Science.gov

Sample records for fluorescently labeled substance

  1. Analysis of fluorescently labeled substance P analogs: binding, imaging and receptor activation

    PubMed Central

    Bennett, Vicki J; Simmons, Mark A

    2001-01-01

    Background Substance P (SP) is a peptide neurotransmitter found in central and peripheral nerves. SP is involved in the control of smooth muscle, inflammation and nociception. The amino acid sequence of SP is Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2. Five different forms of fluorescently labeled SP have recently been synthesized, in which Alexa 488, BODIPY Fl, fluorescein, Oregon Green 488 or tetramethylrhodamine has been covalently linked to SP at Lys3. Here, these novel analogs are characterized as to their ligand binding, receptor activation and fluorescence labeling properties. Results Competition binding studies, using radiolabeled [125I] SP, revealed that all of the labeled forms of SP, except for Alexa 488-SP, effectively competed with radiolabeled SP for binding at the rat SP receptor. With the exception of Alexa 488-SP, all of the SP analogs produced Ca++ elevations and fluorescence labeling of the SP receptor expressed in Chinese hamster ovary cells. In SP-responsive neurons, BODIPY Fl-SP and Oregon Green 488-SP were as effective as unlabeled SP in producing a reduction of the M-type K+ current. Fluorescein-SP produced variable results, while tetramethylrhodamine-SP was less potent and Alexa 488-SP was less effective on intact neurons. Conclusions The above results show that fluorescent labeling of SP altered the biological activity and the binding properties of the parent peptide. Oregon Green 488 and BODIPY FL-SP are the most useful fluorophores for labeling SP without affecting its biological activity. Given these results, these probes can now be utilized in further investigations of the mechanisms of SPR function, including receptor localization, internalization and recycling. PMID:11418083

  2. Trace fluorescent labeling for protein crystallization

    PubMed Central

    Pusey, Marc; Barcena, Jorge; Morris, Michelle; Singhal, Anuj; Yuan, Qunying; Ng, Joseph

    2015-01-01

    Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate-screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds ‘hidden’ leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single-pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV-transparent. PMID:26144224

  3. Trace fluorescent labeling for protein crystallization

    SciTech Connect

    Pusey, Marc Barcena, Jorge; Morris, Michelle; Singhal, Anuj; Yuan, Qunying; Ng, Joseph

    2015-06-27

    The presence of a covalently bound fluorescent probe at a concentration of <0.5% does not affect the outcome of macromolecule crystallization screening experiments. Additionally, the fluorescence can be used to determine new, not immediately apparent, lead crystallization conditions. Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate-screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds ‘hidden’ leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single-pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV-transparent.

  4. Dengue virus growth, purification, and fluorescent labeling.

    PubMed

    Zhang, Summer; Chan, Kuan Rong; Tan, Hwee Cheng; Ooi, Eng Eong

    2014-01-01

    The early events of the dengue virus life cycle involve virus binding, internalization, trafficking, and fusion. Fluorescently labeled viruses can be used to visualize these early processes. As dengue virus has 180 identical copies of the envelope protein attached to the membrane surface and is surrounded by a lipid membrane, amine-reactive (Alexa Fluor) or lipophilic (DiD) dyes can be used for virus labeling. These dyes are highly photostable and are ideal for studies involving cellular uptake and endosomal transport. To improve virus labeling efficiency and minimize the nonspecific labeling of nonviral proteins, virus concentration and purification precede fluorescent labeling of dengue viruses. Besides using these viruses for single-particle tracking, DiD-labeled viruses can also be used to distinguish serotype-specific from cross-neutralizing antibodies. Here the details of virus concentration, purification, virus labeling, applications, and hints of troubleshooting are described. PMID:24696327

  5. Fluorescent Quantum Dots for Biological Labeling

    NASA Technical Reports Server (NTRS)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  6. Fluorescent labels and their use in separations

    DOEpatents

    Mathies, Richard A.; Glazer, Alexander; Ju, Jingyue

    1997-01-01

    Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids.

  7. Fluorescent labels in biosensors for pathogen detection.

    PubMed

    Li, Bianmiao; Yu, Qiaoling; Duan, Yixiang

    2015-03-01

    Infectious diseases caused by pathogens have become a life-threatening problem for millions of people around the world in recent years. Therefore, the need of efficient, fast, low-cost and user-friendly biosensing systems to monitor pathogen has increased enormously in the last few years. This paper presents an overview of different fluorescent labels and the utilization of fluorescence-based biosensor techniques for rapid, direct, sensitive and real-time identification of bacteria. In these biosensors, organic dyes, nanomaterials and rare-earth elements are playing an increasing role in the design of biosensing systems with an interest for applications in bacterial analysis. PMID:23886349

  8. Silent, fluorescent labeling of native neuronal receptors.

    PubMed

    Vytla, Devaiah; Combs-Bachmann, Rosamund E; Hussey, Amanda M; Hafez, Ismail; Chambers, James J

    2011-10-21

    We have developed a minimally-perturbing strategy that enables labeling and subcellular visualization of endogenous dendritic receptors on live, wild-type neurons. Specifically, calcium-permeable non-NMDA glutamate receptors expressed in hippocampal neurons can be targeted with this novel synthetic tri-functional molecule. This ligand-directed probe was targeted towards AMPA receptors and bears an electrophilic group for covalent bond formation with an amino acid side chain on the extracellular side of the ion channel. This molecule was designed in such a way that the use-dependent, polyamine-based ligand accumulates the chemically-reactive group at the extracellular side of these polyamine-sensitive receptors, thereby allowing covalent bond formation between an electrophilic moiety on the nanoprobe and a nucleophilic amino acid sidechain on the receptor. Bioconjugation of this molecule results in a stable covalent bond between the nanoprobe and the target receptor. Subsequent photolysis of a portion of the nanoprobe may then be employed to effect ligand release allowing the receptor to re-enter the non-liganded state, all the while retaining the fluorescent beacon for visualization. This technology allows for rapid fluorescent labeling of native polyamine-sensitive receptors and further advances the field of fluorescent labeling of native biological molecules. PMID:21897969

  9. Further Insights into Metal-DOM Interaction: Consideration of Both Fluorescent and Non-Fluorescent Substances

    PubMed Central

    Xu, Huacheng; Zhong, Jicheng; Yu, Guanghui; Wu, Jun; Jiang, Helong; Yang, Liuyan

    2014-01-01

    Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential. PMID:25380246

  10. Fluorescence labeled microbubbles for multimodal imaging.

    PubMed

    Barrefelt, Åsa; Zhao, Ying; Larsson, Malin K; Egri, Gabriella; Kuiper, Raoul V; Hamm, Jörg; Saghafian, Maryam; Caidahl, Kenneth; Brismar, Torkel B; Aspelin, Peter; Heuchel, Rainer; Muhammed, Mamoun; Dähne, Lars; Hassan, Moustapha

    2015-08-28

    Air-filled polyvinyl alcohol microbubbles (PVA-MBs) were recently introduced as a contrast agent for ultrasound imaging. In the present study, we explore the possibility of extending their application in multimodal imaging by labeling them with a near infrared (NIR) fluorophore, VivoTag-680. PVA-MBs were injected intravenously into FVB/N female mice and their dynamic biodistribution over 24 h was determined by 3D-fluorescence imaging co-registered with 3D-μCT imaging, to verify the anatomic location. To further confirm the biodistribution results from in vivo imaging, organs were removed and examined histologically using bright field and fluorescence microscopy. Fluorescence imaging detected PVA-MB accumulation in the lungs within the first 30 min post-injection. Redistribution to a low extent was observed in liver and kidneys at 4 h, and to a high extent mainly in the liver and spleen at 24 h. Histology confirmed PVA-MB localization in lung capillaries and macrophages. In the liver, they were associated with Kupffer cells; in the spleen, they were located mostly within the marginal-zone. Occasional MBs were observed in the kidney glomeruli and interstitium. The potential application of PVA-MBs as a contrast agent was also studied using ultrasound (US) imaging in subcutaneous and orthotopic pancreatic cancer mouse models, to visualize blood flow within the tumor mass. In conclusion, this study showed that PVA-MBs are useful as a contrast agent for multimodal imaging. PMID:26187672

  11. Multiplexed Spectral Imaging of 120 Different Fluorescent Labels

    PubMed Central

    Valm, Alex M.; Oldenbourg, Rudolf; Borisy, Gary G.

    2016-01-01

    The number of fluorescent labels that can unambiguously be distinguished in a single image when acquired through band pass filters is severely limited by the spectral overlap of available fluorophores. The recent development of spectral microscopy and the application of linear unmixing algorithms to spectrally recorded image data have allowed simultaneous imaging of fluorophores with highly overlapping spectra. However, the number of distinguishable fluorophores is still limited by the unavoidable decrease in signal to noise ratio when fluorescence signals are fractionated over multiple wavelength bins. Here we present a spectral image analysis algorithm to greatly expand the number of distinguishable objects labeled with binary combinations of fluorophores. Our algorithm utilizes a priori knowledge about labeled specimens and imposes a binary label constraint on the unmixing solution. We have applied our labeling and analysis strategy to identify microbes labeled by fluorescence in situ hybridization and here demonstrate the ability to distinguish 120 differently labeled microbes in a single image. PMID:27391327

  12. Directly labeled fluorescent DNA probes for chromosome mapping

    SciTech Connect

    Marrone, B.L.; Deaven, L.L.; Chen, D.J.; Park, Min S.; MacInnes, M.A.; Salzman, G.C.; Yoshida, T.M.

    1995-12-31

    A new strategy is briefly described for employing nucleic acid probes that are directly labeled with fluorochromes in fluorescence in situ hybridization techniques. These probes will permit the detection, quantitation, and high-precision spatial analysis of multiple DNA sequences along a single chromosome using video-enhanced fluorescence microscopy and digital image processing and analysis. Potential advantages of direct labeled DNA probes for fluorescence in situ hybridization far surpass currently available, indirect DNA probe labeling techniques in ease of use, versatility, and increased signal- to-noise ratio.

  13. Fluorescence labeling of carbon nanotubes and visualization of a nanotube-protein hybrid under fluorescence microscope.

    PubMed

    Yoshimura, Shige H; Khan, Shahbaz; Maruyama, Hiroyuki; Nakayama, Yoshikazu; Takeyasu, Kunio

    2011-04-11

    Biological applications of carbon nanotubes have been hampered by the inability to visualize them using conventional optical microscope, which is the most common tool for the observation and measurement of biological processes. Recently, a number of fluorescence labeling methods for biomolecules and various fluorescence probes have been developed and widely utilized in biological fields. Therefore, labeling carbon nanotubes with such fluorophores under physiological conditions will be highly useful in their biological applications. In this Article, we present a method to fluorescently label nanotubes by combining a detergent and a fluorophore commonly used in biological experiments. Fluorophores carrying an amino group (Texas Red hydrazide or BODIPY FL-hydrazide) were covalently attached to the hydroxyl groups of Tween 20 using carbonyldiimidazole. Fluorescence microscopy demonstrated that nanotubes were efficiently solubilized and labeled by this fluorescently labeled detergent. By using this technique, we also demonstrated multicolor fluorescence imaging of a nanotube-protein hybrid. PMID:21395219

  14. Protein specific fluorescent microspheres for labelling a protein

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1982-01-01

    Highly fluorescent, stable and biocompatible microspheres are obtained by copolymerizing an acrylic monomer containing a covalent bonding group such as hydroxyl, amine or carboxyl, for example, hydroxyethylmethacrylate, with an addition polymerizable fluorescent comonomer such as dansyl allyl amine. A lectin or antibody is bound to the covalent site to provide cell specificity. When the microspheres are added to a cell suspension the marked microspheres will specifically label a cell membrane by binding to a specific receptor site thereon. The labeled membrane can then be detected by fluorescence of the fluorescent monomer.

  15. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    SciTech Connect

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.

    2014-02-10

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  16. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    NASA Astrophysics Data System (ADS)

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.

    2014-02-01

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  17. Advances in fluorescence labeling strategies for dynamic cellular imaging

    PubMed Central

    Dean, Kevin M; Palmer, Amy E

    2014-01-01

    Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein– and bio-orthogonal–based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging. PMID:24937069

  18. The effects of radioiodination and fluorescent labelling on albumin

    SciTech Connect

    Crandall, R.E.; Janatova, J.; Andrade, J.D.

    1981-01-01

    The preparation and characterization of fluorescamine -, fluorescein isothiocyanate (FITC) -, and radioiodine-labelled bovine serum albumin is critically evaluated. Electrophoretic mobility and ion-exchange chromatography, together with measures of degree of conjugation and sulfhydryl content, are used to assess the changes due to conjugation. Fluorescamine labelling results in drastic changes in chromatographic behavior and electrophoretic mobility. FITC labelling also results in significant changes in chromatographic and electrophoretic properties. Radioiodination leads to minor changes in chromatographic properties and oxydation of sulfhydryl groups, with little or no change in electrophoretic properties. All three labels have some degree of lability and show increased levels of free label with time, even after extensive initial purification. It is concluded that the two fluorescent labels and possibly the radioiodine labelling method used here are unsuitable for certain studies of BSA, such as its adsorption at solid-liquid interfaces.

  19. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue.

    PubMed

    Schnell, S A; Staines, W A; Wessendorf, M W

    1999-06-01

    The fluorescent pigment lipofuscin accumulates with age in the cytoplasm of cells of the CNS. Because of its broad excitation and emission spectra, the presence of lipofuscin-like autofluorescence complicates the use of fluorescence microscopy (e.g., fluorescent retrograde tract tracing and fluorescence immunocytochemistry). In this study we examined several chemical treatments of tissue sections for their ability to reduce or eliminate lipofuscin-like autofluorescence without adversely affecting other fluorescent labels. We found that 1-10 mM CuSO4 in 50 mM ammonium acetate buffer (pH 5) or 1% Sudan Black B (SB) in 70% ethanol reduced or eliminated lipofuscin autofluorescence in sections of monkey, human, or rat neural tissue. These treatments also slightly reduced the intensity of immunofluorescent labeling and fluorescent retrograde tract tracers. However, the reduction of these fluorophores was far less dramatic than that for the lipofuscin-like compound. We conclude that treatment of tissue with CuSO4 or SB provides a reasonable compromise between reduction of lipofuscin-like fluorescence and maintenance of specific fluorescent labels. PMID:10330448

  20. Characterization of eight different tetracyclines: advances in fluorescence bone labeling

    PubMed Central

    Pautke, Christoph; Vogt, Stephan; Kreutzer, Kilian; Haczek, Cornelia; Wexel, Gabriele; Kolk, Andreas; Imhoff, Andreas B; Zitzelsberger, Horst; Milz, Stefan; Tischer, Thomas

    2010-01-01

    Polychrome sequential labeling with fluorochromes is a standard technique for the investigation of bone formation and regeneration processes in vivo. However, for human application, only tetracycline and its derivates are approved as fluorochromes. Therefore, the aim of this study was to determine the fluorescence characteristics of the different tetracycline derivates to assess the feasibility of sequential in vivo bone labeling using distinguishable fluorochromes. Eight different tetracycline derivates were injected subcutaneously into growing rats as a single dose or sequentially in different combinations. After preparation of resin-embedded undecalcified bone sections, the fluorescence properties of the tetracycline derivates in bone were analyzed using conventional fluorescence microscopy, spectral image analysis and confocal laser scanning microscopy. Each tetracycline derivate exhibited a characteristic fluorescence spectrum, but the differences between them were small. Chlortetracycline could be discriminated reliably from all other derivates and could therefore be combined with any other tetracycline derivate for reliably distinguishable double labeling. Tetracycline itself exhibited the brightest fluorescence of all the investigated derivates. Interestingly, in conventional microscopy the same tetracycline derivative can appear in different colours to the human eye, even if spectral analysis confirmed identical emission peaks. In conclusion, the data suggest that fluorescence double labeling of bone is feasible using appropriate tetracycline derivates in combination with spectral imaging modalities. PMID:20456523

  1. Fluorescent RNA labeling using self-alkylating ribozymes.

    PubMed

    Sharma, Ashwani K; Plant, Joshua J; Rangel, Alexandra E; Meek, Kirsten N; Anamisis, April J; Hollien, Julie; Heemstra, Jennifer M

    2014-08-15

    The ability to fluorescently label specific RNA sequences is of significant utility for both in vitro and live cell applications. Currently, most RNA labeling methods utilize RNA-nucleic acid or RNA-protein molecular recognition. However, in the search for improved RNA labeling methods, harnessing the small-molecule recognition capabilities of RNA is rapidly emerging as a promising alternative. Along these lines, we propose a novel strategy in which a ribozyme acts to promote self-alkylation with a fluorophore, providing a robust, covalent linkage between the RNA and the fluorophore. Here we describe the selection and characterization of ribozymes that promote self-labeling with fluorescein iodoacetamide (FIA). Kinetic studies reveal a second-order rate constant that is on par with those of other reactions used for biomolecular labeling. Additionally, we demonstrate that labeling is specific to the ribozyme sequences, as FIA does not react nonspecifically with RNA. PMID:24896502

  2. Fluorescent Labeling of Yeast Cell Wall Components.

    PubMed

    Okada, Hiroki; Ohya, Yoshikazu

    2016-01-01

    Yeast cells stained with a fluorescent dye that specifically binds to one of the cell wall components can be observed under a fluorescent microscope. Visualization of the components 1,3-β-glucan, mannoproteins, and/or chitin not only provides information concerning the cell wall, but also reveals clues about various cellular activities such as cell polarity, vesicular transport, establishment of budding pattern, apical and isotropic bud growth, and replicative cell age. This protocol describes a standard method for visualizing different components of the yeast cell wall. PMID:27480714

  3. Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies.

    PubMed

    Rombouts, K; Braeckmans, K; Remaut, K

    2016-02-17

    Live-cell imaging has provided the life sciences with insights into the cell biology and dynamics. Fluorescent labeling of target molecules proves to be indispensable in this regard. In this Review, we focus on the current fluorescent labeling strategies for nucleic acids, and in particular mRNA (mRNA) and plasmid DNA (pDNA), which are of interest to a broad range of scientific fields. By giving a background of the available techniques and an evaluation of the pros and cons, we try to supply scientists with all the information needed to come to an informed choice of nucleic acid labeling strategy aimed at their particular needs. PMID:26670733

  4. NIR fluorescent silica nanoparticles as reporting labels in bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sydney

    2015-03-01

    The use of the NIR spectral region (650-900 nm) for bioanalytical and biomedical analyses is advantageous due to the inherently lower background interference in biological matrices and the high molar absorptivities of NIR chromophores. There are several different groups of NIR fluorescing dye are available for bioanalytical applications. One of these groups, NIR carbocyanines are increasingly used in analytical, bioanalytical and medical applications. These dyes can be used as reporter labels for sensitive bioanalytical use, such as immunochemistry. Due to the spectroscopic sensitivity of NIR carbocyanines for polarity changes in the microenvironment fluorescence quantum yield can vary significantly dependent on the microenvironment. NIR dyes can have relatively low fluorescent quantum yields as compared to visible fluorophores, especially in aqueous buffers but the lower quantum yield is compensated for by a much higher molar absorptivity. The fluorescence intensity of NIR reporting labels can significantly be increased by enclosing several dye molecules in silica nanoparticles. Incorporation of NIR dyes in silica nanoparticles creates a unique challenge as these dyes can be unstable under certain chemical conditions present during silica nanoparticles syntheses. In addition, self quenching may also become a problem for carbocyanines at higher a concentrations that typically found inside of NIR dye loaded silica nanoparticles. Dyes possessing high Stokes' shift can significantly reduce this problem. NIR carbocyanines are uniquely positioned for achieving this goal using a synthetic route that substitutes meso position halogens in NIR fluorescent carbocyanines with a linker containing amino moiety, which can also serve as a linker for covalently attaching the dye molecule to the nanoparticle backbone. The resulting silica nanoparticles can contain a large number of NIR dyes dependent on their size. For example some NIR fluorescent silica nanoparticle labels

  5. High-Level Fluorescence Labeling of Gram-Positive Pathogens

    PubMed Central

    Aymanns, Simone; Mauerer, Stefanie; van Zandbergen, Ger; Wolz, Christiane; Spellerberg, Barbara

    2011-01-01

    Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration. PMID:21731607

  6. Rainbow Vectors for Broad-Range Bacterial Fluorescence Labeling.

    PubMed

    Barbier, Mariette; Damron, F Heath

    2016-01-01

    Since their discovery, fluorescent proteins have been widely used to study protein function, localization or interaction, promoter activity and regulation, drug discovery or for non-invasive imaging. They have been extensively modified to improve brightness, stability, and oligomerization state. However, only a few studies have focused on understanding the dynamics of fluorescent proteins expression in bacteria. In this work, we developed a set plasmids encoding 12 fluorescent proteins for bacterial labeling to facilitate the study of pathogen-host interactions. These broad-spectrum plasmids can be used with a wide variety of Gram-negative microorganisms including Escherichia coli, Pseudomonas aeruginosa, Burkholderia cepacia, Bordetella bronchiseptica, Shigella flexneri or Klebsiella pneumoniae. For comparison, fluorescent protein expression and physical characteristics in Escherichia coli were analyzed using fluorescence microscopy, flow cytometry and in vivo imaging. Fluorescent proteins derived from the Aequorea Victoria family showed high photobleaching, while proteins form the Discosoma sp. and the Fungia coccina family were more photostable for microscopy applications. Only E2-Crimson, mCherry and mKeima were successfully detected for in vivo applications. Overall, E2-Crimson was the fastest maturing protein tested in E. coli with the best overall performance in the study parameters. This study provides a unified comparison and comprehensive characterization of fluorescent protein photostability, maturation and toxicity, and offers general recommendations on the optimal fluorescent proteins for in vitro and in vivo applications. PMID:26937640

  7. Rainbow Vectors for Broad-Range Bacterial Fluorescence Labeling

    PubMed Central

    Barbier, Mariette; Damron, F. Heath

    2016-01-01

    Since their discovery, fluorescent proteins have been widely used to study protein function, localization or interaction, promoter activity and regulation, drug discovery or for non-invasive imaging. They have been extensively modified to improve brightness, stability, and oligomerization state. However, only a few studies have focused on understanding the dynamics of fluorescent proteins expression in bacteria. In this work, we developed a set plasmids encoding 12 fluorescent proteins for bacterial labeling to facilitate the study of pathogen-host interactions. These broad-spectrum plasmids can be used with a wide variety of Gram-negative microorganisms including Escherichia coli, Pseudomonas aeruginosa, Burkholderia cepacia, Bordetella bronchiseptica, Shigella flexneri or Klebsiella pneumoniae. For comparison, fluorescent protein expression and physical characteristics in Escherichia coli were analyzed using fluorescence microscopy, flow cytometry and in vivo imaging. Fluorescent proteins derived from the Aequorea Victoria family showed high photobleaching, while proteins form the Discosoma sp. and the Fungia coccina family were more photostable for microscopy applications. Only E2-Crimson, mCherry and mKeima were successfully detected for in vivo applications. Overall, E2-Crimson was the fastest maturing protein tested in E. coli with the best overall performance in the study parameters. This study provides a unified comparison and comprehensive characterization of fluorescent protein photostability, maturation and toxicity, and offers general recommendations on the optimal fluorescent proteins for in vitro and in vivo applications. PMID:26937640

  8. Fluorescence anisotropy metrology of electrostatically and covalently labelled silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Yip, Philip; Karolin, Jan; Birch, David J. S.

    2012-08-01

    We compare determining the size of silica nanoparticles using the time-resolved fluorescence anisotropy decay of dye molecules when electrostatically and covalently bound to stable silica nanoparticles. Covalent labelling is shown to offer advantages by simplifying the dye rotational kinetics and the appropriateness of various kinetic models is discussed. Silica nanoparticles produced using Stöber synthesis of tetraethylorthosilicate (TEOS) are found to be controllable between ˜3.1 and 3.8 nm radius by adjusting the relative water:TEOS concentration. Covalent labelling with fluorescein 5(6)-isothiocyanate (FITC) bound to (3-aminopropyl) trimethoxysilane (FITC-APS) predicts a larger particle than electrostatically labelling with rhodamine 6G. The difference is attributed to the presence of an additional depolarization mechanism to Brownian rotation of the nanoparticle and dye wobbling with electrostatic labelling in the form of dye diffusion on the surface of the nanoparticle.

  9. Fluorescent labeling of antibody fragments using split GFP.

    PubMed

    Ferrara, Fortunato; Listwan, Pawel; Waldo, Geoffrey S; Bradbury, Andrew R M

    2011-01-01

    Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs) using the split green fluorescent protein (GFP) system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11), is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems. PMID:21998685

  10. Generation, Quantification, and Tracing of Metabolically Labeled Fluorescent Exosomes.

    PubMed

    Coscia, Carolina; Parolini, Isabella; Sanchez, Massimo; Biffoni, Mauro; Boussadia, Zaira; Zanetti, Cristiana; Fiani, Maria Luisa; Sargiacomo, Massimo

    2016-01-01

    Over the last 10 years, the constant progression in exosome (Exo)-related studies highlighted the importance of these cell-derived nano-sized vesicles in cell biology and pathophysiology. Functional studies on Exo uptake and intracellular trafficking require accurate quantification to assess sufficient and/or necessary Exo particles quantum able to elicit measurable effects on target cells. We used commercially available BODIPY(®) fatty acid analogues to label a primary melanoma cell line (Me501) that highly and spontaneously secrete nanovesicles. Upon addition to cell culture, BODIPY fatty acids are rapidly incorporated into major phospholipid classes ultimately producing fluorescent Exo as direct result of biogenesis. Our metabolic labeling protocol produced bright fluorescent Exo that can be examined and quantified with conventional non-customized flow cytometry (FC) instruments by exploiting their fluorescent emission rather than light-scattering detection. Furthermore, our methodology permits the measurement of single Exo-associated fluorescence transfer to cells making quantitative the correlation between Exo uptake and activation of cellular processes. Thus the protocol presented here appears as an appropriate tool to who wants to investigate mechanisms of Exo functions in that it allows for direct and rapid characterization and quantification of fluorescent Exo number, intensity, size, and eventually evaluation of their kinetic of uptake/secretion in target cells. PMID:27317184

  11. Water soluble fluorescence quantum dot probe labeling liver cancer cells.

    PubMed

    Chang, Baoxing; Yang, Xianjun; Wang, Fang; Wang, Yinsong; Yang, Rui; Zhang, Ning; Wang, Baiqi

    2013-11-01

    Water soluble quantum dots (QDs) have been prepared by hydrothermal method and characterized by ultraviolet irradiation, XRD, TEM, UV-Vis absorption spectrometer and fluorescence spectrometer. Then the QD-antibody-AFP probes (QD-Ab-AFP) were synthesized by chemical process and specifically labeled AFP antigen in PLC/PRF/5 liver cancer cells. The results showed that the QDs were cubic structure and had excellent optical properties. Moreover, the QD-Ab-AFP with good stability could specifically label liver cancer cells. This work provides strong foundation for further studying and developing new approach to detect liver cancer at early stage. PMID:23888351

  12. FLUORESCENCE CHARACTERIZATION OF IHSS HUMIC SUBSTANCES: TOTAL LUMINESCENCE SPECTRA WITH ABSORBANCE CORRECTION. (R822251)

    EPA Science Inventory

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to d...

  13. Fluorescence biosensing strategy based on energy transfer between fluorescently labeled receptors and a metallic surface.

    PubMed

    Pérez-Luna, Víctor H; Yang, Saipeng; Rabinovich, Emmanuil M; Buranda, Tione; Sklar, Larry A; Hampton, Philip D; López, Gabriel P

    2002-01-01

    A new fluorescence-based biosensor is presented. The biosensing scheme is based on the fact that a fluorophore in close proximity to a metal film (<100 A) experiences strong quenching of fluorescence and a dramatic reduction in the lifetime of the excited state. By immobilizing the analyte of interest (or a structural analog of the analyte) to a metal surface and exposing it to a labeled receptor (e.g. antibody), the fluorescence of the labeled receptor becomes quenched upon binding because of the close proximity to the metal. Upon exposure to free analyte, the labeled receptor dissociates from the surface and diffuses into the bulk of the solution. This increases its separation from the metal and an increase of fluorescence intensity and/or lifetime of the excited state is observed that indicates the presence of the soluble analyte. By enclosing this system within a small volume with a semipermeable membrane, a reversible device is obtained. We demonstrate this scheme using a biotinylated self-assembled monolayer (SAM) on gold as our surface immobilized analyte analog, fluorescently labeled anti-biotin as a receptor, and a solution of biotin in PBS as a model analyte. This scheme could easily be extended to transduce a wide variety of protein-ligand interactions and other biorecognition phenomena (e.g. DNA hybridization) that result in changes in the architecture of surface immobilized biomolecules such that a change in the separation distance between fluorophores and the metal film is obtained. PMID:11742737

  14. Multicolor fluorescent labeling of cellulose nanofibrils by click chemistry.

    PubMed

    Navarro, Julien R G; Conzatti, Guillaume; Yu, Yang; Fall, Andreas B; Mathew, Renny; Edén, Mattias; Bergström, Lennart

    2015-04-13

    We have chemically modified cellulose nanofibrils (CNF) with furan and maleimide groups, and selectively labeled the modified CNF with fluorescent probes; 7-mercapto-4-methylcoumarin and fluorescein diacetate 5-maleimide, through two specific click chemistry reactions: Diels-Alder cycloaddition and the thiol-Michael reaction. Characterization by solid-state (13)C NMR and infrared spectroscopy was used to follow the surface modification and estimate the substitution degrees. We demonstrate that the two luminescent dyes could be selectively labeled onto CNF, yielding a multicolor CNF that was characterized by UV/visible and fluorescence spectroscopies. It was demonstrated that the multicolor CNF could be imaged using a confocal laser scanning microscope. PMID:25774999

  15. Diffuse fluorescence tomography of exo- and endogenously labeled tumors

    NASA Astrophysics Data System (ADS)

    Balalaeva, Irina V.; Turchin, Ilya V.; Orlova, Anna G.; Plekhanov, Vladimir I.; Shirmanova, Marina V.; Kleshnin, Michail S.; Fiks, Ilya I.; Zagainova, Elena V.; Kamensky, Vladislav A.

    2007-06-01

    Strong light scattering and absorption limit observation of the internal structure of biological tissue. Only special tools for turbid media imaging, such as optical diffuse tomography, enable noninvasive investigation of the internal biological tissues, including visualization and intravital monitoring of deep tumors. In this work the preliminary results of diffuse fluorescence tomography (DFT) of small animals are presented. Usage of exogenous fluorophores, targeted specifically at tumor cells, and fluorescent proteins expressed endogenously can significantly increase the contrast of obtained images. Fluorescent compounds of different nature, such as sulphonated aluminium phthalocyanine (Photosens), red fluorescing proteins and CdTe/CdSe-core/shell nanocrystals (quantum dots) were applied. We tested diffuse fluorescence tomography method at model media, in post mortem and in vivo experiments. The animal was scanned in transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at wavelength of 532 nm or semiconductor laser at wavelength of 655 nm. Quantum dots or protein DsRed2 in glass capsules (inner diameter 2-3 mm) were placed post mortem inside the esophagus of 7-day-old hairless rats to simulate marked tumors. Photosens was injected intravenously to linear mice with metastazing Lewis lung carcinoma. The reconstruction algorithm, based on Algebraic Reconstruction Technique, was created and tested numerically in model experiments. High contrast images of tumor simulating capsules with DsRed2 concentrations about 10 -6 M and quantum dots about 5x10 -11 M have been obtained. Organ distribution of Photosens and its accumulation in tumors and surrounding tissues of animals has been examined. We have conducted the monitoring of tumors, exogenously labeled by photosensitizer. This work demonstrates potential capabilities of DFT method for intravital detection and monitoring of deep fluorescent-labeled

  16. Separation-oriented derivatization of native fluorescent compounds through fluorous labeling followed by liquid chromatography with fluorous-phase.

    PubMed

    Sakaguchi, Yohei; Yoshida, Hideyuki; Todoroki, Kenichiro; Nohta, Hitoshi; Yamaguchi, Masatoshi

    2009-06-15

    We have developed a new and simple method based on "fluorous derivatization" for LC of native fluorescent compounds. This method involves the use of a column with a fluorous stationary phase. Native fluorescent analytes with target functional groups are precolumn derivatized with a nonfluorescent fluorous tag, and the fluorous-labeled analytes are retained in the column, whereas underivatized substances are not. Only the retained fluorescent analytes are detected fluorometrically at appropriate retention times, and retained substrates without fluorophores are not detected. In this study, biologically important carboxylic acids (homovanillic acid, vanillylmandelic acid, and 5-hydroxyindoleacetic acid) and drugs (naproxen, felbinac, flurbiprofen, and etodolac) were used as model native fluorescent compounds. Experimental results indicate that the fluorous-phase column can selectively retain fluorous compounds including fluorous-labeled analytes on the basis of fluorous separation. We believe that separation-oriented derivatization presented here is the first step toward the introduction of fluorous derivatization in quantitative LC analysis. PMID:19459682

  17. Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul

    2006-05-29

    In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.

  18. Spatial arrangement of selected fluorescence labels in lipid bilayer.

    PubMed

    Zawada, Zygmunt H

    2013-08-01

    The method for the determination the orientation factor κ(2), spatial arrangement and depth position of fluorescence labels located in hydrophilic layers of vesicles bilayer from resonance energy transfer (RET) data is presented. The method is based on the broadened Wolber and Hudson RET model in two dimensions (Biophys J. 1979). The vesicles were labeled with N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) as the donor and N-(Lissamine rhodamine B sulfonyl) 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NRh-PE) as the acceptor. It was found that in basic environment sodium dithionite quenches fluorescence of both labels located in outer leaflet of bilayer. Therefore, RET data prior to and following dithionite treatment were compared and the donor-acceptor cis and trans distances of the closest approach as well as cis and trans Förster radii R0, and orientation factors κ(2) for cis RET equal to 0.61±0.06 and for trans RET equal to 0.17±0.01 were assigned. Knowing the κ(2) data, the spatial arrangement of NBD and NRh labels as dipoles in dipalmitoylphosphatidylcholine bilayer were described. PMID:23727616

  19. Enhanced detection of fluorescence quenching in labeled cells

    SciTech Connect

    Crissman, H.A.; Steinkamp, J.A.

    1992-01-28

    This patent describes a method for relatively quantifying BrdU-labeled DNA in cells in an S-phase during a selected interval within a cell cycle. It comprises: incorporating the BrdU into the DNA for a time of about 5 minutes to thirty minutes; staining the DNA with a first fluorochrome having a fluorescence which is quenchable by BrdU; staining the DNA with a second fluorochrome having a fluorescence which is substantially unaffected by BrdU; measuring fluorescence from the first and second fluorochromes to obtain first and second output signals, respectively, on a cell-by-cell basis; and subtracting the first output signal from the second output signal to obtain a different signal functionally related to the quantity of incorporated BrdU.

  20. Fluorescence Properties of Labeled Proteins Near Silver Colloid Surfaces

    PubMed Central

    Maliwal, Badri P.; Malicka, Joanna; Gryczynski, Ignacy; Gryczynski, Zygmunt; Lakowicz, Joseph R.

    2009-01-01

    The fluorescence properties of a monolayer of labeled avidin molecules were studied near silver island films. We first adsorbed a monolayer of biotinylated-BSA as a base that was used to capture labeled avidin molecules. For labeled avidin on silver island films, we observed an increase of the fluorescence intensity of between 18 and 80 with one-photon excitation and up to several hundredfold or larger with two-photon excitation. The probes were moderately more photostable in the presence of silver islands. There was also a dramatic decrease in the lifetimes with the amplitude-weighted values decreasing from 7- to 35-fold. The data suggest that these spectral changes are due to both increased rates of excitation near the metallic particles and increases in the rates of radiative decay. Because these silver island surfaces are very heterogeneous, we are hopeful that larger increases in intensity and photostability can be obtained for probes situated at an optimal distance from the ideal island surfaces. PMID:14648768

  1. Diphenylhexatrienylpropanoylhydrazyl stachyose: a new fluorescence label for membrane research

    NASA Astrophysics Data System (ADS)

    Loidl, Josef; Ivessa, E. N.; Kalb, Edwin; Paltauf, Fritz; Hermetter, Albin

    1990-05-01

    Diphenylhexatrienylpropanoylhydrazyl stachyose (glyco-DPH), a new fluorescence probe, was synthesized. It inserts almost instantaneously into artificial phospholipid vesicles and biological membranes. Due to its large hydrophilic carbohydrate portion, it serves as an uncharged probe with a defined orientation within the membrane bilayer. Its usefulness to monitor lipid mobility by means of its fluorescence anisotropy could be demonstrated for dipalmitoylglycerophosphocholine at temperatures around the gel to liquid phase transition and the rigidifying effect of cholesterol on egg yolk phosphatidyicholine membranes. In addition, lipid mobility was determined for biological membrane systems such as yeast spheroplasts, yeast organelles, cultured human skin fibroblasts and compared with the 'fluidities" of vesicles made of the corresponding lipid extracts. Bimodal Lorentzian lifetime distributions determined for glyco-DPH in vesicles of 1 -palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine showed that the label is distributed homogeneously within a phospholipid bilayer. Fluorescence microscopy of living (fibroblast) cells revealed selective labeling of the surface membrane with glyco-DPH under appropriate conditions.

  2. Fluorescent labeling of tetracysteine-tagged proteins in intact cells

    PubMed Central

    Hoffmann, Carsten; Gaietta, Guido; Zürn, Alexander; Adams, Stephen R; Terrillon, Sonia; Ellisman, Mark H; Tsien, Roger Y; Lohse, Martin J

    2011-01-01

    In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder–ethanedithiol (FlAsH-EDT2). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg−1 of protein, such as G protein–coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT2 as described takes 2–3 h, depending on the number of samples to be processed. PMID:20885379

  3. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    PubMed Central

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  4. Associations Between Ethnic Labels and Substance Use Among Hispanic/Latino Adolescents in Los Angeles

    PubMed Central

    Unger, Jennifer B; Thing, James; Soto, Daniel Wood; Baezconde-Garbanati, Lourdes

    2014-01-01

    Self-identification with ethnic-specific labels may indicate successful ethnic identity formation, which could protect against substance use. Alternatively, it might indicate affiliation with oppositional subcultures, a potential risk factor. This study examined longitudinal associations between ethnic labels and substance use among 1,575 Hispanic adolescents in Los Angeles. Adolescents who identified as Cholo or La Raza in 9th grade were at increased risk of past-month substance use in 11th grade. Associations were similar across gender and were not confounded by socioeconomic status, ethnic identity development, acculturation, or language use. Targeted prevention interventions for adolescents who identify with these subcultures may be warranted. PMID:24779500

  5. Enhanced detection of fluorescence quenching in labeled cells

    DOEpatents

    Crissman, Harry A.; Steinkamp, John A.

