, Gautam; Thompson, Faith; Puett, David

    1990-05-01

    Recent studies in our laboratories have focused on using tyrosine (Tyr) fluorescence of calmodulin (CaM) and tryptophan (Trp) fluorescence of CaM-bound peptdies as intrinsic probes of structure and interactions of this Ca2+ regulatory protein. Plant CaM contains a single Tyr (Tyr.-l38) and vertebrate CaM contains two (Tyr-99 and Tyr-.l38). Neither protein contains Trp. The fluorescence properties of Tyr-138 of wheat-germ CaM is sensitive to conformational changes induced by perturbations such as Ca2+ ligation or depletion, and pH changes. Effects of these perturbations on quantum yield, lifetime and dynamic quenching of Tyr-l38 fluorescence are reported. We have also studied binding of amphiphilic peptides to wheat-germ CaM. A comparison of wheat CaM induced changes in the fluorescence properties of a single Trp of these peptides with those induced by bovine testes CaM indicate general similarities of the peptide binding surfaces of plant and mammalian CaMs. Frequency domain measurements of decay of intensity and anisotropy have suggested some orientational freedom and local motion of the Trp residue of CaM-bound peptide, independent of the overall protein motion, even when the Trp is expected to be buried in the doubly apolar protein-peptide interface. Calmodulin (CaM) is a ubiquitous calcium binding protein which is believed to regulate several different enzymes in diverse cells (Klee et al., 1982). Much of the structural work to date has been carried out on mammalian CaM. However, CaM has also been isolated from plant and invertebrate sources, and a high degree of sequence homology with vertebrate CaM has been found. The amino acid sequence of wheat germ CaM shows eleven substitutions, two insertions and one deletion compared with the 148.-residue bovine brain CaM (Toda et al., 1985). Specific differences with mammalian CaM at two sites make plant CaM attractive for fluorescence spectroscopic studies. These are: (1) The presence of a single tyrosine residue (Tyr

  8. Chromatographic and fluorescence spectroscopic studies of individual 7,12-dimethylbenz(a)anthracene--deoxyribonucleoside adducts

    SciTech Connect

    Moschel, R.C.; Pigott, M.A.; Costantino, N.; Dipple, A.

    1983-09-01

    Compared with standard Sephadex LH-20 column chromatography, a newly developed high pressure liquid chromatographic separation of hydrocarbon deoxyribonucleoside adducts derived from the DNA of mouse embryo cell cultures exposed to 7,12-dimethylbenz(a)anthracene (DMBA) provides markedly superior resolution. Once resolved, the fluorescence spectroscopic properties of the three major DMBA--DNA adducts indicate that the fluorescence exhibited by adducts derived from a bay region syn dihydrodiol epoxide of DMBA differs subtly from that exhibited by adducts derived from the isomeric anti dihydrodiol epoxide.

  9. Infrared and fluorescence spectroscopic studies of a phospholipid bilayer supported by a soft cationic hydrogel scaffold.

    PubMed

    Grossutti, Michael; Seenath, Ryan; Noël, John A; Lipkowski, Jacek

    2016-07-01

    Polarized attenuated total reflection (ATR-IR) spectroscopy and fluorescence microscopy techniques were used to characterize a 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) membrane supported on porous, cationic hydrogel beads. Fluorescence microscopy images showed that the DPhPC coated the external surface of the hydrogel scaffold. In addition, a fluorescence assay of the emission intensity of the Tb(3+)/dipicolinic acid complex demonstrated that the DPhPC coating acted as a barrier to Tb(3+) efflux from the scaffolded vesicle and successfully sealed the porous hydrogel bead. Fluorescence quenching and ATR-IR spectroscopic measurements revealed that the lipid coating has a bilayer structure. The phytanoyl chains were found to exhibit significant trans-gauche isomerization, characteristic of the fluid liquid phase. However, no lipid lateral mobility was observed by fluorescence recovery after photobleaching (FRAP) measurements. The phosphocholine headgroup was found to be well hydrated and oriented such that the cationic choline group tucked in behind the anionic phosphate group, consistent with an electrostatic attraction between the cationic scaffold and zwitterionic lipid. The absence of lipid lateral mobility may be due to the strength of this attraction. PMID:27064742

  10. Spectroscopic and nonlinear optical properties of new chalcone fluorescent probes for bioimaging applications: a theoretical and experimental study.

    PubMed

    Krawczyk, Przemysław; Pietrzak, Marek; Janek, Tomasz; Jędrzejewska, Beata; Cysewski, Piotr

    2016-06-01

    In this study, the newly synthesized non-centrosymmetric, 4-dimethylamino-3'-isothiocyanatochalcone (PKA) compound was presented. This compound belongs to the chalcone group, and its main purpose is to be used in biomedical imaging as a fluorescence dye. For this reason, the linear and nonlinear properties in solvents of different polarity were thoroughly studied. In accordance with the requirements for a fluorochrome, the PKA compound is characterized by strong absorption, large Stokes' shifts, relatively high fluorescence quantum yields and high nonlinear optical response. Moreover, the isothiocyanate reactive probe was conjugated with Concanavalin A. Conventional fluorescence microscopy imaging of Candida albicans cells incubated with the PKA-Concanavalin A, is presented. The results of this study show that the novel conjugate PKA-Concanavalin A could be a promising new probe for cellular labelling in biological and biomedical research. Graphical abstract Spectroscopic behavior of the PKA dye. PMID:27168200

  11. Spectroscopic study one thiosemicarbazone derivative with ctDNA using ethidium bromide as a fluorescence probe.

    PubMed

    Geng, Shaoguang; Wu, Qing; Shi, Lei; Cui, Fengling

    2013-09-01

    In this study, a thiosemicarbazone derivative (E)-2-((1,4-dihydroxy-9,10-anthraquinone-2-yl)methylene)-N-(4-fluorophenyl)hydrazinecarbothioamide (DAFPT) was synthesized, and the interaction of DAFPT with calf thymus DNA (ctDNA) was explored using ethidium bromide (EB) as a fluorescence probe. The binding mode between DAFPT and ctDNA was investigated by UV absorption spectroscopy, fluorescence spectroscopy and molecular docking. The fluorescence quenching mechanism of EB-ctDNA by DAFPT might be a combined quenching type. Thermodynamic parameters showed that the reaction was spontaneous. According to ionic strength, fluorescence polarization and melting temperature (T(m)) curve results, DAFPT-ctDNA interaction was groove binding. The molecular modeling results indicated that DAFPT could slide into the A-T rich region of ctDNA. PMID:23769721

  12. Time-resolved fluorescence spectroscopic study of crude petroleum oils: influence of chemical composition.

    PubMed

    Ryder, Alan G

    2004-05-01

    The fluorescence of crude petroleum oils is sensitive to changes in chemical composition and many different fluorescence methods have been used to characterize crude oils. The use of fluorescence lifetimes to quantitatively characterize oil composition has practical advantages over steady-state measurements, but there have been comparatively few studies in which the lifetime behavior is correlated with gross chemical compositional data. In this study, the fluorescence lifetimes for a series of 23 crude petroleum oils with American Petroleum Institute (API) gravities of between 10 and 50 were measured at several emission wavelengths (450-785 nm) using a 380 nm light emitting diode (LED) excitation source. It was found that the intensity average fluorescence lifetime (tau) at any emission wave-length does not correlate well with either API gravity or aromatic concentration. However, it was found that tau is strongly negatively correlated with both the polar and sulfur concentrations and positively correlated with the corrected alkane concentration. This indicates that the fluorescence behavior of crude petroleum oils is governed primarily by the concentration of quenching species. All the strong lifetime-concentration correlations are nonlinear and show a high degree of scatter, especially for medium to light oils with API gravities of between 25 and 40. The degree of scatter is greatest for oils where the concentrations (wt %) of the polar fraction is approximately 10 +/- 4%, the asphaltene component is approximately 1 +/- 0.5%, and sulfur is 0.5 +/- 0.4%. This large degree of scatter precludes the use of average fluorescence lifetime data obtained with 380 nm excitation for the accurate prediction of the common chemical compositional parameters of crude petroleum oils. PMID:15165340

  13. Single-molecule spectroscopic study of enhanced intrinsic phycoerythrin fluorescence on silver nanostructured surfaces.

    PubMed

    Ray, Krishanu; Chowdhury, Mustafa H; Lakowicz, Joseph R

    2008-09-15

    In this paper, we report on steady-state and time-resolved single-molecule fluorescence measurements performed on a phycobiliprotein, R-phycoerythrin (RPE), assembled on silver nanostructures. Single-molecule measurements clearly show that RPE molecules display a 10-fold increase in fluorescence intensity, with a 7-fold decrease in lifetime when they are assembled on silver nanostructured surfaces, as compared to control glass slides. The emission spectrum of individual RPE molecules also displays a significant fluorescence enhancement on silver nanostructures as compared to glass. From intensity and lifetime histograms, it is clear that the intensities as well as lifetimes of individual RPE molecules on silver nanostructures are more heterogeneously distributed than that on glass. This single-molecule study provides further insight on the heterogeneity in the fluorescence intensity and lifetimes of the RPE molecules on both glass and SiFs surfaces, which is otherwise not possible to observe using ensemble measurements. Finite-difference time-domain calculations have been performed to study the enhanced near-fields induced around silver nanoparticles by a radiating excited-state fluorophore, and the effect of such enhanced fields on the fluorescence enhancement observed is discussed. PMID:18690697

  14. Fluorescence spectroscopic studies of (acetamide + sodium/potassium thiocyanates) molten mixtures: composition and temperature dependence.

    PubMed

    Guchhait, Biswajit; Gazi, Harun Al Rasid; Kashyap, Hemant K; Biswas, Ranjit

    2010-04-22

    Steady state and time-resolved fluorescence spectroscopic techniques have been used to explore the Stokes' shift dynamics and rotational relaxation of a dipolar solute probe in molten mixtures of acetamide (CH(3)CONH(2)) with sodium and potassium thiocyanates (Na /KSCN) at T approximately 318 K and several other higher temperatures. The dipolar solute probe employed for this study is coumarin 153 (C153). Six different fractions (f) of KSCN of the following ternary mixture composition, 0.75 CH(3)CONH(2) + 0.25[(1 - f)NaSCN + fKSCN], have been considered. The estimated experimental dynamic Stokes' shift for these systems ranges between 1800 and 2200 cm(-1) (+/-250 cm(-1)), which is similar to what has been observed with the same solute probe in several imidazolium cation based room temperature ionic liquids (RTIL) and in pure amide solvents. Interestingly, this range of estimated Stokes' shift, even though not corresponding to the megavalue of static dielectric constant reported in the literature for a binary mixture of molten CH(3)CONH(2) and NaSCN, exhibits a nonmonotonic KSCN concentration dependence. The magnitudes of the dynamic Stokes' shift detected in the present experiments are significantly less than the estimated ones, as nearly 40-60% of the total shift is missed due to the limited time resolution employed (full-width at half-maximum of the instrument response function approximately 70 ps). The solvation response function, constructed from the detected shifts in these systems, exhibits triexponential decay with the fastest time constant (tau(1)) in the 10-20 ps range, which might be much shorter if measured with a better time resolution. The second time constant (tau(2)) lies in the 70-100 ps range, and the third one (tau(3)) ranges between 300 and 800 ps. Both these time constants (tau(2) and tau(3)) show alkali metal ion concentration dependence and exhibit viscosity decoupling at higher viscosity in the NaSCN-enriched region. Time dependent rotational

  15. Spectroscopical study of bacteriopurpurinimide-naphthalimide conjugates for fluorescent diagnostics and photodynamic therapy.

    PubMed

    Panchenko, Pavel A; Sergeeva, Antonina N; Fedorova, Olga A; Fedorov, Yuri V; Reshetnikov, Roman I; Schelkunova, Anastasiya E; Grin, Mikhail A; Mironov, Andrey F; Jonusauskas, Gediminas

    2014-04-01

    Two novel bis(chromophoric) dyads ABPI-NI1 and ABPI-NI2 containing 1,8-naphthalimide and bacteriopurpurinimide units linked by p-phenylene-methylene (ABPI-NI1) and pentamethylene (ABPI-NI2) spacers were prepared to test their ability to be used in the design of effective agents for both photodynamic therapy (PDT) and fluorescent tumor imaging. Photophysical studies revealed that the emission from the naphthalimide chromophore in both conjugates was partially quenched due to resonance energy transfer between the photoactive components. Compound ABPI-NI2 with more sterically flexible oligomethylene group demonstrated higher fluorescence intensity as compared with that for ABPI-NI1. PMID:24727406

  16. Fluorescence Lifetime Correlation Spectroscopic Study of Fluorophore-Labeled Silver Nanoparticles

    PubMed Central

    Ray, Krishanu; Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    In this paper, we introduce the use of fluorescence lifetime correlation spectroscopy (FLCS) to study the metal-fluorophore interactions in solution at single fluorophore level. A single-stranded oligonucleotide was chemically bound to a 50 nm diameter single silver particle and a Cy5-labeled complementary single-stranded oligonucleotide was hybridized with the silver particle-bound oligonucleotide. The distance between the fluorophore and silver particle was maintained by a rigid hybridized DNA duplex of 8 nm in length. The single Cy5-DNA-Ag-particles showed more than 10-fold increase in fluorescence intensity, 5-fold decrease in emission lifetimes as compared with Cy5-DNA free molecules in the absence of metal. The decrease of lifetime for the Cy5-DNA-Ag-particle allowed us to resolve the correlation functions of the two species based on the intensity decays. The increased brightness of Cy5-DNA-Ag-particle as compared to free Cy5-DNA resulted in an increased contribution of Cy5-DNA-Ag to the correlation function of the mixture. These results show that the effects of metal particles on fluorophores can be used to detect the small fractional populations of the metal-bound species in the presence of a larger number of less bright species. Our results also suggest that these bright fluorophores conjugated to silver particles could be used as the fluorescent probes for clinical detection in the biological samples with the high background. PMID:18771274

  17. Encapsulation of serotonin in β-cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sudip; Chakraborty, Sandipan; Sengupta, Pradeep K.

    2010-06-01

    Serotonin is a physiologically important biogenic amine, deficiency of which leads to mental disorders such as Alzheimer's disease, schizophrenia, infantile autism, and depression. Both β-cyclodextrin (β-CD) and its chemically substituted synthetic varieties (often possessing enhanced aqueous solubility and improved drug complexing abilities) are finding wide applications as drug delivery vehicles. Here we have studied the encapsulation of serotonin in β-CD and succinyl-2-hydroxypropyl β-cyclodextrin (SHP-β-CD) by exploiting the intrinsic serotonin fluorescence. Enhanced fluorescence emission intensity (which increases by ˜18% and 34% in β-CD and SHPβ-CD respectively) and anisotropy ( r) ( r = 0.075 and 0.1 in β-CD and SHPβ-CD respectively) are observed in presence of the cyclodextrins. From the fluorescence data host-guest interaction with 1:1 stoichiometry is evident, the association constants ( K) being 126.06 M -1 and 461.62 M -1 for β-CD and SHPβ-CD respectively. Additionally, molecular docking and semiempirical calculations have been carried out which provide, for the first time, detailed insights regarding the encapsulation process. In particular, it is evident that the indole ring is inserted within the β-CD cavity with the aliphatic amine side chain protruding towards the primary rim of the β-CD cavity. Docking calculations reveal that hydrogen bonding interactions are involved in the formation of the inclusion complex. Semiempirical calculations indicate that formation of the 1:1 inclusion complex is energetically favorable which is consistent with the fluorescence data.

  18. Synthesis and spectroscopic study of highly fluorescent β-enaminone based boron complexes

    NASA Astrophysics Data System (ADS)

    Kumbhar, Haribhau S.; Gadilohar, Balu L.; Shankarling, Ganapati S.

    2015-07-01

    The newly synthesized 1, 1, 2-trimethyl-1H benzo[e]indoline based β-enaminone boron complexes exhibited the intense fluorescence (Fmax = 522-547 nm) in solution as well as in solid state (Fmax = 570-586 nm). These complexes exhibited large stoke shift, excellent thermal and photo stability when compared to the boron dipyrromethene (BODIPY) colorants. Optimized geometry and orbital distribution in ground states were computed by employing density functional theory (DFT). The cyclic voltammetry study revealed the better electron transport ability of these molecules than current electroluminescent materials like tris(8-hydroxyquinoli-nato)-aluminium (Alq3) and BODIPY, which can find application in electroluminescent devices.

  19. Synthesis and spectroscopic study of highly fluorescent β-enaminone based boron complexes.

    PubMed

    Kumbhar, Haribhau S; Gadilohar, Balu L; Shankarling, Ganapati S

    2015-07-01

    The newly synthesized 1, 1, 2-trimethyl-1H benzo[e]indoline based β-enaminone boron complexes exhibited the intense fluorescence (Fmax=522-547 nm) in solution as well as in solid state (F max=570-586 nm). These complexes exhibited large stoke shift, excellent thermal and photo stability when compared to the boron dipyrromethene (BODIPY) colorants. Optimized geometry and orbital distribution in ground states were computed by employing density functional theory (DFT). The cyclic voltammetry study revealed the better electron transport ability of these molecules than current electroluminescent materials like tris(8-hydroxyquinoli-nato)-aluminium (Alq3) and BODIPY, which can find application in electroluminescent devices. PMID:25813165

  20. Biodistribution, pharmacokinetic, and in-vivo fluorescence spectroscopic studies of photosensitizers

    NASA Astrophysics Data System (ADS)

    Moan, Johan; Peng, Qian; Iani, Vladimir; Ma, Li Wei; Horobin, Richard W.; Berg, Kristian; Kongshaug, Magne; Nesland, Jahn M.

    1996-01-01

    Some key data concerning the pharmacokinetics of PCT photosensitizers are reviewed. The following topics are discussed: The binding of photosensitizers to serum proteins, and the significance of LDL binding for tumor localization, the distribution of sensitizers among different tissue compartments and the significance of extracellular proteins and other stromal elements, such as macrophages, low tumor pH, leaky vasculature and poor lymphatic drainage for tumor selectivity of drugs, the retention and excretion of sensitizers, and intracellular pharmacokinetics. Furthermore, the usefulness of fluorescence measurements in the study of sensitizer pharmacokinetics is briefly discussed. A key observation is that 1O2 has a short radius of action. Since practically all PCT sensitizers act via the 1O2 pathway, only targets with significant sensitizer concentrations can be damaged. A given number of 1O2 entities generated in different organelles (mitochondria, lysosomes, plasma membrane, etc.) may lead to widely different effects with respect to cell inactivation. Similarly, sensitizers localizing in different compartments of tissues may have different photosensitizing efficiencies even under conditions of a similar 1O2 yield.

  1. Fluorescence Spectroscopic Studies on the Complexation of Antidiabetic Drugs with Glycosylated Serum Albumin

    NASA Astrophysics Data System (ADS)

    Seedher, N.; Kanojia, M.

    2013-11-01

    Glycosylation decreases the association constant values and hence the binding affinity of human serum albumin (HSA) for the antidiabetic drugs under study. The percentage of HAS-bound drug at physiological temperature was only about 21-38 % as compared to 46-74 % for non-glycosylated HSA. Thus the percentage of free drug available for an antihyperglycemic effect was about double (62-79 %) compared to the values for non-glycosylated HSA. Much higher free drug concentrations available for pharmacological effect can lead to the risk of hypoglycemia. Hydrophobic interactions were predominantly involved in the binding. In the binding of gliclazide, hydrogen bonding and electrostatic interactions were involved. Site specificity for glycosylated HSA was the same as that for non-glycosylated HSA; gliclazide and repaglinide bind only at site II whereas glimepiride and glipizide bind at both sites I and II. Glycosylation, however, caused conformational changes in albumin, and the binding region within site II was different for glycosylated and non-glycosylated albumin. Stern-Volmer analysis also indicated the conformational changes in albumin as a result of glycosylation and showed that the dynamic quenching mechanism was valid for fluorescence of both glycosylated and non-glycosylated HSA.

  2. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate, and oxyhydroxide minerals

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Felmy, Andrew R.; Clark, Sue B.

    2008-11-03

    In this work we have applied liquid-helium temperature (LHeT) time-resolved laser-induced fluorescence spectroscopy (TRLIF) to characterize a series of natural and synthetic minerals of uranium carbonate, phosphate and oxyhydroxides including rutherfordine, zellerite, liebigite, phosphuranylite, meta-autunite, meta-torbernite, uranyl phosphate, sodium-uranyl-phosphate, bequerelite, clarkeite, curite, schoepite and compregnacite, and compared their spectral characteristics among these minerals as well as our previously published data on uranyl silicates. For the carbonate minerals, the fluorescence spectra depend on the stoichiometry of the mineral. For the phosphate minerals the fluorescence spectra closely resemble each other despite the differences in their composition and structure. For all uranium oxyhydroxides, the fluorescence spectra are largely red-shifted as compared with those of the uranium carbonates and phosphates and their vibronic bands are broadened and less resolved. The much enhanced spectra resolution at LHeT allows more accurate calculation of the O=U=O symmetrical stretch frequency, ν1, corresponding to the average spacing of the vibronic peaks of the fluorescence spectra and the spectral origin as reflected by the position of the first vibronic band. It was found that both the average ν1 and λ1 values correlate well with the average basicity of the inorganic anion.

  3. Spectroscopic and computational study of a naphthalene derivative as colorimetric and fluorescent sensor for bioactive anions.

    PubMed

    Sharma, Darshna; Sahoo, Suban K; Bera, Rati Kanta; Kamal, Raj

    2013-05-01

    The anion recognition property of a naphthalene based receptor (L) was investigated by naked-eye, UV-Vis, fluorescence, (1)H NMR and computational methods. The receptor L showed fluoride selective naked-eye detectable colorimetric and UV-Vis spectral changes over other tested anions due to the formation of hydrogen bonding complex in 1:1 stoichiometry and/or deprotonation between fluoride and the receptor. Interestingly, the fluorescence of L was quenched by fluoride but enhanced by acetate. PMID:23456416

  4. Compact fluorescence spectroscopic tool for cancer detection

    NASA Astrophysics Data System (ADS)

    Nadeau, Valerie; Hamdan, Khaled; Hewett, Jacqueline; Makaryceva, Juljia; Tait, Iain; Cuschieri, Alfred; Padgett, Miles J.

    2002-05-01

    We describe a compact fluorescence spectroscopic tool for in vivo point monitoring of aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence and autofluorescence, as a non-invasive method of differentiating normal and cancerous tissue. This instrument incorporates a 405nm diode laser with a shutter to prevent exposure of tissue to harmful light doses and reduce photobleaching, a bifurcated optical fibre to allow illumination of tissue and collection of fluorescence with a single fibre, a compact grating spectrometer for collection of spectra and a PC for system control. We present spectra obtained using this system both during routine gastro-intestinal (GI) endoscopy for cancer detection and during photodynamic therapy (PDT) of anal intraepithelial neoplasia (AIN) for monitoring of treatment progress. These results illustrate the potential of the system to be used for fluorescence monitoring in a variety of clinical applications.

  5. Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Premnath, D.; Mosae Selvakumar, P.; Ravichandiran, P.; Tamil Selvan, G.; Indiraleka, M.; Jannet Vennila, J.

    2016-01-01

    Two substituted aromatic carbonyl compounds (compounds 1 and 2) of 4-aminoantipyrine were synthesized by condensation of fluorine substituted benzoyl chlorides and 4-aminoantipyrine. The structures of synthesized derivatives were established on the basis of UV-Vis, IR, and Mass, 1H, 13C NMR and Fluorescence spectroscopy. Both compounds showed significant fluorescence emission and two broad emission bands were observed in the region at 340 nm and 450 nm on excitation at 280 nm. Theoretically to prove that the molecule has anticancer activity against cervical cancer cells, the compounds were analyzed for molecular docking interactions with HPV16-E7 target protein by Glide protocol. Furthermore, 4-aminoantipyrine derivatives were evaluated for their in vitro cytotoxic activity against human cervical cancer cells (SiHa) by MTT assay. Compound 1 showed two fold higher activity (IC50 = 0.912 μM) over compound 2, and its activity was similar to that of Pazopanib, suggesting that although the two compounds were chemically very similar the difference in substituent on the phenyl moiety caused changes in properties.

  6. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes.

    PubMed

    Refat, Moamen S; el-Metwaly, Nashwa M

    2011-10-15

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature. PMID:21763185

  7. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Metwaly, Nashwa M.

    2011-10-01

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature.

  8. Fluorescent Ag nanoclusters prepared in aqueous poly(acrylic acid-co-maleic acid) solutions: a spectroscopic study of their excited state dynamics, size and local environment.

    PubMed

    Dandapat, Manika; Mandal, Debabrata

    2016-01-28

    Stable, fluorescent Ag nanoclusters were prepared in aqueous solutions of Na(+) salt of the carboxylate-rich polymer poly(acrylic acid-co-maleic acid) under brief spells of UV irradiation. The nanoclusters were nearly spherical, with diameters within 1.90 ± 0.50 nm, but displayed a prominent red edge excitation shift (REES) of fluorescence upon exciting within the visible absorption band, indicating heterogeneity of energy level distributions. Spectroscopic studies revealed that irrespective of whether the nanoclusters are excited in their UV or visible absorption bands, their fluorescence always ensues from the same manifold of emissive states, with a broad range of fluorescence lifetimes from ∼150 fs to 1 ns. PMID:26700465

  9. Spectroscopic studies of the internal modes of aminoaromatics by fluorescence excitation and dispersed emission in supersonic jet

    SciTech Connect

    Yan, S.

    1992-01-01

    A systematic study for the NH[sub 2] inversional mode in aniline and para substituted anilines has been performed using the techniques of fluorescence excitation and dispersed emission in supersonic jet. The transitions of the nitrogen inversion mode in aniline and para substituted anilines have been assigned in both the fluorescence excitation and dispersed emission spectra, which are strongly supported by the evidence of a large deuterium shift, the presence of a strong hot band, and the intense second overtone transition of the amino inversion in the excitation spectra of all the aniline molecules. The potential surface of each aniline has been fit using the observed inversional levels in both the ground and excited states. The molecular structure of each aniline has been investigated based on the experimental results. The NH[sub 2] torsional transition is assigned in the excitation spectrum of each aniline molecule for the first time. The absence of a torsional hot band and no observable tunneling splitting in the NH[sub 2] torsional mode indicates that the NH[sub 2] torsion mode in the anilines must have a very high first quanta in the ground state. The mechanism of I[sup 2][sub 0] and T[sup 2][sub 0] splittings in the excitation spectrum of p-toluidine has been explained by using molecular symmetry. The splittings are caused by the torsion-torsion coupling between the NH[sub 2] and CH[sub 3] groups. The structure of p-amino-p[prime]-methyl-trans-stilbene (PPTS) has been studied by spectroscopic methods and X-ray diffraction. The nearly planar geometry of the proton donor in the PPTS crystal dimer provides important evidence that the structure of gas phase PPTS is planar in the ground state. The absence of the hot band and I[sup 2][sub 0] in the excitation spectrum of PPTS indicates that the potential surface of PPTS must be a single well in both states, which is consistent with the X-ray result.

  10. Identification of Medicinally Active Ingredient in Ultradiluted Digitalis purpurea: Fluorescence Spectroscopic and Cyclic-Voltammetric Study

    PubMed Central

    Sharma, Anup; Purkait, Bulbul

    2012-01-01

    Serially diluted and agitated (SAD) drugs available commercially are in use with great faith because of the astonishing results they produce. The scientific viewpoint attached to the centuries-old therapy with SAD drugs, as in homeopathy, remained doubtful for want of appropriate research and insufficient evidence base. The conflicting points related to SAD drug mostly related to the level of concentrations/dilutions, use of drug in contradictory clinical conditions compared to the modern system of medicine, identification of medicinally active ingredient in concentrations and dilutions used in commercially available SAD drugs, and lack of laboratory-based pharmacological data vis-à-vis modern medicine. Modus operandi of SAD drug is also unknown. To address some of these issues an analytical study was carried out wherein commercially available SAD drug Digitalis purpurea, commonly used in different systems of medicine, was put to test. Various concentrations of commercially available Digitalis purpurea were analyzed using analytical methods: cyclic voltammetry, emission spectroscopy, and UV-VIS spectroscopy. These analytical methods apparently identified the medicinal ingredients and effect of serial dilution in commercial preparation of the drugs. PMID:22606641

  11. Spectroscopic Ellipsometry and Fluorescence Study of Thermochromism in an Ultrathin Poly(diacetylene) Film: Reversibility and Transition Kinetics

    SciTech Connect

    CARPICK,R.W.; MAYER,THOMAS M.; SASAKI,DARRYL Y.; BURNS,ALAN R.

    2000-01-18

    We have investigated the thermochromic transition of an ultrathin poly(diacetylene) film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid [CH{sub 3}(CH{sub 2}){sub 11}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 8}COOH] (poly-PCDA) organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in-situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate ''purple'' form that exists only at elevated temperature (between 303-333 K), followed by an irreversible transition to the red form after annealing above 320 K. We propose that the purple form is thermally distorted blue poly-PCDA, and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form, and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements we deduce an energy barrier of 17.6 {+-} 1.1 kcal mol{sup -1} between the blue and red forms.

  12. Single-particle spectroscopic measurements of fluorescent graphene quantum dots.

    PubMed

    Xu, Qinfeng; Zhou, Qi; Hua, Zheng; Xue, Qi; Zhang, Chunfeng; Wang, Xiaoyong; Pan, Dengyu; Xiao, Min

    2013-12-23

    We have performed the first single-particle spectroscopic measurements on individual graphene quantum dots (GQDs) and revealed several intriguing fluorescent phenomena that are otherwise hidden in the optical studies of ensemble GQDs. First, despite noticeable differences in the size and the number of layers from particle to particle, all of the GQDs studied possess almost the same spectral lineshapes and peak positions. Second, GQDs with more layers are normally brighter emitters but are associated with shorter fluorescent lifetimes. Third, the fluorescent spectrum of GQDs was red-shifted upon being aged in air, possibly due to the water desorption effect. Finally, the missing emission of single photons and stable fluorescence without any intermittent behavior were observed from individual GQDs. PMID:24251867

  13. Spectroscopic ellipsometry and fluorescence study of thermochromism in an ultrathin poly(diacetylene) film: Reversibility and transition kinetics

    SciTech Connect

    Carpick, R.W.; Mayer, T.M.; Sasaki, D.Y.; Burns, A.R.

    2000-05-16

    The authors have investigated the thermochromic transition of an ultrathin poly(diacetylene)film. The Langmuir film is composed of three layers of polymerized 10,12-pentacosadiynoic acid [Ch{sub 3}(CH{sub 2}){sub 11}C{triple_bond}CC{triple_bond}C(CH{sub 2}){sub 8}COOH] (poly-PCDA) organized into crystalline domains on a silicon substrate. Spectroscopic ellipsometry and fluorescence intensity measurements are obtained with in situ temperature control. Poly-PCDA films exhibit a reversible thermal transition between the initial blue form and an intermediate purple form that exists only at elevated temperature (between 303 and 333 K), followed by an irreversible transition to the red form after annealing above 320 K. The authors propose that the purple form is thermally distorted blue poly-PCDA and may represent a transitional configuration in the irreversible conversion to red. This hypothesis is supported by the appearance of unique features in the absorption spectra for each form as derived from the ellipsometry measurements. Significant fluorescence emission occurs only with the red form and is reduced at elevated temperatures while the absorption remains unchanged. Reduced emission is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence is likely related to thermal fluctuations of the hydrocarbon side chains. Time-resolved fluorescence measurements of the irreversible transition have been performed. Using a first-order kinetic analysis of these measurements, the authors deduce an energy barrier of 17.6 {+-} 1.1 kcal mol{sup {minus}1} between the blue and red forms.

  14. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.

    PubMed

    Zhang, Taishi; Gao, Nengyue; Li, Shuang; Lang, Matthew J; Xu, Qing-Hua

    2015-06-01

    Metal-enhanced fluorescence has attracted much attention due to its scientific importance and lots of potential applications. Plasmon coupled metal nanoparticles have been demonstrated to further improve the enhancement effects. Conventional studies of metal-enhanced fluorescence on the bulk systems are complicated by the ensemble average effects over many critical factors with large variations. Here, fluorescence enhancement of ATTO-655 by a plasmon coupled gold nanorod dimer fixed on a DNA origami nanobreadboard was studied on the single-particle level. A series of gold nanorod dimers with linear orientation and different gap distances ranging from 6.1 to 26.0 nm were investigated to explore the plasmon coupling effect on fluorescence enhancement. The results show that the dimer with the smallest gap (6.1 nm) gives the highest enhancement (470-fold), and the enhancement gradually decreases as the gap distance increases and eventually approaches that from a monomer (120-fold). This trend is consistent with the numerical calculation results. This study indicates that plasmon coupling in gold nanorod dimers offers further increased excitation efficiency to achieve large fluorescence enhancement. PMID:26266500

  15. A CRITICAL STUDY ON THE INTERACTIONS OF HESPERITIN WITH HUMAN HEMOGLOBIN: FLUORESCENCE SPECTROSCOPIC AND MOLECULAR MODELING APPROACH

    PubMed Central

    Chakraborty, Sandipan; Chaudhuri, Sudip; Pahari, Biswapathik; Taylor, Jasmine; Sengupta, Pradeep K.; Sengupta, Bidisha

    2012-01-01

    Hesperitin, a ubiquitous bioactive flavonoid abundant in citrus fruits is known to possess antioxidant, anti-carcinogenic, hypolipidemic, vasoprotective and other important therapeutic properties. Here we have explored the interactions of hesperitin with normal human hemoglobin (HbA), using steady state and time resolved fluorescence spectroscopy, far UV circular dicroism (CD) spectroscopy, combined with molecular modeling computations. Specific interaction of the flavonoid with HbA is confirmed from flavonoid-induced static quenching which is evident from steady state fluorescence as well as lifetime data. Both temperature dependent fluorescence measurements and molecular docking studies reveal that apart from hydrogen bonding and van der Waals interactions, electrostatic interactions also play crucial role in hesperitin-HbA interactions. Furthermore, electrostatic surface potential calculations indicate that the hesperitin binding site in HbA is intensely positive due to the presence of several lysine and histidine residues. PMID:22543928

  16. Time-resolved spectroscopic study of photofragment fluorescence in methane/air mixtures and its diagnostic implications

    NASA Astrophysics Data System (ADS)

    Jonsson, Malin; Borggren, Jesper; Aldén, Marcus; Bood, Joakim

    2015-09-01

    In this work 80-picosecond laser pulses of 266-nm wavelength with intensities up to (2.0 ± 0.5) × 1011 W/cm2 were used for fragmentation of methane/air gas mixtures at ambient pressure and temperature. Emission spectra are, for the first time, studied with ultrahigh temporal resolution using a streak camera. Fluorescence spectra from CH(A2Δ-X2Π, B2Σ--X2Π, C2Σ+-X2Π), CN(B2Σ+-X2Σ+, Δ v = 0 and Δ v = ±1), NH(A3Π--X3Σ-), OH(A2Σ+-X2Π) and N2 +(B2Σu + X2Σg + were recorded and analyzed. By fitting simulated spectra to high-resolution experimental spectra, rotational and vibrational temperatures are estimated, showing that CH(C), CN(B), NH(A), and OH(A) are formed in highly excited vibrational and rotational states. The fluorescence signal dependencies on laser intensity and CH4/air equivalence ratio were investigated as well as the fluorescence lifetimes. All fragments observed are formed within 200 ps after the arrival of the laser pulse and their fluorescence lifetimes are shorter than 1 ns, except for CN(B-X) Δ v = 0 whose lifetime is 2.0 ns. The CN(B-X) Δ v = 0 fluorescence was studied temporally under high spectral resolution, and it was found that the vibrational levels are not populated simultaneously, but with a rate that decreases with increasing vibrational quantum number. This observation indicates that the rate of the chemical reaction that forms the CN(B) fragments is decreasing with increasing vibrational state of the product. The results provide vital information for the application of laser diagnostic techniques based on strong UV excitation, as they show that such methods might not be entirely non-intrusive and suffering from spectral interferences, unless the laser intensity is kept sufficiently low. Finally, equivalence ratios were determined from "unknown" spectra using multivariate analysis, showing a good agreement with theoretical compositions with an error of 4 %. The method is expected to be a useful diagnostic tool for

  17. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can

  18. Kinetics and thermodynamics of glycans and glycoproteins binding to Holothuria scabra lectin: a fluorescence and surface plasmon resonance spectroscopic study.

    PubMed

    Gowda, Nagaraj M; Gaikwad, Sushama M; Khan, M Islam

    2013-11-01

    Holothuria scabra produces a monomeric lectin (HSL) of 182 kDa. HSL showed strong antibacterial activity and induced bacterial agglutination under in vitro conditions, indicating its role in animals' innate immune responses. Very few lectins have been reported from echinoderms and none of these lectins have been explored in detail for their sugar-binding kinetics. Affinity, kinetics and thermodynamic analysis of glycans and glycoproteins binding to HSL were studied by fluorescence and surface plasmon resonance spectroscopy. Lectin binds with higher affinity to O-linked than N-linked asialo glycans, and the affinities were relatively higher than that for sialated glycans and glycoproteins. T-antigen α-methyl glycoside was the most potent ligand having the highest affinity (Ka 8.32 ×10(7) M(-1)). Thermodynamic and kinetic analysis indicated that the binding of galactosyl Tn-antigen and asialo glycans is accompanied by an enthalpic contribution in addition to higher association rate coupled by low activation energy for the association process. Presence of sialic acid or protein matrix inhibits binding. Higher affinity of HSL for O-glycans than N-glycans had biological implications; since HSL specifically recognizes bacteria, which have mucin or O-glycan cognate on their cell surfaces and play a major role in animal innate immunity. Since, HSL had higher affinity to T-antigen, makes it a useful tool for cancer diagnostic purpose. PMID:23736907

  19. Binding-induced fluorescence of serotonin transporter ligands: A spectroscopic and structural study of 4-(4-(dimethylamino)phenyl)-1-methylpyridinium (APP(+)) and APP(+) analogues.

    PubMed

    Wilson, James N; Ladefoged, Lucy Kate; Babinchak, W Michael; Schiøtt, Birgit

    2014-04-16

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  20. Binding-Induced Fluorescence of Serotonin Transporter Ligands: A Spectroscopic and Structural Study of 4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+) and APP+ Analogues

    PubMed Central

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP+) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP+) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP+), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  1. Spectroscopic studies on the interaction between anthragallol and DNA using of ethidium bromide as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Li, Junsheng; Huang, Guoxia; Yan, Liujuan; Dong, Zhen

    2015-04-01

    The interaction of DNA with anthragallol (Ant) was investigated using ethidium bromide (EB) as a fluorescence probe, and the binding mechanism of Ant with DNA was researched via viscosity measurements. The results indicate that there is a complex of Ant and DNA, as confirmed by Ultraviolet visible absorption spectroscopy (UV-vis), Fluorescent and Resonance Light Scattering spectrum (RLS) and viscosity measurements. Ant molecules could intercalate with the base pairs of DNA as evidenced by the hyperchromic effect of absorption spectra, the relative viscosity of DNA and significant increases in the melting temperature. The binding constants of Ant and DNA were obtained by the fluorescence quenching technique. Furthermore, the binding mechanisms of the reaction of Ant with DNA were also investigated. The RLS assay successfully evaluated the saturated value and measured the potential toxicity of Ant. Adriamycin, chrysophanol, rhein, and alizarin can be used as references to build a method based on the mechanism of interactions with DNA and the DNA-saturation binding value to rapidly evaluate the potential toxicity of Ant.

  2. Biomolecular interaction study of hydralazine with bovine serum albumin and effect of β-cyclodextrin on binding by fluorescence, 3D, synchronous, CD, and Raman spectroscopic methods.

    PubMed

    Bolattin, Mallavva B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-07-01

    Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet-visible spectroscopy, fluorescence spectroscopy and confirmed by three-dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β-cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern-Volmer equation. The thermodynamic parameters ∆H(o) , ∆G(o) , ∆S(o) at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26785703

  3. Proton nuclear magnetic resonance and fluorescence spectroscopic studies of segmental mobility in aequorin and a green fluorescent protein from Aequorea forskalea

    SciTech Connect

    Nageswara Rao, B.D.; Kemple, M.D.; Prendergast, F.G.

    1980-10-01

    Aequorin is a protein of low molecular weight (20,000) isolated from the jellyfish Aequorea forskalea which emits blue light upon the binding of Ca/sup 2 +/ ions. This bioluminescence requires neither exogenous oxygen nor any other cofactors. The light emission occurs from an excited state of a chromophore (an imidazolopyrazinone) which is tightly and noncovalently bound to the protein. Apparently the binding of Ca/sup 2 +/ by the protein induces changes in the protein conformation which allow oxygen, already bound or otherwise held by the protein, to react with and therein oxidize the chromophore. The resulting discharged protein remains intact, with the Ca/sup 2 +/ and the chromophore still bound, but is incapable of further luminescence. The fluorescence spectrum of this discharged protein and the bioluminescence spectrum of the original charged aequorin are identical. A green fluorescent protein (GFP) of approx. 30,000 mol wt isolated from the same organism, functions in vivo as an acceptor of energy from aequorin and subsequently emits green light. We are applying proton nuclear magnetic resonance (NMR) spectroscopy and fluorescence spectroscopy to examine structural details of, and fluctuations associated with the luminescent reaction of aequorin and the in vivo energy transfer from aequorin to the GFP.

  4. Spectroscopic study on the photoinduced reaction of fullerene C 60 with aliphatic amines and its dynamics — strong short wavelength fluorescence from the adducts

    NASA Astrophysics Data System (ADS)

    Qiao, Jin Li; Gong, Qiao Juan; Du, Li Min; Jin, Wei Jun

    2001-01-01

    The photoinduced electron donor-acceptor interactions of C 60 with eight kinds of aliphatic amines, namely diethylamine (DEA), triethylamine (TEA), tri- n-amylamine (TAA), propylethylamine (PPA), n-butylamine (BTA), n-heptylamine (HPA) and dodecylamine (DDA) and ethylenediamine (EDA) are reported by a comprehensive spectroscopic study. Experiments show that there is a good discipline with different structure and the length of n-alkyl group both in their ground and excited states. At the same time, a slow reaction takes place between C 60 and various amines with a gradual increase in the concentration of various aliphatic amines or the standing of solution, which can be dramatically catalyzed by UV-radiation. The final products can all emit a strong fluorescence at the relatively shorter wavelength around 519 nm. On this basis, the dynamic properties of C 60/aphaliticamines including the enthalpy of activation (Δ H≠et) and entropy activation (Δ S≠et), together with all sorts of influence factors are firstly investigated in this work. The possible reaction mechanisms are explored, also.

  5. Detection of Hg2+ in water environment by fluorescence spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhang, Jinsong; Hu, Hong; Wan, Ruyi; Yao, Youwei

    2015-08-01

    Inorganic mercury (Hg2+) produces toxic effects even at very low concentration. High sensitive fluorescent probes for Hg2+ detection has been researched and synthesized. A fluorescence detection system is built for Hg2+ detection in water environment with fluorescent probes as the detection reagent. Fiber coupled LED with high brightness is developed and used as excitation light source. And the optimized excitation wavelength is about 520 nm. The measurements of fluorescence spectra is obtained by means of optical fiber spectroscopic techniques. Fluorescence detection experiments are carried out for a range of different concentrations of Hg2+ in aqueous solutions. The center wavelength of the fluorescence spectra is about 580 nm which is unchanged in the experiments. Relationship between Hg2+ concentrations and the fluorescence intensity is studied. A positive correlation exists between the intensity of fluorescence spectrum and the concentrations of Hg2+. The fluorescence intensity grows with increasing the concentration of Hg2+ for the same excitation light. When the concentration of Hg2+ is high enough, the fluorescence intensity increases slowly. And a numerical model is built for the concentration calculating. The detection limit is 0.005 μmol/L in the experiments. The Hg2+ detection system reported has many advantages such as small size, rapid response, high-sensitivity, and can be used for on-site testing of the water quality.

  6. Spectroscopic properties and laser induced fluorescence determination of some endocrine disrupting compounds.

    PubMed

    Benmansour, Badr; Stephan, Ludovic; Cabon, Jean-Yves; Deschamps, Laure; Giamarchi, Philippe

    2011-05-01

    This work presents spectroscopic properties of some Endocrine Disrupting Compounds (EDCs), frequently found in food and in natural water. Studied molecules belong to the groups of phenolic and phthalate EDCs. In a first part, we have examined their absorption and fluorescence properties. Fluorescence emission wavelengths are about 300 nm for phenolic compounds and 360 nm for phtalate compounds; main excitation wavelengths being comprised between 210 nm and 230 nm. Fluorescence lifetimes measured are short (about 4 ns) and the fluorescence quantum yield has been determined. In a second part, to avoid the time consuming solvent extraction step, an analytical application to evaluate the performance of a direct analysis by laser induced fluorescence spectroscopy of ECDs traces in tap water and in raw water is presented. Good detection limits have been obtained, i.e.: 0.35 µg.L(-1) of chlorophenol in tap water, which are always lower than the reported Predictive Non Efficient Concentration (PNEC). PMID:20084436

  7. Spectroscopic studies, fluorescence quenching by molecular oxygen and amplified spontaneous emission of 1,4-bis [2-(2-pyridyl) vinyl] benzene (P2VB) diolefinic laser dye

    NASA Astrophysics Data System (ADS)

    El-Daly, Samy A.; Ebeid, E. M.

    2014-04-01

    The UV-visible electronic absorption spectra, molar absorptivity, fluorescence spectra, fluorescence quantum yield and excited state lifetime of 1,4-bis [2-(2-pyridyl) vinyl] benzene P2VB were measured in different solvents. The fluorescence quenching of P2VB by molecular oxygen was also studied using lifetime measurements. A 2 × 10-4 mol dm-3 solution of P2VB in dimethyl formamide (DMF) gave amplified spontaneous emission (ASE) in blue spectral region with emission maximum at 420 nm upon pumping by 337.1 nitrogen laser pulse. The photochemical quantum yields (ϕc) of trans-cis photoisomerization of P2VB were calculated in different organic solvents. The photoreactivity of P2VB are also studied PMMA matrix.

  8. Fluorescence study of sugars

    NASA Astrophysics Data System (ADS)

    Thongjamroon, Sunida; Pattanaporkratana, Apichart

    2015-07-01

    We studied photoemission of monosaccharides and disaccharides using laser-induced fluorescence spectroscopy. A 532- nm, 10 mW, laser was used to excite the samples and back-scattering signals were collected by a spectrometer. We found that most sugars show weak fluorescence in solid phase but do not fluoresce when dissolved in water solutions. The emission spectra show similar peak intensity at 590 nm, but they are different in emission intensities. We suggest that the fluorescence spectra may be used to differentiate sugar type, even though the origin of the fluorescence is unclear and needed further study.

  9. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  10. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ismail, Lamia A.; Adam, Abdel Majid A.

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and 1H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ > DDQ > CLA > PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period.

  11. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: a spectroscopic study in solution and solid states.

    PubMed

    Refat, Moamen S; Ismail, Lamia A; Adam, Abdel Majid A

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and (1)H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ>DDQ>CLA>PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period. PMID:25022501

  12. Spectroscopic study of Mentha oils

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Singh, A. K.

    The visible fluorescence and excitation spectra of Mentha oils (Japanese mint oil, peppermint oil and spearmint oil) have been recorded. Different physical constants which are characteristic of the fluorescent molecules have been calculated for all three oils. Results reveal that the same group of organic compounds dominate in the oils of peppermint and spearmint, whereas some different compound is present in Japanese mint oil. It is also found that the fluorescence intensity of these oils is comparable to that of Rhodamine 6G dye in methanol solution. Our studies suggest that Mentha oils may be a useful lasing material in the 450-600 nm wavelength range.

  13. Spectroscopic study of sprites

    NASA Astrophysics Data System (ADS)

    Kanmae, Takeshi

    Optical emissions from sprites--large electric discharges in the mesosphere caused by intense lightning strokes--have been studied for decades. Studies have identified that sprite emissions are primarily composed of molecular band emissions of nitrogen and notably identified the near ultraviolet and blue emission from the N2+ First Negative system, which provided direct evidence of ionization in sprites. This implies that further evidence of the ionization may be provided by the visible and near infrared emission from the N2+ Meinel system, which is more accessible from ground-based platforms, though anticipated strong quenching in the mesosphere and below have made the presence of the emission somewhat controversial. To investigate the presence of the Meinel emission along the vertical extent of sprites, we made ground-based spectral observations in 2005. The observed spectra were mainly composed of the N2 First Positive system, and no or little indication of the Meinel bands were found. This study suggests that the quenching is indeed severe at sprite altitude, and it is difficult to study the ionization process in sprites via the Meinel emission. In addition, the data allowed us to investigate details of the First Positive emission from sprites. The observed First Positive spectra showed that the vibrational distribution of the upper state varies along the vertical extent of sprites, which is in agreement with previous reports, and furthermore this study indicates that the variation is associated with altitude, implying that collisional energy transfer processes play roles in exciting the First Positive emission, particularly at lower altitudes. Recent high-speed imaging observations have revealed the very dynamic nature of sprites: they develop within a few to 10 ms in forms of streamers and columnar glows. The underlying electron energies in these features have been inferred from their emissions in previous measurements, but they lacked either sufficient

  14. Nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  15. Fluorescence spectroscopic characterization of salivary metabolites of oral cancer patients.

    PubMed

    Yuvaraj, Manoharan; Udayakumar, Kanniyappan; Jayanth, Vadivel; Prakasa Rao, Aruna; Bharanidharan, Ganesan; Koteeswaran, Dornadula; Munusamy, Balu David; Murali Krishna, Chilakapati; Ganesan, Singaravelu

    2014-01-01

    A pilot study has been carried out using human saliva in differentiating the normal subjects from that of oral squamous cell carcinoma (OSCC) patients, using the autofluorescence spectroscopy at 405nm excitation. A markable difference in the spectral signatures between the saliva of normal subjects and that of oral cancer patients has been noticed. The possible reasons for the altered spectral signature may be due to the presence of endogenous porphyrin, NAD(P)H and FAD in the exfoliated cells from saliva. The elevated level of porphyrin in saliva of OSCC patients may be attributed to the disturbances in the amino acid degradation pathway and heme biosynthetic pathway, during the transformation of normal into malignant cells. The integrated area under the curve of fluorescence emission spectrum at 405nm excitation and also fluorescence excitation spectrum for 625nm emission were compared for the saliva of normal and oral cancer patients. The area under the curve for the emission spectrum provides 85.7% sensitivity and 93.3% specificity, where as the fluorescence excitation spectrum discriminates the same with 84.1% sensitivity and 93.2% specificity. PMID:24333763

  16. DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Naik, Vinod H.; Kulkarni, Ajaykumar D.; Badami, Prema S.

    2010-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes of the type ML 2 have been synthesized with Schiff bases derived from methylthiosemicarbazone and 5-formyl-6-hydroxy coumarin/8-formyl-7-Hydroxy-4-methylcoumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that, the complexes are non-electrolytes in nature. In view of analytical, spectral (IR, UV-vis, ESR, FAB-mass and fluorescence), magnetic and thermal studies, it has been concluded that, all the metal complexes possess octahedral geometry in which ligand is coordinated to metal ion through azomethine nitrogen, thione sulphur and phenolic oxygen atom via deprotonation. The redox behavior of the metal complexes was investigated by using cyclic voltammetry. The Schiff bases and their complexes have been screened for their antibacterial ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities ( Aspergillus niger, Aspergillus flavus and Cladosporium) by Minimum Inhibitory Concentration method. The DNA cleavage is studied by agarose gel electrophoresis method.

  17. In vivo spectroscopic photoacoustic tomography imaging of a far red fluorescent protein expressed in the exocrine pancreas of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Schmitner, Nicole; Sandrian, Michelle G.; Zabihian, Behrooz; Hermann, Boris; Salvenmoser, Willi; Meyer, Dirk; Drexler, Wolfgang

    2014-03-01

    Fluorescent proteins brought a revolution in life sciences and biological research in that they make a powerful tool for researchers to study not only the structural and morphological information, but also dynamic and functional information in living cells and organisms. While green fluorescent proteins (GFP) have become a common labeling tool, red-shifted or even near infrared fluorescent proteins are becoming the research focus due to the fact that longer excitation wavelengths are more suitable for deep tissue imaging. In this study, E2-Crimson, a far red fluorescent protein whose excitation wavelength is 611 nm, was genetically expressed in the exocrine pancreas of adult zebrafish. Using spectroscopic all optical detection photoacoustic tomography, we mapped the distribution of E2-Crimson in 3D after imaging the transgenic zebrafish in vivo using two different wavelengths. With complementary morphological information provided by imaging the same fish using a spectral domain optical coherence tomography system, the E2-Crimson distribution acquired from spectroscopic photoacoustic tomography was confirmed in 2D by epifluorescence microscopy and in 3D by histology. To the authors' knowledge, this is the first time a far red fluorescent protein is imaged in vivo by spectroscopic photoacoustic tomography. Due to the regeneration feature of zebrafish pancreas, this work preludes the longitudinal studies of animal models of diseases such as pancreatitis by spectroscopic photoacoustic tomography. Since the effective penetration depth of photoacoustic tomography is beyond the transport mean free path length, other E2-Crimson labeled inner organs will also be able to be studied dynamically using spectroscopic photoacoustic tomography.

  18. Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler.

    PubMed

    Samanta, Anirban; Zhou, Yadong; Zou, Shengli; Yan, Hao; Liu, Yan

    2014-09-10

    The dependence of quantum dot (QD) fluorescence emission on the proximity of 30 nm gold nanoparticles (AuNPs) was studied with controlled interparticle distances ranging from 15 to 70 nm. This was achieved by coassembling DNA-conjugated QDs and AuNPs in a 1:1 ratio at precise positions on a triangular-shaped DNA origami platform. A profound, long-range quenching of the photoluminescence intensity of the QDs was observed. A combination of static and time-resolved fluorescence measurements suggests that the quenching is due to an increase in the nonradiative decay rate of QD emission. Unlike FRET, the energy transfer is inversely proportional to the 2.7th power of the distance between nanoparticles with half quenching at ∼28 nm. This long-range quenching phenomena may be useful for developing extended spectroscopic rulers in the future. PMID:25084363

  19. Non steroidal anti-inflammatory drugs modulate the physicochemical properties of plasma membrane in experimental colorectal cancer: a fluorescence spectroscopic study.

    PubMed

    Vaish, Vivek; Sanyal, Sankar Nath

    2011-12-01

    According to "fluid-mosaic model," plasma membrane is a bilayer constituted by phospholipids which regulates the various cellular activities governed by many proteins and enzymes. Any chemical, biochemical, or physical factor has to interact with the bilayer in order to regulate the cellular metabolism where various physicochemical properties of membrane, i.e., polarization, fluidity, electrostatic potential, and phase state may get affected. In this study, we have observed the in vivo effects of a pro-carcinogen 1,2-dimethylhydrazine dihydrochloride (DMH) and the two non steroidal anti-inflammatory drugs (NSAIDs); sulindac and celecoxib on various properties of the plasma membrane of colonocytes, i.e., electric potential, fluidity, anisotropy, microviscosity, lateral diffusion, and phase state in the experimentally induced colorectal cancer. A number of fluorescence probes were utilized like membrane fluidity and anisotropy by 1,6-diphenyl-1,3,5-hexatriene, membrane microviscosity by Pyrene, membrane electric potential by merocyanine 540, lateral diffusion by N-NBD-PE, and phase state by Laurdan. It is observed that membrane phospholipids are less densely packed and therefore, the membrane is more fluid in case of carcinogenesis produced by DMH than control. But NSAIDs are effective in reverting back the membrane toward normal state when co-administered with DMH. The membrane becomes less fluid, composed of low electric potential phospholipids whose lateral diffusion is being prohibited and the membrane stays mostly in relative gel phase. It may be stated that sulindac and celecoxib, the two NSAIDs may exert their anti-neoplastic role in colorectal cancer via modifying the physicochemical properties of the membranes. PMID:21725642

  20. A fluorescence spectroscopic study on the speciation of Cm(III) and Eu(III) in the presence of organic chelates in highly basic solutions

    SciTech Connect

    Wang, Zheming; Felmy, Andrew R.; Xia, Yuanxian; Mason, Marvin J.

    2003-07-15

    The speciation of Eu(III) and Cm(III) was investigated by time resolved laser fluorescence spectroscopy (TRLFS) over a range of base concentrations ranging from 0.01m NaOH to 7.5M NaOH and in the presence of several organic chelates including EDTA, HEDTA, NTA, and oxalate. The results of this work suggest that both Eu(III) and Cm(III) form strong mixed ligand complexes with organic chelates and the hydroxyl groups(s) in dilute NaOH solutions. However, in concentrated NaOH solutions, Eu(III)-/Cm(III)-containing colloidal nanoparticles are the primary cause for the measured Eu(III)/Cm(III) in the aqueous solutions. Therefore, the interpretation of these data solely in terms of the formation of amphoteric hydroxyl species (e.g. Eu(OH)4-) would appear to be inappropriate. The organic chelating ligands form strong complexes with surface Cm(III)/Eu(III) sites of the colloidal nanoparticles. For Cm(III), such surface complexes show largely red-shifted fluorescence spectra as compared with the aqueous complexes and unusually short fluorescence lifetimes. The decreased fluorescence lifetimes are likely due to the presence of transition metal ions, such as Fe3+, in the nanoparticle as well as reduced inter-nuclear distance between neighboring Cm(III) centers.

  1. A new strategy to prepare giant vesicles from surface active ionic liquids (SAILs): a study of protein dynamics in a crowded environment using a fluorescence correlation spectroscopic technique.

    PubMed

    Banerjee, Chiranjib; Roy, Arpita; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni

    2016-06-01

    A simple procedure for the preparation of giant vesicles using surface active ionic liquids (SAILs) has been provided in this paper. SAILs, used to form vesicles, were synthesized by replacing the cationic part of Aerosol OT (AOT) with cations having alkyl chains of different lengths (ammonium and imidazolium cations). The number of carbons in the alkyl chains of the cations was varied from eight to sixteen. From the observed results, the formation of giant vesicles is found to be dependent on the alkyl chain length as well as the organic moieties of the respective cations. These giant vesicles were characterized using fluorescence lifetime imaging microscopy (FLIM). The conformational dynamics of bovine serum albumin (BSA) inside these giant vesicles was determined using fluorescence correlation spectroscopy (FCS) to get an idea about the protein dynamics in a constrained environment. The interaction of the giant vesicles with the protein was confirmed by the change in the diffusion coefficient and the conformational fluctuation time. PMID:27173474

  2. Fluorescent-Spectroscopic Research of in Vivo Tissues Pathological Conditions

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Medzhidov, R. T.

    The steady-state spectra of autofluorescence and the reflection coefficient on the excitation wavelength of some stomach tissues in vivo with various pathological conditions (surface gastritis, displasia, cancer) are measured under excitation by the nitrogen laser irradiation (λex=337.1 nm). The contour expansion of obtained fluorescence spectra into contributions of components is conducted by the Gaussian-Lorentzian curves method. It is shown that at least 7 groups of fluorophores forming a total luminescence spectrum can be distinguished during the development of displasia and tumor processes. The correlation of intensities of flavins and NAD(P)·H fluorescence is determined and the degree of respiratory activity of cells for the functional condition considered is estimated. The evaluations of the fluorescence quantum yield of the tissue's researched are given.

  3. Synthesis, spectroscopic characteristic of novel fluorescent dyes of pyrazoline compounds

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Ying; Zhang, Xiao-Xiao; Shi, Jing-Jing; Chen, Gang; Xu, Xiao-Ping; Ji, Shun-Jun

    Four novel fluorescence dyes of the pyrazoline were synthesized and fully characterized by means of 1H, 13C NMR, and HRMS. The optical, electrochemical properties were also investigated. Solvent effect on the fluorescence characteristics of the four compounds indicates that the emission wavelength was red-shifted with the increase of solvent polarity. As we expected, the results indicated that these compounds exhibited high quantum yields. Quantum chemical calculations were used to obtain optimized ground-state geometry, spatial distributions of the HOMO, LUMO levels of the compounds.

  4. [Intermolecular Interactions between Cytisine and Bovine Serum Albumin A Synchronous Fluorescence Spectroscopic Analysis and Molecular Docking Research].

    PubMed

    Wu, Yu-hang; Han, Zhong-bao; Ma, Jia-ze; He, Yan; Liu, Li-yan; Xin, Shi-gang; Yu, Zhan

    2016-03-01

    Cytisine (Cy) is one of the alkaloids that exist naturally in the plant genera Laburnum of the family Fabaceae. With strong bioactivities, Cy is commercialized for smoking cessation for years. In this work, the study of intermolecular interactions between Cy and bovine serum albumin (BSA) was performed by applying fluorescence spectroscopic methods under simulated physiological conditions. The mechanism of fluorescence quenching of BSA by Cy was also studied. Parameters such as bathing temperature, time and solution pH were investigated to optimize the fluorescence quenching. The binding type, binding ratio and binding constant between BSA and Cy were calculated by using the Stem-Volmer equation. Experimental results indicated that Cy can quench the fluorescent emission of BSA statically by forming a 1 : 1 type non-covalent complex and the binding constant is 5.6 x 10(3) L x mol(-1). Synchronous fluorescence spectral research shows Cy may affect the fluorescence emission of Trp residues of BSA. Furthermore, molecular docking is utilized to model the complex and probe the plausible quenching mechanism. It can be noted that the hydrogen bindings and hydrophobic interactions between Cy and BSA change the micro-environment of Trp213, which leads to the fluorescence quenching of BSA. PMID:27400521

  5. Single molecule spectroscopic characterization of a far-red fluorescent protein (HcRed) from the Anthozoa coral Heteractis crispa

    NASA Astrophysics Data System (ADS)

    Cotlet, Mircea; Habuchi, Satoshi; Whitier, Jennifer E.; Werner, James H.; De Schryver, Frans C.; Hofkens, Johan; Goodwin, Peter M.

    2006-02-01

    We report on the photophysical properties of a far-red intrinsic fluorescent protein by means of single molecule and ensemble spectroscopic methods. The green fluorescent protein (GFP) from Aequorea victoria is a popular fluorescent marker with genetically encoded fluorescence and which can be fused to any biological structure without affecting its function. GFP and its variants provide emission colors from blue to yellowish green. Red intrinsic fluorescent proteins from Anthozoa species represent a recent addition to the emission color palette provided by GFPs. Red intrinsic fluorescent markers are on high demand in protein-protein interaction studies based on fluorescence-resonance energy transfer or in multicolor tracking studies or in cellular investigations where autofluorescence possesses a problem. Here we address the photophysical properties of a far-red fluorescent protein (HcRed), a mutant engineered from a chromoprotein cloned from the sea anemone Heteractis crispa, by using a combination of ensemble and single molecule spectroscopic methods. We show evidence for the presence of HcRed protein as an oligomer and for incomplete maturation of its chromophore. Incomplete maturation results in the presence of an immature (yellow) species absorbing/fluorescing at 490/530-nm. This yellow chromophore is involved in a fast resonance-energy transfer with the mature (purple) chromophore. The mature chromophore of HcRed is found to adopt two conformations, a Transoriented form absorbing and 565-nm and non-fluorescent in solution and a Cis-oriented form absorbing at 590-nm and emitting at 645-nm. These two forms co-exist in solution in thermal equilibrium. Excitation-power dependence fluorescence correlation spectroscopy of HcRed shows evidence for singlet-triplet transitions in the microseconds time scale and for cis-trans isomerization occurring in a time scale of tens of microseconds. Single molecule fluorescence data recorded from immobilized HcRed proteins, all

  6. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  7. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  8. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting. PMID:26995929

  9. Spectroscopic studies of copper enzymes

    SciTech Connect

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  10. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  11. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  12. Spectroscopic study of photo and thermal destruction of riboflavin

    NASA Astrophysics Data System (ADS)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  13. Spectroscopic studies of solutes in aqueous solution.

    PubMed

    Chai, Bing-hua; Zheng, Jian-ming; Zhao, Qing; Pollack, Gerald H

    2008-03-20

    Absorption and fluorescence characteristics of aqueous solutions of salts, sugars, and amino acids were studied using UV-vis spectroscopy and spectrofluorometry. Motivation stemmed from unanticipated absorption spectral and fluorescence features of the "exclusion zone" seen adjacent to various hydrophilic surfaces. Those features implied a structure distinct from that of bulk water (Adv. Colloid Interface Sci. 2006, 127, 19). Absorption peaks at approximately 270 nm similar to those observed in the exclusion zone were seen in solutions of the following substances: salts, Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose. To determine the fate of the absorbed energy, we studied the fluorescence properties of these solutions. The salts showed fluorescence emission around 480-490 nm under different excitation wavelengths. The fluorescence intensity of LiCl was higher than NaCl, which was in turn higher than KCl-the same ordering as the absorption intensities. Fluorescence of Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose were observed as well, with multiple excitation wavelengths. Hence, at least some of the absorbed energy is released as fluorescence. The results show features closely similar to those observed in the exclusion zone, implying that the aqueous region around the solutes resembles the aqueous zone adjacent to hydrophilic surfaces. Both may be more extensively ordered than previously thought. PMID:18298105

  14. Studying Young Stars with Large Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2016-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  15. Fluorescence, spectroscopic and NLO properties of green tea extract in deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia

    2013-11-01

    Natural, purely biological deoxyribonucleic acid (DNA)-green tea extract (GTE) complexes at different concentrations were prepared and characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties. The complexes can be processed into good optical quality thin films by solution casting. They fluoresce when excited in UV absorption band, with a significantly larger quantum yield for the DNA-GTE complex than for a pure GTE solution. The thin film refractive indices were determined by Fabry-Perot (FP) interference patterns. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1064.2 nm fundamental wavelength. The phase of THG susceptibility was determined from the concentration variation of THG susceptibility. It reveals presence of a two-photon resonance with a band lying in the optical gap.

  16. Quantum-chemical investigations of spectroscopic properties of a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.

    2012-09-01

    The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.

  17. NGC 6067: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Alonso-Santiago, J.; Negueruela, I.; Marco, A.; Dorda, R.

    2015-05-01

    NGC 6067 is a young open cluster in the Norma Cloud. Its age is around 100 Ma. It hosts a large population of evolved stars: 14 luminous red stars (most of which K Ib supergiants and late-G/early-K giants), 6--8 B giants, two A/F supergiants and two Cepheids (F/G supergiants). All this would imply that NGC 6067 represent one of the best laboratories in the Galaxy to study the evolution of intermediate-mass stars. Thackeray et al. (1962, MNRAS 124, 445T) performed the first complete study of this cluster but it has been poorly studied since then. We obtained high resolution echelle spectra (R=48000) using FEROS (Fiber Extended Range Optical Spectrograph) mounted on the ESO 2.2 m telescope at La Silla Observatory (Chile) in May 2011. Here we present preliminary results based on this spectroscopy and the UBV photometry listed in Terndrup & Pinsonneault (2007, ApJ 671, 1640).

  18. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  19. Nuclear spectroscopic studies. Progress report

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  20. Spectroscopic studies of the transplutonium elements

    SciTech Connect

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables.

  1. Spectroscopic Studies of Classical Cepheids.

    NASA Astrophysics Data System (ADS)

    Gauthier, Robert Paul

    The extent and nature of the distortions of the emergent flux spectrum of cepheids due to the effects of the pulsation as a function of period and amplitude are not clearly understood. A multiphase classification study of a sample of 26 cepheids from the southern hemisphere at the relatively high dispersion of 67(ANGSTROM)/mm has been undertaken and complemented with the recent high quality photometric data for Pel (1976) in order to observe the results of increasing period and amplitude of pulsation on the line spectrum. The original framework of such investigations set up by Struve (1944) and Code (1947) has been enlarged upon principally through the use of modern MK standard supergiant sequences. It has been found that, while the spectrum of weak metal lines (in cepheids with periods less than forty days) can always be found to match that of a non-variable supergiant, anomalies in the strengths of the strong metal lines and Balmer H(delta) and H(gamma) lines increase both in number and intensity with increasing period and amplitude. The consequences of this on the line blanketing of the atmosphere are seen to be significant when comparing the color-spectrum relations of different period bins, indicating the inappropriateness of extending intrinsic color relations established with short period variables to the longer period ones. It has also been found that the effects of the amplitude of the pulsation are more directly felt by the atmosphere near the extrema of the physical displacement as evidenced by the sudden widening of the period-spectrum relation at the mid-descending and mid-rising branch phases. Following the suggestions by Sorvari (1974) that the luminosity sensitive OI 7773(ANGSTROM) triplet is responding to the dynamical effects of the pulsation on the atmosphere, a moderate dispersion (27(ANGSTROM)/mm) study of a small sample of cepheids (4) and supergiant standards has been undertaken. It has been found that the strength of this feature throughout

  2. Spectroscopic study of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curran, Seamus; Weldon, Declan N.; Blau, Werner J.; Zandbergen, Henny W.; Kastner, J.; Kuzmany, Hans

    1994-11-01

    We present a comprehensive experimental study of the vibrational spectra of nanotubes. There are two main lines observed in the Raman spectrum, one positioned at 1350 cm-1, the D line, and the other at 1580 cm-1, the G line. Both these lines are very similar to those seen with disordered graphite. The disorder induced D line is very weak compared to the G line which is indicative of high crystalline materials. The position and intensity of the D line strongly depends on the energy of the exciting laser. This dispersion effect was also observed for graphitic particles and may be explained by a photoselective resonance process of nanotubes with different sizes. There are two optically active modes in the Infrared spectrum for highly orientated polycrystalline graphite which are the E1u and A2u modes. The E1u mode is positioned at 1587 cm-1 while the A2u mode is positioned at 868 cm-1. The Infrared spectrum of the nanotubes shows both modes although the E1u mode is downshifted to 1575 cm-1.

  3. Studying Photosynthesis by Measuring Fluorescence

    ERIC Educational Resources Information Center

    Sanchez, Jose Francisco; Quiles, Maria Jose

    2006-01-01

    This paper describes an easy experiment to study the absorption and action spectrum of photosynthesis, as well as the inhibition by heat, high light intensity and the presence of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the photosynthetic process. The method involves measuring the chlorophyll fluorescence emitted by intact…

  4. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  5. Dual-wavelength excitation to reduce background fluorescence for fluorescence spectroscopic quantitation of erythrocyte zinc protoporphyrin-IX and protoporphyrin-IX from whole blood and oral mucosa

    NASA Astrophysics Data System (ADS)

    Hennig, Georg; Vogeser, Michael; Holdt, Lesca M.; Homann, Christian; Großmann, Michael; Stepp, Herbert; Gruber, Christian; Erdogan, Ilknur; Hasmüller, Stephan; Hasbargen, Uwe; Brittenham, Gary M.

    2014-02-01

    Erythrocyte zinc protoporphyrin-IX (ZnPP) and protoporphyrin-IX (PPIX) accumulate in a variety of disorders that restrict or disrupt the biosynthesis of heme, including iron deficiency and various porphyrias. We describe a reagent-free spectroscopic method based on dual-wavelength excitation that can measure simultaneously both ZnPP and PPIX fluorescence from unwashed whole blood while virtually eliminating background fluorescence. We further aim to quantify ZnPP and PPIX non-invasively from the intact oral mucosa using dual-wavelength excitation to reduce the strong tissue background fluorescence while retaining the faint porphyrin fluorescence signal originating from erythrocytes. Fluorescence spectroscopic measurements were made on 35 diluted EDTA blood samples using a custom front-face fluorometer. The difference spectrum between fluorescence at 425 nm and 407 nm excitation effectively eliminated background autofluorescence while retaining the characteristic porphyrin peaks. These peaks were evaluated quantitatively and the results compared to a reference HPLC-kit method. A modified instrument using a single 1000 μm fiber for light delivery and detection was used to record fluorescence spectra from oral mucosa. For blood measurements, the ZnPP and PPIX fluorescence intensities from the difference spectra correlated well with the reference method (ZnPP: Spearman's rho rs = 0.943, p < 0.0001; PPIX: rs = 0.959, p < 0.0001). In difference spectra from oral mucosa, background fluorescence was reduced significantly, while porphyrin signals remained observable. The dual-wavelength excitation method evaluates quantitatively the ZnPP/heme and PPIX/heme ratios from unwashed whole blood, simplifying clinical laboratory measurements. The difference technique reduces the background fluorescence from measurements on oral mucosa, allowing for future non-invasive quantitation of erythrocyte ZnPP and PPIX.

  6. First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid.

    PubMed

    Barkleit, Astrid; Geipel, Gerhard; Acker, Margret; Taut, Steffen; Bernhard, Gert

    2011-01-01

    For the first time Am(III) complexation with a small organic ligand could be identified and characterized with time-resolved laser-induced fluorescence spectroscopy (TRLFS) at room temperature and trace metal concentration. With pyromellitic acid (1,2,4,5-benzene-tetracarboxylic acid, BTC) as ligand spectroscopic characteristics for the Am-BTC complex system were determined at pH 5.0, an ionic strength of 0.1 M (NaClO4) and room temperature. The fluorescence lifetimes were determined to be 23.2±2.2 ns for Am3+(aq) and 27.2±1.2 ns for the Am-BTC 1:1 complex; the emission maximum for the 5D1-(7)F1 transition is 691 nm for both species. The complex stability constant for the Am-BTC 1:1 complex was calculated to be logβ110=5.42±0.16. PMID:20943431

  7. Availability of fluorescence spectroscopic in the accompaniment of formation of corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Kurachi, C.; Bagnato, V. S.; Faria e Sousa, S. J.; Ventura, L.

    2010-02-01

    The corneal cross-linking is a method that associates riboflavin and ultraviolet light to induce a larger mechanical resistance at cornea. This method has been used for the treatment of Keratoconus. Since cross-linking is recent as treatment, there is a need to verify the effectiveness of the method. Therefore, the viability of the fluorescence spectroscopy technique to follow the cross-linking formation at cornea was studied. Corneas were divided in two measuring procedures: M1 (cornea + riboflavin), and M2 (cornea + riboflavina + light irradiation, 365nm). For fluorescence measurements, a spectrofluorimeter was used, where several wavelengths were selected (between 320nm and 370nm) for cornea excitation. Several fluorescence spectra were collected, at 10 min-interval, during 60 min. Spectra allowed one to observe two very well defined bands of fluorescence: the first one at 400nm (collagen), and the second one at 520nm (riboflavin). After spectra analyses, a decrease of collagen fluorescence was observed for both groups. For riboflavin, on the other hand, there was a fluorescence increase for M1, and a decrease for M2. Thus, it is possible to conclude that it this technique is sensitive for the detection of tissue structural changes during cross-linking treatment, encouraging subsequent studies on quantification of cross-linking promotion in tissue.

  8. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ebru; Bayraktutan, Tuğba; Acar, Murat; Toprak, Mahmut

    2013-01-01

    In this study, the fluorescence quenching of fluorescein by safranine T in liposome media had been investigated systematically by fluorescence spectroscopy, UV-vis absorption spectroscopy and fluorescence decay lifetime measurements. The spectroscopic data were analyzed using a Stern-Volmer equation to determine the quenching process. The experimental results showed that the intrinsic fluorescence of fluorescein was strongly quenched by safranine T, and that the quenching mechanism was considered as static quenching by forming a ground-complex. The Stern-Volmer quenching constant Ksv, and the bimolecular quenching constant Kq were estimated. The distances between the donor (fluorescein) and the acceptor (safranine T) were calculated according to the Förster non-radiation energy transfer theory. In addition, the partition coefficient of the safranine T (Kp) in the L-egg lecithin phosphatidylcholine liposomes was also calculated by utilizing the fluorescence quenching.

  9. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D

  10. Spectroscopic study of bituminous oxidative stress.

    PubMed

    Masmoudi, H; Rebufa, C; Raffi, J; Permanyer, A; Kister, J

    2004-05-01

    Bitumen, as each organic substance, is a product which alters over time. Indeed, roads deteriorate under the effect of several phenomena. A number of studies have been undertaken to increase the quality of road's coating, mostly by adding polymer to bitumen. This work was based on the study, by electron paramagnetic resonance (EPR), FTIR and Synchronous UV fluorescence, of different base and modified bitumens after different treatments used to simulate the ageing (gamma irradiation, thermal treatment). Our purpose was to compare and correlate the results obtained by different techniques to improve the knowledge of bitumen's reactivity and evolution submitted to ageing phenomena. PMID:15134733

  11. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung.

    PubMed

    Woo, Min-Ah; Lee, Sang-Myung; Kim, Gunsung; Baek, JongHo; Noh, Mi Suk; Kim, Ji Eun; Park, Sung Jin; Minai-Tehrani, Arash; Park, Se-Chang; Seo, Yeong Tai; Kim, Yong-Kwon; Lee, Yoon-Sik; Jeong, Dae Hong; Cho, Myung-Haing

    2009-02-01

    Immunoassays using nanomaterials have been rapidly developed for the analysis of multiple biomolecules. Highly sensitive and biocompatible surface enhanced Raman spectroscopy-active nanomaterials have been used for biomolecule analysis by many research groups in order to overcome intrinsic problems of conventional immunoassays. We used fluorescent surface-enhanced Raman spectroscopic dots (F-SERS dots) to detect biomolecules in this study. The F-SERS dots are composed of silver nanoparticle-embedded silica nanospheres, organic Raman tagging materials, and fluorescent dyes. The F-SERS dots demonstrated highly sensitive, selective, and multifunctional characteristics for multiplex targeting, tracking, and imaging of cellular and molecular events in the living organism. We successfully applied F-SERS dots for the detection of three cellular proteins, including CD34, Sca-1, and SP-C. These proteins are simultaneously expressed in bronchioalveolar stem cells (BASCs) in the murine lung. We analyzed the relative expression ratios of each protein in BASCs since external standards were used to evaluate SERS intensity in tissue. Quantitative comparisons of multiple protein expression in tissue were first attempted using SERS-encoded nanoprobes. Our results suggested that immunoassays using F-SERS dots offered significant increases in sensitivity and selectivity. Such immunoassays may serve as the primary next-generation labeling technologies for the simultaneous analysis of multiple biomolecules. PMID:19117480

  12. Effect of temperature on the methotrexate BSA interaction: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Maciążek, M.; Równicka, J.; Bojko, B.; Pentak, D.; Sułkowski, W. W.

    2007-05-01

    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory illness which affects about one percent of the world's population. Methotrexate (4-amino-10-methylfolic acid) (MTX) also known as amethopterin is commonly used to treat rheumatoid arthritis (RA). It is transported in the circulary system as a complex with serum albumin. The aim of this study was to investigate the interactions of MTX with transporting protein with the use of spectroscopic methods. The binding of MTX to bovine serum albumin (BSA) was studied by monitoring the changes in the emission fluorescence spectra of protein in the presence of MTX at excitation wavelength of 280 nm and 295 nm. The quenching of protein fluorescence at temperature range from 298 K to 316 K was observed. Energy transfer between methotrexate and fluorophores contained in the serum albumin structure was found at the molar ratio MTX:BSA 7.5:1. The relative fluorescence intensity of BSA decreases with increase of temperature. Similar results were observed for BSA excited with 280 nm and 295 nm at the same temperature range. The presence of MTX seems to prevent these changes. Temperature dependence of the binding constant has been presented. The binding and quenching constants for equilibrium complex were calculated using Scatchard and Stern-Volmer method, respectively. The results show that MTX forms π-π complex with aromatic amino acid residues of BSA. The binding site for MTX on BSA was found to be situated in the hydrophobic IIA or IB subdomain where the Trps were located. The spontaneity of MTX-BSA complex formation in the temperature range 298-316 K was ascertained.

  13. Steady state fluorescence spectroscopic characterization of normal and diabetic urine at selective excitation wavelength 280 nm

    NASA Astrophysics Data System (ADS)

    Kesavan, Anjana; Pachaiappan, Rekha; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Urine is considered diagnostically important for tits native fluorophores and they vary in their distribution, concentration and physiochemical properties, depending upon the metabolic condition of the subject. In this study, we have made an attempt, to characterize the urine of normal subject and diabetic patients under medication by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed employing the multivariate statistical method linear discriminant analysis (LDA) using leave one out cross validation method. The results were promising in discriminating diabetic urine from that of normal urine. This study in future may be extended to check the feasibility in ruling out the coexisting disorders such as cancer.

  14. Quadrupole resonance spectroscopic study of narcotic materials

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; West, Rebecca; Garroway, Allen N.; Lyndquist, R.; Yesinowski, James P.

    1997-02-01

    Bulk narcotic detection systems based upon Quadrupole Resonance Analysis (QRA) technology have a major advantage over imaging technologies, in that QRA is chemical-specific and consequently has a lower rate of false alarms. QRA is a magnetic resonance technology which occurs as a result of the inherent molecular properties of the atomic nuclei in crystalline and amorphous solids. The QRA response is characterized by 1) the precessional frequency of the nucleus, and 2) the nature of the electric field gradient experienced by the nucleus,due to its molecular environment. Another important detection parameter is linewidth, resonant quality. All of these parameters depend on sample purity and manufacturing process. Quantum Magnetics recently carried out a study on the QRA signatures of various narcotic materials with the support of the US Army, US Customs, and the Office of National Drug Control Policy. The aim of the study was to fully characterize the variation in QRA spectroscopic parameters of different samples of cocaine base and cocaine hydrochloride. The results from this study ar discussed here.

  15. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  16. Fluorescent-spectroscopic and imaging methods of investigations for diagnostics of head and neck tumors and control of PDT

    NASA Astrophysics Data System (ADS)

    Edinak, N. E.; Chental, Victor V.; Komov, D.; Vaculovskaya, E.; Tabolinovskaya, T. D.; Abdullin, N. A.; Pustynsky, I.; Chatikhin, V.; Loschenov, Victor B.; Meerovich, Gennady A.; Stratonnikov, A. A.; Linkov, Kirill G.; Agafonov, Vladimir I.; Zuravleva, V.; Lukjanets, E.

    1996-01-01

    Methodics of PDT control and fluorescent-spectroscopic diagnostic of head and neck tumors and mammary gland cancer (nodular) with the use of Kr, He-Ne and semiconductor lasers and photosensitizer (PS) -- Al phtalocyanin (Photosense) are discussed. The results show that applied diagnostic methods permit us not only to identify the topology and malignancy of a tumor but also to correct PDT process directly during irradiation.

  17. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  18. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  19. Spectroscopic study of 2-[2-(4-cyclaminophenyl)ethen-1-yl] benzothiazoles and their N-allylbenzothiazolium bromides. Solvent and substituent effects on their ultraviolet-visible and fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Gáplovský, Anton; Donovalová, Jana; Magdolen, Peter; Toma, Štefan; Zahradník, Pavol

    2002-01-01

    UV-vis and fluorescence spectra of 2-[2-(4-cyclaminophenyl)ethen-1-yl] benzothiazoles 1 and their N-allylbenzothiazolium bromides 2 have been measured and interpreted. The substitution and solvent effects on electronic structure and spectra have been investigated. The benzothiazolium salts substituted with saturated cyclamines show strong push-pull character and can be used as potential NLO materials. Formation of aggregated structures was observed at higher concentrations of the benzothiazolium bromides.

  20. Steady state and time-resolved fluorescence spectroscopic characterization of normal and cancerous urine

    NASA Astrophysics Data System (ADS)

    Rajasekaran, Ramu; Aruna, Prakasa Rao; Balu David, Munusamy; Koteeswaran, Dornadula; Muthuvelu, Kulandaivel; Rai, R.; Ganesan, Singaravelu

    2013-03-01

    Urine is one of the diagnostically important bio fluids, as it has many metabolites and some of them are native fluorophores. There may be a variation in the distribution and the physiochemical properties of the fluorophores during any metabolic change and pathologic conditions. Native fluorescence spectroscopy has been considered as a promising tool to characterize the fluorophores present in the urine. In this study, we aimed at characterizing the urine of both normal and patients with confirmed cancer using steady state and time-resolved fluorescence spectroscopy at 280 nm and 350 nm excitation. It is observed that the metabolites indoxyl sulphate and neopterin and its derivatives are responsible for altered spectral signatures at 280 nm, and 350 nm excitation. The overall spectral data were subjected to Principal Component Analysis and the resultant components were used as input in the linear discriminant analysis. As a total, 84% and 81.8% of samples were correctly classified at 280 nm and 350 nm respectively.

  1. Identification of hematic cells by spectroscopic analysis of the intrinsic fluorescence

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Bernabei, Pietro A.; Caporale, Roberto; Ferrini, Pierluigi R.; Croce, Anna C.; Bottiroli, Giovanni F.; Cioncolini, Stefano; Innocenti, Alberto; Pratesi, Riccardo

    1994-12-01

    The determination of blood cell composition has been a valuable tool in diagnoses. In particular, both total and differential counts are considered the basic parameters that characterize the leukocyte population. Since 100 years ago, manual techniques were introduced that allow a morphological examination of blood smears. At present, the automated analysis has been proved to be particularly difficult to standardize. In fact, the identification and count of the five leukocyte populations are not completely solved problems in routine methods for hematological analysis. Optoelectronics could have a decisive role in the development of new techniques that can ensure characteristics of automation, reliability, accuracy and rapidity of execution. Fluorescence spectroscopy techniques could represent a valid approach. Recently, the evaluation of tissue and cell autofluorescence has been applied to the diagnosis of solid tissue neoplasies. In this work, we have considered the possibility to develop a reliable method of leukocyte analysis based on their intrinsic fluorescence emission properties. The study has been performed by applying both spectrofluorometric techniques to enriched suspensions of cells and microspectrofluorometric techniques to single leukocytes. The results obtained have shown the possibility to recognize some cell populations on the grounds of the intrinsic fluorescence characteristics.

  2. Spectroscopic evidence of xanthine compounds fluorescence quenching effect on water-soluble porphyrins

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2015-02-01

    The formation of π-stacked complexes between water-soluble porphyrins: 4,4‧,4″,4″‧-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis-(benzoic acid) (H2TCPP), 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (H2TPPS4), 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP), 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine tetra-p-tosylate (H2TMePyP), the Cu(II) complexes of H2TTMePP and H2TMePyP, as well as chlorophyll a with xanthine, theophylline (1,3-dimethylxanthine) and theobromine (3,7-dimethylxanthine) has been studied analysing their absorption and steady-state fluorescence spectra in aqueous (or acetone in case of chlorophyll a) solution. During titration by the compounds from xanthine group the bathochromic effect in the porphyrin absorption spectra as well as the hypochromicity of the porphyrin Soret maximum can be noticed. The fluorescence quenching effect observed during interactions in the systems examined suggests the process of static quenching. The association and fluorescence quenching constants are of the order of magnitude of 103 - 102 mol-1. The results obtained show that xanthine and its derivatives can quench the fluorescence of the porphyrins according to the number of methyl groups in the molecule of quencher.

  3. Fluorescence microscopy: A tool to study autophagy

    NASA Astrophysics Data System (ADS)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  4. Spectroscopic Evidence of Anthropogenic Compounds Extraction from Polymers by Fluorescent Dissolved Organic Matter in Natural Water

    NASA Astrophysics Data System (ADS)

    Miranda, M.; Trojzuck, A.; Voss, D.; Gassmann, S.; Zielinski, O.

    2016-04-01

    FDOM is one of the most important carriers of anthropogenic compounds in natural waters. It can combine with environmental contaminants and polymers to form diverse chemical structures. To this end, here a microfluidic chip was designed for the analysis of these changes in fluorescent dissolved organic matter (FDOM) fingerprints due to thermal treatment and varying time intervals of exposure. Excitation Emission Matrix Spectroscopy (EEMS) approach was utilized to detect and identify the inherent compounds in sampled FDOM. Strong direct correlations were founded, Spearman rank correlation values (ρ = 0.85 at α = 0.1, n = 4) and linear correlation R2 = 0.8359 were noted between thermal treatment pattern 2 and fluorescence intensity of samples. Materials, acrylic based glue and cyclic olefin copolymer (COC) polymer, used to design the microfluidic sensor were determined to possess unique spectral features in the ultraviolet to green spectrum using EEMS. The study therefore provides an insight on methods to identify contaminants in natural waters. This underlines the potential of optical sensors providing measurements at fast intervals, enabling environmental monitoring.

  5. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy.

    PubMed

    Gabudean, A M; Biro, D; Astilean, S

    2012-12-01

    Surface-enhanced Raman scattering (SERS) nano-tags are of increasing interest in biomedical research as viable alternatives to bio-imaging techniques based on semiconductor quantum dots or fluorescent molecules. In this work, we fabricate silica-coated gold nanorods (AuNRs) encoded with two molecular labels to operate as highly effective spectroscopic nano-tags in near-infrared SERS (NIR-SERS) and surface-enhanced resonance Raman scattering combined with metal-enhanced fluorescence (SERRS-MEF), respectively. Specifically, a non-fluorescent molecule with strong affinity for a gold surface (para-aminothiophenol, p-ATP) and a common dye (Nile Blue, NB) with lower affinity have been successfully tested as NIR-SERS nano-tags under laser excitation at 785 nm. Moreover, as a result of designing AuNRs with a plasmon resonance band overlapping the electronic absorption band of the encoded NB molecule, a dual SERRS and MEF performance has been devised under resonant excitation at 633 nm. We explain this result by considering a partial desorption of NB molecules from the metal surface and their trapping into the silica shell at favorable distances to avoid quenching and enhance the fluorescence signal. Finally, we prove that the silica shell prevents the desorption or chemical transformation of p-ATP into p,p'-dimercaptoazobenzene species, as previously noticed, thus providing a highly stable SERRS signal, which is crucial for imaging applications. PMID:23138835

  6. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabudean, A. M.; Biro, D.; Astilean, S.

    2012-12-01

    Surface-enhanced Raman scattering (SERS) nano-tags are of increasing interest in biomedical research as viable alternatives to bio-imaging techniques based on semiconductor quantum dots or fluorescent molecules. In this work, we fabricate silica-coated gold nanorods (AuNRs) encoded with two molecular labels to operate as highly effective spectroscopic nano-tags in near-infrared SERS (NIR-SERS) and surface-enhanced resonance Raman scattering combined with metal-enhanced fluorescence (SERRS-MEF), respectively. Specifically, a non-fluorescent molecule with strong affinity for a gold surface (para-aminothiophenol, p-ATP) and a common dye (Nile Blue, NB) with lower affinity have been successfully tested as NIR-SERS nano-tags under laser excitation at 785 nm. Moreover, as a result of designing AuNRs with a plasmon resonance band overlapping the electronic absorption band of the encoded NB molecule, a dual SERRS and MEF performance has been devised under resonant excitation at 633 nm. We explain this result by considering a partial desorption of NB molecules from the metal surface and their trapping into the silica shell at favorable distances to avoid quenching and enhance the fluorescence signal. Finally, we prove that the silica shell prevents the desorption or chemical transformation of p-ATP into p,p‧-dimercaptoazobenzene species, as previously noticed, thus providing a highly stable SERRS signal, which is crucial for imaging applications.

  7. Fourier transform infrared spectroscopic study of truffles

    NASA Astrophysics Data System (ADS)

    Zhao, Dezhang; Liu, Gang; Song, Dingshan; Liu, Jian-hong; Zhou, Yilan; Ou, Jiaming; Sun, Shizhong

    2006-01-01

    Truffles are rare wild growing edible mushrooms belonging to Ascomycetes. In this paper, Fourier transform infrared (FTIR) spectroscopy was used to obtain vibrational spectra of truffles. The results show that the mushrooms exhibit characteristic spectra. The two strongest absorption bands appear at about 1077cm -1 and 1040 cm -1, which were described as C-O stretching in carbohydrate. The vibrational spectra indicate that the main compositions of the truffles are polysaccharide and protein. According to the characteristics bands and absorption ratios of spectra, different species of truffles can be discriminated. It is also found the great changes between moldy and healthy truffles, which the major differences are observed in the bands of protein. In addition, FTIR spectral differences are observed between the same species of truffles from different producing areas. It is showed that the FTIR spectroscopic method is valuable tool for rapid and nondestructive analysis of truffles prior to any extraction method used.

  8. Spectroscopic studies of drugs used in the treatment of malignant tumors in ophthalmology

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Carstocea, Benone D.; Staicu, Angela; Ionita, Marcel A.; Truica, Sorina; Pascu, Ruxandra

    2001-10-01

    Two classes of substances which may be used in the treatment of malignant tumors in ophthalmology are studied from the point of view of their spectroscopic properties: synthetic porphyrines such as TNP, TPP, TSPP and Zn-TSPP and cytostatics such as 5-fluorouracil. The absorption, excitation and fluorescence spectra of the porphyrins are measured in water and DMSO solutions to allow their efficient use in photodynamic therapy studies at irradiation with UV-laser light. A spectroscopic study of 5-fluorouracyl, a cytostatic drug used in the treatment of ophthalmologic tumors is reported. Absorption, fluorescence excitation/emission spectra were measured for solutions of 5-fluorouracyl at 5 X 10-5 M concentration. The effects of UV-VIS irradiation of on the 5-fluorouracyl solutions were investigated. The irradiation was performed with a classical Xe lamp having a power density of 11 mW/cm2, at time intervals between 15 min and 60 min. While the absorption is not affected by light irradiation, the fluorescence of the solutions is increasing with the irradiation duration.

  9. Noninvasive fluorescence and Raman spectroscopic analysis of laser welded aorta and skin tissue

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Gayen, Tapan K.; Minko, Glenn; Alimova, Alexandra; Savage, Howard E.; McCormick, Steven A.; Alfano, Robert R.

    2002-05-01

    Laser tissue welding involves the denaturing and partial renaturing of collagen and elastin. Tissues welded with NIR lasers tuned to the 1455 nm water absorption band have demonstrated high tensile strength with minimal collateral damage. To better understand the welding process, welded tissue samples were investigated using fluorescence imaging and Raman spectroscopy. As part of this study, human aorta, and porcine aorta and skin, specimens were investigated. Emission and excitation/emission wavelengths corresponding to tryptophan and collagen emission and slightly weaker emission for wavelengths corresponding to elastin emission. The inner surface an cross-section images of the aortic specimens exhibited a very high degree of uniformity with no indication of the presence of a weld. The Raman spectra from the aortic specimens at the weld site and a few mm away form the weld were very similar. This work indicates the emission and Raman properties of the collagen helix after welding are very similar to native collagen tissue.

  10. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Sumida, John

    2000-01-01

    One of the most powerful and versatile methods for studying molecules in solution is fluorescence. Crystallization typically takes place in a concentrated solution environment, whereas fluorescence typically has an upper concentration limit of approximately 1 x 10(exp -5)M, thus intrinsic fluorescence cannot be employed, but a fluorescent probe must be added to a sub population of the molecules. However the fluorescent species cannot interfere with the self-assembly process. This can be achieved with macromolecules, where fluorescent probes can be covalently attached to a sub population of molecules that are subsequently used to track the system as a whole. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process of tetragonal lysozyme crystal nucleation, using covalent fluorescent derivatives which crystallize in the characteristic P432121 space group. FRET studies are being carried out between cascade blue (CB-lys, donor, Ex 376 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex 425 nm, Em 520 nm) asp101 derivatives. The estimated R0 for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approximately 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 43 helix. The short CB-lys lifetime (approximately 5 ns), coupled with the large average distances between the molecules ((sup 3) 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Addition of LY-lys to CB-lys results in the appearance of a second, shorter lifetime (approximately 0.2 ns). Results from these and other ongoing studies will be discussed in conjunction with a model for how tetragonal lysozyme crystals nucleate and grow, and the relevance of that model to microgravity protein crystal growth

  11. INVESTIGATION OF SATURATED LASER FLUORESCENCE AND CARS SPECTROSCOPIC TECHNIQUES FOR COMBUSTION DIAGNOSTICS

    EPA Science Inventory

    The report gives results of comparisons of saturated laser-excited molecular fluorescence measurements of CH and CN in atmospheric pressure acetylene flames with absorption measurements of these flame radicals. It was found possible to saturate the fluorescence intensity of both ...

  12. Quantitative carbon-13 nuclear magnetic resonance spectroscopic study of mobile residues in bacteriorhodopsin

    SciTech Connect

    Bowers, J.L.; Oldfield, E.

    1988-07-12

    The authors have used quantitative carbon-13 nuclear magnetic resonance (NMR) spectroscopy to study the dynamic structure of the backbone of bacteriorhodopsin in the purple membrane of Halobacterium halobium R/sub 1/ and JW-3. NMR experiments were performed using an internal sucrose quantitation standard on purple membranes in which one of the following /sup 13/C'-labeled amino acids had been biosynthetically incorporated: glycine, isoleucine, lysine, phenylalanine, and valine. The results suggest that the C-terminus of the polypeptide chain backbone, and possibly one of the connecting loops, undergoes rapid, large angle fluctuations. The results are compared with previous NMR and fluorescence spectroscopic data obtained on bacteriorhodopsin.

  13. Spectroscopic study of low-lying {sup 16}N levels

    SciTech Connect

    Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.; O'Malley, P. D.; Cizewski, J. A.; Hatarik, R.; Peters, W. A.; Blackmon, J. C.; Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Paulauskas, S.; Pittman, S. T.; Schmitt, K. T.; Chipps, K. A.; Kozub, R. L.; Shriner, J. F. Jr.; Matei, C.

    2008-11-15

    The magnitude of the {sup 15}N(n,{gamma}){sup 16}N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying {sup 16}N levels. A new study of the {sup 15}N(d,p){sup 16}N reaction is reported populating the ground and first three excited states in {sup 16}N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated {sup 15}N(n,{gamma}){sup 16}N reaction rates are presented.

  14. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  15. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  16. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Kundu, Pronab; Chattopadhyay, Nitin

    2016-06-01

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2'-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN2) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ∗ or the ππ∗ absorption band, respectively. Together with the fluorescence bands, the LN2 studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G∗∗ level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S1 and the T1 states - one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S2) state. This is ascribed to the proximity of the minimum of the PEC of the S2 state and the hill-top of the PEC of the S1 state.

  17. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies.

    PubMed

    Kundu, Pronab; Chattopadhyay, Nitin

    2016-06-21

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2'-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN2) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ(∗) or the ππ(∗) absorption band, respectively. Together with the fluorescence bands, the LN2 studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G(∗∗) level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S1 and the T1 states-one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S2) state. This is ascribed to the proximity of the minimum of the PEC of the S2 state and the hill-top of the PEC of the S1 state. PMID:27334172

  18. Halo Nucleus Be11: A Spectroscopic Study via Neutron Transfer

    NASA Astrophysics Data System (ADS)

    Schmitt, K. T.; Jones, K. L.; Bey, A.; Ahn, S. H.; Bardayan, D. W.; Blackmon, J. C.; Brown, S. M.; Chae, K. Y.; Chipps, K. A.; Cizewski, J. A.; Hahn, K. I.; Kolata, J. J.; Kozub, R. L.; Liang, J. F.; Matei, C.; Matoš, M.; Matyas, D.; Moazen, B.; Nesaraja, C.; Nunes, F. M.; O'Malley, P. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Roberts, A.; Shapira, D.; Shriner, J. F., Jr.; Smith, M. S.; Spassova, I.; Stracener, D. W.; Villano, A. N.; Wilson, G. L.

    2012-05-01

    The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus Be11, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the Be10(d,​p) reaction has been used in inverse kinematics at four beam energies to study the structure of Be11. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an nℓj=2s1/2 state coupled to the ground state of Be10 is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1/2 state.

  19. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V. K.; Singh, Bachcha; Singh, Ranjan K.

    2016-02-01

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.

  20. Study on fluorescence characteristics of duloxetine hydrochloride

    NASA Astrophysics Data System (ADS)

    Liu, Xiangping; Du, Yingxiang; Wu, Xiulan

    2008-12-01

    The fluorescence characteristics of duloxetine hydrochloride are studied in this paper. The fluorescence emission spectra of duloxetine demonstrate that intramolecular charge-transfer takes place between thiophene ring and napthalenyloxy group upon irradiation. The effects of excitation light, solvent system, variation of solution pH value, metal ions and vitamin C on the fluorescence spectra of duloxetine hydrochloride are elucidated, respectively. A spectrofluorometric method of quantitative determination of duloxetine in dosage form is reported for the first time, the linear range is 7.14 × 10 -8 mol/L to 1.43 × 10 -5 mol/L, the linear correlation coefficient r is equal to 0.9997, and the detection limit is 3.5 × 10 -8 mol/L. The accuracy and the precision are satisfactory.

  1. Spectroscopic study on binding of rutin to human serum albumin

    NASA Astrophysics Data System (ADS)

    Pastukhov, Alexander V.; Levchenko, Lidiya A.; Sadkov, Anatoli P.

    2007-10-01

    Steady-state and time-resolved fluorescence spectroscopy techniques were used to study the interaction of the flavonoid rutin with human serum albumin (HSA) as well as spectral properties of the protein-bound flavonoid. Both quenching of the intrinsic fluorescence of the protein (Trp214) and the ligand fluorescence, appearing upon complexation with HSA, were used to determine binding parameters. The binding constant determined from the quenching of the Trp214 fluorescence by rutin is equal to 6.87 ± 0.22 × 10 4 M -1 and that obtained from the fluorescence of HSA-bound rutin is 3.8 ± 0.4 × 10 4 M -1. Based on the Job plot analysis, the 1:1 binding stoichiometry for the HSA-rutin complex was determined. The efficient quenching of the Trp214 fluorescence by rutin, fluorescence resonance energy transfer from excited Trp214 to rutin, and competitive binding of warfarin indicate that the binding site for the flavonoid is situated within subdomain IIA of HSA. The presence of the sugar moiety in the flavonoid molecule reduces affinity of rutin for binding to HSA but does not affect the binding stoichiometry and location of the binding site compared with aglycone analogues.

  2. Spectroscopic parameters of the cuticle and ethanol extracts of the fluorescent cave isopod Mesoniscus graniger (Isopoda, Oniscidea)

    PubMed Central

    Giurginca, Andrei; Šustr, Vladimír; Tajovský, Karel; Giurginca, Maria; Matei, Iulia

    2015-01-01

    Abstract The body surface of the terrestrial isopod Mesoniscus graniger (Frivaldsky, 1863) showed blue autofluorescence under UV light (330–385 nm), using epifluorescence microscopy and also in living individuals under a UV lamp with excitation light of 365 nm. Some morphological cuticular structures expressed a more intense autofluorescence than other body parts. For this reason, only the cuticle was analyzed. The parameters of autofluorescence were investigated using spectroscopic methods (molecular spectroscopy in infrared, ultraviolet-visible, fluorescence, and X-ray fluorescence spectroscopy) in samples of two subspecies of Mesoniscus graniger preserved in ethanol. Samples excited by UV light (from 350 to 380 nm) emitted blue light of wavelengths 419, 420, 441, 470 and 505 nm (solid phase) and 420, 435 and 463 (ethanol extract). The results showed that the autofluorescence observed from living individuals may be due to some β-carboline or coumarin derivatives, some crosslinking structures, dityrosine, or due to other compounds showing similar excitation-emission characteristics. PMID:26261444

  3. UV-Vis, fluorescence and NMR spectroscopic investigations on inclusion properties of a designed tetrahomocalix[8]arene with fullerenes C 60 and C 70 in solution

    NASA Astrophysics Data System (ADS)

    Halder, Amal; Bhatt, Suchitra; Nayak, Sandip K.; Chattopadhyay, Subrata; Bhattacharya, Sumanta

    2011-12-01

    The present article reports the spectroscopic investigations on non-covalent interaction of fullerenes C 60 and C 70 with a macrocyclic receptor molecule, namely, 1,3,5,7-tetrahomo- p- tert-butylcalix[8]arene ( 1) in toluene. Jobs method of continuous variation reveals 1:1 stoichiometry for the fullerene complexes of 1. The most fascinating feature of the present study is that 1 binds selectively C 60 compared to C 70 as obtained from binding constant ( K) data of C 60- 1 ( KC60- 1) and C 70- 1 ( KC70- 1) complexes which are enumerated to be 265,000 dm 3 mol -1 and 63,430 dm 3 mol -1, respectively, and selectivity in binding ( KC60- 1/K C70- 1) is estimated to be 4.18 as obtained from UV-Vis study. Steady state fluorescence studies reveal quenching of fluorescence of 1 in presence of fullerenes and the K value of the C 60- 1 and C 70- 1 complexes are estimated to be 80,760 and 68,780 dm 3 mol -1, respectively, with selectivity in binding (K C60- 1/K C70- 1) ˜1.18. 1H NMR analysis provides very good support in favor of strong binding between C 60 and 1. The high value of K value for C 60- 1 complex indicates that 1 forms an inclusion complex with C 60.