    1992-01-01

    A method is provided for quantifying BrdU labeled DNA in cells. The BrdU is incorporated into the DNA and the DNA is stained with a first fluorochrome having a fluorescence which is quenchable by BrdU. The first fluorochrome is preferably a thymidine base halogen analogue, such as a Hoechst fluorochrome. The DNA is then stained with a second fluorochrome having a fluorescence that is substantially uneffected by BrdU. The second fluorochrome may be selected from the group consisting of mithramycin, chromomycin A3, olivomycin, propidium iodide and ethidium bromine. The fluorescence from the first and second fluorochromes is then measured to obtain first and second output signals, respectively. The first output signal is substracted from the second output signal to obtain a difference signal which is functionally related to the quantity of BrdU incorporated into DNA. The technique is particularly useful for quantifying the synthesis of DNA during the S-phase of the cell cycle.

  6. Enhanced detection of fluorescence quenching in labeled cells

    DOEpatents

    Crissman, H.A.; Steinkamp, J.A.

    1987-11-30

    A method is provided for quantifying BrdU labeled DNA in cells. The BrdU is substituted onto the DNA and the DNA is stained with a first fluorochrome having a fluorescence which is quenchable by BrdU. The first fluorochrome is preferably a thymidine base halogen analogue, such as a Hoechst fluorochrome. The DNA is then stained with a second fluorochrome having a fluorescence which is substantially uneffected by BrdU. The second fluorochrome may be selected from the group consisting of mithramycin, chromomycin A3, olivomycin, propidium iodide and ethidium bromine. The fluorescence from the first and second fluorochromes is then measured to obtain first and second output signals, respectively. The first output signal is subtracted from the second output signal to obtain a difference signal which is functionally related to the quantity of BrdU incorporated into DNA. The technique is particularly useful for quantifying the synthesis of DNA during the S-phase of the cell cycle. 2 figs.

  7. Interactions of dissolved humic substances with oppositely charged fluorescent dyes for tracer techniques.

    PubMed

    Hafuka, Akira; Ding, Qing; Yamamura, Hiroshi; Yamada, Koji; Satoh, Hisashi

    2015-11-15

    To investigate interactions between oppositely charged fluorescent dyes and dissolved humic substances, fluorescence quenching of fluorescein and rhodamine 6G with dissolved humic substances was performed. Binding coefficients were obtained by the Stern-Volmer equation. The fluorescence of rhodamine 6G was largely quenched by the addition of humic acid and a non-linear Stern-Volmer plot was obtained. This strong quenching may be caused by the electrostatic interaction between cationic rhodamine 6G and humic acid and strengthened by the hydrophobic repulsion. In contrast, the quenching and interactive effects of dissolved humic substances for fluorescein were relatively weak. PMID:26318652

  8. Separation of fluorescently labeled phosphoinositides and sphingolipids by capillary electrophoresis

    PubMed Central

    Wang, Kelong; Jiang, Dechen; Sims, Christopher E.; Allbritton, Nancy L.

    2012-01-01

    Phosphoinositides (PIs) and sphingolipids regulate many aspects of cell behavior and are often involved in disease processes such as oncogenesis. Capillary electrophoresis with laser induced fluorescence detection (CE-LIF) is emerging as an important tool for enzymatic assays of the metabolism of these lipids, particularly in cell-based formats. Previous separations of phosphoinositide lipids by CE required a complex buffer with polymer additives which had the disadvantages of high cost and/or short shelf life. Further a simultaneous separation of these classes of lipids has not been demonstrated in a robust buffer system. In the current work, a simple separation buffer based on NaH2PO4 and 1-propanol was optimized to separate two sphingolipids and multiple phosphoinositides by CE. The NaH2PO4 concentration, pH, 1-propanol fraction, and a surfactant additive to the buffer were individually optimized to achieve simultaneous separation of the sphingolipids and phosphoinositides. Fluorescein-labeled sphingosine (SFL) and sphingosine 1-phosphate (S1PFL), fluorescein-labeled phosphatidyl-inositol 4,5-bisphosphate (PIP2) and phosphatidyl-inositol 3,4,5-trisphosphate (PIP3), and bodipy-fluorescein (BFL)-labeled PIP2 and PIP3 were separated pairwise and in combination to demonstrate the generalizability of the method. Theoretical plate numbers achieved were as high as 2×105 in separating fluorophore-labeled PIP2 and PIP3. Detection limits for the 6 analytes were in the range of 10−18 to 10−20 mol. The method also showed high reproducibility, as the relative standard deviation of the normalized migration time for each analyte in the simultaneous separation of all 6 compounds was less than 1%. The separation of a mixture composed of diacylglycerol (DAG) and multiple phosphoinositides was also demonstrated. As a final test, fluorescent lipid metabolites formed within cells loaded with BFLPIP2 were separated from a cell lysate as well as a single cell. This simple and

  9. Modulating fluorescence anisotropy of dye-labeled DNA without involving mass amplification.

    PubMed

    Pei, Xiaojing; Huang, Hongduan; Chen, Yang; Li, Chenxi; Liu, Feng; Li, Na

    2016-07-01

    Fluorescence anisotropy, known as a simple, homogeneous and cost-effective analytical technology, is an invaluable technique for studying the micro-environmental changes of the dye associated with the molecular interactions. An in-depth understanding of the variables affecting the fluorescence anisotropy signal can facilitate better experimental designs to effectively improve the analytical performance. This work is a follow-up effort in evaluating the factors that can significantly influence fluorescence anisotropy. We systematically studied fluorescence anisotropy of dsDNA with the changing length based on dye-DNA interactions, with the fluorophores in the end-labeling, the middle-site-labeling, and multiple number of labeling manners. The fluorescence anisotropy value and the base-pair response dynamic range could be expanded by labeling the fluorophores in the middle of dsDNA and increasing the number of labels on dsDNA. The C overhang configuration in the end-labeling manner could enhance the fluorescence anisotropy signal but not expand the base-pair response range. Results from all the labeling fluorophores reinforced the leveling-off effect, i.e., the fluorescence anisotropy signal does not response to the increased length of the DNA duplex when the length is larger than a critical number of base pairs. These findings provide perspectives about choosing appropriate fluorescent dyes and labeling sites for simple and universal fluorescence anisotropy designs in various applications. PMID:27154716

  10. Purification of fluorescently labeled Saccharomyces cerevisiae Spindle Pole Bodies

    PubMed Central

    Davis, Trisha N.

    2016-01-01

    Centrosomes are components of the mitotic spindle responsible for organizing microtubules and establishing a bipolar spindle for accurate chromosome segregation. In budding yeast, Saccharomyces cerevisiae, the centrosome is called the spindle pole body, a highly organized tri-laminar structure embedded in the nuclear envelope. Here we describe a detailed protocol for the purification of fluorescently labeled spindle pole bodes from S. cerevisiae. Spindle pole bodies are purified from yeast using a TAP-tag purification followed by velocity sedimentation. This highly reproducible TAP-tag purification method improves upon previous techniques and expands the scope of in vitro characterization of yeast spindle pole bodies. The genetic flexibility of this technique allows for the study of spindle pole body mutants as well as the study of spindle pole bodies during different stages of the cell cycle. The ease and reproducibility of the technique makes it possible to study spindle pole bodies using a variety of biochemical, biophysical, and microscopic techniques. PMID:27193850

  11. Diffusion measurement of fluorescence-labeled amphiphilic molecules with a standard fluorescence microscope.

    PubMed Central

    Dietrich, C; Merkel, R; Tampé, R

    1997-01-01

    The lateral diffusion of fluorescence-labeled amphiphilic tracer molecules dissolved within a two-dimensional matrix of lipids was measured by continuous illumination of an elongated rectangular region. The resulting spatial concentration profile of unbleached tracer molecules was observed with a standard epifluorescence microscope and analyzed with digital image-processing techniques. These concentration profiles are governed by the mobility of the tracers, their rate of photolysis, and the geometry of the illuminated area. For the case of a long and narrow illuminated stripe, a mathematical analysis of the process is given. After prolonged exposure, the concentration profile can be approximated by a simple analytical function. This fact was used to measure the quotient of the rate of photolysis, and the diffusion constant of the fluorescent probe. With an additional measurement of the rate of photolysis, the mobility of the tracer was determined. As prototype experiments we studied the temperature dependence of the lateral diffusion of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dipalmitoylphosphatidyl++ + ethanolamine in glass-supported bilayers of L-alpha-dimyristoylphosphatidylcholine. Because of its simple experimental setup, this technique represents a very useful method of determining the lateral diffusion of fluorescence-labeled membrane molecules. Images FIGURE 5 PMID:9083674

  12. The internalization of fluorescence-labeled PLA nanoparticles by macrophages.

    PubMed

    Li, Fengjuan; Zhu, Aiping; Song, Xiaoli; Ji, Lijun; Wang, Juan

    2013-09-10

    Rhodamine B (RhB)-labeled PLA nanoparticles were prepared through surface grafting copolymerization of glycidyl methacrylate (GMA) onto PLA nanoparticles during the emulsion/evaporation process. RhB firstly interacts with sodium dodecyl sulfate (SDS) through electrostatic interaction to form hydrophobic complex (SDS-RhB). Due to the high-affinity of SDS-RhB with GMA, hydrophilic RhB can be successfully combined into PLA nanoparticles. The internalization of RhB-labeled PLA nanoparticles by macrophages was investigated with fluorescence microscope technology. The effects of the PLA nanoparticle surface nature and size on the internalization were investigated. The results indicate that the PLA particles smaller than 200 nm can avoid the uptake of phagocytosis. The bigger PLA particles (300 nm) with polyethylene glycol (PEG) surface showed less internalization by macrophage compared with those with poly(ethylene oxide-propylene oxide) copolymer (F127) or poly(vinyl alcohol) (PVA) surface. The "stealth" function of PEG on the PLA nanoparticles from internalization of macrophages due to the low protein adsorption is revealed by electrochemical impedance technology. PMID:23806816

  13. Detection of colorectal dysplasia using fluorescently labelled lectins

    PubMed Central

    Kuo, Joe Chin-Hun; Ibrahim, Ashraf E. K.; Dawson, Sarah; Parashar, Deepak; Howat, William J.; Guttula, Kiran; Miller, Richard; Fearnhead, Nicola S.; Winton, Douglas J.; Neves, André A.; Brindle, Kevin M.

    2016-01-01

    Colorectal cancer screening using conventional colonoscopy lacks molecular information and can miss dysplastic lesions. We tested here the ability of fluorescently labelled lectins to distinguish dysplasia from normal tissue when sprayed on to the luminal surface epithelium of freshly resected colon tissue from the Apcmin mouse and when applied to fixed human colorectal tissue sections. Wheat germ agglutinin (WGA) showed significantly decreased binding to adenomas in the mouse tissue and in sections of human colon from 47 patients. Changes in WGA binding to the human surface epithelium allowed regions containing normal epithelium (NE) or hyperplastic polyps (HP) to be distinguished from regions containing low-grade dysplasia (LGD), high-grade dysplasia (HGD) or carcinoma (C), with 81% sensitivity, 87% specificity and 93% positive predictive value (PPV). Helix pomatia agglutinin (HGA) distinguished epithelial regions containing NE from regions containing HP, LGD, HGD or C, with 89% sensitivity, 87% specificity and 97% PPV. The decreased binding of WGA and HPA to the luminal surface epithelium in human dysplasia suggests that these lectins may enable more sensitive detection of disease in the clinic using fluorescence colonoscopy. PMID:27071814

  14. Detection of colorectal dysplasia using fluorescently labelled lectins.

    PubMed

    Kuo, Joe Chin-Hun; Ibrahim, Ashraf E K; Dawson, Sarah; Parashar, Deepak; Howat, William J; Guttula, Kiran; Miller, Richard; Fearnhead, Nicola S; Winton, Douglas J; Neves, André A; Brindle, Kevin M

    2016-01-01

    Colorectal cancer screening using conventional colonoscopy lacks molecular information and can miss dysplastic lesions. We tested here the ability of fluorescently labelled lectins to distinguish dysplasia from normal tissue when sprayed on to the luminal surface epithelium of freshly resected colon tissue from the Apc(min) mouse and when applied to fixed human colorectal tissue sections. Wheat germ agglutinin (WGA) showed significantly decreased binding to adenomas in the mouse tissue and in sections of human colon from 47 patients. Changes in WGA binding to the human surface epithelium allowed regions containing normal epithelium (NE) or hyperplastic polyps (HP) to be distinguished from regions containing low-grade dysplasia (LGD), high-grade dysplasia (HGD) or carcinoma (C), with 81% sensitivity, 87% specificity and 93% positive predictive value (PPV). Helix pomatia agglutinin (HGA) distinguished epithelial regions containing NE from regions containing HP, LGD, HGD or C, with 89% sensitivity, 87% specificity and 97% PPV. The decreased binding of WGA and HPA to the luminal surface epithelium in human dysplasia suggests that these lectins may enable more sensitive detection of disease in the clinic using fluorescence colonoscopy. PMID:27071814

  15. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction

    SciTech Connect

    Mobed, J.J.; Hemmingsen, S.L.; Autry, J.L.; Mcgown, L.B.

    1996-10-01

    Total luminescence spectroscopy was applied to the fluorescence characterization of humic substances obtained from the International Humic Substances Society (IHSS). Results show that total luminescence spectra, represented as excitation-emission matrices (EEMs), may be used to discriminate between soil-derived and aquatic-derived IHSS humic substances and between humic and fulvic acids derived from the same source (soil or aquatic). Ionic strength in the range of 0-1 M KCl and humic substance concentration in the range 5-100 mg/L had little effect on the fluorescence spectral characteristics of the humic substances, while pH had significant effects as expected. Absorbance correction was shown to be essential for accurate representation and comparison of the EEMs of the humic substances at high concentrations. 16 refs., 5 figs., 3 tabs.

  16. RNA sequencing using fluorescent-labeled dideoxynucleotides and automated fluorescence detection.

    PubMed Central

    Bauer, G J

    1990-01-01

    Although dideoxy terminated sequencing of RNA, using reverse transcriptase and oligodeoxynucleotide primers, is now a well established method, the accuracy is limited by sequence ambiguities due to unspecific chain termination events. A protocol is described which circumvents these ambiguities by using fluorescence labels tagged to dideoxynucleotides. Only chain terminations caused by dideoxynucleotides were detected while premature terminated cDNA's remain undetectable. In addition, the remaining multiple signals at nucleotide positions can be assigned to sequence heterogeneities within the RNA sequence to be determined. Images PMID:1690393

  17. EFFECTS OF ALUMINUM-INDUCED AGGREGATION ON THE FLUORESCENCE OF HUMIC SUBSTANCES. (R822251)

    EPA Science Inventory

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data was treated with a model for nonspherical ...

  18. Synthesis and characterization of the fluorescent probes for the labeling of Microthrix parvicella.

    PubMed

    Li, Songya; Fei, Xuening; Jiao, Xiumei; Lin, Dayong; Zhang, Baolian; Cao, Lingyun

    2016-03-01

    Although the fluorescent in situ hybridization (FISH) has been widely used to identify the Microthrix parvicella (M. parvicella), there are a few disadvantages and difficulties, such as complicated process, time consuming, etc. In this work, a series of fluorescent probes, which were modified by long-chain alkane with hydrophobic property and based on the property of M. parvicella utilizing long-chain fatty acids (LCFA), for the labeling of M. parvicella in bulking sludge were designed, synthesized, and characterized. The probes were characterized by ultraviolet-visible (UV-Vis) absorption spectra, fluorescence spectra, (1)H NMR spectra, and mass spectra, and the photostability and hydrophobic property of probes were investigated. All the results showed that the probes were quite stable and suitable for the fluorescent labeling. The probes had a large stoke shift of 98-137 nm, which was benefit for the fluorescent labeling. In the fluorescent labeling of M. parvicella by the synthesized probes, the probes had excellent labeling effects. By comparison of the images and the Image Pro Plus 6.0 analysis, the optimal concentration of the probes in the activated sludge sample for labeling was 0.010 mmol/L and the probe 3d had the best labeling. In addition, the effect of the duration time of probes was also investigated, and the results showed that the fluorescent intensity of probes hardly changed in a long period of time and it was suitable for labeling. PMID:26603763

  19. Adsorption of fluorescently labeled microbeads on PDMS surfaces

    NASA Astrophysics Data System (ADS)

    Nikcevic, Irena; Bange, Adam; Peterson, Erik T. K.; Papautsky, Ian; Heineman, William R.; Halsall, H. B.; Seliskar, Carl J.

    2005-01-01

    Fluorescently labeled beads may be utilized in transparent microfluidic devices to facilitate a variety of immunoassay based chemical measurements. We investigate the ability to visualize, quantitate, and reduce undesirable adsorption of beads within a polydimethylsiloxane (PDMS) microchannel device. These methods are prerequisites to the design of practical bead-based microfluidic sensing devices. The PDMS microchannels were shown to be transparent enough to make accurate quantitative optical measurements, although significant adsorption was observed. Epifluorescence microscopy was employed in an attempt to quantitatively evaluate microbead adsorption to PDMS microchannel walls and bulk surfaces after different agitation, solution, and surface treatments. This microscopy method provides reproducible imaging of individual beads and allows for characterization of adsorption to PDMS microchannel walls. Solution composition seemed to play a more important role in the ability to reduce the number of adsorbed beads to the PDMS surface than agitation. The most significant reduction in bead adsorption was seen in surface treatment. The most effective surface treatment examined in this study was Teflon AF.

  20. Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses.

    PubMed

    Lacour, William; Adjili, Salim; Blaising, Julie; Favier, Arnaud; Monier, Karine; Mezhoud, Sarra; Ladavière, Catherine; Place, Christophe; Pécheur, Eve-Isabelle; Charreyre, Marie-Thérèse

    2016-08-01

    Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses. PMID:27113918

  1. On-the-fly fluorescence lifetime detection of humic substances in capillary electrophoresis.

    PubMed

    Hewitt, Joseph D; McGown, Linda B

    2003-03-01

    On-the-fly fluorescence lifetime detection was investigated as a tool for studying humic substances in capillary zone electrophoresis (CZE). Humic substances are complex, heterogeneous mixtures of natural products that tend to migrate in a single, broad CZE peak. The intrinsic fluorescence lifetime of five humic substances from the International Humic Substances Society (IHSS) was monitored using excitation at 488 or 364 nm to produce intensity-lifetime electropherograms for each of the substances. Each frequency-domain lifetime measurement, collected at subsecond intervals during the CZE run, contains the equivalent of a complete decay profile. Lifetime analysis of each decay profile was used to construct a lifetime-resolved electropherogram for each lifetime component, from which the variation in relative intensity contributions of each lifetime across the broad CZE peak could be determined. Absorption spectra, fluorescence excitation-emission spectra, and lifetime profiles of batch solutions of the samples were determined as well. It was found that, whereas absorption and fluorescence spectral characteristics tended to discriminate between humic acids and fulvic acids, the batch solution lifetime profiles discriminated instead between samples from different sources, regardless of fraction. On-the-fly lifetime detection provided a more detailed view of the fluorescence decay of the samples, including greater resolution of lifetimes for two of the fulvic acids and greater discrimination among samples based on lifetime profiles across the CZE peaks. PMID:14658616

  2. Sequence-Dependent Fluorescence of Cy3- and Cy5-Labeled Double-Stranded DNA.

    PubMed

    Kretschy, Nicole; Sack, Matej; Somoza, Mark M

    2016-03-16

    The fluorescent intensity of Cy3 and Cy5 dyes is strongly dependent on the nucleobase sequence of the labeled oligonucleotides. Sequence-dependent fluorescence may significantly influence the data obtained from many common experimental methods based on fluorescence detection of nucleic acids, such as sequencing, PCR, FRET, and FISH. To quantify sequence dependent fluorescence, we have measured the fluorescence intensity of Cy3 and Cy5 bound to the 5' end of all 1024 possible double-stranded DNA 5mers. The fluorescence intensity was also determined for these dyes bound to the 5' end of fixed-sequence double-stranded DNA with a variable sequence 3' overhang adjacent to the dye. The labeled DNA oligonucleotides were made using light-directed, in situ microarray synthesis. The results indicate that the fluorescence intensity of both dyes is sensitive to all five bases or base pairs, that the sequence dependence is stronger for double- (vs single-) stranded DNA, and that the dyes are sensitive to both the adjacent dsDNA sequence and the 3'-ssDNA overhang. Purine-rich sequences result in higher fluorescence. The results can be used to estimate measurement error in experiments with fluorescent-labeled DNA, as well as to optimize the fluorescent signal by considering the nucleobase environment of the labeling cyanine dye. PMID:26895222

  3. Sequence-Dependent Fluorescence of Cy3- and Cy5-Labeled Double-Stranded DNA

    PubMed Central

    2016-01-01

    The fluorescent intensity of Cy3 and Cy5 dyes is strongly dependent on the nucleobase sequence of the labeled oligonucleotides. Sequence-dependent fluorescence may significantly influence the data obtained from many common experimental methods based on fluorescence detection of nucleic acids, such as sequencing, PCR, FRET, and FISH. To quantify sequence dependent fluorescence, we have measured the fluorescence intensity of Cy3 and Cy5 bound to the 5′ end of all 1024 possible double-stranded DNA 5mers. The fluorescence intensity was also determined for these dyes bound to the 5′ end of fixed-sequence double-stranded DNA with a variable sequence 3′ overhang adjacent to the dye. The labeled DNA oligonucleotides were made using light-directed, in situ microarray synthesis. The results indicate that the fluorescence intensity of both dyes is sensitive to all five bases or base pairs, that the sequence dependence is stronger for double- (vs single-) stranded DNA, and that the dyes are sensitive to both the adjacent dsDNA sequence and the 3′-ssDNA overhang. Purine-rich sequences result in higher fluorescence. The results can be used to estimate measurement error in experiments with fluorescent-labeled DNA, as well as to optimize the fluorescent signal by considering the nucleobase environment of the labeling cyanine dye. PMID:26895222

  4. Fluorescence quenching and aluminum adsorption to organic substances

    SciTech Connect

    Smith, D.S.; Kramer, J.R.

    1996-10-01

    Fluorescent measurements of Al-modified natural organic matter (NOM) were used to better determine site-specific aluminum binding sites. Excitation-emission surfaces were used to characterize fluorescent groups within NOM; further, the kinetics of the reaction were followed by observing emission signal change over time. Calibration experiments were carried out on salicylic acid and the more complex Armadale and Suwannee River reference fulvic acids. Salicylic acid showed one fluorophore but the fulvic acids contain at least two distinct fluorophores that are modified with aluminum addition. Existing equilibrium speciation models for salicylic acid are correlated to the changes in fluorescence with added Al at fixed pH and ionic strength. Al speciation can be modelled by a modified Stern-Volmer or Ryan-Weber equation. The kinetics of the salicylate reaction suggest two reaction modes, an initial quick reaction (seconds) followed by a slower second reaction (minutes).

  5. Automated sorting of polymer flakes: fluorescence labeling and development of a measurement system prototype.

    PubMed

    Brunner, S; Fomin, P; Kargel, Ch

    2015-04-01

    The extensive demand and use of plastics in modern life is associated with a significant economical impact and a serious ecological footprint. The production of plastics involves a high energy consumption and CO2 emission as well as the large need for (limited) fossil resources. Due to the high durability of plastics, large amounts of plastic garbage is mounting in overflowing landfills (plus 9.6 million tons in Europe in the year 2012) and plastic debris is floating in the world oceans or waste-to-energy combustion releases even more CO2 plus toxic substances (dioxins, heavy metals) to the atmosphere. The recycling of plastic products after their life cycle can obviously contribute a great deal to the reduction of the environmental and economical impacts. In order to produce high-quality recycling products, mono-fractional compositions of waste polymers are required. However, existing measurement technologies such as near infrared spectroscopy show limitations in the sorting of complex mixtures and different grades of polymers, especially when black plastics are involved. More recently invented technologies based on mid-infrared, Raman spectroscopy or laser-aided spectroscopy are still under development and expected to be rather expensive. A promising approach to put high sorting purities into practice is to label plastic resins with unique combinations of fluorescence markers (tracers). These are incorporated into virgin resins during the manufacturing process at the ppm (or sub ppm) concentration level, just large enough that the fluorescence emissions can be detected with sensitive instrumentation but neither affect the visual appearance nor the mechanical properties of the polymers. In this paper we present the prototype of a measurement and classification system that identifies polymer flakes (mill material of a few millimeters size) located on a conveyor belt in real time based on the emitted fluorescence of incorporated markers. Classification performance

  6. INTER-LABORATORY STUDY OF CELLULAR FLUORESCENCE INTENSITY MEASUREMENTS WITH FLUORESCEIN-LABELED MICROBEAD STANDARDS

    EPA Science Inventory

    To determine the precision of cellular fluorescence intensity (FI) measurements derived from labeled microbead standards, FI results were compared from 43 different flow cytometers in 34 laboratories. ll laboratories analyzed prepared aliquots of fluoresceinated calf thymocyte nu...

  7. DNA-regulated silver nanoclusters for label-free ratiometric fluorescence detection of DNA.

    PubMed

    Liu, Lin; Yang, Qianhui; Lei, Jianping; Xu, Nan; Ju, Huangxian

    2014-11-18

    Two kinds of DNA-regulated Ag nanoclusters were one-pot synthesized on an oligonucleotide, and delicately utilized in the design of a label-free ratiometric fluorescence strategy for DNA detection with simplicity and high sensitivity. PMID:25247781

  8. Frequency-domain flow cytometry: fluorescence-lifetime-based sensing technology for analyzing cells and chromosomes labeled with fluorescent probes

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Crissman, Harry A.; Lehnert, Bruce E.; Lehnert, Nancy M.; Deka, Chiranjit

    1997-05-01

    A flow cytometer has been developed that combines flow cytometry (FCM) and fluorescence lifetime spectroscopy measurement principles to provide unique capabilities for making frequency-domain, excited-state lifetime measurements on cells/chromosomes labeled with fluorescent probes, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine-wave) laser excitation beam. Fluorescence signals are processed by (1) low-pass filtering to obtain conventional FCM dc-excited signals and (2) phase-sensitive detection electronics to resolve heterogeneous fluorescence based on differences in lifetimes expressed as phase-shifts and to quantify fluorescence lifetimes in real time. Processed signals are displayed as frequency distribution histograms and bivariate contour diagrams. Recent examples of biological applications include: (1) lifetime histograms recorded on autofluorescent human lung fibroblasts, murine thymus cells labeled with antibodies conjugated to fluorophores for studying fluorescence quenching as a function of antibody dilution and F/P ratio, and on cultured cells, nuclei, and chromosomes stained with DNA-binding fluorochromes and (2) phase-resolved, fluorescence signal- intensity histograms recorded on autofluorescent HLFs labeled with immunofluorescence markers and on murine thymus cells labeled with Red 613-antiThy 1.2 and propidium iodide (PI positive `dead' cells) to demonstrate the resolution of signals from highly overlapping emission spectra. This technology will increase the number of fluorescent markers usable in multilabeling studies and lifetimes can be used as spectroscopic probes to study the interaction of markers with their targets, each other, and the surrounding microenvironment.

  9. Detection of Radiation Tracks Recorded on Silver-Salt Photographic Materials by Fluorescence-Labeling Method

    NASA Astrophysics Data System (ADS)

    Kuge, Ken'ichi; Inoue, Ryouhei; Oishi, Yasushi; Yasuda, Nakahiro; Kodaira, Satoshi; Sato, Osamu

    2013-10-01

    We have proposed a new fluorescence-labeling method to detect radiation tracks recorded on silver-salt photographic materials. Fluorescence images of tracks were obtained by converting the developed silver to silver iodide as a mordant by bleaching and selectively adsorbing a fluorescent dye, namely, 3,3'-diethyl-2,2'-oxacyanine iodide, on it. The dye emitted blue and green fluorescent lights in the adsorbed state to silver iodide. Even tracks masked with fake particles could be recognized clearly in the fluorescence images, because the dye was adsorbed only on silver iodide. This new fluorescence-labeling method will facilitate the development of new technologies for the analysis of radiation tracks on the basis of the color information obtained from the tracks.

  10. Capillary Electrophoresis and Fluorescence Excitation-Emission Matrix Spectroscopy for Characterization of Humic Substances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary electrophoresis (CE) and fluorescence spectroscopy have been used in natural organic matter (NOM) studies. In this study, we characterized five fulvic acids, six humic acids and two unprocessed NOM samples obtained from the International Humic Substances Society (IHSS) using these two ana...

  11. Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches.

    PubMed

    Gillies, Glenn; Mackenzie, Katrin; Kopinke, Frank-Dieter; Georgi, Anett

    2016-04-15

    Colloidal Fe-zeolites such as Fe-BEA-35 are currently under study as new adsorbent and catalyst materials for in-situ chemical oxidation with H2O2. As for nanoremediation in general, the availability of suitable particle detection methods is a requirement for successful process development and particle tracing. Detection and distinguishing between natural colloids and introduced particles with a similar composition are a challenge. By means of fluorescence labelling, a highly specific detection option for Fe-BEA-35 was developed. 'Ship-in-a-bottle' synthesis of fluorescein within the zeolite pores, which was applied for the first time for a BEA type zeolite, provides a product with stable and non-extractable fluorescence. When the fluorescent labelled zeolite is added at a concentration of 1wt.% referring to the total zeolite mass, a very low detection limit of 1mg/L of total zeolite is obtained. Compared to commonly applied turbidity measurements, detection via fluorescence labelling is much more specific and sensitive. Fluorescence is only marginally affected by carboxymethyl cellulose, which is frequently applied as stabilizer in application suspensions but will be depleted upon contact with H2O2. Transport properties of fluorescent labelled and non-labelled Fe-zeolite particles are in agreement as determined in a column study with quartz sand and synthetic groundwater (classified as very hard). PMID:26849345

  12. Horseradish peroxidase-driven fluorescent labeling of nanotubes with quantum dots.

    PubMed

    Didenko, Vladimir V; Baskin, David S

    2006-03-01

    We describe the first enzyme-driven technique for fluorescent labeling of single-walled carbon nanotubes (SWNTs). The labeling was performed via enzymatic biotinylation of nanotubes in the tyramide-horseradish peroxidase (HRP) reaction. Both direct and indirect fuorescent labeling of SWNTs was achieved using either biotinyl tyramide or fluorescently tagged tyramides. Biotinylated SWNTs later reacted with streptavidin-conjugated fluorophores. Linking semiconductor nanocrystals, quantum dots (Q-dots), to the surface of nanotubes resulted in their fluorescent visualization, whereas conventional fluorophores bound to SWNTs directly or through biotin-streptavidin linkage, were completely quenched. Enzymatic biotinylation permits fluorescent visualization of carbon nanotubes, which could be useful for a number of biomedical applications. In addition, other organic molecules such as proteins, antibodies, or DNA can be conjugated to biotinylated SWNTs using this approach. PMID:16568818

  13. Azido Push–Pull Fluorogens Photoactivate to Produce Bright Fluorescent Labels

    PubMed Central

    Lord, Samuel J.; Lee, Hsiao-lu D.; Samuel, Reichel; Weber, Ryan; Liu, Na; Conley, Nicholas R.; Thompson, Michael A.; Twieg, Robert J.; Moerner, W. E.

    2009-01-01

    Dark azido push–pull chromophores have the ability to be photoactivated to produce bright fluorescent labels suitable for single-molecule imaging. Upon illumination, the aryl azide functionality in the fluorogens participates in a photochemical conversion to an aryl amine, thus restoring charge-transfer absorption and fluorescence. Previously, we reported that one compound, DCDHF-V-P-azide, was photoactivatable. Here, we demonstrate that the azide-to-amine photoactivation process is generally applicable to a variety of push–pull chromophores, and we characterize the photophysical parameters including photoconversion quantum yield, photostability, and turn-on ratio. Azido push–pull fluorogens provide a new class of photoactivatable single-molecule probes for fluorescent labeling and super-resolution microscopy. Lastly, we demonstrate that photoactivated push–pull dyes can insert into bonds of nearby biomolecules, simultaneously forming a covalent bond and becoming fluorescent (fluorogenic photoaffinity labeling). PMID:19860443

  14. Synthesis and preliminary biological evaluations of fluorescent or 149Promethium labeled Trastuzumab-polyethylenimine

    DOE PAGESBeta

    Fitzsimmons, Jonathan; Nayak, Tapan; Cutler, Cathy; Atcher, Robert

    2015-12-30

    Radioimmunotherapy utilize a targeting antibody coupled to a therapeutic isotope to target and treat a tumor or disease. In this study we examine the synthesis and cell binding of a polymer scaffold containing a radiotherapeutic isotope and a targeting antibody. Methods: The multistep synthesis of a fluorescent or 149Promethium-labeled Trastuzumab-polyethyleneimine (PEI), Trastuzumab, or PEI is described. In vitro uptake, internalization and/or the binding affinity to the Her2/neu expressing human breast adenocarcinoma SKBr3 cells was investigated with the labeled compounds. Fluorescent-labeled Trastuzumab-PEI was internalized more into cells at 2 and 18 h than fluorescent-labeled Trastuzumab or PEI. The fluorescent-labeled Trastuzumab wasmore » concentrated on the cell surface at 2 and 18 h and the labeled PEI had minimal uptake. DOTA-PEI was prepared and contained an average of 16 chelates per PEI; the compound was radio-labeled with 149Promethium and conjugated to Trastuzumab. The purified 149Pm-DOTA-PEI-Trastuzumab had a radiochemical purity of 96.7% and a specific activity of 0.118 TBq/g. The compound demonstrated a dissociation constant for the Her2/neu receptor of 20.30 ± 6.91 nM. In conclusion, the results indicate the DOTA-PEI-Trastuzumab compound has potential as a targeted therapeutic carrier, and future in vivo studies should be performed.« less

  15. Preclinical evaluation of near-infrared (NIR) fluorescently labeled cetuximab as a potential tool for fluorescence-guided surgery.

    PubMed

    Saccomano, Mara; Dullin, Christian; Alves, Frauke; Napp, Joanna

    2016-11-15

    The high rate of recurrence in patients with pancreatic ductal adenocarcinoma (PDAC) could be reduced by supporting the surgeons in discriminating healthy from diseased tissues with intraoperative fluorescence-guidance. Here, we studied the suitability of Cetuximab, a therapeutic monoclonal antibody targeting the human epidermal growth factor receptor (EGFR), near-infrared (NIR) fluorescently labeled as a new tool for fluorescence-guided surgery. Distribution and binding of systemically injected Cetuximab Alexa Fluor 647 conjugate (Cetux-Alexa-647) and the co-injected control human IgG Alexa Fluor 750 conjugate (hIgG-Alexa-750) was studied over 48 h by NIR fluorescence imaging in mice bearing human orthotopic AsPC-1 and MIA PaCa-2 PDAC tumors. Cetux-Alexa-647, but not the control hIgG-Alexa-750 fluorescence, was specifically detected in vivo in both primary pancreatic tumors with maximum fluorescence intensities at 24 h, and in metastases of AsPC-1 tumors as small as 1 mm. Lifetime analysis and NIR fluorescence microscopy of tumor sections confirmed the binding specificity of Cetux-Alexa-647 to PDAC cells. Comparable results were obtained with Cetuximab conjugated to Alexa Fluor 750 dye (Cetux-Alexa-750). Fluorescence-guided dissection, performed 24 h after injection of Cetuximab conjugated to IRDye 800CW (Cetux-800CW), enabled a real-time delineation of AsPC-1 tumor margins, and small metastases. Odyssey scans revealed that only the vital part of the tumor, but not the necrotic part was stained with Cetux-800CW. NIR fluorescently labeled Cetuximab may be a promising tool that can be applied for fluorescence-guided surgery to visualize tumor margins and metastatic sites in order to allow a precise surgical resection. PMID:27428782

  16. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells

    NASA Astrophysics Data System (ADS)

    Liu, Jianbo; Zhang, Pengfei; Yang, Xiaohai; Wang, Kemin; Guo, Qiuping; Huang, Jin; Li, Wei

    2014-12-01

    Protein labeling for dynamic living cell imaging plays a significant role in basic biological research, as well as in clinical diagnostics and therapeutics. We have developed a novel strategy in which the dynamic visualization of proteins within living cells is achieved by using aptamers as mediators for indirect protein labeling of quantum dots (QDs). With this strategy, the target protein angiogenin was successfully labeled with fluorescent QDs in a minor intactness model, which was mediated by the aptamer AL6-B. Subsequent living cell imaging analyses indicated that the QDs nanoprobes were selectively bound to human umbilical vein endothelial cells, gradually internalized into the cytoplasm, and mostly localized in the lysosome organelle, indicating that the labeled protein retained high activity. Compared with traditional direct protein labeling methods, the proposed aptamer-mediated strategy is simple, inexpensive, and provides a highly selective, stable, and intact labeling platform that has shown great promise for future biomedical labeling and intracellular protein dynamic analyses.

  17. Photoactive yellow protein-based protein labeling system with turn-on fluorescence intensity.

    PubMed

    Hori, Yuichiro; Ueno, Hideki; Mizukami, Shin; Kikuchi, Kazuya

    2009-11-25

    Protein labeling provides significant information about protein function. In this research, we developed a novel protein labeling technique by utilizing photoactive yellow protein (PYP). PYP is a small protein (14 kDa) derived from purple bacteria and binds to 7-hydroxycoumarin-3-carboxylic acid as well as to a natural ligand, 4-hydroxycinnamic acid, through a thioester bond with Cys69. Based on the structure and fluorescence property of this coumarin derivative, we designed two fluorescent probes that bind to PYP. One has an azido moiety, which allows stepwise labeling by click chemistry, and the other is a fluorogenic probe. The live-cell imaging and specific labeling of PYP were achieved by using both probes. The flexibility of the probe design and the small size of the tag protein are great advantages of this system against the existing methods. This novel labeling technique can be used in a wide variety of applications for biological research. PMID:19877615

  18. Tumor cell differentiation by label-free fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Weber, Petra; Wagner, Michael; Kioschis, Petra; Kessler, Waltraud; Schneckenburger, Herbert

    2012-10-01

    Autofluorescence spectra, images, and decay kinetics of U251-MG glioblastoma cells prior and subsequent to activation of tumor suppressor genes are compared. While phase contrast images and fluorescence intensity patterns of tumor (control) cells and less malignant cells are similar, differences can be deduced from autofluorescence spectra and decay kinetics. In particular, upon near UV excitation, the fluorescence ratio of the free and protein-bound coenzyme nicotinamid adenine dinucleotide depends on the state of malignancy and reflects different cytoplasmic (including lysosomal) and mitochondrial contributions. While larger numbers of fluorescence spectra are evaluated by principal component analysis, a multivariate data analysis method, additional information on cell metabolism is obtained from spectral imaging and fluorescence lifetime imaging microscopy.

  19. Method and apparatus for detection of fluorescently labeled materials

    DOEpatents

    Stern, David; Fiekowsky, Peter

    1997-01-01

    Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.

  20. Method and apparatus for detection of fluorescently labeled materials

    DOEpatents

    Stern, David; Fiekowsky, Peter

    2004-05-25

    Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.

  1. Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control.

    PubMed

    Sahoo, Yudhisthira; Goodarzi, Alireza; Swihart, Mark T; Ohulchanskyy, Tymish Y; Kaur, Navjot; Furlani, Edward P; Prasad, Paras N

    2005-03-10

    A method is presented for the preparation of a biocompatible ferrofluid containing dye-functionalized magnetite nanoparticles that can serve as fluorescent markers. This method entails the surface functionalization of magnetite nanoparticles using citric acid to produce a stable aqueous dispersion and the subsequent binding of fluorescent dyes to the surface of the particles. Several ferrofluid samples were prepared and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), BET surface area analysis, transmission electron microscopy (TEM), and SQUID magnetometry. In addition, confocal fluorescence microscopy was used to study the response of the fluorescent nanoparticles to an applied magnetic field and their uptake by cells in vitro. Results are presented on the distribution of particle sizes, the fluorescent and magnetic properties of the nanoparticles, and the nature of their surface bonds. Biocompatible ferrofluids with fluorescent nanoparticles enable optical tracking of basic processes at the cellular level combined with magnetophoretic manipulation and should be of substantial value to researchers engaged in both fundamental and applied biomedical research. PMID:16851439

  2. Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent

    NASA Astrophysics Data System (ADS)

    Peng, Xinzhan; Draney, Daniel R.; Volcheck, William M.; Bashford, Gregory R.; Lamb, Donald T.; Grone, Daniel L.; Zhang, Yonghong; Johnson, Craig M.

    2006-02-01

    Current organic fluorophores used as labeling reagents for biomolecule conjugation have significant limitations in photostability. This compromises their performance in applications that require a photostable fluorescent reporting group. For example, in molecular imaging and single molecule microscopy, photostable fluorescent labels are important for observing and tracking individual molecular events over extended period of time. We report in this paper an extremely photostable and highly fluorescent phthalocyanine dye, IRDye TM 700DX, as a near-infrared fluorescence labeling reagent to conjugate with biomolecules. This novel water-soluble silicon phthalocyanine dye has an isomericly pure chemical structure. The dye is about 45 to 128 times more photostable than current near-IR fluorophores, e.g. Alexa Fluor"R"680, Cy TM 5.5, Cy TM 7 and IRDye TM 800CW dyes; and about 27 times more photostable than tetramethylrhodamine (TMR), one of the most photostable organic dyes. This dye also meets all the other stringent requirements as an ideal fluorophore for biomolecules labeling such as excellent water solubility, no aggregation in high ionic strength buffer, large extinction coefficient and high fluorescent quantum yield. Antibodies conjugated with IRDye TM 700DX at high D/P ratio exist as monomeric species in high ionic buffer and have bright fluorescence. The IRDye TM 700DX conjugated antibodies generate sensitive, highly specific detection with very low background in Western blot and cytoblot assays.

  3. Ultrasound modulated fluorescence emission from Pyrene-labelled liposome contrast agents

    NASA Astrophysics Data System (ADS)

    Zhang, Qimei; Moles, Matthew D.; Mather, Melissa L.; Morgan, Stephen P.

    2014-09-01

    Ultrasound modulated fluorescence tomography (USMFT) has the potential to be a useful technique to obtain fluorescence images with optical contrast and ultrasound (US) resolution in deep tissue. However, due to the intrinsic incoherent properties of fluorescence and the low modulation depth, the signal-to-noise ratio (SNR) and image contrast are poor. In this paper, the feasibility of using pyrene-labelled nanosize liposomes as contrast agents to improve the modulation depth in USMFT is investigated by using a light-scattering technique. Compared with microbubbles (MBs), which have been applied to USMFT to improve the modulation depth, liposomes are more stable and they can be manufactured with good repeatability. Also liposomes have a lower US scattering coefficient due to their liquid core as compared to the gas core of MBs, which can be advantageous when switching on fluorescence in a region of interest is required. Pyrene can form excimer fluorescence when in close proximity to other pyrene molecules. The exposure of these liposomes to US can change the collision rate of the pyrene molecules and hence modulate the optical emission. In the current work, 100 nm sized liposomes composed of varying concentrations of pyrene-labelled phospholipids were investigated to identify a suitable liposome-based US contrast agent candidate. The fluorescence emission of the pyrene-labelled liposomes insonified by continuous US were studied. It has been observed that the excimer emission from 0.5 mol% pyrene-labelled liposome is US sensitive at pressures between 1.4 MPa and 2.7 MPa. Possible fluorescence modulation mechanisms and application of pyrene-labelled liposomes for high-resolution, high-contrast fluorescence imaging are also discussed.

  4. Competitive Assays of Label-Free DNA Hybridization with Single-Molecule Fluorescence Imaging Detection.

    PubMed

    Peterson, Eric M; Manhart, Michael W; Harris, Joel M

    2016-06-21

    Single-molecule imaging of fluorescently labeled biomolecules is a powerful technique for measuring association interactions; however, care must be taken to ensure that the fluorescent labels do not influence the system being probed. Label-free techniques are needed to understand biomolecule interactions free from the influence of an attached label, but these techniques often lack sensitivity and specificity. To solve these challenges, we have developed a competitive assay that uses single-molecule detection to track the population of unlabeled target single-stranded DNA (ssDNA) hybridized with probe DNA immobilized at a glass interface by detecting individual duplexes with a fluorescently labeled "tracer" ssDNA. By labeling a small fraction (<0.2%) of target molecules, the "tracer" DNA tracks the available probe DNA sites without significant competition with the unlabeled target population. Single-molecule fluorescence imaging is a good read-out scheme for competitive assays, as it is sufficiently sensitive to detect tracer DNA on substrates with relatively low densities of probe DNA, ∼10(-3) of a monolayer, so that steric interactions do not hinder DNA hybridization. Competitive assays are used to measure the association constant of complementary strand DNA hybridization of 9- and 10-base pair targets, where the tracer assay predicts the same association constant as a traditional displacement competitive assay. This methodology was used to compare the Ka of hybridization for identical DNA strands differing only by the presence of a fluorescent label tethered to the 5' end of the solution-phase target. The addition of the fluorescent label significantly stabilizes the DNA duplex by 3.6 kJmol(-1), adding more stability than an additional adenine-thymine base-pairing interaction, 2.7 kJmol(-1). This competitive tracer assay could be used to screen a number of labeled and unlabeled target DNA strands to measure the impact of fluorescent labeling on duplex stability

  5. Non-invasive instant genotyping of fluorescently labelled transgenic mice.

    PubMed

    Fink, Dieter; Yau, Tien Yin; Kolbe, Thomas; Rülicke, Thomas

    2015-01-01

    Fluorescence proteins have been useful as genetic reporters for a wide range of applications in biomedical research and are frequently used for the analysis of transgene activity. Here, we show that expression levels of the ubiquitously expressed fluorescent proteins eGFP, mCherry, and tdTomato can be measured in transgenic mouse lines with random or targeted integrations. We identified the tail of the mouse as the tissue best suited for quantifying fluorescence intensity and show that expression levels in the tail correlate with gene dose. This allows for instant non-invasive determination of the genetic condition at the transgenic locus (hemizygous/heterozygous and homozygous), while simultaneously providing an objective comparison for transgene expression levels among different mouse lines. In summary, we demonstrate for the first time that the gene dose of a ubiquitously expressed fluorescence reporter can be reliably quantified and directly linked to the genotype of transgenic mice. Based on this information, animals with the appropriate genotype can be instantly selected without laborious analysis for establishing and breeding of new transgenic lines, reducing the number of "waste" animals. Furthermore, no tissue sampling is necessary, which is a significant refinement of genotyping procedures. Both aspects are important improvements for the genotyping of transgenic mice that follow the principles of the 3 Rs (reduction and refinement). PMID:25981046

  6. Fluorescent labels for in situ wet chemistry experiments

    NASA Technical Reports Server (NTRS)

    Kloepfer, J. A.; Nadeau, J. L.

    2003-01-01

    We evaluate a wide selection of dyes and suggest a panel that would be the most likely to succeed in a simple flight instrument with a single excitation laser. We also investigate fluorescent semiconductor quantum dots as additions to or replacements for these organic dyes.

  7. Synthesis and evaluation of radioactive and fluorescent residualizing labels for identifying sites of plasma protein catabolism

    SciTech Connect

    Maxwell, J.L.; Baynes, J.W.; Thorpe, S.R.

    1986-05-01

    Inulin and lactose were each coupled to tyramine by reductive amination with NaBH/sub 3/CN and the tyramine then labeled with /sup 125/I. Dilactitol-/sup 125/I-tyramine (DLT) and inulin-/sup 125/I-tyramine (InTn) were coupled by reductive amination and cyanuric chloride, respectively, to asialofetuin (ASF), fetuin and rat serum albumin (RSA). Attachment of either label had no effect on the circulating half-lives of the proteins. Radioactivity from labeled ASF was recovered in rat liver (> 90%) by 1 h post-injection and remained in liver with half-lives of 2 and 6 days, respectively, for the DLT and InTn labels. Whole body recoveries of radioactivity from DLT- and InTn labels. Whole body recoveries of radioactivity from DLT- and InTn-labeled RSA were 5 and 6.5 days, respectively, again indicating that the larger glycoconjugate label residualized more efficiently in cells following protein degradation. (Lactitol)/sub 2/-N-CH/sub 2/-CH/sub 2/-NH-fluroescein (DLF) was also coupled to ASF by reductive amination and recovered quantitatively in liver at 1 h post-injection. Native ASF was an effective competitor for clearance of DLF-ASF from the circulation. Fluorescent degradation products were retained in liver with a half-life of 1.2 days. Residualizing fluorescent labels should be useful for identification and sorting of cells active in the degradation of plasma proteins.

  8. Cryo-imaging of fluorescently labeled single cells in a mouse

    NASA Astrophysics Data System (ADS)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  9. The effect of fluorescent labeling on α-synuclein fibril morphology.

    PubMed

    Mučibabić, M; Apetri, M M; Canters, G W; Aartsma, T J

    2016-10-01

    The misfolding and aggregation of a small, natively unfolded protein α-synuclein (α-syn) is presumably an important factor in the development of Parkinson's disease. However, the mechanism of α-syn aggregation into amyloid fibrils and their morphology are not well understood. To elucidate the aggregation kinetics and the morphology of aggregates by the use of fluorescent techniques the protein needs to be suitably labeled. In this study, using atomic force microscopy, we demonstrate a significant effect of fluorescent labels on the α-syn fibrillization process. We studied in detail the morphology of α-syn aggregates as a function of the composition of mixtures of labeled and wild type (WT) α-syn in solution using different types of fluorescent dyes. Although the overall charge of the fluorophores we used and their chemical structure varied significantly, the morphology of α-syn fibrils changed in a similar way in all cases. The increase in the fraction of labeled α-syn in solution led to shortening of the fibrils as compared to those from WT-only α-syn, whereas the height of the fibrils remained mainly unaffected. The twisted fibril morphology observed in the WT and A140C α-syn mutant completely disappeared when the A140C α-syn mutant was 100% fluorescently labeled. PMID:27475048

  10. A naturally monomeric infrared fluorescent protein for protein labeling in vivo.

    PubMed

    Yu, Dan; Baird, Michelle A; Allen, John R; Howe, Elizabeth S; Klassen, Matthew P; Reade, Anna; Makhijani, Kalpana; Song, Yuanquan; Liu, Songmei; Murthy, Zehra; Zhang, Shao-Qing; Weiner, Orion D; Kornberg, Thomas B; Jan, Yuh-Nung; Davidson, Michael W; Shu, Xiaokun

    2015-08-01

    Infrared fluorescent proteins (IFPs) provide an additional color to GFP and its homologs in protein labeling. Drawing on structural analysis of the dimer interface, we identified a bacteriophytochrome in the sequence database that is monomeric in truncated form and engineered it into a naturally monomeric IFP (mIFP). We demonstrate that mIFP correctly labels proteins in live cells, Drosophila and zebrafish. It should be useful in molecular, cell and developmental biology. PMID:26098020

  11. A naturally-monomeric infrared fluorescent protein for protein labeling in vivo

    PubMed Central

    Yu, Dan; Baird, Michelle A.; Allen, John R.; Howe, Elizabeth S.; Klassen, Matthew P.; Reade, Anna; Makhijani, Kalpana; Song, Yuanquan; Liu, Songmei; Murthy, Zehra; Zhang, Shao-Qing; Weiner, Orion D.; Kornberg, Thomas B.; Jan, Yuh-Nung; Davidson, Michael W.; Shu, Xiaokun

    2015-01-01

    Infrared fluorescent proteins (IFPs) provide an additional color to GFP and its red homologs in protein labeling. Based on structural analysis of the dimer interface, a monomeric bateriophytochrome is identified from a sequence database, and is engineered into a naturally-monomeric IFP (mIFP). We demonstrate that mIFP correctly labels proteins in live Drosophila and zebrafish requiring no exogenous cofactor, and will thus be useful in molecular, cell and developmental biology. PMID:26098020

  12. Site of fluorescent label modifies interaction of melittin with live cells and model membranes.

    PubMed

    Jamasbi, Elaheh; Ciccotosto, Giuseppe D; Tailhades, Julien; Robins-Browne, Roy M; Ugalde, Cathryn L; Sharples, Robyn A; Patil, Nitin; Wade, John D; Hossain, Mohammed Akhter; Separovic, Frances

    2015-10-01

    The mechanism of membrane disruption by melittin (MLT) of giant unilamellar vesicles (GUVs) and live cells was studied using fluorescence microscopy and two fluorescent synthetic analogues of MLT. The N-terminus of one of these was acylated with thiopropionic acid to enable labeling with maleimido-AlexaFluor 430 to study the interaction of MLT with live cells. It was compared with a second analogue labeled at P14C. The results indicated that the fluorescent peptides adhered to the membrane bilayer of phosphatidylcholine GUVs and inserted into the plasma membrane of HeLa cells. Fluorescence and light microscopy revealed changes in cell morphology after exposure to MLT peptides and showed bleb formation in the plasma membrane of HeLa cells. However, the membrane disruptive effect was dependent upon the location of the fluorescent label on the peptide and was greater when MLT was labeled at the N-terminus. Proline at position 14 appeared to be important for antimicrobial activity, hemolysis and cytotoxicity, but not essential for cell membrane disruption. PMID:26051124

  13. Reliable Assessment and Quantification of the Fluorescence-Labeled Antisense Oligonucleotides In Vivo

    PubMed Central

    Chiara Munisso, Maria; Yamaoka, Tetsuji

    2014-01-01

    The availability of fluorescent dyes and the advances in the optical systems for in vivo imaging have stimulated an increasing interest in developing new methodologies to study and quantify the biodistribution of labeled agents. However, despite these great achievements, we are facing significant challenges in determining if the observed fluorescence does correspond to the quantity of the dye in the tissues. In fact, although the far-red and near-infrared lights can propagate through several centimetres of tissue, they diffuse within a few millimetres as consequence of the elastic scattering of photons. In addition, when dye-labeled oligonucleotides form stable complex with cationic carriers, a large change in the fluorescence intensity of the dye is observed. Therefore, the measured fluorescence intensity is altered by the tissue heterogeneity and by the fluctuation of dye intensity. Hence, in this study a quantification strategy for fluorescence-labeled oligonucleotides was developed to solve these disadvantageous effects. Our results proved that upon efficient homogenization and dilution with chaotropic agents, such as guanidinium thiocyanate, it is possible to achieve a complete fluorescence intensity recovery. Furthermore, we demonstrated that this method has the advantage of good sensitivity and reproducibility, as well as easy handling of the tissue samples. PMID:24967340

  14. Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging

    PubMed Central

    Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.

    2012-01-01

    The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902

  15. Fluorescent triplex-forming DNA oligonucleotides labeled with a thiazole orange dimer unit

    PubMed Central

    Ikeda, Shuji; Yanagisawa, Hiroyuki; Yuki, Mizue; Okamoto, Akimitsu

    2013-01-01

    Fluorescent probes for the detection of a double-stranded DNA were prepared by labeling a triplex-forming DNA oligonucleotide with a thiazole orange (TO) dimer unit. They belong to ECHO (exciton-controlled hybridization-sensitive fluorescent oligonucleotide) probes which we have previously reported. The excitonic interaction between the two TO molecules was expected to effectively suppress the background fluorescence of the probes. The applicability of the ECHO probes for the detection of double-stranded DNA was confirmed by examining the thermal stability and photophysical and kinetic properties of the DNA triplexes formed by the ECHO probes. PMID:23445822

  16. Quantitative Fluorescent Labeling of Aldehyde-Tagged Proteins for Single-Molecule Imaging

    PubMed Central

    Shi, Xinghua; Jung, Yonil; Lin, Li-Jung; Liu, Cheng; Wu, Cong; Cann, Isaac K. O.; Ha, Taekjip

    2012-01-01

    A major hurdle for molecular mechanistic studies of many proteins is the lack of a general method for fluorescent labeling with high efficiency, specificity, and speed. By incorporating an aldehyde motif genetically into a protein and improving the labeling kinetics substantially under mild conditions, we achieved fast, site-specific labeling of a protein with ~100% efficiency while maintaining the biological function. We demonstrate that an aldehyde-tagged protein can be specifically labeled in cell extracts without protein purification and then can be used in single-molecule pull-down analysis. We further show the unique power of our method in a series of single-molecule studies on the transient interactions and switching between two quantitatively labeled DNA polymerases on their processivity factor. PMID:22466795

  17. A self-assembling fluorescent dipeptide conjugate for cell labelling.

    PubMed

    Kirkham, Steven; Hamley, Ian W; Smith, Andrew M; Gouveia, Ricardo M; Connon, Che J; Reza, Mehedi; Ruokolainen, Janne

    2016-01-01

    Derivatives of fluorophore FITC (fluorescein isothiocyanate) are widely used in bioassays to label proteins and cells. An N-terminal leucine dipeptide is attached to FITC, and we show that this simple conjugate molecule is cytocompatible and is uptaken by cells (human dermal and corneal fibroblasts) in contrast to FITC itself. Co-localisation shows that FITC-LL segregates in peri-nuclear and intracellular vesicle regions. Above a critical aggregation concentration, the conjugate is shown to self-assemble into beta-sheet nanostructures comprising molecular bilayers. PMID:25990811

  18. Validation of fluorescent-labeled microspheres for measurement of relative blood flow in severely injured lungs

    NASA Technical Reports Server (NTRS)

    Hubler, M.; Souders, J. E.; Shade, E. D.; Hlastala, M. P.; Polissar, N. L.; Glenny, R. W.

    1999-01-01

    The aim of the study was to validate a nonradioactive method for relative blood flow measurements in severely injured lungs that avoids labor-intensive tissue processing. The use of fluorescent-labeled microspheres was compared with the standard radiolabeled-microsphere method. In seven sheep, lung injury was established by using oleic acid. Five pairs of radio- and fluorescent-labeled microspheres were injected before and after established lung injury. Across all animals, 175 pieces were selected randomly. The radioactivity of each piece was determined by using a scintillation counter. The fluorescent dye was extracted from each piece with a solvent without digestion or filtering. The fluorescence was determined with an automated fluorescent spectrophotometer. Perfusion was calculated for each piece from both the radioactivity and fluorescence and volume normalized. Correlations between flow determined by the two methods were in the range from 0.987 +/- 0.007 (SD) to 0.991 +/- 0.002 (SD) after 9 days of soaking. Thus the fluorescent microsphere technique is a valuable tool for investigating regional perfusion in severely injured lungs and can replace radioactivity.

  19. Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers.

    PubMed Central

    Nag, K; Perez-Gil, J; Cruz, A; Keough, K M

    1996-01-01

    Pulmonary surfactant, a lipid-protein complex, secreted into the fluid lining of lungs prevents alveolar collapse at low lung volumes. Pulmonary surfactant protein C (SP-C), an acylated, hydrophobic, alpha-helical peptide, enhances the surface activity of pulmonary surfactant lipids. Fluorescein-labeled SP-C (F-SP-C) (3, 6, 12 wt%) in dipalmitoylphosphatidylcholine (DPPC), and DPPC:dipalmitoylphosphatidylglycerol (DPPG) [DPPC:DPPG 7:3 mol/mol] in spread monolayers was studied by epifluorescence microscopy. Mass spectometry of F-SP-C indicated that the protein is partially deacylated and labeled with 1 mol fluorescein/1 mol protein. The protein partitioned into the fluid, or liquid expanded, phase. Increasing amounts of F-SP-C in DPPC or DPPC:DPPG monolayers decreased the size and total amounts of the condensed phase at all surface pressures. Calcium (1.6 mM) increased the amount of the condensed phase in monolayers of DPPC:DPPG but not of DPPC alone, and such monolayers were also perturbed by F-SP-C. The study indicates that SP-C perturbs the packing of neutral and anionic phospholipid monolayers even when the latter systems are condensed by calcium, indicating that interactions between SP-C and the lipids are predominantly hydrophobic in nature. Images FIGURE 2 FIGURE 4 FIGURE 7 PMID:8804608

  20. Allelic divergence in sugarcane cultivars revealed through capillary electrophoregrams of fluorescence-labeled microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneu-polyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible due to capillary electerophoregrams (CE) using fluorescence-labeled SSR primer pairs. Twenty-four sugarcane cultivars, 12 eac...

  1. Activity-dependent fluorescent labeling of bacterial cells expressing the TOL pathway

    SciTech Connect

    William K. Keener; Mary E. Watwood

    2005-01-01

    3-Ethynylbenzoate functions as an activity-dependent, fluorogenic and chromogenic probe for Pseudomonas putida mt-2, which is known to degrade toluene via conversion to benzoate, followed by meta ring fission of the intermediate, catechol. This direct physiological analysis allows the fluorescent labeling of cells whose toluene-degrading enzymes have been induced by an aromatic substrate.

  2. Sequence-specific fluorescent labeling of double-stranded DNA observed at the single molecule level

    PubMed Central

    Géron-Landre, Bénédicte; Roulon, Thibaut; Desbiolles, Pierre; Escudé, Christophe

    2003-01-01

    Fluorescent labeling of a short sequence of double-stranded DNA (dsDNA) was achieved by ligating a labeled dsDNA fragment to a stem–loop triplex forming oligonucleotide (TFO). After the TFO has wound around the target sequence by ligand-induced triple helix formation, its extremities hybridize to each other, leaving a dangling single-stranded sequence, which is then ligated to a fluorescent dsDNA fragment using T4 DNA ligase. A non-repeated 15 bp sequence present on lambda DNA was labeled and visualized by fluorescence microscopy after DNA combing. The label was found to be attached at a specific position located at 4.2 ± 0.5 kb from one end of the molecule, in agreement with the location of the target sequence for triple helix formation (4.4 kb from one end). In addition, an alternative combing process was noticed in which a DNA molecule becomes attached to the combing slide from the label rather than from one of its ends. The method described herein provides a new tool for the detection of very short sequences of dsDNA and offers various perspectives in the micromanipulation of single DNA molecules. PMID:14530458

  3. Site-specific fluorescent labeling to visualize membrane translocation of a myristoyl switch protein

    PubMed Central

    Yang, Sung-Tae; Lim, Sung In; Kiessling, Volker; Kwon, Inchan; Tamm, Lukas K.

    2016-01-01

    Fluorescence approaches have been widely used for elucidating the dynamics of protein-membrane interactions in cells and model systems. However, non-specific multi-site fluorescent labeling often results in a loss of native structure and function, and single cysteine labeling is not feasible when native cysteines are required to support a protein’s folding or catalytic activity. Here, we develop a method using genetic incorporation of non-natural amino acids and bio-orthogonal chemistry to site-specifically label with a single fluorescent small molecule or protein the myristoyl-switch protein recoverin, which is involved in rhodopsin-mediated signaling in mammalian visual sensory neurons. We demonstrate reversible Ca2+-responsive translocation of labeled recoverin to membranes and show that recoverin favors membranes with negative curvature and high lipid fluidity in complex heterogeneous membranes, which confers spatio-temporal control over down-stream signaling events. The site-specific orthogonal labeling technique is promising for structural, dynamical, and functional studies of many lipid-anchored membrane protein switches. PMID:27605302

  4. Site-specific fluorescent labeling to visualize membrane translocation of a myristoyl switch protein.

    PubMed

    Yang, Sung-Tae; Lim, Sung In; Kiessling, Volker; Kwon, Inchan; Tamm, Lukas K

    2016-01-01

    Fluorescence approaches have been widely used for elucidating the dynamics of protein-membrane interactions in cells and model systems. However, non-specific multi-site fluorescent labeling often results in a loss of native structure and function, and single cysteine labeling is not feasible when native cysteines are required to support a protein's folding or catalytic activity. Here, we develop a method using genetic incorporation of non-natural amino acids and bio-orthogonal chemistry to site-specifically label with a single fluorescent small molecule or protein the myristoyl-switch protein recoverin, which is involved in rhodopsin-mediated signaling in mammalian visual sensory neurons. We demonstrate reversible Ca(2+)-responsive translocation of labeled recoverin to membranes and show that recoverin favors membranes with negative curvature and high lipid fluidity in complex heterogeneous membranes, which confers spatio-temporal control over down-stream signaling events. The site-specific orthogonal labeling technique is promising for structural, dynamical, and functional studies of many lipid-anchored membrane protein switches. PMID:27605302

  5. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis.

    PubMed Central

    Ju, J; Ruan, C; Fuller, C W; Glazer, A N; Mathies, R A

    1995-01-01

    Fluorescent dye-labeled DNA primers have been developed that exploit fluorescence energy transfer (ET) to optimize the absorption and emission properties of the label. These primers carry a fluorescein derivative at the 5' end as a common donor and other fluorescein and rhodamine derivatives attached to a modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine in the primer sequence allowed generation of four primers, all having strong absorption at a common excitation wavelength (488 nm) and fluorescence emission maxima of 525, 555, 580, and 605 nm. The ET efficiency of these primers ranges from 65% to 97%, and they exhibit similar electrophoretic mobilities by gel electrophoresis. With argon-ion laser excitation, the fluorescence of the ET primers and of the DNA sequencing fragments generated with ET primers is 2- to 6-fold greater than that of the corresponding primers or fragments labeled with single dyes. The higher fluorescence intensity of the ET primers allows DNA sequencing with one-fourth of the DNA template typically required when using T7 DNA polymerase. With single-stranded M13mp18 DNA as the template, a typical sequencing reaction with ET primers on a commercial sequencer provided DNA sequences with 99.8% accuracy in the first 500 bases. ET primers should be generally useful in the development of other multiplex DNA sequencing and analysis methods. Images Fig. 4 Fig. 5 PMID:7753809

  6. Fluorescence labeling of short RNA by oxidation at the 3'-end.

    PubMed

    Qiu, Chen; Liu, Wang-Yi; Xu, Yong-Zhen

    2015-01-01

    In RNA nanotechnology, construction of nanoparticles involves conjugation of functionalities, cross-linking of modules, labeling of RNA subunits, and chemical modification of nucleotides. Efficiency and sensitivity are important for the RNA labeling, which also can be used as probes in microarrays, Northern blotting, and gel-shift assays. Here, we describe a method for fluorescence labeling of short RNA at the 3'-end by oxidation. The 3'-terminus of in vitro-transcribed short RNA is oxidized by sodium periodate, and fluorescein-5-thiosemicarbazide is added after removal of excess oxidant. Purified short RNA with fluorescence is then applied for detection of RNA-protein interaction by gel-shift assay. PMID:25895999

  7. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier.

    PubMed

    Wu, De-Qun; Lu, Bo; Chang, Cong; Chen, Chang-Sheng; Wang, Tao; Zhang, Yuan-Yuan; Cheng, Si-Xue; Jiang, Xue-Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2009-03-01

    Galactosylated and fluorescein isothiocyanate (FITC) labeled polycaprolactone-g-dextran (Gal-PCL-g-Dex-FITC) polymers were synthesized. The grafted polymers can self-assemble into stable micelles in aqueous medium and in serum. Transmission electron microscopy (TEM) images showed that the self-assembled micelles were regularly spherical in shape. Micelle size determined by size analysis was around 120 nm. The anti-inflammation drug prednisone acetate as a model drug was loaded in the polymeric micelles, and the in vitro drug release was investigated. The galactosylated micelles could be selectively recognized by HepG2 cells and subsequently accumulate in HepG2 cells. The in vivo study demonstrated the relative uptake of the micelles by liver is much higher than the other tissues, indicating that the galactosylated micelles have great potential as a liver targeting drug carrier. PMID:19100617

  8. Preparation of Fluorescent Microcystin Derivatives by Direct Arginine Labelling and Their Biological Evaluation.

    PubMed

    Grundler, Verena; Faltermann, Susanne; Fent, Karl; Gademann, Karl

    2015-07-27

    Microcystin is the most prevalent toxin produced by cyanobacteria and poses a severe threat to livestock, humans and entire ecosystems. We report the preparation of a series of fluorescent microcystin derivatives by direct arginine labelling of the unprotected peptides at the guanidinium side chain. This new method allows a simple late-stage diversification strategy for native peptides devoid of protecting groups under mild conditions. A series of fluorophores were conjugated to microcystin-LR in good to very good yield. The fluorescent probes displayed biological activity comparable to that of unlabelled microcystin, in both phosphatase inhibition assays and toxicity tests on the crustacean Thamnocephalus platyurus. In addition, we demonstrate that the fluorescent probes penetrated Huh7 cells. Whole-animal imaging was performed on T. platyurus: labelled compound was mainly observed in the digestive tract. PMID:26010357

  9. Fluorescently Labeled Peptide Increases Identification of Degenerated Facial Nerve Branches during Surgery and Improves Functional Outcome

    PubMed Central

    Hussain, Timon; Mastrodimos, Melina B.; Raju, Sharat C.; Glasgow, Heather L.; Whitney, Michael; Friedman, Beth; Moore, Jeffrey D.; Kleinfeld, David; Steinbach, Paul; Messer, Karen; Pu, Minya; Tsien, Roger Y.; Nguyen, Quyen T.

    2015-01-01

    Nerve degeneration after transection injury decreases intraoperative visibility under white light (WL), complicating surgical repair. We show here that the use of fluorescently labeled nerve binding probe (F-NP41) can improve intraoperative visualization of chronically (up to 9 months) denervated nerves. In a mouse model for the repair of chronically denervated facial nerves, the intraoperative use of fluorescent labeling decreased time to nerve identification by 40% compared to surgeries performed under WL alone. Cumulative functional post-operative recovery was also significantly improved in the fluorescence guided group as determined by quantitatively tracking of the recovery of whisker movement at time intervals for 6 weeks post-repair. To our knowledge, this is the first description of an injectable probe that increases visibility of chronically denervated nerves during surgical repair in live animals. Future translation of this probe may improve functional outcome for patients with chronic denervation undergoing surgical repair. PMID:25751149

  10. Aptamer fluorescence anisotropy sensors for adenosine triphosphate by comprehensive screening tetramethylrhodamine labeled nucleotides.

    PubMed

    Zhao, Qiang; Lv, Qin; Wang, Hailin

    2015-08-15

    We previously reported a fluorescence anisotropy (FA) approach for small molecules using tetramethylrhodamine (TMR) labeled aptamer. It relies on target-binding induced change of intramolecular interaction between TMR and guanine (G) base. TMR-labeling sites are crucial for this approach. Only terminal ends and thymine (T) bases could be tested for TMR labeling in our previous work, possibly causing limitation in analysis of different targets with this FA strategy. Here, taking the analysis of adenosine triphosphate (ATP) as an example, we demonstrated a success of conjugating TMR on other bases of aptamer adenine (A) or cytosine (C) bases and an achievement of full mapping various labeling sites of aptamers. We successfully constructed aptamer fluorescence anisotropy (FA) sensors for adenosine triphosphate (ATP). We conjugated single TMR on adenine (A), cytosine (C), or thymine (T) bases or terminals of a 25-mer aptamer against ATP and tested FA responses of 14 TMR-labeled aptamer to ATP. The aptamers having TMR labeled on the 16th base C or 23rd base A were screened out and exhibited significant FA-decreasing or FA-increasing responses upon ATP, respectively. These two favorable TMR-labeled aptamers enabled direct FA sensing ATP with a detection limit of 1 µM and the analysis of ATP in diluted serum. The comprehensive screening various TMR labeling sites of aptamers facilitates the successful construction of FA sensors using TMR-labeled aptamers. It will expand application of TMR-G interaction based aptamer FA strategy to a variety of targets. PMID:25814408

  11. Fluorescence labeling to study platelet and leucocyte deposition onto vascular grafts in vitro.

    PubMed

    Toes, G J; van den Dungen, J J; Haan, J; Hermens, R A; van Oeveren, W

    1999-10-01

    Platelets and leucocytes are important participants in the response of the body to small diameter vascular grafts implanted into the arterial circulation. A sensitive and quick method for measuring platelet and leucocyte deposition contributes to material evaluation. With a newly developed fluorescence labeling method we examined the deposition of platelets and leucocytes onto vascular grafts in vitro. Human platelets and leucocytes were isolated and labeled with the fluorescence label Europium trichloride (EuCl3). After reconstitution of the labeled cells in plasma their functionality appeared intact and competitive with unlabeled cells. Eu-labeled platelets or leucocytes were then incubated with expanded polytetrafluoroethylene (ePTFE), Dacron and polyurethane (PU) vascular grafts in autologous plasma. Beta-thromboglobin and thromboxane release from platelets and beta-glucuronidase release from leucocytes during the incubation experiments were measured. Platelets and leucocytes deposited significantly less onto ePTFE compared to Dacron and polyurethane (P < 0.01). Our results are in accordance with results of in vivo studies using radio-active labeling to study platelet and leucocyte deposition. However, a new finding was that this reduced cell deposition may in part be due to possible toxic effects of ePTFE, shown by increased haemolysis and beta-thromboglobin release. PMID:10514073

  12. Effects of aluminum-induced aggregation on the fluorescence of humic substances

    SciTech Connect

    Sharpless, C.M.; McGown, L.B.

    1999-09-15

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data were treated with a model for nonspherical particles. While aggregates of aquatic humic acids appear in the fluorescence signal at both short and long excitation wavelengths, aggregates of terrestrial humic acids are detected only at the long Wavelength. Furthermore, the results indicate that emission obtained at longer excitation wavelengths is representative of smaller particles. At pH 4, the aquatic humic acids appear to exist in an extended conformation, whereas the terrestrial humic acids show less extension. The size and shape of the fluorescent particles display a complex dependence on Al concentration. Both enhancement and quenching of fluorescence are observed in the total luminescence spectra upon Al addition. However, quenching is shown to be the result of decreased humic acid concentration due to precipitation by Al rather than photophysical processes.

  13. Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine

    NASA Astrophysics Data System (ADS)

    Guo, Yanqing; Chen, Yanxia; Wei, Yanli; Li, Huanhuan; Dong, Chuan

    2015-02-01

    A simple, rapid and label-free fluorescent aptasensor was fabricated for the detection of potassium ion (K+ ion) in aqueous solution using K+ ion-stabilized single stranded DNA (ssDNA) with G-rich sequence as the recognition element and a fluorescent dye, berberine, as the fluorescence probe. In the presence of K+ ion, the G-rich ssDNA is promoted to form the aptamer-target complex with a G-quadruplex conformation, and berberine binding to the G-quadruplex structure results in the enhancement of its fluorescence. The fluorescence intensity of the sensing system displayed a calibration response for K+ ion in the range of 0-1600 μM with a detection limit of 31 nM (S/N = 3) and a relative standard deviation (RSD) of 0.45%. This label-free fluorescence aptasensor is conveniently and effectively applicable for analysis of K+ ion in blood serum samples with the recovery range of 81.7-105.3%. The assay for detection of potassium ion is easy, economical, robust, and stable in rough conditions.

  14. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  15. Application of colloidal semiconductor quantum dots as fluorescent labels for diagnosis of brain glial cancer

    NASA Astrophysics Data System (ADS)

    Farias, Patrícia M. A.; Santos, Beate S.; Menezes, Frederico D.; Ferreira, Ricardo; Oliveira, Fernando J. M., Jr.; Carvalho, Hernandes F.; Romão, Luciana; Moura-Neto, Vivaldo; Amaral, Jane C. O. F.; Fontes, Adriana; Cesar, Carlos L.

    2006-02-01

    In this work we present the preparation, characterization and conjugation of colloidal core shell CdS-Cd(OH) II quantum dots to health and cancer glial rats living cells in culture media. The particles were obtained via colloidal synthesis in aqueous medium, with final pH=7.3-7.4. Laser Scan Confocal Microscopy (LSCM) and Fluorescence Microscopy were used to evaluate fluorescence intensities and patterns of health and cancer (glioblastoma) glial cells labeled with the quantum dots in different time intervals. Health and cancer glial cells clearly differ in their fluorescence intensities and patterns. These different fluorescence intensities and patterns may be associated to differences concerning cellular membrane and metabolic features of health and cancer cells. The results obtained indicate the potential of the methodology for fast and precise cancer diagnostics.