  4. Spectroscopic studies on the interaction of fluorine containing triazole with bovine serum albumin.

    PubMed

    Liu, Yang; Mei, Ping; Zhang, Ye-Zhong; Sun, Xiao-Hong; Liu, Yi

    2010-12-01

    The binding of one fluorine including triazole (C(10)H(9)FN(4)S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV-Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA-FTZ, and the binding constants (K (a)) at three different temperatures (298, 304, and 310 K) were 1.516 × 10(4), 1.627 × 10(4), and 1.711 × 10(4) mol L(-1), respectively, according to the modified Stern-Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol(-1) and 125.217 J mol(-1) K(-1), respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA-FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ. PMID:20195922

  5. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  6. Inhibition of urinary calculi -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  7. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: fluorescence properties, triplet state and singlet oxygen generation.

    PubMed

    Zhang, Xian-Fu; Lin, Yong; Guo, Wenfeng; Zhu, Jingzhong

    2014-12-10

    Imidazole substituted metal phthalocyanine (Pc) complexes were synthesized. UV-vis absorption, steady state and time-resolved fluorescence, as well as laser flash photolysis were used to measure the photophysical and photosensitizing properties. All the imidazole-phthalocyanine conjugates show high ΦT (quantum yield of excited triplet formation), high ΦΔ (singlet oxygen formation yield, >0.50) and good fluorescence properties (quantum yield Φf>0.20 and lifetime τf>3.0 ns). Compared to the unsubstituted Pc, both α- and β-imidazole substitutions result in the remarkable decrease in Φf and τf, but the α-substitution is stronger. The imidazole substitution, on the other hand, causes the increase of ΦT, τT, and ΦΔ values. Magnesium phthalocyanine (MgPc) is more susceptible to the substitution than zinc phthalocyanine (ZnPc). The mechanism responsible for the result is suggested based on the involvement of intramolecular photoinduced electron transfer. The high ΦΔ and appropriate fluorescence properties make the Pcs good candidate for PDT photosensitizers. PMID:24997445

  8. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: Fluorescence properties, triplet state and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Lin, Yong; Guo, Wenfeng; Zhu, Jingzhong

    2014-12-01

    Imidazole substituted metal phthalocyanine (Pc) complexes were synthesized. UV-vis absorption, steady state and time-resolved fluorescence, as well as laser flash photolysis were used to measure the photophysical and photosensitizing properties. All the imidazole-phthalocyanine conjugates show high ΦT (quantum yield of excited triplet formation), high ΦΔ (singlet oxygen formation yield, >0.50) and good fluorescence properties (quantum yield Φf > 0.20 and lifetime τf > 3.0 ns). Compared to the unsubstituted Pc, both α- and β-imidazole substitutions result in the remarkable decrease in Φf and τf, but the α-substitution is stronger. The imidazole substitution, on the other hand, causes the increase of ΦT, τT, and ΦΔ values. Magnesium phthalocyanine (MgPc) is more susceptible to the substitution than zinc phthalocyanine (ZnPc). The mechanism responsible for the result is suggested based on the involvement of intramolecular photoinduced electron transfer. The high ΦΔ and appropriate fluorescence properties make the Pcs good candidate for PDT photosensitizers.

  9. Steady-state and time-resolved fluorescence studies of stripped Borage oil.

    PubMed

    Smyk, Bogdan; Amarowicz, Ryszard; Szabelski, Mariusz; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2009-07-30

    In this study we explored the spectroscopic properties of Borage oil, particularly the use of fluorescence techniques to investigate the presence of conjugated fatty acids (CFAs). This research has important health and dietary applications. The absorption and fluorescence spectra of different CFAs and Borage oil in ethanol were measured. Time-domain fluorescence was employed to establish the life times of the samples. We found that Borage oil contains 1.2x10(-3) mol L(-1) of alpha-eleostearic acid or its isomer (i.e., a conjugated triene), 1.6x10(-4) mol L(-1) of cis-parinaric acid (i.e., a conjugated tetraene) and 1.1x10(-5) mol L(-1) of c-COPA (i.e., a conjugated pentaene). Because of the three-exponential fluorescence intensity decay for Borage oil, other fatty acids with a four conjugated double bond system could not be excluded. PMID:19523559

  10. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies.

    PubMed

    Shahlaei, Mohsen; Rahimi, Behnoosh; Nowroozi, Amin; Ashrafi-Kooshk, Mohammad Reza; Sadrjavadi, Komail; Khodarahmi, Reza

    2015-12-01

    Human serum albumin (HSA)-drug binding is an important factor to determine half life and bioavailability of drugs. In the present research, the interaction of sertraline (SER) to HSA was investigated using combination of spectroscopic and molecular modeling techniques. Changes in the UV-Vis, CD and FT-IR spectra as well as a significant degree of tryptophan fluorescence quenching were observed upon SER-HSA interaction. Data obtained by spectroscopic methods along with the computational studies suggest that SER binds to residues located in subdomain IIA of HSA. Analysis of spectroscopic data represented the formation of 1:1 complex, significant binding affinity, negative values of entropy and enthalpy changes and the essential role of hydrophobic interactions in binding of SER to HSA. The binding models were demonstrated in the aspects of SER's conformation, active site interactions, important amino acids and hydrogen bonding. Computational mapping of the possible binding site of SER confirmed that the ligand to be bound in a large hydrophobic cavity of HSA. In accordance with experimental data, computational analyses indicated that SER binding does not alter the secondary structure of the protein. The results not only lead to a better understanding of interaction between SER and HSA but also provide useful data about the influence of SER on the protein conformation. PMID:26471709

  11. Spectroscopic analysis of bones for forensic studies

    NASA Astrophysics Data System (ADS)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D'Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; de Holanda Cavalcanti, Gildo; Lezzerini, Marco; Palleschi, Vincenzo

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied.

  12. Spectroscopic studies of lead halo borate glasses

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients α2, β2 and β12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  13. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  14. Spectroscopic and quantum chemical studies of isocytosine

    SciTech Connect

    Tulub, A.A.; Semenov, S.G.; Stetsenko, A.I.; Yudovich, E.E.

    1988-07-01

    The methods of electronic and vibrational (IR) spectroscopy were used to study the spectral properties of isocytosine in H/sub 2/O, D/sub 2/O, chloroform, and hexane in a wide concentration interval. Quantum chemical calculations of tautomeric forms and dimers of isocytosine were carried out. The bands of the calculated and experimental spectra were assigned. The results of the quantum calculations were compared with the experimental data. The spectral bands were classified according to the type of tautomer or dimer to which they belong.

  15. Nonlinear spectroscopic studies of interfacial molecular ordering

    SciTech Connect

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs.

  16. Progress report on nuclear spectroscopic studies

    SciTech Connect

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  17. Spectroscopic studies of silver boro tellurite glasses

    SciTech Connect

    Kumar, E. Ramesh Kumari, K. Rajani Rao, B. Appa Bhikshamaiah, G.

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  18. Terahertz spectroscopic study of benzodiazepine sedative hypnotics

    NASA Astrophysics Data System (ADS)

    Deng, Fusheng; Shen, Jingling; Wang, Xianfeng

    2011-08-01

    Terahertz time domain spectroscopy (THz-TDS) is used to the pure active ingredient of three benzodiazepine sedative hypnotics with similar molecular structure. The absorption spectra of them are studied in the range of 0.2~2.6THz. Based on the experiment, the theoretical simulation results of diazepam, nitrazepam and clonazepam are got by the Gaussian03 package of DFT/B3LYP/6-31G* method in single-molecule models. The experimental results show that even if the molecular structure and medicine property of them are similar, the accurate identification of them can still be done with their characteristic absorption spectra. Theoretical simulation results are well consistent with the experimental results. It demonstrates that absorption peaks of them in THz range mainly come from intra-molecular forces and are less affected by the intermolecular interaction and crystal effects.ô

  19. Spectroscopic and quantum chemical studies on bromopyrazone

    NASA Astrophysics Data System (ADS)

    Gökce, Halil; Bahçeli, Semiha

    2014-12-01

    In this study, the FT-IR, micro-Raman and UV-vis. spectra of bromopyrazone molecule, C10H8BrN3O, (with synonym,1-phenyl-4-amino-5-bromopyridazon-(6) or 5-amino-4-bromo-2-phenyl-3(2H)-pyridazinone) were recorded experimentally. The molecular structure, vibrational wavenumbers, electronic transition absorption wavelengths in ethanol solvent, HOMOs and LUMOs analyses, molecular electrostatic potential (MEP), natural bond orbitals (NBO), nonlinear optical (NLO) properties and atomic charges of bromopyrazone molecule have been calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. The obtained results show that the calculated vibrational frequencies and UV-vis. values are in a good agreement with experimental data.

  20. Spectroscopic study of acetylene and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Rozario, Hoimonti Immaculata

    High-resolution molecular spectroscopy has been used to study acetylene line parameters and emission spectra of hydrogen cyanide. All acetylene spectra were recorded in our laboratory at the University of Lethbridge using a 3-channel tuneable diode laser spectrometer. N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the v1+v3 band of acetylene at seven temperatures in the range 213-333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. The line-broadening and line-shift coefficients as well as their temperature-dependent parameters have been also evaluated theoretically, in the frame work of a semi-classical approach based on an exponential representation of the scattering operator, an intermolecular potential composed of electrostatic quadrupole--quadrupole and pairwise atom--atom interactions as well as on exact trajectories driven by an effective isotropic potential. The experimental results for both N2-broadening and shifting show good agreement with the theoretical results. We have studied the line intensities of the 1vl 20←0v120 band system from the HCN emission spectrum. The infrared emission spectrum of H12C 14N was measured at the Justus-Liebig University, Giessen, Germany. The emission spectrum was analyzed with the spectrum analysis software Symath running using Mathematica as a platform. This approach allowed us to retrieve information on band intensity parameters.

  1. Ultrafast spectroscopic studies of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Min

    An important aim of nanoparticle research is to understand how the properties of materials depend on their size and shape. In this thesis, time-resolved spectroscopy has been used to measure the physical properties of nanometer sized objects, such as the characteristic time scale for heat dissipation and their elastic moduli. In our experiments, metal nanoparticles are excited with a sub-picosecond laser pulse, which causes a rapid increase in the lattice temperature. In the first project, the rate of heat dissipation from Au nanoparticles to their surroundings was examined for different size gold nanospheres in aqueous solution. Laser induced lattice heating can also impulsively excite the phonon modes of the particle that correlate with the expansion co-ordinates. For spherical Au particles the symmetric breathing mode is excited. Experimental results for ˜50 nm diameter Au particles were compared to a model calculation where the expansion coordinate is treated as a damped harmonic oscillator. This gives information about the excitation mechanism. In the second project, the extensional and breathing modes of cylindrical gold nanorods were studied by time-resolved spectroscopy. These experiments yield values for the elastic constants for the rods. Both the extensional mode and the breathing mode results show that gold nanorods produced by wet chemical techniques have a smaller elastic moduli than bulk gold. HR-TEM and SAED studies show that the rods have a 5-fold twinned structure with growth along the [110] crystal direction. However, neither the growth direction nor the twinning provide a simple explanation for the reduced elastic moduli measured in the experiments. In a final project, polydisperse silver nanoparticle samples were investigated. A signal due to coherently excited vibrational motion was observed. The analysis shows that the observed signal arises from the triangular-shaped particles, rather than the rods or spheres that are present in the sample

  2. Raman spectroscopic studies of disordered ferroelectric oxides

    NASA Astrophysics Data System (ADS)

    Savvinov, Alexey A.

    Relaxational properties of compositionally disordered AB03 perovskite oxides were studied. These oxides are the prototypical soft ferroelectric (FE) mode systems, and their interesting dipolar relaxational properties are determined by their long, strongly temperature-dependent correlation lengths for the dipolar interactions. The simple cases involve dilute chemical substitutions in the incipient ferroelectrics KTaO3 and SrTiO3, which exhibit relatively weak, low-temperature Debye-type relaxations. More complicated dipolar interactions are seen in B-site disordered Nb-doped KTaO3, which exhibits glass-like relaxor and relaxor-to-ferroelectric crossover behaviors at low temperatures. Finally, there is a class of more complex perovskites represented by PMN, PZN-PT and the PLT that exhibit strong, high-temperature relaxor and/or ferroelectric properties. The renewed interest in the KTa1-xNbxO (KTN) mixed perovskite materials, especially in high quality thin films, is connected with their remarkable dielectric properties in the dilute compositions. Off-center Nb ions in the highly polarizable KTaO3 lattice provide a drastic increase in the dielectric peak, up to 20 times in comparison with the pure KTaO3 and KNbO3. The effects of the substrate and the symmetry-breaking defects on their vibration spectra were studied by micro-Raman spectroscopy. An anomalous residual intensity of the forbidden first-order scattering modes in the cubic paraelectric phase of the KTN films was connected with the formation of polar microregions even far above the bulk Tc. On the whole, the KTN film behavior shows the existence of specific defects enhancing the perovskite unit cell in the film so that the activity of off-center Nb ions increases in producing larger electric dipoles and extending the precursor phase above Tc. In diluted compositions with low Nb concentrations KTN materials exhibit formation of polar nano regions and relaxor like behavior. This behavior is analogous with

  3. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  4. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  5. DAO Spectroscopic Study of Nova Cygni 1992

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter M.

    1992-12-01

    The spectral development of Nova Cygni 1992 is being monitored at the Dominion Astrophysical Observatory. The brightest nova in over 15 years provides a rare opportunity to study, in detail, nova evolution from maximum to the late nebular stages. Our spectra during the early phases of the outburst had a resolution of 0.6 Angstroms while in the nebular phase the resolution ranged from 2 Angstroms to 4 Angstroms . The nova was observed at DAO on more than 40 nights in 1992. Our first spectrum was obtained near maximum light on February 22, 1992. It showed weak Hβ and Fe II emission lines with P-Cygni absorption components at -910 and -1670 km/s (IAUC 5457). During the early decline, the P-Cygni absorption complex spread blueward, eventually reaching -2900 km/s by the ides of March. Observations by IUE showed absorption troughs of UV lines extending to -2800 km/s even before maximum (IAUC 5456). This suggests that the apparent increase in the velocity of the diffuse-enhanced absorption is due to opacity effects, not a physical acceleration of the gas or the changing geometry of the expanding shells. The transition to the nebular phase occurred in late April, 1992. The emission lines were broad (FWHM of 2200 km/s) and contained as many as 10 velocity components. The temperature and density evolution of the major velocity components are estimated from diagnostic line ratios during the nebular stage. The similarity between Nova Cygni 1992 and V1500 Cyg suggested that the coronal line, [Fe X] 6374 Angstroms , might be present in the early nebular phase. The unusual shape and strength of the [O I] line at 6363 Angstroms added to this suspicion. In spectra taken 90 days after outburst, the [O I] 6300 Angstroms line was used to deconvolve the emission, but the contamination was found to be due to the Si II doublet 6347/71 Angstroms . Infrared observations indicated the onset of a coronal phase 200 days after maximum (IAUC 5612), and our data from this period are analyzed

  6. A low cost time-resolved Raman spectroscopic sensing system enabling fluorescence rejection.

    PubMed

    Sinfield, Joseph V; Colic, Oliver; Fagerman, Daniel; Monwuba, Chike

    2010-02-01

    This paper describes a novel, compact, fiber-coupled, time-resolved Raman spectroscopy system that takes advantage of recent developments in diode laser and data acquisition technology to exploit the natural temporal separation between Raman and fluorescence phenomena and thereby limits the influence of fluorescence on Raman observations. The unit has been designed to be particularly low cost and is intended to provide the foundation for a wide range of in-line or fieldable sensing devices that can enhance the potential and affordability of in situ chemical analyses. The system operating principles, design, and performance are discussed along with its advantages and tradeoffs relative to traditional continuous wave (CW) Raman techniques. The system relies on a 6.4 kHz repetition rate 900 ps pulsed diode laser operating in the visible wavelength range (532 nm) to enhance the quality of Raman observations relative to CW and infrared systems, particularly for analytes examined in the presence of fluorophores. Time-resolved photon counting, achieved through a combination of off-the-shelf and custom hardware and software, limits the influence of fluorescence on Raman observations under pulsed excitation. The paper presents examples of the quality of Raman signatures that can be obtained with the system for a variety of compounds such as trichloroethylene, benzene, an aqueous nitrate solution, and olive oil. Further, the paper demonstrates an approximately 15-fold improvement in signal-to-noise ratio when comparing long- and short-gated time-resolved photon counting acquisition scenarios for a neat benzene sample doped with rhodamine 6G at a concentration of 1 x 10(-4) M. The system's versatility and effectiveness in the assessment of complex mixtures representative of industrial or field settings is demonstrated through analysis of a gasoline sample. Additional discussion outlines how efficient signal averaging over extended observation periods can enable low

  7. Spectroscopic studies of protein folding: Linear and nonlinear methods

    PubMed Central

    Serrano, Arnaldo L; Waegele, Matthias M; Gai, Feng

    2012-01-01

    Although protein folding is a simple outcome of the underlying thermodynamics, arriving at a quantitative and predictive understanding of how proteins fold nevertheless poses huge challenges. Therefore, both advanced experimental and computational methods are continuously being developed and refined to probe and reveal the atomistic details of protein folding dynamics and mechanisms. Herein, we provide a concise review of recent developments in spectroscopic studies of protein folding, with a focus on new triggering and probing methods. In particular, we describe several laser-based techniques for triggering protein folding/unfolding on the picosecond and/or nanosecond timescales and various linear and nonlinear spectroscopic techniques for interrogating protein conformations, conformational transitions, and dynamics. PMID:22109973

  8. Evaluation of transformer insulating oil quality using NIR, fluorescence, and NMR spectroscopic data fusion.

    PubMed

    Godinho, Mariana S; Blanco, Marcos R; Gambarra Neto, Francisco F; Lião, Luciano M; Sena, Marcelo M; Tauler, Romà; de Oliveira, Anselmo E

    2014-11-01

    Power transformers are essential components in electrical energy distribution. One of their most important parts is the insulation system, consisting of Kraft paper immersed in insulating oil. Interfacial tension and color are major parameters used for assessing oil quality and the system׳s degradation. This work proposes the use of near infrared (NIR), molecular fluorescence, and (1)H nuclear magnetic resonance (NMR) spectroscopy methods combined with chemometric multivariate calibration methods (Partial Least Squares - PLS) to predict interfacial tension and color in insulating mineral oil samples. Interfacial tension and color were also determined using tensiometry and colorimetry as standard reference methods, respectively. The best PLS model was obtained when NIR, fluorescence, and NMR data were combined (data fusion), demonstrating synergy among them. An optimal PLS model was calculated using the selected group of variables according to their importance on PLS projections (VIP). The root mean square errors of prediction (RMSEP) values of 2.9 mN m(-1) and 0.3 were estimated for interfacial tension and color, respectively. Mean relative standard deviations of 1.5% for interfacial tension and 6% for color were registered, meeting quality control requirements set by electrical energy companies. The methods proposed in this work are rapid and simple, showing great advantages over traditional approaches, which are slow and environmentally unfriendly due to chemical waste generation. PMID:25127577

  9. [Spectroscopic studies on the binding of phenazopyridine hydrochloride and bovine serum albumin].

    PubMed

    Zhou, Hong; Chen, Chang-Yun; Xie, An-Jian

    2007-09-01

    The binding of phenazopyridine hydrochloride and bovine serum albumin under physiological conditions was studied by spectroscopic method. The quenching mechanism of the fluorescence of bovine serum albumin by phenazopyridine hydrochloride was studied with fluorescence and absorption spectroscopy. The binding constant Kb and the number of binding sites n were determined at different temperatures according to Scatchard equation, and the main binding force was discussed by thermodynamic equations. The effect of the drug on bovine serum albumin conformation was also studied by using synchronous fluorescence spectroscopy. The quenching mechanism of phenazopyridine hydrochloride to bovine serum albumin is static quenching and non-radiation energy transfer. The binding constants Kb at 15, 25 and 37 degrees C are 2.47 x 10(7), 9.15 x 10(6) and 4.36 x 10(6) mol(-1) with one binding site, respectively. The thermodynamic parameters of the reaction are DeltaH = -71.2 kJ x mol(-1), and DeltaS = 124.8 J x mol(-1) x K(-1). Binding phenazopyridine hydrochloride to bovine serum albumin is a spontaneous inter-molecular interaction in which entropy increases and Gibbs free energy decreases. The binding distance r between phenazopyridine hydrochloride and bovine serum albumin is 1.61 nm according to Forster theory of non-radiation energy transfer. The binding force is electrostatic interaction. Phenazopyridine hydrochloride can be deposited and transported by serum protein in vivo. Phenazopyridine hydrochloride does affect the serum protein conformation. PMID:18051539

  10. Fluorescence studies of polymer surfactant association

    NASA Astrophysics Data System (ADS)

    Miguel, M. da G.; Burrows, H. D.; Formosinho, S. J.; Lindman, B.

    2001-05-01

    Fluorescence spectroscopy has been successfully used for the study of central issues of solutions of surfactants and associating polymers. Different fluorescence techniques and methods are uniquely adapted to investigate problems in this field and can, by using extrinsic or intrinsic probes, provide information on molecular association, microstructure and molecular dynamics. This constitutes an important contribution to the understanding and control of macroscopic properties, as well as to their biological functions and technical applications. Important aspects of these mixed systems, related to their self-assembly, are: formation of micelles and hydrophobic microdomains in general; size and shape of surfactant molecular aggregates; formation and stability of vesicles; intra- vs. intermolecular association in polymers; conformational changes in polymers as affected by polymer-surfactant association; surfactant organization in adsorbed layers; kinetic aspects of the formation and disintegration of self-assembly structures; residence times of molecules in microdomains and migration of active molecules. Some of these issues will be addressed in this paper.

  11. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  12. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study.

    PubMed

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-15

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation. PMID:26710175

  13. Ultraviolet emission and excitation fluorescence spectroscopic characterization of DMBA-treated Swiss Albino mice skin carcinogenesis for measuring tissue transformation

    NASA Astrophysics Data System (ADS)

    Aruna, Prakasa R.; Hemamalini, Srinivasan; Ebenezar, Jeyasingh; Ganesan, Singaravelu

    2002-05-01

    The ultraviolet fluorescence emission spectra of skin tissues under different pathological conditions were measured at 280nm excitation. At this excitation wavelength, the normal skin showed a primary peak emission at 352nm and this primary peak emission from neoplastic skin shows a blue shift with respect to normal tissue. This blue shift increases as the stage of abnormality increases and it is maximum (19nm) for well-differentiated squamous cell carcinoma. This alteration is further confirmed from fluorescence excitation spectra of the tissues for 340nm emission. The study concludes that the change in the emission of tryptophan around 340nm may be due to partial unfolding of protein.

  14. Fluorescence Spectroscopic Investigation of Tillage, Cropping Management, and Nitrogen Application Effects on Stable and Water-Extractable Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter (OM) controls many important soil ecosystem processes. Stable (humic and fulvic) and water-extractable OM was obtained from soils in a nine-year tillage, cropping management, and nitrogen application study and characterized for its composition using multi-dimensional fluorescence spec...

  15. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    NASA Astrophysics Data System (ADS)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  16. Pb(II) binding to humic substances: an equilibrium and spectroscopic study.

    PubMed

    Orsetti, Silvia; Marco-Brown, Jose L; Andrade, Estela M; Molina, Fernando V

    2013-08-01

    The binding of Pb(II) to humic acids is studied through an approach combining equilibrium and spectroscopic measurements. The methods employed are potentiometric and fluorometric titrations, fluorescence excitation-emission matrices (EEM) and IR spectroscopy. Potentiometric titration curves are analyzed using the NICA equations and an electrostatic model treating the humic particles as an elastic polyelectrolyte network. EEMs are analyzed using parallel factor analysis, decomposing the signal in its independent components and finding their dependence on Pb(II) activity. Potentiometric results are consistent with bimodal affinity distributions for Pb(II) binding, whereas fluorometric titrations are explained by monomodal distributions. EEM analysis is consistent with three independent components in the humic fluorescence response, which are assigned to moieties with different degree of aromaticity. All three components show a similar quenching behavior upon Pb(II) binding, saturating at relatively low Pb(II) concentrations. This is attributed to metal ion induced aggregation of humic molecules, resulting in the interaction between the aromatic groups responsible for fluorescence; this is also consistent with IR spectroscopy results. The observed behavior is interpreted considering that initial metal binding (observed as strongly binding sites), correspond to bi- or multidentate complexation to carboxylate groups, including binding between groups of different humic molecules, promoting aggregation; further metal ions (observed as weakly binding sites) bind to single ligand groups. PMID:23805795

  17. Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice

    NASA Astrophysics Data System (ADS)

    Diagaradjane, Parmeswaran; Yaseen, Mohammad A.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2006-01-01

    While initially confined to the epidermis, squamous cell carcinoma can eventually penetrate into the underlying tissue if not diagnosed early and treated. The noninvasive early detection of the carcinoma is important to achieve a complete treatment of the disease. Of the various non-invasive optical techniques, the synchronous fluorescence (SF) technique is considered to provide a simplified spectral profile with more sharp spectral signatures of the endogenous fluorophores in complex systems. The potential use of the SF technique in the characterization of the sequential tissue transformation in 7,12-dimethylbenz(a)anthracene-12-O-tetradecanoylphorbol-13-acetate (DMBA-TPA)-induced mouse skin tumor model in conjunction with simple statistical analysis is explored. The SF spectra show distinct differences during the earlier weeks of the tumor-induction period. Intensity ratio variables are calculated and used in three discriminant analyses. All the discriminant analyses show better classification results with accuracy greater than 80%. From the observed differences in the spectral characteristics and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers to diagnose normal from abnormal tissues using the SF technique.

  18. Ultraviolet fluorescence of coelenteramide and coelenteramide-containing fluorescent proteins. Experimental and theoretical study.

    PubMed

    Alieva, Roza R; Tomilin, Felix N; Kuzubov, Alexander A; Ovchinnikov, Sergey G; Kudryasheva, Nadezhda S

    2016-09-01

    Coelenteramide-containing fluorescent proteins are products of bioluminescent reactions of marine coelenterates. They are called 'discharged photoproteins'. Their light-induced fluorescence spectra are variable, depending considerably on external conditions. Current work studies a dependence of light-induced fluorescence spectra of discharged photoproteins obelin, aequorin, and clytin on excitation energy. It was demonstrated that photoexcitation to the upper electron-excited states (260-300nm) of the discharged photoproteins initiates a fluorescence peak in the near UV region, in addition to the blue-green emission. To characterize the UV fluorescence, the light-induced fluorescence spectra of coelenteramide (CLM), fluorophore of the discharged photoproteins, were studied in methanol solution. Similar to photoproteins, the CLM spectra depended on photoexcitation energy; the additional peak (330nm) in the near UV region was observed in CLM fluorescence at higher excitation energy (260-300nm). Quantum chemical calculations by time depending method with B3LYP/cc-pVDZ showed that the conjugated pyrazine-phenolic fragment and benzene moiety of CLM molecule are responsible for the additional UV fluorescence peak. Quantum yields of CLM fluorescence in methanol were 0.028±0.005 at 270-340nm photoexcitation. A conclusion was made that the UV emission of CLM might contribute to the UV fluorescence of the discharged photoproteins. The study develops knowledge on internal energy transfer in biological structures - complexes of proteins with low-weight aromatic molecules. PMID:27400455

  19. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  20. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper. PMID:27089183

  1. Spectroscopic study of antileishmanial drug incubated in the promastigotes of Leishmania mexicana

    NASA Astrophysics Data System (ADS)

    Hung, J.; Castillo, J.; Jiménez, G.; Hasegawa, M.; Rodriguez, M.

    2003-11-01

    In this work we present spectroscopic study of Boldine (aporphine alkaloid) that possesses important biological activities, in particular, in interaction with the promastigotes of Leishmania mexicana. The results show the applicability of autofluorescence of this drug to determinate the possible mechanism of its biological action. The blue shift and hyperchromic effect in the emission spectrum of the drug in interaction with the parasite cells indicate an energy transference process between them. The morphological change of cell shape of the promastigotes treated with the drug is observed using confocal microscopy. This morphological cell-shape transformation evidences an important interaction between the drug studied and some protein of the parasite cell. Here we describe for the first time the fluorescence properties of the Boldine in the promastigotes of L. mexicana.

  2. The effect of poly(vinyl alcohol) on the photophysical properties of pyronin dyes in aqueous solution: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Gür, Bahri; Meral, Kadem

    2013-01-01

    The photophysical properties of pyronin B (PyB) and pyronin Y (PyY) in water and poly(vinyl alcohol) (PVA) aqueous solutions were studied by using absorption, steady-state fluorescence and time-resolved fluorescence spectroscopy techniques at room temperature. The spectroscopic and photophysical properties of pyronin dyes in the concentrated PVA aqueous solution were different than those found in water. The aggregation of the pyronin dyes in the concentrated PVA aqueous solution was prevented with ease while the dye aggregation was generally formed in water with high dye concentration. The decrease in the aggregation tendency of pyronin dyes in the concentrated PVA aqueous solution caused an increase in radiative transitions. The addition of PVA into the aqueous solution induced the enhancement in the fluorescence intensity of the dyes compared to those in water. As a result, the quantum yields of the dyes were improved by the addition of PVA at high loading. The time-resolved fluorescence study revealed that the fluorescence decay of dyes in all solutions were found to be single-exponential and the fluorescence lifetime of pyronin dyes in the concentrated PVA aqueous solution were also higher than those found in water.

  3. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Astrophysics Data System (ADS)

    Allamandola, L. J.

    1997-12-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  4. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  5. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  6. Indentation device for in situ Raman spectroscopic and optical studies

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Forster, A. M.; Hettenhouser, J. W.; Byrd, W. E.; Morris, D. J.; Cook, R. F.

    2012-12-01

    Instrumented indentation is a widely used technique to study the mechanical behavior of materials at small length scales. Mechanical tests of bulk materials, microscopic, and spectroscopic studies may be conducted to complement indentation and enable the determination of the kinetics and physics involved in the mechanical deformation of materials at the crystallographic and molecular level, e.g., strain build-up in crystal lattices, phase transformations, and changes in crystallinity or orientation. However, many of these phenomena occurring during indentation can only be observed in their entirety and analyzed in depth under in situ conditions. This paper describes the design, calibration, and operation of an indentation device that is coupled with a Raman microscope to conduct in situ spectroscopic and optical analysis of mechanically deformed regions of Raman-active, transparent bulk material, thin films or fibers under contact loading. The capabilities of the presented device are demonstrated by in situ studies of the indentation-induced phase transformations of Si thin films and modifications of molecular conformations in high density polyethylene films.

  7. Covalent dyads of porphyrin-fullerene and perylene-fullerene for organic photovoltaics: Spectroscopic and photocurrent studies

    NASA Astrophysics Data System (ADS)

    Wróbel, Danuta; Lewandowska, Kornelia

    2011-07-01

    Supermolecular complexes of zinc porphyrin or perylenediimide as covalent dyads with fullerene (C 60) in chloroform and as Langmuir-Blodgett layers on an Au substrate were studied. In our studies we have used following spectroscopic methods: electronic absorption, fluorescence and electron spin resonance in solution. Also infrared absorption spectra in a KBr pellet and reflectance-absorption in Langmuir-Blodgett layers were monitored. Photocurrent generation in a photoelectrochemical cell was also studied. The redistribution of charge both upon porphyrin linkage to C 60 and when the systems are deposited on the Au substrate was shown. Photocurrent examinations show a great influence of the fullerene presence on photoresponse of the systems.

  8. Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin.

    PubMed

    Esfandfar, Paniz; Falahati, Mojtaba; Saboury, AliAkbar

    2016-09-01

    Recently, the great interests in manufacturing and application of metal oxide nanoparticles in commercial and industrial products have led to focus on the potential impact of these particles on biomacromolecules. In the present study, the interaction of copper oxide (CuO) nanoparticles with bovine serum albumin (BSA) was studied by spectroscopic techniques. The zeta potential value for BSA and CuO nanoparticles with average diameter of around 50 nm at concentration of 10 μM in the deionized (DI) water were -5.8 and -22.5 mV, respectively. Circular dichroism studies did not show any changes in the content of secondary structure of the protein after CuO nanoparticles interaction. Fluorescence data revealed that the fluorescence quenching of BSA by CuO nanoparticles was the result of the formed complex of CuO nanoparticles - BSA. Binding constants and other thermodynamic parameters were determined at three different temperatures. The hydrogen bond interactions are the predominant intermolecular forces to stabilize the CuO nanoparticle - BSA complex. This study provides important insight into the interaction of CuO nanoparticles with proteins, which may be of importance for further application of these nanoparticles in biomedical applications. PMID:26555383

  9. Synthesis, spectroscopic characterization and comparative DNA binding studies of Schiff base complexes derived from L-leucine and glyoxal

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Shahid, Nida; Sami, Naushaba; Azam, Mohammad; Khan, Asad U.

    2011-11-01

    The mononuclear Schiff base complexes of the type, [ML(CH 3OH) 2] [M = Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by template condensation of L-leucine and glyoxal. The complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, Mass, 1H NMR and 13C NMR spectra. The UV-vis and magnetic moment data revealed an octahedral geometry around Co(II), Ni(II) ion with distortion around Cu(II) ion complex confirmed by EPR data. The conductivity data show a non-electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that all the complexes exhibit a significant binding to calf thymus DNA.

  10. Using fluorescence to study actomyosin in yeasts.

    PubMed

    Mulvihill, Daniel P

    2014-01-01

    This year marks the 30th anniversary of the first description of the cellular distribution of actin within a yeast cell. Since then advances in both molecular genetics and imaging technologies have ensured research within these simple model organisms has blazed a trail in the field of actomyosin research. Many yeast proteins and their functions are functionally conserved in human cells. This, combined with experimental speed, minimal cost and ease of use make the yeasts extremely attractive model organisms for researching diverse cellular processes, including those involving actomyosin. In this chapter, current state-of-the-art fluorescence methodologies being applied to yeast actomyosin research, together with an honest appraisal of their limitations, such as the pitfalls that should be considered when fluorescently labelling proteins interacting within a dynamic cytoskeleton, will be discussed. Papers describing the established techniques developed for yeast localisation studies will be highlighted. This will provide the reader with an informed overview of the arsenal of imaging techniques available to the yeast actomyosin researcher and encourage them to consider novel ways these simple unicellular eukaryotes could be used to address their own research questions. PMID:25096000

  11. Ultra-narrow spectroscopic cells in atomic spectroscopy: reflection, transmission, fluorescence, and nonadiabatic transitions at the walls

    NASA Astrophysics Data System (ADS)

    Pazgalev, A.; Sarkisyan, D.; Cartaleva, S.; Przhibelskii, S.; Vartanyan, T.

    2014-11-01

    Ultra-narrow cells with the thicknesses in the range from several wavelengths to the small fractions of the wavelength brought a number of new opportunities for atomic spectroscopy. Depending on the cell thickness, spectral lines recorded in ultra-narrow cells are either Doppler-free or Doppler-broadened. With careful selection of the cell thickness hyperfine structure may be easily resolved without resorting on the multibeam nonlinear optical techniques. Moreover, frequent collisions with the walls leads to the important modifications of velocity selective optical pumping resonances. Finally, ultra-narrow cells provide with the unique opportunity to study collisions of the excited atoms with the solid surfaces. In this contribution several examples of the use of the ultra-narrow spectroscopic cells filled with the alkali atomic vapour is presented. First, we discuss general aspects of the transient polarisation that defines all peculiarities of an ultra-narrow cell as a spectroscopic tool. Second, we demonstrate the resolution of the magnetic sublevels in the transition from Zeeman to Paschen-Back regime in the Cs hyperfine structure. Third, new aspects of velocity selective optical pumping resonances in reflection and transmission of resonant radiation by the 6 wavelengths thick cell filled with Cs are discussed. Forth, the experimental evidences of the nonadiabatic transitions between excited states of Rb atoms in the course of collisions with the sapphire surface are presented.

  12. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2015-02-01

    Two novel dipodal Schiff base compounds 1,2-benzyloxy-bis-[2-(benzylideneamino)phenol, L1 and 1,2-benzyloxy-bis[3-(benzylideneamino)pyridine], L2 were synthesized. Their sensing actions were confirmed by UV-Vis absorbance and emission spectroscopic studies in presence of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II) in methanol medium (1 × 10-4 M). It was found that the dipodal compounds can selectively bind to Cu(II) and Pb(II) metal ions with a significant change in its emission and absorption spectra, while the addition of other metal ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sn(II), Cd(II) and Pb(II)) produces insignificant or minor changes. The host-guest complexes formed were determined by Job's plot method. As a chemosensor, L1 and L2 dipodal Schiff base compounds shows a specific selectivity towards Cu(II) and Pb(II) ions in according to all spectroscopic data.

  13. The first spectroscopic study of southern binary:HD 53570

    NASA Astrophysics Data System (ADS)

    Sürgit, D.

    2016-03-01

    In this study, I present the first analysis of spectroscopic observations of southern detached eclipsing binary star HD 53570. The spectroscopic observations of HD 53570 was made at the Sutherland Station of the South African Astronomical Observatory (SAAO) in 2013 and 2014. Radial velocities (RVs) of the components of HD 53570 were determined by cross-correlation technique (CCT). The Hβ (4861.36 Å) lines of the components of HD 53570 were chosen as the most suitable lines for reliable RV measurements. The resulting orbital elements of HD 53570 is calculated as, a1 sin i = 0.0258±0.0005 AU, a2 sin i = 0.0228±0.0005 AU, M1 sin3i = 1.035±0.046 M⊙ and M2 sin3i = 1.167±0.050 M⊙. The radial velocity models of HD 53570 give the close binaries mass ratio as 1.13±0.07.

  14. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques

    NASA Astrophysics Data System (ADS)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav

    2011-01-01

    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  15. Specific binding and inhibition of 6-benzylaminopurine to catalase: multiple spectroscopic methods combined with molecular docking study.

    PubMed

    Xu, Qin; Lu, Yanni; Jing, Longyun; Cai, Lijuan; Zhu, Xinfeng; Xie, Ju; Hu, Xiaoya

    2014-04-01

    6-Benzylaminopurine (6-BA) is a kind of cytokinin which could regulate the activities of the antioxidant defense system of plants. In this work, its interaction with and inhibition of beef liver catalase have been systematically investigated using spectroscopic, isothermal titration calorimetric and molecular docking methods under physiological conditions. The fluorescence quenching of beef liver catalase (BLC) by 6-BA is due to the formation of 6-BA-BLC complex. Hydrogen bonds and van der Waals interactions play major roles in stabilizing the complex. The Stern-Volmer quenching constant, binding constant, the corresponding thermodynamic parameters and binding numbers were measured. The results of UV-vis absorption, three-dimensional fluorescence, synchronous fluorescence and circular dichroism spectroscopic results demonstrate that the binding of 6-BA results in the micro-environment change around tyrosine (Tyr) and tryptophan (Trp) residues of BLC. The BLC-mediated conversion of H2O2 to H2O and O2, in the presence and absence of 6-BA, was also studied. Lineweaver-Burk plot indicates a noncompetitive type of inhibition. Molecular docking study was used to find the binding sites. PMID:24412785

  16. Study by fluorescence microscopy of the effect of fluorescent whitening agents on the skin of mice.

    PubMed

    Luckhaus, G; Löser, E

    1975-01-01

    Fluorescence microscopic studies of the skin of hairless mice showed that a fluorescent whitening agent (FWA) of the bis(phenyltriazolyl)stilbenedisulfonate type did not penetrate into the subepithelial layers (dermis and subcutaneous tissue) of the skin after cutaneous application. PMID:1064538

  17. Laser Excited Fluorescence Studies Of Black Liquor

    NASA Astrophysics Data System (ADS)

    Horvath, J. J.; Semerjian, H. G.

    1986-10-01

    Laser excited fluorescence of black liquor was investigated as a possible monitoring technique for pulping processes. A nitrogen pumped dye laser was used to examine the fluorescence spectrum of black liquor solutions. Various excitation wavelengths were used between 290 and 403 nm. Black liquor fluorescence spectra were found to vary with both excitation wavelength and black liquor concentration. Laser excited fluorescence was found to be a sensitive technique for measurement of black liquor with good detection limits and linear response over a large dynamic range.

  18. Combined spectroscopic and quantum chemical studies of ezetimibe

    NASA Astrophysics Data System (ADS)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  19. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    We have postulated that, in the case of tetragonal chicken egg white lysozyme, crystal growth occurs by the addition of pre-critical nuclei sized n-mers that form in the bulk solution, and that the n-mer growth units were multiples of the tetrameric 4(sub 3) helical structure. These have the strongest intermolecular bonds in the crystal and are therefore likely to be the first species formed. High resolution AFM studies provide strong supporting evidence for this model, but the data also suggest that the actual species in solution may not be identical in structure to that found in the crystal. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process, using covalent fluorescent derivatives which crystallize in the characteristic P4(sub 3)2(sub 1)2(sub 1) space group. FRET studies are being carried out between the cascade blue (CB-lys, donor, Ex(sub max) 366 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex(sub max) 430 nm, Em 528 nm) asp101 derivatives. The estimated R(sub 0) for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approx. 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 4(sub 3) helix. The short donor lifetime of 2.80 ns (chi(sup 2) = 0.644), coupled with the large average distances between the molecules (greater than or equal to 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Lifetime data show that CB-lys has a single lifetime when it is the only species in solution. Similarly, LY-lys also exhibits a single lifetime of 4.63 ns (chi(sup 2) = 0.42) when alone in solution. Addition of LY-lys to CB-lys results in the appearance of a third lifetime component of 0.348ns for the CB-lys. The fractional intensities of the different species present can be used to estimate the distribution of monomer and n-mers in solution. The self

  20. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    SciTech Connect

    Field, R.W.; Silbey, R.J.

    1990-01-01

    The formyl radical and the acetylene molecule were chosen for these studies. The visible and fluorescence spectra of the formyl radical were recorded, and the spectral results are used as a basis to explain the electronic structure. Optical-optical double resonance studies of acetylene were recorded, and the spectral results are interpreted. The results of Zeeman and Stark anticrossing and quantum beat studies of acetylene are reported, and they provide an unusually detailed view of both Intersystem Crossing and Internal Conversion in small polyatomic molecules. 22 references are cited as resulting from Department of Energy sponsorship of this project.

  1. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples. PMID:15766067

  2. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  3. Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength.

    PubMed

    Schaberle, Fábio A; Kuz'min, Vladimir A; Borissevitch, Iouri E

    2003-05-01

    Spectroscopic characteristics of a cyanine dye with two chromophores (biscyanine dye, BCD) in aqueous solutions and effects of NaCl and DNA upon these characteristics have been studied by optical absorption, circular dichroism (CD) and fluorescence spectroscopies. In homogeneous solutions, BCD is characterized by intense optical absorption (epsilon =1.33 x 10(5) M(-1) x cm(-1)) and weak fluorescence (phi(fl)=0.018) in the wavelength region greater than 600 nm. The dye forms H-aggregates at low concentrations (10(-6) M). NaCl stimulates the formation of both H- and J-aggregates of the dye at much lower dye concentrations, while DNA in low concentrations (<10(-6) M) stimulated the formation of just J-aggregates on the surface of the DNA molecule. Higher DNA concentrations induce the dye to disaggregate, and there exists an equilibrium between three dye forms: free monomers, J-aggregates and bound monomers, the maximum content of J-aggregates was observed at [DNA]/[BCD]=0.6+/-0.2 and total disaggregation at [DNA]/[BCD]=190+/-20. J-aggregates are characterized by phi(fl)=0.05 and bound monomers by phi(fl)=0.44. In the presence of NaCl, total disaggregation was observed at [DNA]/[BCD]=570+/-10 due to competition between Na(+) and the dye molecules for DNA electronegative binding sites. PMID:12726994

  4. Infrared spectroscopic study of sputtered tungsten oxide films

    SciTech Connect

    Paul, J.L.; Lassegues, J.C. )

    1993-10-01

    Recent infrared and Raman spectroscopic studies of various tungsten oxide films concluded either the formation of W=O terminal bonds or the transformation of such bonds into W-OH groups upon proton insertion. The infrared transmission and reflection spectra of bleached and colored sputtered films were reinvestigated in order to resolve the previous contradictory interpretations and for better insight into the mechanism of electrochromism at the molecular level. The new results confirm the first interpretation and allow us to show that H[sup +] or Li[sup +] insertion creates shorter ([approximately]1.7[angstrom]) and longer ([approximately]2 [angstrom]) W-O bonds around the W[sup 5+] centers. These results are in agreement with the concepts of small polaron and of intervalence charge transfer mechanism. They illustrate the local lattice distortion around a W[sup 5+] site. Aging of the initial films has also been followed and characterized by H/D in situ isotopic exchange.

  5. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    SciTech Connect

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; Zhang, W. Y.; Ding, H. F.

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of the corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.

  6. Molecular spectroscopic study for suggested mechanism of chrome tanned leather.

    PubMed

    Nashy, Elshahat H A; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins. PMID:22225606

  7. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. PMID:25194320

  8. Spectroscopic Capabilities of XMM for Stellar Coronal Studies

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    The turn of the millennium will be a marvelous time for X-ray astronomy with the launch of powerful missions such as AXAF, XMM, and ASTRO-E. Stellar coronae, with their spectra rich in emission lines, will be primary targets to exploit the spectroscopic capabilities of these missions. In particular, the CCD cameras and reflection gratings on XMM will allow us to address a number of key questions in stellar coronal physics. The capabilities of XMM for the study of stellar coronae are illustrated by means of simulations of EPIC and RGS spectra for a variety of typical stellar coronal sources. The mission time-line and the policy for accessing the data are also briefly illustrated.

  9. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  10. A detailed spectroscopic study of an Italian fresco

    SciTech Connect

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-02-15

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied.

  11. Spectroscopic and quantum chemical studies on 4-acryloyl morpholine

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Rani, T.; Santhanalakshmi, K.; Mohan, S.

    2011-09-01

    Fourier transform infrared (FTIR) and FT-Raman spectra have been recorded and an extensive spectroscopic investigations have been carried out on 4-acryloyl morpholine (4AM). Theoretical quantum chemical studies have also been performed. From the ab initio and DFT analysis using HF, B3LYP and B3PW91 methods with 6-31G(d,p) and 6-311G++(d,p) basis sets the energies, structural, thermodynamical and vibrational characteristics of the compound were determined. The energy difference between the chair equatorial and chair axial conformers of 4AM have been calculated by density functional theory (DFT) method. The optimized geometrical parameters, theoretical wavenumbers and thermodynamic properties of the molecule are compared with the experimental values. The effect of acryloyl group on the characteristic frequencies of the morpholine ring has been analysed. The mixing of the fundamental modes with the help of potential energy distribution (PED) through normal co-ordinate analysis has been discussed.

  12. Ultrasonic and spectroscopic studies on photoactivation of euglena

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Morita, Shin

    2006-12-01

    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  13. Spectroscopic study of Gd nanostructures quantum confined in Fe corrals

    DOE PAGESBeta

    Cao, R. X.; Sun, L.; Miao, B. F.; Li, Q. L.; Zheng, C.; Wu, D.; You, B.; Zhang, W.; Han, P.; Bader, S. D.; et al

    2015-07-10

    Low dimensional nanostructures have attracted attention due to their rich physical properties and potential applications. The essential factor for their functionality is their electronic properties, which can be modified by quantum confinement. Here the electronic states of Gd atom trapped in open Fe corrals on Ag(111) were studied via scanning tunneling spectroscopy. A single spectroscopic peak above the Fermi level is observed after Gd adatoms are trapped inside Fe corrals, while two peaks appear in empty corrals. The single peak position is close to the higher energy peak of the empty corrals. These findings, attributed to quantum confinement of themore » corrals and Gd structures trapped inside, are supported by tight-binding calculations. As a result, this demonstrates and provides insights into atom trapping in open corrals of various diameters, giving an alternative approach to modify the properties of nano-objects.« less

  14. Spectroscopic studies on chemical- and photo-responsive molecular machines and their bio-applications

    NASA Astrophysics Data System (ADS)

    Lau, Yuen Agnes

    2011-07-01

    The four chapters presented in this dissertation describe how various spectroscopic techniques are used: 1) to study the operation of molecular machines in solution, 2) to track the operation of molecular machines inside a single cell, and 3) to investigate the photo-decomposition pathway of a biological chromophore. Recent advances in nanotechnology have enriched the development of nano-scale molecular assemblies to be used as delivery platforms for biologically relevant molecules. Among all the molecular assemblies, molecular machines that are incorporated onto various domains of mesoporous silica nanoparticles (MSN) hold considerable potential as a reliable delivery system. Because the ease of functionalization enables chemical or photo-responsive molecular moieties to be covalently attached to the silica framework, these molecular assemblies, with defined mechanized properties, can perform specific functions under external stimuli (pH, redox, or light). While the primary function of these molecular machines is to deliver stored cargo molecules, the means of activation and the motif in which they operate are different. In the first and second chapters of this dissertation, two types of molecular machines, nanovalves and nanoimpellers, and their operations are studied. The ability to continuously monitor and image progression of molecular-based biological events in real-time can enhance our understanding of intracellular processes upon drug, protein and nucleic acid delivery. Using the photo-activated nanoimpeller described in the second chapter, the third chapter explores how it can be used to transport a nuclear staining agent, PI, inside a single cell. Nanoimpellers are made by functionalizing azobenzene molecules to the internal pore surface of MSN. The continuous cis/trans isomerizations are set in motion upon laser illumination at optimal wavelength(s), which facilitate cargo molecules to be expelled from the pores to the surrounding medium. By refining a

  15. Spectroscopic study of the peculiar galaxy IC 883

    NASA Astrophysics Data System (ADS)

    Yakovleva, V. A.; Merkulova, O. A.; Karataeva, G. M.; Shalyapina, L. V.; Yablokova, N. V.; Burenkov, A. N.

    2016-04-01

    We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry-Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy's minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy's stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region ( r ≤ 5"), are ≈1 Gyr and ≈-0.4 dex, respectively. Both young (2-5 × 108 yr) and old (5-10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8" south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.

  16. Ground and excited state proton transfer of the bioactive plant flavonol robinetin in a protein environment: spectroscopic and molecular modeling studies.