  16. Fluorescence plasmonic enhancement of FITC labeled PS nanoparticles coupled to silver island films.

    PubMed

    Yang, Huixia; Qi, Xiaoqiong; Zhang, Banghong; Wang, Hui; Xie, Liang

    2016-07-10

    Optical properties of a fluorescence molecule can be drastically changed by surface plasmons excited in neighboring metallic nanostructures. Here we investigated the fluorescence enhancement behavior of fluorescein isothiocyanate (FITC) labeled polystyrene nanoparticles coupled to silver island films (SIFs) via a 15 nm polymethyl methacrylate separation layer theoretically and experimentally. Up to 24-fold fluorescence enhancement was experimentally achieved when the annealing time of the 25 nm Ag films was 50 min, which is in good agreement with the theoretical simulation result based on the finite-difference time-domain method. Furthermore, significant fluorescence spectral distortion on SIFs was also observed compared with samples on glass slides, which is sufficiently related to the scattering properties of SIFs and the lifetimes of FITC. PMID:27409315

  17. Microarray immunoassay for phenoxybenzoic acid using polymer-functionalized lanthanide oxide nanoparticles as fluorescent labels

    NASA Astrophysics Data System (ADS)

    Nichkova, Mikaela; Dosev, Dosi; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2005-11-01

    Fluorescent properties and low production cost makes lanthanide oxide nanoparticles attractive labels in biochemistry. Nanoparticles with different fluorescent spectra were produced by doping of oxides such as Y IIO 3 and Gd IIO 3 with different lanthanide ions (Eu, Tb, Sm) giving the possibility for multicolor labeling. Protein microarrays have the potential to play a fundamental role in the miniaturization of biosensors, clinical immunological assays, and protein-protein interaction studies. Here we present the application of fluorescent lanthanide oxide nanoparticles as labels in microarray-based immunoassay for phenoxybenzoic acid (PBA), a generic biomarker of human exposure to the highly potent insecticides pyrethroids. A novel polymer-based protocol was developed for biochemical functionalization of the nanoparticles. Microarrays of antibodies were fabricated by microcontact printing in line patterns onto glass substrates and immunoassays were successfully performed using the corresponding functionalized nanoparticles. The applicability of the fluorophore nanoparticles as reporters for detection of antibody-antigen interactions has been demonstrated for phenoxybenzoic acid (PBA)/anti-PBA IgG. The sensitivity of the competitive fluorescent immunoassay for PBA was similar to that of the corresponding ELISA.

  18. Biodistribution Analyses of a Near-Infrared, Fluorescently Labeled, Bispecific Monoclonal Antibody Using Optical Imaging.

    PubMed

    Peterson, Norman C; Wilson, George G; Huang, Qihui; Dimasi, Nazzareno; Sachsenmeier, Kris F

    2016-04-01

    In recent years, biodistribution analyses of pharmaceutical compounds in preclinical animal models have become an integral part of drug development. Here we report on the use of optical imaging biodistribution analyses in a mouse xenograft model to identify tissues that nonspecifically retained a bispecific antibody under development. Although our bispecific antibody bound both the epidermal growth factor receptor and insulin growth factor 1 receptor are expressed on H358, nonsmall-cell lung carcinoma cells, the fluorescence from labeled bispecific antibody was less intense than expected in xenografted tumors. Imaging analyses of live mice and major organs revealed that the majority of the Alexa Fluor 750 labeled bispecific antibody was sequestered in the liver within 2 h of injection. However, results varied depending on which near-infrared fluorophore was used, and fluorescence from the livers of mice injected with bispecific antibody labeled with Alexa Fluor 680 was less pronounced than those labeled with Alexa Fluor 750. The tissue distribution of control antibodies remained unaffected by label and suggests that the retention of fluorophores in the liver may differ. Given these precautions, these results support the incorporation of optical imaging biodistribution analyses in biotherapeutic development strategies. PMID:27053562

  19. A quantitative study of the intracellular dynamics of fluorescently labelled glyco-gold nanoparticles via fluorescence correlation spectroscopy.

    PubMed

    Murray, Richard A; Qiu, Yuan; Chiodo, Fabrizio; Marradi, Marco; Penadés, Soledad; Moya, Sergio E

    2014-07-01

    The dynamic behaviour of gold nanoparticles functionalised with glucose (Glc-Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc-Au NPs fluorescently-labelled with HiLyte Fluor647 (Glc-Au-Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell. FCS measurements become possible after applying a "prebleaching" methodology, when the immobile NP fraction has been effectively removed and thus significant FCS data has been recorded. In this study, Glc-Au-Hi NPs have been incubated with HepG2 cells and their diffusion time in the intracellular environment has been measured and compared with their diffusion value in water and cell media. PMID:24639360

  20. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications.

    PubMed

    Yguerabide, J; Yguerabide, E E

    1998-09-10

    Submicroscopic gold particle suspensions scatter colored light when illuminated with white light, and we have observed that a light-scattering gold particle suspension has the same appearance as a fluorescing solution. Thus, when illuminated by a narrow beam of white light, a 40-nm gold sol displays a clear (not cloudy), green scattered light (Tyndall) beam and has the same appearance as a fluorescing fluorescein solution. These, as well as other, observations have suggested to us that, in general, light-scattering particles can be treated as fluorescent analogs and used as fluorescent analog tracers in immuno- and DNA probe assays as well as in cell and molecular biology studies. Light-scattering particles are advantageous in these applications because particles such as gold and silver have very high light-scattering powers, which allows these particles to be easily detected, by light-scattering, at particle concentrations as low as 10(-16) M. The scattered light can be detected by the unaided eye for qualitative measurements or with a simple light-sensitive detector for quantitative measurements. Moreover, individual particles can be easily detected by eye or a video camera using a simple light microscope with a proper illuminating system. In addition, submicroscopic particles which scatter blue, green, yellow, orange, or red light can be readily synthesized. Antibodies, DNA probes, and other tracer substances can be readily attached to gold and other particles without altering their light-scattering properties. In this article we present the theory which allows one to predict the light-scattering properties of particles of different sizes and compositions and identify those particle sizes and compositions which appear most adequate for particular applications. Furthermore, we calculate molar extinction coefficients and emission efficiencies for particles of different sizes and compositions which allows us to compare the light-producing powers of these particles

  1. Experimental evidence of incomplete fluorescence quenching of pyrene bound to humic substances: implications for Koc measurements.

    PubMed

    Shirshin, E A; Budylin, G S; Grechischeva, N Yu; Fadeev, V V; Perminova, I V

    2016-07-01

    Fluorescence quenching (FQ) is extensively used for quantitative assessment of partition coefficients (KOC) of polycyclic aromatic hydrocarbons (PAHs) to natural organic materials - humic substances (HS). The presence of bound PAHs with incompletely quenched fluorescence would lead to underestimation of the KOC values measured by this technique. The goal of this work was to prove the validity of this assumption using an original experimental setup, which implied FQ measurements upon excitation into two distinct vibronically coupled electronic states. Pyrene was used as a fluorescent probe, and aquatic fulvic acid (SRFA) and leonardite humic acid (CHP) were used as the humic materials with low and high binding affinity for pyrene, respectively. Excitation of pyrene into the forbidden (S0-S1) and allowed (S0-S2) electronic states yielded two pairs of nonidentical FQ curves. This was indicative of incomplete quenching of the bound pyrene, and the divergence of the two FQ curves was much more pronounced for CHP as compared to SRFA. The two component model of fluorescence response formation was proposed to estimate the KOC values from the data obtained. The resulting pyrene KOC value for CHP (220 ± 20) g L(-1) was a factor 3 higher compared to the KOC value determined with the use of the Stern-Volmer formalism (68 ± 2) g L(-1). At the same time for aquatic FA the difference in FQ curves was almost negligible, which enables the use of the Stern-Volmer formalism for weakly interacting HS and PAHs. PMID:27279258

  2. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.

  3. Denaturation studies of active-site labeled papain using electron paramagnetic resonance and fluorescence spectroscopy.

    PubMed Central

    Ping, Z A; Butterfiel, D A

    1991-01-01

    A spin-labeled p-chloromercuribenzoate (SL-PMB) and a fluorescence probe, 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), both of which bind to the single SH group located in the active site of papain, were used to investigate the interaction of papain (EC 3.4.22.2) with two protein denaturants. It was found that the active site of papain was highly stable in urea solution, but underwent a large conformational change in guanidine hydrochloride solution. Electron paramagnetic resonance and fluorescence results were in agreement and both paralleled enzymatic activity of papain with respect to both the variation in pH and denaturation. These results strongly suggest that SL-PMB and Acrylodan labels can be used to characterize the physical state of the active site of the enzyme. PMID:1657229

  4. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation

    PubMed Central

    Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco

    2015-01-01

    Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273

  5. NeuO: a fluorescent chemical probe for live neuron labeling.

    PubMed

    Er, Jun Cheng; Leong, Cheryl; Teoh, Chai Lean; Yuan, Qiang; Merchant, Paolomi; Dunn, Matthew; Sulzer, David; Sames, Dalibor; Bhinge, Akshay; Kim, Dongyoon; Kim, Seong-Min; Yoon, Myung-Han; Stanton, Lawrence W; Je, Shawn H; Yun, Seong-Wook; Chang, Young-Tae

    2015-02-16

    To address existing limitations in live neuron imaging, we have developed NeuO, a novel cell-permeable fluorescent probe with an unprecedented ability to label and image live neurons selectively over other cells in the brain. NeuO enables robust live neuron imaging and isolation in vivo and in vitro across species; its versatility and ease of use sets the basis for its development in a myriad of neuronal targeting applications. PMID:25565332

  6. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    SciTech Connect

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  7. Effect of Fluorescently Labeling Protein Probes on Kinetics of Protein-Ligand Reactions

    PubMed Central

    Sun, Y.S.; Landry, J.P.; Fei, Y.Y.; Luo, J.T.; Wang, X.B.; Lam, K.S.

    2009-01-01

    We studied the effect of fluorescently labeling proteins on protein-ligand reactions. Un-labeled ligands (streptavidin-binding peptides and rabbit immunoglobulin G (IgG) as antigen targets) are immobilized on epoxy-functionalized glass slides. Unlabeled and Cy3-labeled protein probes from the same batch (streptavidin and goat antibodies) subsequently react with the surface-immobilized targets. By monitoring in situ the surface mass density change using an oblique-incidence reflectivity difference scanning microscope (a label-free detector), we measured kon and koff for streptavidin-peptide reactions and antibody-antigen reaction. We found that (1) equilibrium dissociation constants, defined as KD = koff/kon, for streptavidin-peptide reactions increases by a factor of 3 ~ 4 when the solution-phase streptavidin is labeled with Cy3 dye; and (2) KD for reactions of solution-phase goat anti-rabbit antibodies with rabbit IgG targets also change significantly when the goat antibodies are labeled with Cy3 dye. PMID:18991423

  8. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis

    SciTech Connect

    Ju, J.; Glazer, A.N.; Mathies, R.A.; Ruan, C.; Fuller, C.W.

    1995-05-09

    Fluorescent dye-labeled DNA primers have been developed that exploit fluorescence energy transfer (ET) to optimize the absorption and emission properties of the label. These primers carry a fluorescein derivative at the 5{prime} end as a common donor and other fluorescein and rhodamine derivatives attached to a modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine in the primer sequence allowed generation of four primers, all having strong absorption at a common excitation wavelength (488 nm) and fluorescence emission maxima of 525,555,580, and 605 nm. The ET efficiency of these primers ranges from 65% to 97%, and they exhibit similar electrophoretic mobilities by gel electrophoresis. With argon-ion laser excitation, the fluorescence of the ET primers and of the DNA sequencing fragments generated with ET primers is 2- to 6-fold greater than that of the corresponding primers or fragments labeled with single dyes. The higher fluorescence intensity of the ET primers allows DNA sequencing with one-fourth of the DNA template typically required when using T7 DNA polymerase. With single-stranded M13mp18 DNA as the template, a typical sequencing reaction with ET primers on a commercial sequencer provided DNA sequences with 99.8% accuracy in the first 500 bases. ET primers should be generally useful in the development of other multiplex DNA sequencing and analysis methods. 29 refs., 5 figs.

  9. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence

    SciTech Connect

    Coleman, Bradley M.; Nisbet, Rebecca M.; Han, Sen; Cappai, Roberto; Hatters, Danny M.; Hill, Andrew F.

    2009-03-13

    Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrP{sup C}) into a disease associated form (PrP{sup Sc}). Recombinant PrP can be refolded into either an {alpha}-helical rich conformation ({alpha}-PrP) resembling PrP{sup C} or a {beta}-sheet rich, protease resistant form similar to PrP{sup Sc}. Here, we generated tetracysteine tagged recombinant PrP, folded this into {alpha}- or {beta}-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished {beta}-PrP from {alpha}-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the {alpha}-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the {beta}-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrP{sup Sc} from PrP{sup C}. This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's diseases.

  10. Label-free fluorescent molecular beacon based on a small fluorescent molecule non-covalently bound to the intentional gap site in the stem moiety.

    PubMed

    Gao, Qiang; Lin, Kai; Zhang, Hongge; Qi, Honglan; Zhang, Chengxiao

    2010-12-15

    A label-free fluorescent molecular beacon (MB) based on a fluorescent molecule, 5,6,7-trimethyl-1,8-naphthyridin-2-ylamine (ATMND) which is non-covalently bound to the intentional gap site in the stem moiety of the label-free MB, was developed. In the absence of a cDNA, ATMND fluorescence is significantly quenched because it binds to the unpaired cytosine at the gap site by hydrogen bonding. As a result, the label-free MB shows almost no fluorescence. Upon hybridization with cDNA, the label-free MB undergoes a conformational change to destroy the gap site. This results in an effective fluorescent enhancement because of the release of the ATMND from the gap site to the solution. Fluorescence titration shows that ATMND strongly binds to the cytosine at the gap site (K(11)>10(6)). Circular-dichroism spectroscopy indicates that the binding of ATMND at the gap site of the stem moiety does not induce a significant conformational change to the hairpin DNA. Under optimal conditions, the fluorescent intensity of the label-free MB increases with an increase in cDNA concentration from 50 nM to 1.5 μM. A detection limit of 20 nM cDNA was achieved. A single mismatched target ss-DNA can be effectively discriminated from cDNA. The advantage of the label-free MB is that both its ends can be left free to introduce other useful functionalities. In addition, the label-free MB synthesis introduced in this paper is relatively simple and inexpensive because no label is required. PMID:21111170

  11. Investigation of metal ions binding of humic substances using fluorescence emission and synchronous-scan spectroscopy.

    PubMed

    Piana, M J; Zahir, K O

    2000-01-01

    The binding site interactions of IHSS humic substances, Suwannee River Humic Acid, Suwannee River Fulvic Acid, Nordic Fulvic Acid, and Aldrich Humic Acid with various metals ions and a herbicide, methyl viologen were investigated using fluorescence emission and synchronous-scan spectroscopy. The metal ions used were, Fe(III), Cr(III), Cr(VI), Pb(II), Cu(II) and Ni(II). Stern-Volmer constants, Ksv for these quenchers were determined at pH 4 and 8 using an ionic strength of 0.1 M. For all four humic substances, and at both pH studied, Fe(III) was found to be the most efficient quencher. Quenching efficiency was found to be 3-10 times higher at pH 8. The bimolecular quenching rate constants were found to exceed the maximum considered for diffusion controlled interactions, and indicate that the fluorophore and quencher are in close physical association. Synchronous-scan spectra were found to change with pH and provided useful information on binding site interactions between humic substances and these quenchers. PMID:10693057

  12. Fluorescent Staining of Tea Pathogenic Fungi in Tea Leaves Using Fluorescein-labeled Lectin

    NASA Astrophysics Data System (ADS)

    Yamada, Kengo; Yoshida, Katsuyuki; Sonoda, Ryoichi

    Fluorochrome-labeled lectin, fluorescein conjugated wheat germ agglutinin (F-WGA) was applied to stain tea pathogenic fungi in tea leaf tissue. Infected leaves were fixed and decolorized with a mixture of ethanol and acetic acid, and cleared with 10% KOH for whole mount before staining with F-WGA. Hyphae of Pestalotiopsis longiseta, Pseudocercospora ocellata, Botrytis cinerea and Colletotrichum theae-sinensis fluoresced brightly in whole mount and sectioned samples of infected leaf tissue. In browned tissue, hyphae did not fluoresce frequently in whole mount sample. Autofluorescence of leaf tissue was strong in browned tissue of sections, it was removed by 10% KOH treatment before staining. Penetration hyphae of C. theae-sinensis in cell wall of trichome and hyphae in basal part of trichome did not fluoresced frequently. In whole mount samples of tea leaf infected with Exobasidium vexans and E. reticulatum, hymenia appeared on leaf surface fluoresced, but hyphae in leaf tissue did not fluoresce. In sectioned samples, hyphae fluoresced brightly when sections were treated with 10% KOH before staining.

  13. Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence

    NASA Astrophysics Data System (ADS)

    Zeng, Yan; Yan, Bo; Sun, Qiqi; Teh, Seng Khoon; Zhang, Wei; Wen, Zilong; Qu, Jianan Y.

    2013-04-01

    We demonstrate that two-photon excited endogenous fluorescence enables label-free morphological and functional imaging of various human blood cells. Specifically, we achieved distinctive morphological contrast to visualize morphology of important leukocytes, such as polymorphonuclear structure of granulocyte and mononuclear feature of agranulocyte, through the employment of the reduced nicotinamide adenine dinucleotide (NADH) fluorescence signals. In addition, NADH fluorescence images clearly reveal the morphological transformation process of neutrophils during disease-causing bacterial infection. Our findings also show that time-resolved NADH fluorescence can be potentially used for functional imaging of the phagocytosis of pathogens by leukocytes (neutrophils) in vivo. In particular, we found that free-to-bound NADH ratios measured in infected neutrophils increased significantly, which is consistent with a previous study that the energy consumed in the phagocytosis of neutrophils is mainly generated through the glycolysis pathway that leads to the accumulation of free NADH. Future work will focus on further developing and applying label-free imaging technology to investigate leukocyte-related diseases and disorders.

  14. Fluorescent labeling of dendritic spines in cell cultures with the carbocyanine dye “DiI”

    PubMed Central

    Cheng, Connie; Trzcinski, Olivia; Doering, Laurie C.

    2014-01-01

    Analyzing cell morphology is a key component to understand neuronal function. Several staining techniques have been developed to facilitate the morphological analysis of neurons, including the use of fluorescent markers, such as DiI (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate). DiI is a carbocyanine membrane dye that exhibits enhanced fluorescence upon insertion of its lipophilic hydrocarbon chains into the lipid membrane of cells. The high photostability and prominent fluorescence of the dye serves as an effective means of illuminating cellular architecture in individual neurons, including detailed dendritic arborizations and spines in cell culture and tissue sections. Here, we specifically optimized a simple and reliable method to fluorescently label and visualize dissociated hippocampal neurons using DiI and high-resolution confocal microscopic imaging. With high efficacy, this method accurately labels neuronal and synaptic morphology to permit quantitative analysis of dendritic spines. Accurate imaging techniques of these fine neuronal specializations are vital to the study of their morphology and can help delineate structure-function relationships in the central nervous system. PMID:24847216

  15. Amplification of fluorescently labelled DNA within gram-positive and acid-fast bacteria.

    PubMed

    Vaid, A; Bishop, A H

    1999-10-01

    Representative organisms from a variety of Gram-positive genera were subjected to varying regimes in order to optimise the intracellular amplification of DNA. The bacteria were subjected to treatments with paraformaldehyde, muramidases and mild acid hydrolysis to discover which regime made each organism permeable to the amplification reagents yet allowed retention of the fluorescein-labelled amplified products within the cell. Scanning electron micrographs were used to corroborate the effectiveness of the treatments, as seen by fluorescent photomicrographs, with the damage caused to the bacterial walls. A combination of mutanolysin and lysozyme was found most effective for Bacillus cereus, whereas permeabilisation of Streptomyces coelicolor, Lactococcus lactis and Clostridium sporogenes was most effective when exposed to lysozyme only. Surprisingly, direct amplification with no pre-treatment gave the brightest fluorescence in Mycobacterium phlei. Comparing the techniques of whole cell PCR, primed in situ labelling (PRINS), and cycle PRINS showed that under the conditions used the strongest intensity of fluorescence was obtained with in situ PCR; only L. lactis and M. phlei produced signals with cycle PRINS, fluorescence was not seen for any of the organisms with PRINS. PMID:10520585

  16. Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Swamy, Tushar; Runnels, Judith; Lin, Charles P.; Niedre, Mark

    2012-07-01

    Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a ‘diffuse fluorescence flow cytometer’ (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.

  17. Simultaneous measurement of NK cell cytotoxicity against two target cell lines labelled with fluorescent lanthanide chelates.

    PubMed

    Lövgren, J; Blomberg, K

    1994-07-12

    We describe a cytotoxicity assay which permits the simultaneous measurement of natural killer cell activity against two different cell lines. The target cell lines are labelled either with a fluorescent europium chelate or with a fluorescent terbium chelate and cell death is quantified by measuring the chelate release. K-562, Molt4 and Daudi cell lines have been used as targets. The release of the two chelates from the target cells can be detected with the help of time resolved fluorometry. As the measurements are made after background fluorescence has decayed no additional steps are needed to correct for the background from the medium. The assay procedure used for measurement of cytotoxicity against two target cell lines is very similar to the widely used 51Cr release assay. PMID:8034979

  18. Labeling of human hepatocellular carcinoma cells by hexamethylene diamine modified fluorescent carbon dots

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Dong, Yan; Wang, Ying; Zhou, Shiqi; Ge, Xin; Sui, Lili; Wang, Jingwen

    2013-12-01

    Fluorescent carbon dots (CDs) were synthesized by a solvothermal method with glucose as carbon source and surface-modified with 1,6-hexamethylene diamine. In this hybrid CDs, the modification played important role for improving the fluorescent performance by introducing nitrogenous compound to passivate CD's surface, making the CDs emit strong fluorescence. The as-prepared CDs were linked with mouse anti-human Alpha fetoprotein (AFP) antibody and goat anti-mouse immunoglobulin (IgG) to directly and indirectly label fixed human hepatocellular carcinoma cells, respectively. The cytotoxicity of these CDs were also tested using the human hepatocellular carcinoma cells. No apparent cytotoxicity was observed, which suggested the potential application of the as-prepared CDs in bioimaging.

  19. Hexokinase inhibits flux of fluorescently labeled ATP through mitochondrial outer membrane porin.

    PubMed

    Perevoshchikova, Irina V; Zorov, Savva D; Kotova, Elena A; Zorov, Dmitry B; Antonenko, Yuri N

    2010-06-01

    Mitochondrial function requires maintaining metabolite fluxes across the mitochondrial outer membrane, which is mediated primarily by the voltage dependent anion channel (VDAC). We applied fluorescence correlation spectroscopy (FCS) to study regulation of the VDAC functional state by monitoring distribution of fluorescently labeled ATP (BODIPY-FL-ATP) in isolated intact rat liver and heart mitochondria. Addition of mitochondria to BODIPY-FL-ATP solution resulted in accumulation of the fluorescent probe in these organelles. The addition of hexokinase II (HKII) isolated from rat heart led to a decrease in the BODIPY-FL-ATP accumulation, while a 15-residue peptide corresponding to the N-terminal domain of hexokinase did not produce this effect. Therefore, the hexokinase-induced inhibition of the ATP flow mediated by VDAC was revealed in isolated mitochondria. PMID:20412805

  20. Enhanced fluorescence of proteins and label-free bioassays using aluminum nanostructures.

    PubMed

    Ray, Krishanu; Szmacinski, Henryk; Lakowicz, Joseph R

    2009-08-01

    We report the enhanced intrinsic fluorescence from several proteins in proximity to aluminum nanostructured surfaces. Intrinsic fluorescence in proteins is dominated by the tryptophan residues. Intensities and lifetimes of several proteins with different numbers of tryptophan residues assembled on the surfaces of quartz or aluminum nanostructured films were measured. Immobilized protein molecules on the surface of an aluminum nanostructured film resulted in a significant fluorescence intensity enhancement (up to 14-fold) and lifetime decrease (up to 6-fold) compared to the quartz substrates. These large spectroscopic changes allow design of label-free bioassays where detection of binding interactions between proteins can be observed in the presence of a bulk sample solution. Binding of streptavidin to the biotinylated aluminum surface was demonstrated in the presence of 100 microg/mL bovine serum albumin in the sample solution by measurements of tryptophan intensity and lifetime changes. PMID:19594133

  1. Phthalocyanine Labels for Near-Infrared Fluorescence Imaging of Solid Tumors.

    PubMed

    Lobo, Ana C S; Silva, Alexandre D; Tomé, Vanessa A; Pinto, Sara M A; Silva, Elsa F F; Calvete, Mário J F; Gomes, Célia M F; Pereira, Mariette M; Arnaut, Luis G

    2016-05-26

    Diamagnetic metal complexes of phthalocyanines with n-butoxyl groups in all the α-benzo positions of the macrocycle skeleton, MPc(OBu)8, have strong near-infrared absorptions and intense fluorescences that are Stokes shifted by more than 15 nm. Interestingly, the silicon complex 6 is also remarkably photostable and nontoxic. The use of 6 in the fluorescence imaging of BALB/c mice bearing a 4T1-luc2 tumor in the mammary fat pad unambiguously revealed the presence of the tumor when it was only 1 mm in diameter and was not visible with the naked eye. Compound 6 has an intrinsic ability to accumulate in the tumor, adequate spectroscopic properties, and excellent stability to function as a NIR fluorescent label in the early detection of tumors. PMID:27070884

  2. Time-resolved fluorescence and fluorescence anisotropy of fluorescein-labeled poly(N-isopropylacrylamide) incorporated in polymersomes.

    PubMed

    Lee, Jung Seok; Koehorst, Rob B M; van Amerongen, Herbert; Feijen, Jan

    2011-11-17

    The phase behavior of fluorescein isothiocyanate (FITC) labeled poly(N-isopropylacrylamide) (PNIPAAm) incorporated in polymersomes (Ps) was studied by monitoring the fluorescence lifetime (FL) and the time-resolved fluorescence anisotropy (TRFA) as a function of temperature at pH 7.4. Ps containing FITC-labeled PNIPAAm with a diameter less than 200 nm were prepared by injecting a THF solution of poly(ethylene glycol)-b-poly(d,l-lactide) (mPEG-PDLLA) and FITC tagged PNIPAAm (FITC-N) into phosphate buffered saline (PBS, pH 7.4). Solutions of free FITC (2 μM) and FITC-N (2 μM) in PBS were used as controls. The polarized fluorescence decay curves of FITC were fitted with one rotational correlation time (θ(1)) and the corresponding amplitude (β(1)), while those for FITC-N were fitted with two rotational correlation times (θ(1,2)) and their corresponding amplitudes (β(1,2)). Short rotational correlation times, θ(1), correspond with the rotation of the FITC molecule itself, whereas θ(2) corresponds to FITC-segmental rotation. FITC-N encapsulated in Ps (FITC-N/Ps) showed a decrease of the rotational motion upon increasing the temperature. The long rotational correlation time (θ(2)) of FITC-N increased 3 fold, going from 15 to 40 °C, reflecting a reduced rotational mobility. The residual anisotropy (β(∞)) of FITC-N/Ps at pH 7.4 showed a gradual increase, going from 15 to 25 °C followed by a gradual decrease at higher temperatures. These results are explained by a transition from coil to globule, a gradual increase of intermolecular aggregation, and possibly phase separation and hydrogel formation. PMID:21995555

  3. Multidimensional fluorescence studies of the phenolic content of dissolved organic carbon in humic substances.

    PubMed

    Pagano, Todd; Ross, Annemarie D; Chiarelli, Joseph; Kenny, Jonathan E

    2012-03-01

    Indicators suggest that the amount of dissolved organic carbon (DOC) in natural waters may be increasing. Climate change has been proposed as a potential contributor to the trend, and under such a mechanism, the phenolic content of DOC may also be increasing. This study explores the assessment of the phenolic character of DOC using multidimensional fluorescence spectroscopy as a more convenient alternative to traditional wet chemistry methods. Parallel factor analysis (PARAFAC) is applied to fluorescence excitation emission matrices (EEMs) of humic samples to analyze inherent phenolic content. The PARAFAC results are correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method reveals that the phenolic content of five International Humic Substance Society (IHSS) samples varies from approximately 5.2 to 22 ppm Tannic Acid Equivalents (TAE). A four-component PARAFAC fit is applied to the EEMs of the IHSS sample dataset and it is determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C2, C3, and C4 have the highest probability of containing phenolic groups. The results show the potential for PARAFAC analysis of multidimensional fluorescence data for monitoring the phenolic content of DOC. PMID:22278717

  4. FLUORESCENT IN SITU DETECTION OF ENCEPHALITOZOON HELLEM SPORES WITH A 6-CARBOXYFLUORESCEIN-LABELED RNA-TARGETED OLIGONUCLEOTIDE PROBE

    EPA Science Inventory

    A fluorescent in situ hybridization assay has been developed for the detection of the human-pathogenic microsporidian, Encephalitozoon hellem, in water samples using epifluorescence microscopy. The assay employs a 19-nucleotide species-specific 6-carboxyfluorescein-labeled oligo...

  5. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Petrakova, V.; Benson, V.; Buncek, M.; Fiserova, A.; Ledvina, M.; Stursa, J.; Cigler, P.; Nesladek, M.

    2016-06-01

    Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for NA imaging and delivery, by providing detection of the intracellular release of non-labeled NAs without affecting cellular processing of the NAs. Our system highlights the potential of nanodiamonds to act not merely as labels but also as non-toxic and non-photobleachable fluorescent biosensors reporting complex molecular events.Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for

  6. Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies.

    PubMed

    de Diego-Castilla, Graciela; Cruz-Gil, Patricia; Mateo-Martí, Eva; Fernández-Calvo, Patricia; Rivas, Luis A; Parro, Víctor

    2011-10-01

    Antibody microarrays are becoming frequently used tools for analytical purposes. A key factor for optimal performance is the stability of the immobilized (capturing) antibodies as well as those that have been fluorescently labeled to achieve the immunological test (tracers). This is especially critical for long-distance transport, field testing, or planetary exploration. A number of different environmental stresses may affect the antibody integrity, such as dryness, sudden temperature shift cycles, or, as in the case of space science, exposure to large quantities of the highly penetrating gamma radiation. Here, we report on the effect of certain stabilizing solutions for long-term storage of printed antibody microarrays under different conditions. We tested the effect of gamma radiation on printed and freeze- or vacuum-dried fluorescent antibodies at working concentrations (tracer antibodies), as well as the effect of multiple cycles of sudden and prolonged temperature shifts on the stability of fluorescently labeled tracer antibody cocktails. Our results show that (i) antibody microarrays are stable at room temperature when printed on stabilizing spotting solutions for at least 6 months, (ii) lyophilized and vacuum-dried fluorescently labeled tracer antibodies are stable for more than 9 months of sudden temperature shift cycles (-20°C to 25°C and 50°C), and (iii) both printed and freeze- or vacuum-dried fluorescent tracer antibodies are stable after several-fold excess of the dose of gamma radiation expected during a mission to Mars. Although different antibodies may exhibit different susceptibilities, we conclude that, in general, antibodies are suitable for use in planetary exploration purposes if they are properly treated and stored with the use of stabilizing substances. PMID:22007740

  7. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer

    PubMed Central

    Pospichalova, Vendula; Svoboda, Jan; Dave, Zankruti; Kotrbova, Anna; Kaiser, Karol; Klemova, Dobromila; Ilkovics, Ladislav; Hampl, Ales; Crha, Igor; Jandakova, Eva; Minar, Lubos; Weinberger, Vit; Bryja, Vitezslav

    2015-01-01

    Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80–200 nm, microvesicles: ~200–1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for

  8. High Density Labeling of PCR Products with the Fluorescent Analogue tCo

    PubMed Central

    Stengel, Gudrun; Urban, Milan; Purse, Byron W.; Kuchta, Robert D.

    2009-01-01

    Fluorescent DNA of high molecular weight is an important tool for studying the physical properties of DNA and DNA-protein interactions and it plays a key role in modern biotechnology for DNA sequencing and detection. While several DNA polymerases can incorporate large numbers of dye-linked nucleotides into primed DNA templates, the amplification of the resulting densely labeled DNA strands by PCR is problematic. Here, we report a method for high density labeling of DNA in PCR reactions employing the 5’-triphosphate of 1, 3-diaza-2-oxo-phenoxazine (tCo) and Deep Vent DNA polymerase. tCo is a fluorescent cytosine analogue that absorbs and emits light at 365 and 460 nm, respectively. We obtained PCR products that were fluorescent enough to directly visualize them in a gel by excitation with long UV light, thus eliminating the need for staining with ethidium bromide. Reactions with Taq polymerase failed to produce PCR products in the presence of only small amounts of dtCoTP. A comparative kinetic study of Taq and Deep Vent polymerase revealed that Taq polymerase, although it inserts dtCoTP with high efficiency opposite G, is prone to forming mutagenic tCo-A base pairs and does not efficiently extend base pairs containing tCo. These kinetics features explain the poor outcome of the PCR reactions with Taq polymerase. Since tCo substitutes structurally for cytosine, the presented labeling method is believed to be less invasive than labeling with dye-linked nucleotides and therefore produces DNA that is ideally suited for biophysical studies. PMID:19810708

  9. Synaptic interactions of retrogradely labeled hypoglossal motoneurons with substance P-like immunoreactive nerve terminals in the cat: a dual-labeling electron microscopic study.

    PubMed

    Gatti, P J; Coleman, W C; Shirahata, M; Johnson, T A; Massari, V J

    1996-07-01

    This study has investigated the synaptic interactions between hypoglossal motoneurons and substance P (SP)-immunoreactive terminals. Cholera toxin B conjugated to horseradish peroxidase was injected into the tip of the tongue on the right side of six ketamine-anesthetized cats. Two to five days later, the animals were killed. Cells containing HRP were labeled with a histochemical reaction utilizing tetramethylbenzidine (TMB) as the chromogen. TMB forms crystalline reaction products that are very distinct at the electron microscopic level. The tissues were then processed for immunocytochemistry using an antiserum against SP. The chromogen used in this case, diaminobenzidine, yields amorphous reaction products. At the light microscopic level, labeled cells were observed primarily ipsilaterally in both intermediate and ventrolateral subdivisions of the hypoglossal nucleus. The majority of these labeled cells were seen at the level of obex. At the electron microscopic level, both asymmetric and symmetric synapses were observed. SP-immunoreactive nerve terminals formed asymmetric synapses with labeled dendrites and symmetric synapses with labeled perikarya. SP-labeled terminals also synapsed on unlabeled dendrites and somata. These are the first ultrastructural studies demonstrating synaptic interactions between hypoglossal motoneurons and SP terminals. These studies demonstrate that hypoglossal motoneurons that innervate intrinsic tongue muscles are modulated by SP and that SP may play a role in the control of fine movements of the tongue. PMID:8836682

  10. Live Imaging of Endogenous PSD-95 Using ENABLED: A Conditional Strategy to Fluorescently Label Endogenous Proteins

    PubMed Central

    Fortin, Dale A.; Tillo, Shane E.; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B.; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V.; Guo, Caiying

    2014-01-01

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. PMID:25505322

  11. Effect of fluorescently labeling protein probes on kinetics of protein-ligand reactions.

    PubMed

    Sun, Y S; Landry, J P; Fei, Y Y; Zhu, X D; Luo, J T; Wang, X B; Lam, K S

    2008-12-01

    We studied the effect of fluorescently labeling proteins on protein-ligand reactions. Unlabeled ligands (streptavidin-binding peptides and rabbit immunoglobulin G (IgG) as antigen targets) are immobilized on epoxy-functionalized glass slides. Unlabeled and Cy3-labeled protein probes from the same batch (streptavidin and goat antibodies) subsequently react with the surface-immobilized targets. By monitoring in situ the surface mass density change using an oblique-incidence reflectivity difference scanning microscope (a label-free detector), we measured k(on) and k(off) for streptavidin-peptide reactions and antibody-antigen reaction. We found that (1) equilibrium dissociation constants, defined as K(D) = k(off)/k(on), for streptavidin-peptide reactions increases by a factor of 3-4 when the solution-phase streptavidin is labeled with Cy3 dye and (2) K(D) for reactions of solution-phase goat anti-rabbit antibodies with rabbit IgG targets also change significantly when the goat antibodies are labeled with Cy3 dye. PMID:18991423

  12. Preparation, characterization and pharmacokinetics of fluorescence labeled propylene glycol alginate sodium sulfate

    NASA Astrophysics Data System (ADS)

    Li, Pengli; Li, Chunxia; Xue, Yiting; Zhang, Yang; Liu, Hongbing; Zhao, Xia; Yu, Guangli; Guan, Huashi

    2014-08-01

    A rapid and sensitive fluorescence labeling method was developed and validated for the microanalysis of a sulfated polysaccharide drug,namely propylene glycol alginate sodium sulfate (PSS), in rat plasma. Fluorescein isothiocyanate (FITC) was selected to label PSS, and 1, 6-diaminohexane was used to link PSS and FITC in order to prepare FITC-labeled PSS (F-PSS) through a reductive amination reaction. F-PSS was identified by UV-Vis, FT-IR and 1H-NMR spectrum. The cell stability and cytotoxicity of F-PSS were tested in Madin-Darby canine kidney (MDCK) cells. The results indicated that the labeling efficiency of F-PSS was 0.522% ± 0.0248% and the absolute bioavailability was 8.39%. F-PSS was stable in MDCK cells without obvious cytotoxicity. The method was sensitive and reliable; it showed a good linearity, precision, recovery and stability. The FITC labeling method can be applied to investigating the absorption and metabolism of PSS and other polysaccharides in biological samples.

  13. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

    2000-01-01

    BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

  14. A peptide with a cysteine terminus: probe for label-free fluorescent detection of thrombin activity.

    PubMed

    Feng, Jingjing; Zhuo, Caixia; Ma, Xuejuan; Li, Shuangqin; Zhang, Yaodong

    2016-07-21

    Thrombin has been implicated in atherosclerotic disease development. However, thrombin activity detection is currently limited because of the lack of convenient fluorescent probes. We developed a label-free fluorescent method to assay thrombin activity on the basis of a designed peptide probe with a thrombin-cleavable peptide sequence and a cysteine terminus. The peptide probe can be conjugated to DNA-templated silver nanoclusters (DNA-AgNCs) through Ag-S bonding; as a result, the fluorescence of DNA-AgNCs was enhanced. As the DNA-AgNCs-peptide conjugate was adsorbed to graphene oxide (GO), the enhanced fluorescence of DNA-AgNCs was quenched. Once the peptide probe was cleaved by thrombin, the resulting release of the DNA-AgNCs from the surface of GO restored the enhanced fluorescence. Thrombin can be determined with a linear range of 0.0-50.0 nM with a detection limit of 1 nM. The thrombin-sensitive probe with a cysteine terminus may be developed into probes to detect other proteases. PMID:27187619

  15. Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels.