    PubMed

    Pahari, Biswa Pathik; Chaudhuri, Sudip; Chakraborty, Sandipan; Sengupta, Pradeep K

    2015-02-12

    We performed spectroscopic and molecular modeling studies to explore the interaction of the bioactive plant flavonol robinetin (3,7,3',4',5'-OH flavone), with the carrier protein human serum albumin (HSA). Multiparametric fluorescence sensing, exploiting the intrinsic "two color" fluorescence of robinetin (comprising excited state intramolecular proton transfer (ESIPT) and charge transfer (CT) emissions) reveals that binding to HSA significantly affects the emission and excitation profiles, with strongly blue-shifted (∼29 nm) normal fluorescence and remarkable increase in the ESIPT fluorescence anisotropy (r) and lifetime (τ). Flavonol-induced HSA (tryptophan) fluorescence quenching data yield the dynamic quenching constant (KD) as 5.42 × 10(3) M(-1) and the association constant (Ks) as 5.59 × 10(4) M(-1). Time-resolved fluorescence anisotropy decay studies show dramatic (∼170 times) increase in the rotational correlation time (τ(rot)), reflecting greatly enhanced restrictions in motion of robinetin in the protein matrix. Furthermore, prominent induced circular dichroism (ICD) bands appear, indicating that the chiral environment of HSA strongly perturbs the electronic transitions of the intrinsically achiral robinetin molecule. Molecular docking calculations suggest that robinetin binds in subdomain IIA of HSA, where specific interactions with basic residues promote ground state proton abstraction and stabilize an anionic species, which is consistent with spectroscopic observations. PMID:25313717

  17. Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, C.-H.; Fong, B. A.; Alfano, S. A., Jr.; Rakhlin, I.; Wang, W. B.; Ni, X. H.; Yang, Y. L.; Zhou, F.; Zuzolo, R. C.; Alfano, R. R.

    2011-03-01

    The microinjection of organelles, plants, particles or chemical solutions into Amoeba proteus coupled with spectroscopic analysis and observed for a period of time provides a unique new model for cancer treatment and studies. The amoeba is a eukaryote having many similar features of mammalian cells. The amoeba biochemical functions monitored spectroscopically can provide time sequence in vivo information about many metabolic transitions and metabolic exchanges between cellar organelles and substances microinjected into the amoeba. It is possible to microinject algae, plant mitochondria, drugs or carcinogenic solutions followed by recording the native fluorescence spectra of these composites. This model can be used to spectroscopically monitor the pre-metabolic transitions in developing diseased cells such as a cancer. Knowing specific metabolic transitions could offer solutions to inhibit cancer or reverse it as well as many other diseases. In the present study a simple experiment was designed to test the feasibility of this unique new model by injecting algae and chloroplasts into amoeba. The nonradiative dynamics found from these composites are evidence in terms of the emission ratios between the intensities at 337nm and 419nm; and 684nm bands. There were reductions in the metabolic and photosynthetic processes in amoebae that were microinjected with chloroplasts and zoochlorellae as well of those amoebae that ingested the algae and chloroplasts. The changes in the intensity of the emissions of the peaks indicate that the zoochlorellae lived in the amoebae for ten days. Spectral changes in intensity under the UV and 633nm wavelength excitation are from the energy transfer of DNA and RNA, protein-bound chromophores and chlorophylls present in zoochlorellae undergoing photosynthesis. The fluorescence spectroscopic probes established the biochemical interplay between the cell organelles and the algae present in the cell cytoplasm. This hybrid state is indicative

  18. Using fluorescence for studies of biological membranes: a review

    NASA Astrophysics Data System (ADS)

    Kyrychenko, Alexander

    2015-12-01

    Fluorescence techniques have become powerful and widely used tools for studies of biochemical and biophysical processes occurring in biological membranes. Various fluorescence methods have played and continue to play key roles in modern membrane science, so that there have been several focused reviews on this topic. Here, I present the progress and recent achievements in various fluorescence approaches commonly utilized in studies of biological membranes. Applications of numerous fluorescence methods have been reviewed, including single molecule detection, confocal scanning fluorescence microscopy and fluorescence lifetime imaging. I focus on the benefits and limitations of various fluorescence techniques and their combinations, as well as the available methods of in vivo studying. A separate section is dedicated to discussing and comparing different classes of fluorescent membrane probes and their applications to the study of biological membranes. The review should provide researchers from chemistry, biochemistry, and biophysics with the necessary background to identify a range of suitable fluorescence methods in order to successfully design and conduct experimental studies on model lipid bilayers and biological membranes.

  19. Binding of several benzodiazepines to bovine serum albumin: Fluorescence study

    NASA Astrophysics Data System (ADS)

    Machicote, Roberta G.; Pacheco, María E.; Bruzzone, Liliana

    2010-10-01

    The interactions of lorazepam, oxazepam and bromazepam with bovine serum albumin (BSA) were studied by fluorescence spectrometry. The Stern-Volmer quenching constants and corresponding thermodynamic parameters Δ H, Δ G and Δ S were calculated. The binding constants and the number of binding sites were also investigated. The distances between the donor (BSA) and the acceptors (benzodiazepines) were obtained according to fluorescence resonance energy transfer and conformational changes of BSA were observed from synchronous fluorescence spectra.

  20. Application of fluorescence to the study of crude petroleum.

    PubMed

    Steffens, Juliana; Landulfo, Eduardo; Courrol, Lilia Coronato; Guardani, Roberto

    2011-05-01

    Crude petroleum oils are complex mixtures of different compounds (mainly organic), which are obtained from an extensive range of different geological sources. The fluorescence of crude petroleum oils derives largely from the aromatic hydrocarbon fraction, and this fluorescence emission is strongly influenced by the chemical composition (e.g., fluorophore and quencher concentrations) and physical characteristics (e.g., viscosity and optical density) of the oil. The fluorescence spectroscopy (FS) is increasingly used in petroleum technology due the availability of better optical detection techniques, because FS offers high sensitivity, good diagnostic potential, and relatively simple instrumentation. In this work we analyzed crude petroleum at different dilution in Nujol, a transparent mineral oil. The main objective of this work was to verify the possibility to measure crude oil emission spectroscopic without use of volatile solvents. The mixtures of nujol with different -crude oil concentrations were measured with a 10 mm optical path cuvette thus simplifying the fluorescence spectroscopy signal detection. The emission spectra were obtained by exciting the samples with a 400 W Xenon lamp at 350 nm, 450 nm and 532 nm. The emissions of the samples were collected perpendicularly with the excitation axis. PMID:20111988

  1. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation

    PubMed Central

    Suess, Daniel L. M.

    2015-01-01

    Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H+ and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN− ligands of the H-cluster, tracing 57Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe–S cluster in HydG, and isotopic labeling of the CN− ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications. PMID:26508821

  2. Spectroscopic Studies on the Characterization of a Persian Playing Card.

    PubMed

    Holakooei, Parviz; Niknejad, Maryam; Vaccaro, Carmela

    2016-01-01

    This paper presents the results of our investigations on a playing card preserved at The Mūzih-i Āynih va Rushanāī in Yazd, Iran. Conducting micro X-ray fluorescence spectrometry (μ-XRF), micro-Raman spectroscopy (μ-Raman), infrared reflectography (IRR), ultraviolet fluorescence photography, radiography, and optical microscopy, various paints applied on the playing card were identified. According to our analytical studies, red, green, blue, black, and gold-like metallic paints were identified to be a red monoazo pigment (β-naphthol PR 53:1), chrome green, artificial ultramarine blue, carbon black, and brass powder (Dutch metal powder), respectively, dating the playing card to 1895 onward based on the manufacturing date of the red monoazo pigment. Barite was also shown to be mixed with the pigments as an extender. On the other hand, the portrait's face of the playing card was peculiarly blackened. Our analytical approach toward characterizing the blackened face showed that the black paint was achieved by carbon black and, in other words, the face was not blackened due to the darkening of Pb-bearing pigments. Moreover, it was shown that there was no underdrawing under the black face and the black paint was most probably executed in the same time with the other paints. Considering the possible use of the playing card, it was suggested not to remove the blackened face in the cleaning process since the black paint was a part of the integrity of the playing card. PMID:26767645

  3. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    SciTech Connect

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh; Sudarsanakumar, C.

    2015-06-24

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  4. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    NASA Astrophysics Data System (ADS)

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh; Sudarsanakumar, C.

    2015-06-01

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  5. Spectroscopic studies of laser ablation plumes of artwork materials

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Rebollar, E.; Castillejo, M.

    2003-04-01

    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3π u and d 3π g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  6. Spectroscopic study of sorption of nitrogen heterocyclic compounds on phyllosilicates

    SciTech Connect

    Chattopadhyay, S.; Traina, S.J.

    1999-03-02

    The present study focused on understanding the sorption characteristics of acridine (AcN) and acridine-9-carboxylic acid (AcNCOOH), two typical nitrogen heterocyclic compounds (NHCs), on well-characterized phyllosilicates (hectorite, saponite, and muscovite). Results presented in this article show that the degree of sorption of NHCs on phyllosilicates was dependent on the nature of the participating sorbates and sorbents. Sorption of the selected NHCs was pH-dependent, with maximum sorption occurring at low pH conditions, especially at pH < pK{sub a} of the NHC. Though sorption of the cationic forms of the NHCs on clays was preferred, neutral, zwitterionic, and anionic species of NHCs also sorbed on the clay surfaces. Spectroscopic studies have shown that sorbed NHC molecules formed clusters on clay surfaces, which acted as templates for molecular aggregation. Finally, the authors have also found that the clay surfaces promoted protonation of neutral AcN molecules at low sorbate concentrations.

  7. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  8. Fibreoptic fluorescent microscopy in studying biological objects

    SciTech Connect

    Morozov, A N; Turchin, Il'ya V; Kamenskii, V A; Fiks, I I; Lazutkin, A A; Bezryadkov, D V; Ivanova, A A; Toptunov, D M; Anokhin, K V

    2010-11-13

    The method of fluorescent microscopy is developed based on employment of a single-mode fibreoptic channel to provide high spatial resolution 3D images of large cleared biological specimens using the 488-nm excitation laser line. The transverse and axial resolution of the setup is 5 and 13 {mu}m, respectively. The transversal sample size under investigation is up to 10 mm. The in-depth scanning range depends on the sample transparency and reaches 4 mm in the experiment. The 3D images of whole mouse organs (heart, lungs, brain) and mouse embryos obtained using autofluorescence or fluorescence of exogenous markers demonstrate a high contrast and cellular-level resolution.

  9. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  10. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  11. BH2 revisited: New, extensive measurements of laser-induced fluorescence transitions and ab initio calculations of near-spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Sunahori, Fumie X.; Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo

    2015-05-01

    The spectroscopy of gas phase BH2 has not been explored experimentally since the pioneering study of Herzberg and Johns in 1967. In the present work, laser-induced fluorescence (LIF) spectra of the A ˜ 2 B 1 ( Π u ) - X ˜ 2A1 band system of 11BH2, 10BH2, 11BD2, and 10BD2 have been observed for the first time. The free radicals were "synthesized" by an electric discharge through a precursor mixture of 0.5% diborane (B2H6 or B2D6) in high pressure argon at the exit of a pulsed valve. A total of 67 LIF bands have been measured and rotationally analyzed, 62 of them previously unobserved. These include transitions to a wide variety of excited state bending levels, to several stretch-bend combination levels, and to three ground state levels which gain intensity through Renner-Teller coupling to nearby excited state levels. As an aid to vibronic assignment of the spectra, very high level hybrid ab initio potential energy surfaces were built starting from the coupled cluster singles and doubles with perturbative triples (CCSD(T))/aug-cc-pV5Z level of theory for this seven-electron system. In an effort to obtain the highest possible accuracy, the potentials were corrected for core correlation, extrapolation to the complete basis set limit, electron correlation beyond CCSD(T), and diagonal Born-Oppenheimer effects. The spin-rovibronic states of the various isotopologues of BH2 were calculated for energies up to 22 000 cm-1 above the X ˜ (000) level without any empirical adjustment of the potentials or fitting to experimental data. The agreement with the new LIF data is excellent, approaching near-spectroscopic accuracy (a few cm-1) and has allowed us to understand the complicated spin-rovibronic energy level structure even in the region of strong Renner-Teller resonances.

  12. BH2 revisited: New, extensive measurements of laser-induced fluorescence transitions and ab initio calculations of near-spectroscopic accuracy.

    PubMed

    Sunahori, Fumie X; Gharaibeh, Mohammed; Clouthier, Dennis J; Tarroni, Riccardo

    2015-05-01

    The spectroscopy of gas phase BH2 has not been explored experimentally since the pioneering study of Herzberg and Johns in 1967. In the present work, laser-induced fluorescence (LIF) spectra of the Ã(2)B1(Πu)-X̃ (2)A1 band system of (11)BH2, (10)BH2, (11)BD2, and (10)BD2 have been observed for the first time. The free radicals were "synthesized" by an electric discharge through a precursor mixture of 0.5% diborane (B2H6 or B2D6) in high pressure argon at the exit of a pulsed valve. A total of 67 LIF bands have been measured and rotationally analyzed, 62 of them previously unobserved. These include transitions to a wide variety of excited state bending levels, to several stretch-bend combination levels, and to three ground state levels which gain intensity through Renner-Teller coupling to nearby excited state levels. As an aid to vibronic assignment of the spectra, very high level hybrid ab initio potential energy surfaces were built starting from the coupled cluster singles and doubles with perturbative triples (CCSD(T))/aug-cc-pV5Z level of theory for this seven-electron system. In an effort to obtain the highest possible accuracy, the potentials were corrected for core correlation, extrapolation to the complete basis set limit, electron correlation beyond CCSD(T), and diagonal Born-Oppenheimer effects. The spin-rovibronic states of the various isotopologues of BH2 were calculated for energies up to 22 000 cm(-1) above the X̃ (000) level without any empirical adjustment of the potentials or fitting to experimental data. The agreement with the new LIF data is excellent, approaching near-spectroscopic accuracy (a few cm(-1)) and has allowed us to understand the complicated spin-rovibronic energy level structure even in the region of strong Renner-Teller resonances. PMID:25956095

  13. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  14. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes.

    PubMed

    Pentak, Danuta

    2016-03-01

    Black pepper is a source of effective antioxidants. It contains several powerful antioxidants and is thus one of the most important spices for preventing and curtailing oxidative stress. There is considerable interest in the development of a drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic and amphiphilic molecules. This article focuses on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. Liposome formulations of piperine were analyzed with various spectroscopic methods. The formulation with the highest entrapment efficiency (90.5%) was formulated with an L-α-phosphatidylcholine dipalmitoyl (DPPC):piperine, 30:1 molar ratio, and total lipid count of 19.47 mg/ml in the final liposomal preparation. The liposome formulation was found to be stable after storage at 4 °C, protected from light, for a minimum of 3 weeks. The incremental process of piperine penetration through the phospholipid membrane was analyzed using the FT-IR, UV-Vis and NMR methods. Temperature stability studies carried out at 37 °C showed the highest percentage of piperine release in the first 3 h of incubation. PMID:26493066

  15. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-01

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects. PMID:26117194

  16. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking.

    PubMed

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488nm and 785nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level. PMID:27372511

  17. Fluorination of graphene: a spectroscopic and microscopic study.

    PubMed

    Wang, Bei; Wang, Junjie; Zhu, Jun

    2014-02-25

    Since the advent of graphene, there has been intense interest in exploring the possibility of incorporating fluorinated graphene (FG), an ultrathin insulator, into graphene electronics as barriers, gate dielectrics, and optoelectronic elements. Here we report on the synthesis of FG from single-layer graphene sheets grown by chemical vapor deposition (CVD) using CF4 plasma. We examine its properties systematically via microscopic and spectroscopic probes. Our studies show that, by controlling the conditions of the plasma, FG of varying fluorine coverage can be produced; however, the resulting material contains a mixture of CFx (x = 1-3) bonds. Existing grain boundaries and lattice defects of CVD graphene play an important role in controlling its rate of fluorination and the damage of the sheet. Combining topography and current mapping, we demonstrate that the spatial distribution of fluorine on CVD graphene is highly inhomogeneous, where multilayer islands and structural features such as folds, wrinkles, and ripples are less fluorinated and consequently form a conductive network through which charge transport occurs. It is the properties of this network that manifest in the electrical transport of FG sheets. Our experiments reveal the many challenges of deriving electronics-quality FG from current CVD graphene while at the same time point to the possible solutions and potential of FG in graphene electronics and optoelectronics. PMID:24471932

  18. A spectroscopic study of the globular Cluster NGC 4147

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Monaco, L.; Moni Bidin, C.; Assmann, P.

    2016-08-01

    We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 ± 0.02 and an α-enhancement of +0.38 ± 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only ˜15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.

  19. Spectroscopic study of HNO3 dissociation on ice.

    PubMed

    Marchand, Patrick; Marcotte, Guillaume; Ayotte, Patrick

    2012-12-13

    A detailed spectroscopic study of HNO(3):H(2)O binary amorphous mixtures, and of the adsorption of HNO(3) onto ice, is reported. Using a classical optics model, the extent of intermixing and of ionic dissociation of adsorbed HNO(3), which forms a strong acid with liquid water, is determined as a function of HNO(3) coverage and temperature. Even at temperatures as low as 45 K, where intermixing is limited to at most a few molecular layers at the interface, ionic dissociation of adsorbed HNO(3) is observed to be extensive. While some amount of molecularly adsorbed HNO(3) is observed at the surface of ice at 45 K, its ionic dissociation occurs irreversibly upon heating the ice substrate to 120 K. The molecularly adsorbed state of HNO(3) is not restored upon cooling, suggesting HNO(3) is a metastable entity at the surface of ice. Therefore, despite ionic dissociation of HNO(3) being thermodynamically favored, it appears to be kinetically inhibited at the surface of amorphous solid water at temperatures below 120 K. PMID:23130955

  20. New homotrinuclear lanthanide complexes: synthesis, characterization and spectroscopic study.

    PubMed

    Silva, Wagner E; Belian, Mônica Freire; Freire, Ricardo O; de Sá, Gilberto F; Alves, Severino

    2010-09-23

    This work presents the synthesis and spectroscopic study of new homotrinuclear (TRI) systems for photonics applications. The luminescence spectroscopy shows characteristics transitions of Eu(III) and Tb(III) ions. For the Gd(III) complexes, the triplets states were determined by phosphorescence measurement. The complexes’ coordination geometries were calculated using the Sparkle/AM1 model. For the europium systems, the Sparkle/AM1 geometries were used to calculate all details involved in the energy transfer process, and the theoretical quantum yields were determined. From an energy diagram, that estimates triplet levels, it was possible to understand some experimental phenomenon, such as weak luminescence for precursor complex (without heterocyclics ligands), and ligands emission in terbium complexes. Some of these observations can also be explained by the Jablonski diagrams that describe, based on theoretical calculations, all luminescent process. The synthesized complexes showed high values of quantum yield in ethanolic environment: 50% for EuTRIDipy, 26% EuTRITerpy, and 56% for EuTRIPhen complexes. PMID:20738128

  1. Raman spectroscopic studies of the cure of dicyclopentadiene (DCPD)

    NASA Astrophysics Data System (ADS)

    Barnes, S. E.; Brown, E. C.; Corrigan, N.; Coates, P. D.; Harkin-Jones, E.; Edwards, H. G. M.

    2005-10-01

    The cure of polydicyclopentadiene conducted by ring-opening metathesis polymerisation in the presence of a Grubbs catalyst was studied using non-invasive Raman spectroscopy. The spectra of the monomer precursor and polymerised product were fully characterised and all stages of polymerisation monitored. Because of the monomer's high reactivity, the cure process is adaptable to reaction injection moulding and reactive rotational moulding. The viscosity of the dicyclopentadiene undergoes a rapid change at the beginning of the polymerisation process and it is critical that the induction time of the viscosity increase is determined and controlled for successful manufacturing. The results from this work show non-invasive Raman spectroscopic monitoring to be an effective method for monitoring the degree of cure, paving the way for possible implementation of the technique as a method of real-time analysis for control and optimisation during reactive processing. Agreement is shown between Raman measurements and ultrasonic time of flight data acquired during the initial induction period of the curing process.

  2. Synthesis and spectroscopic studies on complexes of N,N'-bis-(2-pyridinecarboxaldimine)-1,8-diaminonaphthalene (L); DNA binding studies on Cu(II) complex

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Azam, Mohammad; Parveen, Shama; Khan, Asad U.; Firdaus, Farha

    2009-01-01

    The Schiff base ligand, N,N'-bis-(2-pyridinecarboxaldimine)-1,8-diaminonaphthalene (L), obtained by the condensation of 2-pyridinecarboxaldehyde and 1,8-diaminonaphthalene, has been used to synthesize the mononuclear complexes of the type [MLCl 2] [M = Co(II), Ni(II), Cu(II) and Zn(II)]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of results of elemental analysis, molar conductance, magnetic susceptibility measurements, Job's method and spectroscopic studies viz., FT-IR, Mass, 1H and 13C NMR. The UV-vis and magnetic moment data revealed an octahedral geometry around Co(II), Ni(II) and Cu(II) ions and conductivity data show a non-electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that Cu(II) complex exhibits significant binding to calf thymus DNA.

  3. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7{beta}, 8{alpha}-dihydoxy-9{alpha}, l0{alpha}-epoxy-7,8,9, 10-tetrahydrobenzo[{alpha}]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, ({minus})-trans-, (+)-cis- and ({minus})-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( {approximately} 25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant {pi}-{pi} stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G{sub 2} or G{sub 3} (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N{sup 2}-dG in DNA isolated from the skin of mice treated topically with benzo[{alpha}]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N{sup 2}-dG.

  4. Photophysical properties of hydroxyphenyl benzazoles and their applications as fluorescent probes to study local environment in DNA, protein and lipid.

    PubMed

    Sulaiman, Saba A J; Al-Rasbi, Ghalia S; Abou-Zied, Osama K

    2016-05-01

    Fluorescence techniques have drawn increasing attention because they provide crucial information about molecular interactions in protein-ligand systems beyond that obtained by other methods. The advantage of fluorescence spectroscopy stems from the fact that the majority of molecules in biological systems do not exhibit fluorescence, making fluorescent probes useful with high sensitivity. Also, the fluorescence emission is highly sensitive to the local environment, providing a valuable tool to investigate the nature of binding sites in macromolecules. In this review, we discuss some of the important applications of a class of molecules that have been used as fluorescent probes in a variety of studies. Hydroxyphenyl benzazoles (HBXs) show distinct spectroscopic features that make them suitable probes for the study of certain biological mechanisms in DNA, protein and lipid. In particular, the complex photophysics of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and the distinguished fluorescence signatures of its different tautomeric forms make this molecule a useful probe in several applications. Among these are probing the DNA local environment, study of the flexibility and specificity of protein-binding sites, and detecting the heterogeneity and ionization ability of the head groups of different lipidic phases. The spectroscopy of HBX molecules and some of their chemically modified structures is also reviewed. PMID:26910188

  5. Contribution to the spectroscopic study of cytostatics molecules

    NASA Astrophysics Data System (ADS)

    Staicu, Angela; Pascu, Mihail-Lucian; Mogos, Ioan; Enescu, Mironel; Truica, Sorina; Voicu, Letitia; Gazdaru, Doina M.; Radu, Alina; Gazdaru, S.

    2001-06-01

    The effect of UV irradiation of methotrexate was investigated by steady state absorption and fluorescence spectroscopy. Major modifications on absorption bands were detected upon irradiation fluence greater than 59J/cm2. In addition the irradiated solutions become strongly fluorescent. The detected changes are not linear with the exposure time suggesting that the photo-induced chemical processes are complex.

  6. Fluorescence and UV/VIS absorption spectroscopy studies on polymer blend films for photovoltaics

    NASA Astrophysics Data System (ADS)

    van Stam, Jan; Lindqvist, Camilla; Hansson, Rickard; Ericsson, Leif; Moons, Ellen

    2015-08-01

    The quinoxaline-based polymer TQ1 (poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5- diyl]) is a promising candidate as electron donor in organic solar cells. In combination with the electron acceptor [6,6]- phenyl-C71- butyric acid methyl ester (PC70BM), TQ1 has resulted in solar cells with power conversion efficiencies of 7 %. We have studied TQ1 films, with and without PC70BM, spin-casted from different solvents, by fluorescence spectroscopy and UV/VIS absorption spectroscopy. We used chloroform (CF), chlorobenzene (CB), and odichlorobenzene (o-DCB) as solvents for the coating solutions and 1-chloronaphthalene (CN) as solvent additive. CN addition has been shown to enhance photo-conversion efficiency of these solar cells. Phase-separation causes lateral domain formation in the films and the domain size depends on the solvent . These morphological differences coincide with changes in the spectroscopic patterns of the films. From a spectroscopic point of view, TQ1 acts as fluorescent probe and PC70BM as quencher. The degree of fluorescence quenching is coupled to the morphology through the distance between TQ1 and PC70BM. Furthermore, if using a bad solvent for PC70BM, morphological regions rich in the fullerene yield emission characteristic for aggregated PC70BM. Clear differences were found, comparing the TQ1:PC70BM blend films casted from different solvents and at different ratios between the donor and acceptor. The morphology also influences the UV/VIS absorption spectra, yielding further information on the composition. The results show that fluorescence and UV/VIS absorption spectroscopy can be used to detect aggregation in blended films and that these methods extend the morphological information beyond the scale accessible with microscopy.

  7. Characterizing new fluorescent tools for studying 5-HT₃ receptor pharmacology.

    PubMed

    Jack, Thomas; Simonin, Jonathan; Ruepp, Marc-David; Thompson, Andrew J; Gertsch, Jürg; Lochner, Martin

    2015-03-01

    The pharmacological characterization of ligands depends upon the ability to accurately measure their binding properties. Fluorescence provides an alternative to more traditional approaches such as radioligand binding. Here we describe the binding and spectroscopic properties of eight fluorescent 5-HT3 receptor ligands. These were tested on purified receptors, expressed receptors on live cells, or in vivo. All compounds had nanomolar affinities with fluorescent properties extending from blue to near infra-red emission. A fluorescein-derivative had the highest affinity as measured by fluorescence polarization (FP; 1.14 nM), flow cytometry (FC; 3.23 nM) and radioligand binding (RB; 1.90 nM). Competition binding with unlabeled 5-HT3 receptor agonists (5-HT, mCPBG, quipazine) and antagonists (granisetron, palonosetron, tropisetron) yielded similar affinities in all three assays. When cysteine substitutions were introduced into the 5-HT3 receptor binding site the same changes in binding affinity were seen for both granisetron and the fluorescein-derivative, suggesting that they both adopt orientations that are consistent with co-crystal structures of granisetron with a homologous protein (5HTBP). As expected, in vivo live imaging in anaesthetized mice revealed staining in the abdominal cavity in intestines, but also in salivary glands. The unexpected presence of 5-HT3 receptors in mouse salivary glands was confirmed by Western blots. Overall, these results demonstrate the wide utility of our new high-affinity fluorescently-labeled 5-HT3 receptor probes, ranging from in vitro receptor pharmacology, including FC and FP ligand competition, to live imaging of 5-HT3 expressing tissues. PMID:25460187

  8. Structural studies of E. coli ribosomes by spectroscopic techniques: A specialized review

    NASA Astrophysics Data System (ADS)

    Bonicontro, Adalberto; Risuleo, Gianfranco

    2005-12-01

    We present a review on our interdisciplinary line of research based on strategies of molecular biology and biophysics. These have been applied to the study of the prokaryotic ribosome of the bacterium Escherichia coli. Our investigations on this organelle have continued for more than a decade and we have adopted different spectroscopic biophysical techniques such as: dielectric and fluorescence spectroscopy as well as light scattering (photon correlation spectroscopy). Here we report studies on the whole 70S ribosomes and on the separated subunits 30S and 50S. Our results evidence intrinsic structural features of the subunits: the small shows a more "floppy" structure, while the large one appears to be more rigid. Also, an inner "kernel" formed by the RNA/protein association is found within the ribosome. This kernel is surrounded by a ribonucleoprotein complex more exposed to the solvent. Initial analyses were done on the so called Kaldtschmit-Wittmann ribosome: more recently we have extended the studies to the "tight couple" ribosome known for its better functional performance in vitro. Data evidence a phenomenological correlation between the differential biological activity and the intrinsic structural properties of the two-ribosome species. Finally, investigations were also conducted on particles treated at sub-denaturing temperatures and on ribosomes partially deproteinized by salt treatment (ribosomal cores). Results suggest that the thermal treatment and the selective removal of proteins cause analogous structural alterations.

  9. Raman spectroscopic studies of amorphous carbon and buckminsterfullerene

    SciTech Connect

    Sinha, K.

    1992-01-01

    Raman spectroscopic techniques have been applied to investigate a variety of carbon systems. Using resonance Raman spectroscopy as a probe for optical transitions in a system, a careful quantitative estimate of the Raman cross-section of graphite in the pre-resonance regime has been made. Raman and resonance Raman spectroscopy have been used to correlate the structural and electronic properties of amorphous carbon materials. The low optical gaps and e-2e spectroscopy measurements on evaporated carbon films suggests a structure close to graphite. Raman measurements, however, reveal a great amount of disorder in the material. This apparent contradiction has been resolved through the use of a phenomenological model for the electronic density of states for amorphous carbon systems. Raman spectroscopy has also been used to study the vibrational and the electronic properties of the recently discovered third allotrope of carbon, C[sub 60]. The vibrational modes of this molecule have been studied in great detail. The observed vibrational spectra confirms earlier work in this material. Furthermore, the mode frequencies have been found to be in reasonably good agreement with theoretical predictions. Resonance Raman studies of solid C[sub 60] and C[sub 60] dissolved in solvents has revealed, in the solid phase, the existence of optical transitions well below the symmetry allowed transitions for the isolated molecules. Loss of inversion symmetry in the solid state has been proposed to account for the resonance observed in the Raman excitation profile. Original Raman measurements on C[sub 60] revealed a strong peak at 1469 cm[sup [minus]1]. The peak was found to obey the correct selection rule for symmetric A[sub g] mode and was assigned to the [open quotes]pentagonal pinch[close quotes] mode of the molecule.

  10. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone

    NASA Astrophysics Data System (ADS)

    Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.

    2013-02-01

    Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.

  11. The spectroscopic study of building composites containing natural sorbents

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.

    2011-08-01

    This work presents the results of FT-IR spectroscopic studies of heavy metal cations (Ag +, Pb 2+, Zn 2+, Cd 2+ and Cr 3+) immobilization from aqueous solutions on natural sorbents. The sorption has been conducted on sodium forms of zeolite (clinoptilolite) and clay minerals (mixtures containing mainly montmorillonite and kaolinite) which have been separated from natural Polish deposit. In the next part of the work both sorbents were used to obtain new building composites. It was proven those heavy metal cations' sorption causes changes in IR spectra of the zeolite and clay minerals. These alterations are dependent on the way the cations were sorbed. In the case of zeolite, variations of the bands corresponding to the characteristic ring vibrations have been observed. These rings occur in pseudomolecular complexes 4-4-1 (built of alumino- and silicooxygen tetrahedra) which constitute the secondary building units (SBU) and form spatial framework of the zeolite. The most significant changes have been determined in the region of pseudolattice vibrations (650-700 cm -1). In the instance of clay minerals, changes in the spectra occur at two ranges: 1200-800 cm -1 - the range of the bands assigned to asymmetric Si-O(Si,Al) and bending Al-OH vibrations and 3800-3000 cm -1 - the range of the bands originating from OH - groups stretching vibrations. Next results indicate possibilities of applying the used natural sorbents for the obtainment of new building materials having favourable composition and valuable properties. The zeolite was used for obtaining autoclaved materials with an addition of CaO, and the clay minerals for ceramic sintered materials with an addition of quartz and clinoptilolite were produced. FT-IR studies were also conducted on the obtained materials.

  12. Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Leng, Chuan; Del Grosso, Chelsey; Smith, Gary D; Wilker, Jonathan J; Chen, Zhan

    2014-05-01

    A sum frequency generation (SFG) vibrational micro-spectroscopy system was developed to examine buried heterogeneous biointerfaces. A compact optical microscope was constructed with total-internal reflection (TIR) SFG geometry to monitor the tightly focused SFG laser spots on interfaces, providing the capability of selectively probing different regions on heterogeneous biointerfaces. The TIR configuration ensures and enhances the SFG signal generated only from the sample/substrate interfacial area. As an example for possible applications in biointerfaces studies, the system was used to probe and compare buried interfacial structures of different biological samples attached to underwater surfaces. We studied the interface of a single mouse oocyte on a silica prism to demonstrate the feasibility of tracing and studying a single live cell and substrate interface using SFG. We also examined the interface between a marine mussel adhesive plaque and a CaF2 substrate, showing the removal of interface-bonded water molecules. This work also paves the way for future integration of other microscopic techniques such as TIR-fluorescence microscopy or nonlinear optical imaging with SFG spectroscopy for multimodal surface or interface studies. PMID:24784085

  13. Studies on the inclusion behavior of 9-Aminoacridine into cyclodextrins: Spectroscopic and theoretical evidences

    NASA Astrophysics Data System (ADS)

    Manivannan, C.; Vijay Solomon, R.; Venuvanalingam, P.; Renganathan, R.

    2013-02-01

    9-Aminoacridine (9-AA) is an important attractive pharmaceutical drug employed as chemotheraptic agent for wound dressings. However, 9-AA possesses limited solubility and rapid metabolic decomposition renders this potential drug to limit its applications. Here we propose cyclodextrins (CDs) as a drug carrier to improve the bioavailability, solubility of 9-AA. The interaction between 9-AA and CDs (α-CD and β-CD) has been studied using UV-Vis absorption, steady state time resolved fluorescence, 1H NMR and FT-IR spectroscopy techniques. The spectroscopic measurements show that 9-AA does not form stable complex with α-CD and also confirmed by DFT calculations. On the other hand, 9-AA forms inclusion complex with β-CD in a 1:1 stoichiometry ratio. Our DFT results suggest that 9-AA stabilizes inside the CD environment through hydrogen bonding that has unambiguously confirmed by AIM analysis. Thus our studies provide a useful insights in the development of Aminoacridine based drugs & its delivery through a suitable carrier like CDs.

  14. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  15. Pulp tissue in sex determination: A fluorescent microscopic study

    PubMed Central

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  16. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  17. The binding behavior of itraconazole with hemoglobin: Studies from multi-spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Wu, Yuanfan; Cui, Weiding; Zhou, Suming; Ma, Fei

    2014-10-01

    The interactions between hemoglobin (Hb) and itraconazole (ITZ) are investigated in details using UV-vis spectra, circular dichroism spectroscopy, steady state fluorescence, three-dimensional fluorescence spectra, synchronous fluorescence and time-resolved fluorescence spectra at molecular level. The UV-vis studies represent that ITZ can access into heme group and lead to it explored in aqueous medium. CD spectra suggest ITZ could combine with amino acid residues in polypeptide chain and cause a partial unfolding of Hb (reducing of the α-helix content). Steady state fluorescence/synchronous fluorescence (taking into account inner filter effects) and three-dimensional fluorescence/time-resolved fluorescence spectroscopy results reveal that ITZ alters polarity and conformation around the fluorophore molecule. The interaction processes are static quenching mechanisms. The negative of ΔH0 and ΔS0 indicate that hydrogen bonds and van der Waals are the main force.

  18. The binding behavior of itraconazole with hemoglobin: studies from multi-spectroscopic techniques.

    PubMed

    Wu, Yuanfan; Cui, Weiding; Zhou, Suming; Ma, Fei

    2014-10-15

    The interactions between hemoglobin (Hb) and itraconazole (ITZ) are investigated in details using UV-vis spectra, circular dichroism spectroscopy, steady state fluorescence, three-dimensional fluorescence spectra, synchronous fluorescence and time-resolved fluorescence spectra at molecular level. The UV-vis studies represent that ITZ can access into heme group and lead to it explored in aqueous medium. CD spectra suggest ITZ could combine with amino acid residues in polypeptide chain and cause a partial unfolding of Hb (reducing of the α-helix content). Steady state fluorescence/synchronous fluorescence (taking into account inner filter effects) and three-dimensional fluorescence/time-resolved fluorescence spectroscopy results reveal that ITZ alters polarity and conformation around the fluorophore molecule. The interaction processes are static quenching mechanisms. The negative of ΔH(0) and ΔS(0) indicate that hydrogen bonds and van der Waals are the main force. PMID:24835944

  19. Interaction between fasudil hydrochloride and bovine serum albumin: spectroscopic study.

    PubMed

    Yu, Xianyong; Jiang, Bingfei; Xun, Caifang; Yao, Qing

    2016-06-01

    The interaction between fasudil hydrochloride (FSD) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy under imitated physiological conditions. The Stern-Volmer quenching model has been successfully applied and the results revealed that FSD could quench the intrinsic fluorescence of BSA effectively via static quenching. The binding constants and binding sites for the BSA-FSD system were evaluated. The corresponding thermodynamic parameters obtained at different temperatures indicated that hydrophobic force played a major role in the interaction of FSD and BSA. The distance between the donor (BSA) and the acceptor (FSD) was obtained according to fluorescence resonance energy transfer (FRET). Synchronous fluorescence spectroscopy and FT-IR spectra showed that the conformation of BSA was changed in the presence of FSD. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26554343

  20. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    PubMed

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies. PMID:26421381

  1. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Kong, Rongmei; Xu, Mingming

    2015-02-01

    The interaction between apigenin and calf thymus deoxyribonucleic acid (ctDNA) in a pH 7.4 Tris-HCl buffer solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. It was found that apigenin molecules could intercalate into the base pairs of DNA, forming a apigenin-DNA complex with a binding constant of K310K = 6.4 × 104 L mol-1. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) and Gibbs free energy (ΔG) were calculated to be 7.36 × 104 J mol-1, 329 J K-1 mol-1 and -2.84 × 104 J mol-1 at 310 K, respectively. Hydrophobic interaction was the predominant intermolecular force in stabilizing the apigenin-DNA complex. Thermal denaturation study suggested that the stabilization of the ctDNA helix was increased when the apigenin binding to ctDNA as indicated by the increase in thermal denaturation temperature of ctDNA at around 5.0 °C in the presence of apigenin. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between apigenin and ctDNA.

  2. Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus castenholzii

    SciTech Connect

    Niedzwiedzki, Dariusz; Collins, Aaron M.; LaFountain, Amy M.; Enriquez, Miriam M.; Frank, Harry A.; Blankenship, R. E.

    2010-06-14

    Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, γ-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infrared (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S1(21Ag-) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.

  3. Fluorescence Studies of Protein Crystallization Interactions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  4. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  5. A study of diagnostic criteria established for two oral mucous diseases by HMME-fluorescence spectroscopy.

    PubMed

    Lv, Moyang; Qin, Feng; Mao, Limin; Zhang, Lei; Lv, Shaohua; Jin, Jian; Zhang, Zhiguo

    2015-11-01

    Malignant oral ulcers are common pathological occurrence in oral and maxillofacial tumors. A noninvasive method for diagnosis of malignant oral ulcers was developed in the study, which is based on hematoporphyrin monomethylether (HMME) fluorescence spectroscopy. The objective of this work is to determine the feasibility of this method in differentiating the malignant tissues from the inflammatory ones in the hamster cheek pouch model. Adult hamsters were used for the study and a cheek pouch model was established. For the malignant model, the 9, 10-dimethyl-1, 2-benzanthracene carcinogenesis was applied to one cheek pouch for 10 weeks (N = 35). The simple ulcers were created on buccal cheek mucosa in a simple manner (N = 10). Prior to sacrifice, HMME solution was injected into the tissues. The induced fluorescence spectra of the cheek tissues were recorded by a fiber spectrometer with excitation at 405 nm. A spectral algorithm was used to eliminate the effect of autofluorescence, and a spectral parameter S was selected as diagnostic criterion. After fluorescence measurement, the animals were sacrificed and the measured tissues were collected. Histological staining was performed and the results of histopathological evaluation were documented. The diagnostic criteria that reflected the fluorescence intensity were set as follows: normal, S ≤ 10; simple ulcer, 230 ≤ S ≤ 290; and malignant ulcer, 140 ≤ S ≤ 200. The sensitivity and specificity of this detection method was verified by scalpel biopsy, and the overall accuracy was over 90%. The results of this study showed that the fluorescence spectroscopic method implemented by HMME can accurately differentiate the two kinds of clinically indistinguishable diseases. PMID:26071098

  6. Reduction of selenite on iron surfaces: Amicro-spectroscopic study

    NASA Astrophysics Data System (ADS)

    Scheidegger, A. M.; Grolimund, D.; Cui, D.; Devoy, J.; Spahiu, K.; Wersin, P.; Bonhoure, I.; Janousch, M.

    2003-03-01

    Under anoxie conditions zero-valent iron can react with water to produce hydrogen gas and magnetite or green rust, a highly reactive mineral phase that can induce reduction processes and thus control the speciation, the solubility, toxicity and the mobility of redox sensitive elements in (nuclear) waste repositories. In this study micro X-ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS) were used to investigate the speciation of selenium that immobilized in the presence of Fe(0) and an anoxie synthetic groundwater solution. The selenium immobilization was accompanied by the formation of a green rust corrosion layer. Micro-XRF revealed that a Se-rich layer is present along the iron surfaces that were exposed to the Se(IV) solution. Micro-XAS experiments at the Se K-edge showed that Se(IV) was reduced to elemental Se(0). Thus, the reactivity of zero-valent and green rust should to be considered in assessing the long-term fate of selenium in nuclear waste repositories.

  7. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  8. A comparative study of fluorescence in malignant melanoma and nevocellular nevus using a fluorescence microscope and formalin-fixed specimens.

    PubMed

    Shukuwa, T; Nonaka, S; Yoshida, H

    1990-09-01

    Fluorescence in malignant melanoma cells was investigated. The specimens from 18 cases of malignant melanoma and 26 cases of nevocellular nevus, which were fixed with formalin and embedded in paraffin wax, were studied by the fluorescence microscopic method. On the fluorescence microscope, the malignant melanoma cells emitted intense fluorescence from the cytoplasm. The nevus cells with large amounts of melanin granules showed moderate fluorescence. The tumor cells of melanoma in situ and nevus cells with few melanin granules emitted little fluorescence. Not only malignant melanoma cells but also nevus cells in the formalin fixed specimens had various degrees of fluorescence. Many cases of malignant melanoma emitted intense fluorescence, but this was rarely found in nevocellular nevus. This method is also useful in differentiating melanoma from nevocellular nevus. PMID:2277143

  9. Electron Spin Resonance Spectroscopic Studies of Radical Cation Reactions.

    NASA Astrophysics Data System (ADS)

    Dai, Sheng

    1990-01-01

    A spin Hamiltonian suitable for theoretical analyses of ESR spectra in this work is derived by using the general effective Hamiltonian theory in the usual Schrodinger representation. The Permutation Indices method is extended to obtain the dynamic exchange equations used in ESR lineshape simulation. The correlation between beta-hydrogen coupling constants and their geometric orientations is derived through the use of a perturbation method. The three electron bond model is extended to rationalize unimolecular rearrangements of radical cations. The ring-closed radical cations of 9,10-octalin oxide and syn-sesquinorbornene oxide have been characterized by ESR spectroscopy in the CFCl_3 matrix at low temperature. The ESR spectra of the former radical cation exhibit a novel alternating linewidth effect arising from an internal relation between the coupling constants for the four equivalent pairs of hydrogens. The self-electron-transfer rate constants between the methyl viologen dication and cation have been determined by dynamic ESR lineshape simulations at room temperature in allyl alcohol, water, methanol and propargyl alcohol solvents. The radical cation formed by the radiolytic oxidation of allylamine in Freon matrices at 77 K is shown to be the 3-iminiopropyl distonic species(3-iminium-1-propyl radical) resulting from a symmetry-allowed 1,2-hydrogen shift in the parent radical cation. The nucleophilic endocyclization of the but-3-en-1-ol radical cation to the protonated tetrahydrofuran -3-yl radical was observed in the radiolytic oxidation of but-3-en-1-ol in Freon matrices. ESR studies of the radiolytic oxidation of 1,5-hexadiyne have resulted in the first spectroscopic characterization of the radical cation Cope rearrangement, the 1,5-hexadiyne radical cation isomerizing to the 1,2,4,5 -hexatetraene radical cation. ESR studies show that the symmetric(C_{rm 2v}) bicyclo (3.3.0) -octa-2,6-diene-4,8-diyl(a bridged 1,4 -bishomobenzene species) radical cation is

  10. Photometric and spectroscopic study of cD galaxies

    NASA Astrophysics Data System (ADS)

    Kemp, S. N.; Pérez-Hernández, Ernesto; Ramírez-Siordia, Víctor Hugo

    2016-02-01

    We have carried out photometry and spectroscopy on a sample of 10 cD galaxies. The photometry shows, in general, fairly flat and red profile colours, implying an envelope with the same stellar population as the central galaxy. This may indicate a possible primordial origin for both structures, consistent with ideas of downsizing. Preliminary spectroscopic results are generally in agreement with the photometry, with for example younger populations at large radii for A2199, but A2589 has only younger populations.

  11. Spectroscopic ellipsometry study of novel nanostructured transparent conducting oxide structures

    NASA Astrophysics Data System (ADS)

    Khosroabadi, Akram A.; Norwood, R. A.

    2013-02-01

    Spectroscopic ellipsometry has been used to find the optical constants, including refractive index, extinction coefficient, thickness and volume fraction of nanostructured transparent conducting oxides including indium tin oxide (ITO) and indium zinc oxide (IZO). We observed sharp features in the ellipsometry data, with the spectral peaks and positions depending on the nanostructure dimensions and material. A superposition of Lorentzian oscillators and the effective medium approximation has been applied to determine the volume ratio of voids and nanopillars, thereby providing the effective optical constants.

  12. Spectroscopic Analysis of Red Fluorescent Proteins and Development of a Microfluidic Cell Sorter for the Generation of Improved Variants

    NASA Astrophysics Data System (ADS)

    Lubbeck, Jennifer L.

    The discovery of the green fluorescent protein (GFP) launched the development of a wide variety of fluorescent protein (FP) mutants whose spectral and photophysical diversity revolutionized in vivo imaging. The excitation and emission spectra of red fluorescent proteins (RFPs), in particular, have been ideally tuned to a window optically favorable for in vivo work. However, their quantum yields, photostabilities and fluorescence intermittency properties require improvement if they are to be broadly employed for low-copy or single-molecule measurements. Attempts to engineer improved RFPs often result in optimization of one photophysical property at the expense of others. We developed a microfluidic-based cytometer for screening HeLa cell-based genetic RFP-libraries simultaneously on the basis of fluorescence lifetime (a proxy for quantum yield), photostability, and brightness. Ten 532 nm excitation beams interrogate each cell in flow. The first is electro-optically modulated (30 MHz) to enable lifetime measurement with phase fluorimetry. The remaining beams act as a pulse sequence for isolating the irreversible photobleaching time constant. Optical-force switching is employed to sort cells based on any combination of the photophysical parameters. Screening with this instrument enables identification of regions of the structure that synergistically affect quantum yield and photostability and the sorting capability provides a new tool for accelerating the development of next generation RFPs.

  13. Multi-spectroscopic and molecular modeling studies on the interaction of antihypertensive drug; methyldopa with calf thymus DNA.

    PubMed

    Shahabadi, Nahid; Maghsudi, Maryam

    2014-02-01

    The interaction of methyldopa [(S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methyl propanoic acid] (MDP), antihypertensive drug, with calf thymus DNA (ct-DNA) was investigated by spectroscopic and viscometric techniques. According to the results arising from the fluorescence spectra, viscosity measurements and molecular modeling studies; we concluded that MDP is a minor groove binder of ct-DNA and preferentially binds to AT rich regions. Ethidium bromide (EB) displacement studies revealed that MDP did not have any effect on EB bound DNA which is indicative of groove binding. This was substantiated by displacement studies with Hoechst 33258, a known minor groove binder. In addition, the thermodynamic and docking parameters showed that hydrophobic interaction via drug aromatic rings inside the DNA minor groove plays a major role in this binding. PMID:24322393

  14. Quantitative absorption and fluorescence studies of NO between 1060 and 2000 A

    NASA Technical Reports Server (NTRS)

    Guest, J. A.; Lee, L. C.

    1981-01-01

    Synchrotron radiation in the 1060 to 2000 A region was used to measure the average absorption and fluorescence cross sections of NO and to determine approximate photodissociation quantum yields. Several vibrational levels of the D(2) sigma(+), E(2) sigma(+), and B(2) delta states have high fluorescence quantum yields. The C(2) and B(2) states do not fluoresce when the excitation energies are above the first dissociation limit, in accord with previous experiments. In general, the fluorescence yields decrease with increasing photon energy. The quantitative measurements are compared with spectroscopic observations and are found to be reasonably consistent.

  15. The study of blue LED to induce fluorescence spectroscopy and fluorescence imaging for oral carcinoma detection

    NASA Astrophysics Data System (ADS)

    Zheng, Longjiang; Hu, Yuanting

    2009-07-01

    Fluorescence spectroscopy and fluorescence imaging diagnosis of malignant lesions provides us with a new method to diagnose diseases in precancerous stage. Early diagnosis of disease has significant importance in cancer treatment, because most cancers can be cured well in precancerous, especially when the diffusion of cancer is limited in a restricted region. In this study, Golden hamster models were applied to 5% 9, 10 dimethyl-1, 2-benzanthracene (DMBA) to induce hamster buccal cheek pouch carcinoma three times a week. Rose Bengal, which has been used in clinican for years and avoids visible side-effect to human was chosen as photosensitizer. 405 nm blue LED was used to induce the fluorescence of photosensitizer. After topical application of photosensitizer, characteristic red emission fluorescence peak was observed around 600nm. Similar, normal oral cavity has special luminescence around 480nm. Fluorescence spectroscopy technology is based on analysing emission peaks of photosensitizer in the areas of oral carcinoma, moreover, red-to-green (IR/IG) intensity ratio is also applied as a diagnostic algorithm. A CCD which is connected with a computer is used to take pictures at carcinoma areas through different filters. Fluorescence images from normal hamster buccal cheek pouch are compared with those from carcinogen-induced models of carcinoma, and morphological differences between normal and lesion tissue can be distinguished. The pictures are analyzed by Matlab and shown on the screen of computer. This paper demonstrates that Rose Bengal could be used as photosensitizer to detect oral carcinoma, and blue LED as excitation source could not only have a good effect to diagnose oral carcinoma, but also decrease cost greatly.

  16. A Raman Spectroscopic Study of Kernite to 25 GPa

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; O'Bannon, E. F., III; Williams, Q. C.

    2015-12-01

    A Raman spectroscopic study of kernite to 25 GPaMarcus Silva, Earl O'Bannon III, and Quentin Williams Department of Earth & Planetary Sciences, University of California Santa Cruz The Raman spectrum of kernite (Na2B4O6(OH)2·3(H2O)) has been characterized up to ~25 GPa in order to explore pressure-induced changes in a structurally novel mineral that contains mixed coordination borate groups (three- and four-fold), and both hydroxyl units and water. During compression, all of the ~30 modes monitored shift positively and monotonically until ~2.2 GPa where a few low frequency modes disappear and tetrahedral borate modes merge. The low frequency modes that disappear at ~2.2 GPa are likely associated with Na vibrations, and their disappearance suggests that dramatic changes occur in the Na sites at ~2.2 GPa. The merging of the boron bending and stretching modes at ~2.2 GPa suggests that the local symmetry of the BO4 tetrahedra changes at this pressure, and likely becomes more symmetric. The remaining modes shift positively up to ~7.4 GPa where a second notable change occurs. All but 5 modes (with initial frequencies of 150, 166, 289, 307, and 525 cm-1) disappear at ~7.4 GPa. This indicates that a second phase transition has occurred which affects both the BO3H and BO4­ groups: based on the loss of modes, this transition may be associated with disordering of the crystal. These 5 modes persist and shift monotonically up to ~25 GPa. On decompression, the 5 modes shift smoothly down to ~2.0 GPa where a few new modes appear in the spectrum. When fully decompressed to room pressure, the Raman spectrum of the recovered sample is significantly different from the ambient spectrum of the initial sample. Thus, our results are suggest a phase transition occurring at 2.2 GPa with changes in the Na and tetrahedral boron sites, followed by an additional transition at 7.4 GPa that may involve disordering of the crystal. In the latter transition, at least the BO3H groups appear to be

  17. Spectroscopic studies of gas-phase molecular clusters

    NASA Astrophysics Data System (ADS)

    Wong, Chi-Kin

    Spectroscopic investigations of hydrogen-bonding and van der Waals' interactions in molecular clusters were studied by the techniques of infrared predissociation and resonance-enhanced multiphoton ionization spectroscopies (REMPI). Ab initio calculations were applied in conjunction for data interpretation. The infrared predissociation spectroscopy of CN-·(H 2O)n (n = 2--6) clusters was reported in the region of 2950--3850 cm-1. The hydrogen bondings for the C-site and N-site binding, and among the water molecules were identified for n = 2 to 4. A spectral transition was observed for n = 5 and 6, implying that the anion was surface-bound onto the water aggregates in larger clusters. The infrared predissociation spectroscopy of Br-·(NH 3) and I-·(NH3) n (n = 1--3) clusters was reported in the region of 3050--3450 cm-1. For the Br -·(NH3) complex, a dominating ionic NH stretch appeared at 3175 cm-1, and the weaker free NH stretch appeared at 3348 cm-1. The observed spectrum was consistent to the structure in which there was one nearly linear hydrogen bond between Br- and the NH3 moiety. For the I- ·(NH3) complex, five distinct IR absorption bands were observed in the spectrum. The spectrum was not consistent with basic frequency patterns of three geometries considered in the ab initio calculations---complex with one, two and three hydrogen bondings between I- and the NH3 moiety. Substantial inhomogenous broadening were displayed in the spectra for I- ·(NH3)n (n = 2--3), suggesting the presence of multiple isomers. The REMPI spectroscopy of the bound 4p 2pi 1/2 and 2pi3/2 states, and the dissociative 3d 2Sigma+1/2 state in the Al·Ar complex was reported. The dissociative spectrum at Al+ channel suggested the coupling of the 4p 2pi 1/2,3/2 states to the repulsive 3d 2Sigma+1/2 state. The spin-electronic coupling was further manifested in the dissociative Al+ spectrum of the 3d 2Sigma+1/2 state. Using the potential energy curves obtained from ab initio

  18. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  19. Spectroscopic studies on the interaction between novel polyvinylthiol-functionalized silver nanoparticles with lysozyme

    NASA Astrophysics Data System (ADS)

    Ali, Mohd. Sajid; Al-Lohedan, Hamad A.; Rafiquee, M. Z. A.; Atta, Ayman M.; Ezzat, Abdurrahman O.

    2015-01-01

    Silver nanoparticles were functionalized with polyvinylthiol (Ag-PVT) and their effect on the conformation of hen-egg white lysozyme was seen by means of spectroscopic techniques, viz., UV visible, fluorescence (intrinsic and synchronous), resonance Rayleigh scattering and circular dichroism. UV absorption spectra of lysozyme show a hyperchromic shift on the addition of Ag-PVT nanoparticles indicating the complex formation between the two. The interaction between lysozyme and Ag-PVT nanoparticles was takes place via static quenching with 1:1 binding ratio as revealed by the analysis of fluorescence measurements. Circular dichroism spectroscopic data show a decrease in α-helical content of lysozyme on interaction with Ag-PVT nanoparticles which was due to the partial unfolding of the protein. Synchronous fluorescence spectroscopy disclosed that the microenvironments of both tryptophan and tyrosine residues were perturbed in the presence of Ag-PVT nanoparticles and perturbation in the tryptophan environment was more prominent. Rayleigh scattering (RRS) intensity increases on increasing the Ag-PVT nanoparticles concentration till it reaches to the saturation. The RRS intensity increases four times as compared to the native protein indicating the possibility of protein aggregation at higher concentrations of nanoparticles.

  20. Acoustically levitated droplets: a contactless sampling method for fluorescence studies.

    PubMed

    Leiterer, Jork; Grabolle, Markus; Rurack, Knut; Resch-Genger, Ute; Ziegler, Jan; Nann, Thomas; Panne, Ulrich

    2008-01-01

    Acoustic levitation is used as a new tool to study concentration-dependent processes in fluorescence spectroscopy. With this technique, small amounts of liquid and solid samples can be measured without the need for sample supports or containers, which often limits signal acquisition and can even alter sample properties due to interactions with the support material. We demonstrate that, because of the small sample volume, fluorescence measurements at high concentrations of an organic dye are possible without the limitation of inner-filter effects, which hamper such experiments in conventional, cuvette-based measurements. Furthermore, we show that acoustic levitation of liquid samples provides an experimentally simple way to study distance-dependent fluorescence modulations in semiconductor nanocrystals. The evaporation of the solvent during levitation leads to a continuous increase of solute concentration and can easily be monitored by laser-induced fluorescence. PMID:18596335

  1. Transport and spectroscopic studies of liquid and polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  2. Spectroscopic and HPLC studies of photodegradation of nilvadipine.

    PubMed

    Augustyniak, W; Mielcarek, J; Milewski, M; Szamburska, O

    2001-11-01

    Photochemical decomposition of nilvadipine (NV), a derivative of 1,4-dihydropyridine (DHP), was studied. Photodegradation was carried out in the conditions recommended in the first version of the document issued by the International Conference on Harmonization (ICH), currently in force in the studies of photochemical stability of drugs and therapeutic substances. Methanol solutions of NV were irradiated with a high-pressure mercury arc lamp, type HBO 200 (300-400 nm). The maximum absorption of radiation at 365 nm was achieved by applying the interference filter and Wood's filter. The assessment of NV photodegradation was made on the basis of the UV spectrophotometric and high-performance liquid chromatographic (HPLC) methods. Quantitatively, the process was described with the calculated rate constants of decomposition k, time of decomposition of 50% of the compound to 5, and time of decomposition of 10% of the compound t(0.1). The two methods applied allowed a determination of the kinetic parameters of NV photodegradation from the relationship ln c = f(t). Using the Reinecke salt as a chemical actinometer, apparent quantum yields of photodegradation were obtained; after extrapolation to the time of irradiation zero, these gave the actual quantum yield (phi = 7.3 10(-5)). The quantum yield of fluorescence at lambda(exc) = 375 nm was about 9.3 x 10(-4) The methods used for evaluation of NV photodegradation were subjected to validation, and results of the analytical methods were statistically assessed by Snedecor F and Student t tests. The former test revealed no statistically significant difference between the variances obtained by the HPLC and UV spectrophotometric methods. Also, verification of the zero hypothesis of the Student t test on equality of means of the results obtained gave no significant diferences between the two methods. PMID:11794805

  3. Fluorescent Penetrant INSPECTION—CLEANING Study Update

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.

    2009-03-01

    Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.

  4. Synthesis, Spectral Characterization and Fluorescent Assessment of 1,3,5-Triaryl-2-pyrazoline Derivatives: Experimental and Theoretical Studies.

    PubMed

    Ibrahim, Mohammad M; Al-Refai, Mahmoud; Ayub, Khurshid; Ali, Basem F

    2016-07-01

    Two new pyrazoline derivatives, namely 5-(4-bromophenyl)-3-(5-chlorothiophen-2-yl)-1-phenyl-4,5-dihydro-1H-pyrazole (3) and 5-(4-bromophenyl)-3-(2,5-dichlorothiophen-3-yl)-1-phenyl-4,5-dihydro-1H-pyrazole (4) have been synthesized and characterized based on their spectral (IR, (1)H and (13)C NMR and MS) data and microanalysis. The fluorescence properties of 3 and 4 were studied by UV-Vis and emission spectroscopy. For compound 3, a fluorescence emission was observed in the blue region of the visible spectrum. The effect of different solvents on fluorescence was also investigated. Density Functional Theory calculations have also been performed to gain insight into geometric, electronic and spectroscopic properties of the pyrazoline derivatives. Both structures are analysed and compared in order to rationalize the different behaviour in 3 and 4. PMID:27220512

  5. Ultrasonic separation of a suspension for in situ spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Nogo, Kosuke; Qi, Wei; Mori, Keita; Ogawa, Satoshi; Inohara, Daichi; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-04-01

    Application of spectroscopic techniques to suspensions is difficult because optical scattering caused by solid particles reduces the accuracy. At the extreme, dense suspensions like blood cannot be analyzed by spectroscopic techniques. In the present study, an ultrasonic standing wave was used to agglomerate fluorescent particles in an aqueous ethanol suspension at the nodes of the standing wave. Relatively clear liquid regions, which contained few particles that could cause optical scattering, appeared around the anti-nodes and were used for spectroscopic imaging. This produced a spectrum that was similar to that of clear aqueous ethanol without any fluorescent particles.

  6. Infrared and Fluorescence Spectroscopic Investigations of the Acyl Surface Modification of Hydrogel Beads for the Deposition of a Phospholipid Coating.

    PubMed

    Grossutti, Michael; Seenath, Ryan; Lipkowski, Jacek

    2015-10-27

    The scaffolded vesicle has been employed as an alternative means of developing natural model membranes and envisioned as a potential nutraceutical transporter. Furthering the research of the scaffolded vesicle system, a nucleophilic substitution reaction was implemented to form an ester linkage between palmitate and terminal hydroxyl groups of dextran in order to hydrophobically modify the hydrogel scaffold. An average tilt angle of 38° of the hydrophobic palmitate modifying layer on the surface of the hydrogel was determined from dichroic ratios obtained from infrared spectra collected in the attenuated total reflection (ATR) configuration. ATR-IR studies of the DMPC-coated acylated hydrogel demonstrated that the hydrocarbon chains of the DMPC coating was similar to those of the DMPC bilayers and that the underlying palmitate layer had a negligible effect on the average tilt angle (26°) of the DMPC coating. The permeability of this acylated hydrogel was investigated with fluorescence spectroscopy and the terbium/dipicolinic acid assay. The hydrophobic modification on the surface of the hydrogel bead allowed for an efficient deposition of a DMPC layer that served as an impermeable barrier to terbium efflux. About 72% of DMPC-coated acylated hydrogel beads showed ideal barrier properties. The remaining 28% were leaking, but the half-life of terbium efflux of the DMPC-coated acylated hydrogel was increasing, and the total amount of leaked terbium was decreasing with the incubation time. The half-life time and the retention were considered a marked improvement relative to past scaffolded vesicle preparations. The process of acylating hydrogel beads for efficient DMPC deposition has been identified as another viable method for controlling the permeability of the scaffolded vesicle. PMID:26429738

  7. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study.

    PubMed

    Lara-Severino, Reyna Del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M; Sandoval-Trujillo, Ángel H; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294

  8. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study

    PubMed Central

    Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294

  9. Spectroscopic, viscositic and molecular modeling studies on the interaction of 3'-azido-daunorubicin thiosemicarbazone with DNA.

    PubMed

    Cui, Fengling; Liu, Qingfeng; Luo, Hongxia; Zhang, Guisheng

    2014-01-01

    A new daunorubicin has been synthesized and structurally characterized. The interaction of native calf thymus DNA (ctDNA) with 3'-azido-daunorubicin thiosemicarbazone (ADNRT) was investigated under simulated physiological conditions by multi-spectroscopic techniques, viscometric measurements and molecular modeling study. It concluded that ADNRT could intercalate into the base pairs of ctDNA, and the fluorescence quenching by ctDNA was static quenching type. Thermodynamic parameters calculated suggested that the binding of ADNRT to ctDNA was mainly driven by hydrophobic interactions. The relative viscosity of ctDNA increased with the addition of ADNRT, which confirmed the intercalation mode. Furthermore, molecular modeling studies corroborate the above experimental results. PMID:23974700

  10. Spectroscopic study on the interaction of ct-DNA with manganese Salen complex containing triphenyl phosphonium groups

    NASA Astrophysics Data System (ADS)

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khalegh; Lincoln, Per; Mirkhani, Valiollah

    2012-05-01

    The DNA binding properties of a bulky and hydrophobic Schiff base complex of manganese(III) [N,N'-bis(5-(triphenyl phosphonium methyl)salicylidene)-1,2-ethylene diamine chloride Mn(III) acetate] was examined by spectroscopic techniques. UV-vis titration data indicate both hypo and hyperchromic effect with addition of DNA to complex. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by adding Mn Salen complex. This finding indicates that Mn Salen complex displaces EB from its binding site in DNA. Helix melting studies indicate improvement in the helix stability, and an increase in the melting temperature. The analysis of CD spectra represents the structural changes in DNA due to the binding of Mn Salen complex. The binding constant has been calculated using absorbance and fluorescence data. The results also represent that the binding process proceeds by strong electrostatic and hydrophobic interactions.

  11. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method

    PubMed Central

    Fugit, Kyle D.; Jyoti, Amar; Upreti, Meenakshi; Anderson, Bradley D.

    2014-01-01

    A non-invasive fluorescence method was developed to monitor liposomal release kinetics of the anticancer agent topotecan (TPT) in physiological fluids and subsequently used to explore the cause of accelerated release in plasma. Analyses of fluorescence excitation spectra confirmed that unencapsulated TPT exhibits a red shift in its spectrum as pH is increased. This property was used to monitor TPT release from actively loaded liposomal formulations having a low intravesicular pH. Mathematical release models were developed to extract reliable rate constants for TPT release in aqueous solutions monitored by fluorescence and release kinetics obtained by HPLC. Using the fluorescence method, accelerated TPT release was observed in plasma as previously reported in the literature. Simulations to estimate the intravesicular pH were conducted to demonstrate that accelerated release correlated with alterations in the low intravesicular pH. This was attributed to the presence of ammonia in plasma samples rather than proteins and other plasma components generally believed to alter release kinetics in physiological samples. These findings shed light on the critical role that ammonia may play in contributing to the preclinical/clinical variability and performance seen with actively-loaded liposomal formulations of TPT and other weakly-basic anticancer agents. PMID:25456833

  12. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions

    NASA Astrophysics Data System (ADS)

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-01

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO22+) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO22+ is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD = 10 μM), cyt c (KD = 87 μM), and cyt b5-cyt c complex (KD = 30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  13. BH{sub 2} revisited: New, extensive measurements of laser-induced fluorescence transitions and ab initio calculations of near-spectroscopic accuracy

    SciTech Connect

    Sunahori, Fumie X.; Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo

    2015-05-07

    The spectroscopy of gas phase BH{sub 2} has not been explored experimentally since the pioneering study of Herzberg and Johns in 1967. In the present work, laser-induced fluorescence (LIF) spectra of the A{sup ~} {sup 2}B{sub 1}(Π{sub u})−X{sup ~2}A{sub 1} band system of {sup 11}BH{sub 2}, {sup 10}BH{sub 2}, {sup 11}BD{sub 2}, and {sup 10}BD{sub 2} have been observed for the first time. The free radicals were “synthesized” by an electric discharge through a precursor mixture of 0.5% diborane (B{sub 2}H{sub 6} or B{sub 2}D{sub 6}) in high pressure argon at the exit of a pulsed valve. A total of 67 LIF bands have been measured and rotationally analyzed, 62 of them previously unobserved. These include transitions to a wide variety of excited state bending levels, to several stretch-bend combination levels, and to three ground state levels which gain intensity through Renner-Teller coupling to nearby excited state levels. As an aid to vibronic assignment of the spectra, very high level hybrid ab initio potential energy surfaces were built starting from the coupled cluster singles and doubles with perturbative triples (CCSD(T))/aug-cc-pV5Z level of theory for this seven-electron system. In an effort to obtain the highest possible accuracy, the potentials were corrected for core correlation, extrapolation to the complete basis set limit, electron correlation beyond CCSD(T), and diagonal Born-Oppenheimer effects. The spin-rovibronic states of the various isotopologues of BH{sub 2} were calculated for energies up to 22 000 cm{sup −1} above the X{sup ~} (000) level without any empirical adjustment of the potentials or fitting to experimental data. The agreement with the new LIF data is excellent, approaching near-spectroscopic accuracy (a few cm{sup −1}) and has allowed us to understand the complicated spin-rovibronic energy level structure even in the region of strong Renner-Teller resonances.

  14. Perspectives of studying fluorescence of dental solid tissues

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. T.; Taubinsky, Ilia M.; Kozma, S. J.; Romanov, A. M.

    1999-07-01

    As an object of study extracted human teeth were used. The whole was explored 30 teeth; measurements were conducted in intact regions of tooth: enamel, dentine, cement, root canal and in pathologically changed areas: caries of teeth and a solid teeth plaque. From present fluorescent spectrums of intact: enamel, dentine, cement; and of pathological: caries and teeth stone is seen that curves are likely shaped for each of the groups, but their amplitudes are not the same. Fluorescence maximum of all tooth areas falls on 700 nm, herewith possible to say that, spectrum shapes are specific for each tooth area, that can be used in diagnostic purposes, for example when processing a carious cavity. As to florescence intensity that teeth stone possesses the maximum of fluorescence, then an area submitted to caries, intact areas possess a weak fluorescence.

  15. A study of thermally activated delayed fluorescence in C 60

    NASA Astrophysics Data System (ADS)

    Salazar, Filipa A.; Fedorov, Aleksandre; Berberan-Santos, Mário N.

    1997-06-01

    The existence of thermally activated delayed fluorescence in C 60 is demonstrated by the study of the temperature dependence (291-353 K) of the fluorescence intensity of C 60 degassed solutions. The determined singlet-triplet energy gap, 35 ± 2 kJ/mol, agrees with the value calculated from previously reported fluorescence and low temperature phosphorescence spectra for this molecule (35 kJ/mol). The estimated quantum yield of triplet formation, 0.8 ± 0.1, agrees with previous determinations. The fluorescence lifetime of C 60, also measured, τ = 1.1 ns, does not change appreciably with excitation wavelength, degassing nor with temperature, in the range 243-343 K.

  16. Spectroscopic studies of pyrene adsorbed to titanium dioxide

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Kusumoto, Yoshihumi

    2003-08-01

    Pyrene was adsorbed to a TiO 2 surface from water-alcohol mixture solutions at 25 °C and pyrene-TiO 2 particles were recovered by filtration. We found that the surface of TiO 2 thus recovered is relatively hydrophobic and pyrene is not decomposed but keep its fluorescence characteristics on the spectral measurement under ultraviolet excitation.

  17. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  18. Resonance Raman spectroscopic studies of enzymesubstrate intermediates at 5 K

    NASA Astrophysics Data System (ADS)

    Kim, Munsok; Carey, Paul R.

    1991-01-01

    A simple and versatile system for resonance Raman (RR) spectroscopic analysis of enzymesubstrate complexes at liquid helium temperatures is described. The system allows us to record high-quality RR spectra for dithioacyl papain intermediates (MeO-Phe-Gly- and MeO-Gly-Gly-Phe-Gly-C (dbnd S)S-papain) in ice matrices at 5 K. Based on established structure-spectra correlations, it is concluded that the active-site conformation of the intermediates about the φ', ψ' glycinic linkages and cysteine-25 side chain is B-G+-PH both in ice matrices at 5 K and in solution at room temperature.

  19. Spectroscopic study of the extremely fast rotating star 44 Geminorum

    NASA Astrophysics Data System (ADS)

    Iliev, L.; Vennes, S.; Kawka, A.; Kubat, J.; Nemeth, P.; Borisov, G.; KRaus, M.

    Stars with extremely fast rotation represent interesting challenge to modern understanding of the stellar evolution. The reasons why such a spin-up process should occur during the evolution to otherwise normal star are still not well understood. Already in the beginning of the XX century Otto Struve proposed that fast rotation of the group of stars spectroscopically classified as Be could be the main reason for the formation of observed disks of circumstellar material around them. This circumstellar material is responsible for the emission lines observed in the spectrum of Be-stars as well as for the whole complex of spectral and photometrical patterns called in general Be-phenomenon.

  20. IR spectroscopic study of the chemical composition of epiphytic lichens

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Khizhnyak, S. D.; Pakhomov, P. M.

    2011-11-01

    Changes in the chemical composition of lichens exposed to pollutants are investigated by means of FTIR spectroscopy. According to model experiments, alkyl nitrates, ammonium salts, amines, and sulfones develop in the lichen thallus through the action of ammonia and nitric and sulfuric acids. Spectroscopic data of modeling experiments enabled nitrogen- and sulfur-containing substances to be identified as the main air pollutants in the vicinity of a pig-breeding complex and information to be obtained on the content of the pollutants and their impact on the lichens.

  1. [Spectroscopic and dynamical studies of highly energized small polyatomic molecules]. [Stimulated emission pumping

    SciTech Connect

    Not Available

    1992-01-01

    Stimulated emission pumping (SEP) spectroscopy was used on acetylene and on formyl radical. An attempt was made for pattern recognition based on statistics; a method was invented that combined CNPI (complete nuclear permutation-inversion) group theory and SCC (spectral cross-correlation). But the direction away from statistical pattern recognition back to traditional spectroscopic pattern recognition was taken. Vibrational states and quantum numbers are discussed. For the formyl radical, the fluorescence excitation spectrum was recorded and a rotational analysis of the 0[sup 0][sub 0] band performed.

  2. Fluorescence Imaging Study of Impinging Underexpanded Jets

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  3. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  4. Widefield multiphoton excited fluorescence microscopy for animal study in vivo

    NASA Astrophysics Data System (ADS)

    Cheng, L.-C.; Chang, C.-Y.; Lin, C.-H.; Su, Y.-D.; Huang, T.-Y.; Chen, S.-J.

    2010-08-01

    Unlike conventional multiphoton excited microscopy according to pixel-by-pixel point scanning, a widefield multiphoton excited microscopy based on spatiotemporal focusing has been developed to construct three-dimensional (3D) multiphoton fluorescence images only with the need of an axial scanning. By implementing a 4.0 W 10 kHz femtosecond laser amplifier with an instant strong peak power and a fast TE-cooled EMCCD camera with an ultra-sensitive fluorescence detection, the multiphoton excited fluorescence images with the excitation area over 100 μm x 100 μm can be achieved at a frame rate up to 80 Hz. A mechanical shutter is utilized to control the exposure time of 1 ms, i.e. average ten laser pulses reach the fluorescent specimen, and hence an uniform enough multiphoton excited fluorescence image can be attained with less photobleaching. The Brownian motion of microbeads and 3D neuron cells of a rat cerebellum have been observed with a lateral spatial resolution of 0.24 μm and an axial resolution of 2.5 μm. Therefore, the developed widefield multiphoton microscopy can provide fast and high-resolution multiphoton excited fluorescence images for animal study in vivo.

  5. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen Chad; Davis, Scott C.; Zhao, Yan; Hasan, Tayyaba; Maytin, Edward V.; Pogue, Brian W.; Chapman, M. Shane

    2014-07-01

    Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of >0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response.

  6. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  7. A New Optical Cell for Spectroscopic Studies of Geofluids at Pressures up to 100 MPa

    NASA Astrophysics Data System (ADS)

    Chou, I.; Burruss, R. C.

    2003-12-01

    Interpretation of Raman and fluorescence spectra of hydrocarbon fluid inclusions and spectroscopic observations of reactions in hydrocarbon-water systems require high quality reference spectra of individual gases, gas mixtures, and hydrocarbon-water systems. We constructed a new optical cell from a square flexible fused silica capillary tube (300 μ m x 300 μ m with 100 μ m x 100 μ m cavity) and a high-pressure valve that allows studies of fluids at room temperature and pressures up to 100 MPa. The cell has several advantages over existing ones, including the hydrothermal diamond-anvil cell, and they are: (1) ability to directly load sample fluids and monitor pressure during investigation; (2) no optical distortion; (3) small cell volume suitable for samples of limited supply (e.g., commercially available gas mixtures); (4) high pressures can be achieved; (5) a high-magnification, high-numerical-aperture objective lens (e.g., 100x) with a short working distance can be used due to the thin wall of the capillary tube, and (6) a heating-cooling stage can be added, allowing for investigations at temperatures other than room temperature, particularly suitable for studies of gas hydrates. Raman spectra have been collected from the cell for methane, ethane, propane, n-butane, and also for two gas mixtures containing up to 9 components as a function of pressure up to 41 MPa. The spectra document the shift in Raman bands with pressure as well as constrain the detection limits for various gas species in the mixtures. Preliminary experiments on the diffusion of methane in water were conducted by monitoring the concentration of dissolved methane in water, as a function of time and distance from the vapor-water boundary, immediately after the perturbation of an equilibrium state induced by a sudden change in methane pressure.

  8. Spectroscopic studies on the interaction between phycocyanin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Kathiravan, A.; Chandramohan, M.; Renganathan, R.; Sekar, S.

    2009-02-01

    Bluish phycocyanin was obtained from the cyanobacteria namely Spirulina sp. (marine form). The interaction between phycocyanin and bovine serum albumin (BSA) was studied by using absorption, FT-IR, steady-state, time resolved and synchronous fluorescence spectroscopy. Phycocyanin effectively quenched the intrinsic fluorescence of BSA. The number of binding sites ( n) and binding constant ( K) was measured by fluorescence quenching method. The interaction between phycocyanin and BSA occurs through static quenching and conformational changes of BSA were observed.

  9. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  10. A spectroscopic study of uranium(VI) interaction with magnetite

    NASA Astrophysics Data System (ADS)

    Aamrani, S. El; Giménez, J.; Rovira, M.; Seco, F.; Grivé, M.; Bruno, J.; Duro, L.; de Pablo, J.

    2007-08-01

    The uranium sorbed onto commercial magnetite has been characterized by using two different spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). Magnetite samples have been put in contact with uranium(VI) solutions in conditions in which a high uranium uptake is expected. After several days, the magnetite surface has been analysed by XPS and EXAFS. The XPS results obtained are not conclusive regarding the uranium oxidation state in the magnetite surface. On the other hand, the results obtained with the EXAFS technique show that the uranium-magnetite sample spectrum has characteristics from both the UO 2 and schoepite spectra, e.g. a relatively high coordination number of equatorial oxygens and two axial oxygens, respectively. These results would indicate that the uranium sorbed onto magnetite would be a mixture of uranium(IV) and uranium(VI).

  11. Spectroscopic study of carbonaceous dust particles grown in benzene plasma

    SciTech Connect

    Lee, Szetsen; Chen, H.-F.; Chin, C.-J.

    2007-06-01

    Carbonaceous dust particles have been synthesized from benzene using an rf glow discharge. Scanning electron microscope inspection revealed that the plasma-synthesized dust particles can be classified into two types. Shell-structured dust particles showed a wide size distribution from 3 to40 {mu}m. The other type, with different degrees of aggregation, appeared to be dense and spherical with a very distinctive yellow color and size distribution from 100 nm to 2 {mu}m. Analyses using micro-Raman and Fourier transform infrared microscopy indicated that the main components of the dust particles are polyphenyls and hydrogenated amorphous carbon (HAC). The luminescence background in Raman spectra and the infrared C-H stretching vibrational features observed around 3.4 {mu}m for the dust particles are attributed to HAC. The formation mechanisms and spectroscopic characterization of carbonaceous dust particles are discussed.

  12. Spectroscopic intravascular photoacoustic imaging of neovasculature: phantom studies

    NASA Astrophysics Data System (ADS)

    Su, Jimmy L.; Wang, Bo; Emelianov, Stanislav Y.

    2009-02-01

    An acceleration of angiogenesis in the adventitial vasa-vasorum is usually associated with vulnerable, thin-cap fibroatheroma in atherosclerotic plaques. Angiogenesis creates microvasculature too small to be detected and differentiated using conventional imaging techniques. However, by using spectroscopic photoacoustic imaging, we take advantage of the wavelength-dependent optical absorption properties of blood. We used a vessel-mimicking phantom with micro blood vessels. The phantom was imaged with intravascular photoacoustic imaging across a range of wavelengths. The image intensities were cross-correlated with the known absorption spectra of blood. The resulting cross-correlation image was able to reveal the location of the artificial blood vessels differentiated from non-blood vessel components.

  13. Spectroscopic studies of superconductors. Part A: Infrared and Raman spectra

    SciTech Connect

    Bozovic, I.; Marel, D. van der

    1996-12-31

    During the ten years that followed the discovery of superconductivity above 30 K in lanthanum barium cuprate by Bednorz and Mueller, the condensed matter physics community has been engaged in an unprecedented worldwide effort in materials processing, characterization of physical properties, and theoretical modeling of superconductors. The present conference has brought together a group of researchers who are actively involved in the experimental determination of the physical properties of high-{Tc} superconductors, the quest for the microscopic mechanism (or mechanisms) of superconductivity, the search for new physical phenomena in these materials, or the search for new classes of superconducting materials. The distinguishing feature and the unifying theme of this conference was the use of spectroscopic techniques as the primary tools in pursuing these goals. Separate abstracts were prepared for 32 papers in this conference.

  14. In-situ spectroscopic studies of electrochromic tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Ozer, Nilgun; Demirbas, Muharrem; Ozyurt, Secuk

    2001-11-01

    Tungsten oxide thin films were prepared using an ethanolic solution of tungsten hexachloride (WCl6) by sol-gel spin coating. The films were spin coated on indium tin oxide (ITO) coated glass substrate at temperatures in the range of 100 to 450 degree(s)C. The films were characterized by x-ray diffractometry (XRD), scanning electron microscopy (SEM) UV- visible spectroscopy and cyclic voltammetry (CV). XRD showed that they had a polycrystalline WO3 structure for heat treatment temperatures at above 350 degree(s)C. The SEM examinations showed that the surface texture was very uniform and homogeneous. In situ electrochemical reduction of WO3/ITO (2M HCl) produced a blue color in less than a second. Coloration efficiency (CE) was found to be 21 cm2/mC. In situ spectroscopic investigations showed that these films could be used as a working electrode in electrochromic devices.

  15. Spectroscopic and diffraction study of uranium speciation in contaminated vadose zone sediments from the Hanford site, Washington state.

    PubMed

    Catalano, Jeffrey G; Heald, Steven M; Zachara, John M; Brown, Gordon E

    2004-05-15

    Contamination of vadose zone sediments under tank BX-102 at the Hanford site, Washington, resulted from the accidental release of 7-8 metric tons of uranium dissolved in caustic aqueous sludge in 1951. We have applied synchrotron-based X-ray spectroscopic and diffraction techniques to characterize the speciation of uranium in samples of these contaminated sediments. UIII-edge X-ray absorption fine structure (XAFS) spectroscopic studies demonstrate that uranium occurs predominantly as a uranium(VI) silicate from the uranophane group of minerals. XAFS cannot distinguish between the members of this mineral group due to the near identical local coordination environments of uranium in these phases. However, these phases differ crystallographically, and can be distinguished using X-ray diffraction (XRD) methods. As the concentration of uranium was too low for conventional XRD to detect these phases, X-ray microdiffraction (microXRD) was used to collect diffraction patterns on approximately 20 microm diameter areas of localized high uranium concentration found using microscanning X-ray fluorescence (microSXRF). Only sodium boltwoodite, Na(UO2)(SiO3OH) x 1.5H20, was observed; no other uranophane group minerals were present. Sodium boltwoodite formation has effectively sequestered uranium in these sediments under the current geochemical and hydrologic conditions. Attempts to remediate the uranium contamination will likely face significant difficulties because of the speciation and distribution of uranium in the sediments. PMID:15212255

  16. The Hydrothermal Diamond Anvil Cell (HDAC) for raman spectroscopic studies of geologic fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ⬚~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  17. Chapter 7: The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures

    USGS Publications Warehouse

    Schmidt, Christian; Chou, I-Ming

    2012-01-01

    In this chapter, we describe the hydrothermal diamond-anvil cell (HDAC), which is specifically designed for experiments on systems with aqueous fluids to temperatures up to ~1000ºC and pressures up to a few GPa to tens of GPa. This cell permits optical observation of the sample and the in situ determination of properties by ‘photon-in photon-out’ techniques such as Raman spectroscopy. Several methods for pressure measurement are discussed in detail including the Raman spectroscopic pressure sensors a-quartz, berlinite, zircon, cubic boron nitride (c-BN), and 13C-diamond, the fluorescence sensors ruby (α-Al2O3:Cr3+), Sm:YAG (Y3Al5O12:Sm3+) and SrB4O7:Sm2+, and measurements of phase-transition temperatures. Furthermore, we give an overview of published Raman spectroscopic studies of geological fluids to high pressures and temperatures, in which diamond anvil cells were applied.

  18. Synthesis, characterization and fluorescence studies of novel bi-phenyl based acrylate and methacrylate

    NASA Astrophysics Data System (ADS)

    Baskar, R.; Subramanian, K.

    2011-09-01

    4-[(1 E)-3-(biphenyl-4-yl)buta-1,3-dien-1-yl]phenyl prop-2-enoate ( ACH) and 4-[(1 E)-3-(biphenyl-4-yl)buta-1,3-dien-1-yl]phenyl 2-methylprop-2-enoate ( MCH) was synthesized from biphenyl in three steps and their structures were confirmed by elemental analysis, IR, NMR ( 1H, 13C, DEPT135, 1H- 1H COSY, 1H- 13C HSQC and 1H- 13C HMBC) spectroscopic techniques. In this present study, various physicochemical characteristics we demonstrate solubility, color, absorbance and fluorescence property of novel biphenyl based acrylate and methacrylate measured in different solvents like benzene, dichloromethane, tetrahydrofuran, acetonitrile, dimethylsulfoxide and ethanol.

  19. Fluorescence and reflectance monitoring of human cervical tissue in vivo: a case study

    NASA Astrophysics Data System (ADS)

    Gustafsson, Ulf P.; McLaughlin, Elisabeth; Jacobson, Ellen; Håkansson, Johan; Troy, Paul; DeWeert, Michael J.; Pålsson, Sara, II; Soto Thompson, Marcelo; Svanberg, Sune; Vatkuviene, Aurelija; Svanberg, Katarina

    2003-07-01

    An imaging spectrograph, designed and built by Science and Technology International (STI), and a point monitoring system, developed at the Lund Institute of Technology, have been used to measure the fluorescence and reflectance of cervical tissue in vivo. The instruments have been employed in a clinical trial in Vilnius, Lithuania, where 111 patients were examined. Patients were initially screened by Pap smear, examined by colposcopy and a tissue sampling procedure was performed. Detailed histopathological assessments were performed on the biopsies, and these assessments were correlated with spectra and images. The results of the spectroscopic investigations are illustrated by a thorough discussion of a case study for one of the patients, suggesting that the techniques are useful in the management of cervical malignancies.

  20. Surfactants induced release of a red emitting dye from the nanocavity of a molecular container: A spectroscopic and calorimetric study.

    PubMed

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2016-08-01

    Supramolecular interaction of a red emitting dye Nile blue A (NBA) with Cucurbit[7]uril (CB7) in aqueous solution was studied and the release of the dye from the hydrophobic cavity of CB7 was reported. To investigate the supramolecular host-guest complex formation and release of dye, we have used the steady state absorption, fluorescence and time resolved fluorescence emission spectroscopy, (1)H NMR spectroscopy and isothermal titration calorimetry (ITC). The spectral properties of NBA were changed in the presence of CB7. The change in spectral features of NBA in presence of CB7 indicates the formation of supramolecular host-guest complexes. By using the SED equation the diameter of the complex was estimated. The complex formation further affirmed by the (1)H NMR study. Upfield and downfield shifts of the protons of NBA was observed in both the aliphatic and aromatic region. From the ITC measurement, we have drawn up the forces involved for the complexation of NBA with CB7. We have studied the release of NBA from the hydrophobic cavity of CB7 by using ionic, neutral surfactants and ionic liquid with the help of spectroscopic and calorimetric techniques. It is observed that on addition of SDS and ionic liquid (

  1. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study.

    PubMed

    Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai

    2015-01-01

    This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment. PMID:26465313

  2. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  3. Microspectrofluorometry and fluorescence imaging in the study of human cytopathology.

    PubMed

    Kohen, E; Gatt, S; Schachtschabel, A; Schachtschabel, D O; Kohen, C; Agmon, V; Hirschberg, J G; Monti, M

    2000-12-01

    The study of energy pools and dynamics of specific pathways in living cells by microspectrofluorometry and fluorescence imaging produces spectral and topographic images characterizing structural and functional changes associated with cytopathology. Microspectro-fluorometry and fluorescence imaging have been applied, together with organelle morphometry to a number of cells mimicking certain cytopathologies, including melanoma cells, long-term malignant cells, and gene-defective cells. These investigations of cellular pathology indicate that there is a convergence of various physiopathological processes. Cellular states that have similarities include senescence, detoxification, and transformation. While the NAD(P)H metabolic transients have been studied before, our emphasis in this article is on very rapidly scanned fluorescence images related to organelle integration and photoinduced cellular senescence. PMID:11074618

  4. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  5. Co-treatment of fruit and vegetable waste in sludge digesters: Chemical and spectroscopic investigation by fluorescence and Fourier transform infrared spectroscopy.

    PubMed

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Cucina, Mirko; Massaccesi, Luisa; Gigliotti, Giovanni

    2016-04-01

    In a previous work co-digestion of food waste and sewage sludge was performed in a pilot apparatus reproducing operating conditions of an existing full scale digester and processing waste mixed sludge (WMS) and fruit and vegetable waste (FVW) at different organic loading rates. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity was conducted. In this paper we considered humification parameters and spectroscopic analysis. Humification parameters indicated a higher not humified fraction (NH) and a lower degree of humification (DH) of FVW with respect to WMS (NH=19.22 and 5.10%; DH=36.65 and 61.94% for FVW and WMS, respectively) associated with their different chemical compositions and with the stabilization process previously undergone by sludge. FVW additions seemed to be favourable from an agronomical point of view since a lower percentage of organic carbon was lost. Fourier transform infrared spectra suggested consumption of aliphatics associated with rising in bio-methane generation followed by accumulation of aliphatics and carboxylic acids when the biogas production dropped. The trend of peaks ratios can be used as an indicator of the process efficiency. Fluorescence intensity of peak B associated with tryptophan-like substances and peak D associated with humic-like substances observed on tridimensional Excitation Emission Matrix maps increased up to sample corresponding to the highest rate of biogas production. Overall spectroscopic results provided evidence of different chemical pathways of anaerobic digestion associated with increasing amount of FVW which led to different levels of biogas production. PMID:26946935

  6. Fluorescence spectroscopic analysis of ligand binding to kringle 1 + 2 + 3 and kringle 1 fragments from human plasminogen.

    PubMed

    Matsuka, Y V; Novokhatny, V V; Kudinov, S A

    1990-05-31

    The ligand binding of kringle 1 + 2 + 3 and kringle 1 from human plasminogen has been investigated by fluorescence spectroscopy. Analysis of fluorescence titration of kringle 1 + 2 + 3 with 6-aminohexanoic acid shows that this fragment, besides the high-affinity lysine-binding site with Kd = 2.9 microM, contains two additional lysine-binding sites which differ in binding strength (Kd = 28 microM and Kd = 220 microM). This strongly suggests the existence of a lysine-binding site in each of the first three kringles. 6-Aminohexanoic acid, pentylamine, pentanoic acid and arginine were used for investigation of the ligand specificity of isolated kringle 1 prepared by pepsin hydrolysis of kringle 1 + 2 + 3. It has been established that kringle 1 has high affinity to 6-aminohexanoicacid, pentylamine and arginine (Kd values are 3.2 microM, 4.8 microM and 4.3 microM, respectively). At the same time pentanoic acid did not bind with kringle 1. These facts indicate, firstly, a broad ligand specificity of kringle 1 and, secondly, the paramount importance of the positively charged group of the ligand for its interaction with lysine-binding site of this kringle. PMID:2163837

  7. Remote Raman and fluorescence studies of mineral samples.

    PubMed

    Bozlee, Brian J; Misra, Anupam K; Sharma, Shiv K; Ingram, Melissa

    2005-08-01

    In the present study, we investigated remote laser-induced fluorescence (LIF), at a distance of 4.8 m, of a variety of natural minerals and rocks, and Hawaiian Ti (Cordyline terminalis) plant leaves. These minerals included calcite cleavage, calcite onex and calcite travertine, gypsum, fluorapatite, Dover flint and chalk, chalcedony and nephelene syenite, and rubies containing rock. Pulsed laser excitation of the samples at 355 and 266 nm often resulted in strong fluorescence. The LIF bands in the violet-blue region at approximately 413 and approximately 437 nm were observed only in the spectrum of calcite cleavage. The green LIF bands with band maxima in the narrow range of approximately 501-504 nm were observed in the spectra of all the minerals with the exception of the nephelene syenite and ruby rocks. The LIF red bands were observed in the range approximately 685-711 nm in all samples. Excitation with 532 nm wavelength laser gave broad but relatively low fluorescence background in the low-frequency region of the Raman spectra of these minerals. One microsecond signal gating was effective in removing nearly all background fluorescence (with peak at approximately 610 nm) from calcite cleavage Raman spectra, indicating that the fluorescence was probably from long-lifetime inorganic phosphorescence. PMID:16029855

  8. Ni(II)-Schiff base complex as an enzyme inhibitor of hen egg white lysozyme: a crystallographic and spectroscopic study.

    PubMed

    Koley Seth, Banabithi; Ray, Aurkie; Biswas, Sampa; Basu, Samita

    2014-09-01

    The engineering of protein-small molecule interactions becomes imperative today to recognize the essential biochemical processes in living systems. Here we have investigated the interaction between hen egg white lysozyme (HEWL) and a newly synthesized small, simple nickel Schiff base complex (NSC) {(N(1)E,N(2)E)-N(1),N(2)-bis(pyridine-2-ylmethylene)propane-1,2-diaminenickel(II)} using different spectroscopic techniques. We attempted to determine the exact site of the interaction by crystallography. Absorption spectroscopy reveals that the interaction occurs through the ground state. The complex can quench the intrinsic fluorescence of HEWL through a static quenching method. The fluorescence quenching study along with the determination of thermodynamic parameters reveal that NSC binds HEWL spontaneously with moderate binding affinity. The results have also identified that the spontaneity of this enthalpy guided interaction is mainly governed by some H-bonding and hydrophobic interactions which are also indicated by the crystallographic analyses. Moreover, the crystallographic study shows that NSC makes its way into the active site enzyme cavity of HEWL forming a single covalent adduct between Ni(2+) and the oxygen of the active site Asp 52. The possibility of inhibiting the catalytic activity of HEWL by inclusion of NSC in the enzyme active site observed from crystallographic analyses has also been confirmed by enzyme kinetics experiments. PMID:25042037

  9. Laboratory studies of in vivo fluorescence of phytoplankton

    NASA Technical Reports Server (NTRS)

    Brown, C. A., Jr.; Farmer, F. H.; Jarrett, O., Jr.; Staton, W. L.

    1978-01-01

    A lidar system is developed that uses four selected excitation wavelengths to induce chlorophyll 'a' fluorescence which is indicative of both the concentration and diversity of phytoplankton. The operating principles of the system and the results of measurements of phytoplankton fluorescence in a controlled laboratory environment are presented. A comparative study of results from lidar fluorosensor laboratory tank tests using representative species of phytoplankton in single and multispecies cultures from each of four color groups reveals that (1) there is good correlation between the fluorescence of chlorophyll 'a' remotely simulated and detected by the lidar system and in-situ measurements using four similar excitation wavelengths in a flow-through fluorometer; (2) good correlation exists between the total chlorophyll 'a' calculated from lidar-fluorosensor data and measurements obtained by the Strickland-Parsons method; and (3) the lidar fluorosensor can provide an index of population diversity.

  10. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  11. Study of the fluorescence signal for gastrointestinal dysplasia detection

    NASA Astrophysics Data System (ADS)

    Pimenta, S.; Castanheira, E. M. S.; Minas, G.

    2014-08-01

    The detection of cancer at the dysplasia stage is one of the most important goals in biomedical research. Optical techniques, specifically diffuse reflectance and intrinsic fluorescence, may improve the ability to detect gastrointestinal (GI) cancers, since they have exquisite sensitivity to some intrinsic biomarkers present on the tissues. This work follows the research that has been done towards the implementation of a spectroscopy microsystem for the early detection of GI cancers. For that purpose, the behavior of the fluorescence signal, at different temperatures and considering the most important biomarkers in GI malignancy detection, was studied and presented.

  12. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  13. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  14. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  15. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  16. Studies of Two Massive Eclipsing Double-lined Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Williams, Stephen J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-06-01

    As part of an ongoing investigation into the spectroscopic variability of massive stars, we present preliminary results for two double-lined eclipsing binary systems, HD 130146 (VZ Cen) and LS 3052 (V 1176 Cen). In our analysis we used archival Hipparcos photometry for HD 103146 and All Sky Automated Survey V-band photometry for LS 3052. All spectra were obtained from the Cerro Tololo Inter-American Observatory 1.5-m telescope. The systems were analyzed using the Eclipsing Light Curve code (ELC; Orosz & Hauschildt 2000). A combined analysis of these data yields masses, radii, effective temperatures, gravities, and estimates for the ages and distances of each system. HD 103146 is a 4.9 day binary with a slightly evolved primary (T_{eff} 28000 K and log g 3.75) while the secondary nearly fills its Roche lobe. LS 3052 has an eccentric orbit with a period of 31 days and contains both an evolved primary and secondary. Preliminary solutions indicate the primary's mass to be 33 Mo with a 21 Mo secondary.

  17. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  18. Compact Stokes shift and fluorescence spectroscopic diagnostics LED ratiometer unit with no moving parts for cancer detection

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Budansky, Yury; Alfano, R. R.

    2012-01-01

    A compact Stokes shift and fluorescence spectroscopy (S3) LED device with no moving parts is presented. This device can be used diagnostically for the identification of the native biomolecules within cancerous tissue samples. This S3-LED ratiometer unit measures both the emission and absorption spectra of key native organic biomolecules within a tissue sample by using multiple wavelength LEDs (light emitting diodes) coupled to an optical fiber. Thus, an optical fingerprint of the sample can be obtained. This technique could be used to distinguish benign and malignant tissues, and to check for residual or recurrent carcinoma after treatment, thus reducing the necessity of second biopsies. The S3-LED ratiometer unit was tested in vitro on human breast malignant and normal paired tissue samples.

  19. Raman spectroscopic study of the Chromobacterium violaceum pigment violacein using multiwavelength excitation and DFT calculations.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Němec, Ivan; Oren, Aharon

    2015-12-01

    Violacein is a bisindole pigment occurring as a biosynthetic product of Chromobacterium violaceum and Janthinobacterium lividum. It has some structural similarities to the cyanobacterial UV-protective pigment scytonemin, which has been the subject of comprehensive spectroscopic and structural studies. A detailed experimental Raman spectroscopic study with visible and near-infrared excitation of violacein produced by C. violaceum has been undertaken and supported using theoretical DFT calculations. Raman spectra with 514 and 785 nm excitation of cultivated cells as well as extracts and Gaussian (B3LYP/6-311++G(d,p)) calculations with proposed molecular vibrational assignments are reported here. PMID:26151435

  20. The Fluorescence Methods to Study Neurotransmitters (Biomediators) in Plant Cells.

    PubMed

    Roshchina, Victoria V

    2016-05-01

    Fluorescence as a parameter for analysis of intracellular binding and localization of neurotransmitters also named biomediators (acetylcholine and biogenic amines such as catecholamines, serotonin, histamine) as well as their receptors in plant cells has been estimated basing on several world publications and own experiments of the author. The subjects of the consideration were 1. application of reagents forming fluorescent products (for catecholamines - glyoxylic acid, for histamine - formaldehyde or ortho-phthalic aldehyde) to show the presence and binding of the compounds in cells, 2. binding of their fluorescent agonists and antagonists with cell, 3. effects of the compounds, their agonists and antagonists on autofluorescence, 4. action of external factors on the accumulation of the compounds in cells. How neurotransmitters can bind to certain cellular compartments has been shown on intact individual cells (vegetative microspores, pollens, secretory cells) and isolated organelles. The staining with reagents on biogenic amines leads to the appearance blue or blue-green emission on the surface and excretions of intact cells as well in some DNA-containing organelles within cells. The difference between autofluorescence and histochemically induced fluorescence may reflect the occurrence and amount of biogenic amines in the cells studied. Ozone and salinity as external factors can regulate the emission of intact cells related to biogenic amines. After the treatment of isolated cellular organelles with glyoxylic acid blue emission with maximum 460-475 nm was seen in nuclei and chloroplasts (in control variants in this spectral region the noticeable emission was absent) and very expressive fluorescence (more than twenty times as compared to control) in the vacuoles. After exposure to ortho-phthalic aldehyde blue emission was more noticeable in nuclei and chloroplasts. Fluorescent agonists (muscarine, 6,7-diOHATN, BODIPY-dopamine or BODIPY-5HT) or antagonists (d

  1. Molecular modeling and multi-spectroscopic approaches to study the interaction between antibacterial drug and human immunoglobulin G.

    PubMed

    Wang, Qin; Min, Suotian; Liu, Zhifeng; Zhang, Shengrui

    2016-05-01

    Mechanistic and conformational studies on the interaction of sulfamethoxazole (SMX) with human immunoglobulin G (HIgG) were performed by molecular modeling and multi-spectroscopic methods. The interaction mechanism was firstly predicted through molecular modeling that confirmed the interaction between SMX and HIgG. The binding parameters and thermodynamic parameters at different temperatures had been calculated according to the Stern-Volmer, Scatchard, Sips and Van 't Hoff equations, respectively. Experimental results showed that the fluorescence intensity of HIgG was quenched by the gradual addition of SMX. The binding constants of SMX with HIgG decreased with the increase of temperature, which meant that the quenching mechanism was a static quenching. Meanwhile, the results also confirmed that there was one independent class of binding site on HIgG for SMX during their interaction. The thermodynamic parameters of the reaction, namely standard enthalpy ΔH(0) and entropy ΔS(0) , had been calculated to be -14.69 kJ·mol(-1) and 22.99 J·mol(-1) ·K(-1) , respectively, which suggested that the electrostatic and hydrophobic interactions were the predominant intermolecular forces in stabilizing the SMX-HIgG complex. Furthermore, experimental results obtained from three-dimensional fluorescence spectroscopy, UV-vis absorption spectroscopy and circular dichroism (CD) spectroscopy confirmed that the conformational structure of HIgG was altered in the presence of SMX. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26359789

  2. Cytoskeleton dynamics studied by dispersion-relation fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Lei, Lei; Wang, Yingxiao; Levine, Alex; Popescu, Gabriel

    2013-03-01

    Fluorescence is the most widely used microscopy technique for studying the dynamics and function in both medical and biological sciences due to its sensitivity and specificity. Inspired by the spirit of spatial fluorescence correlation spectroscopy, we propose a new method to study the transport dynamics over a broad range of spatial and temporal scales. The molecules of interest are labeled with a fluorophore whose motion gives rise to spontaneous fluorescence intensity fluctuations that can be further analyzed to quantify the governing molecular mass transport dynamics. We analyze these data by the dispersion relation in the form of a power law, Γ(q) ~qα , which describe the relaxation rate of fluorescence intensity fluctuations, Γ, vs. the wavenumber, q. We used this approach to study the interplay of various cytoskeletal components in intracellular transport under the influence of protein-motor inhibitors. We found that after actin is depolymerized, the transport becomes completely random for a few minutes and then it starts to organize deterministically again. We conclude that the disrupted cytoskeletal components first diffuse in the cytoplasm, but then become attached to microtubules and get transported deterministically.

  3. Spectroscopic studies of the small-amplitude Cepheid SU Cas

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.; Klochkova, V. G.; Tavolzhanskaya, N. S.

    2013-09-01

    A new set of 16 high-resolution spectra for the small-amplitude Cepheid SU Cas obtained in 2007-2009 has allowed us to determine its atmospheric parameters ( T eff = 6345 ± 30 K, log g = 2.40, V t = 3.25 km s-1) and to measure its radial velocities. The latter were added to the general list of radial velocities (375 estimates) obtained in the last 90 years. Using a frequency analysis, we have refined the pulsation and orbital periods of the Cepheid. Apart from the well-known fundamental pulsation period [Figure not available: see fulltext.], we have detected a possible secondary period of [Figure not available: see fulltext.]. Their ratio of 0.96 suggests the existence of nonradial pulsations in the Cepheid's atmosphere. Based on photoelectric photometry in the last 60 years, we have shown that the effective temperature undergoes cyclic secular changes of ±200 K with an unknown period. The mean effective temperature T eff = 6395 ± 52 K estimated from photometric data agrees well with our estimate from spectroscopic data. The variations of the mean color index, effective temperature, and γ-velocity (in 90 years of observations) point to a possible orbital motion of the well-known hot companion with the most probable periods of [Figure not available: see fulltext.], [Figure not available: see fulltext.], and [Figure not available: see fulltext.]. The elemental abundances in the atmosphere of SU Cas confirm the conclusion that this Cepheid is a typical yellow supergiant after the first dredge-up. Our T eff estimate gives a radius of 32 R ⊙ and a distance of 455 pc for it, which is inconsistent with its membership in the open cluster Alessi 95. The question about the pulsation mode of SU Cas still remains open.