    PubMed

    Yang, Huang-Hao; Qu, Hui-Ying; Lin, Peng; Li, Shun-Hua; Ding, Ma-Tai; Xu, Jin-Gou

    2003-05-01

    Nanometer-sized fluorescent hybrid silica (NFHS) particles were prepared for use as sensitive and photostable fluorescent probes in biological staining and diagnostics. The first step of the synthesis involves the covalent modification of 3-aminopropyltrimethoxysilane with an organic fluorophore, such as fluorescein isothiocyanate, under N2 atmosphere for getting a fluorescent silica precursor. Then the NFHS particles, with a diameter of well below 40 nm, were prepared by controlled hydrolysis of the fluorescent silica precursor with tetramethoxysilane (TMOS) using the reverse micelle technique. The fluorophores are dispersed homogeneously in the silica network of the NFHS particles and well protected from the environmental oxygen. Furthermore, since the fluorophores are covalently bound to the silica network, there is no migration, aggregation and leakage of the fluorophores. In comparison with common single organic fluorophores, these particle probes are brighter, more stable against photobleaching and do not suffer from intermittent on/off light emission (blinking). We have used these newly developed NFHS particles as a fluorescent marker to label antibodies, using silica immobilization method, for the immunoassay of human alpha-fetoprotein (AFP). The detection limit of this method was down to 0.05 ng mL(-1) under our current experimental conditions. We think this material would attract much attention and be applied widely in biotechnology. PMID:12790198

  16. Cobalt oxyhydroxide nanoflake based fluorescence sensing platform for label-free detection of DNA.

    PubMed

    Chang, Yaqing; Zhang, Zhe; Liu, Huiqing; Wang, Nan; Tang, Jilin

    2016-08-01

    Detection of specific DNA sequences is critical in life science. In this study, we investigated the interaction of cobalt oxyhydroxide (CoOOH) nanoflakes with DNA and their fluorescence quenching mechanism of a FAM-labeled single-stranded DNA (ssDNA) probe. ssDNA could adsorb on the CoOOH surface via electrostatic interactions and therefore the fluorescence of FAM was quenched. However, upon addition of targets, ssDNA was hybridized with target DNA and the formed double-stranded DNA (dsDNA) had much weaker affinity to CoOOH, resulting in the retaining of fluorescence. Based on the affinity difference of CoOOH nanoflakes to ssDNA and dsDNA and fluorescence resonance energy transfer based fluorescence quenching, a mix-and-detect method was proposed for homogeneous detection of DNA. The proposed method is simple and can be finished in a few minutes with high sensitivity. Furthermore, it displays a wide linear range from 1 to 50 nM with a detection limit of 0.5 nM and is capable of detecting DNA in real biological samples. PMID:27251111

  17. A novel murine model of Fusarium solani keratitis utilizing fluorescent labeled fungi.

    PubMed

    Zhang, Hongmin; Wang, Liya; Li, Zhijie; Liu, Susu; Xie, Yanting; He, Siyu; Deng, Xianming; Yang, Biao; Liu, Hui; Chen, Guoming; Zhao, Huiwen; Zhang, Junjie

    2013-05-01

    Fungal keratitis is a common disease that causes blindness. An effective animal model for fungal keratitis is essential for advancing research on this disease. Our objective is to develop a novel mouse model of Fusarium solani keratitis through the inoculation of fluorescent-labeled fungi into the cornea to facilitate the accurate and early identification and screening of fungal infections. F. solani was used as the model fungus in this study. In in vitro experiment, the effects of Calcofluor White (CFW) staining concentration and duration on the fluorescence intensity of F. solani were determined through the mean fluorescence intensity (MFI); the effects of CFW staining on the growth of F. solani were determined by the colony diameter. In in vivo experiment, the F. solani keratitis mice were induced and divided into a CFW-unlabeled and CFW-labeled groups. The positive rate, corneal lesion score and several positive rate determination methods were measured. The MFIs of F. solani in the 30 μg/ml CFW-30 min, 90 μg/ml CFW-10 min and 90 μg/ml CFW-30 min groups were higher than that in the 10 μg/ml CFW-10 min group (P < 0.01). Compared with the 30 μg/ml CFW-30 min group, only the 90 μg/ml CFW-30 min group showed higher MFI (P < 0.05). No significant difference was observed in the colony diameter in the CFW unstained group compared with that in the 10, 30, 90, 270, or 810 μg/ml CFW groups stained for either 10 or 30 min (P > 0.05). No significant differences (P > 0.05) were observed for the positive rate or the corneal lesion scores between the CFW-unlabeled and the CFW-labeled group. On day 1 and 2, the positive rates of the infected corneas in the scraping group were lower than those in the fluorescence microscopy group (P < 0.05). On day 3, these observe methods showed no significant difference (P > 0.05). Thus, these experiments established a novel murine model of F. solani keratitis utilizing fluorescent labeled fungi. This model

  18. Quantum dots-based label-free fluorescence sensor for sensitive and non-enzymatic detection of caffeic acid.

    PubMed

    Xiang, Xia; Shi, Jianbin; Huang, Fenghong; Zheng, Mingming; Deng, Qianchun

    2015-08-15

    We have developed a label-free fluorescence sensor for caffeic acid (CA) by the use of CdTe:Zn(2+) quantum dots (CdTe:Zn(2+) QDs) as an output signal. The principle of sensor is based on the fluorescence quenching and binding properties of Fe(2+) toward QDs and CA, respectively. To provide a fluorescence turn-on mode for CA detection, Fe(2+) is first mixed with QDs solution, leading to a low fluorescence emission. With the addition of CA, the fluorescence of QDs is recovered due to the strong binding interaction between CA and Fe(2+). Thus, a QDs-based label-free fluorescence sensor, designed in a simple mix-and-detect format, is established for CA detection. This study demonstrated here not only offers simple, sensitive and non-enzymatic detection method for CA, but also brings to light a new application of QDs in the food analysis. PMID:25966400

  19. A low-toxic artificial fluorescent glycoprotein can serve as an efficient cytoplasmic labeling in living cell.

    PubMed

    Si, Jiangju; Liang, Dawei; Kong, Dan; Wu, Sufang; Yuan, Lan; Xiang, Yan; Jiang, Lei

    2015-03-01

    To maintain the virtue of good optical property and discard the dross of conventional fluorescent staining dyes, we provide a strategy for designing new fluorescent scaffolds. In this study, a novel fluorescent labeling glycoprotein (chitosan-poly-L-cysteine, CPC) was synthesized through graft copolymerization. CPC gives emission peak at 465-470 nm when excited at 386 nm. The submicro-scale CPC microspheres could be localized and persisted specifically in the cytoplasm of living cells, with strong blue fluorescence. Moreover, CPC was highly resistant to photo bleaching, the fluorescence was remained stable for up to 72 h as the cells grew and developed. The glycoprotein CPC was bio-compatible and in zero grade cytotoxicity as quantified by MTT assay. The fluorescent labeling process with our newly designed glycoprotein CPC is exceptionally efficient. PMID:25498627

  20. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds.

    PubMed

    Petrakova, V; Benson, V; Buncek, M; Fiserova, A; Ledvina, M; Stursa, J; Cigler, P; Nesladek, M

    2016-06-01

    Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for NA imaging and delivery, by providing detection of the intracellular release of non-labeled NAs without affecting cellular processing of the NAs. Our system highlights the potential of nanodiamonds to act not merely as labels but also as non-toxic and non-photobleachable fluorescent biosensors reporting complex molecular events. PMID:27240633

  1. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction

    PubMed Central

    Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    Background MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Methods and Results Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. Conclusions These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results. PMID

  2. Transmission electron microscopy characterization of fluorescently labelled amyloid β 1-40 and α-synuclein aggregates

    PubMed Central

    2011-01-01

    Background Fluorescent tags, including small organic molecules and fluorescent proteins, enable the localization of protein molecules in biomedical research experiments. However, the use of these labels may interfere with the formation of larger-scale protein structures such as amyloid aggregates. Therefore, we investigate the effects of some commonly used fluorescent tags on the morphologies of fibrils grown from the Alzheimer's disease-associated peptide Amyloid β 1-40 (Aβ40) and the Parkinson's disease-associated protein α-synuclein (αS). Results Using transmission electron microscopy (TEM), we verify that N-terminal labeling of Aβ40 with AMCA, TAMRA, and Hilyte-Fluor 488 tags does not prevent the formation of protofibrils and amyloid fibrils of various widths. We also measure the two-photon action cross-section of Aβ40 labelled with Hilyte Fluor 488 and demonstrate that this tag is suitable for use with two-photon fluorescence techniques. Similarly, we find that Alexa Fluor 488 labelling of αS variant proteins near either the N or C terminus (position 9 or 130) does not interfere with the formation of amyloid and other types of αS fibrils. We also present TEM images of fibrils grown from αS C-terminally labelled with enhanced green fluorescent protein (EGFP). Near neutral pH, two types of αS-EGFP fibrils are observed via TEM, while denaturation of the EGFP tag leads to the formation of additional species. Conclusions We demonstrate that several small extrinsic fluorescent tags are compatible with studies of amyloid protein aggregation. However, although fibrils can be grown from αS labelled with EGFP, the conformation of the fluorescent protein tag affects the observed aggregate morphologies. Thus, our results should assist researchers with label selection and optimization of solution conditions for aggregation studies involving fluorescence techniques. PMID:22182687

  3. Real-time detection of DNA topological changes with a fluorescently labeled cruciform

    PubMed Central

    Jude, Kevin M.; Hartland, Abbey; Berger, James M.

    2013-01-01

    Topoisomerases are essential cellular enzymes that maintain the appropriate topological status of DNA and are the targets of several antibiotic and chemotherapeutic agents. High-throughput (HT) analysis is desirable to identify new topoisomerase inhibitors, but standard in vitro assays for DNA topology, such as gel electrophoresis, are time-consuming and are not amenable to HT analysis. We have exploited the observation that closed-circular DNA containing an inverted repeat can release the free energy stored in negatively supercoiled DNA by extruding the repeat as a cruciform. We inserted an inverted repeat containing a fluorophore-quencher pair into a plasmid to enable real-time monitoring of plasmid supercoiling by a bacterial topoisomerase, Escherichia coli gyrase. This substrate produces a fluorescent signal caused by the extrusion of the cruciform and separation of the labels as gyrase progressively underwinds the DNA. Subsequent relaxation by a eukaryotic topoisomerase, human topo IIα, causes reintegration of the cruciform and quenching of fluorescence. We used this approach to develop a HT screen for inhibitors of gyrase supercoiling. This work demonstrates that fluorescently labeled cruciforms are useful as general real-time indicators of changes in DNA topology that can be used to monitor the activity of DNA-dependent motor proteins. PMID:23680786

  4. THE IDENTIFICATION OF A FLUORESCENT REDUCING SUBSTANCE IN THE URINE OF PATIENTS WITH RHEUMATOID ARTHRITIS

    PubMed Central

    McMillan, Mary

    1960-01-01

    The report that 2,5-dihydroxyphenylpyruvic acid occurs in the urine of patients with collagen disease has not been confirmed, and no evidence was found for regarding collagen disease as being due to an inherent error in tyrosine metabolism as suggested by Japanese workers. A strongly reducing substance was conspicuous in the urine of patients with rheumatoid arthritis but not in that of normal persons. This substance was identified as 3-hydroxyanthranilic acid (3-HAA). A method is described for the measurement of 3-HAA in urine, employing ether extraction, paper chromatography in a formate solvent, and visual assessment by fluorescence in ultra-violet light and colour with Ehrlich's reagent. Normal persons excreted from less than 125 to 375 μg./day (average rather lower than 200 μg./day); those suffering from rheumatoid arthritis excreted from less than 125 to 2,250 μg./day (average 820 μg./day). The excessive excretion of 3-HAA in persons with rheumatoid arthritis was investigated in terms of other aspects of the activity of the disease. Some relationship was suggested between excretion levels, the erythrocyte sedimentation rate, and the sensitized sheep cell test. Cases of osteoarthritis, other orthopaedic conditions, and miscellaneous diseases were examined. A few of the latter, including diseases of the haemopoietic system, were associated with increased excretion of 3-HAA. PMID:16810953

  5. Fluorescent labelling of the actin cytoskeleton in plants using a cameloid antibody

    PubMed Central

    2014-01-01

    Background Certain members of the Camelidae family produce a special type of antibody with only one heavy chain. The antigen binding domains are the smallest functional fragments of these heavy-chain only antibodies and as a consequence have been termed nanobodies. Discovery of these nanobodies has allowed the development of a number of therapeutic proteins and tools. In this study a class of nanobodies fused to fluorescent proteins (chromobodies), and therefore allowing antigen-binding and visualisation by fluorescence, have been used. Such chromobodies can be expressed in living cells and used as genetically encoded immunocytochemical markers. Results Here a modified version of the commercially available Actin-Chromobody® as a novel tool for visualising actin dynamics in tobacco leaf cells was tested. The actin-chromobody binds to actin in a specific manner. Treatment with latrunculin B, a drug which disrupts the actin cytoskeleton through inhibition of polymerisation results in loss of fluorescence after less than 30 min but this can be rapidly restored by washing out latrunculin B and thereby allowing the actin filaments to repolymerise. To test the effect of the actin-chromobody on actin dynamics and compare it to one of the conventional labelling probes, Lifeact, the effect of both probes on Golgi movement was studied as the motility of Golgi bodies is largely dependent on the actin cytoskeleton. With the actin-chromobody expressed in cells, Golgi body movement was slowed down but the manner of movement rather than speed was affected less than with Lifeact. Conclusions The actin-chromobody technique presented in this study provides a novel option for in vivo labelling of the actin cytoskeleton in comparison to conventionally used probes that are based on actin binding proteins. The actin-chromobody is particularly beneficial to study actin dynamics in plant cells as it does label actin without impairing dynamic movement and polymerisation of the actin

  6. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling.

    PubMed

    Wang, Nan; Wei, Fang; Qi, Yuhang; Li, Hongxiang; Lu, Xin; Zhao, Guoqiang; Xu, Qun

    2014-11-26

    MoS2 nanosheets with polydispersity of the lateral dimensions from natural mineral molybdenite have been prepared in the emulsions microenvironment built by the water/surfactant/CO2 system. The size, thickness, and atomic structure are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and laser-scattering particle size analysis. Meanwhile, by the analysis of photoluminescence spectroscopy and microscope, the MoS2 nanosheets with smaller lateral dimensions exhibit extraordinary photoluminescence properties different from those with relatively larger lateral dimensions. The discovery of the excitation dependent photoluminescence for MoS2 nanosheets makes them potentially of interests for the applications in optoelectronics and biology. Moreover, we demonstrate that the fabricated MoS2 nanosheets can be a nontoxic fluorescent label for cell-targeted labeling application. PMID:25380411

  7. Fluorescent tracers as potential candidates for double labeling of descending brain neurons in larval lamprey.

    PubMed

    Zhang, L; McClellan, A D

    1998-11-01

    In larval lamprey, seven fluorescent tracers were tested as potential candidates for retrograde double labeling of descending brain neurons: Fluoro Gold (FG); fluorescein dextran amine (FDA); True Blue (TB); cascade blue dextran amine (CBDA); Fast Blue (FB); Texas red dextran amine (TRDA); and tetramethylrhodamine dextran amine (RDA). The first tracer (FG, TB, FB, or CBDA) was applied to the spinal cord at 40% body length (BL). In separate experiments, the second tracer (TRDA or RDA) was applied to the spinal cord at 20% BL. The tracer combination FG/TRDA was found to have the best optical properties for double labeling. However, application of FG to the spinal cord with the method used for the other tracers resulted in labeling of 'lateral cells' along the sides of the rhombencephalon that were presumed to be non-neuronal and that obscured some of the descending brain neurons. Control experiments suggested that FG was transported in the circulation to the brain, where the tracer was taken up by lateral cells. Therefore, a special technique was developed for applying FG to the spinal cord without allowing the tracer to enter the circulation. In larval lamprey, this important double-labeling technique that was developed for TRDA and FG is being used to examine axonal regeneration and projection patterns of descending brain neurons. PMID:9874141

  8. Synthesis and preliminary biological evaluations of fluorescent or 149Promethium labeled Trastuzumab-polyethylenimine

    SciTech Connect

    Fitzsimmons, Jonathan; Nayak, Tapan; Cutler, Cathy; Atcher, Robert

    2015-12-30

    Radioimmunotherapy utilize a targeting antibody coupled to a therapeutic isotope to target and treat a tumor or disease. In this study we examine the synthesis and cell binding of a polymer scaffold containing a radiotherapeutic isotope and a targeting antibody. Methods: The multistep synthesis of a fluorescent or 149Promethium-labeled Trastuzumab-polyethyleneimine (PEI), Trastuzumab, or PEI is described. In vitro uptake, internalization and/or the binding affinity to the Her2/neu expressing human breast adenocarcinoma SKBr3 cells was investigated with the labeled compounds. Fluorescent-labeled Trastuzumab-PEI was internalized more into cells at 2 and 18 h than fluorescent-labeled Trastuzumab or PEI. The fluorescent-labeled Trastuzumab was concentrated on the cell surface at 2 and 18 h and the labeled PEI had minimal uptake. DOTA-PEI was prepared and contained an average of 16 chelates per PEI; the compound was radio-labeled with 149Promethium and conjugated to Trastuzumab. The purified 149Pm-DOTA-PEI-Trastuzumab had a radiochemical purity of 96.7% and a specific activity of 0.118 TBq/g. The compound demonstrated a dissociation constant for the Her2/neu receptor of 20.30 ± 6.91 nM. In conclusion, the results indicate the DOTA-PEI-Trastuzumab compound has potential as a targeted therapeutic carrier, and future in vivo studies should be performed.

  9. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots.

    PubMed

    Kuo, Chun-Ting; Thompson, Alison M; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C; Carlson, Markus A; Hingorani, Sunil R; Paguirigan, Amy L; Radich, Jerald P; Chiu, Daniel T

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical 'painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a 'paintbrush' and the photoswitchable Pdots as the 'paint', we select and 'paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  10. Visualization of Sterol-Rich Membrane Domains with Fluorescently-Labeled Theonellamides

    PubMed Central

    Nishimura, Shinichi; Ishii, Kumiko; Iwamoto, Kunihiko; Arita, Yuko; Matsunaga, Shigeki; Ohno-Iwashita, Yoshiko; Sato, Satoshi B.; Kakeya, Hideaki; Kobayashi, Toshihide; Yoshida, Minoru

    2013-01-01

    Cholesterol plays important roles in biological membranes. The cellular location where cholesterol molecules work is prerequisite information for understanding their dynamic action. Bioimaging probes for cholesterol molecules would be the most powerful means for unraveling the complex nature of lipid membranes. However, only a limited number of chemical or protein probes have been developed so far for cytological analysis. Here we show that fluorescently-labeled derivatives of theonellamides act as new sterol probes in mammalian cultured cells. The fluorescent probes recognized cholesterol molecules and bound to liposomes in a cholesterol-concentration dependent manner. The probes showed patchy distribution in the plasma membrane, while they stained specific organelle in the cytoplasm. These data suggest that fTNMs will be valuable sterol probes for studies on the role of sterols in the biological membrane under a variety of experimental conditions. PMID:24386262

  11. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots

    PubMed Central

    Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  12. Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers.

    PubMed

    Winn-Deen

    1998-12-01

    Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe. PMID:10089280

  13. Development of fluorescent nanoparticle-labeled lateral flow assay for the detection of nucleic acids.

    PubMed

    Wang, Yuhong; Nugen, Sam R

    2013-10-01

    The rapid, specific and sensitive detection of nucleic acids is of utmost importance for the identification of infectious agents, diagnosis and treatment of genetic diseases, and the detection of pathogens related to human health and safety. Here we report the development of a simple and sensitive nucleic acid sequence-based and Ru(bpy)3 (2+)-doped silica nanoparticle-labeled lateral flow assay which achieves low limit of detection by using fluorescencent nanoparticles. The detection of the synthetic nucleic acid sequences representative of Trypanosoma mRNA, the causative agent for African sleeping sickness, was utilized to demonstrate this assay. The 30 nm spherical Ru(bpy)3 (2+)-doped silica nanoparticles were prepared in aqueous medium by a novel method recently reported. The nanoparticles were modified by 3-glycidoxypropyl trimethoxysilane in order to conjugate to amine-capped oligonucleotide reporter probes. The fluorescent intensities of the fluorescent assays were quantified on a mictrotiter plate reader using a custom holder. The experimental results showed that the lateral flow fluorescent assay developed was more sensitive compared with the traditional colloidal gold test strips. The limit of detection for the fluorescent lateral flow assay developed is approximately 0.066 fmols as compared to approximately 15 fmols for the colloidal gold. The limit of detection can further be reduced about one order of magnitude when "dipstick" format was used. PMID:23525961

  14. Detection of hyphal fusion in filamentous fungi using differently fluorescence-labeled histones.

    PubMed

    Rech, Christine; Engh, Ines; Kück, Ulrich

    2007-11-01

    Cell fusion occurs regularly during the vegetative and sexual phases of the life cycle in filamentous fungi. Here, we present a simple and efficient method that can detect even rare hyphal fusion events. Using the homothallic ascomycete Sordaria macrospora as an experimental system, we developed a histone-assisted merged fluorescence (HAMF) assay for the investigation of hyphal fusion between vegetative mycelia. For this purpose, two reporter vectors were constructed encoding the histone proteins HH2B or HH2A fused at their C terminus either with the cyan or yellow fluorescent protein, respectively. The chimeric proteins generate fluorescently labeled nuclei and thus enable the distinction between different strains in a mycelial mixture. For example, hyphae with nuclei that show both cyan as well as yellow fluorescence indicate the formation of a heterokaryon as a result of hyphal fusion. To test the applicability of our HAMF assay, we used two S. macrospora developmental mutants that are supposed to have reduced hyphal fusion rates. The simple and efficient HAMF assay described here could detect even rare fusion events and should be applicable to a broad range of diverse fungal species including those lacking male or female reproductive structures or asexual spores. PMID:17929020

  15. Label-free nucleic acids detection based on DNA templated silver nanoclusters fluorescent probe.

    PubMed

    Zhao, Haiyan; Wang, Lei; Zhu, Jing; Wei, Haiping; Jiang, Wei

    2015-06-01

    Based on DNA templated Ag NCs (DNA/Ag NCs) fluorescent probe, a label-free fluorescent method was developed for the detection of clinical significant DNA fragments from human immunodeficiency virus type 1 (HIV-1) DNA. Firstly, a hairpin probe, containing target DNA recognition sequence and guanine-rich sequence, was designed to hybridize with the target DNA and form a blunt 3'-terminus DNA duplex. Then, exonuclease III (Exo III) was employed to stepwise hydrolyze the mononucleotides from formed blunt 3'-terminus DNA duplex, releasing the target DNA and guanine-rich sequence. Finally, DNA/Ag NCs fluorescent probe was introduced to hybridize with the guanine-rich sequence, leading to an enhanced fluorescence signal for detection. The proposed method could detect as low as 2.9×10(-10) mol L(-1) HIV-1 DNA and exhibited excellent selectivity against mismatched target DNA. Furthermore, the method possessed perfect recoveries in cells lysate and human serum, showing potential to be used in biological samples. PMID:25863386

  16. Phase-sensitive flow cytometry: fluorescence lifetime-based sensing technology for analyzing free fluorophore and cells/particles labeled with fluorescent probes

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.

    1999-12-01

    A phase-sensitive cytometer has been developed that combines flow cytometry and fluorescence lifetime spectroscopy measurement principles to provide unique features for making frequency-domain lifetime measurements on free fluorophore (solution) and on fluorophore-labeled cells/particles in real time. No other instrument can quantify lifetimes directly and resolve heterogeneous fluorescence based on differences in lifetimes (expressed as phase shifts), while maintaining the capability to make conventional flow cytometric measurements. The technology has been characterized with respect to measurement precision, linearity, sensitivity, and dynamic range. Fluorescence lifetime distributions have been measured on autofluorescence lung cells, thymocytes labeled with antibody conjugated to fluorophores for studying fluorescence quenching as a function of antibody dilution and F/P ratio, cells stained with DNA-binding fluorochromes, and on particles labeled with fluorophores and free fluorophore (solution). Phase-resolved, fluorescence signal- intensity histograms have been recorded on thymocytes labeled with a phycoerythrin/Texas Red tandem conjugate and propidium iodide to demonstrate the resolution of signals from highly overlapping emission spectra. This technology adds a new dimension to flow analyses of free and cell/particle-bound fluorophore. Lifetimes can be used as spectroscopic probes to study the interaction of markers with their targets, each other, and the surrounding microenvironment.

  17. HyperSpectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue

    PubMed Central

    Leavesley, Silas J.; Annamdevula, Naga; Boni, John; Stocker, Samantha; Grant, Kristin; Troyanovsky, Boris; Rich, Thomas C.; Alvarez, Diego F.

    2012-01-01

    Standard fluorescence microscopy approaches rely on measurements at single excitation and emission bands to identify specific fluorophores and the setting of thresholds to quantify fluorophore intensity. This is often insufficient to reliably resolve and quantify fluorescent labels in tissues due to high autofluorescence. Here we describe the use of hyperspectral analysis techniques to resolve and quantify fluorescently labeled cells in highly autofluorescent lung tissue. This approach allowed accurate detection of green fluorescent protein (GFP) emission spectra, even when GFP intensity was as little as 15% of the autofluorescence intensity. GFP-expressing cells were readily quantified with zero false positives detected. In contrast, when the same images were analyzed using standard (single-band) thresholding approaches, either few GFP cells (high thresholds) or substantial false positives (intermediate and low thresholds) were detected. These results demonstrate that hyperspectral analysis approaches uniquely offer accurate and precise detection and quantification of fluorescence signals in highly autofluorescent tissues. PMID:21987373

  18. DNA-mediated supercharged fluorescent protein/graphene oxide interaction for label-free fluorescence assay of base excision repair enzyme activity.

    PubMed

    Wang, Zhen; Li, Yong; Li, Lijun; Li, Daiqi; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2015-09-01

    The interaction between supercharged green fluorescent protein (ScGFP) and graphene oxide (GO) as well as the resulting quenching effect of GO on ScGFP were investigated. Based on this unique quenching effect and the DNA-mediated ScGFP/GO interaction, a label-free fluorescence method has been established for homogeneously assaying the activity and inhibition of base excision repair enzyme. PMID:26208330

  19. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  20. Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China.

    PubMed

    Chen, Hao; Zheng, Bing-Hui; Zhang, Lei

    2013-02-01

    Dissolved organic matter collected in Daning River (China) in July 2009 was investigated with parallel factor analysis (PARAFAC) and fluorescence spectroscopy with the aim of identifying the origin of dissolved humic substance (HS) components. Two HS-like fluorescence components (peak M and C) with excitation/emission (ex/em) maxima at 305/406 nm and 360/464 nm showed relatively uniform distribution in the vertical direction for each sampling site but a trend of accumulation down the river, independent of the highly heterogeneous water environment as implicated by water quality parameters (i.e., water temperature, algae density, chlorophyll a, dissolved oxygen, dissolved organic carbon, pH, conductivity and turbidity), while an amino acid/protein-like component (peak T; ex/em = 280/334 nm) was quite variable in its spatial distribution, implying strong influence from point sources (e.g. sewage discharge) and local microbial activities. The fluorescence intensity (F max in Raman units) at these ex/em wavelength pairs fell in the range of 0.031-0.358, 0.051-0.224 and 0.026-0.115 for peak T, M and C, respectively. In addition, the F max values of peak C covaried with M (i.e. C = 0.503 ×M, p < 0.01, R (2) = 0.973). Taken together, these results indicate that peak M and C originated primarily and directly from the same soil sources that were diffusive in the catchment, but peak T was more influenced by local point sources (e.g. wastewater discharge) and in situ microbial activities. This study presents new insights into the currently controversial origin of some HS components (e.g."peak M", as commonly referred to in the literature). This study highlights that natural water samples should be collected at various depths in addition to along a river/stream flow path so as to better evaluate the origin of HS fluorescence components. PMID:25208714

  1. Fluorescently labeled adrenomedullin allows real-time monitoring of adrenomedullin receptor trafficking in living cells.

    PubMed

    Schönauer, Ria; Kaiser, Anette; Holze, Cathleen; Babilon, Stefanie; Köbberling, Johannes; Riedl, Bernd; Beck-Sickinger, Annette G

    2015-12-01

    The human adrenomedullin (ADM) is a 52 amino acid peptide hormone belonging to the calcitonin family of peptides, which plays a major role in the development and regulation of cardiovascular and lymphatic systems. For potential use in clinical applications, we aimed to investigate the fate of the peptide ligand after binding and activation of the adrenomedullin receptor (AM1), a heterodimer consisting of the calcitonin receptor-like receptor (CLR), a G protein-coupled receptor, associated with the receptor activity-modifying protein 2 (RAMP2). Full length and N-terminally shortened ADM peptides were synthesized using Fmoc/tBu solid phase peptide synthesis and site-specifically labeled with the fluorophore carboxytetramethylrhodamine (Tam) either by amide bond formation or copper(I)-catalyzed azide alkyne cycloaddition. For the first time, Tam-labeled ligands allowed the observation of co-internalization of the whole ligand-receptor complex in living cells co-transfected with fluorescent fusion proteins of CLR and RAMP2. Application of a fluorescent probe to track lysosomal compartments revealed that ADM together with the CLR/RAMP2-complex is routed to the degradative pathway. Moreover, we found that the N-terminus of ADM is not a crucial component of the peptide sequence in terms of AM1 internalization behavior. PMID:26767744

  2. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion

    PubMed Central

    Zaytseva, Natalya; Lynn, Jeffery G.; Wu, Qi; Mudaliar, Deepti J.; Sun, Haiyan; Kuang, Patty Q.; Fang, Ye

    2013-01-01

    Cell adhesion to extracellular matrix (ECM) is fundamental to many distinct aspects of cell biology, and has been an active topic for label-free biosensors. However, little attention has been paid to study the impact of receptor signaling on the cell adhesion process. We here report the development of resonant waveguide grating biosensor-enabled label-free and fluorescent approaches, and their use for investigating the adhesion of an engineered HEK-293 cell line stably expressing green fluorescent protein (GFP) tagged β2-adrenergic receptor (β2-AR) onto distinct surfaces under both ambient and physiological conditions. Results showed that cell adhesion is sensitive to both temperature and ECM coating, and distinct mechanisms govern the cell adhesion process under different conditions. The β2-AR agonists, but not its antagonists or partial agonists, were found to be capable of triggering signaling during the adhesion process, leading to an increase in the adhesion of the engineered cells onto fibronectin-coated biosensor surfaces. These results suggest that the dual approach presented is useful to investigate the mechanism of cell adhesion, and to identify drug molecules and receptor signaling that interfere with cell adhesion. PMID:24319319

  3. Characterization of biomimetic calcium phosphate labeled with fluorescent dextran for quantification of osteoclastic activity.

    PubMed

    Maria, Salwa M; Prukner, Christiane; Sheikh, Zeeshan; Müller, Frank A; Komarova, Svetlana V; Barralet, Jake E

    2015-07-01

    Bone resorbing osteoclasts represent an important therapeutic target for diseases associated with bone and joint destruction, such as rheumatoid arthritis, periodontitis, and osteoporosis. The quantification of osteoclast resorptive activity in vitro is widely used for screening new anti-resorptive medications. The aim of this paper was to develop a simplified semi-automated method for the quantification of osteoclastic resorption using fluorescently labeled biomimetic mineral layers which can replace time intensive, often subjective and clearly non-sustainable use of translucent slices of tusks from vulnerable or endangered species such as the elephant. Osteoclasts were formed from RAW 264.7 mouse monocyte cell line using the pro-resorptive cytokine receptor activator of nuclear factor kappa-B ligand (RANKL). We confirmed that fluorescent labeling did not interfere with the biomimetic features of hydroxyapatite, and developed an automated method for quantifying osteoclastic resorption. Correlation between our assay and traditional manual measurement techniques was found to be very strong (R(2)=0.99). In addition, we modified the technique to provide depth and volume data of the resorption pits by confocal imaging at defined depths. Thus, our method allows automatic quantification of total osteoclastic resorption as well as additional data not obtainable by the current tusk slice technique offering a better alternative for high throughput screening of potential antiresorptives. PMID:25829107

  4. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I.

    2014-05-01

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  5. Fluorescently Labeled Human Papillomavirus Pseudovirions for Use in Virus Entry Experiments.

    PubMed

    Samperio Ventayol, Pilar; Schelhaas, Mario

    2015-01-01

    Human papillomaviruses (HPV) infect skin or mucosal epidermis. The simplistic capsid consists of a major capsid protein L1, a minor capsid protein L2, and a double-stranded circular DNA of about 8 kB in size. The development of HPV-based vectors [i.e., pseudovirions (PsV)] as tools to study the initial infection has facilitated our understanding of HPV entry. The covalent coupling of fluorescent molecules to these PsV allows following the viruses en route to the nucleus, i.e., the site of replication. In the first section, we describe a facile method to covalently label HPV PsV that retain their infectivity. In this method, fluorophores coupled to a reactive succinimidyl ester are covalently attached to amine residues in the virion in a one-step chemical reaction. In the second section of this unit, several assays are outlined that use the fluorescently labeled virions for entry studies in live and fixed cells. PMID:26344217

  6. [Comparison of sorting of fluorescently and magnetically labelled dental pulp stem cells].

    PubMed

    Kerényi, Farkas; Tarapcsák, Szabolcs; Hrubi, Edit; Baráthne, Szabó Ágnes; Hegedüs, Viktória; Balogh, Sára; Bágyi, Kinga; Varga, Gábor; Hegedüs, Csaba

    2016-03-01

    Stem cells are present in many tissues, such as dental pulp. Stem cells can be easily isolated from dental pulp because third molars are often removed from patients. Stem cells could be separated from the tissue derived heterogeneous cell population. There are two main methods to separate a cell type from the other ones: the fluorescence activated cell sorting (FACS) and the magnetic activated cell sorting (MACS). The aim of this study was to compare these methods' effect on cell surviving and population growth after sorting on dental pulp cells. The anti-STRO-1 antibody was used as primary antibody to specifically label stem cells. Two secondary antibodies were used: magnetic or fluorescent labelled. We sorted the cells by MACS or by FACS or by combination of both (MACS-FACS). Our results show that the effectivity of MACS and FACS sorting are comparable while of MACS-FACS was significantly higher (MACS 79.53 ± 5.78%, FACS 88.27 ± 3.70%, MACS-FACS 98.43 ± 0.67%). The cell surviving and the post-sorting population growth, on the contrary, are very different. The cell population is growing on first week after MACS but after FACS did not. Moreover, after MACS-FACS, on first week the cell number of population decreased. Taken together, our results suggest to use MACS instead of FACS, at least in case of sorting dental pulp stem cells with anti-STRO-1 antibody. PMID:27188159

  7. Vital fluorescent labeling for confocal scanning microscopic study of living cell invasion

    NASA Astrophysics Data System (ADS)

    Wang, Allan Z.; Chen, Jian M.; Fisher, Gregory W.; Wang, Jane C.

    1997-07-01

    Invasion by cells with malignant or transformed phenotypes precedes destruction of adjacent tissue and fatal cell metastasis. State-of-the-art confocal laser scanning technology facilitates both in vitro and in vivo research into cell invasion and metastasis. In particular, studies performed with living cells yield more precise information than those with fixed cells, giving new insight into cell invasion and metastasis. We have tested a variety of vital florescent dyes and fluorogenic protease substrates in our studies of invasion of cartilage by transformed synoviocytes or osteosarcoma cells. The fluorescent dyes tested include Calcein acetoxy methyl-FITC (Calcein), Hoechst 33342 (Hoechst), CellTracker, DiI, DiO, DiD, and ethidium bromide (EB). The fluorogenic protease substrate used Meoxysuccinyl-Gly-Pro-Leu-Gly-Pro-AFC (MOS-GPLGP-AFC) for detection of collagenase activity. We found that Calcein-FITC labeling permitted the clearest direct observation of the penetration of transformed synoviocytes and osteosarcoma cells into cartilage. Even better results were obtained when chondrocyte nuclei were counter-stained with Hoechst 33342. During the invasion process, collagenase activity was observed around the synoviocyte in the cartilage matrix labeled with the fluorogenic collagenase substrate. We concluded that of the vital fluorescent dyes tested, a combined application of Calcein-FITC, Hoechst 23223, and MOS- GPLGP-AFC is most appropriate for the study of the cell invasion process.

  8. FMN-Coated Fluorescent USPIO for Cell Labeling and Non-Invasive MR Imaging in Tissue Engineering

    PubMed Central

    Mertens, Marianne E.; Frese, Julia; Bölükbas, Deniz Ali; Hrdlicka, Ladislav; Golombek, Susanne; Koch, Sabine; Mela, Petra; Jockenhövel, Stefan; Kiessling, Fabian; Lammers, Twan

    2014-01-01

    Non-invasive magnetic resonance imaging (MRI) is gaining significant attention in the field of tissue engineering, since it can provide valuable information on in vitro production parameters and in vivo performance. It can e.g. be used to monitor the morphology, location and function of the regenerated tissue, the integrity, remodeling and resorption of the scaffold, and the fate of the implanted cells. Since cells are not visible using conventional MR techniques, ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are routinely employed to label and monitor the cells embedded in tissue-engineered implants. We here set out to optimize cell labeling procedures with regard to labeling efficiency, biocompatibility and in vitro validation during bioreactor cultivation, using flavin mononucleotide (FMN)-coated fluorescent USPIO (FLUSPIO). Efficient FLUSPIO uptake is demonstrated in three different cell lines, applying relatively short incubation times and low labeling concentrations. FLUSPIO-labeled cells were successfully employed to visualize collagen scaffolds and tissue-engineered vascular grafts. Besides promoting safe and efficient cell uptake, an exquisite property of the non-polymeric FMN-coating is that it renders the USPIO fluorescent, providing a means for in vitro, in vivo and ex vivo validation via fluorescence microscopy and fluorescence reflectance imaging (FRI). FLUSPIO cell labeling is consequently considered to be a suitable tool for theranostic tissue engineering purposes. PMID:25157279

  9. Functionalized gold nanoclusters as fluorescent labels for immunoassays: Application to human serum immunoglobulin E determination.