  4. Spectroscopic study on the interaction of bovine serum albumin with zinc(II) phthalocyanine.

    PubMed

    Li, Yejing; Wang, Yi; Wang, Ao; Lu, Shan; Zhou, Lin; Zhou, Jiahong; Lin, Yun; Wei, Shaohua

    2015-12-01

    The interaction between the photosensitive antitumour drug, 2(3),9(10),16(17),23(24)-tetra-(((2-aminoethylamino)methyl)phenoxy)phthalocyaninato-zinc(II) (ZnPc) and bovine serum albumin (BSA) has been investigated using various spectroscopic methods. This work may provide some useful information for understanding the interaction mechanism of anticancer drug-albumin binding and gain insight into the biological activity and metabolism of the drug in blood. Based on analysis of the fluorescence spectra, ZnPc could quench the intrinsic fluorescence of BSA and the quenching mechanism was static by forming a ground state complex. Meanwhile, the Stern-Volmer quenching constant (KSV), binding constant (Kb), number of binding sites (n) and thermodynamic parameters were obtained. Results showed that the interaction of ZnPc with BSA occurred spontaneously via hydrogen bond and van der Waal's force. According to Foster's non-radioactive energy transfer theory, the energy transfer from BSA to ZnPc occurred with high possibility. Synchronous fluorescence and circular dichroism (CD) spectra also demonstrated that ZnPc induced the secondary structure of and conformation changes in BSA, especially α helix. PMID:25829360

  5. Picosecond spectroscopic studies of energy transfer in phycobiliproteins and model dye systems

    SciTech Connect

    Switalski, S.C.

    1987-02-01

    Energy transfer was investigated in the ..cap alpha beta.. monomer and separated ..cap alpha.. and ..beta.. subunits of C-phycocyanin from Anabaena variabilis and Anacystis nidulans, using steady-state and picosecond spectroscopy. Fluorescence excitation polarization spectra were consistent with a sensitizing (s) - fluorescing (f) model using a Forster energy transfer mechanism. The rise in polarization across the absorption band towards longer wavelength for the ..beta.. subunit and the ..cap alpha beta.. monomer was attributed to energy transfer among the three chromophores in the ..cap alpha beta.. monomer and between the 2 chromophores in the ..beta.. subunit. The constant polarization of the ..cap alpha.. subunit, with one chromophore, is consistent with a lack of any possibility of energy transfer. Fluorescence emission maxima were at 640 nm for the ..cap alpha beta.. monomer and the separated subunits of Anabaena variabilis, and 645 nm for the ..beta.. subunit, 640 nm for the ..cap alpha.. subunit, and 644 nm for ..cap alpha beta.. monomer of Anacystis nidulans. We have shown that the labels s and f are not consistent with all the steady-state spectroscopic results. 171 refs., 32 figs., 15 tabs.

  6. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  7. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach

    PubMed Central

    Lang, Kathrin; Rieder, Renate; Micura, Ronald

    2007-01-01

    Riboswitches are genetic control elements within non-coding regions of mRNA. They consist of a metabolite-sensitive aptamer and an adjoining expression platform. Here, we describe ligand-induced folding of a thiamine pyrophosphate (TPP) responsive riboswitch from Escherichia coli thiM mRNA, using chemically labeled variants. Referring to a recent structure determination of the TPP/aptamer complex, each variant was synthesized with a single 2-aminopurine (AP) nucleobase replacement that was selected to monitor formation of tertiary interactions of a particular region during ligand binding in real time by fluorescence experiments. We have determined the rate constants for conformational adjustment of the individual AP sensors. From the 7-fold differentiation of these constants, it can be deduced that tertiary contacts between the two parallel helical domains (P2/J3-2/P3/L3 and P4/P5/L5) that grip the ligand's ends in two separate pockets, form significantly faster than the function-critical three-way junction with stem P1 fully developed. Based on these data, we characterize the process of ligand binding by an induced fit of the RNA and propose a folding model of the TPP riboswitch aptamer. For the full-length riboswitch domain and for shorter constructs that represent transcriptional intermediates, we have additionally evaluated ligand-induced folding via AP-modified variants and provide insights into the sequential folding pathway that involves a finely balanced equilibrium of secondary structures. PMID:17693433

  8. Results of the 2008 dissolved organic matter fluorescence intercalibration study

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Butler, K.; Spencer, R. G.; Boehme, J.; Aiken, G.

    2009-12-01

    In 2008, 20 laboratories around the world participated in an intercalibration study of organic matter fluorescence measurements via Excitation-Emission Matrix Spectroscopy (EEMS). The goal was to assess the variability of fluorescence measurements obtained for identical samples (n = 5 natural samples, Suwanee River Fulvic Acid, quinine sulphate and four Starna Fluorescence Reference cells) by different laboratories, and to examine potential sources of this variability. Operator error was found to be a significant source of variability, with 6 laboratories submitting erroneous EEMs in an initial round. Uncorrected EEMs were significantly different from corrected EEMs, particularly at relatively low and relatively high excitation (λex) and emission (λem) wavelengths. When data from each lab were corrected according to a standard set of algorithms, the variability between EEMs for the same sample measured by different labs was wavelength dependent, with EEMs normalized to raman areas more similar at low λex and λem, and EEMs normalized to quinine sulphate equivalents more similar at higher wavelengths. The results confirm the importance of (1) applying spectral corrections prior to comparing fluorescence data acquired on different instruments, (2) full reporting of correction procedures and implementation according to an agreed standard protocol, and (3) strict implementation of quality assurance protocols prior to reporting EEMs.

  9. Photochemically induced fluorescence studies of 1,3-diethyl-1,3-diphenylurea as stabilizer and its quantitative determination.

    PubMed

    Farokhcheh, Alireza; Alizadeh, Naader

    2014-07-01

    The photochemically induced fluorescence (PIF) studies of 1,3-diethyl-1,3-diphenylurea or ethyl centralite (EC) as stabilizer have been carried out under various conditions. Influences of solvent type (water, methanol, acetonitrile and chloroform), oxygen dependence and UV irradiation time on the spectroscopic properties of EC were studied. In order to obtain a better understanding of the photochemical mechanism, products were identified by mass spectrometry study. A novel fluorimetric method has been developed for the determination of EC based on the PIF. The method is based on the use of UV irradiation to produce fluorescent derivatives from EC as a non-fluorescent molecule. The determination is carried out by UV irradiation for 4min through measuring the fluorescence intensity in 354nm when an excitation wavelength of 227nm was used. Parameters related to the analytical signal and to the PIF are optimized. The linear range for determination of EC was 4×10(-8) to 2×10(-6)mol L(-1) and the limit of detection (LOD) was 2×10(-8)mol L(-1) with relative standard deviation (R.S.D.) of 3% (n=5). Finally, the proposed method was successfully applied for the determination of EC in real propellant samples and the acquired results were favorably compared to those obtained with HPLC method. PMID:24795294

  10. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle

    PubMed Central

    Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128

  11. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle.

    PubMed

    Nogara, Leonardo; Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128

  12. Pump probe based Raman spectroscopic studies of PTFE under laser driven shock compression

    NASA Astrophysics Data System (ADS)

    Rastogi, Vinay; Rao, Usha; Chaurasia, S.; Mishra, A. K.; Poswal, H. K.; Deo, M. N.; Sharma, S. M.

    2016-05-01

    High pressure spontaneous Raman spectroscopic studies of poly tetra fluro ethylene (PTFE) have been carried out under laser driven shock compression in confinement geometry target. The Raman modes under shock compression as a function of pressure were measured and compared with the corresponding Raman modes in static pressure experiments. Our results indicate that PTFE undergoes transition to phase III across this pressure.

  13. Comparative studies on the interaction of cefixime with bovine serum albumin by fluorescence quenching spectroscopy and synchronous fluorescence spectroscopy.

    PubMed

    Zhang, Lihui; Liu, Baosheng; Li, Zhiyun; Guo, Ying

    2015-08-01

    Under simulated physiological conditions, the reaction mechanism between cefixime and bovine serum albumin at different temperatures (293, 303 and 310 K) was investigated using a fluorescence quenching method and synchronous fluorescence method, respectively. The results indicated that the fluorescence intensity and synchronous fluorescence intensity of bovine serum albumin decreased regularly on the addition of cefixime. In addition, the quenching mechanism, binding constants, number of binding sites, type of interaction force and energy-transfer parameters of cefixime with bovine serum albumin obtained from two methods using the same equation were consistent. The results indicated that the synchronous fluorescence spectrometry could be used to study the binding mechanism between drug and protein, and was a useful supplement to the conventional method. PMID:25351241

  14. Photon Antibunching in Complex Intermolecular Fluorescence Quenching Kinetics.

    PubMed

    Sharma, Arjun; Enderlein, Jörg; Kumbhakar, Manoj

    2016-08-18

    We present a novel fluorescence spectroscopic method, which combines fluorescence antibunching, time-correlated single-photon counting (TCSPC), and steady-state emission spectroscopy, to study chemical reactions at the single molecule level. We exemplify our method on investigating intermolecular fluorescence quenching of Rhodamine110 by aniline. We demonstrate that the combination of measurements of fluorescence antibunching, fluorescence lifetime, and fluorescence steady state intensity, captures the full picture of the complex quenching kinetics, which involves static and dynamics quenching, and which cannot be seen by steady-state or lifetime measurements alone. PMID:27468007

  15. Spectroscopic studies on Rhodamine B intercalated K-10 montmorillonite aqueous dispersions

    NASA Astrophysics Data System (ADS)

    Joseph, Lyjo K.; Suja, H.; Sanjay, G.; Sugunan, S.; Nampoori, V. P. N.; Radhakrishnan, P.

    2015-02-01

    In this paper, the optical absorption and fluorescence studies on rhodamine B (RB) intercalated acid activated K-10 montmorillonite dispersions is presented. The aqueous dispersions were prepared from the dried dye intercalated montmorillonite. The absorption and fluorescence peaks of RB dispersions show a bathochromic shift with respect to the dye concentrations. The samples have a fluorescent emission at 421 nm which is having an intensity variation depending on the concentration of the dyes. The behaviour of samples of same concentration prepared by two different routes is also presented.

  16. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    SciTech Connect

    Pizarro, Shelly A.

    2000-05-12

    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K). Because LR32.3 and LRC28.5 modulate the PC trimer spectral properties in distinct manners, it suggests different chromophore-interaction mechanisms for each linker. The low temperature absorbance spectrum of the PC trimer is consistent with an excitonic coupling

  17. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils.

    PubMed

    Baranska, M; Schulz, H; Reitzenstein, S; Uhlemann, U; Strehle, M A; Krüger, H; Quilitzsch, R; Foley, W; Popp, J

    2005-08-01

    This article presents a novel and original approach to analyze in situ the main components of Eucalyptus oil by means of Raman spectroscopy. The obtained two-dimensional Raman maps demonstrate a unique possibility to study the essential oil distribution in the intact plant tissue. Additionally, Fourier Transform (FT)-Raman and attenuated total reflection (ATR)-IR spectra of essential oils isolated from several Eucalyptus species by hydrodistillation are presented. Density Functional Theory (DFT) calculations were performed in order to interpret the spectra of the essential oils of the Eucalyptus species. It is shown that the main components of the essential oils can be recognized by both vibrational spectroscopic techniques using the spectral information of the pure terpenoids. Spectroscopic analysis is based on the key bands of the individual volatile substances and therefore allows one to discriminate different essential oil profiles of several Eucalyptus species. It has been found that the presented spectroscopic data correlate very well with those obtained by gas chromatography (GC) analysis. All these investigations are helpful tools to generate a fast and easy method to control the quality of the essential oils with vibrational spectroscopic techniques in combination with DFT calculations. PMID:15856523

  18. Electronic and fluorescence spectral studies of a novel porphyrin-polypyridyl ruthenium(II) hybrid linked by a butyl chain

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Huang, Jin-Wang; Fu, Bo; Zhao, Ping; Yu, Han-Cheng; Ji, Liang-Nian

    2007-06-01

    The electronic and fluorescence spectroscopic properties of a novel porphyrin-polypyridyl ruthenium(II) hybrid, [C 4-TPP-(ip)Ru(phen) 2](ClO 4) 2 (TPP = 5,10,15,20-tetraphenylporphyrin, ip = imidazo[4,5-f][1,10]phenanthroline and phen = 1,10-Phenanthroline), in which a polypyridyl ruthenium(II) moiety is linked to a porphyrin moiety by a butyl chain have been investigated and compared to its corresponding reference compounds. The studies of electronic absorption spectra have shown that there is an electronic interaction between the porphyrin moiety and the polypyridyl ruthenium(II) moiety in the hybrid. It can be found that intramolecular photoinduced electron and energy transfer processes may occur in the hybrid from the fluorescence spectra. When exciting in Soret band and Q band of porphyrin, the fluorescence quenching of the porphyrin moiety of the hybrid takes place due to electron transfer from the lowest singlet excited state (S 1) to the appended polypyridyl rutherium(II) moiety, while the decay of S 2 (the second-excited singlet state) of the porphyrin moiety is mainly contributed to internal conversion to S 1. When exciting in MLCT band of the polypyridyl ruthenium(II) moiety, fluorescence corresponding to the polypyridyl ruthenium(II) moiety is quenched by intramolecular energy transfer from 3MLCT of the ruthenium moiety to the lowest-energy triplet state localized on the porphyrin moiety.

  19. Application of fluorescence resonance energy transfer in protein studies

    PubMed Central

    Ma, Linlin; Yang, Fan; Zheng, Jie

    2014-01-01

    Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications. PMID:25368432

  20. Archaeometrical studies using X-ray fluorescence methods

    SciTech Connect

    Pauna, Catalina; Constantinescu, B.; Constantin, F.; Bugoi, R.; Stan, D.; Vasilescu, A.

    2010-04-26

    Elemental analysis contributes to authentication (knowing the elemental composition and considering the information about the usual composition of the objects in different historical periods it can be established if the item is original or fake), provenance studies (minor and trace elements indicates ores origin and 'consequently' mines location), (relative) dating of archaeological objects (e.g. for painted items--the chemical recipes for pigments can offer information about the age of objects). The paper gives a general layout for the NIPNE Archaeometry Laboratory's applications using X-Ray Fluorescence (XRF), micro--Proton Induced X-Ray Emission (micro-PIXE), micro-Synchrotron Radiation Induced X-Ray Fluorescence (micro--SR-XRF) methods.

  1. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  2. Fluorescence studies of anti-cancer drugs--analytical and biomedical applications.

    PubMed

    Aaron, Jean-Jacques; Trajkovska, Snezana

    2006-09-01

    The fluorescence properties of anticancer drugs (ACDs), including steady-state native fluorescence, time-resolved fluorescence, fluorescence polarization, excimer and exciplex emission, laser-induced fluorescence (LIF) with one- or two-photon excitation are reviewed, as well as the use of fluorogenic labels and fluorescent probes for the non-fluorescent ACDs. The interest of monitoring the fluorescence spectral changes to study the interactions of ACDs with biomolecules, such as DNA, proteins, vesicles, and the formation of complexes is discussed. The fluorescence methodologies used for ACDs studies, including fluorescence with two-photon excitation, liquid chromatography and capillary electrophoresis with fluorescence and laser-induced fluorescence (LIF) detection, and fluorescence microscopy, are also surveyed. Analytical and bioanalytical applications of fluorescence, indicating good selectivity and very low limits of detection at the nanomolar and picomolar level for most ACDs, are described. Biomedical and clinical applications of the fluorescence methods, mostly oriented towards the evaluation of the cytoxicity and anti-tumor potential of ACDs in single cells as well as in biological fluids, including blood, serum, plasma, cerebrospinal fluid, urine and feces, are also discussed in detail. This review is based on selected literature published in the last decade (1994-2003). PMID:17017886

  3. New BODIPY lipid probes for fluorescence studies of membranes

    PubMed Central

    Momsen, Maureen M.; Brockman, Howard L.; Brown, Rhoderick E.; Molotkovsky, Julian G.

    2007-01-01

    Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY-8) at the end of C3-, C5-, C7-, or C9-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me4-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me4-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me4-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and ∼506−515 nm) but also showed the absence of the 620−630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me4-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.—Boldyrev, I. A., X. Zhai, M. M. Momsen, H. L. Brockman, R. E. Brown, and J. G. Molotkovsky. New BODIPY lipid probes for fluorescence studies of membranes. PMID:17416929

  4. Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies

    SciTech Connect

    Cekan, Pavol; Sigurdsson, Snorri Th.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Bulges and loops were studied by both EPR and fluorescence spectroscopies using the probe C/C{sup f}. Black-Right-Pointing-Pointer One-base bulge was in a temperature-dependent equilibrium between looped-out and stacked states. Black-Right-Pointing-Pointer Bases in two- and three-base bulges were stacked at all temperatures, resulting in DNA bending. Black-Right-Pointing-Pointer Bases were stacked in symmetrical two- to five-base internal loops, according to EPR data. Black-Right-Pointing-Pointer Unexpectedly high fluorescence for the smaller loops indicated local structural perturbations. -- Abstract: The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe C, which becomes fluorescent (C{sup f}) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of C{sup f}. EPR spectra of C-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 Degree-Sign C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 Degree-Sign C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 Degree-Sign C. Fluorescence of the smallest loops, where a single T{center_dot}T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops

  5. Single molecule fluorescence studies of ribosome dynamics: An application of metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bharill, Shashank

    Metal enhanced fluorescence (MEF), in which a surface plasmon near a noble metal alters the spectral properties of an organic fluorophore, has been reported to increase fluorescence intensity without a concomitant increase in photobleaching rate. The fluorescence intensities of Cy3- and Cy5-labeled ribosomal initiation complexes (ICs) near 50 nm silver particles were increased 4 - 7-fold compared to ICs in the absence of silver colloids. Photobleaching lifetime was not significantly decreased, resulting in 4 - 5.5-fold enhancement in total photon emission prior to photobleaching. Fluorophores showing enhanced fluorescence were located within ˜280 nm of the colloidal particles, as detected by light scattering and scanning probe microscopy. Aggregates of silver particles or larger colloids themselves produced wavelength-shifted luminescence similar to fluorescence, presumably due to resonant extinction between nearby metal particles. Intensity fluctuations above shot noise, at 0.1 - 5 Hz, were greater from slides containing colloidal particles than from plain glass. Overall signal to noise ratio was similar or slightly better near the silver particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA to the A site of fluorescent labeled ribosomes, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosomal A and P sites, and elongation factor G catalyzed translocation.

  6. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun; Liu, Rong; jiang, Xiaohui

    2013-11-01

    The binding interactions of tetrandrine (TETD) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. These experimental data were further analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) method, and the concentration profiles and pure spectra for three species (BSA/HSA, TETD and TETD-BSA/HSA) existed in the interaction procedure, as well as, the apparent equilibrium constants Kapp were evaluated. The binding sites number n and the binding constants K were obtained at various temperatures. The binding distance between TETD and BSA/HSA was 1.455/1.451 nm. The site markers competitive experiments indicated that TETD primarily bound to the tryptophan residue of BSA/HSA within site I. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of TETD-BSA was mainly depended on the hydrophobic interaction strongly and electrostatic interaction, and yet the binding of TETD-HSA was strongly relied on the hydrophobic interaction. The results of synchronous fluorescence, 3D fluorescence and FT-IR spectra show that the conformation of proteins has altered in the presence of TETD. In addition, the effect of some common ions on the binding constants between TETD and proteins were also discussed.

  7. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    PubMed

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. PMID:25707749

  8. Study on the interaction between methyl jasmonate and the coiled-coil domain of rice blast resistance protein Pi36 by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Liu, Xin Q.; Zhang, Dan; Zhang, Xiang M.; Wang, Chun T.; Liu, Xue Q.; Tan, Yan P.; Wu, Yun H.

    2012-03-01

    Interaction between the coiled-coil domain of rice blast resistance protein Pi36 and methyl-jasmonate (MeJA) was studied by fluorescence and UV-vis spectroscopic techniques. The quenching mechanism of fluorescence of MeJA by this domain was discussed to be a static quenching procedure. Fluorescence quenching was explored to measure the number of binding sites n and apparent binding constants K. The thermodynamics parameters ΔH, ΔG, ΔS were also calculated. The results indicate the binding reaction was not entropy-driven but enthalpy-driven, and hydrophobic binding played major role in the interaction. The binding sites of MeJA with the coiled-coil structural domain of rice blast resistance protein Pi36 were found to approach the microenvironment of both Tyr and Trp by the synchronous fluorescence spectrometry. The distance r between donor (the coiled-coil domain of rice blast resistance protein Pi36) and acceptor (MeJA) was obtained according to Förster theory of non-radioactive energy transfer.

  9. Spectroscopic study of the humification process during sewage sludge treatment

    NASA Astrophysics Data System (ADS)

    Pajączkowska, J.; Sułkowska, A.; Sułkowski, W. W.; Jędrzejczyk, M.

    2003-06-01

    The aim of this work was to study the free radical transition of organic materials during the sewage treatment process. Investigations of sludge from biologic-mechanical sewage treatment plant in Sosnowiec Zagórze were carried out. The course of the humification processes during sewage treatment was studied by electron paramagnetic resonance (EPR) technique. The concentration of free radicals at each process stage and the value g were determined. Sludge samples and extracted fractions of humic acids were examined. Humic acids were extracted from sludge by means of conventional methods elaborated by Stevenson. For study of humic acids structures, besides EPR, the UV-Vis and IR spectroscopy were used.

  10. Laser-induced breakdown spectroscopic study of ammonium nitrate plasma

    SciTech Connect

    Hanif, M.; Salik, M.; Baig, M. A.

    2013-12-15

    We present the optical emission studies of the ammonium nitrate plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser. The target material was placed in front of the laser beam in an open atmospheric air. The spectrum reveals numerous transitions of neutral nitrogen. We have studied the spatial behavior of the plasma temperature (T{sub e}) and electron number density (N{sub e}) determined using the Boltzmann plot method and Stark broadened line profiles, respectively. Besides, we have studied the variation of the plasma parameters as a function of the laser irradiance.

  11. Spectroscopic and microcalorimetric studies on the molecular binding of food colorant acid red 27 with deoxyribonucleic acid.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2016-08-01

    Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4)  M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26846192

  12. Spectroscopic investigation on interaction and sonodynamic damage of Riboflavin to DNA under ultrasonic irradiation by using Methylene Blue as fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Fan, Ping; Wang, Baoxin

    2014-01-01

    In this paper, the Riboflavin (RF) as a sonosensitizer and Methylene Blue (MB) as a fluorescent probe were used to study the interaction and sonodynamic damage to Deoxyribonucleic Acid (DNA) by fluorescence and UV-vis spectroscopy. The results showed that the RF could efficiently bind to DNA in aqueous solution and exchange with the MB through competing reaction. And then, under ultrasonic irradiation, the RF could obviously damage the DNA. In addition, the influencing factors such as ultrasonic irradiation time and RF concentration on the sonodynamic damage to DNA were also considered. The experimental results showed that the sonodynamic damage degree increase with the increase of ultrasonic irradiation time and RF concentration. Perhaps, this paper may offer some important subjects for broadening the application of RF in sonodynamic therapy (SDT) technologies for tumor treatment.

  13. Spectroscopic investigation on interaction and sonodynamic damage of Riboflavin to DNA under ultrasonic irradiation by using Methylene Blue as fluorescent probe.

    PubMed

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Fan, Ping; Wang, Baoxin

    2014-01-01

    In this paper, the Riboflavin (RF) as a sonosensitizer and Methylene Blue (MB) as a fluorescent probe were used to study the interaction and sonodynamic damage to Deoxyribonucleic Acid (DNA) by fluorescence and UV-vis spectroscopy. The results showed that the RF could efficiently bind to DNA in aqueous solution and exchange with the MB through competing reaction. And then, under ultrasonic irradiation, the RF could obviously damage the DNA. In addition, the influencing factors such as ultrasonic irradiation time and RF concentration on the sonodynamic damage to DNA were also considered. The experimental results showed that the sonodynamic damage degree increase with the increase of ultrasonic irradiation time and RF concentration. Perhaps, this paper may offer some important subjects for broadening the application of RF in sonodynamic therapy (SDT) technologies for tumor treatment. PMID:24094993

  14. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    SciTech Connect

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  15. SPECTROSCOPIC STUDY OF SORPTION OF NITROGEN HETEROCYCLIC COMPOUNDS ON PHYLLOSILICATES

    EPA Science Inventory

    The present study focused on understanding the sorption characteristics of acridine (AcN)and acridine-9-carboxylic acid (AcNCOOH), two typical nitrogen heterocyclic compounds (NHCs), on well-characterized phyllosilicates (hectorite, saponite, and muscovite). Results presented in...

  16. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    SciTech Connect

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10/sup 6/ atoms/cm/sup 3/ with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed.

  17. Laser-induced fluorescence studies of caries model

    NASA Astrophysics Data System (ADS)

    Borisova, Ekaterina G.; Uzunov, Tzonko T.; Avramov, Lachezar A.

    2004-06-01

    The goal of this study is fluorescence investigations in the process of caries growth in presence of bacteria metabolism products. Spectra of teeth, illuminated with 337 nm nitrogen laser were measured during in vitro caries formation. Spectra, obtained from sound tooth consist of one intensive peak at 480-500 nm and one secondary peak at 430-450 nm. In the process of the caries formation of the teeth we observed increase in intensity at 430-450 nm and appearance of two peaks in the red spectral region at 590-650 nm. A general decrease in the intensity of the fluorescence signal is observed, but changes in spectral shape are more significant. We observe that the peak increase at 430-450 nm is related to the tooth demineralization. Bacteria presence and their metabolism products induce fluorescence signal in the red region. These results allow consideration of caries in terms of two different processes, which lead to its formation: demineralization and metabolism products increase, which are caused by bacteria activities, and could be used to obtain a more complete picture of caries formation.

  18. Photoemission Spectroscopic Study of Cesium Telluride Thin Film Photocathode

    SciTech Connect

    Sugiyama, Harue; Ogawa, Koji; Azuma, Junpei; Takahashi, Kazutoshi; Kamada, Masao

    2009-08-04

    The photoemission spectroscopy using synchrotron radiation has been carried out to study the high quantum efficiency and long working lifetime of cesium telluride (Cs{sub x}Te{sub y}) thin film photocathode. The electron affinity derived from the observed energy-distribution curves provides an important hint for long persistency of the photocathode.

  19. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    Metal oxide phases play an important role in governing the sorption and desorption mechanisms of metals in water, soils, and sediments. Many researchers have examined the efficiency of Pb sorption on Mn, Fe, Al, Ti, and Si oxide surfaces. Most studies concluded that adsorption ...

  20. Structural, Magnetic and Spectroscopic Studies of Thin Manganite Films

    NASA Astrophysics Data System (ADS)

    Tyson, T. A.

    2003-03-01

    Starting from early experiments [1], evidence has been found for a close coupling of strain and the magnetotransport properties of manganite films. The characteristic feature found is that the metal to insulator transition temperature (TMI) is suppressed in very thin films [2]. In addition, studies show that the magnetic transition temperature (Tc) and TMI decouple in ultrathin films [3]. Systematic magnetization studies reveal that strain induces strong magnetic anisotropy [4]. Theoretical work also points to the sensitivity of Tc to biaxial strain [5]. Most studies have focused on single bulk properties. In order to understand the correlations between strain and the transport and magnetic properties we have examined the structure of films on multiple length scales. The local structure of films have been studies by x-ray absorption spectroscopy. The long -range structure has been studied by high-resolution x-ray diffraction and the microstructure has been studied by AFM measurements. These measurements are correlated with bulk magnetization and transport studies. Insight is gained on the evolution of lattice strain and Jahn-Teller distortions with thickness. Direct evidence is found for the arrest of charge ordering with strain and the existence of strain induced insulating regions of films. The magnetic ordering and transport properties as a function of strain as compared with bandstructure calculations. This work is supported by NSF Career Grant DMR-9733862 and DMR-0209243. Collaborators: Q. Qian, M. Deleon (NJIT), C. Dubourdiu (CNRS), J. Bai (ORNL), W. Prellier, A. Biswas, R. L. Greene (U. Maryland) [1] S. Jin et al., Appl. Phys. Lett. 67, 557 (1995). [2] (a) J. Z. Sun et al. Appl. Phys. Lett. 74, 3017 (1999). (b) F. S. Razi et al., Appl. Phys. Lett 76, 155 (2000) [3] J. Aarts et al., Appl. Phys. Lett. 72, 2975 (1998). (b) R. A. Rao et al., J. Appl. Phys. 85, 4794 (1999). [4] (a) X. W. Wu et al., Phys. Rev. B 61, 501 (2000). (b) J. O'Donnell et al., Appl. Phys

  1. Magnetic resonance and optical spectroscopic studies of carotenoids

    SciTech Connect

    Kispert, L.D.

    1991-05-01

    It is our goal to study the role of a host lattice in the formation of radicals and excited singlet and triplet states that are relevant to photosynthesis. Particular emphasis is being placed on determining what is special about carotenoids that natural photosynthetic systems require them as antennae as well as for protection. We are thus manipulating the host matrix so as to understand the carotenoid function (protection, quenching, energy transfer and antenna) and the structure of carotenoid cations. To characterize their properties, we have carried out EPR, ENDOR, optical, molecular orbital and electrochemical studies of carotenoids and carotenoid cations produced chemically, electrochemically, radiolytically (x-ray irradiated freon matrices) and photolytically (solution photolysis by excimer radiation) as a function of the host matrix. 36 refs.

  2. Thiosaccharine disulfide: Synthesis, crystal structure, spectroscopic characterization and theoretical study

    NASA Astrophysics Data System (ADS)

    Ferullo, Ricardo M.; Granados, Alejandro; Lanterna, Anabel; Güida, Jorge A.; Piro, Oscar E.; Castellano, Eduardo E.; Dennehy, Mariana

    2013-01-01

    The title compound, (thiosaccharine disulfide), bis[1,1'dioxide-2,3-dihidro-1,2-benzoisothiazol]disulfide, (tsac)2 has been synthesized and fully characterized by UV-Visible, IR, Raman, 1H and 13C NMR spectroscopy elemental analysis and structural X-ray crystallography. A DFT theoretical study has been performed and good agreement between experimental and theoretical values of structural parameters and vibration frequencies have been achieved.

  3. Spectroscopic and computational study of a new isomer of salinomycin

    NASA Astrophysics Data System (ADS)

    Pankiewicz, Radosław

    2013-09-01

    A new derivative of polyether ionophore salinomycin was obtained as a result of a rearrangement catalysed by sulphuric acid in two-phase medium of water/methylene chloride solution. The new isomer was fully characterized by multinuclear 2D NMR, NOESY and MALDI-TOF. The properties of the new compound were additionally study by semiempirical (PM5) and DFT (B3LYP) methods. A potential mechanism of the rearrangement was also proposed.

  4. Spectroscopic studies of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Koehler, Birgit G.; Middlebrook, Ann M.

    1993-01-01

    Fourier transform infrared (FTIR) spectroscopy has been used to study nitric-acid/ice films representative of type I polar stratospheric clouds (PSCs). These studies reveal that in addition to amorphous nitric acid/ice mixtures, there are three stable stoichiometric hydrates of nitric acid: nitric-acid monohydrate (NAM), dihydrate (NAD), and trihydrate (NAT). We also observe two distinct crystalline forms of the trihydrate, which we denote alpha- and beta-NAT. These two forms appear to differ in their concentration of crystalline defects, but not in their chemical composition. In addition to probing the composition of type I PSCs, we have also used FTIR spectroscopy to study the interaction of HCl with model PSC films. In this work we find that for HCl pressures in the range 10 exp -5 to 10 exp -7 Torr, HCl is taken up by ice at 155 K to form a thin layer of HCl.6H2O. At 193 K, the uptake of HCl by ice was consistent with less than or equal to monolayer coverage. Uptake of HCl by alpha and beta-NAT at 175 K was also consistent with less than or equal to monolayer coverage.

  5. Raman microprobe spectroscopic studies of solid DNA-CTMA films

    NASA Astrophysics Data System (ADS)

    Yaney, Perry P.; Ahmad, Faizan; Grote, James G.

    2008-08-01

    Extensive studies have been carried out on developing the new biopolymer, deoxyribonucleic acid (DNA) derived from salmon, that has been complexed with a surfactant to make it water insoluble for application to bioelectronic and biophotonic devices. One of the key issues associated with the properties and behavior of solid films of this material is the extreme size of the >8 MDa molecular weight of the virgin, as-received material. Reduction of this molecular weight by factors of up to 40 is achieved by high power sonication. To support the various measurements that have been made to confirm that the sonicated material is still double strand DNA and to look for other effects of sonication, Raman studies were carried out to compare the spectra over a wide range of molecular weights and to develop baseline data that can be used in intercolation studies where various dopants are added to change the electrical, mechanical or optical properties. Raman microprobe spectra from solid, dry thin films of DNA with molecular weights ranging from 200 kDa to >8 MDa complexed with cetyltrimethyl-ammonium chloride (CTMA) are reported and compared to the as-received spectrum and to published DNA spectra in aqueous solutions. In addition, microscopy and measurements on macro-molecular structures of DNA-CTMA are reported.

  6. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    SciTech Connect

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  7. Chemical and spectroscopic studies of Cercidium praecox gum exudate.

    PubMed

    León de Pinto, G; Martínez, M; Rivas, C

    1994-07-01

    The structure of the polysaccharide from Cercidium praecox (R&P) Harms gum exudate has been studied by Smith degradation, by sugar and methylation analyses, and by 13C NMR spectroscopy. The results showed a (1-->4)-xylan core. Some xylose residues are substituted at O-2 by alpha-D-glucuronic acid and 4-O-methyl-alpha-D-glucuronic acid residues. beta-D-Glucuronic acid is present, probably as terminal residues. The arabinose is present as alpha-L-furanose and beta-L-pyranose. PMID:8062287

  8. Spectroscopic, thermal and structural studies on manganous malate crystals

    SciTech Connect

    Thomas, J. Lincy, A. Mahalakshmi, V.; Saban, K. V.

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  9. Electrochemical and spectroscopic studies of fuel cell reactions

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    Fuel cells, especially proton exchange membrane fuel cells (PEMFCs) are expected soon to become a major source of clean energy. However, the sluggish kinetics of the fuel cell reactions, i.e., the fuel oxidation and oxygen reduction, hinders the wide-spread application of PEMFCs. These problems prompted our studies to focus on elucidating the nature of the reaction intermediates during the oxidation of fuels and the reduction of oxygen on electrocatalysts, and understanding the mechanisms of these reactions. The results from these studies will provide basic information for designing new electrocatalysts. In this dissertation, the oxidation reactions of ethanol and dimethyl ether (DME) on Pt were investigated by the surface enhanced infrared absorption spectroscopy with an attenuated total reflection configuration (ATR-SEIRAS). Various reaction intermediates were detected and their electrochemical behaviors were studied. We also benefited from advantages of the ATR-SEIRAS technique and observed superoxide anion (O2-) and hydrogen peroxide anion (H2-) as the intermediates in the oxygen reduction reaction (ORR) on Pt and Au electrodes for the first time. The other main goal of this study is design of new electrocatalysts for ORR with low cost and high activity. Two novel electrocatalysts were developed. One is Pt monolayer electrocatalysts consisting of a Pt monolayer formed by a red-ox replacement of the Cu monolayer by Pt atoms on non-noble metal-noble metal core-shell nanoparticles. In such catalyst, the total noble mass activity of the catalyst was 2--6 times larger that of commercial Pt catalyst. Another way of lowering the cost of catalysts and enhancing the ORR activity involves alloying less expensive noble metals with other non-noble elements. In this dissertation, the nano-structured Pd based alloy electrocatalysts have been explored. The results showed that their ORR activities surpass that of commercial Pt. The density functional theory (DFT) calculations

  10. Infrared micro-spectroscopic studies of epithelial cells

    PubMed Central

    Romeo, Melissa; Mohlenhoff, Brian; Jennings, Michael; Diem, Max

    2009-01-01

    We report results from a study of human and canine mucosal cells, investigated by infrared micro-spectroscopy, and analyzed by methods of multivariate statistics. We demonstrate that the infrared spectra of individual cells are sensitive to the stage of maturation, and that a distinction between healthy and diseased cells will be possible. Since this report is written for an audience not familiar with infrared micro-spectroscopy, a short introduction into this field is presented along with a summary of principal component analysis. PMID:16797481

  11. Photoelectron spectroscopic study of the ethyl cyanoacrylate anion

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Tang, Xin; Bowen, Kit

    2013-09-01

    Anion photoelectron spectroscopy and density functional theory have been utilized to study the parent, ethyl cyanoacrylate molecular anion, ECA-. The measured electron affinity (0.9 ± 0.2 eV), vertical detachment energy (1.3 ± 0.1 eV), and anion-to-triplet neutral, photodetachment transition energies (4.0 ± 0.1 eV and 4.5 ± 0.1 eV) all compare well with their calculated values. The relatively high electron affinity of the ECA monomer is responsible for the fact that its “anionic” polymerization mechanism proceeds even with weak nucleophiles, such as water.

  12. Raman and infrared spectroscopic study of turquoise minerals.

    PubMed

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)(2-) units were observed. PMID:25956330

  13. Raman and infrared spectroscopic study of turquoise minerals

    NASA Astrophysics Data System (ADS)

    Čejka, Jiří; Sejkora, Jiří; Macek, Ivo; Malíková, Radana; Wang, Lina; Scholz, Ricardo; Xi, Yunfei; Frost, Ray L.

    2015-10-01

    Raman and infrared spectra of three well-defined turquoise samples, CuAl6(PO4)4(OH)8·4H2O, from Lavender Pit, Bisbee, Cochise county, Arizona; Kouroudaiko mine, Faleme river, Senegal and Lynch Station, Virginia were studied, interpreted and compared. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, water molecules and hydroxyl ions. Approximate O-H⋯O hydrogen bond lengths were inferred from the Raman and infrared spectra. No Raman and infrared bands attributable to the stretching and bending vibrations of (PO3OH)2- units were observed.

  14. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  15. Thermo-active polymer nanocomposites: a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Winter, A. Douglas; Larios, Eduardo; Jaye, Cherno; Fischer, Daniel A.; Omastová, Mária; Campo, Eva M.

    2014-09-01

    Photo- and thermo-mechanical actuation behaviour in specific polymer-carbon nanotube composites has been observed in recent years and studied at the macroscale. These systems may prove to be suitable components for a wide range of applications, from MOEMs and nanotechnology to neuroscience and tissue engineering. Absence of a unified model for actuation behaviour at a molecular level is hindering development of such smart materials. We observed thermomechanical actuation of ethylene-vinyl acetate | carbon nanotube composites through in situ near-edge X-ray absorption fine structure spectroscopy to correlate spectral trends with macroscopic observations. This paper presents spectra of composites and constituents at room temperature to identify resonances in a building block model, followed by spectra acquired during thermo-actuation. Effects of strain-induced filler alignment are also addressed. Spectral resonances associated with C=C and C=O groups underwent synchronised intensity variations during excitation, and were used to propose a conformational model of actuation based on carbon nanotube torsion. Future actuation studies on other active polymer nanocomposites will verify the universality of the proposed model.

  16. Raman spectroscopic study of Lactarius spores (Russulales, Fungi).

    PubMed

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products. PMID:16165029

  17. Raman spectroscopic study of Lactarius spores (Russulales, Fungi)

    NASA Astrophysics Data System (ADS)

    De Gussem, Kris; Vandenabeele, Peter; Verbeken, Annemieke; Moens, Luc

    2005-10-01

    Fungi are important organisms in ecosystems, in industrial and pharmaceutical production and are valuable food sources as well. Classical identification is often time-consuming and specialistic. In this study, Raman spectroscopy is applied to the analysis of fungal spores of Lactarius, an economically and ecologically important genus of Basidiomycota. Raman spectra of spores of Lactarius controversus Pers.: Fr., Lactarius lacunarum (Romagn.) ex Hora, Lactarius quieticolor Romagn. and Lactarius quietus (Fr.: Fr.) Fr. are reported for the first time. The spectra of these species show large similarity. These spectra are studied and compared with the Raman spectra of reference substances known to occur in macrofungi, including saccharides, lipids and some minor compounds that may serve as specific biomarkers (adenine, ergosterol and glycine). Most Raman bands could be attributed to specific components. In agreement with the biological role of fungal spores, high amounts of lipids were observed, the main fatty acid being oleate. In addition to different types of lipids and phospholipids, the polysaccharides chitin and amylopectin could be detected as well. The presence of trehalose is not equivocally shown, due to overlapping bands. Raman band positions are reported for the observed bands of the different species and reference products.

  18. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Katti, Kalpana; Katti, Dinesh

    2006-07-01

    In this work, photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy has been utilized to study interfacial interactions of undisturbed nacre and nacre powder from red abalone shell. The spectra of both undisturbed nacre and nacre powder showed characteristic bands of aragonite and proteins. Although nacre powder and undisturbed nacre are chemically identical, PA-FTIR spectrum of undisturbed nacre is found to be significantly different from that of nacre powder. A broad and strong band is observed at around 1485 cm -1 in nacre powder. The intensity of this band is notably reduced in undisturbed nacre. This result is explained on the basis of interfacial interactions between aragonite platelets and acidic proteins. It is also observed that band at around 1788 cm -1 originates from three overlapping bands 1797, 1787 and 1778 cm -1. The band at around 1787 cm -1 is assigned to C dbnd O stretching of carboxylate groups of acidic proteins. The other two bands at 1797 and 1778 cm -1, originate from aragonite and have been assigned to combination bands, ν 3 + ν 4a and ν 3 + ν 4b, respectively. For the study of stratification in undisturbed nacre, PA-FTIR spectra have been collected in step scan mode. The variation in spectra with depth can be attributed to changes in conformation of proteins as well as interfacial interactions.

  19. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  20. Rotational Spectroscopic Studies and Observational Searches for HO3

    NASA Astrophysics Data System (ADS)

    Widicus Weaver, Susanna

    Interstellar chemistry is largely driven by reactions of unstable molecules that serve as reaction intermediates in terrestrial chemistry. One such class of compounds are weakly-bound clusters. These clusters could form in interstellar environments through radiative association reactions, but their identification and characterization in interstellar environments is limited by a lack of rotational spectral information. One such species is HO3, which could be formed in the interstellar medium from O2 and OH. HO3 has been studied extensively in the infrared, and there are a few microwave spectral studies that have also been reported. However, no millimeter or submillimeter spectral information is available to guide astronomical observations. In this talk, we will present the laboratory characterization of trans -HO3 and trans -DO3 from 70 to 450 GHz using our newly developed fast sweeping technique. The molecular constants have been significantly refined, and additional higher order centrifugal distortion constants have been determined. We will also present an initial observational search for HO3 in 32 star forming regions. Although no HO3 lines have been detected thus far, strict upper limits can be placed on the HO3 column density in these sources based on this analysis. Additional Authors: Luyao Zou, Brian M. Hays.

  1. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations. PMID:25252174

  2. Theoretical spectroscopic studies on chemical and electronic structures of arginylglycine.

    PubMed

    Li, Hongbao; Li, Leilei; Jiang, Jun; Lin, Zijing; Luo, Yi

    2015-10-14

    The energy differences between canonical and zwitterionic isomers of arginylglycine (ArgGly) at the CCSD/aug-cc-pVDZ level are too small (less than 1 kcal mol(-1)) to determine the dominant form in the gas phase from the energetic point of view. First-principles simulations have been performed for near-edge X-ray absorption fine-structure (NEXAFS) spectra and X-ray photoelectron spectra (XPS) at C, N and O K-edges, as well as for infrared (IR) spectra of neutral ArgGly. Noticeable spectral differences were found which enable the unambiguous identification of different neutral groups. We thus demonstrate X-ray spectroscopy as a powerful technique to study the conformation dependent chemical and electronic properties of neutral ArgGly. PMID:26266331

  3. Preparations and spectroscopic studies of organotin complexes of diclofenac*1

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, Nikolaos; Demertzis, Mavroudis A.; Kovala-Demertzi, Dimitra; Koutsodimou, Aglaia; Moukarika, Alice

    2004-08-01

    The reactions of the potent and widely used anti-inflammatory drug diclofenac, HL, with diorganotin(IV) oxides were studied. The dimeric tetraorganodistannoxane complexes [Me 2LSnOSnLMe 2] 2, [Bu 2LSnOSnLBu 2] 2, [Ph 2LSnOSnLPh 2] 2 and the dibutyltin complex [Bu 2SnL 2], have been prepared and structurally characterized in the solid state by means of vibrational and 119Sn Mössbauer spectroscopy. Determination of lattice dynamics by temperature-dependent 119Sn Mössbauer spectroscopy. From the variable-temperature Mössbauer effect, the Debye temperature was determined. The complexes have been characterized in solution by NMR ( 1H and 13C) spectroscopy. Vibrational, Mössbauer, and NMR data are discussed in terms of the proposed structures.

  4. High resolution spectroscopic study of Be10Lambda;

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chiba, A.; Christy, E.; Danagoulian, S.; de Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Han, Y.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; Hksjlab E05-115 Collaboration

    2016-03-01

    Spectroscopy of a Be10Lambda; hypernucleus was carried out at JLab Hall C using the (e ,e'K+) reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of ˜0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p (e ,e'K+)Λ ,Σ0 reactions allowed us to determine the energy levels; and the binding energy of the ground-state peak (mixture of 1- and 2- states) was found to be BΛ=8.55 ±0.07 (stat . ) ±0.11 (sys . ) MeV. The result indicates that the ground-state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on the charge symmetry breaking effect in the Λ N interaction.

  5. Raman and infrared spectroscopic study of kamphaugite-(Y)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo

    2015-05-01

    We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088 cm-1 provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

  6. Spectroscopic study of low-temperature hydrogen absorption in palladium

    SciTech Connect

    Ienaga, K. Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T.; Tsujii, H.; Kimura, T.

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  7. Micro-Ft Spectroscopic Studies of Breast Tissues

    NASA Astrophysics Data System (ADS)

    Anastassopoulou, J.; Arapantoni, P.; Boukaki, E.; Konstadoudakis, S.; Theophanides, T.; Valavanis, C.; Conti, C.; Ferraris, P.; Giorgini, G.; Sabbatini, S.; Tosi, G.

    Micro-FT-IR spectroscopy was used to study breast cancer tissues and, in particular osteosarcoma tissue. By analysing the spectra, we have found characteristic bands in the infrared regions, where the main components of these signature bands are located. In the region between 1680-1660 cm-1 are found the characteristic bands of Amide I and II of proteins. The bands, which correspond to the vibrations of the phosphate groups, are found in the region near 1140-900 cm-1. These characteristic bands have been monitored as a function of the degree of cancer progression. The results have been obtained with chemometric methods, such as cluster analysis, principal component analysis and custom analysis in order to distinguish the neoplastic zones from the normal zones.

  8. Mechanism of Arsenic Adsorption Using Wheat Biomass -- a spectroscopic study

    NASA Astrophysics Data System (ADS)

    Calvo, Oscar; Manciu, Felicia; Maldonado, Josefina; Gardea-Torresdey, Jorge

    2006-10-01

    Arsenic is a trace element that is toxic to animals, humans included. Since the current Environmental Protection Agency guidelines regarding water quality standards indicate that arsenic concentrations in excess of 50 ppb are hazardous to welfare of humans, the search for new water remediation methods or improvements of previous methods have been a focus in environmental technology. Investigations of arsenic uptake have used wide range of sorbents including iron oxides and oxyhydroxides, for which it have been proved that arsenic shows high affinity. In this study, we used far-infrared spectroscopy to examine the arsenic reduction using biomaterials. pH dependence analysis by FTIR demonstrates the sorption of iron oxides and oxyhydroxides by the wheat biomass. The splitting of 350 cm-1 amorphous iron oxide vibrations is a direct proof of the arsenic uptake. In addition, there is evidence of sorption of arsenic at sulfhydryl group of cysteine existent in wheat.

  9. In-beam spectroscopic studies of the 44S nucleus

    NASA Astrophysics Data System (ADS)

    Cáceres, L.; Sohler, D.; Grévy, S.; Sorlin, O.; Dombrádi, Zs.; Bastin, B.; Achouri, N. L.; Angélique, J. C.; Azaiez, F.; Baiborodin, D.; Borcea, R.; Bourgeois, C.; Buta, A.; Bürger, A.; Chapman, R.; Dalouzy, J. C.; Dlouhy, Z.; Drouard, A.; Elekes, Z.; Franchoo, S.; Gaudefroy, L.; Iacob, S.; Laurent, B.; Lazar, M.; Liang, X.; Liénard, E.; Mrazek, J.; Nalpas, L.; Negoita, F.; Nowacki, F.; Orr, N. A.; Penionzhkevich, Y.; Podolyák, Zs.; Pougheon, F.; Poves, A.; Roussel-Chomaz, P.; Saint-Laurent, M. G.; Stanoiu, M.; Stefan, I.

    2012-02-01

    The structure of the 44S nucleus has been studied at GANIL through the one proton knock-out reaction from a 45Cl secondary beam at 42 A·MeV. The γ rays following the de-excitation of 44S were detected in flight using the 70 BaF2 detectors of the Château de Cristal array. An exhaustive γγ-coincidence analysis allowed an unambiguous construction of the level scheme up to an excitation energy of 3301 keV. The existence of the spherical 22+ state is confirmed and three new γ-ray transitions connecting the prolate deformed 21+ level were observed. Comparison of the experimental results to shell model calculations further supports a prolate and spherical shape coexistence with a large mixing of states built on the ground state band in 44S.

  10. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  11. Enhanced Raman spectroscopic study of rotational isomers on metal surfaces

    NASA Technical Reports Server (NTRS)

    Loo, B. H.; Lee, Y. G.; Frazier, D. O.

    1986-01-01

    Surfaced-enhanced Raman spectroscopy has been used to study rotational isomers of succinonitrile and N-methyl-thioacetamide on Cu and Ag surfaces. Both the gauche and trans conformers of succinonitrile are found to chemisorb on the metal surface. The doubly degenerate nu(C-triple bond-N) in the free molecules is removed when succinonitrile adsorbs on copper, which indicates that the two (C-triple bond-N) groups are no longer chemically equivalent. Both conformers are found to coordinate to the copper surface through the pi system of one of the two (C-triple bond-N) groups. In the case of N-methyl-thioacetamide, the population of the cis isomer is greatly increased on Cu and Ag surfaces. This is probably due to surface-induced cis-trans isomerization, in which the predominant trans isomer is converted to the cis isomer.

  12. Phosphonic drugs: Experimental and theoretical spectroscopic studies of fosfomycin

    NASA Astrophysics Data System (ADS)

    Chruszcz-Lipska, Katarzyna; Zborowski, Krzysztof K.; Podstawka-Proniewicz, Edyta; Liu, Shaoxuan; Xu, Yizhuang; Proniewicz, Leonard M.