    PubMed

    Alonso, María Cruz; Trapiella-Alfonso, Laura; Fernández, José M Costa; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-03-15

    A quantitative immunoassay for the determination of immunoglobulin E (IgE) in human serum using gold nanoclusters (AuNCs) as fluorescent label was developed. Water soluble AuNCs were synthesized using lipoic acid and then thoroughly characterized. The obtained AuNCs have a particle size of 2.7 ± 0.1 nm and maximum fluorescence emission at 710 nm. The synthesized AuNCs showed very good stability of the fluorescent signal with light exposure and at neutral and slightly basic media. A covalent bioconjugation of these AuNCs with the desired antibody was carried out by the carbodiimide reaction. After due optimization of such bioconjugation reaction, a molar ratio 1:3 (antibody:AuNCs) was selected. The bioconjugate maintained an intense luminescence emission, slightly red-shifted as compared to the free AuNCs. Two typical immunoassay configurations, competitive and sandwich, were assayed and their performance for IgE determination critically compared. After the different immunoassay steps were accomplished, the fluorescence emission of the bioconjugate was measured. While the sandwich format provided a detection limit (DL) of 10 ng/mL and a linear range between 25 and 565 ng/mL of IgE, the competitive format revealed a DL of 0.2 ng/mL with a linear range between 0.3 and 7.1 ng/mL The applicability of the more sensitive competitive fluorescent immunoassay was assessed by successful analysis of the IgE in human serum and comparison of results with those from a commercial kit. The main advantages of the proposed AuNCs-based fluorimetric method include a low DL and a simple immunoassay protocol involving few reagents. PMID:26547433

  10. When One Plus One Does Not Equal Two: Fluorescence Anisotropy in Aggregates and Multiply Labeled Proteins

    PubMed Central

    Zolmajd-Haghighi, Zahra; Hanley, Quentin S.

    2014-01-01

    The behavior of fluorescence anisotropy and polarization in systems with multiple dyes is well known. Homo-FRET and its consequent energy migration cause the fluorescence anisotropy to decrease as the number of like fluorophores within energy transfer distance increases. This behavior is well understood when all subunits within a cluster are saturated with fluorophores. However, incomplete labeling as might occur from a mixture of endogenous and labeled monomer units, incomplete saturation of binding sites, or photobleaching produces stochastic mixtures. Models in widespread and longstanding use that describe these mixtures apply an assumption of equal fluorescence efficiency for all sites first stated by Weber and Daniel in 1966. The assumption states that fluorophores have the same brightness when free in solution as they do in close proximity to each other in a cluster. The assumption simplifies descriptions of anisotropy trends as the fractional labeling of the cluster changes. However, fluorophores in close proximity often exhibit nonadditivity due to such things as self-quenching behavior or exciplex formation. Therefore, the anisotropy of stochastic mixtures of fluorophore clusters of a particular size will depend on the behavior of those fluorophores in clusters. We present analytical expressions for fractionally labeled clusters exhibiting a range of behaviors, and experimental results from two systems: an assembled tetrameric cluster of fluorescent proteins and stochastically labeled bovine serum albumin containing up to 24 fluorophores. The experimental results indicate that clustered species do not follow the assumption of equal fluorescence efficiency in the systems studied with clustered fluorophores showing reduced fluorescence intensity. Application of the assumption of equal fluorescence efficiency will underpredict anisotropy and consequently underestimate cluster size in these two cases. The theoretical results indicate that careful selection of

  11. Mapping of Heavy Metal Ion Sorption to Cell-Extracellular Polymeric Substance-Mineral Aggregates by Using Metal-Selective Fluorescent Probes and Confocal Laser Scanning Microscopy

    PubMed Central

    Li, Jianli; Kappler, Andreas; Obst, Martin

    2013-01-01

    Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141

  12. Photodamage of Lipid Bilayers by Irradiation of a Fluorescently Labeled Cell-Penetrating Peptide

    PubMed Central

    Meerovich, Igor; Muthukrishnan, Nandhini; Johnson, Gregory A.; Erazo-Oliveras, Alfredo; Pellois, Jean-Philippe

    2013-01-01

    Background Fluorescently labeled cell-penetrating peptides can translocate into cells by endocytosis and upon light irradiation, lyse the endocytic vesicles. This photo-inducible endosomolytic activity of Fl-CPPs can be used to efficiently deliver macromolecules such as proteins and nucleic acids and other small organic molecules into the cytosol of live cells. The requirement of a light trigger to induce photolysis provides a more spatial and temporal control to the intracellular delivery process. Methods In this report, we examine the molecular level mechanisms by which cell-penetrating peptides such as TAT when labeled with small organic fluorophore molecules acquire a photo-induced lytic activity using a simplified model of lipid vesicles. Results The peptide TAT labeled with 5(6)-carboxy-tetramethylrhodamine binds to negatively charged phospholipids, thereby bringing the fluorophore in close proximity to the membrane of liposomes. Upon light irradiation, the excited fluorophore produces reactive oxygen species at the lipid bilayer and oxidation of the membrane is achieved. In addition, the fluorescent peptide causes aggregation of photo-oxidized lipids, an activity that requires the presence of arginine residues in the peptide sequence. Conclusions These results suggest that the cell penetrating peptide plays a dual role. On one hand, TAT targets a conjugated fluorophore to membranes. On the other hand, TAT participates directly in the destabilization of photosensitized membranes. Peptide and fluorophore therefore appear to act in synergy to destroy membranes efficiently. General Significance Understanding the mechanism behind Fl-CPP mediated membrane photodamage will help to design optimally photo-endosomolytic compounds. PMID:24135456

  13. Sialic Acid-Imprinted Fluorescent Core-Shell Particles for Selective Labeling of Cell Surface Glycans.

    PubMed

    Shinde, Sudhirkumar; El-Schich, Zahra; Malakpour, Atena; Wan, Wei; Dizeyi, Nishtman; Mohammadi, Reza; Rurack, Knut; Gjörloff Wingren, Anette; Sellergren, Börje

    2015-11-01

    The expression of cell surface glycans terminating with sialic acid (SA) residues has been found to correlate with various disease states there among cancer. We here report a novel strategy for specific fluorescence labeling of such motifs. This is based on sialic acid-imprinted core-shell nanoparticles equipped with nitrobenzoxadiazole (NBD) fluorescent reporter groups allowing environmentally sensitive fluorescence detection at convenient excitation and emission wavelengths. Imprinting was achieved exploiting a hybrid approach combining reversible boronate ester formation between p-vinylphenylboronic acid and SA, the introduction of cationic amine functionalities, and the use of an NBD-appended urea-monomer as a binary hydrogen-bond donor targeting the SA carboxylic acid and OH functionalities. The monomers were grafted from 200 nm RAFT-modified silica core particles using ethylene glycol dimethacrylate (EGDMA) as cross-linker resulting in a shell thickness of ca. 10 nm. The particles displayed strong affinity for SA in methanol/water mixtures (K = 6.6 × 10(5) M(-1) in 2% water, 5.9 × 10(3) M(-1) in 98% water, B(max) ≈ 10 μmol g(-1)), whereas binding of the competitor glucuronic acid (GA) and other monosaccharides was considerably weaker (K (GA) = 1.8 × 10(3) M(-1) in 98% water). In cell imaging experiments, the particles selectively stained different cell lines in correlation with the SA expression level. This was further verified by enzymatic cleavage of SA and by staining using a FITC labeled SA selective lectin. PMID:26414878

  14. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds.

    PubMed

    Nagarajan, Sounderya; Pioche-Durieu, Catherine; Tizei, Luiz H G; Fang, Chia-Yi; Bertrand, Jean-Rémi; Le Cam, Eric; Chang, Huan-Cheng; Treussart, François; Kociak, Mathieu

    2016-06-01

    Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ≈150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level. PMID:27216436

  15. [Establishment and identification of the near-infrared fluorescence labeled exosomes in breast cancer cell lines].

    PubMed

    Li, Taiming; Lan, Wenjun; Huang, Can; Zhang, Chun; Liu, Xiaomei

    2016-05-01

    Exosomes, a population of extracellular membrane vesicles of 30-100 nm in diameter, play important roles in cell biological functions, intercellular signal transduction and especially in cancer diagnosis and therapy. To better apply exosomes in mechanistic study of breast cancer signal transduction, we constructed recombinant eukaryotic expression vector expressing the near-infrared fluorescence protein and CD63 fusion protein through cloning iRFP682 gene and exosomal marker protein CD63 gene into plasmid containing the ITR of AAV. The constructed plasmids were co-transfected with helper plasmid in AAV-293 cell lines and were packaged into rAAV. After titer measurement, the recombinant plasmids were transfected into breast cancer cell lines. The cell lines that stably expressing near-infrared fluorescence protein were selected by fluorescence. Through isolation, purification and identification, we finally obtained a new biomarker: iRFP682 labeled exosomes secreted by breast cancer cell lines, which could be used in further studies of the distribution and signal transduction of exosomes in breast cancer microenvironment. PMID:27232491

  16. Preparation of Fluorescent Dye-Doped Biocompatible Nanoparticles for Cell Labeling.

    PubMed

    Wang, Xiaohui; Peng, Hongshang; Huang, Shihua; You, Fangtian

    2016-04-01

    In this paper, we report a series of fluorescent biocompatible nanoparticles (NPs), prepared by a facile reprecipitation-encapsulation method, for cellular labeling. The as-prepared NPs exhibit a narrow size distribution of 70-110 nm, and a core-shell structure comprised of a hybrid core doped with different dyes and a poly-L-lysine (PLL) shell. With coumarin 6, nile red, and meso- tetraphenylporphyrin as the imaging agents, the fluorescent NPs gave green, orange, and red emissions respectively. Due to the positively charged PLL shell, the fluorescent NPs exhibit neglected cytotoxicity and efficient cellular uptake. After incubation with living cells, the results obtained by laser confocal microscope from green, orange, and red channels all clearly show that the fluores- cent NPs are inhomogenously localized inside the cytoplasm without penetrating into the nucleus. Since such PLL-modified NPs can encapsulate other hydrophobic dyes, a wide spectrum of nanoimaging agents is thus expected. Furthermore, the surface amino groups on the PLL shell afford an anchoring site for further bioconjugation, and targeted imaging is also very promising. PMID:27451673

  17. Fluorescence Lifetime Correlation Spectroscopic Study of Fluorophore-Labeled Silver Nanoparticles

    PubMed Central

    Ray, Krishanu; Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    In this paper, we introduce the use of fluorescence lifetime correlation spectroscopy (FLCS) to study the metal-fluorophore interactions in solution at single fluorophore level. A single-stranded oligonucleotide was chemically bound to a 50 nm diameter single silver particle and a Cy5-labeled complementary single-stranded oligonucleotide was hybridized with the silver particle-bound oligonucleotide. The distance between the fluorophore and silver particle was maintained by a rigid hybridized DNA duplex of 8 nm in length. The single Cy5-DNA-Ag-particles showed more than 10-fold increase in fluorescence intensity, 5-fold decrease in emission lifetimes as compared with Cy5-DNA free molecules in the absence of metal. The decrease of lifetime for the Cy5-DNA-Ag-particle allowed us to resolve the correlation functions of the two species based on the intensity decays. The increased brightness of Cy5-DNA-Ag-particle as compared to free Cy5-DNA resulted in an increased contribution of Cy5-DNA-Ag to the correlation function of the mixture. These results show that the effects of metal particles on fluorophores can be used to detect the small fractional populations of the metal-bound species in the presence of a larger number of less bright species. Our results also suggest that these bright fluorophores conjugated to silver particles could be used as the fluorescent probes for clinical detection in the biological samples with the high background. PMID:18771274

  18. A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots.

    PubMed

    Rezaei, B; Shahshahanipour, M; Ensafi, Ali A

    2016-06-01

    A rapid, simple and sensitive label-free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water-soluble glutathione-capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X-ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione-capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0-200.0 ng mL(-1) with a low limit of detection, 2.0 ng mL(-1) . The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26542329

  19. Pyrene-labeled cardiac troponin C. Effect of Ca2+ on monomer and excimer fluorescence in solution and in myofibrils.

    PubMed Central

    Liou, Y M; Fuchs, F

    1992-01-01

    The two cysteine residues (Cys-35 and Cys-84) of bovine cardiac troponin C (cTnC) were labeled with the pyrene-containing SH-reactive compounds, N-(1-pyrene) maleimide, and N-(1-pyrene)iodoacetamide in order to study conformational changes in the regulatory domain of cTnC associated with cation binding and cross-bridge attachment. The labeled cTnC exhibits the characteristic fluorescence spectrum of pyrene with two sharp monomer fluorescence peaks and one broad excimer fluorescence peak. The excimer fluorescence results from dimerization of adjacent pyrene groups. With metal binding (Mg2+ or Ca2+) to the high affinity sites of cTnC (sites III and IV), there is a small decrease in monomer fluorescence but no effect on excimer fluorescence. In contrast, Ca2+ binding to the low affinity regulatory (site II) site elicits an increase in monomer fluorescence and a reduction in excimer fluorescence. These results can be accounted for by assuming that the pyrene attached to Cys-84 is drawn into a hydrophobic pocket formed by the binding of Ca2+ to site II. When the labeled cTnC is incorporated into the troponin complex or substituted into cardiac myofibrils the monomer fluorescence is enhanced while the excimer fluorescence is reduced. This suggests that the association with other regulatory components in the thin filament might influence the proximity (or mobility) of the two pyrene groups in a way similar to that of Ca2+ binding. With the binding of Ca2+ to site II the excimer fluorescence is further reduced while the monomer fluorescence is not changed significantly. In myofibrils, cross-bridge detachment (5 mM MgATP, pCa 8.0) causes a reduction in monomer fluorescence but has no effect on excimer fluorescence. However, saturation of the cTnC with Ca2+ reduces excimer fluorescence but causes no further change in monomer fluorescence. Thus, the pyrene fluorescence spectra define the different conformations of cTnC associated with weak-binding, cycling, and rigor cross

  20. Microdistribution of fluorescently-labeled monoclonal antibody in a peritoneal dissemination model of ovarian cancer

    NASA Astrophysics Data System (ADS)

    Kosaka, Nobuyuki; Ogawa, Mikako; Paik, David S.; Paik, Chang H.; Choyke, Peter L.; Kobayashi, Hisataka

    2010-02-01

    The microdistribution of therapeutic monoclonal antibodies within a tumor is important for determining clinical response. Nonuniform microdistribution predicts therapy failure. Herein, we developed a semiquantitative method for measuring microdistribution of an antibody within a tumor using in situ fluorescence microscopy and sought to modulate the microdistribution by altering the route and timing of antibody dosing. The microdistribution of a fluorescently-labeled antibody, trastuzumab (50-μg and 150-μg intraperitoneal injection (i.p.), and 100-μg intravenous injection (i.v.)) was evaluated in a peritoneal dissemination mouse model of ovarian cancer. In addition, we evaluated the microdistribution of concurrently-injected (30-μg i.p. and 100-μg i.v.) or serial (two doses of 30-μg i.p.) trastuzumab using in situ multicolor fluorescence microscopy. After the administration of 50-μg i.p. and 100-μg i.v. trastuzumab fluorescence imaging showed no significant difference in the central to peripheral signal ratio (C/P ratio) and demonstrated a peripheral-dominant accumulation, whereas administration of 150-μg i.p. trastuzumab showed relatively uniform, central dominant accumulation. With concurrent-i.p.-i.v. injections trastuzumab showed slightly higher C/P ratio than concurrently-injected i.p. trastuzumab. Moreover, in the serial injection study, the second injection of trastuzumab distributed more centrally than the first injection, while no difference was observed in the control group. Our results suggest that injection routes do not affect the microdistribution pattern of antibody in small peritoneal disseminations. However, increasing the dose results in a more uniform antibody distribution within peritoneal nodules. Furthermore, the serial i.p. injection of antibody can modify the microdistribution within tumor nodules. This work has implications for the optimal delivery of antibody based cancer therapies.

  1. Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture.

    PubMed

    Krahn, Katy Nash; Bouten, Carlijn V C; van Tuijl, Sjoerd; van Zandvoort, Marc A M J; Merkx, Maarten

    2006-03-15

    Visualization of the formation and orientation of collagen fibers in tissue engineering experiments is crucial for understanding the factors that determine the mechanical properties of tissues. In this study, collagen-specific fluorescent probes were developed using a new approach that takes advantage of the inherent specificity of collagen binding protein domains present in bacterial adhesion proteins (CNA35) and integrins (GST-alpha1I). Both collagen binding domains were obtained as fusion proteins from an Escherichia coli expression system and fluorescently labeled using either amine-reactive succinimide (CNA35) or cysteine-reactive maleimide (GST-alpha1I) dyes. Solid-phase binding assays showed that both protein-based probes are much more specific than dichlorotriazinyl aminofluorescein (DTAF), a fluorescent dye that is currently used to track collagen formation in tissue engineering experiments. The CNA35 probe showed a higher affinity for human collagen type I than did the GST-alpha1I probe (apparent K(d) values of 0.5 and 50 microM, respectively) and showed very little cross-reactivity with noncollagenous extracellular matrix proteins. The CNA35 probe was also superior to both GST-alpha1I and DTAF in visualizing the formation of collagen fibers around live human venous saphena cells. Immunohistological experiments on rat tissue showed colocalization of the CNA35 probe with collagen type I and type III antibodies. The fluorescent probes described here have important advantages over existing methods for visualization of collagen, in particular for monitoring the formation of collagen in live tissue cultures over prolonged time periods. PMID:16476406

  2. Functional Fluorescently Labeled Bithiazole ΔF508-CFTR Corrector Imaged in Whole Body Slices in Mice

    PubMed Central

    Davison, Holly R.; Taylor, Stephanie; Drake, Chris; Phuan, Puay-Wah; Derichs, Nico; Yao, Chenjuan; Jones, Ella F.; Sutcliffe, Julie; Verkman, A. S.; Kurth, Mark J.

    2011-01-01

    We previously reported the identification and structure-activity analysis of bithiazole-based correctors of defective cellular processing of the cystic fibrosis-causing CFTR mutant, ΔF508-CFTR. Here, we report the synthesis and uptake of a functional, fluorescently labeled bithiazole corrector. Following synthesis and functional analysis of four bithiazole-fluorophore conjugates, we found that 5, a bithazole-based BODIPY conjugate, had low micromolar potency for correction of defective δF508-CFTR cellular misprocessing, with comparable efficacy to benchmark corrector corr-4a. Intravenous administration of 5 to mice established its stability in extrahepatic tissues for tens of minutes. By fluorescence imaging of whole-body frozen slices, fluorescent corrector 5 was visualized strongly in gastrointestinal organs, with less in lung and liver. Our results provide proof-of-concept for mapping the biodistribution of a ΔF508-CFTR corrector by fluorophore labeling and fluorescence imaging of whole-body slices. PMID:22034937

  3. In situ fluorescence labelling of jasmonic acid binding sites in plant tissues with cadmium-free quantum dots.

    PubMed

    Liao, Qiumei; Yu, Ying; Cao, Yujuan; Lin, Bixia; Wei, Jingjing

    2015-02-01

    The fluorescence labelling of plant hormone binding sites is an important analytical technique in research on the molecular mechanisms of plant hormone activities. The authors synthesised a jasmonic acid (JA)-conjugated ZnS:Mn quantum dot (QD) probe, with a cubic structure and average hydrodynamic sizes of about 17.0 nm. The maximum fluorescence emission of the probe was recorded at about 585 nm. The probe was used for fluorescence labelling of JA binding sites in mung bean seedling tissues. Analysis revealed that the probe exhibited high selectivity to JA binding sites and good performance in eliminating interference from background fluorescence in plant tissues. In addition, the probe did not exhibit any apparent biotoxicity, and is much more suitable than probes constructed from CdTe QDs for the analysis of biological samples. PMID:25650324

  4. A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesis.

    PubMed

    Fei, Jingyi; Wang, Jiangning; Sternberg, Samuel H; MacDougall, Daniel D; Elvekrog, Margaret M; Pulukkunat, Dileep K; Englander, Michael T; Gonzalez, Ruben L

    2010-01-01

    Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a powerful tool for mechanistic investigations of increasingly complex biochemical systems. Recently, we and others have successfully used smFRET to directly investigate the role of structural dynamics in the function and regulation of the cellular protein synthesis machinery. A significant challenge to these experiments, and to analogous experiments in similarly complex cellular machineries, is the need for specific and efficient fluorescent labeling of the biochemical system at locations that are both mechanistically informative and minimally perturbative to the biological activity. Here, we describe the development of a highly purified, fluorescently labeled in vitro translation system that we have successfully designed for smFRET studies of protein synthesis. The general approaches we outline should be amenable to single-molecule fluorescence studies of other complex biochemical systems. PMID:20580967

  5. Zinc oxide-coated plasmonic chip modified with a bispecific antibody for sensitive detection of a fluorescent labeled-antigen.

    PubMed

    Tawa, Keiko; Umetsu, Mitsuo; Hattori, Takamitsu; Kumagai, Izumi

    2011-08-01

    A plasmonic biosensor chip of silver-coated PMMA grating with a zinc oxide (ZnO) overlayer is fabricated for surface plasmon field-enhanced fluorescence (SPF) detection of Cy5-labeled green fluorescent protein (GFP). A bispecific antibody (anti-GFP x anti-ZnO antibody) prepared in our lab is densely immobilized on the sensor chip for GFP detection. The sensitivity of the plasmonic biosensors is improved due to densely packed antibodies and ZnO-coating that suppresses nonspecific protein adsorption and fluorescent quenching. With the ZnO-coated plasmonic chip, Cy5-labeled GFP of 10 pM can be detected through SPF. This sensitivity is 100 higher compared with the normal fluorescent detection on a ZnO-coated glass slide. PMID:21692512

  6. Studies on the structure of haptoglobin and the haptoglobin-haemoglobin complex by spin and fluorescence labelling.

    PubMed

    Osada, J; Sawaryn, A; Dobryszycka, W

    1978-01-01

    Human haptoglobin (Hp) of the 1-1 type incorporated one spin or fluorescence marker per molecule; the markers were found in the beta chain. Formation of the complex between spin-labelled Hp and haemoglobin or antibody caused conformational changes in the Hp molecular, evidenced by increased participation in the electron paramagnetic resonance spectrum of the component bound with the slowly rotating marker. From fluorescence-labelled Hp, the beta chain was isolated and cleaved by CNBr; only in one of the obtained peptides, one out of 4 histidine residues was modified with the marker. PMID:220830

  7. Fluorescent labeling of cranberry proanthocyanidins with 5-([4,6-dichlorotriazin-2-yl]amino)fluorescein (DTAF).

    PubMed

    Feliciano, Rodrigo P; Heintz, Joseph A; Krueger, Christian G; Vestling, Martha M; Reed, Jess D

    2015-01-01

    A novel methodology was developed to elucidate proanthocyanidins (PAC) interaction with extra-intestinal pathogenic Escherichia coli (ExPEC). PAC inhibit ExPEC invasion of epithelial cells and, therefore, may prevent transient gut colonization, conferring protection against subsequent extra-intestinal infections, such as urinary tract infections. Until now PAC have not been chemically labeled with fluorophores. In this work, cranberry PAC were labeled with 5-([4,6-dichlorotriazin-2-yl]amino) fluorescein (DTAF), detected by high-performance liquid chromatography with diode-array detection and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We report single and double fluorescent-labeled PAC with one or two chlorine atoms displaced from DTAF in alkaline pH via nucleophilic substitution. Fluorescent labeling was confirmed by fragmentation experiments using MALDI-TOF/TOF MS. Fluorescent labeled PAC were able to promote ExPEC agglutination when observed with fluorescence microscopy. DTAF tagged PAC may be used to trace the fate of PAC after they agglutinate ExPEC and follow PAC-ExPEC complexes in cell culture assays. PMID:25053065

  8. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating.

    PubMed

    Hui, Yuen Yung; Su, Long-Jyun; Chen, Oliver Yenjyh; Chen, Yit-Tsong; Liu, Tzu-Ming; Chang, Huan-Cheng

    2014-01-01

    Nanodiamonds containing high density ensembles of negatively charged nitrogen-vacancy (NV(-)) centers are promising fluorescent biomarkers due to their excellent photostability and biocompatibility. The NV(-) centers in the particles have a fluorescence lifetime of up to 20 ns, which distinctly differs from those (<10 ns) of cell and tissue autofluorescence, making it possible to achieve background-free detection in vivo by time gating. Here, we demonstrate the feasibility of using fluorescent nanodiamonds (FNDs) as optical labels for wide-field time-gated fluorescence imaging and flow cytometric analysis of cancer cells with a nanosecond intensified charge-coupled device (ICCD) as the detector. The combined technique has allowed us to acquire fluorescence images of FND-labeled HeLa cells in whole blood covered with a chicken breast of ~0.1-mm thickness at the single cell level, and to detect individual FND-labeled HeLa cells in blood flowing through a microfluidic device at a frame rate of 23 Hz, as well as to locate and trace FND-labeled lung cancer cells in the blood vessels of a mouse ear. It opens a new window for real-time imaging and tracking of transplanted cells (such as stem cells) in vivo. PMID:24994610

  9. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating

    NASA Astrophysics Data System (ADS)

    Hui, Yuen Yung; Su, Long-Jyun; Chen, Oliver Yenjyh; Chen, Yit-Tsong; Liu, Tzu-Ming; Chang, Huan-Cheng

    2014-07-01

    Nanodiamonds containing high density ensembles of negatively charged nitrogen-vacancy (NV-) centers are promising fluorescent biomarkers due to their excellent photostability and biocompatibility. The NV- centers in the particles have a fluorescence lifetime of up to 20 ns, which distinctly differs from those (<10 ns) of cell and tissue autofluorescence, making it possible to achieve background-free detection in vivo by time gating. Here, we demonstrate the feasibility of using fluorescent nanodiamonds (FNDs) as optical labels for wide-field time-gated fluorescence imaging and flow cytometric analysis of cancer cells with a nanosecond intensified charge-coupled device (ICCD) as the detector. The combined technique has allowed us to acquire fluorescence images of FND-labeled HeLa cells in whole blood covered with a chicken breast of ~0.1-mm thickness at the single cell level, and to detect individual FND-labeled HeLa cells in blood flowing through a microfluidic device at a frame rate of 23 Hz, as well as to locate and trace FND-labeled lung cancer cells in the blood vessels of a mouse ear. It opens a new window for real-time imaging and tracking of transplanted cells (such as stem cells) in vivo.

  10. 21 CFR 1306.14 - Labeling of substances and filling of prescriptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... listed in Schedule II shall affix to the package a label showing date of filling, the pharmacy name and... required by law. (b) If the prescription is filled at a central fill pharmacy, the central fill pharmacy shall affix to the package a label showing the retail pharmacy name and address and a unique...

  11. 21 CFR 1306.24 - Labeling of substances and filing of prescriptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Schedule III, IV, or V shall affix to the package a label showing the pharmacy name and address, the serial... required by law. (b) If the prescription is filled at a central fill pharmacy, the central fill pharmacy shall affix to the package a label showing the retail pharmacy name and address and a unique...

  12. 21 CFR 1306.14 - Labeling of substances and filling of prescriptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... listed in Schedule II shall affix to the package a label showing date of filling, the pharmacy name and... required by law. (b) If the prescription is filled at a central fill pharmacy, the central fill pharmacy shall affix to the package a label showing the retail pharmacy name and address and a unique...

  13. 21 CFR 1306.24 - Labeling of substances and filling of prescriptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Schedule III, IV, or V shall affix to the package a label showing the pharmacy name and address, the serial... required by law. (b) If the prescription is filled at a central fill pharmacy, the central fill pharmacy shall affix to the package a label showing the retail pharmacy name and address and a unique...

  14. Purification and Fluorescent Labeling of Tubulin from Xenopus laevis Egg Extracts.

    PubMed

    Groen, Aaron C; Mitchison, Timothy J

    2016-01-01

    For many years, microtubule research has depended on tubulin purified from cow and pig brains, which may not be ideal for experiments using proteins or extracts from non-brain tissues and cold-blooded organisms. Here, we describe a method to purify functional tubulin from the eggs of the frog, Xenopus laevis. This tubulin has many benefits for the study of microtubules and microtubule based structures assembled in vitro at room temperature. Frog tubulin lacks many of the highly stabilizing posttranslational modifications present in pig brain-derived tubulin, and polymerizes efficiently at room temperature. In addition, fluorescently labeled frog egg tubulin incorporates into meiotic spindles assembled in egg extract more efficiently than brain tubulin, and is thus superior as a probe for Xenopus egg extract experiments. Frog egg tubulin will provide excellent opportunities to identify active nucleation complexes and revisit microtubule polymerization dynamics in vitro. PMID:27193841

  15. 21 CFR 1306.24 - Labeling of substances and filing of prescriptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... filing of prescriptions. (a) The pharmacist filling a prescription for a controlled substance listed in... employed by the pharmacist in filling a prescription is adequate to identify the supplier, the product...

  16. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors.

    PubMed

    Sun, W L; Ni, J R; Xu, N; Sun, L Y

    2007-01-01

    Humic substances (HS) have a critical influence on the sorption of organic contaminants by soils and sediments. This paper describes investigations into the sorption behavior of three representative endocrine disruptors, bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynylestradiol (EE2), onto sediments and HS extracted sediments using a batch technique. The organic carbon-normalized partition coefficients (K(oc)) for the extracted HS (K(oc)(hs)) were calculated, and the fluorescence spectra of the HS extraced from different sediment samples were gained using excitation/emission matrix (EEM). Particular attention was paid to the correlations between the fluorescence characteristics of HS and the log K(oc)(hs) of selected endocrine disruptors. The results show that the log K(oc)(hs) values range from 3.14 to 4.09 for BPA, from 3.47 to 4.33 for E2, and from 3.65 to 4.32 for EE2. Two characteristic excitation-emission peaks were observed for HS samples extracted from sediments. They are located at Ex/Em=250-260 nm/400-450 nm (peak alpha') and Ex/Em=310-330 nm/390-400 nm (peak alpha) respectively. The alpha' and alpha peak relative intensities I(alpha')/I(alpha) vary from 0.46 to 1.64 for different extracted HS samples. The similarity between fulvic acids (FA) Ex/Em pairs and those observed for HS indicates that FA is the predominant fraction of HS extracted from sediments. Moreover, the log K(oc)(hs) values of BPA, E2, and EE2 have a negative linear correlation to I(alpha')/I(alpha) values. Peak alpha is often attributed to relatively stable and high molecular weight aromatic fulvic-like matter. Therefore, the result presented here reveals that the abundance of aromatic rings in HS molecular structure plays a critical role in the sorption of selected endocrine disruptors. PMID:16979213

  17. DNA Triplexes-Guided Assembly of G-Quadruplexes for Constructing Label-free Fluorescent Logic Gates.

    PubMed

    Xu, Lijun; Hong, Shanni; Shen, Xiaoqiang; Zhou, Lu; Wang, Jine; Zhang, Jianye; Pei, Renjun

    2016-07-01

    Assembly of G-quadruplexes guided by DNA triplexes in a controlled manner is achieved for the first time. The folding of triplex sequences in acidic conditions brings two separated guanine-rich sequences together and subsequently a G-quadruplex structure is formed in the presence of K(+) . Based on this novel platform, label-free fluorescent logic gates, such as AND, INHIBIT, and NOR, are constructed with ions as input and the fluorescence of a G-quadruplex-specific fluorescent probe NMM as output. PMID:27224871

  18. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sounderya; Pioche-Durieu, Catherine; Tizei, Luiz H. G.; Fang, Chia-Yi; Bertrand, Jean-Rémi; Le Cam, Eric; Chang, Huan-Cheng; Treussart, François; Kociak, Mathieu

    2016-06-01

    Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ~150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level.Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of

  19. Label-free fluorescence detection of melamine with a truncated aptamer.

    PubMed

    Gu, Chunmei; Xiang, Yu; Guo, Hongli; Shi, Hanchang

    2016-07-21

    The 2008 Chinese milk scandal caused by the adulteration of melamine encouraged the public to pay attention to melamine detection in milk products and other food stuffs. To allow simple and rapid detection of melamine, we previously isolated an 88 nt melamine aptamer (called Rd29C33) using the structure-switching SELEX. However, this 88 nt oligonucleotide is costly to synthesize, and may also complicate the rational design of biosensors for melamine detection. To overcome this obstacle, we truncated Rd29C33 at several sites, and a 34 nt Rd29C33-T7 melamine aptamer was finally found to show comparable binding affinity and better selectivity to melamine compared to the original 88 nt Rd29C33. Furthermore, a label-free bioassay method for melamine detection was designed by using Rd29C33-T7 and thiazole orange (TO). The addition of melamine to a mixture of Rd29C33-T7 and TO caused the release of TO from Rd29C33-T7, resulting in a decrease of the fluorescence intensity of the solution. A detection limit of 0.12 μM for melamine was achieved using this label-free method. Good recovery ranging from 82.6% to 97.2% for melamine detection in whole milk samples suggested the promise of this bioassay method for application in monitoring melamine in real food stuffs. PMID:27171923

  20. Simultaneous detection of sulfamethazine and sulfaquinoxaline using a dual-label time-resolved fluorescence immunoassay.

    PubMed

    Le, Tao; Yan, Peifeng; Liu, Jin; Wei, Shu

    2013-01-01

    A dual-label time-resolved fluoroimmunoassay (TRFIA) was introduced for the simultaneous quantification of sulfamethazine (SM2) and sulfaquinoxaline (SQX). Lanthanide (Eu(3+) and Sm(3+))-labelled antibodies were used because lanthanides have higher stabilities and narrower emission spectra than most fluorescent dyes. The sensitivity of the TRFIA for SM2 was 0.02 ng ml(-1), and the average recoveries and the intra- and inter-assay CVs were 77.2-107.6%, 5.4-10.5%, and 6.0-11.2%, respectively. The sensitivity of the TRFIA for SQX was 0.04 ng ml(-1); and the average recoveries and the intra- and inter-assay CVs were 74.1-102.8%, 4.6-10.9%, and 8.7-11.2%, respectively. The method was used to analyse chicken tissue and egg samples, and the results agreed well with the results of HPLC and enzyme-linked immunosorbent assay (ELISA) analyses, with correlation coefficients (R(2)) of 0.9415-0.9724. The TRFIA developed is a simple, fast and sensitive method for the high-throughput simultaneous screening of SM2 and SQX in edible animal tissues. PMID:23782396

  1. Fluorescent labeling of NASBA amplified tmRNA molecules for microarray applications

    PubMed Central

    Scheler, Ott; Glynn, Barry; Parkel, Sven; Palta, Priit; Toome, Kadri; Kaplinski, Lauris; Remm, Maido; Maher, Majella; Kurg, Ants

    2009-01-01

    Background Here we present a novel promising microbial diagnostic method that combines the sensitivity of Nucleic Acid Sequence Based Amplification (NASBA) with the high information content of microarray technology for the detection of bacterial tmRNA molecules. The NASBA protocol was modified to include aminoallyl-UTP (aaUTP) molecules that were incorporated into nascent RNA during the NASBA reaction. Post-amplification labeling with fluorescent dye was carried out subsequently and tmRNA hybridization signal intensities were measured using microarray technology. Significant optimization of the labeled NASBA protocol was required to maintain the required sensitivity of the reactions. Results Two different aaUTP salts were evaluated and optimum final concentrations were identified for both. The final 2 mM concentration of aaUTP Li-salt in NASBA reaction resulted in highest microarray signals overall, being twice as high as the strongest signals with 1 mM aaUTP Na-salt. Conclusion We have successfully demonstrated efficient combination of NASBA amplification technology with microarray based hybridization detection. The method is applicative for many different areas of microbial diagnostics including environmental monitoring, bio threat detection, industrial process monitoring and clinical microbiology. PMID:19445684

  2. Fluorescent dye-labelled polymer synthesis by nitroxide mediated radical polymerization

    NASA Astrophysics Data System (ADS)

    Kollár, Jozef; Chmela, Štefan; Hrčková, Ľudmila; Hrdlovič, Pavol

    2012-07-01

    New applications of polymers at advanced technologies demand increased requirements on their properties. These properties are influenced by molecular as well as supramolecular structure. Controlled radical polymerization mediated by stable nitroxides (NMP) or substituted alkoxyamines offers simple method for preparation of polymers with programmable structure of macromolecules which possess remarkable better physical as well as chemical properties. They can be used as a macro initiators for the synthesis of block copolymers. At the present time it has been generally accepted that the extent of "livingness" is high for all conversions [1-4]. To verify this statement a series of fluorescent dye-labelled regulators has been synthesized, spectrally characterized and used as the mediators of styrene and n-butyl acrylate polymerization. Direct quantification of dormant species concentration (extent of livingness) and calculation of molar mass of marked polymers was performed by absorption and/or emission spectroscopy. Controlled radical polymerization mediated by stable nitroxides bearing fluorescence mark represents unconventional approach for monitoring and evaluation of mechanism and kinetics of polymerization process. Results indicate that the extent of livingness is strongly influenced by conversion as well as mediator concentration. There is a clear tendency toward to decreasing amount of dormant species with increasing monomer conversion. Moreover, lower mediator concentration decreases livingness of polymerization process.