    2011-02-01

    pH and time-dependant changes of fosfomycin molecular structure in an aqueous solution are studied by Raman, NMR, and generalized 2D correlation spectroscopies. Interpretation of the experimental spectra is based on the assumption of formation of different species running on applied physicochemical conditions. Geometries of all possible structures were entirely optimized with the 6-311++G(2df,p) basis set at the B3LYP theoretical level using procedures implemented in the Gaussian '03 set of programs. Harmonic frequency calculations verified the nature of the studied structures and allowed to simulate obtained Raman spectra. The theoretical NMR shielding was calculated using the GIAO method at the same computational level. In addition, in some cases PCM model was used to monitor the influence of water molecules on the NMR spectra. It is shown that in the pH range of 1-2 of fosfomycin aqueous solution oxirane ring is open sequent to nucleophilic attack and forms 1,2-dihydroxyphosphonic acid with small content of its monodeprotonated species. On the other hand, in pH 7 and higher it appears either as 1,2-epoxypropylphosphonic or 1,2-dihydroxyphosphonic dianion depending upon whether hydrolysis took place or not. It is also discussed that Raman marker bands originating from the individual species of fosfomycin can be used to detect and/or to monitor this antibiotic in an aqueous medium (for example urine samples). Hence, depending upon the structure found in urine one can tell about metabolic processes of this antibiotic in the body.

  13. Raman spectroscopic study of ancient South African domestic clay pottery.

    PubMed

    Legodi, M A; de Waal, D

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al2Si2O5(OH)5), illite (KAl4(Si7AlO20)(OH)4), feldspar (K- and NaAlSi3O8), quartz (alpha-SiO2), hematite (alpha-Fe2O3), montmorillonite (Mg3(Si,Al)4(OH)2 x 4.5 5H(2)O[Mg]0.35), and calcium silicate (CaSiO3). Gypsum (CaSO4 x 2H2O) and calcium carbonates (most likely calcite, CaCO3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO(2)) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 degrees C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively. PMID:16839805

  14. Raman spectroscopic studies of carbon in extra-terrestrial materials

    NASA Technical Reports Server (NTRS)

    Macklin, John; Brownlee, Donald; Chang, Sherwood; Bunch, Ted

    1990-01-01

    The measurements obtained here indicate ways in which micro-Raman spectroscopy can be used to elucidate structural characteristics and distribution of carbon in meteorites and interplanetary dust particles (IDPs). Existing information about structurally significant aspects of Raman measurements of graphite is combined with structurally relevant findings from the present micro-Raman studies of carbons prepared by carbonization of polyvinylidine chloride (PVDC) at various temperatures and natural material, as well as several acid residues from the Allende and Murchison meteorites in order to establish new spectra-structure relationships. Structural features of many of the materials in this study have been measured by x ray analysis and electron microscopy: thus, their structural differences can be directly correlated with differences in the Raman spectra. The spectral parameters consequently affirmed as indicators of structure are used as a measure of structure in materials that have unknown carbon structure, especially IDPs. The unique applicability of micro-Raman spectroscopy is realized not only in the ability to conveniently measure spectra of micron-size IDPs, but also micro-sized parts of an inhomogeneous material. Microcrystalline graphite is known to give Raman spectra that differ dependent on crystallite size (see e.g., Lespade, et. al., 1984, or Nemanich and Solin, 1979). The spectral changes that accompany decreasing particle size include increase in the ratio (R) of the intensity of the band near 1350 cm(-1) (D band) to that of the band near 1600 cm(-1) (G band) increase in the half width of the D band (wD) increase in the frequency maximum of the G band and increase in the half-width (wG) of the 2nd order band near 2700 cm(-1) (G) band.

  15. Acidic properties of sulfated zirconia: An infrared spectroscopic study

    SciTech Connect

    Babou, F.; Coudurier, G.; Vedrine, J.C.

    1995-04-01

    Sulfated zirconia with S content of 2 wt.% equivalent to complete coverage of its surface was studied by infrared spectroscopy. At least four sulfated species were identified and exhibited an important and reversible sensitivity to water. These equilibria were demonstrated to exist by the study of adsorption of incremental amounts of water. D{sub 2}O and H{sub 2}{sup 18}O isotopically enriched water molecules were used to assist interpretation of IR spectra. To characterize acidity features, the probe molecules butane, CO, and H{sub 2}O (as weak bases) or pyridine (as a strong base) were adsorbed. Two Lewis acid sites (L{sub 1} and L{sub 2}) were observed and one Bronsted site (B) related to the zirconia support (L{sub 1}) and the sulfated species (L{sub 2}, B). They were evidenced by pyridine adsorption which was shown to partly displace adsorbed sulfate species. With the help of previous theoretical calculations using an ab initio method and representing the zirconia surface by a mononuclear zirconium complex, it is emphasized that the sulfated zirconia can be visualized as a H{sub 2}SO{sub 4} compound grafted onto the surface of zirconia in a way which makes it very sensitive to water but in a reversible way. Its acidity is similar to that of sulfuric acid but it is not really superacidic. Comparison with other oxides leads us to suggest that the cationic charge borne by the metallic cation is of prime importance for the acidity strength. The role of water on the acidic and catalytic properties for n-butane isomerization reaction is emphasized. 33 refs., 11 figs., 2 tabs.

  16. Spectroscopic study of dinitrophenol herbicide sorption on smectite.

    PubMed

    Johnston, C T; Sheng, G; Teppen, B J; Boyd, S A; de Oliveira, M F

    2002-12-01

    Sorption of two dinitrophenolic herbicides, 4,6-dinitro-o-cresol (DNOC) and 4,6-dinitro-2-sec-butylphenol (DINOSEB) to smectite was studied using FTIR, HPLC, and quantum chemical methods. The high affinity of DNOC and DINOSEB for smectite surfaces was attributed to site-specific interactions with exchangeable cations and nonspecific van der Waals interactions with the siloxane surface. The positions of the nu(asym)(NO) and nu(sym)(NO) vibrational modes were perturbed by the exchangeable cations with similar changes occurring for both alkali and alkaline earth cations as a function of ionic potential. The cation-induced changes to the vibrational bands of the NO2 groups indicate that exchangeable metal cations are coordinated to -NO2 groups. Quantum chemical methods predicted a red-shift of the nu(asym)(NO) band and a corresponding blue-shift of the nu(sym)(NO) modes, as was observed experimentally. The nature of the smectite surface itself did not strongly influence the vibrational modes of sorbed DNOC or DINOSEB on the basis of a comparison of DNOC sorbed to three different smectites (K-SWy-2, K-SAz-1, and K-SHCa-1). FTIR spectra of DNOC and DINOSEB sorbed to a K-SWy-2 smectite were studied quantitatively using a modified form of Beers law. The FTIR-derived sorption isotherm of DNOC sorbed to K-SWy-2 was in good agreement with the isotherm derived from HPLC measurements. The molar absorptivity value of DNOC sorbed to K-SWy-2 smectite was 1.43 x 10(7) cm2/mol in good agreement with literature values for nitroaromatics (average value of 1.72 x 10(7) +/- 0.3 cm2/mol). On the basis of this value, the limit of detection using the FTIR method of approximately 5 microgDNOC g(clay) was determined. These two observations (sorption isotherms and molar absorptivity) provide a direct link between the macroscopic sorption results and the FTIR spectra. PMID:12523422

  17. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  18. Spectroscopic studies of refractory and dielectric thin films

    SciTech Connect

    Truong, C.M.

    1993-01-01

    This work demonstrated the application of the techniques and methodology of surface science to investigate the mechanisms of thin film deposition processes on solid surfaces. The synthesis of boron nitride (BN) thin films was studied using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). In this model system, diborane (B[sub 2]H[sub 6]), ammonia (NH[sub 3]) and hydrazine (N[sub 2]H[sub 4]) were used as precursors to deposit BN thin films on a clean Ru(0001) surface. The result showed that ammonia reaction with diborane yielded only boron-rich boron nitride overlayers. However, stoichiometric BN films in excess of one monolayer could be produced when hydrazine was substituted for ammonia. The effects of oxygen on boron-rich and stoichiometric boron-nitrogen films were also examined. In the second part of this work, high resolution electron energy loss spectroscopy (HREELS) was used to characterize defect centers in MgO and in lithium-doped MgO thin films. The HREELS results showed that MgO thin films grown on Mo(100) were nearly defect-free at temperatures up to 1100 K. HREELS measurements indicated that annealings to higher temperatures induced F-type defect centers in the MgO films. The formation of [Li[sup +]O[sup [minus

  19. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  20. Spectroscopic studies on the antioxidant activity of ellagic acid.

    PubMed

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-15

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTS+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties. PMID:24813273

  1. HPLC assisted Raman spectroscopic studies on bladder cancer

    NASA Astrophysics Data System (ADS)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  2. High resolution spectroscopic study of BeΛ10

    DOE PAGESBeta

    Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; et al

    2016-03-10

    Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less

  3. Spectroscopic Studies of Azul Maya: Novel Organic/Inorganic Complexes

    NASA Astrophysics Data System (ADS)

    Reza, Layra; Manciu, Felicia; Torres, Brenda; Polette, Lori; Chianelli, Russell

    2006-10-01

    Maya pigments are novel organic/inorganic hybrid materials with multiple technological applications. The materials are surface compounds formed by heating an organic molecule such as indigo with an inorganic compound such as palygorskite, which is a common clay. The organic molecule upon heating forms a strong interaction with the clay surface stabilizing both entities. This strong interaction is exhibited through a color change from deep blue to the well-known Maya Blue indicating an exchange of electron density at the surface. Analysis by infrared absorption and Raman spectroscopy demonstrate the disappearance of nitrogen-hydrogen (N-H) bonding, as the indigo molecule incorporates into the inorganic palygorskite material. Infrared data confirm the loss of zeolitic water and a partial removal of structural water after the heating process. Carbon and oxygen studies at Stanford Synchrotron Radiation Laboratory by X-Ray photoemission spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS), respectively, suggest possible cationic (Al^+3) bonding of the organic molecule to palygorskite compound.

  4. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  5. Synthesis, growth and vibrational spectroscopic study of a novel coumarinoylthiazole.

    PubMed

    Reshmy, R; Sajan, D; Kurien Thomas, K; Sulekha, A; Rajasekharan, K N; Selvanayagam, S; Alver, O

    2012-11-01

    An efficient route was developed for the synthesis of novel 3-(2-morpholinyl-4-phenylthiazol-5-oyl)coumarin (MPTC). FT-IR spectrum of MPTC was recorded and analyzed. The crystal structure data are also described. The vibrational wavenumbers were computed theoretically using the Gaussian03 package of programs using HF/6-31G(d) and B3LYP/6-31G(d) levels of theory. The data obtained from vibrational wave number calculations are used to assign vibrational bands observed in the infrared spectra of MPTC. The first hyperpolarizability, infrared absorption band intensities and intensities of raman active bands are reported. The calculated first hyperpolarizability is comparable with the values reported for compounds of similar structure. The structural parameters of MPTC obtained from XRD studies are in agreement with the calculated values. The unit cell parameters of crystals of MPTC are: a=8.6017(10)Å, b=9.9735(5)Å, c=13.3870(13)Å, α=111.123(6)°, β=90.102(9)°, γ=110.246(6)°, and Z=2,1.397 Mg/m(3). PMID:22940047

  6. Vibrational spectroscopic study of hydroxylpyromorphite-hydroxylmimetite solid solutions

    NASA Astrophysics Data System (ADS)

    Kwaśniak-Kominek, Monika; Matusik, Jakub; Bajda, Tomasz; Manecki, Maciej

    2013-04-01

    Hydroxylpyromorphite Pb5(PO4)3OH and hydroxylmimetite Pb5(AsO4)3OH minerals belong to the apatite supergroup. Their structure allows isomorphous substitutions in both cationic and anionic positions. They are isostructural with pyromorphite Pb5(PO4)3Cl and mimetite Pb5(AsO4)3OH which are the end products of in situ phosphate induced remediation of soils polluted with heavy metals e.g. lead. The research objective was to synthesize and characterize the members of above mentioned solid solution. The minerals were synthesized at room temperature and analyzed by X-Ray diffraction and Infrared spectroscopy (FTIR-DRIFT). The product syntheses was crystalline phase without any impurities within the detection limit of XRD. Shifts of certain diffraction peaks were observed in solid solution series due to replacement PO4 after AsO4. The bands v3 and v4 attributed to vibrations in the PO4 and AsO4 tetrahedra appear at 1050-790 and 580-534 cm-1. Due to difference in atomic mass of P and As as well as bonding strength of P-O and As-O the skeletal bands shift to lower wavenumbers with the increase of AsO4 substitution. The correlation between the position of vibrational modes and the chemical composition is observed. The OH stretching mode in the FTIR spectra appears in the range of 3765-3552 cm-1 as a sharp band for the end members of the solid solution. For the intermediate minerals the OH band becomes complex. The analysis of deconvoluted OH bands indicated several vibrational modes which suggested a significant change of OH group local environment induced by substitutions. The study was supported by the AGH University of Science and Technology (Krakow, Poland) as the research project No. 307 473 638.

  7. Electrostatic Interactions of Fluorescent Molecules with Dielectric Interfaces Studied by Total Internal Reflection Fluorescence Correlation Spectroscopy

    PubMed Central

    Blom, Hans; Hassler, Kai; Chmyrov, Andriy; Widengren, Jerker

    2010-01-01

    Electrostatic interactions between dielectric surfaces and different fluorophores used in ultrasensitive fluorescence microscopy are investigated using objective-based Total Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS). The interfacial dynamics of cationic rhodamine 123 and rhodamine 6G, anionic/dianionic fluorescein, zwitterionic rhodamine 110 and neutral ATTO 488 are monitored at various ionic strengths at physiological pH. As analyzed by means of the amplitude and time-evolution of the autocorrelation function, the fluorescent molecules experience electrostatic attraction or repulsion at the glass surface depending on their charges. Influences of the electrostatic interactions are also monitored through the triplet-state population and triplet relaxation time, including the amount of detected fluorescence or the count-rate-per-molecule parameter. These TIR-FCS results provide an increased understanding of how fluorophores are influenced by the microenvironment of a glass surface, and show a promising approach for characterizing electrostatic interactions at interfaces. PMID:20386645

  8. Spectroscopic study of the microbial community in chemocline zones of relic meromictic lakes separating from the White Sea

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Krasnova, Elena D.; Voronov, Dmitry A.; Patsaeva, Svetlana V.

    2015-03-01

    As a result of a recent years study on the Karelia shore of the White Sea more than ten relict lakes in different stages of separation from the sea have been discovered. Five of them are located close to the Nikolai Pertsov White Sea Biological Station of Moscow State University. Such separated lakes are interesting to explore for their firm vertical stratification. Water layers differ not only by temperature, salinity and other physic and chemical characteristics and optical properties, but also by ibhabiting microorganisms and by the quality of dissolved organic matter. To study phototropic organisms in water sampled from different depths we used spectroscopic techniques. Identification of the main bands in the absorption and fluorescence spectra showed that there are two main groups of photosynthetic organisms in the redox zone (chemocline): unicellular algae containing chlorophyll a and green sulfur bacteria with bacteriochlorophylls c, d, e. Spectral data were compared with physical and chemical characteristics of the water layer (temperature, salinity, pH, dissolved oxygen and sunlight illumination at certain depth). It gave an opportunity to compare vertical profiles of oxygen and hydrogen sulphide concentration with the number and distribution of oxygenic and anoxygenic phototrophic microorganisms. Maximum abundance of both algae and green sulfur bacteria were achieved within the redox zone. Typical thickness of the layer with the highest concentration of microorganisms did not exceed 10-20 cm.

  9. Molecular modeling and spectroscopic studies on the interaction of the chiral drug venlafaxine hydrochloride with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Hadidi, Saba

    2014-03-01

    This study was designed to examine the interaction of racemic antidepressant drug "S,R-venlafaxine hydrochloride (VEN)" with bovine serum albumin (BSA) under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques combination with molecular modeling. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. The thermodynamic parameters indicated that the hydrogen bonding and weak van der Waals interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, VEN was confirmed to be located in subdomain IIIA of BSA. The binding distance (r = 4.93 nm) between the donor BSA and acceptor VEN was obtained according to Förster's non-radiative energy transfer theory. According to UV-vis spectra and CD data binding of VEN leaded to conformational changes of BSA. Molecular docking simulations of S and R-VEN revealed that both isomers have similar interaction and the same binding sites, from this point of view S and R isomers are equal.

  10. Spectroscopic studies of molybdenum complexes as models for nitrogenase

    SciTech Connect

    Walker, T.P.

    1981-05-01

    Because biological nitrogen fixation requires Mo, there is an interest in inorganic Mo complexes which mimic the reactions of nitrogen-fixing enzymes. Two such complexes are the dimer Mo/sub 2/O/sub 4/ (cysteine)/sub 2//sup 2 -/ and trans-Mo(N/sub 2/)/sub 2/(dppe)/sub 2/ (dppe = 1,2-bis(diphenylphosphino)ethane). The H/sup 1/ and C/sup 13/ NMR of solutions of Mo/sub 2/O/sub 4/(cys)/sub 2//sup 2 -/ are described. It is shown that in aqueous solution the cysteine ligands assume at least three distinct configurations. A step-wise dissociation of the cysteine ligand is proposed to explain the data. The Extended X-ray Absorption Fine Structure (EXAFS) of trans-Mo(N/sub 2/)/sub 2/(dppe)/sub 2/ is described and compared to the EXAFS of MoH/sub 4/(dppe)/sub 2/. The spectra are fitted to amplitude and phase parameters developed at Bell Laboratories. On the basis of this analysis, one can determine (1) that the dinitrogen complex contains nitrogen and the hydride complex does not and (2) the correct Mo-N distance. This is significant because the Mo inn both complexes is coordinated by four P atoms which dominate the EXAFS. A similar sort of interference is present in nitrogenase due to S coordination of the Mo in the enzyme. This model experiment indicates that, given adequate signal to noise ratios, the presence or absence of dinitrogen coordination to Mo in the enzyme may be determined by EXAFS using existing data analysis techniques. A new reaction between Mo/sub 2/O/sub 4/(cys)/sub 2//sup 2 -/ and acetylene is described to the extent it is presently understood. A strong EPR signal is observed, suggesting the production of stable Mo(V) monomers. EXAFS studies support this suggestion. The Mo K-edge is described. The edge data suggests Mo(VI) is also produced in the reaction. Ultraviolet spectra suggest that cysteine is released in the course of the reaction.

  11. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    SciTech Connect

    Gindt, Y.M.

    1993-04-01

    The role of the L{sub cm} (I), {beta}{sup 18} (II), and {alpha}{sup AP-B} (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A{sub max} = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  12. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    SciTech Connect

    Gindt, Y.M.

    1993-04-01

    The role of the L[sub cm] (I), [beta][sup 18] (II), and [alpha][sup AP-B] (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A[sub max] = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  13. A spectroscopic and dynamical study of binary and other Cepheids

    NASA Astrophysics Data System (ADS)

    Petterson, Orlon King Lee

    High resolution observations have been made of a number of southern Cepheids to make an observational and theoretical study of Cepheid variables using radial velocities. The stars studied were part of a long term programme to observe southern variable stars, from which a valuable database of radial velocities gathered over a long period were available. Sixteen échelle spectrograph orders in the wavelength region 5400 - 8600Å were used, which included a number of absorption lines covering a range of species and excitation potentials. The line bisector technique was used to measure stellar and telluric lines and to obtain radial velocities. To improve the precision of the radial velocities we used telluric lines to calibrate the observations to a common reference frame. The radial velocities have a precision of ~300ms-1 allowing the detection of velocity differences of ~1 kms-1 with confidence. The radial velocity data obtained at Mount John University Observatory (MJUO) was combined with data from various sources to determine the orbits of any Cepheids exhibiting orbital motion. The various orbital parameters were determined for a number of systems and where radial velocities for the companions exist, some estimate of the mass was made. The precision of the radial velocities obtained from MJUO also allowed us to search for line level effects for a number of species among the Cepheid spectra. A number of IAU standard stars were observed to calibrate the radial velocities obtained at MJUO to the IAU standard scale. The radial velocities from MJUO were found not to differ significantly from the IAU values. Binary Cepheids are particularly useful in the determination of Cepheid masses, which are still an active topic for astronomical research. The value of the MJUO data was that it provided a consistent set of data against which other sources of data could be compared. For 8 of the Cepheids new or improved orbital solutions were found. They are Y Car, YZ Car, AX Cir

  14. Europium Uptake and Partitioning in Oat (Avena sativa) Roots as studied By Laser-Induced Fluorescence Spectroscopy and Confocal Microscopy Profiling Technique

    SciTech Connect

    Fellows, Robert J.; Wang, Zheming; Ainsworth, Calvin C.

    2003-11-15

    The uptake of Eu3+ by elongating oat plant roots was studied by fluorescence spectroscopy, fluorescence lifetime measurement, as well as laser excitation time-resolved confocal fluorescence profiling technique. The results of this work indicated that the initial uptake of Eu(III) by oat root was most evident within the apical meristem of the root just proximal to the root cap. Distribution of assimilated Eu(III) within the roots differentiation and elongation zone was non-uniform. Higher concentrations were observed within the vascular cylinder, specifically in the phloem and developing xylem parenchyma. Elevated levels of the metal were also observed in the root hairs of the mature root. The concentration of assimilated Eu3+ dropped sharply from the apical meristem to the differentiation and elongation zone and then gradually decreased as the distance from the root cap increased. Fluorescence spectroscopic characteristics of the assimilated Eu3+ suggested that the Eu3+ exists a s inner-sphere mononuclear complexes inside the root. This work has also demonstrated the effectiveness of a time-resolved Eu3+ fluorescence spectroscopy and confocal fluorescence profiling techniques for the in vivo, real-time study of metal[Eu3+] accumulation by a functioning intact plant root. This approach can prove valuable for basic and applied studies in plant nutrition and environmental uptake of actinide radionuclides.

  15. Quantitative photoabsorption and fluorescence study of HCl in vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Nee, J. B.; Suto, M.; Lee, L. C.

    1986-01-01

    The photoabsorption and fluorescence cross sections of HCl were measured in the 106-185 nm region. Sharp absorption bands appear at wavelengths shorter than 135 nm, and fluorescence occurs at several excited states. The fluorescence cross sections are generally quite small, indicating that the excited states are strongly predissociative. The molecular processes for producing the VUV and UV fluorescences are investigated, and the Rydberg characteristics of the strong absorption bands are discussed.

  16. Spectroscopic study of some diatomic molecules via the proper quantization rule

    NASA Astrophysics Data System (ADS)

    Falaye, B.

    Spectroscopic techniques are very essential tools in studying electronic structures, spectroscopic constants and energetic properties of diatomic molecules. These techniques are also required for parametrization of new method based on theoretical analysis and computational calculations. In this research, we apply the proper quantization rule in spectroscopic study of some diatomic molecules by solving the Schrödinger equation with two solvable quantum molecular systems-Tietz-Wei and shifted Deng-Fan potential models for their approximate nonrelativistic energy states via an appropriate approximation to the centrifugal term. We show that the energy levels can be determined from its ground state energy. The beauty and simplicity of the method applied in this study is that, it can be applied to any exactly as well as approximately solvable models. The validity and accuracy of the method is tested with previous techniques via numerical computation for H2 and CO diatomic molecules. The result also include energy spectrum of 5 different electronic states of NO and 2 different electronic state of ICl.

  17. Studies of new two-photon fluorescent probes suitable for multiphoton microscopy in biological settings

    NASA Astrophysics Data System (ADS)

    Gvishi, Raz; Berkovic, Garry; Kotler, Zvi; Krief, Pnina; Shapiro, Lev; Klug, Jacob T.; Skorka, Jacqueline; Khodorkovsky, Vladimir

    2003-11-01

    Multi-Photon Laser Scanning Microscopy (MPLSM) requires efficient two-photon absorbing fluorescent (TPF) probes. In particular, probes exhibiting bio-functionality are very attractive for MPLSM studies of biological samples. We have synthesized and studied a new class of TPF probes capable of caging metal ions, such as Ca+2 and Na+, which play an important role in neuronal mechanisms. The TPF probes are based on a tetraketo derivative with a symmetric Donor-Acceptor-Donor (D-A-D) structure. The donor is an azacrown moiety, which also serves as a metal ion-caging unit. We studied the linear and the non-linear spectroscopic properties of these TPF probes as a function of conjugation length and the size of the crown ring. We find that this new class of TPF probes possesses very large two-photon excitation cross-section coefficients (~1000GM) at near IR wavelengths as well as affinity to metal ions. In the presence of changing sodium ion concentration the dye spectra reveals four distinguishable forms and the TPF efficiency changes strongly. We therefore conclude that the dye can perform as a sensitive metal ion TPF probe.

  18. Experimental and theoretical spectroscopic studies of dye modification in synthetic Maya Blue pigment

    NASA Astrophysics Data System (ADS)

    Reza, Layra; Manciu, Felicia; Ramirez, Alejandra; Chianelli, Russell

    2009-03-01

    Maya pigments are hybrid organic/inorganic materials with multiple technology applications that possess unprecedented stability with respect to harsh environment conditions. In this investigation, we address the question of how the organic indigo dye modifies as it binds to the inorganic palygorskite clay to form a pigment similar to Maya Blue after a heating treatment is applied. Both infrared and Raman spectroscopic data demonstrate the disappearance of nitrogen-hydrogen (N-H) bonding, as the indigo molecule incorporates into the inorganic palygorskite material. This effect suggests a transformation of the dye from indigo to dehydroindigo. Furthermore, the Raman and infrared absorption results demonstrate partial elimination of the selection rules for the centrosymmetric indigo, which provides further evidence for this conversion. Theoretical spectroscopic studies are also addressed in this investigation to confirm the transformation of the dye into dehydroindigo.

  19. A novel rhodamine-riboflavin conjugate probe exhibits distinct fluorescence resonance energy transfer that enables riboflavin trafficking and subcellular localization studies.

    PubMed

    Phelps, Mitch A; Foraker, Amy B; Gao, Wenqing; Dalton, James T; Swaan, Peter W

    2004-01-01

    Riboflavin (vitamin B2, RF) is taken up in eukaryotic cells via specialized transport mechanisms. Although RF has fluorescence properties, direct microscopic visualization of RF uptake and trafficking has been complicated by cellular autofluorescence. We describe the synthesis, cellular uptake characteristics, and spectroscopic properties of a novel rhodamine-riboflavin conjugate (RD-RF), including absorption and emission spectra, two-photon excitation spectra, and fluorescence pH dependence. The conjugate has a molar extinction coefficient of 23 670 M(-1) cm(-1) at 545 nm (excitation wavelength) with a fluorescence quantum yield of 0.94. This compound exhibits intramolecular fluorescence resonance energy transfer (FRET). Selective quenching of the FRET signal is observed when RD-RF is bound with high affinity by the chicken riboflavin carrier protein. In addition to the typical rhodamine excitation and emission, FRET provides a secondary signal for conjugate localization and an in situ mechanism for observing riboflavin binding. Solution and in vitro stability determinations indicate that the linkage between riboflavin and rhodamine is stable for the duration of typical pulse--chase and cellular trafficking experiments. The distinct spectroscopic properties of RD-RF together with a comparable affinity for RF-binding proteins render it an excellent tool for the study of RF transport and trafficking in living cells. PMID:15981585

  20. Theoretical and experimental study of fiber-optic fluorescence immunosensors

    NASA Astrophysics Data System (ADS)

    Cao, He

    This dissertation investigates the optical detection of antigens (in this case, food pathogens such as Salmonella) with fiber-optic immunosensors. The major techniques used for this optical detection include: (1)Linking the antigens to some physical tracers that can be optically detected; (2)Collecting and transmitting the optical signal to an optical detector. From an optical point of view, the problem is a nonimaging-optics problem to collect a fluorescent signal from an extended Lambertian source and deliver it to an optical detection system with maximum energy transfer and distinct wavelength separation. A raytrace model of the optical detection system was used for numerical simulations to analyze and optimize the optical design. The result leads to an improvement of the optical detection. Related physical problems such as magnetic focusing effect, fluorescence detection, and wavelength separation have also been studied in detail. With the adoption of a single-step immunomagnetic assay, experimental studies have been conducted for the detection of Salmonella, with a dual- fiber optical probe and tapered tubular waveguide probes. The test results have shown that the detection system gives detection limit of approximately 106 CFU/ml with dual-fiber optical probes, and 105 CFU/ml with improved tubular waveguide probes. The system developed for this research project is designed as a cost-effective portable instrument that may be used for field-testing. Rapid and on-site detection, low cost instrumentation and a reusable optical probe have been emphasized throughout the study.

  1. Fluorescence spectroscopy as a specific tool for the interaction study of two surfactants with natural and synthetic organic compounds

    NASA Astrophysics Data System (ADS)

    Jung, Aude-Valérie; Frochot, Céline; Bersillon, Jean-Luc

    2016-04-01

    Four different techniques were used to study the binding of cationic cetyltrimethylammonium bromide (CTAB) and non-ionic nonylphenylethoxyl (NPE) surfactants to three synthetic organic components that mimic humic-like aggregates and to two natural aggregated humic substances (HS) extracted from aquatic suspended matter. The composition of synthetic organic components were chosen to be similar to high molecular weight highly processed terrigenous HS and low and high molecular weight less processed terrigenous (or aquatic terrigenous) HS. The natural HS were extracted under two different meteorological conditions (rainy and dry periods). No significant interaction between the non-ionic surfactant and any of the studied compounds was found. Concerning CTAB; pH, conductivity and turbidity measurements, along with fluorescence spectroscopy were combined to provide a better understanding of interactions between organic aggregates and the surfactant. The spectroscopic data show that a "highly processed terrigenous HS" fluorophore interacts in a different way with the cationic surfactant than an "aquatic terrigenous (or less processed terrigenous) HS" fluorophore does. Under similar conditions, some spectral changes in the fluorescence signal are correlated to changes in non-specific physical-chemical parameters (pH, turbidity, conductivity) for the organic compounds tested. The complexation mechanism is essentially governed by charge neutralization, which can be monitored specifically by the fluorescence of the organic moieties.

  2. Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study.

    PubMed

    Moradi, M; Divsalar, A; Saboury, A A; Ghalandari, B; Harifi, A R

    2015-01-01

    Deferasirox (DFX), as an oral chelator, is used for treatment of transfusional iron overload. In this study, we have investigated the effects of DFX as an iron chelator, on the function and structure of bovine liver catalase (BLC) by different spectroscopic methods of UV-visible, fluorescence, and circular dichroism (CD) at two temperatures of 25 and 37 °C. In vitro kinetic studies showed that DFX can inhibit the enzymatic activity in a competitive manner. KI value was calculated 39 nM according to the Lineweaver-Burk plot indicating a high rate of inhibition of the enzyme. Intrinsic fluorescence data showed that increasing the drug concentrations leads to a significant decrease in the intrinsic emission of the enzyme indicating a significant change in the three-dimensional environment around the chromophores of the enzyme structure. By analyzing the fluorescence quenching data, it was found that the BLC has two binding sites for DFX and the values of binding constant at 25 and 37 °C were calculated 1.7 × 10(7) and 3 × 10(7) M(-1), respectively. The static type of quenching mechanism is involved in the quenching of intrinsic emission of enzyme. The thermodynamic data suggest that hydrophobic interactions play a major role in the binding reaction. UV-vis spectroscopy results represented the changes in tryptophan (Trp) absorption and Soret band spectra, which indicated changes in Trp and heme group position caused by the drug binding. Also, CD data represented that high concentrations of DFX lead to a significant decreasing in the content of β-sheet and random coil accompanied an increasing in α-helical content of the protein. The molecular docking results indicate that docking may be an appropriate method for prediction and confirmation of experimental results and also useful for determining the binding mechanism of proteins and drugs. According to above results, it can be concluded that the DFX can chelate the Fe(III) on the enzyme active site leading

  3. A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach.

    PubMed

    Ranjan, Shivendu; Dasgupta, Nandita; Srivastava, Priyanka; Ramalingam, Chidambaram

    2016-08-01

    The use of nanoparticles in food or pharma requires a molecular-level perceptive of how NPs interact with protein corona once exposed to a physiological environment. In this study, the conformational changes of bovine serum albumin (BSA) were investigated in detail when exposed to different concentration of titanium dioxide nanoparticle by various techniques. To analyze the effects of NPs on proteins, the interaction between bovine serum albumin and titanium dioxide nanoparticles at different concentrations were investigated. The interaction, BSA conformations, kinetics, and adsorption were analyzed by dynamic light scattering, Fourier transform infrared spectroscopy and fluorescence quenching. Dynamic light scattering analysis confirms the interaction with major changes in the size of the protein. Fluorescence quenching analysis confirms the side-on or end-on interaction of 1.1 molecules of serum albumin to titanium dioxide nanoparticles. Further, pseudo-second order kinetics was determined with equilibrium contact time of 20min. The spectroscopic analysis suggests that there is a conformational change both at secondary and tertiary structure levels. A distortion in both α-helix and β-sheets was observed by Fourier transform infrared (FTIR) spectroscopy. Fluorescence quenching analysis confirms the interaction of a molecule of bovine serum albumin to the single TiO2 nanoparticle. Further, pseudo-second order kinetics was determined with equilibrium contact time of 20min. The data of the present study determines the detailed evaluation of BSA adsorption on TiO2 nanoparticle along with mechanism and adsorption kinetics. PMID:27318604

  4. Fluorescence Imaging Study of Transition in Underexpanded Free Jets

    NASA Technical Reports Server (NTRS)

    Wilkes, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.

    2005-01-01

    Planar laser-induced fluorescence (PLIF) is demonstrated to be a valuable tool for studying the onset of transition to turbulence. For this study, we have used PLIF of nitric oxide (NO) to image underexpanded axisymmetric free jets issuing into a low-pressure chamber through a smooth converging nozzle with a sonic orifice. Flows were studied over a range of Reynolds numbers and nozzle-exit-to-ambient pressure ratios with the aim of empirically determining criteria governing the onset of turbulence. We have developed an image processing technique, involving calculation of the standard deviation of the intensity in PLIF images, in order to aid in the identification of turbulence. We have used the resulting images to identify laminar, transitional and turbulent flow regimes. Jet scaling parameters were used to define a rescaled Reynolds number that incorporates the influence of a varying pressure ratio. An empirical correlation was found between transition length and this rescaled Reynolds number for highly underexpanded jets.

  5. A photoelectron spectroscopic and computational study of the o-dicarbadodecaborane parent anion

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Bowen, Kit

    2016-06-01

    We report a combined photoelectron spectroscopic and computational study of the o-dicarbadodecaborane (o-carborane) parent anion, (C2B10H12)-. Previous studies that focused on the electrophilic nature of o-carborane led to tantalizing yet mixed results. In our study, we confirmed that o-carborane does in fact form a parent anion and that it has considerable stability. This anion is an isomer ("Anion iso 2") where unlike in neutral o-carborane, the two carbon atoms are not bound.

  6. A photoelectron spectroscopic and computational study of the o-dicarbadodecaborane parent anion.

    PubMed

    Zhang, Xinxing; Bowen, Kit

    2016-06-14

    We report a combined photoelectron spectroscopic and computational study of the o-dicarbadodecaborane (o-carborane) parent anion, (C2B10H12)(-). Previous studies that focused on the electrophilic nature of o-carborane led to tantalizing yet mixed results. In our study, we confirmed that o-carborane does in fact form a parent anion and that it has considerable stability. This anion is an isomer ("Anion iso 2") where unlike in neutral o-carborane, the two carbon atoms are not bound. PMID:27306011

  7. Spectroscopic and Docking Studies on the Binding of Liquiritigenin with Hyaluronidase for Antiallergic Mechanism

    PubMed Central

    Zeng, Hua-jin; Yang, Ran; You, Jing; Qu, Ling-bo; Sun, Yan-jun

    2016-01-01

    The inhibitory effect of liquiritigenin on hyaluronidase and its binding mechanism were investigated systematically by UV-vis absorption, fluorescence, and molecular modeling approaches. These results indicated that liquiritigenin could interact with hyaluronidase to form a liquiritigenin-hyaluronidase complex. The binding constant, number of binding sites, and thermodynamic parameters were calculated, which indicated that liquiritigenin could spontaneously bind with hyaluronidase mainly through electrostatic and hydrophobic interactions with one binding site. Synchronous fluorescence, three-dimensional fluorescence, and molecular docking results revealed that liquiritigenin bound directly to the enzyme cavity site and this binding influenced the microenvironment of the hyaluronidase activity site, resulting in reduced hyaluronidase activity. The present study provides useful information for clinical applications of liquiritigenin as a hyaluronidase inhibitor. PMID:27313960

  8. Synthetic fluorescent probes for studying copper in biological systems

    PubMed Central

    Cotruvo, Joseph A.; Aron, Allegra T.; Ramos-Torres, Karla M.; Chang, Christopher J.

    2015-01-01

    The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals. PMID:25692243

  9. Novel Fe (III) heterochelates: Synthesis, structural features and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Modi, C. K.; Jani, D. H.; Patel, H. S.; Pandya, H. M.

    2010-04-01

    Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H 2SB n) and their Fe (III) heterochelates of the type [Fe(SB n)(L)(H 2O)]· mH 2O [H 2SB n = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = -CH 3, m = 4 ( H2SB1); -C 6H 5, m = 2 ( H2SB2); -CH 2-CH 3, m = 3 ( H2SB3); -CH 2-CH 2-CH 3, m = 1.5 ( H2SB4); -CH 2-C 6H 5, m = 1.5 ( H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction ( n), energy of activation ( Ea), entropy ( S*), pre-exponential factor ( A), enthalpy ( H*) and Gibbs free energy ( G*) have been reported.

  10. X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline.

    PubMed

    Mölders, N; Schilling, P J; Wong, J; Roos, J W; Smith, I L

    2001-08-01

    The elemental distribution and compositional homogeneity in auto exhaust particulates emitted from methylcyclopentadienyl manganese tricarbonyl-(MMT-)added gasoline engines have been investigated using a newly installed synchrotron X-ray microprobe. Two representative groups of exhaust particulate matter, as defined in a recent bulk X-ray absorption fine structure (XAFS) spectroscopic study at the Mn K-edge, were studied. The micro-X-ray absorption near-edge structure (XANES) spectra indicate a relatively homogeneous distribution of phases within a given particulate sample, down to a spatial extent of 40 microm (the resolution of microprobe). The micro-XANES also enabled analysis of several areas which displayed compositions different from the bulk sample, supporting the general theory describing manganese species formation in the exhaust. The ability to evaluate small regions also enabled direct verification of manganese sulfate from the S XANES despite the vast excess of sulfur present in other forms. The presence of a chloride compound, introduced through the sample dilution air and engine intake air, was also revealed. The study demonstrates the value of the combined X-ray microfluorescence with excitation by polychromatic radiation for elemental mapping and micro-XANES spectroscopy for chemical speciation in the study of dilute environmental materials containing low-Z constituents such as Cl, S, and P. PMID:11505987

  11. Fluorescence spectroscopic analysis of organic matter fractions: the current status and a tutorial case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of animal manures into soils is a key nutrient management strategy for sustainable agricultural systems by supplying plant nutrients and maintaining soil quality. Dissolved organic matter (DOM) released from manures affects many soil chemical processes due to its reactivity with soil ...

  12. On the interaction of doxorubicin with oleate ions: fluorescence spectroscopy and liquid-liquid extraction study.

    PubMed

    Munnier, Emilie; Tewes, Frédéric; Cohen-Jonathan, Simone; Linassier, Claude; Douziech-Eyrolles, Laurence; Marchais, Hervé; Soucé, Martin; Hervé, Katel; Dubois, Pierre; Chourpa, Igor

    2007-07-01

    Increase of lipophilicity of cationic doxorubicin (DOX) by its association with a fatty acid ion is of interest for pharmaceutical formulations and could have an impact on the drug delivery into cancer cells. On the basis of spectroscopic analysis of intrinsic DOX fluorescence, this study provides an experimental evidence of DOX-oleate interactions as function of ion/drug molar ratio (R) and pH. An electrostatic attraction to oleates is dominant for the cationic form of DOX (pH 6.5) and a hydrophobic interaction is characteristic of the molecular form of DOX (pH 8.6). A high content of sodium oleate vesicles ([oleate]>/=0.2 mM, R>/=20) limits the electrostatic and hydrophobic interactions at pH 6.5 while favoring the hydrophobic interactions at pH 8.6. The influence of these interactions on the lipophilicity of the cationic form of DOX is analyzed by measuring the apparent partition coefficient (aqueous buffer pH 6.5/methylene chloride). The results show a lipophilicity gain for the cationic form of DOX in presence of 10 : 1 ion/drug molar ratio, while no lipophilicity increase is observed at 50 : 1 molar ratio. PMID:17603190

  13. Study on fluorescence spectra of thiamine, riboflavin and pyridoxine

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Xiao, Xue; Zhao, Xuesong; Hu, Lan; Lv, Caofang; Yin, Zhangkun

    2016-01-01

    This paper presents the intrinsic fluorescence characteristics of vitamin B1, B2 and B6 measured with 3D fluorescence Spectrophotometer. Three strong fluorescence areas of vitamin B2 locate at λex/λem=270/525nm, 370/525nm and 450/525nm, one fluorescence areas of vitamin B1 locates at λex/λem=370/460nm, two fluorescence areas of vitamin B6 locate at λex/λem=250/370nm and 325/370nm were found. The influence of pH of solution to the fluorescence profile was also discussed. Using the PARAFAC algorithm, 10 vitamin B1, B2 and B6 mixed solutions were successfully decomposed, and the emission profiles, excitation profiles, central wavelengths and the concentration of the three components were retrieved precisely through about 5 iteration times.

  14. Absorption and Luminescence Studies of Some Highly Fluorescent Derivatives of Vitamin B1; Solvent and pH Effects

    NASA Astrophysics Data System (ADS)

    Marciniak, B.; Koput, J.; Kozubek, H.

    1990-08-01

    The influence of solvent on the UV-visible absorption and luminescence spectra of some highly fluorescent vitamin B1 derivatives, the products of the reaction of N-methylated vitamin B1 with cytidine (I), adenosine (II) and 2-amino-4-methylpyridine (III) is studied. Spectroscopic manifestations of protonation of I and II are also investigated using a semiempirical INDO/S CI method. Singlet and triplet energy levels of the free ion and several protonated species are calculated, and transition energies and oscillator strengths are compared with the experimental spectra. Calculated charge densities on heteroatoms in the ground and excited singlet and triplet states are correlated with changes of the experimental pKa values with excitation. The results for I and II are compared with those for the trimethylated pyrichrominium ion (III) previously studied

  15. Studies in atomic-fluorescence spectroscopy-V The fluorescence characteristics and determination of antimony.

    PubMed

    Dagnall, R M; Thompson, K C; West, T S

    1967-10-01

    Atomic-fluorescence of antimony may be generated in an air-propane flame by nebulizing aqueous solutions of antimony salts whilst irradiating the flame by means of a microwave-excited electrode-less discharge tube operating at 30 W. The strongest fluorescence is exhibited by the (4)S(11 2 ) --> (4)P(1 3 ) 2311 A resonance line and weaker signals are observed at the 2068 and 2176 A resonance lines and at four intercombination lines, at 2598, 2671, 2770 and 2878 A. A process of thermally assisted direct-line fluorescence is postulated to account for the otherwise inexplicable intensity of the 2598 A line emission. Atomic-fluorescence spectroscopy at 2176 A permits the determination of antimony in the range 0.1-120 ppm with a detection limit of 0.05 ppm. With the same equipment and source, the range of measurement for atomic-absorption was 6-120 ppm and the detection limit was 1 ppm. No interferences were observed from 100-fold molar amounts of Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, NH(4), Pb and Zn or from arsenate, chloride, nitrate, phosphate and sulphate. PMID:18960212

  16. Spectroscopic study of the C 1Σ+ state of 7LiH

    NASA Astrophysics Data System (ADS)

    Chen, Jye-Jong; Luh, Wei-Tzou; Jeung, Gwang-Hi

    1999-03-01

    Forty-two vibrational (v=2-43) levels of the 7LiH C 1Σ+ excited electronic state have been observed by a pulsed optical-optical double resonance fluorescence depletion spectroscopic technique. The absolute vibrational numbering of the C 1Σ+ state is identified with the measurements of the isotopic shifts between 7LiH and 6LiH among several rotation-vibration bands of the C 1Σ+-A 1Σ+ electronic system, and it is further demonstrated by the consistency between observed spectral intensities and calculated ones. The highest observed quasi bound rotational level for the v=43 level is J=8. The spectral term values for those vibrational levels lying above v=33 occur in an irregular order. The level of v=34 lies mainly in the inner, tiny well. The term values for the observed rovibrational levels (2⩽v⩽32, 0⩽J⩽11) in the outer ionic well are described by a set of Dunham-type coefficients, with which a Rydberg-Klein-Rees (RKR) potential energy curve is constructed. This RKR potential is combined with an ab initio potential to construct an effective hybrid potential. The calculated electronic transition moment function for the C-A transition is also given.

  17. Spectroscopic study of sub-barrier quasi-elastic nuclear reactions

    SciTech Connect

    Pass, C.N.; Evans, P.M.; Smith, A.E.; Stuttge, L.; Betts, R.R.; Lilley, J.S.; Connell, K.A.; Simpson, J.; Smith, J.R.; James, A.N.

    1988-01-01

    The technique developed in this paper is particularly well suited to the detailed spectroscopic study of low energy quasi-elastic nuclear reactions and by overcoming the limitations of conventional procedure, the prospect of detailed studies of inclusive reaction mechanism may be realised. With only limited statistics we find evidence for strong multistep character in the transfer of a single nucleon from spherical vibrational target to spherical projectile nuclei. The suggestive measurements reported here may be made definitive through extended runs based on this technique and experiments planned for the future offer the real prospect of developing a quantified interpretation of the reaction process. 9 refs. 5 figs.

  18. Accurate single-molecule FRET studies using multiparameter fluorescence detection.

    PubMed

    Sisamakis, Evangelos; Valeri, Alessandro; Kalinin, Stanislav; Rothwell, Paul J; Seidel, Claus A M

    2010-01-01

    In the recent decade, single-molecule (sm) spectroscopy has come of age and is providing important insight into how biological molecules function. So far our view of protein function is formed, to a significant extent, by traditional structure determination showing many beautiful static protein structures. Recent experiments by single-molecule and other techniques have questioned the idea that proteins and other biomolecules are static structures. In particular, Förster resonance energy transfer (FRET) studies of single molecules have shown that biomolecules may adopt many conformations as they perform their function. Despite the success of sm-studies, interpretation of smFRET data are challenging since they can be complicated due to many artifacts arising from the complex photophysical behavior of fluorophores, dynamics, and motion of fluorophores, as well as from small amounts of contaminants. We demonstrate that the simultaneous acquisition of a maximum of fluorescence parameters by multiparameter fluorescence detection (MFD) allows for a robust assessment of all possible artifacts arising from smFRET and offers unsurpassed capabilities regarding the identification and analysis of individual species present in a population of molecules. After a short introduction, the data analysis procedure is described in detail together with some experimental considerations. The merits of MFD are highlighted further with the presentation of some applications to proteins and nucleic acids, including accurate structure determination based on FRET. A toolbox is introduced in order to demonstrate how complications originating from orientation, mobility, and position of fluorophores have to be taken into account when determining FRET-related distances with high accuracy. Furthermore, the broad time resolution (picoseconds to hours) of MFD allows for kinetic studies that resolve interconversion events between various subpopulations as a biomolecule of interest explores its

  19. Diagnostic potential of fluorescence of formalin-fixed paraffin-embedded malignant melanoma and pigmented skin lesions: quantitative study of fluorescence intensity using fluorescence microscope and digital imaging.

    PubMed

    Chwirot, B W; Sypniewska, N; Swiatlak, J

    2001-12-01

    The background for this study was reports in the literature of stronger fluorescence observed visually for melanomas compared with benign naevi in formalin-fixed paraffin-embedded sections. Our objective was to carry out a quantitative study of the phenomenon and to investigate if such an approach could be used in the detection of melanomas. Microscopic digital imaging was used to measure quantitatively the fluorescence intensity in specimens from 50 malignant melanomas, four basal cell carcinomas and 58 benign lesions. The mean fluorescence intensity of the melanomas was considerably higher than of the other lesions. For melanomas, the intensity depended both on the distance from the skin surface and the distance from the centre of the lesion. A simple algorithm based on the intensity threshold correctly classified the melanomas with a sensitivity of 74% and a specificity of 59%. Quantitative measurements of the fluorescence of the pigmented skin lesions fixed with formalin and embedded in paraffin can be a useful auxiliary tool for differentiating melanoma from other pigmented lesions histopathologically. PMID:11725203

  20. Single-molecule fluorescence studies on DNA looping.

    PubMed

    Jeong, Jiyoun; Le, Tung T; Kim, Harold D

    2016-08-01

    Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks. PMID:27064000

  1. Counter tube window and X-ray fluorescence analyzer study

    NASA Technical Reports Server (NTRS)

    Hertel, R.; Holm, M.

    1973-01-01

    A study was performed to determine the best design tube window and X-ray fluorescence analyzer for quantitative analysis of Venusian dust and condensates. The principal objective of the project was to develop the best counter tube window geometry for the sensing element of the instrument. This included formulation of a mathematical model of the window and optimization of its parameters. The proposed detector and instrument has several important features. The instrument will perform a near real-time analysis of dust in the Venusian atmosphere, and is capable of measuring dust layers less than 1 micron thick. In addition, wide dynamic measurement range will be provided to compensate for extreme variations in count rates. An integral pulse-height analyzer and memory accumulate data and read out spectra for detail computer analysis on the ground.

  2. [Study on spectroscopic properties of Eu and Tb mixed solid complexes with a diamide ligand].

    PubMed

    Cui, Hai-xia; Chen, Jian-min; Zhou, Hui-di

    2008-08-01

    In the present work, Eu(NO3)3 and Tb(NO3)3 complexes with a diamide ligand 1,6-bis[(2'-benzylaminoformyl)phenoxyl]hexane (L) were prepared in the solution of chloroform and ethyl acetate. Their mixed complexes with different molar ratio also synthesized by coprecipitation. Eu and Tb complexes were mixed with different molar ratio, mechanically ground, and a series of mixed solid complexes were obtained. These mixed complexes were characterized by elemental analysis, UV-Vis, IR and XPS spectra. The analytical data were obtained by a Vario EL CHN and indicated that Eu and Tb complexes formed a 2:3 metal-to-ligand stoichiometries 2RE(NO3)3 x 3L x 4H2O. Their IR spectra were recorded on a Bruke FTS66V/S spectrophotometer. The results indicate that all complexes have similar IR spectra, of which the characteristic bands have similar shifts, suggesting that they have a similar coordination structure. UV-Vis spectra were recorded on a Hitachi U-3010 spectrophotometer and showed that under the influence of the mixed ions, the absorbance of the mixed complexes is not identical with that of the pure complexes. XPS spectra were analyzed on a PHI-5702 X-ray photoelectron spectroscope (XPS) operating with monochromatic Mg K alpha irradiation at pass energy of 29.4 eV. The binding energies of O (1s), Eu (3d) and Tb (4d) in the two kinds of mixed complexes were changed compared with Eu-L and Tb-L complexes. This indicates that these two synthetic methods were not a simple physical mixing process, but there was some chemical effect between the mixed Eu-L and Tb-L complexes. The fluorescence spectra of the mixed complexes were obtained on a Hitachi F-4500 spectrophotometer at room temperature. The excitation and emission slit widths was 1.0 nm. It was concluded from the excitation spectra that the best excitation wavelengths for Eu and Tb complexes are 396 and 320 nm respectively. For the convenience of comparing the fluorescence intensities with each other, the excitation

  3. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    SciTech Connect

    Garabagiu, Sorina

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The interaction was studied using UV-vis and fluorescence spectroscopy. Black-Right-Pointing-Pointer Gold nanoparticles quench the fluorescence emission of hemoglobin solution. Black-Right-Pointing-Pointer The binding and thermodynamic constants were calculated. Black-Right-Pointing-Pointer Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV-vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longer wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern-Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.

  4. Spectroscopic Studies of Polymer Structure in the Solid State and Water Soluble Complexes

    NASA Astrophysics Data System (ADS)

    Cha, Hyukjin

    The chemical changes before and after sulfonation of poly(ether ether ketone) (PEEK) were studied by using x-ray photoelectron spectroscopy (XPS). The inelastic mean free path (IMFP) of the photoelectrons was also measured by controlling the overlayer film thickness. The measured IMFP values for the C 1s, O 1s, S 2p and Si 2p photoelectrons were 30 +/- 3 A, 28 +/- 2 A, 34 +/- 2 Aand 35 +/- 3 A, respectively. Based on angle-resolved x-ray photoelectron spectroscopy (ARXPS) experiments, the concentration profiles and the diffusion constant D for interdiffusion of SPEEK into PEEK film could be determined. The measured diffusion coefficients varied from 3 times 10^{-15} rm cm ^2/sec (@ 583 K) to 6 times 10^{-18} (@ 443 K) cm ^2/sec. The activation energy derived from the measured diffusion coefficients was 22.8 kcal/mol. In addition, the molecular level conformational changes of poly(ether ether ketone) (PEEK) with temperature were studied by using fluorescence spectroscopy. In order to identify the origins of PEEK fluorescence, a model compound for PEEK was synthesized and characterized by UV-visible spectroscopy and fluorescence spectroscopy. The characteristic emission bands at 434 nm and 490 nm were monitored in order to understand local conformational changes of the polymer chain during the thermal treatment process. The changes in relative intensity ratio rm(I_{490}/I _{434}) were compared with differential scanning calorimeter and X-ray scattering data, and were explained in view of molecular morphology. In order to understand polymer complexation in solution, three different systems were studied. First, molecular binding between poly(acrylic acid) (PAA) and europium chloride hexahydrate rm(EuCl_3 6H_2O) and their chain conformations during the complexation process in aqueous solution was studied using fluorescence and IR spectroscopy. Second, complexation of poly(vinyl alcohol sulfate) (KPVS) with papain was investigated with fluorescence and UV absorption

  5. A Spectroscopic Study of Hydra I: The Possible Progenitor of the Eastern Banded Structure

    NASA Astrophysics Data System (ADS)

    Kimmig, Brian; Hargis, Jonathan R.; Willman, Beth; Caldwell, Nelson; Strader, Jay; Walker, Matthew G.

    2015-01-01

    We present initial results of an MMT/Hectochelle spectroscopic study of the Hydra I spatial overdensity located along the Eastern Banded Structure (EBS) stellar stream. The extended double-lobed structure and strength of the overdensity suggest that Hydra I may be the stream's progenitor and undergoing active disruption. With its distance of only ~10 kpc, Hydra I presents a unique opportunity to study the disruption of a star cluster or dwarf galaxy. In past work, SDSS/SEGUE velocities revealed Hydra I to be a kinematically cold structure. However, the small number of candidate members and the significant SEGUE velocity uncertainties (~10 - 15 km/s) precludes testing the nature of Hydra I. To better understand its chemo-dynamic properties, we have begun a spectroscopic survey of the Hydra I/EBS region in order to (i) obtain a robust, velocity-based selection of candidate member stars, (ii) use precise velocities to measure the velocity dispersion, (iii) study the spatial distribution of spectroscopic members, and (iv) measure its proper motion. At present, we have surveyed a ~3 deg x ~3 deg region, which encompasses the entire ~4 sq. deg spatial extent of Hydra I. We have obtained a total of 1354 spectra in this region, with RV uncertainties smaller than ~5 km/s at magnitudes brighter than g~21.6. This work presents our confirmation of Hydra I as a cold halo structure, as well as a more detailed analysis of the membership and spatial/velocity structure of Hydra I.

  6. [Spectroscopic and dynamical studies of highly energized small polyatomic molecules]. Technical progress report, February 1, 1990--June 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    Stimulated emission pumping (SEP) spectroscopy was used on acetylene and on formyl radical. An attempt was made for pattern recognition based on statistics; a method was invented that combined CNPI (complete nuclear permutation-inversion) group theory and SCC (spectral cross-correlation). But the direction away from statistical pattern recognition back to traditional spectroscopic pattern recognition was taken. Vibrational states and quantum numbers are discussed. For the formyl radical, the fluorescence excitation spectrum was recorded and a rotational analysis of the 0{sup 0}{sub 0} band performed.

  7. Design, synthesis, physicochemical studies, solvation, and DNA damage of quinoline-appended chalcone derivative: comprehensive spectroscopic approach toward drug discovery.

    PubMed

    Kumar, Himank; Chattopadhyay, Anjan; Prasath, R; Devaraji, Vinod; Joshi, Ritika; Bhavana, P; Saini, Praveen; Ghosh, Sujit Kumar

    2014-07-01

    The present study epitomizes the design, synthesis, photophysics, solvation, and interaction with calf-thymus DNA of a potential antitumor, anticancer quinoline-appended chalcone derivative, (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) using steady state absorption and fluorescence spectroscopy, molecular modeling, molecular docking, Fourier-transform infrared spectroscopy (FTIR), molecular dynamics (MD) simulation, and gel electrophoresis studies. ADMQ shows an unusual photophysical behavior in a variety of solvents of different polarity. The dual emission has been observed along with the formation of twisted intramolecular charge transfer (TICT) excited state. The radiationless deactivation of the TICT state is found to be promoted strongly by hydrogen bonding. Quantum mechanical (DFT, TDDFT, and ZINDO-CI) calculations show that the ADMQ is sort of molecular rotor which undergoes intramolecular twist followed by a complete charge transfer in the optimized excited state. FTIR studies reveals that ADMQ undergoes important structural change from its native structure to a β-hydroxy keto form in water at physiological pH. The concentration-dependent DNA cleavage has been identified in agarose gel DNA electrophoresis experiment and has been further supported by MD simulation. ADMQ forms hydrogen bond with the deoxyribose sugar attached with the nucleobase adenine DA-17 (chain A) and result in significant structural changes which potentially cleave DNA double helix. The compound does not exhibit any deleterious effect or toxicity to the E. coli strain in cytotoxicity studies. The consolidated spectroscopic research described herein can provide enormous information to open up new avenues for designing and synthesizing chalcone derivatives with low systematic toxicity for medicinal chemistry research. PMID:24962605

  8. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  9. Thermal Physical, and Infrared Spectroscopic Studies on Glasses Prepared by Microwave Route

    SciTech Connect

    Jagadeesha, N.; Gowda, V. C. Veeranna; Chakradhar, R. P. S.; Reddy, C. Narayana

    2011-07-15

    This paper describes thermal, physical and spectroscopic properties of glasses prepared by a novel micro wave method. These studies exhibited a strong compositional dependent trend and existence of characteristic boro-vanadate groups in these glasses. The scheme of modification of borate and vanadate groups is controlled by Sanderson's electronegativity principle. Analysis of density and glass transition temperatures suggests the presence of characteristic four coordinated borate and diboro - vanadate groups in these glasses. The presence of [BO{sub 4/2}]{sup -} and [B{sub 2}V{sub 2}O{sub 9}]{sup 2-}) groups are confirmed by Infrared Spectroscopy of investigated glasses.

  10. A fluorescence spectroscopy study of traditional Chinese medicine Angelica

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyan; Song, Feng; Liu, Shujing; Chen, Guiyang; Wei, Chen; Liu, Yanling; Liu, Jiadong

    2013-10-01

    By measuring the fluorescence spectra of Chinese medicine (CM) Angelica water solutions with different concentrations from 0.025 to 2.5 mg/mL, results showed that the fluorescence intensity was proportional to the concentration. Through fluorescence spectra of Angelica solution under different pH values, results indicated coumarin compounds were the active ingredients of Angelica. We also observed fluorescence quenching of the Angelica solution in the presence of spherical silver nanoparticles with radius of 12 nm. Keeping a certain value for the volume of the silver nanoparticles, the fluorescence intensity at 402 nm was linearly proportional to the Angelica in the range of 1-3 mg/mL.

  11. Stability of Pin1 as revealed by thermal and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Zhang; Lin, Tao; Zhu, Guo-Fei; Du, Lin-Fang

    2010-06-01

    Pin1 is a two-domain enzyme which has peptidyl-prolyl cis/trans isomerase activity. Pin1 recognizes phospho-Ser/Thr-Pro motifs in cell-signaling proteins, and is both a cancer and an Alzheimer's disease target. The thermal stability of Pin1 was studied intensively by SDS-PAGE, enzymatic activity assay, intrinsic fluorescence spectroscopy and circular dichroism spectroscopy. The activity of Pin1 gradually decreased above 40 °C, and the Tm was 57.6 ± 1.0 °C. Fluorescence experiments indicated that heat treatment induced changes in the substructures in Pin1, resulting in that the polarity in the microenvironments of the tryptophan residues increased. It is assumed that the thermal denaturation of Pin1 involved a three-state transition. The intermediate state of Pin1 at about 60 °C was confirmed by fluorescence emission spectra, the synchronous fluorescence spectra and CD measurements. Decreases in α-helix and β-sheet appeared above 40 °C, which was balanced by an enhancement in unordered coil. The Tm values calculated from α-helix transition and β-sheet transition were 54.6 ± 0.6 °C and 70.7 ± 3.3 °C, respectively. Our results illustrated that Pin1 had a relatively high thermal stability and the WW domain had a higher stability than the PPIase domain.

  12. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.

    2016-01-01

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.

  13. Studies on the interaction between vincamine and human serum albumin: a spectroscopic approach.

    PubMed

    Pu, Hanlin; Jiang, Hua; Chen, Rongrong; Wang, Hongcui

    2014-08-01

    The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were -4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non-radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na(+), K(+), Li(+), Ni(2+), Ca(2+), Zn(2+) and Al(3+) were found to influence binding of the drug to protein. The 3D fluorescence, FT-IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. PMID:24039032

  14. Effect of the π Bridge and Acceptor on Intramolecular Charge Transfer in Push-Pull Cationic Chromophores: An Ultrafast Spectroscopic and TD-DFT Computational Study.

    PubMed

    Carlotti, Benedetta; Benassi, Enrico; Barone, Vincenzo; Consiglio, Giuseppe; Elisei, Fausto; Mazzoli, Alessandra; Spalletti, Anna

    2015-05-18

    Three (donor-π-acceptor)(+) systems with a methyl pyridinium or quinolinium as the electron-deficient group, a dimethyl amino as the electron-donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD-DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited-state optimized geometries (planar in low-polarity media and twisted in high-polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials. PMID:25728627

  15. Laser Spectroscopic Study of CaH in the B^2σ^+ and D^2σ^+ States

    NASA Astrophysics Data System (ADS)

    Watanabe, Kyohei; Uchida, Kanako; Kobayashi, Kaori; Matsushima, Fusakazu; Moriwaki, Yoshiki

    2015-06-01

    Calcium hydride is one of the abundant molecules in the stellar environment, and is considered as a probe of stellar analysis. Ab initio calculations have shown that the electronic excited states of CaH have complex potential curves. It is suggested that the B^2σ^+ state has an interesting double minimum potential due to the avoided crossing. Such a potential leads to drastic change of the rotational constants when the vibrational energy level goes across the potential barrier. Spectroscopic studies on CaH began in the 1920's, and many studies have been carried out since then. Bell et al. extensively assigned the D^2σ^+-X^2σ^+ bands in the UV region. Bernath's group has observed transitions in the IR and visible regions and identified their upper states as the A^2σ^+, B^2σ^+ and E^2σ^+ states. We have carried out a laser induced fluorescence (LIF) study in the UV region between 360 and 430 nm. We have produced CaH by using laser ablation of a calcium target in a hydrogen gas environment, then molecules have been excited by a second harmonic pulse of dye laser and the fluorescence from molecules have been detected through a monochromator. Detection of the D^2σ^+-X^2σ^+ bands already identified by Bell et al. indicates the production of CaH. In addition, many other bands have been also found and a few bands have been assigned by using the combination differences, the lower state of these bands have been confirmed to the vibrational ground state of X^2σ^+ state. We have tentatively assigned these bands as the B^2σ^+ -X^2σ^+ transition. We will discuss the assignment of these bands, together with the rotational constants comparing with those calculated from the ab initio potential. B. Barbuy, R. P. Schiavon, J. Gregorio-Hetem, P. D. Singh C. Batalha , Astron. Astrophys. Sippl. Ser. 101, 409 (1993). P. F. Weck and P. C .Stabcil, J. Chem. Phys. {118}, 9997 (2003). R. S. Mulliken, Phys. Rev. {25}, 509 (1925). G. D. Bell, M, Herman, J. W. C. Johns, and E. R

  16. IR and UV spectroscopic studies at low temperature: C2N2

    NASA Astrophysics Data System (ADS)

    Benilan, Y.; Arzoumanian, E.; Es-Sebbar, Et.; Ferradaz, T.; Fray, N.; Jolly, A.; Gazeau, M.-C.; Schwell, M.

    2008-09-01

    Titan's atmosphere is mainly made of nitrogen and methane and is furthermore very rich in organic molecules. Hydrocarbons are formed by the photodissociation of CH4 and nitriles are created by dissociation of N2 followed by reactions with hydrocarbons. In order to understand the physicochemical mechanisms responsible for the evolution of Titan's atmosphere, photochemical models are built. The latter needs constraints for the determination of vertical profiles of organic compounds, from the higher thermosphere down to the lower stratosphere. They also need wavelength dependant photodissociation rates as input parameters. Vertical profiles can be retrieved from Cassini observations along the entire atmosphere, in particular by limb sounding using Cassini's UVIS and CIRS spectrometers. However, in order to interpret data obtained by these instruments, precise spectroscopic parameters and their dependence on temperature are needed. We will review the current knowledge in this field of planetary spectroscopy and point out the lack of spectroscopic parameters of already detected species. These parameters are especially needed for radiative transfer calculations at low temperatures. We will focus our talk on the Cyanogen molecule (C2N2) which has been observed in Titan's atmosphere in the FIR domain, around 230 cm-1. We will present the latest spectroscopic studies we have performed on this molecule which cover the entire spectrum from the mid- infrared to the vacuum ultraviolet spectral region. Integrated band intensities have been determined for all bands in the infrared. In the ultraviolet domain, we have determined absolute cross sections from 350 down to 80 nm covering six orders of magnitude for the absorption coefficient. We will also show how temperature can influence VUV absorption coefficients. The corresponding implications of temperature dependant absorption data on the interpretation of UVIS observations will be discussed.

  17. Fluorescence studies of neptunium and plutonium hexafluoride vapors

    SciTech Connect

    Beitz, J.V.; Williams, C.W.; Carnall, W.T.

    1982-03-01

    The first observation of fluorescence from gas phase, electronically excited, transuranic hexafluorides is reported. Fluorescence peaking at 1360 nm was observed from /sup 237/NpF/sub 6/ gas excited at 1064 nm. The measured fluroescence lifetime was 3.53 +- 0.01 ms, independent of NpF/sub 6/ pressure. Fluourescence peaking at 2300 nm has been observed from /sup 242/PuF/sub 6/ gas excited at 1064 nm. The measured fluorescence lifetime was 204 +- 12 ..mu..s, independent of PuF/sub 6/ pressure. In both cases the emitting state is assigned as a vibronic component of the first excited electronic state of the hexafluoride based on previously reported absorption spectra and energy level calculations. Fluorescence in the 1900 and 4800 nm region was observed from PuF/sub 6/ gas excited at 532 nm. The lifetime of this fluorescence was 86 +- 4. The emitting state giving rise to this shorter-lived fluorescence was not identified. Estimated fluorescence quantum yields are reported.

  18. Fluorescence studies of neptunium and plutonium hexafluoride vapors

    NASA Astrophysics Data System (ADS)

    Beitz, James V.; Williams, Clayton W.; Carnall, W. T.

    1982-03-01

    The first observation of fluorescence from gas phase, electronically excited, transuranic hexafluorides is reported. Fluorescence peaking at 1360 nm was observed from 237NpF6 gas excited at 1064 nm. The measured fluroescence lifetime was 3.53±0.01 ms, independent of NpF6 pressure. Fluourescence peaking at 2300 nm has been observed from 242PuF6 gas excited at 1064 nm. The measured fluorescence lifetime was 204±12 μs, independent of PuF6 pressure. In both cases the emitting state is assigned as a vibronic component of the first excited electronic state of the hexafluoride based on previously reported absorption spectra and energy level calculations. Fluorescence in the 1900 and 4800 nm region was observed from PuF6 gas excited at 532 nm. The lifetime of this fluorescence was 86±4. The emitting state giving rise to this shorter-lived fluorescence was not identified. Estimated fluorescence quantum yields are reported.

  19. Fluorescence Fluctuation Approaches to the Study of Adhesion and Signaling

    PubMed Central

    Bachir, Alexia I.; Kubow, Kristopher E.; Horwitz, Alan R.

    2013-01-01

    Cell–matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm–µm) and time (ms–min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions. PMID:23280111

  20. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  1. Antitubercular and fluorescence studies of copper(II) complexes with quinolone family member, ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Kharadi, G. J.

    2011-09-01

    Four new mixed-ligand complexes of Cu(II) with ciprofloxacin (Cip) and uninegative bidentate ligands have been synthesized and characterized. The structure of mixed-ligand complexes was investigated using spectroscopic method, physicochemical and elemental analyses. The fluorescence spectra of complexes show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. Antimycobacterial screening of ligand and its copper compound against Mycobacterium tuberculosis shows clear enhancement in the antitubercular activity upon copper complexation.

  2. Theoretical DFT study on spectroscopic signature and molecular dynamics of neurotransmitter and effect of hydrogen removal

    NASA Astrophysics Data System (ADS)

    Mukherjee, V.; Singh, N. P.; Yadav, R. A.

    2013-04-01

    Vibrational spectroscopic study has been made for the serotonin molecule and its deprotonated form. The Infrared and Raman spectra in optimum geometry of these two molecules are calculated using density functional theorem and the normal modes are assigned using potential energy distributions (PEDs) which are calculated using normal coordinate analysis method. The vibrational frequencies of these two molecules are reported and a comparison has been made. The effect of removal of the hydrogen atom from the serotonin molecule upon its geometry and vibrational frequencies are studied. Electronic structures of these two molecules are also studied using natural bond orbital (NBO) analysis. Theoretical Raman spectrum of serotonin at different exciting laser frequencies and at different temperatures are obtained and the results are discussed. Present study reveals that some wrong assignments had been made for serotonin molecule in earlier study.

  3. Laser Spectroscopic and Theoretical Studies of the Structures and Encapsulation Motifs of Functional Molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-02-01

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) "hosts" interacting with N2, acetylene, water, and ammonia "guest" molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes

  4. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    SciTech Connect

    Ebata, Takayuki; Kusaka, Ryoji; Xantheas, Sotiris S.

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  5. Synthesis, DNA/HSA Interaction Spectroscopic Studies and In Vitro Cytotoxicity of a New Mixed Ligand Cu(II) Complex.

    PubMed

    Gan, Qian; Fu, Xiabing; Chen, Weijiang; Xiong, Yahong; Fu, Yinlian; Chen, Shi; Le, Xueyi

    2016-05-01

    A new mixed ligand copper(II)-dipeptide complex with 2-(2'-pyridyl)benzothiazole (pbt), [Cu(Gly-L-leu)(pbt)(H2O)]·ClO4 (Gly-L-leu = Glycyl-L-leucine anion) was synthesized and characterized by various physico-chemical means. The DNA binding and cleavage properties of the complex investigated by viscosity, agarose gel electrophoresis and multi-spectroscopic techniques (UV, circular dichroism (CD) and fluorescence) showed that the complex was bound to CT-DNA through intercalation mode with moderate binding constant (K b = 3.132 × 10(4) M(-1)), and cleaved pBR322 DNA efficiently (~ 5 μM) in the presence of Vc, probably via an oxidative mechanism induced by •OH. Additionally, the interaction of the complex with human serum albumin (HSA) was explored by UV-visible, CD, fluorescence, synchronous fluorescence and 3D fluorescence spectroscopy. The complex exhibits desired affinity to HSA through hydrophobic interaction. Moreover, the cytotoxicity of the complex against three human carcinoma cell lines (HeLa, HepG2 and A549) was evaluated by MTT assay, which showed that the complex had effective cytotoxicity and higher inhibition toward A549 cell lines with IC50 of 38.0 ± 3.2 μM. PMID:26961845

  6. Study on the interaction between pelargonidin-3-O-glucoside and bovine serum albumin using spectroscopic, transmission electron microscopy and molecular modeling techniques.

    PubMed

    Li, Shu; Tang, Lin; Bi, Hongna

    2016-03-01

    The aim of this study is to evaluate the binding behavior between pelargonidin-3-O-glucoside (P3G) and bovine serum albumin (BSA) using multi-spectroscopic, transmission electron microscopy (TEM) and molecular docking methods under physiological conditions. Fluorescence spectroscopy and time-resolved fluorescence showed that the fluorescence of BSA could be quenched remarkably by P3G via a static quenching mechanism, and there is a single class of binding site on BSA. In addition, the thermodynamic functions ΔH and ΔS were -21.69 kJ/mol and 24.46 J/mol/K, indicating that an electrostatic interaction was a main acting force. The distance between BSA and P3G was 2.74 nm according to Förster's theory, illustrating that energy transfer occurred. In addition, the secondary structure of BSA changed with a decrease in the α-helix content from 66.2% to 64.0% as seen using synchronous fluorescence, UV/vis, circular dichroism and Fourier transform infrared spectroscopies, whereas TEM images showed that P3G led to BSA aggregation and fibrillation. Furthermore, site marker competitive experiments and molecular docking indicated that P3G could bind with subdomain IIA of BSA. The calculated results of the equilibrium fraction showed that the concentration of free P3G in plasma was high enough to be stored and transported from the circulatory system to its target sites to provide therapeutic effects. PMID:26249529

  7. Spectroscopic study of 3-Hydroxyflavone - protein interaction in lipidic bi-layers immobilized on silver nanoparticles.

    PubMed

    Voicescu, Mariana; Ionescu, Sorana; Nistor, Cristina L

    2017-01-01

    The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process. PMID:27380623

  8. Inhibitory effect of apocarotenoids on the activity of tyrosinase: Multi-spectroscopic and docking studies.

    PubMed

    Anantharaman, Amrita; Hemachandran, Hridya; Priya, Rajendra Rao; Sankari, Mohan; Gopalakrishnan, Mohan; Palanisami, Nallasamy; Siva, Ramamoorthy

    2016-01-01

    In this present study, the inhibitory mechanism of three selected apocarotenoids (bixin, norbixin and crocin) on the diphenolase activity of tyrosinase has been investigated. The preliminary screening results indicated that apocarotenoids inhibited tyrosinase activity in a dose-dependent manner. Kinetic analysis revealed that apocarotenoids reversibly inhibited tyrosinase activity. Analysis of fluorescence spectra showed that apocarotenoids quenched the intrinsic fluorescence intensity of the tyrosinase. Further, molecular docking results implied that apocarotenoids were allosterically bound to tyrosinase through hydrophobic interactions. The results of the in vitro studies suggested that higher concentrations of bixin and norbixin inhibited tyrosinase activity in B16F0 melanoma cells. Our results suggested that apocarotenoids could form the basis for the design of novel tyrosinase inhibitors. PMID:26187443

  9. Interaction of diuron to human serum albumin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Chen, Huilun; Rao, Honghao; Yang, Jian; Qiao, Yongxiang; Wang, Fei; Yao, Jun

    2016-01-01

    This investigation was undertaken to determine the interaction of diuron with human serum albumin (HSA) was studied by monitoring the spectral behavior of diuron-HSA system. The fluorescence of HSA at 340 nm excited at 230 nm was obviously quenched by diuron due to dynamic collision and the quenching constant was of the order of 10(4) L mol(-1) at 310 K. However, no fluorescence quenching was observed when excited at 280 nm. Thermodynamic investigations revealed that the combination between diuron and HSA was entropy driven by predominantly hydrophobic interactions. The binding of diuron induced the drastic reduction in α-helix conformation and the significant enhancement in β-turn conformation of HSA. In addition, both sites marker competition study and molecular modeling simulation evidenced the binding of diuron to HSA primarily took place in subdomain IIIA (Sudlow's site II). PMID:26671830

  10. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  11. [Study on fluorescence measurement system of wastewater treatment process].

    PubMed

    Wu, Zhi-Xiang; Wang, Jun-Bo; Li, Zhan-Feng; Deng, Hu

    2011-06-01

    The present paper, focusing on the relationship between the fluorescence characteristics of fluorescent substances produced by the anaerobic reactors in process of the wastewater treatment status, aims to build an online detection platform of anaerobic wastewater treatment process for the wastewater treatment process parameter control, to provide effective, credible and stable technical basis, and to a certain extent can improve the efficiency of wastewater treatment. The results showed that it is feasible for this system to use fluorescence spectroscopy of wastewater treatment anaerobic reactor during the test; compared with the conventional detection method, it has simple structure, high sensitivity, and less time-consuming advantages; for other fluorescent substances in waste water treatment, it has broad application prospects. PMID:21847935

  12. [Study on interaction of caffeine with myoglobin by fluorescence spectroscopy].

    PubMed

    Huang, He-Yong; Gu, Xiao-Tian; Ding, Yan; Zhou, Jia-Hong; Feng, Yu-Ying

    2009-10-01

    The interaction of caffein and myoglobin was investigated by fluorescence spectroscopy and synchronous fluorescence spectroscopy. The intrinsic fluorescence of myoglobin was significantly quenched by caffein under the physiological condition (pH 7.4). The results indicated that caffeine was capable of binding with myoglobin to form a 1:1 complex and the quenching mechanism of myoglobin affected by caffeine was shown to be a static quenching procedure by calculating quenching constant, binding sites and binding constant. According to the thermodynamic parameters, the main binding force of the interaction is electrostatic force and hydrophobic force. The change in the micro-circumstance of aminos of myoglobin was analyzed by synchronous fluorescence spectrometry. The result indicated that caffeine can change the conformation of the protein, leading to the change in the micro-environment of tryptophane and tyrosine residues from hydrophobic environment to hydrophilic environment to different extent. PMID:20038063

  13. Quantitative studies for photoabsorption and fluorescence of HCl

    NASA Technical Reports Server (NTRS)

    Nee, J. B.; Suto, M.; Lee, L. C.

    1984-01-01

    Photoabsorption and fluorescence cross sections of HCl are investigated in the wavelength region between 105 to 220 nm. The oscillator strengths of discrete structures at wavelengths shorter than 130 nm are measured.

  14. Spectroscopic studies of interactions between dyes and model molecules of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Elhaddaoui, A.; Delacourte, A.; Turrell, S.

    1993-06-01

    Raman, FTIR, fluorescence, and UV-visible spectra are used to study interactions between amuloid-labelling dyes and poly-L-lysine and bovine insulin, two proteins which play the role of models of (beta) amyloid of Alzheimers disease. It is found that though the (beta) conformation of the peptide is not essential, it helps to encourage binding which appears to be stable and specific in nature, involving SO3- groups of the dyes and NH2 groups of the proteins.

  15. Laser Spectroscopic Study of Cold Gas-Phase Host-Guest Complexes of Crown Ethers.

    PubMed

    Ebata, Takayuki; Inokuchi, Yoshiya

    2016-06-01

    The structure, molecular recognition, and inclusion effect on the photophysics of guest species are investigated for neutral and ionic cold host-guest complexes of crown ethers (CEs) in the gas phase. Here, the cold neutral host-guest complexes are produced by a supersonic expansion technique and the cold ionic complexes are generated by the combination of electrospray ionization (ESI) and a cryogenically cooled ion trap. The host species are 3n-crown-n (3nCn; n = 4, 5, 6, 8) and (di)benzo-3n-crown-n ((D)B3nCn; n = 4, 5, 6, 8). For neutral guests, we have chosen water and aromatic molecules, such as phenol and benzenediols, and as ionic species we have chosen alkali-metal ions (M(+) ). The electronic spectra and isomer-specific vibrational spectra for the complexes are observed with various laser spectroscopic methods: laser-induced fluorescence (LIF); ultraviolet-ultraviolet hole-burning (UV-UV HB); and IR-UV double resonance (IR-UV DR) spectroscopy. The obtained spectra are analyzed with the aid of quantum chemical calculations. We will discuss how the host and guest species change their flexible structures for forming best-fit stable complexes (induced fitting) and what kinds of interactions are operating for the stabilization of the complexes. For the alkali metal ion•CE complexes, we investigate the solvation effect by attaching water molecules. In addition to the ground-state stabilization problem, we will show that the complexation leads to a drastic effect on the excited-state electronic structure and dynamics of the guest species, which we call a "cage-like effect". PMID:27006080

  16. Study of interaction of proton transfer probe 1-hydroxy-2-naphthaldehyde with serum albumins: a spectroscopic study.

    PubMed

    Balia Singh, Rupashree; Mahanta, Subrata; Guchhait, Nikhil

    2008-04-25

    In the present work, we have studied the interaction of proton transfer probe 1-hydroxy-2-naphthaldehyde (HN12) with Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) by steady state absorption and emission spectroscopy combined with time resolved fluorescence measurements. The measured binding constant (K) and free energy change (DeltaG) indicate a stronger affinity of HN12 molecule for HSA than BSA. Steady state anisotropy, excitation anisotropy and fluorescence resonance energy transfer (FRET) studies indicate that the probe molecule resides at the hydrophobic site of the protein environment. PMID:18296059

  17. Low temperature FTIR, Raman, NMR spectroscopic and theoretical study of hydroxyethylammonium picrate

    NASA Astrophysics Data System (ADS)

    Sudharsana, N.; Sharma, A.; Kuş, N.; Fausto, R.; Luísa Ramos, M.; Krishnakumar, V.; Pal, R.; Guru Row, T. N.; Nagalakshmi, R.

    2016-01-01

    A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex [e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H⋯OC type between the hydroxyethylammonium cation and the picrate. 13C and 1H NMR spectroscopic analysis are also presented for the DMSO-d6 solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound.

  18. A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS

    SciTech Connect

    Allers, K. N.; Liu, Michael C.

    2013-08-01

    We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

  19. Studies on Nephrite and Jadeite Jades by Fourier Transform Infrared (ftir) and Raman Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Lim, L. C.

    2013-10-01

    The mineralogical properties of black nephrite jade from Western Australia are studied by Fourier transform infrared (FTIR) spectroscopy using both transmission and specular reflectance techniques in the 4000-400 cm-1 wavenumber region. The infrared absorption peaks in the 3700-3600 cm-1 region which are due to the O-H stretching mode provides a quantitative analysis of the Fe/(Fe+Mg) ratio in the mineral composition of jade samples. The Fe/(Fe+Mg) percentage in black nephrite is found to be higher than that in green nephrite, but comparable to that of actinolite (iron-rich nephrite). This implies that the mineralogy of black nephrite is closer to actinolite than tremolite. The jade is also characterized using Raman spectroscopy in the 1200-200 cm-1 region. Results from FTIR and Raman spectroscopic data of black nephrite jade are compared with those of green nephrite jade from New Zealand and jadeite jade from Myanmar. Black nephrite appears to have a slightly different chemical composition from green nephrite. Spectra from FTIR and Raman spectroscopic techniques were found to be useful in differentiating black nephrite, green nephrite, and green jadeite jades. Furthermore, data on refractive index, specific gravity, and hardness of black nephrite jade are measured and compared with those of green nephrite and of jadeite jade.

  20. Near-Infrared Spectroscopic Study of AA Tau: Water and OH Observations

    NASA Astrophysics Data System (ADS)

    Brown, Logan Ryan; Gibb, Erika

    2014-06-01

    To understand our own solar origins, we must investigate the composition of the protoplanetary disk from which the solar system formed. To infer this, we study analogs to the early solar system called T Tauri stars. These objects are low-mass, pre-main sequence stars surrounded by circumstellar disks of material from which planets are believed to form. We present high-resolution (λ/Δλ˜25,000), near-infrared spectroscopic data from the T Tauri star AA Tau using NIRSPEC at the Keck II telescope, located on Mauna Kea, HI, taken in 2009 and 2010. AA Tau has a close to edge-on geometry, with an inclination of 70° ± 10° (Donati et al. 2010). Objects must have a nearly edge-on inclination for the disk to be sampled via absorption line spectroscopy. We observed strong absorption lines of both water and OH to which a spectroscopic model was fit in order for us to determine column density and rotational temperature. These near-infrared observations complement the work being done with ALMA, allowing us to probe the inner most disk regions and the chemistry contained within while ALMA primarily samples and is most sensitive to the outer disk.

  1. Ab initio study of the O4H(+) novel species: spectroscopic fingerprints to aid its observation.

    PubMed

    Xavier, F George D; Hernández-Lamoneda, Rámon

    2015-06-28

    A detailed ab initio characterization of the structural, energetic and spectroscopic properties of the novel O4H(+) species is presented. The equilibrium structures and relative energies of all multiplet states have been determined systematically by analyzing static and dynamical correlation effects. The two and three body dissociation processes have been studied and indicate the presence of conical intersections in various states including the ground state. Comparison with available thermochemical data is very good, supporting the applied methodology. The reaction, H3(+) + O4→ O4H(+) + H2, was found to be exothermic ΔH = -19.4 kcal mol(-1) and therefore, it is proposed that the product in the singlet state could be formed in the interstellar medium (ISM) via collision processes. To aid in its laboratory or radioastronomy detection in the interstellar medium we determined spectroscopic fingerprints. It is estimated for the most stable geometry of O4H(+) dipole allowed electronic transitions in the visible region at 429 nm and 666 nm, an intense band at 1745 cm(-1) in the infrared and signals at 40.6, 81.2 and 139.2 GHz in the microwave region at 10, 50 and 150 K respectively, relevant for detection in the ISM. PMID:26028209

  2. Two-dimensional infrared study of 3-azidopyridine as a potential spectroscopic reporter of protonation state

    SciTech Connect

    Nydegger, Michael W.; Dutta, Samrat; Cheatum, Christopher M.

    2010-10-07

    The lack of general spectroscopic probes that can be used in a range of systems to probe kinetics and dynamics is a major obstacle to the widespread application of two-dimensional infrared (2D IR) spectroscopy. We have studied 3-azidopyridine to characterize its potential as a probe of the protonation state of the pyridine ring. We find that the azido-stretching vibration is split by accidental Fermi resonance interactions with one or more overtones and combination states. Using 2D IR spectroscopy, we determine the state structure of the resulting eigenstates for complexes of 3-azidopyridine with formic acid and trifluoroacetic acid in which the pyridine ring is unprotonated and protonated, respectively. Based on the measurements, we develop a two-oscillator depurturbation model to determine the energies and couplings of the zeroth-order azido-stretching state and the perturbing dark state that couples to it. Based on these results, we conclude that the azido-stretching vibration is, in fact, sensitive to the protonation state of the pyridine shifting up in frequency by 8 cm{sup -1} in the complex with trifluoroacetic acid relative to the formic acid complex. These results suggest that, although 3-azidopyridine is not suitable as a spectroscopic probe, the approach of employing an organic azide as a remote probe of protonation state holds significant promise.

  3. Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies.

    PubMed

    Georgieva, I; Mihaylov, Tz; Trendafilova, N

    2014-06-01

    The present paper summarizes theoretical and spectroscopic investigations on a series of active coumarins and their lanthanide and transition metal complexes with application in medicine and pharmacy. Molecular modeling as well as IR, Raman, NMR and electronic spectral simulations at different levels of theory were performed to obtain important molecular descriptors: total energy, formation energy, binding energy, stability, conformations, structural parameters, electron density distribution, molecular electrostatic potential, Fukui functions, atomic charges, and reactive indexes. The computations are performed both in gas phase and in solution with consideration of the solvent effect on the molecular structural and energetic parameters. The investigations have shown that the advanced computational methods are reliable for prediction of the metal-coumarin binding mode, electron density distribution, thermodynamic properties as well as the strength and nature of the metal-coumarin interaction (not experimentally accessible) and correctly interpret the experimental spectroscopic data. Known results from biological tests for cytotoxic, antimicrobial, anti-fungal, spasmolytic and anti-HIV activities on the studied metal complexes are reported and discussed. PMID:24680836

  4. Surface enhanced fluorescence by porous alumina with nanohole arrays

    NASA Astrophysics Data System (ADS)

    Zhang, ZhengLong; Zheng, HaiRong; Dong, Jun; Yan, XiaoQing; Sun, Yu; Xu, HongXing

    2012-05-01

    The fluorescence enhancement of Rhodamine 6G (Rh6G) fluorophore in the close vicinity of porous alumina film with ordered nanohole arrays is investigated. Experimental observations show that the nonmetallic substrate with hole arrays enhances the fluorescence intensity. By comparing the fluorescence emissions that are excited with 325 nm and 532 nm, better fluorescence enhancement is obtained with excitation at a shorter wavelength. The study suggests that higher fluorescence excitation efficiency due to the energy transfer from oxygen vacancies to Rh6G fluorophore molecules is responsible for better fluorescence enhancement. The contribution of the scattering of nanohole arrays to the fluorescence enhancement is also proposed based on the intensity increase and reduced lifetime when the energy transfer from oxygen vacancy is absent. The result of the current study is useful for developing non-metal substrates in the study of spectroscopic enhancement, and is expected to advance the applications of porous alumina to microanalysis.

  5. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    NASA Astrophysics Data System (ADS)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  6. Spectroscopic, crystallographic and theoretical studies of lasalocid complex with ammonia and benzylamine

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Rutkowski, Jacek; Brzezinski, Bogumil

    A natural antibiotic - Lasalocid is able to form stable complexes with ammonia and organic amines. New complexes of lasalocid with benzylamine and ammonia were obtained in the crystal forms and studied using X-ray, FT-IR, 1H NMR, 13C NMR and DFT methods. These studies have shown that in both complexes the proton is transferred from the carboxylic group to the amine group with the formation of a pseudo-cyclic structure of lasalocid anion complexing the protonated amine or NH4+ cation. The spectroscopic and DFT studies demonstrated that the structure of the complex formed between Lasalocid and benzylamine in the solid is also conserved in the solution and gas phase. In contrast, the structure of the complex formed between lasalocid and ammonium cation found in the solid state undergoes dissociation in chloroform solution accompanied with a change in the coordination form of the NH4+ cation.

  7. Synthesis, spectroscopic characterization, DNA interaction and antibacterial study of metal complexes of tetraazamacrocyclic Schiff base

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Khanam, Sadiqa; Firdaus, Farha; Latif, Abdul; Aatif, Mohammad; Al-Resayes, Saud I.

    The template condensation reaction between benzil and 3,4-diaminotoulene resulted mononuclear 12-membered tetraimine macrocyclic complexes of the type, [MLCl2] [M = Co(II), Ni(II), Cu(II) and Zn(II)]. The synthesized complexes have been characterized on the basis of the results of elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz. FT-IR, 1H and 13C NMR, FAB mass, UV-vis and EPR. An octahedral geometry has been envisaged for all these complexes, while a distorted octahedral geometry has been noticed for Cu(II) complex. Low conductivity data of all these complexes suggest their non-ionic nature. The interactive studies of these complexes with calf thymus DNA showed that the complexes are avid binders of calf thymus DNA. The in vitro antibacterial studies of these complexes screened against pathogenic bacteria proved them as growth inhibiting agents.

  8. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation

    NASA Astrophysics Data System (ADS)

    Picquart, Michel; Abedinzadeh, Zohreh; Grajcar, Lydie; Baron, Marie Héléne

    1998-03-01

    A spectroscopic study of N-acetylcysteine (RSH) and N-acetylcystine (RSSR) has been performed using infrared absorption and Raman scattering in order to pinpoint the sites of complexation of these two species with H 2O 2. Molecules of RSH and RSSR were studied in KBr pellets, and in aqueous solutions of H 2O, D 2O and H 2O with H 2O 2 (1 mol l -1) to characterize the specific influence of the solvent molecules. A time-resolved Raman study was performed for RSH-H 2O 2 in aqueous solution at 1:1 molar ratio in order to observe the formation of RSSR and to discuss the mechanism of this redox reaction.

  9. [Interaction between ambroxol hydrochloride and human serum albumin studied by spectroscopic and molecular modeling methods].

    PubMed

    Liang, Jing; Feng, Su-Ling

    2011-04-01

    In the present paper, the interaction between ambroxol hydrochloride (ABX) and human serum albumin (HSA) was studied under simulative physiological condition by spectroscopy and molecular modeling method. Stern-Volmer curvers at different temperatures and UV-Vis absorption spectroscopy showed that ABX quenched the fluorescence of HSA mainly through dynamic quenching mode. On the basis of the thermodynamic data, the main binding force between them is hydrophobic interaction. According to the theory of Forster non-radiation energy transfer, the binding distance between the donor and the acceptor was 3.01 nm. The effect of ABX on the conformation of HSA was analyzed by the synchronous and three-dimensional fluorescence spectroscopy. Furthermore, using the molecular modeling method, the interaction between them was predicted from molecular angle: ABX might locate in the subdomain III A of HSA. PMID:21714251

  10. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods.

    PubMed

    Ataci, Nese; Arsu, Nergis

    2016-12-01

    In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6×10(5)M(-1)from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7°C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution. PMID:27367618

  11. Structural and spectroscopic studies of the native hemocyanin from Maia squinado and its structural subunits

    NASA Astrophysics Data System (ADS)

    Dolashka-Angelova, Pavlina; Hristova, Rumijana; Schuetz, Juergen; Stoeva, Stanka; Schwarz, Heinz; Voelter, Wolfgang

    2000-09-01

    The dodecameric hemocyanin of the crab Maia squinado contains five major electrophoretically separable polypeptide chains (structural subunits) which have been purified by FPLC ion exchange chromatography. The various proteins have been characterized by fluorescence spectroscopy, combined with fluorescence quenching studies, using acrylamide, caesium chloride and potassium iodide as tryptophan quenchers. The results show that the tryptophyl side chains of dodecameric Hc are deeply buried in hydrophobic regions of the hemocyanin aggregates and the quenching efficiency values for the native Hc in comparison with those from the constituent subunits are two to four times less. The conformational stabilities of the native dodecameric aggregate and its isolated structural subunits towards various denaturants (pH, temperature, guanidinium hydrochloride) indicate that the quaternary structure is stabilized by hydrophilic and polar forces, whereby, both, the oxy- and apo-forms of the protein have been considered. The critical temperatures for the structural subunits, Tc, determined by fluorescence spectroscopy, are in the region of 50-60°C, coinciding with the melting temperatures, Tm, determined by CD spectroscopy. The free energy of stabilization in water, Δ GDH 2O , toward guanidinium hydrochloride is about two times higher for the dodecamer as compared to the isolated subunits. These studies reveal that oligomerization between functional subunits has a stabilizing effect on the whole molecule and differences in the primary structures result in different stabilities of the subunits.

  12. Synthesis of two new azo-azomethines; spectral characterization, crystal structures, computational and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Eskikanbur, Sevgi; Sayin, Koray; Kose, Muhammet; Zengin, Huseyin; McKee, Vickie; Kurtoglu, Mukerrem

    2015-08-01

    This study describes the preparation, characterization and the photoluminescence properties of novel azo-azomethines (2-{(E)-[(4-ethylphenyl)imino]methyl}-4-[(E)-phenyldiazenyl]phenol, HL1 and 2-{(E)-[(3-ethylphenyl)imino]methyl}-4-[(E)-phenyldiazenyl]phenol, HL2 dyes). The dyes were characterized by elemental analysis, spectroscopic studies such as IR, 1H and 13C NMR, mass and fluorescence spectra. Molecular structures of the dyes were examined by X-ray diffraction analysis. The molecular structures are mostly similar, differing mainly in the position of the ethyl group and dihedral angles between aromatic rings. X-ray data revealed that both HL1 and HL2 favor phenol-imine tautomer in the solid state. An intramolecular phenol-imine hydrogen bond (O1⋯N1) were observed in both compounds resulting in a S(6) hydrogen bonding motif. Molecular packing of both compounds are determined by π⋯π interactions. Quantum chemical investigation of mentioned molecules were performed by using DFT hybrid function (B3LYP) with 6-31+G(d) basis set. The compounds HL1 and HL1 gave intense light emissions upon irradiation by Ultra-Violet light. The photoluminescence quantum yields and long excited-state lifetimes of the compounds HL1 and HL2 were measured. The azo-azomethine dyes HL1 and HL2 have photoluminescence quantum yields of 34% and 32% and excited-state lifetimes of 3.21 and 2.98 ns, respectively. The photoluminescence intensities and quantum yields of these dyes were dependent on the position of alkyl group on the phenyl ring.

  13. A quantitative study of the intracellular dynamics of fluorescently labelled glyco-gold nanoparticles via fluorescence correlation spectroscopy.

    PubMed

    Murray, Richard A; Qiu, Yuan; Chiodo, Fabrizio; Marradi, Marco; Penadés, Soledad; Moya, Sergio E

    2014-07-01

    The dynamic behaviour of gold nanoparticles functionalised with glucose (Glc-Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc-Au NPs fluorescently-labelled with HiLyte Fluor647 (Glc-Au-Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell. FCS measurements become possible after applying a "prebleaching" methodology, when the immobile NP fraction has been effectively removed and thus significant FCS data has been recorded. In this study, Glc-Au-Hi NPs have been incubated with HepG2 cells and their diffusion time in the intracellular environment has been measured and compared with their diffusion value in water and cell media. PMID:24639360

  14. Fluorescence resonance energy transfer in the studies of guanine quadruplexes.

    PubMed

    Juskowiak, Bernard; Takenaka, Shigeori

    2006-01-01

    A guanine (G)-quadruplex DNA motif has recently emerged as a biologically important structure that is believed to interfere with telomere maintenance by telomerase. G-quadruplexes exhibit four-stranded structures containing one or more nucleic acid strands with central channel able to accommodate metal cations. Coordination of certain metal cations stabilizes G-quadruplex as with some promising small organic molecules that promote the formation and/or stabilization of G-quadruplex. Among many techniques employed to explore properties of G-quadruplexes, the fluorescence resonance energy transfer (FRET) technique has been recognized as a powerful tool to study G-quadruplex formation. This review summarizes the current developments in the uses of FRET technique for the fundamental structural investigations and its practical applications. Applications include FRET-based selection of efficient quadruplex-binding ligands, design of a nanomolecular machine, and a molecular aptamer beacon for protein recognition. We also describe a technique for detection of potassium ions in aqueous solution with the use of quadruplex-based sensor (potassium-sensing oligonucleotide). PMID:16785636

  15. Colocalization of fluorescence and Raman microscopic images for the identification of subcellular compartments: a validation study.

    PubMed

    Krauß, Sascha D; Petersen, Dennis; Niedieker, Daniel; Fricke, Inka; Freier, Erik; El-Mashtoly, Samir F; Gerwert, Klaus; Mosig, Axel

    2015-04-01

    A major promise of Raman microscopy is the label-free detailed recognition of cellular and subcellular structures. To this end, identifying colocalization patterns between Raman spectral images and fluorescence microscopic images is a key step to annotate subcellular components in Raman spectroscopic images. While existing approaches to resolve subcellular structures are based on fluorescence labeling, we propose a combination of a colocalization scheme with subsequent training of a supervised classifier that allows label-free resolution of cellular compartments. Our colocalization scheme unveils statistically significant overlapping regions by identifying correlation between the fluorescence color channels and clusters from unsupervised machine learning methods like hierarchical cluster analysis. The colocalization scheme is used as a pre-selection to gather appropriate spectra as training data. These spectra are used in the second part as training data to establish a supervised random forest classifier to automatically identify lipid droplets and nucleus. We validate our approach by examining Raman spectral images overlaid with fluorescence labelings of different cellular compartments, indicating that specific components may indeed be identified label-free in the spectral image. A Matlab implementation of our colocalization software is available at . PMID:25679809

  16. Interaction of Di-2-pyridylketone 2-pyridine Carboxylic Acid Hydrazone and Its Copper Complex with BSA: Effect on Antitumor Activity as Revealed by Spectroscopic Studies.

    PubMed

    Li, Cuiping; Huang, Tengfei; Fu, Yun; Liu, Youxun; Zhou, Sufeng; Qi, Zhangyang; Li, Changzheng

    2016-01-01

    The drug, di-2-pyridylketone-2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex (DPPCAH-Cu) exhibit significant antitumor activity. However, the mechanism of their pharmacological interaction with the biological molecule bovine serum albumin (BSA) remains poorly understood. The present study elucidates the interactions between the drug and BSA through MTT assays, spectroscopic methods and molecular docking analysis. Our results indicate that BSA could attenuate effect on the cytotoxicity of DPPCAH, but not DPPCAH-Cu. Data from fluorescence quenching measurements demonstrated that both DPPCAH and DPPCAH-Cu could bind to BSA, with a reversed effect on the environment of tryptophan residues in polarity. CD spectra revealed that the DPPCAH-Cu exerted a slightly stronger effect on the secondary structure of BSA than DPPCAH. The association constant of DPPCAH with BSA was greater than that of DPPCAH-Cu. Docking studies indicated that the binding of DPPCAH to BSA involved a greater number of hydrogen bonds compared to DPPCAH-Cu. The calculated distances between bound ligands and tryptophans in BSA were in agreement with fluorescence resonance energy transfer results. Thus, the binding affinity of the drug (DPPCAH or DPPCAH-Cu) with BSA partially contributes to its antitumor activity; the greater the drug affinity is to BSA, the less is its antitumor activity. PMID:27136517

  17. Swiss bare mice: a suitable model for transcutaneous in vivo Raman spectroscopic studies of breast cancer.

    PubMed

    Bhattacharjee, T; Kumar, Piyush; Maru, G; Ingle, A; Krishna, C Murali

    2014-01-01

    Breast cancer is the most common cancer affecting females worldwide. As early detection results in better prognosis, screening tools for breast cancer are being explored. Raman spectroscopy, a rapid, objective, and noninvasive tool, has shown promising results in the diagnosis of several cancers including breast cancer. For development as a screening tool, a study of spectral signatures associated with breast cancer progression is imperative. However, such studies are not possible in human subjects. Hence, there is a need for a suitable animal model, which is conducive to transcutaneous in vivo Raman spectroscopic measurements of breast with minimal interference from skin and hair and has contribution from functional mammary epithelium of breast. In this study, rodent models like C57, Swiss albino, Swiss bare, agouti mice, and Sprague-Dawley rats were evaluated. Among these models, transcutaneous breast spectra of hairless Swiss bare mice have the best signal-to-noise ratio and were closest to reported ex vivo as well as intraoperative in vivo human breast spectra. Principal component-linear discriminant analysis of several anatomical sites confirms minimal skin interference and suggests contribution from functional mammary epithelium of breast. Moreover, transcutaneous spectra from normal breast and breast tumors of Swiss bare mice could be classified with 99% efficiency, which is better than the previous reports. Thus, Swiss bare mice model may be better suited for transcutaneous in vivo Raman spectroscopic studies of breast physiology and pathology, especially breast cancer. Prospectively, in addition to cancer progression, breast-to-bone metastasis can also be studied, since these anatomical sites can be uniquely classified. PMID:23708992

  18. Infrared Spectroscopic Studies with the Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2011-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) will be a premier facility for studying the physics and chemistry of the interstellar medium and the stellar evolution process for many decades. SOFIA's first-generation instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. SOFIA spectroscopic science applications will be discussed, with special emphasis on investigations related to infrared spectroscopy of astrophysical gas, grains, and ices. First light images and early science results related to these topics will be presented.

  19. Spectroscopic study of light scattering in linear alkylbenzene for liquid scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Liu, Qian; Han, Junbo; Zhang, Zhenyu; Zhang, Xuan; Ding, Yayun; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-11-01

    We have set up a light scattering spectrometer to study the depolarization of light scattering in linear alkylbenzene. The scattering spectra show that the depolarized part of light scattering is due to Rayleigh scattering. The additional depolarized Rayleigh scattering can make the effective transparency of linear alkylbenzene much better than expected. Therefore, sufficient scintillation photons can transmit through large liquid scintillator detector, such as that of the JUNO experiment. Our study is crucial to achieving an unprecedented energy resolution of 3 %/√{E{(MeV)}} required for the JUNO experiment to determine the neutrino mass hierarchy. The spectroscopic method can also be used to examine the depolarization of other organic solvents used in neutrino experiments.

  20. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-10-01

    This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.