  3. Fluorescent labelling of ciprofloxacin and norfloxacin and its application for residues analysis in surface water.

    PubMed

    Prutthiwanasan, Brompoj; Phechkrajang, Chutima; Suntornsuk, Leena

    2016-10-01

    Sensitivity enhancement for residue analysis of ciprofloxacin and norfloxacin in surface water was performed by liquid chromatography with fluorescent detection (LC-FD). Labelling of both drugs were studied with fluorescent probes (e.g. Nile blue perchlorate (NBP) and 4- (N,N-Dimethylaminosulfonyl)-7-(N-chloroformylmethyl-N-methylamino)-2,1,3-benzoxadiazole (DBD-COCl). Factors affecting the derivatization (e.g. stoichiometric ratios, reaction time and base catalysts) were optimized. The derivatization was achieved in 15min using a stoichiometric ratio between the substrate and DBD-COCl of 1:3, whereas NBP gave unsatisfactory results. Separation of the derivatives by LC was achieved (resolution (RS) > 1.8) on a C8 column using a mobile phase consisting of 50mM formic acid and acetonitrile (ACN) (68:32% v/v) in 20min. The method was linear (r(2) > 0.99) in a range of 200-2,000µg/L, precise (%RSD < 9.17) and accurate (%recovery of 102.5-122.2%) for the determination of the derivatives. The uses of fluoroquinolone molecularly imprinted polymer in conjunction with hydrophilic-lipophilic balance sorbents demonstrated an efficient procedure for sample pre-concentration and clean-up for water sample resulting in the improved percent recovery. Applications of the proposed method was shown in surface water samples in Thailand. PMID:27474281

  4. Fluorescence labeling of carbonylated lipids and proteins in cells using coumarin-hydrazide

    PubMed Central

    Vemula, Venukumar; Ni, Zhixu; Fedorova, Maria

    2015-01-01

    Carbonylation is a generic term which refers to reactive carbonyl groups present in biomolecules due to oxidative reactions induced by reactive oxygen species. Carbonylated proteins, lipids and nucleic acids have been intensively studied and often associated with onset or progression of oxidative stress related disorders. In order to reveal underlying carbonylation pathways and biological relevance, it is crucial to study their intracellular formation and spatial distribution. Carbonylated species are usually identified and quantified in cell lysates and body fluids after derivatization using specific chemical probes. However, spatial cellular and tissue distribution have been less often investigated. Here, we report coumarin-hydrazide, a fluorescent chemical probe for time- and cost-efficient labeling of cellular carbonyls followed by fluorescence microscopy to evaluate their intracellular formation both in time and space. The specificity of coumarin-hydrazide was confirmed in time- and dose-dependent experiments using human primary fibroblasts stressed with paraquat and compared with conventional DNPH-based immunocytochemistry. Both techniques stained carbonylated species accumulated in cytoplasm with strong perinuclear clustering. Using a complimentary array of analytical methods specificity of coumarin-hydrazide probe towards both protein- and lipid-bound carbonyls has been shown. Additionally, co-distribution of carbonylated species and oxidized phospholipids was demonstrated. PMID:25974625

  5. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. PMID:26879193

  6. Biodistribution of Fluorescently Labeled PAMAM Dendrimers in Neonatal Rabbits: Effect of Neuroinflammation

    PubMed Central

    Lesniak, Wojciech G.; Mishra, Manoj K.; Jyoti, Amar; Balakrishnan, Bindu; Zhang, Fan; Nance, Elizabeth; Romero, Roberto; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2014-01-01

    Dendrimers are being explored in many preclinical studies as drug, gene, and imaging agent delivery systems. Understanding their detailed organ, tissue, cellular uptake, and retention can provide valuable insights into their effectiveness as delivery vehicles and the associated toxicity. This work explores a fluorescence-quantification based assay that enables simultaneous quantitative biodistribution and imaging of dendrimers with a single agent. We have labeled an ethylenediamine-core generation-4 hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimer using the fluorescent photostable, near-IR cyanine dye (Cy5) and performed quantitative and qualitative biodistribution of the dendrimer-Cy5 conjugates (D-Cy5) in healthy neonatal rabbits and neonatal rabbits with cerebral palsy (CP). The biodistribution of D-Cy5 and free Cy5 dye was evaluated in newborn rabbits, based on the developed quantification methods using fluorescence spectroscopy, high-performance liquid chromatography (HPLC), and size exclusion chromatography (SEC) and supported by microscopic imaging. The uptake was assessed in the brain, heart, liver, lungs, kidneys, blood serum, and urine. Results obtained based on these three independent methods are in good agreement and indicate the fast renal clearance of D-Cy5 and free Cy5 with relatively higher organs accumulation of the D-Cy5 conjugate. Following systemic administration, the D-Cy5 mainly accumulated in kidneys and bladder at 24 h. The quantitative biodistribution is in good agreement with previous studies based on radiolabeling. These methods for dendrimers quantification are easier and more practical, provide excellent sensitivity (reaching 0.1 ng per gram of tissue), and allow for quantification of dendrimers in different organs over longer time periods without concerns for radioactive decay, while also enabling tissue and cellular imaging in the same animal. In kits with fetal-neuroinflammation induced CP, there was a significantly higher

  7. Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications.

    PubMed

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2016-04-14

    The majority of supercapacitor research studies on graphene materials today have been based upon developing electrochemical double-layer capacitors (EDLCs) using reduced graphenes. In contrast, graphene oxide (GO) is often neglected as a supercapacitor candidate due to its low electrical conductivity and surface area. Nonetheless, we present herein a fast (1 h) labelling of GO with o-phenylenediamine (PD) to produce PD-GO, exploiting inherent oxygen groups in creating new functionalities that exhibit capacitive enhancement from pseudo-capacitance. A high specific capacitance of 191 F g(-1) was obtained (at 0.2 A g(-1)), comparable to recent binder-free graphene supercapacitors. The large surface-normalized capacitance of up to 628 μF cm(-2) is also many times greater than the intrinsic capacitance of single-layer graphene (21 μF cm(-2)) as a result of additional pseudo-capacitance. A high capacity retention of ∼85% with each 10-fold increase in current density further indicates excellent rate performance. Hence, this approach in enhancing GO pseudo-capacitance may be similarly feasible as graphene EDLCs. Additionally, PD-GO was also found to exhibit a bright green fluorescence with a 540 nm maximum. The strongest fluorescence intensities arose from the smallest PD-GO fragments, and we attribute the origin to localised sp(2) domains and newly formed phenazine edge groups. The dual enhancement of dissimilar properties such as capacitance and fluorescence emphasizes the continued significance of covalent functionalisation towards tuning of properties in graphene-type materials. PMID:26998537

  8. Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer

    NASA Astrophysics Data System (ADS)

    Ruan, Jing; Ji, Jiajia; Song, Hua; Qian, Qirong; Wang, Kan; Wang, Can; Cui, Daxiang

    2012-06-01

    How to find early gastric cancer cells in vivo is a great challenge for the diagnosis and therapy of gastric cancer. This study is aimed at investigating the feasibility of using fluorescent magnetic nanoparticle (FMNP)-labeled mesenchymal stem cells (MSCs) to realize targeted imaging and hyperthermia therapy of in vivo gastric cancer. The primary cultured mouse marrow MSCs were labeled with amino-modified FMNPs then intravenously injected into mouse model with subcutaneous gastric tumor, and then, the in vivo distribution of FMNP-labeled MSCs was observed by using fluorescence imaging system and magnetic resonance imaging system. After FMNP-labeled MSCs arrived in local tumor tissues, subcutaneous tumor tissues in nude mice were treated under external alternating magnetic field. The possible mechanism of MSCs targeting gastric cancer was investigated by using a micro-multiwell chemotaxis chamber assay. Results show that MSCs were labeled with FMNPs efficiently and kept stable fluorescent signal and magnetic properties within 14 days, FMNP-labeled MSCs could target and image in vivo gastric cancer cells after being intravenously injected for 14 days, FMNP-labeled MSCs could significantly inhibit the growth of in vivo gastric cancer because of hyperthermia effects, and CCL19/CCR7 and CXCL12/CXCR4 axis loops may play key roles in the targeting of MSCs to in vivo gastric cancer. In conclusion, FMNP-labeled MSCs could target in vivo gastric cancer cells and have great potential in applications such as imaging, diagnosis, and hyperthermia therapy of early gastric cancer in the near future.

  9. Preparation of fluorescent labeled gentamicin as biological tracer and its characterization by liquid chromatography and high resolution mass spectrometry.

    PubMed

    Woiwode, Ulrich; Sievers-Engler, Adrian; Lämmerhofer, Michael

    2016-03-20

    This work deals with the preparation of single-labeled bioconjugates of the antibiotic Gentamicin (GT) with the sulforhodamine-derived fluorescence dye Texas Red(®)-X (TR), its purification by high-performance liquid chromatography (HPLC) and its characterization by high-resolution mass spectrometry. Aminoglycosides such as GT are efficient antibiotics, but also problematic due to severe side effects such as nephro- and ototoxicity. Fluorescent labeled GT is used to visualize cellular uptake and distribution of the antibiotic to finally understand the mechanisms of serious adverse drug reactions. Pharmaceutically administered GT is a mixture of mainly four different components, which exhibit three (GT(C1)) or four (GT(C1a), GT(C2), GT(C2a)) primary amino functional groups which can be coupled with the labeling reagent TR. Thus, multiple labeling could be envisaged which was assumed to be detrimental for uptake studies by fluorescence imaging. The proposed synthesis aimed at preparation of single labeled product and together with the employed purification strategy indeed yielded single labeled GT as product. Analytical control of the reaction product was carried out by means of mass spectrometry (UHPLC-ESI-QTOF-MS/MS) to rule out over-labeling of GT, which would alter the physicochemical characteristics of GT and its cellular uptake significantly. Moreover, LC-MS/MS analysis gave valuable insights into structural diversity of single labeled products. Further, high-resolution MS and MS/MS spectra of underivatized GT are provided as well. The analytical information on preparation strategy and structure diversity is valuable for studies with a clinical focus on research of aminoglycoside toxicity. Furthermore, it is deemed to be useful for the development of LC-MS/MS assays for the determination of aminoglycosides or the fast screening of synthetic biology samples from biotechnological drug discovery. PMID:26775580

  10. Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging.

    PubMed

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S

    2015-11-01

    In vivo two-photon imaging combined with targeted fluorescent indicators is currently extensively used for attaining critical insights into brain functionality and structural plasticity. Additional information might be gained from back-scattered photons from the near-infrared (NIR) laser without introducing any exogenous labelling. Here, we describe a complimentary and versatile approach that, by collecting the reflected NIR light, provides structural details on axons and blood vessels in the brain, both in fixed samples and in live animals under a cranial window. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from a Thy1-GFPm mouse, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Interestingly, NIR reflectance microscopy allowed the label-free detection of axonal elongations over the superficial layers of mouse cortex under a cranial window in vivo. Finally, blood flow can be measured in live preparations, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated. PMID:26601011

  11. Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging

    PubMed Central

    Mascaro, Anna Letizia Allegra; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S.

    2015-01-01

    In vivo two-photon imaging combined with targeted fluorescent indicators is currently extensively used for attaining critical insights into brain functionality and structural plasticity. Additional information might be gained from back-scattered photons from the near-infrared (NIR) laser without introducing any exogenous labelling. Here, we describe a complimentary and versatile approach that, by collecting the reflected NIR light, provides structural details on axons and blood vessels in the brain, both in fixed samples and in live animals under a cranial window. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from a Thy1-GFPm mouse, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Interestingly, NIR reflectance microscopy allowed the label-free detection of axonal elongations over the superficial layers of mouse cortex under a cranial window in vivo. Finally, blood flow can be measured in live preparations, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated. PMID:26601011

  12. Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as antibody labels to increase the fluorescence signal and sensitivity. Ep...

  13. Allelic divergence and cultivar-specific SSR alleles revealed by capillary electrophoresis using fluorescence-labeled SSR markers in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneu-polyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible due to capillary electrophoregrams (CE) using fluorescence-labeled SSR primer pairs. Twenty-four sugarcane cultivars, 12 each...

  14. Fluorescence energy transfer efficiency in labeled yeast cytochrome c: a rapid screen for ion biocompatibility in aqueous ionic liquids

    SciTech Connect

    Baker, Sheila N; Zhao, Hua; Pandey, Siddharth; Heller, William T; Bright, Frank; Baker, Gary A

    2011-01-01

    A fluorescence energy transfer de-quenching assay was implemented to follow the equilibrium unfolding behaviour of site-specific tetramethylrhodamine-labelled yeast cytochrome c in aqueous ionic liquid solutions; additionally, this approach offers the prospect of naked eye screening for biocompatible ion combinations in hydrated ionic liquids.

  15. Mesenchymal stem cell in vitro labeling by hybrid fluorescent magnetic polymeric particles for application in cell tracking.

    PubMed

    Supokawej, Aungkura; Nimsanor, Natakarn; Sanvoranart, Tanwarat; Kaewsaneha, Chariya; Hongeng, Suradej; Tangboriboonrat, Pramuan; Jangpatarapongsa, Kulachart

    2015-12-01

    Mesenchymal stem cells (MSCs) are a type of adult stem cell that contains multi-differentiation and proliferative properties and that shows high treatment implications for many clinical problems. The outcome of stem cell transplantation is still limited due to many factors, especially their survival and their interaction with the microenvironment after transplantation. Molecular imaging is a challenging technique that has been used to overcome this limitation and is based on the concept of labeling cells with tractable, visible, and non-toxic materials to track the cells after transplantation. In this study, magnetic polymeric nanoparticles (MPNPs) were used to directly label Wharton's jelly-derived MSCs (WJ-MSCs). After labeling, the growth rate and the viability of the MSCs as well as the time of exposure were determined. The 3D images of WJ-MSCs labeled with MPNPs for 24 h were created using confocal microscopy. The results showed that, after incubation with fluorescent MPNPs for over 8 h, the growth rate and cell viability of the WJ-MSCs was similar to those of the control. Three-dimensional imaging revealed that the fluorescent MPNPs could infiltrate into the cells and spread into the cytoplasm, which suggests that the synthesized fluorescent MPNPs could possibly label MSCs for cell tracking study and be further developed for in vivo applications. PMID:25893425

  16. Development of a fluorescent label tool based on lanthanide nanophosphors for viral biomedical application

    NASA Astrophysics Data System (ADS)

    Le, Quoc Minh; Huong Tran, Thu; Huong Nguyen, Thanh; Khuyen Hoang, Thi; Binh Nguyen, Thanh; Do, Khanh Tung; Tran, Kim Anh; Hien Nguyen, Dang; Luan Le, Thi; Quy Nguyen, Thi; Dung Dang, Mai; Thu Nguyen, Nu Anh; Nguyen, Van Man

    2012-09-01

    We report for the first time the preparation of luminescent lanthanide nanomaterial (LLN) linked bioconjugates and their application as a label tool for recognizing virus in the processing line of vaccine industrial fabrication. Several LLNs with the nanostructure forms of particles or rods/wires with europium (III) and terbium (III) ions in lattices of vanadate, phosphate and metal organic complex were prepared to develop novel fluorescent conjugates able to be applied as labels in fluorescence immunoassay analysis of virus/vaccine. With regard to the LLNs, we have successfully synthesized nanoparticles around 10 nm of YVO4:Eu(III), with high emission in the red spectral region, nanorod and nanowire of TbPO4·H2O and Eu1-xTbxPO4·H2O, width 5–7 nm and length 300 nm, showing very bright luminescence in green, and core/shell nanosized Eu(III) and Tb(III)/Eu(III) complexes with naphthoyl trifluoroacetone and tri-n-octylphosphineoxide (Eu.NTA.TOPO@PVP, EuXTb1-X.NTA.TOPO). The appropriated core/shell structures can play a double role, one for enhancing luminescence efficiency and another for providing nanophosphors with better stability in water media for facilitating the penetration of nanophosphor core into a biomedical environment. The organic functionalizations of the obtained LLNs were done through their surface encapsulation with a functional polysiloxane including active groups such as amine (NH2), thiocyanate (SCN) or mecarpto (SH). The properties of functional sol-gel matrix have great influence on the luminescence properties, especially luminescence intensity of YVO4:Eu(III), Eu.NTA.TOPO@PVP, TbPO4·H2O and EuxTb1-xPO4·H2O. Bioconjugation processes of the functionalized LLNs have been studied with some bioactive molecules such as biotin, protein immunoglobulin G (IgG) or bovine serum albumin (BSA). The results of LLN-bioconjugate linking with IgG for recognizing virus (vaccine) will be presented in brief. It is consistent to state that the LLN

  17. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2

  18. Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody.

    PubMed

    Shirai, Akihiro; Henares, Terence G; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2016-05-23

    A single-step, easy-to-use, and fast capillary-type immunoassay device composed of a polyethylene glycol (PEG) coating containing two kinds of antibody-reagents, including an antibody-graphene oxide conjugate and fluorescently labelled antibody, was developed in this study. The working principle involved the spontaneous dissolution of the PEG coating, diffusion of reagents, and subsequent immunoreaction, triggered by the capillary action-mediated introduction of a sample solution. In a sample solution containing the target antigen, two types of antibody reagents form a sandwich-type antigen-antibody complex and fluorescence quenching takes place via fluorescence resonance energy transfer between the labelled fluorescent molecules and graphene oxide. Antigen concentration can be measured based on the decrease in fluorescence intensity. An antigen concentration-dependent response was obtained for the model target protein sample (human IgG, 0.2-10 μg mL(-1)). The present method can shorten the reaction time to within 1 min (approximately 40 s), while conventional methods using the same reagents require reaction times of approximately 20 min because of the large reaction scale. The proposed method is one of the fastest immunoassays ever reported. Finally, the present device was used to measure human IgG in diluted serum samples to demonstrate that this method can be used for fast medical diagnosis. PMID:27127806

  19. Volume Labeling with Alexa-Fluor Dyes and Surface Functionalization of Highly Sensitive Fluorescent SiO2 Nanoparticles

    SciTech Connect

    Wang, Wei; Foster, Carmen M; Morrell-Falvey, Jennifer L; Nallathamby, Prakash D; Mortensen, Ninell P; Doktycz, Mitchel John; Gu, Baohua; Retterer, Scott T; Gu, Baohua

    2013-01-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or free surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.

  20. Rapid Covalent Fluorescence Labeling of Membrane Proteins on Live Cells via Coiled-Coil Templated Acyl Transfer.

    PubMed

    Reinhardt, Ulrike; Lotze, Jonathan; Mörl, Karin; Beck-Sickinger, Annette G; Seitz, Oliver

    2015-10-21

    Fluorescently labeled proteins enable the microscopic imaging of protein localization and function in live cells. In labeling reactions targeted against specific tag sequences, the size of the fluorophore-tag is of major concern. The tag should be small to prevent interference with protein function. Furthermore, rapid and covalent labeling methods are desired to enable the analysis of fast biological processes. Herein, we describe the development of a method in which the formation of a parallel coiled coil triggers the transfer of a fluorescence dye from a thioester-linked coil peptide conjugate onto a cysteine-modified coil peptide. This labeling method requires only small tag sequences (max 23 aa) and occurs with high tag specificity. We show that size matching of the coil peptides and a suitable thioester reactivity allow the acyl transfer reaction to proceed within minutes (rather than hours). We demonstrate the versatility of this method by applying it to the labeling of different G-protein coupled membrane receptors including the human neuropeptide Y receptors 1, 2, 4, 5, the neuropeptide FF receptors 1 and 2, and the dopamine receptor 1. The labeled receptors are fully functional and able to bind the respective ligand with high affinity. Activity is not impaired as demonstrated by activation, internalization, and recycling experiments. PMID:26367072

  1. 21 CFR 1306.14 - Labeling of substances and filling of prescriptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prescriptions. (a) The pharmacist filling a written or emergency oral prescription for a controlled substance... Schedule II; and (4) The system employed by the pharmacist in filling a prescription is adequate to... not be filled until a certain date, no pharmacist may fill the prescription before that date....

  2. Tracking fluorescence-labeled rabies virus: enhanced green fluorescent protein-tagged phosphoprotein P supports virus gene expression and formation of infectious particles.

    PubMed

    Finke, Stefan; Brzózka, Krzysztof; Conzelmann, Karl-Klaus

    2004-11-01

    Rhabdoviruses such as rabies virus (RV) encode only five multifunctional proteins accomplishing viral gene expression and virus formation. The viral phosphoprotein, P, is a structural component of the viral ribonucleoprotein (RNP) complex and an essential cofactor for the viral RNA-dependent RNA polymerase. We show here that RV P fused to enhanced green fluorescent protein (eGFP) can substitute for P throughout the viral life cycle, allowing fluorescence labeling and tracking of RV RNPs under live cell conditions. To first assess the functions of P fusion constructs, a recombinant RV lacking the P gene, SAD DeltaP, was complemented in cell lines constitutively expressing eGFP-P or P-eGFP fusion proteins. P-eGFP supported the rapid accumulation of viral mRNAs but led to low infectious-virus titers, suggesting impairment of virus formation. In contrast, complementation with eGFP-P resulted in slower accumulation of mRNAs but similar infectious titers, suggesting interference with polymerase activity rather than with virus formation. Fluorescence microscopy allowed the detection of eGFP-P-labeled extracellular virus particles and tracking of cell binding and temperature-dependent internalization into intracellular vesicles. Recombinant RVs expressing eGFP-P or an eGFP-P mutant lacking the binding site for dynein light chain 1 (DLC1) instead of P were used to track interaction with cellular proteins. In cells expressing a DsRed-labeled DLC1, colocalization of DLC1 with eGFP-P but not with the mutant P was observed. Fluorescent labeling of RV RNPs will allow further dissection of virus entry, replication, and egress under live-cell conditions as well as cell interactions. PMID:15507620

  3. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes.

    PubMed

    Groben, René; Medlin, Linda

    2005-01-01

    Phytoplankton are one of the major components of ecosystem processes and play an important role in many biogeochemical cycles in the marine and freshwater environment. Despite their importance, many microalgae are poorly described and little is known of broad spatial and temporal scale trends in their abundance and distribution. Reasons for this are that microalgae are often small, lack distinct morphological features, and are unculturable, which make analyses difficult. It is now possible by using molecular biological techniques to advance our knowledge of aquatic biodiversity and to understand how biodiversity supports ecosystem structure, dynamics, and resilience. We present in this chapter a brief review of the progress that has been made in analyzing microalgae from populations to the species level. The described methods range from DNA fingerprinting techniques, such as random amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLPs), and simple sequence repeats (SSRs), to microsatellites, which are used in population studies, to sequence analysis, which help to reconstruct the evolutionary history of organisms and to examine relationships at various taxonomic levels. Special emphasis is given to the application of molecular probes for the identification and characterization of microalgal taxa. The fast and secure identification of phytoplankton, especially of toxic species, is important from an ecological and economical point of view and whole-cell hybridization with specific fluorochrome-labeled probes followed by fluorescence microscopy or flow cytometry offers a fast method for this purpose. In this context, we present a detailed protocol for fluorescence in situ hybridization (FISH) of ribosomal RNA (rRNA) probes that can be applied to many algal cell types and discuss practical considerations of its use. PMID:15865974

  4. Is seeing believing? An assessment of the impact of fluorescent labelling on protein structure and interaction potential

    NASA Astrophysics Data System (ADS)

    Quinn, Michelle K.; James, Susan; McNamara, Ruth; McManus, Jennifer J.

    2014-03-01

    Fluorescent labelling is extensively used in conjunction with spectroscopy and microscopy for the in-vivo and in-vitro study of proteins. However, there is little data quantifying how this impacts on the protein in terms of its net interaction potential and its structure. Human ?D-crystallin (HGD), a protein found in the eye lens at high concentrations, undergoes liquid-liquid phase separation (LLPS) and has a well-studied phase diagram. LLPS is indicative of short-ranged attractive interactions between the proteins and the conditions this occurs under are sensitive to changes in the protein itself (e.g. mutations, dimer formation) and its environmental conditions (e.g. pH, salt concentration). HGD is produced recombinantly in E. coli and fluorescently labelled via covalent attachment after purification. Comparison of the coexistence curves for labelled and unlabelled protein indicates if there has been a change in the net interaction potential and various spectroscopic techniques are used to elucidate structural changes between the labelled and unlabelled protein. These studies are important for understanding the relationship between in-vitro phase diagram experiments and those conducted in complex biological fluids, such as plasma or cells where fluorescent tagging is required. The authors acknowledge Science Foundation Ireland (SFI) (grant number 11/RFP.1/PHY3165). J.J. McManus acknowledges SFI Stokes Lectureship.

  5. Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances

    PubMed Central

    Suzuki, Yoshio; Yokoyama, Kenji

    2015-01-01

    This review is confined to sensors that use fluorescence to transmit biochemical information. Fluorescence is, by far, the most frequently exploited phenomenon for chemical sensors and biosensors. Parameters that define the application of such sensors include intensity, decay time, anisotropy, quenching efficiency, and luminescence energy transfer. To achieve selective (bio)molecular recognition based on these fluorescence phenomena, various fluorescent elements such as small organic molecules, enzymes, antibodies, and oligonucleotides have been designed and synthesized over the past decades. This review describes the immense variety of fluorescent probes that have been designed for the recognitions of ions, small and large molecules, and their biological applications in terms of intracellular fluorescent imaging techniques. PMID:26095660

  6. A label-free turn-on fluorescence probe for rapidly distinguishing cysteine over glutathione in water solution.

    PubMed

    Yan, Liqiang; Kong, Zhineng; Shen, Wei; Du, Wenqi; Zhou, Yan; Qi, Zhengjian

    2016-05-01

    A novel label-free fluorescent chemodosimeter (C1) was synthesized, based on coumarin and N-(4-aminobenzoyl)-β-alanine, for the selective detection of cysteine (Cys) over glutathione (GSH), which involved a click reaction of Cys to CN of a Schiff base. The probe C1 featured a fast response (about 3 min), emission in the visible region, and high selectivity. Addition of Cys in HEPES-NaOH solution (pH 7.4) to C1 in water resulted in the appearance of a new emission peak at 445 nm, in company with remarkable enhancement of fluorescence intensity, while other amino acids did not induce any significant fluorescence change. Meanwhile, the addition reaction of Cys to C1 elicited 90.8-fold fluorescence intensity enhancement, which resulted in a change of emission color from orange to blue. PMID:26869082

  7. Development And Evaluation Of Stable Isotope And Fluorescent Labeling And Detection Methodologies For Tracking Injected Bacteria During In Situ Bioremediation

    SciTech Connect

    Mark E. Fuller; Tullis C. Onstott

    2003-12-17

    This report summarizes the results of a research project conducted to develop new methods to label bacterial cells so that they could be tracked and enumerated as they move in the subsurface after they are introduced into the groundwater (i.e., during bioaugmentation). Labeling methods based on stable isotopes of carbon (13C) and vital fluorescent stains were developed. Both approaches proved successful with regards to the ability to effectively label bacterial cells. Several methods for enumeration of fluorescently-labeled cells were developed and validated, including near-real time microplate spectrofluorometry that could be performed in the field. However, the development of a novel enumeration method for the 13C-enriched cells, chemical reaction interface/mass spectrometry (CRIMS), was not successful due to difficulties with the proposed instrumentation. Both labeling methodologies were successfully evaluated and validated during laboratory- and field-scale bacterial transport experiments. The methods developed during this research should be useful for future bacterial transport work as well as other microbial ecology research in a variety of environments. A full bibliography of research articles and meeting presentations related to this project is included (including web links to abstracts and full text reprints).

  8. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.

    PubMed

    Li, Wei; Hou, Ting; Wu, Min; Li, Feng

    2016-02-01

    MicroRNAs (miRNAs) play an important role in many biological processes, and have been regarded as potential targets and biomarkers in cancer diagnosis and therapy. Also, to meet the big challenge imposed by the characteristics of miRNAs, such as small size and vulnerability to enzymatic digestion, it is of great importance to develop accurate, sensitive and simple miRNA assays. Herein, we developed a label-free fluorescence strategy for sensitive miRNA detection by combining isothermal exponential amplification and the unique features of SYBR Green I (SG) and graphene oxide (GO), in which SG gives significantly enhanced fluorescence upon intercalation into double-stranded DNAs (dsDNAs), and GO selectively adsorbs miRNA, single-stranded DNA and SG, to protect miRNA from enzymatic digestion, and to quench the fluorescence of the adsorbed SG. In the presence of the target miRNA, the ingeniously designed hairpin probe (HP) is unfolded and the subsequent polymerization and strand displacement reaction takes place to initiate the target recycling process. The newly formed dsDNAs are then recognized and cleaved by the nicking enzyme, generating new DNA triggers with the same sequence as the target miRNA, which hybridize with intact HPs to initiate new extension reactions. As a result, the circular exponential amplification for target miRNA is achieved and large amount of dsDNAs are formed to generate significantly enhanced fluorescence upon the intercalation of SG. Thus sensitive and selective fluorescence miRNA detection is realized, and the detection limit of 3 fM is obtained. Besides, this method exhibits additional advantages of simplicity and low cost, since expensive and tedious labeling process is avoided. Therefore, the as-proposed label-free fluorescence strategy has great potential in the applications in miRNA-related clinical practices and biochemical researches. PMID:26653431

  9. Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images

    PubMed Central

    2010-01-01

    Background Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed. Results To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies. Conclusions These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection. PMID:20465797

  10. Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants.

    PubMed

    Płachno, B J; Adamec, L; Lichtscheidl, I K; Peroutka, M; Adlassnig, W; Vrba, J

    2006-11-01

    A new ELF (enzyme labelled fluorescence) assay was applied to detect phosphatase activity in glandular structures of 47 carnivorous plant species, especially Lentibulariaceae, in order to understand their digestive activities. We address the following questions: (1) Are phosphatases produced by the plants and/or by inhabitants of the traps? (2) Which type of hairs/glands is involved in the production of phosphatases? (3) Is this phosphatase production a common feature among carnivorous plants or is it restricted to evolutionarily advanced species? Our results showed activity of the phosphatases in glandular structures of the majority of the plants tested, both from the greenhouse and from sterile culture. In addition, extracellular phosphatases can also be produced by trap inhabitants. In Utricularia, activity of phosphatase was detected in internal glands of 27 species from both primitive and advanced sections and different ecological groups. Further positive reactions were found in Genlisea, Pinguicula, Aldrovanda, Dionaea, Drosera, Drosophyllum, Nepenthes, and Cephalotus. In Utricularia and Genlisea, enzymatic secretion was independent of stimulation by prey. Byblis and Roridula are usually considered as "proto-carnivores", lacking digestive enzymes. However, we found high activity of phosphatases in both species. Thus, they should be classified as true carnivores. We suggest that the inflorescence of Byblis and some Pinguicula species might also be an additional "carnivorous organ", which can trap a prey, digest it, and finally absorb available nutrients. PMID:16865659

  11. Azido Auxins: Synthesis and Biological Activity of Fluorescent Photoaffinity Labeling Agents 12

    PubMed Central

    Melhado, L. Lee; Jones, Alan M.; Leonard, Nelson J.; Vanderhoef, Larry N.

    1981-01-01

    Three auxin analogs, 4−, 5−, and 6-azido-3-indoleacetic acid (4-N3-IAA, 5-N3-IAA, and 6-N3-IAA) have been synthesized for use as fluorescent photoaffinity labeling agents. The pKa values of these compounds (4-N3-IAA, 4.67; 5-N3-IAA, 4.65; 6-N3-IAA, 4.66; all ± 0.04) are experimentally indistinguishable from the pKa of 3-indoleacetic acid (IAA, 4.69 ± 0.04). The auxin activity of these IAA derivatives has been determined in several systems. In soybean, pea, and corn straight growth assays, all three analogs induce growth comparable to that caused by IAA. In the tobacco pith assay, all three analogs elicit a maximum increase in fresh weight at least 40 to 50% of that caused by IAA. Optimal growth is attained in the tobacco pith assay at slightly higher concentrations of 4-N3-IAA and 6-N3-IAA (30 micromolar) than required for IAA (10 micromolar); however, maximal growth is achieved at a slightly lower concentration of 5-N3-IAA (3 micromolar). The N3-IAAs, like IAA, are transported basipetally through tobacco pith tissue. PMID:16661939

  12. Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells1,2,3

    PubMed Central

    Kornfield, Tess E.

    2015-01-01

    Abstract Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes. PMID:26082942

  13. A Simple and Sensitive Approach for Ochratoxin A Detection Using a Label-Free Fluorescent Aptasensor

    PubMed Central

    Lv, Zhenzhen; Chen, Ailiang; Liu, Jinchuan; Guan, Zheng; Zhou, Yu; Xu, Siyuan; Yang, Shuming; Li, Cheng

    2014-01-01

    Ochratoxin A(OTA) is found to be one of the predominant contaminating mycotoxins in a wide variety of food commodities. To avoid the risk of OTA consumption, the detection and quantitation of OTA level are of great significance. Based on the fact that ssDNA aptamer has the ability to form a double-strand structure with its complementary sequence, a simple and rapid aptamer-based label-free approach for highly sensitive and selective fluorescence detection of OTA was developed by using ultra-sensitive double-strand DNA specific dyes PicoGreen. The results showed that as low as 1 ng/mL of OTA could be detected with a dynamic range of more than 5 orders of magnitude which satisfies the requirements for OTA maximum residue limit in various food regulated by European Commission. With the specificity of aptamer, the assay exhibited high selectivity for OTA against two other analogues (N-acetyl-l-phenylalanine and zearalenone). We also tested the aptasensor practicability using real sample of 1% beer spiked with a series of concentration of OTA and the results show good tolerance to matrix effect. All detections could be achieved in less than 30 min, which provides a simple, quick and sensitive detection method for OTA screening in food safety and could be easily extend to other small molecular chemical compounds detection which aptamer has been selected. PMID:24465818

  14. Anatomic Site Variability in Rat Skeletal Uptake and Desorption Of Fluorescently Labeled Bisphosphonate

    PubMed Central

    Wen, D.; Qing, L.; Harrison, G.; Golub, E.; Akintoye, S.O.

    2010-01-01

    Objectives Bisphosphonates commonly used to treat osteoporosis, Paget’s disease, multiple myeloma, hypercalcemia of malignancy and osteolytic lesions of cancer metastasis have been associated with bisphosphonate-associated jaw osteonecrosis (BJON). The underlying pathogenesis of BJON is unclear, but disproportionate bisphosphonate concentration in the jaw has been proposed as one potential etiological factor. This study tested the hypothesis that skeletal biodistribution of intravenous bisphosphonate is anatomic site-dependent in a rat model system. Materials and Methods Fluorescently labeled pamidronate was injected intravenously in athymic rats of equal weights followed by in vivo whole body fluorimetry, ex vivo optical imaging of oral, axial and appendicular bones and ethylenediaminetetraacetic acid bone decalcification to assess hydroxyapatite-bound bisphosphonate. Results Bisphosphonate uptake and bisphosphonate released per unit calcium were similar in oral and appendicular bones but lower than those in axial bones. Hydroxyapatite-bound bisphosphonate liberated by sequential acid decalcification was highest in oral relative to axial and appendicular bones (p < 0.05). Conclusions This study demonstrates regional differences in uptake and release of bisphosphonate from oral, axial and appendicular bones of immune deficient rats. PMID:21122034

  15. Affinity fluorescence-labeled peptides for the early detection of cancer in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Li, Meng; Lu, Shaoying; Piraka, Cyrus; Appelman, Henry; Kwon, Rich; Soetikno, Roy; Kaltenbach, Tonya; Wang, Thomas D.

    2009-02-01

    Fluorescence-labeled peptides that affinity bind to neoplastic mucsosa are promising for use as a specific contrast agent in the detection of pre-malignant tissue in the esophagus. This method is can be used to identify expression of biological markers associated with dysplasia on endoscopic imaging as a guide for biopsy and represents a novel method for the early detection and prevention of cancer. We demonstrate the use of phage display to select affinity peptides and identify the sequence "ASYNYDA" that binds with high target-to-background ratio to dysplastic esophageal mucosa compared to that of intestinal metaplasia. Validation of preferential binding is demonstrated for neoplasia in the setting of Barrett's esophagus. An optimal tradeoff between sensitivity and specificity of 82% and 85% was found at the relative threshold of 0.60 with a target-to-background ratio of 1.81 and an area under the ROC curve of 0.87. Peptides are a novel class of ligand for targeted detection of pre-malignant mucosa for purposes of screening and surveillance.

  16. Diffusion of Fluorescently Labeled Bacteriocin from Edible Nanomaterials and Embedded Nano-Bioactive Coatings.

    PubMed

    Imran, Muhammad; Revol-Junelles, Anne-Marie; Francius, Grégory; Desobry, Stéphane

    2016-08-24

    Application of nano-biotechnology to improve the controlled release of drugs or functional agents is widely anticipated to transform the biomedical, pharmaceutical, and food safety trends. The purpose of the current study was to assess and compare the release rates of fluorescently labeled antimicrobial peptide nisin (lantibiotic/biopreservative) from liposomal nanocarriers. The elevated temperature, high electrostatic attraction between anionic bilayers and cationic nisin, larger size, and higher encapsulation efficiency resulted in rapid and elevated release through pore formation. However, acidic pH and optimal ethanol concentration in food simulating liquid (FSL) improved the stability and retention capacity of loaded drug. Thus, controlling various factors had provided partition coefficient K values from 0.23 to 8.78 indicating variation in nisin affinity toward encapsulating macromolecule or FSL. Interaction between nisin and nanoscale bilayer systems by atomic force (AFM) and transmission electron microscopy demonstrated membrane activity of nisin from adsorption and aggregation to pore formation. Novel nanoactive films with preloaded nanoliposomes embedded in biodegradable polymer revealed improved morphological, topographic, and roughness parameters studied by confocal microscopy and AFM. Pre-encapsulated nanoactive biopolymer demonstrated excellent retention capacity as drug carriers by decreasing the partition coefficient value from 1.8 to 0.66 (∼30%) due to improved stability of nanoliposomes embedded in biopolymer network. PMID:27468125

  17. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  18. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  19. Characterization of copper binding properties of extracellular polymeric substances using a fluorescence quenching approach combining two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Lee, Bo-Mi

    2014-07-01

    Heterogeneous distributions of copper-binding sites within extracellular polymeric substances (EPS) were examined by using a fluorescence quenching titration method combined with two-dimensional correlation spectroscopy (2D-COS). The binding properties were compared for two types of the EPS extracted from the sludge formed under aerobic and anaerobic conditions. The quenching behaviors of the synchronous fluorescence spectra upon the addition of copper were similar for the two EPS. Protein-like fluorescence was substantially quenched by the copper addition while the changes of fulvic- and humic-like fluorescence were not obvious, suggesting that protein molecules were largely involved in binding copper for both EPS types. The logarithmic stability constants calculated at the wavelengths corresponding to the highest peaks were 4.73 and 4.22 for the aerobic and the anaerobic EPS, respectively. However, the 2D-COS revealed the possibility of the presence of multiple sites for copper binding within the protein-like fluorescent structures of the anaerobic EPS. No such heterogeneous distribution in the binding sites was found for the aerobic EPS. For the anaerobic EPS, the spectral change preferentially occurred in the wavelength order of 297 nm → 290 nm → 268 nm, exhibiting a range of the logarithmic values from 4.43 to 4.13. The extent of the binding affinities exactly followed the sequential orders interpreted from the 2D-COS results. Our study clearly demonstrated that fluorescence quenching combined with 2D-COS could be successfully used to provide a better understanding of the chemical heterogeneity associated with metal-binding sites within EPS.

  20. Eradication of osteosarcoma by fluorescence-guided surgery with tumor labeling by a killer-reporter adenovirus.

    PubMed

    Yano, Shuya; Miwa, Shinji; Kishimoto, Hiroyuki; Urata, Yasuo; Tazawa, Hiroshi; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2016-05-01

    In a previous study, we developed fluorescence-guided surgery (FGS) for osteosarcoma using an orthotopic model with 143B human osteosarcoma cells expressing red fluorescent protein (RFP) implanted into the intramedullary cavity of the tibia in nude mice. The FGS-treated mice had a significantly higher disease-free survival (DFS) rate than the bright-light surgery (BLS). However, although FGS significantly reduced the recurrence of the primary tumor, it did not reduce lung metastasis. In the present study, we utilized the OBP-401 telomerase-dependent killer-reporter adenovirus, carrying green fluorescent protein (GFP), to label human osteosarcoma in situ in orthotopic mouse models. OBP-401-illuminated human osteosarcoma cell lines, 143B and MNNG/HOS cells in vitro and in vivo. OBP-401 tumor illumination enabled effective FGS of the 143B-derived orthotopic mouse model of human osteosarcoma model as well as FGS eradication of residual cancer cells after BLS. OBP-401-assisted FGS significantly inhibited local recurrence and lung metastasis after surgery, thereby prolonging DFS and overall survival (OS), achieving a very important improvement of therapeutic outcomes over our previously reported FGS study. These therapeutic benefits of FGS were demonstrated using a clinically-viable methodology of direct labeling of human osteosarcoma in situ with the OBP-401 killer-reporter adenovirus in contrast with previous reports, which used genetically engineered labeled cells or antibody-based fluorescent labels for FGS. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:836-844, 2016. PMID:26479501

  1. Exclusive fluoride ion recognition and fluorescence "turn-on" response with a label-free DMN Schiff base.

    PubMed

    Kaloo, Masood Ayoub; Sankar, Jeyaraman

    2013-09-01

    A label-free DMN Schiff base (4) has been explored as a highly selective and sensitive fluoride ion receptor. Fluoride-induced deprotonation results in a charge transfer (CT) transition red shifted with a fluorescence 'turn-on'. Anion selectivity can be tuned by the electron push-pull property of substituents at the phenyl para-position. Selectivity for F(-) is attributed to the suitable acidity of -NH2. PMID:23875184

  2. Biokinetic and dosimetric investigations of 14C-labeled substances in man using AMS

    NASA Astrophysics Data System (ADS)

    Mattsson, Sören; Gunnarsson, Mikael; Svegborn, Sigrid Leide; Nosslin, Bertil; Nilsson, Lars-Erik; Thorsson, Ola; Valind, Sven; Åberg, Magnus; Östberg, Henrik; Hellborg, Ragnar; Stenström, Kristina; Erlandsson, Bengt; Faarinen, Mikko; Kiisk, Madis; Magnusson, Carl-Erik; Persson, Per; Skog, Göran

    2001-07-01

    Up to now, radiation dose estimates from radiopharmaceuticals, labeled with pure β-emitting radionuclides, e.g., 14C or 3H have been very uncertain. Using accelerator mass spectrometry (AMS) we have derived new and improved data for 14C-triolein and 14C-urea and are currently running a program related to the biokinetics and dosimetry of 14C-glycocholic acid and 14C-xylose. The results of our investigations have made it possible to widen the indications for the clinical use of the 14C-urea test for Helicobacter pylori infection in children. The use of ultra-low activities, which is possible with AMS (down to 1/1000 of that used for liquid scintillation counting), has opened the possibility for metabolic investigations on children as well as on other sensitive patient groups like new-borns, and pregnant or breast-feeding women. Using the full potential of AMS, new 14C-labeled drugs could be tested on humans at a much earlier stage than today, avoiding uncertain extrapolations from animal models.

  3. Fluorescent labelling of in situ hybridisation probes through the copper-catalysed azide-alkyne cycloaddition reaction.

    PubMed

    Hesse, Susann; Manetto, Antonio; Cassinelli, Valentina; Fuchs, Jörg; Ma, Lu; Raddaoui, Nada; Houben, Andreas

    2016-09-01

    In situ hybridisation is a powerful tool to investigate the genome and chromosome architecture. Nick translation (NT) is widely used to label DNA probes for fluorescence in situ hybridisation (FISH). However, NT is limited to the use of long double-stranded DNA and does not allow the labelling of single-stranded and short DNA, e.g. oligonucleotides. An alternative technique is the copper(I)-catalysed azide-alkyne cycloaddition (CuAAC), at which azide and alkyne functional groups react in a multistep process catalysed by copper(I) ions to give 1,4-distributed 1,2,3-triazoles at a high yield (also called 'click reaction'). We successfully applied this technique to label short single-stranded DNA probes as well as long PCR-derived double-stranded probes and tested them by FISH on plant chromosomes and nuclei. The hybridisation efficiency of differently labelled probes was compared to those obtained by conventional labelling techniques. We show that copper(I)-catalysed azide-alkyne cycloaddition-labelled probes are reliable tools to detect different types of repetitive sequences on chromosomes opening new promising routes for the detection of single copy gene. Moreover, a combination of FISH using such probes with other techniques, e.g. immunohistochemistry (IHC) and cell proliferation assays using 5-ethynyl-deoxyuridine, is herein shown to be easily feasible. PMID:27095480

  4. Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate

    NASA Technical Reports Server (NTRS)

    Shrestha, Suresh; Salins, Lyndon L E.; Mark Ensor, C.; Daunert, Sylvia

    2002-01-01

    Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the

  5. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy

    PubMed Central

    Liss, Viktoria; Barlag, Britta; Nietschke, Monika; Hensel, Michael

    2015-01-01

    Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches. PMID:26643905

  6. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy.

    PubMed

    Liss, Viktoria; Barlag, Britta; Nietschke, Monika; Hensel, Michael

    2015-01-01

    Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches. PMID:26643905

  7. Assessment of biological characteristics of adipose tissue-derived stem cells co-labeled with Molday ION Rhodamine B™ and green fluorescent protein in vitro.

    PubMed

    Nan, Hua; Huang, Jiacheng; Li, Hongmian; Li, Qiong; Liu, Dalie

    2013-11-01

    The current study aimed to investigate adipose tissue-derived stem cells (ADSCs) in vivo by multimodality imaging following implantation for cellular therapy. The biological characteristics of ADSCs co-labeled with Molday ION Rhodamine B™ (MIRB) and green fluorescent protein (GFP) were studied in vitro. Following rat ADSC isolation and culture, a combined labeling strategy for ADSCs based on genetic modification of the reporter gene GFP with lentiviral vector expression enhancement and physical MIRB labeling was performed. Cell viability, proliferation, membrane-bound antigens and multiple differentiation ability were compared between the labeled and unlabeled ADSCs. The ADSCs were successfully labeled with GFP and MIRB, showing various fluorescent colors for marker identification. The fluorescence emitted by the GFP protein was sustained and exhibited stable expression, while MIRB fluorescence decreased with time. Compared with the unlabeled ADSCs, no significant differences were detected in cell viability, proliferation, membrane-bound antigens and multiple differentiation ability in the co-labeled samples (P>0.05). No significant effects on the biophysical properties of ADSCs were observed following co-labeling with lentiviral vectors encoding the gene for emerald green fluorescent protein and MIRB. The ADSCs were able to be efficiently tracked in vitro and in vivo by multimodality imaging thus, the co-labeling approach provides a novel strategy for therapeutic gene studies. PMID:24065138

  8. DNA-templated silver nanoclusters based label-free fluorescent molecular beacon for the detection of adenosine deaminase.

    PubMed

    Zhang, Kai; Wang, Ke; Xie, Minhao; Zhu, Xue; Xu, Lan; Yang, Runlin; Huang, Biao; Zhu, Xiaoli

    2014-02-15

    A general and reliable fluorescent molecular beacon is proposed in this work utilizing DNA-templated silver nanoclusters (AgNCs). The fluorescent molecular beacon has been employed for sensitive determination of the concentration of adenosine deaminase (ADA) and its inhibition. A well-designed oligonucleotide containing three functional regions (an aptamer region for adenosine assembly, a sequence complementary to the region of the adenosine aptamer, and an inserted six bases cytosine-loop) is adopted as the core element in the strategy. The enzymatic reaction of adenosine catalyzed by ADA plays a key role as well in the regulation of the synthesis of the DNA-templated AgNCs, i.e. the signal indicator. The intensity of the fluorescence signal may thereby determine the concentration of the enzyme and its inhibitor. The detection limit of the ADA can be lowered to 0.05 UL(-1). Also, 100 fM of a known inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA) is enough to present distinguishable fluorescence emission. Moreover, since the fluorescent signal indicator is not required to be bound with the oligonucleotide, this fluorescent molecular beacon may integrate the advantages of both the label-free and signal-on strategies. PMID:24035856

  9. Synthesis and Characterization of Fluorescently Labeled Diblock Copolymers for Location-Specific Measurements of The Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Christie, Dane; Register, Richard; Priestley, Rodney

    Interfaces play a determinant role in the size dependence of the glass transition temperature (Tg) of polymers confined to nanometric length scales. Interfaces are intrinsic in diblock copolymers, which, depending on their molecular weight and composition, are periodically nanostructured in the bulk. As a result diblock copolymers are model systems for characterizing the effect of interfaces on Tg in bulk nanostructured materials. Investigating the effect of intrinsic interfaces on Tg in diblock copolymers has remained unexplored due to their small periodic length scale. By selectively incorporating trace amounts of a fluorescent probe into a diblock copolymer, Tg can be characterized relative to the diblock copolymer's intrinsic interface using fluorescence spectroscopy. Here, pyrene is selectively incorporated into the poly(methyl methacrylate) (PMMA) block of lamellar forming diblock copolymers of poly(butyl- b-methyl methacrylate) (PBMA-PMMA). Preliminary results show a correlation of Tg as measured by fluorescence with the onset of Tg as measured by calorimetry in labeled homopolymers of PMMA. This result is consistent with previous characterizations of Tg using fluorescence spectroscopy. In selectively labeled diblock copolymers Tg is found to vary systematically depending on the distance of the probe from the PBMA-PMMA interface. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF Grant DMR 1420541.

  10. Efficient Blind Spectral Unmixing of Fluorescently Labeled Samples Using Multi-Layer Non-Negative Matrix Factorization

    PubMed Central

    Zudaire, Isabel; Ortiz-de-Solorzano, Carlos

    2013-01-01

    The ample variety of labeling dyes and staining methods available in fluorescence microscopy has enabled biologists to advance in the understanding of living organisms at cellular and molecular level. When two or more fluorescent dyes are used in the same preparation, or one dye is used in the presence of autofluorescence, the separation of the fluorescent emissions can become problematic. Various approaches have been recently proposed to solve this problem. Among them, blind non-negative matrix factorization is gaining interest since it requires little assumptions about the spectra and concentration of the fluorochromes. In this paper, we propose a novel algorithm for blind spectral separation that addresses some of the shortcomings of existing solutions: namely, their dependency on the initialization and their slow convergence. We apply this new algorithm to two relevant problems in fluorescence microscopy: autofluorescence elimination and spectral unmixing of multi-labeled samples. Our results show that our new algorithm performs well when compared with the state-of-the-art approaches for a much faster implementation. PMID:24260120

  11. Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles.

    PubMed

    Santos, Greggy M; Zhao, Fusheng; Zeng, Jianbo; Li, Ming; Shih, Wei-Chuan

    2015-10-01

    We experimentally demonstrate a label-free biosensor for the ERBB2 cancer gene DNA target based on the distance-dependent detection of surface-enhanced fluorescence (SEF) on nanoporous gold disk (NPGD) plasmonic nanoparticles. We achieve detection of 2.4 zeptomole of DNA target on the NPGD substrate with an upper concentration detection limit of 1 nM. Without the use of molecular spacers, the NPGD substrate as an SEF platform was shown to provide higher net fluorescence for visible and NIR fluorophores compared to glass and non-porous gold substrates. The enhanced fluorescence signals in patterned nanoporous gold nanoparticles make NPGD a viable material for further reducing detection limits for biomolecular targets used in clinical assays. With patterned nanoporous gold disk (NPGD) plasmonic nanoparticles, a label-free biosensor that makes use of distance-dependent detection of surface-enhanced fluorescence (SEF) is constructed and tested for zeptomole detection of ERBB2 cancer gene DNA targets. PMID:25727212

  12. Development of oral osteomucosal tissue constructs in vitro and localization of fluorescently-labeled bisphosphonates to hard and soft tissue

    PubMed Central

    BAE, SUSAN; SUN, SHUTING; AGHALOO, TARA; OH, JU-EUN; McKENNA, CHARLES E.; KANG, MO K.; SHIN, KI-HYUK; TETRADIS, SOTIRIOS; PARK, NO-HEE; KIM, REUBEN H.

    2014-01-01

    Bisphosphonates (BPs) are anti-resorptive agents commonly used to treat bone-related diseases; however, soft tissue-related side-effects are frequently reported in some BP users, such as oral or gastrointestinal (GI) ulcerations. BPs are stable analogs of pyrophosphate and have high affinity to hydroxyapatite, allowing them to bind to the bone surfaces and exert suppressive effects on osteoclast functions. However, the underlying mechanisms as to how bone-seeking BPs also exert cytotoxic effects on soft tissue remain unknown. In the present study, we investigated the localization of nitrogen-containing BPs (N-BPs) in hard and soft tissue using fluorescently-labeled N-BPs in vitro. We developed osteomucosal tissue constructs in vitro to recapitulate the hard and soft tissue of the oral cavity. A histological examination of the osteomucosal tissue constructs revealed a differentiated epithelium over the bone containing osteocytes and the periosteum, similar to that observed in the rat palatal tissues. Following treatment with the fluorescently-labeled bisphosphonate, AF647-ZOL, the osteomucosal constructs exhibited fluorescent signals, not only in the bone, but also in the epithelium. No fluorescent signals were observed from the control- or ZOL-treated constructs, as expected. Collectively, the data from the present study suggest that N-BPs localize to epithelial tissue and that such a localization and subsequent toxicity of N-BPs may be associated, at least in part, with soft tissue-related side-effects. PMID:24920042

  13. Native purification and labeling of RNA for single molecule fluorescence studies

    PubMed Central

    Rinaldi, Arlie J.; Suddala, Krishna C.; Walter, Nils G.

    2012-01-01

    The recent discovery that non-coding RNAs are considerably more abundant and serve a much wider range of critical cellular functions than recognized over previous decades of research into molecular biology has sparked a renewed interest in the study of structure-function relationships of RNA. To perform their functions in the cell, RNAs must dominantly adopt their native conformations, avoiding deep, non-productive kinetic traps that may exist along a frustrated (rugged) folding free energy landscape. Intracellularly, RNAs are synthesized by RNA polymerase and fold co-transcriptionally starting from the 5’ end, sometimes with the aid of protein chaperones. By contrast, in the laboratory RNAs are commonly generated by in vitro transcription or chemical synthesis, followed by purification in a manner that includes the use of high concentrations of urea, heat and UV light (for detection), resulting in the denaturation and subsequent refolding of the entire RNA. Recent studies into the nature of heterogeneous RNA populations resulting from this process have underscored the need for non-denaturing (native) purification methods that maintain the co-transcriptional fold of an RNA. Here, we present protocols for the native purification of an RNA after its in vitro transcription and for fluorophore and biotin labeling methods designed to preserve its native conformation for use in single molecule fluorescence resonance energy transfer (smFRET) inquiries into its structure and function. Finally, we present methods for taking smFRET data and for analyzing them, as well as a description of plausible overall preparation schemes for the plethora of non-coding RNAs. PMID:25352138

  14. Fluorescently-Labeled Estradiol Internalization and Membrane Trafficking in Live N-38 Neuronal Cells Visualized with Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Kisler, Kassandra; Chow, Robert H; Dominguez, Reymundo

    2013-04-20

    Estradiol is a steroid hormone that binds and activates estradiol receptors. Activation of these receptors is known to modulate neuronal physiology and provide neuroprotection, but it is not completely understood how estradiol mediates these actions on the nervous system. Activation of a sub-population of estradiol receptor-α (ERα), originally identified as a nuclear protein, localizes to the plasma membrane and appears to be a critical step in neuroprotection against brain injury and disease. Previously we showed that estradiol stimulates the rapid and transient trafficking of plasma membrane ERα in primary hypothalamic neurons, and internalization of membrane-impermeant estradiol (E6BSA-FITC) into cortical neuron endosomes in vitro. These findings support the concept that estradiol activates and down-regulates plasma membrane ERα by triggering endocytosis. Here, we use TIRFM (total internal reflection fluorescence microscopy) to image the trafficking of E6BSA-FITC, and GFP-labeled ERα, in live cells in real time. We show that activation of plasma membrane ERs by E6BSA-FITC result in internalization of the fluorescent ligand in live N-38 neurons, an immortalized hypothalamic cell line. Pretreatment with ER antagonist ICI 182,780 decreased the number of E6BSA-FITC labeled puncta observed. We also observed in live N-38 neurons that E6BSA-FITC co-localized with FM4-64 and LysoTracker fluorescent dyes that label endosomes and lysosomes. Our results provide further evidence that plasma membrane ERα activation results in endocytosis of the receptor. PMID:24353903

  15. Labelling of silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Lu, Meihua

    2007-07-01

    Fluorescent microspheres have been demonstrated to be useful in a variety of biological applications. Fluorescent silica or polymer microspheres have been produced by incorporation of chromophores into the microspheres, which usually produces microspheres with nonuniform sizes and reduced fluorescence. Here we present a simple and straightforward method to produce silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals grown on the surface. LaF3 nanocrystals are in situ grown on silica microspheres of different sizes to form a raspberry-like structure. The microspheres exhibit strong fluorescence and the colour could be altered by changing the lanthanide ions doped in LaF3 nanocrystals.

  16. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay

    NASA Astrophysics Data System (ADS)

    Xing, Yun-Peng; Liu, Chun; Zhou, Xiao-Hong; Shi, Han-Chang

    2015-01-01

    This work was the first to report that the kanamycin-binding DNA aptamer (5'-TGG GGG TTG AGG CTA AGC CGA-3') can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA-TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 μM to 20 μM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future.

  17. Single Molecule 3D Orientation in Time and Space: A 6D Dynamic Study on Fluorescently Labeled Lipid Membranes.

    PubMed

    Börner, Richard; Ehrlich, Nicky; Hohlbein, Johannes; Hübner, Christian G

    2016-05-01

    Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels. As the method is based on the detection of single photons, it additionally allows for performing fluorescence correlation spectroscopy (FCS) as well as dynamical anisotropy measurements thereby providing access to fast orientational dynamics down to the nanosecond time scale. The 3D orientation is particularly interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination at different timescales and quantifying the associated errors. The vesicles provide a well-defined spherical surface, such that the use of fluorescent lipid dyes (DiO) allows to establish a a wide range of dipole orientations experimentally. To complement our experimental data, we performed Monte Carlo simulations of the rotational dynamics of dipoles incorporated into lipid membranes. Our study offers a comprehensive view on the dye orientation behavior in a lipid membrane with high spatiotemporal resolution representing a six-dimensional fluorescence detection approach. PMID:26972111

  18. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay

    PubMed Central

    Xing, Yun-Peng; Liu, Chun; Zhou, Xiao-Hong; Shi, Han-Chang

    2015-01-01

    This work was the first to report that the kanamycin-binding DNA aptamer (5′-TGG GGG TTG AGG CTA AGC CGA-3′) can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA–TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 μM to 20 μM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future. PMID:25634469

  19. Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise.

    PubMed

    Lin, Chunshui; Cai, Zhixiong; Wang, Yiru; Zhu, Zhi; Yang, Chaoyong James; Chen, Xi

    2014-07-15

    A simple, rapid, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection was developed using a loop DNA probe with low background noise. In this strategy, a loop DNA probe, which is the substrate for both ligation and digestion enzyme reaction, was designed. SYBR green I (SG I), a double-stranded specific dye, was applied for the readout fluorescence signal. Exonuclease I (Exo I) and exonuclease III (Exo III), sequence-independent nucleases, were selected to digest the loop DNA probe in order to minimize the background fluorescence signal. As a result, in the absence of ATP, the loop DNA was completely digested by Exo I and Exo III, leading to low background fluorescence owing to the weak electrostatic interaction between SG I and mononucleotides. On the other hand, ATP induced the ligation of the nicking site, and the sealed loop DNA resisted the digestion of Exo I and ExoIII, resulting in a remarkable increase of fluorescence response. Upon background noise reduction, the sensitivity of the ATP determination was improved significantly, and the detection limitation was found to be 1.2 pM, which is much lower than that in almost all the previously reported methods. This strategy has promise for wide application in the determination of ATP. PMID:24983417

  20. Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A. )

    1993-01-01

    A flow cytometric method has been developed that uses phase-sensitive detection to separate signals from simultaneous fluorescence emissions in cells labeled with fluorochromes having different fluorescence decay lifetimes. CHO cells were stained with propidium iodide (PI) and fluorescein isothiocyanate (FITC). These dyes bind to DNA and protein and the fluorescence lifetimes of the bound dyes are 15.0 and 3.6 ns, respectively. Cells were analyzed as they passed through a modulated (sinusoidal) laser excitation beam. Fluorescence was measured using only a long-pass filter to block scattered laser excitation light and a single photomultiplier tube detector. The fluorescence detector output signals were processed by dual-channel phase-sensitive detection electronics and the phase-resolved PI and FITC signals were displayed as frequency distribution histograms and bivariate plots. By shifting the phase of one detector channel reference signal by [pi]/2 + [phi][sub 1] degrees and the phase of the other detector channel reference signal by -[pi]/2 + [phi][sub 2] degrees, where [phi][sub 1] and [phi][sub 2] are the phase shifts associated with the PI and FITC lifetimes, the PI and FITC signals were separately resolved at their respective phase-sensitive detector outputs. This technology is also applicable to suppressing by cellular autofluorescence, unbound/free dye, nonspecific dye binding, and Raman and Rayleigh scattering. 21 refs., 2 figs.

  1. Preparation of fluorescently-labeled amyloid-beta peptide assemblies: the effect of fluorophore conjugation on structure and function

    PubMed Central

    Jungbauer, L. M.; Yu, C; Laxton, K. J.; LaDu, M. J.

    2009-01-01

    Recent research has focused on soluble oligomeric assemblies of the 42 amino acid isoform of the amyloid-beta peptide (Aβ42) as the proximal cause of neuronal injury, synaptic loss, and the eventual dementia associated with Alzheimer’s disease (AD). While neurotoxicity, neuroinflammation, and deficits in behavior and memory have all been attributed to oligomeric Aβ42, the specific roles for this assembly in the cellular neuropathology of AD remain poorly understood. In particular, lack of reliable and well-characterized forms of easily detectable Aβ42 oligomers has hindered study of the cellular trafficking of exogenous Aβ42 by neurons in vitro and in vivo. Therefore, the objective of this study is to fluorescently label soluble oligomeric Aβ42 without altering the structure or function of this assembly. Previous studies have demonstrated the advantages of using tapping mode atomic force microscopy (AFM) to characterize the structural assemblies formed by synthetic Aβ42 under specific solution conditions (e.g., oligomers, protofibrils, and fibrils). Here, we extend these methods to establish a strategy for fluorescent labeling of oligomeric Aβ42 assemblies that are structurally comparable to unlabeled oligomeric Aβ42. To compare function, we demon-strate that the uptake of labeled and unlabeled oligomeric Aβ42 by neurons in vitro is similar. AFM-characterized fluorophore-Aβ42 oligomers are an exciting new reagent for use in a variety of studies designed to elucidate critical cellular and molecular mechanisms underlying the functions of this Aβ42 assembly form in AD. PMID:19343729

  2. Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.

    PubMed

    Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin

    2016-08-01

    Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels. PMID:27334762

  3. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles

    PubMed Central

    Rennhak, Markus; Reller, Armin

    2014-01-01

    Summary The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core–shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh) are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4–260 ± 40 nm diameter) can be prepared and decorated with noble metal nanoparticles (2–5 nm diameter). Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation. PMID:25671137

  4. Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

    NASA Astrophysics Data System (ADS)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2015-12-01

    Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time

  5. Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

    NASA Astrophysics Data System (ADS)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-02-01

    Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time

  6. Synthesis and properties of peptide nucleic acid labeled at the N-terminus with HiLyte Fluor 488 fluorescent dye.

    PubMed

    Hnedzko, Dziyana; McGee, Dennis W; Rozners, Eriks

    2016-09-15

    Fluorescently labeled peptide nucleic acids (PNAs) are important tools in fundamental research and biomedical applications. However, synthesis of labeled PNAs, especially using modern and expensive dyes, is less explored than similar preparations of oligonucleotide dye conjugates. Herein, we present a simple procedure for labeling of the PNA N-terminus with HiLyte Fluor 488 as the last step of solid phase PNA synthesis. A minimum excess of 1.25equiv of activated carboxylic acid achieved labeling yields close to 90% providing a good compromise between the price of dye and the yield of product and significant improvement over previous literature procedures. The HiLyte Fluor 488-labeled PNAs retained the RNA binding ability and in live cell fluorescence microscopy experiments were brighter and significantly more photostable than PNA labeled with carboxyfluorescein. In contrast to fluorescein-labeled PNA, the fluorescence of PNAs labeled with HiLyte Fluor 488 was independent of pH in the biologically relevant range of 5-8. The potential of HiLyte Fluor 488-labeling for studies of PNA cellular uptake and distribution was demonstrated in several cell lines. PMID:27430566

  7. Synthesis and properties of acridone-labeled base-discriminating fluorescent (BDF) nucleosides.

    PubMed

    Saito, Yoshio; Hanawa, Kazuo; Bag, Subhendu Sekhar; Motegi, Kaori; Saito, Isao

    2006-01-01

    We have developed novel acridone-labelled BDF probe which showed its potential in recognizing opposite matched base from its target sequence via enhancement of fiuorescence intensity. This probe emit at a longer wavelength than previously reported pyrene-labelled BDF probe and thus can be used in DNA chip. PMID:17150877

  8. A single-label fluorescent derivatization method for quantitative determination of neurotoxin in vivo by capillary electrophoresis coupled with laser-induced fluorescence detection.

    PubMed

    Chen, Cuiwei; Hu, Yiqin; Shi, Xiaowei; Tao, Chenghao; Zheng, Hongyue; Fei, Weidong; Han, Shunping; Zhu, Jiazhen; Wei, Yinghui; Li, Fanzhu

    2016-07-21

    Neurotoxin (NT), a short-chain α-neurotoxin, is the main neurotoxic protein identified from the venom of Naja naja atra. As an effective drug for the analgesis of advanced cancer patients, NT lasts longer than morphine and does not cause addiction. However, achieving a sensitive and high-resolution measurement of NT is difficult because of the extra-low content of NT in vivo. Therefore, developing a novel method to quantify NT is essential to study its pharmacokinetics in vivo. Although NT contains four primary amine groups that could react with the thiourea in fluorescein isothiocyanate (FITC), we developed a simple and reproducible single-label fluorescent derivatization method for NT which is related to the reaction of N-terminal α-amino of NT alone under optimized derivatization conditions. Furthermore, neurotoxin labelled with fluorescein isothiocyanate (NT-FITC) was prepared by high-performance liquid chromatography (HPLC) with a purity value higher than 99.29% and identified by MALDI-TOF/TOF-MS. Finally, NT-FITC could be detected at 0.8 nmol L(-1) in rat plasma using capillary electrophoresis coupled with laser induced fluorescence detection (CE-LIF). In this paper, the established method robustly and reliably quantified NT labelled with FITC via intravenous and intramuscular administrations in vivo. In addition, this work fully demonstrated the pharmacokinetic characteristics of NT in vivo, which could reduce the risk of drug accumulation, optimize therapies, and provide sufficient evidence for the rational use of NT in clinical and research laboratories. PMID:27175860

  9. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    PubMed

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be

  10. Separation of uncompromised whole blood mixtures for single source STR profiling using fluorescently-labeled human leukocyte antigen (HLA) probes and fluorescence activated cell sorting (FACS).

    PubMed

    Dean, Lee; Kwon, Ye Jin; Philpott, M Katherine; Stanciu, Cristina E; Seashols-Williams, Sarah J; Dawson Cruz, Tracey; Sturgill, Jamie; Ehrhardt, Christopher J

    2015-07-01

    Analysis of biological mixtures is a significant problem for forensic laboratories, particularly when the mixture contains only one cell type. Contributions from multiple individuals to biologic evidence can complicate DNA profile interpretation and often lead to a reduction in the probative value of DNA evidence or worse, its total loss. To address this, we have utilized an analytical technique that exploits the intrinsic immunological variation among individuals to physically separate cells from different sources in a mixture prior to DNA profiling. Specifically, we applied a fluorescently labeled antibody probe to selectively bind to one contributor in a mixture through allele-specific interactions with human leukocyte antigen (HLA) proteins that are expressed on the surfaces of most nucleated cells. Once the contributor's cells were bound to the probe, they were isolated from the mixture using fluorescence activated cell sorting (FACS)-a high throughput technique for separating cell populations based on their optical properties-and then subjected to STR analysis. We tested this approach on two-person and four-person whole blood mixtures where one contributor possessed an HLA allele (A*02) that was not shared by other contributors to the mixture. Results showed that hybridization of the mixture with a fluorescently-labeled antibody probe complimentary to the A*02 allele's protein product created a cell population with a distinct optical profile that could be easily differentiated from other cells in the mixture. After sorting the cells with FACS, genetic analysis showed that the STR profile of this cell population was consistent with that of the contributor who possessed the A*02 allele. Minor peaks from the A*02 negative contributor(s) were observed but could be easily distinguished from the profile generated from A*02 positive cells. Overall, this indicates that HLA antibody probes coupled to FACS may be an effective approach for generating STR profiles of

  11. Preparation and application of new fluorescein-labeled fumonisins B1 in fluorescence polarization analysis technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To prepare a new fluorescent tracer against common mycotoxins such as fumonisin B1 in order to replace 6-(4,6-Dichlorotriazinyl) aminofluorescein (6-DTAF), an expensive marker, and to develop a technique for quick detection of fumonisin B1 based on the principle of fluorescence polarizati...

  12. High-throughput detection of food-borne pathogenic bacteria using oligonucleotide microarray with quantum dots as fluorescent labels.

    PubMed

    Huang, Aihua; Qiu, Zhigang; Jin, Min; Shen, Zhiqiang; Chen, Zhaoli; Wang, Xinwei; Li, Jun-Wen

    2014-08-18

    Bacterial pathogens are mostly responsible for food-borne diseases, and there is still substantial room for improvement in the effective detection of these organisms. In the present study, we explored a new method to detect target pathogens easily and rapidly with high sensitivity and specificity. This method uses an oligonucleotide microarray combined with quantum dots as fluorescent labels. Oligonucleotide probes targeting the 16SrRNA gene were synthesized to create an oligonucleotide microarray. The PCR products labeled with biotin were subsequently hybridized using an oligonucleotide microarray. Following incubation with CdSe/ZnS quantum dots coated with streptavidin, fluorescent signals were detected with a PerkinElmer Gx Microarray Scanner. The results clearly showed specific hybridization profiles corresponding to the bacterial species assessed. Two hundred and sixteen strains of food-borne bacterial pathogens, including standard strains and isolated strains from food samples, were used to test the specificity, stability, and sensitivity of the microarray system. We found that the oligonucleotide microarray combined with quantum dots used as fluorescent labels can successfully discriminate the bacterial organisms at the genera or species level, with high specificity and stability as well as a sensitivity of 10 colony forming units (CFU)/mL of pure culture. We further tested 105 mock-contaminated food samples and achieved consistent results as those obtained from traditional biochemical methods. Together, these results indicate that the quantum dot-based oligonucleotide microarray has the potential to be a powerful tool in the detection and identification of pathogenic bacteria in foods. PMID:24927399

  13. Diaminobenzidine photoconversion is a suitable tool for tracking the intracellular location of fluorescently labelled nanoparticles at transmission electron microscopy

    PubMed Central

    Malatesta, M.; Giagnacovo, M.; Costanzo, M.; Conti, B.; Genta, I.; Dorati, R.; Galimberti, V.; Biggiogera, M.; Zancanaro, C.

    2012-01-01

    Chitosan-based nanoparticles (NPs) deserve particular attention as suitable drug carriers in the field of pharmaceutics, since they are able to protect the encapsulated drugs and/or improve their efficacy by making them able to cross biological barriers (such as the blood-brain barrier) and reach their intracellular target sites. Understanding the intracellular location of NPs is crucial for designing drug delivery strategies. In this study, fluorescently-labelled chitosan NPs were administered in vitro to a neuronal cell line, and diaminobenzidine (DAB) photoconversion was applied to correlate fluorescence and transmission electron microscopy to precisely describe the NPs intracellular fate. This technique allowed to demonstrate that chitosan NPs easily enter neuronal cells, predominantly by endocytosis; they were found both inside membrane-bounded vesicles and free in the cytosol, and were observed to accumulate around the cell nucleus. PMID:22688301

  14. Label-free fluorescence turn-on detection of uracil DNA glycosylase activity based on G-quadruplex formation.

    PubMed

    Ma, Changbei; Wu, Kefeng; Liu, Haisheng; Xia, Kun; Wang, Kemin; Wang, Jun

    2016-11-01

    We have developed a new methodology for fluorescence turn-on detection of uracil DNA glycosylase (UDG) activity based on G-quadruplex formation using a thioflavin T probe. In the presence of UDG, it catalyzed the hydrolysis of the uracil bases in the duplex DNA, resulting in the dissociation of the duplex DNA owing to their low melting temperature. Then, the probe DNA can be recognized quickly by the ThT dye and resulting in an increase in fluorescence. This approach is highly selective and sensitive with a detection limit of 0.01U/mL. It is simple and cost effective without requirement of labeling with a fluorophore-quencher pair. This new method could be used to evaluate the inhibition effect of 5-fluorouracil on UDG activity, and become a useful tool in biomedical research. PMID:27591637

  15. Dual-Mode SERS-Fluorescence Immunoassay Using Graphene Quantum Dot Labeling on One-Dimensional Aligned Magnetoplasmonic Nanoparticles.

    PubMed

    Zou, Fengming; Zhou, Hongjian; Tan, Tran Van; Kim, Jeonghyo; Koh, Kwangnak; Lee, Jaebeom

    2015-06-10

    A novel dual-mode immunoassay based on surface-enhanced Raman scattering (SERS) and fluorescence was designed using graphene quantum dot (GQD) labels to detect a tuberculosis (TB) antigen, CFP-10, via a newly developed sensing platform of linearly aligned magnetoplasmonic (MagPlas) nanoparticles (NPs). The GQDs were excellent bilabeling materials for simultaneous Raman scattering and photoluminescence (PL). The one-dimensional (1D) alignment of MagPlas NPs simplified the immunoassay process and enabled fast, enhanced signal transduction. With a sandwich-type immunoassay using dual-mode nanoprobes, both SERS signals and fluorescence images were recognized in a highly sensitive and selective manner with a detection limit of 0.0511 pg mL(-1). PMID:26006156

  16. "Molecular beacon"-hosted thioflavin T: Applications for label-free fluorescent detection of iodide and logic operations.

    PubMed

    Li, Yan-Yun; Jiang, Xiao-Qin; Lu, Ling-Fei; Zhang, Min; Shi, Guoyue

    2016-04-01

    In this work, we presented a simple, label-free and rapid-responsive fluorescence assay for iodide (I(-)) detection based on "molecular beacon (MB)"-hosted thioflavin T (ThT), achieving a limit of detection as low as 158 nM. The proposed method exhibited very good selectivity to I(-) ions over other anions interference due to the strong binding force between I(-) ions with Hg(2+). Upon the addition of I(-) ions, it would capture Hg(2+) from a T-Hg(2+)-T complex belonging to the MB-like DNA hairpin structure, which eventually quenched the initial fluorescence as output. In addition, it was successfully applied for operation of an integrated DNA logic gate system and to the determination of I(-) in real samples such as human urine. PMID:26838450

  17. Non-linear fluorescence excitation of Rhodamine 6G and TRITC labeled IgG in whispering gallery mode microresonators

    NASA Astrophysics Data System (ADS)

    Pastells, Carme; Marco, M. Pilar; Merino, David; Loza-Alvarez, Pablo; Pasquardini, Laura; Pederzolli, Cecilia; Farnesi, Daniele; Berneschi, Simone; Righini, Giancarlo C.; Nunzi Conti, Gualtiero; Soria Huguet, Silvia

    2015-03-01

    We report the non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a microspherical whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also tested the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are tetramethyl rhodamine isothiocyanate and Rhodamine 6G. All measurements were performed in a modified confocal microscope.

  18. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    PubMed

    Chen, Lijuan; Phillips, M Ian; Miao, Hui-Lai; Zeng, Rong; Qin, Gangjian; Kim, Il-man; Weintraub, Neal L; Tang, Yaoliang

    2014-01-01

    Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry), have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs) by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF) using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo. PMID:25357000

  19. Fluorescent oligomer as a chemosensor for the label-free detection of Fe(3+) and dopamine with selectivity and sensitivity.

    PubMed

    Zhao, Lingli; Xin, Xia; Ding, Peng; Song, Aixin; Xie, Zengchun; Shen, Jinglin; Xu, Guiying

    2016-07-01

    In this article, a sensitive and selective turn-off fluorescence chemosensor, Tyloxapol (one kind of water soluble oligomer), was developed for the label-free detection of Fe(3+) ions in aqueous solution. Fluorescence (FL) experiments demonstrated that Tyloxapol was a sensitive and selective fluorescence sensor for the detection of Fe(3+) directly in water over a wide range of metal cations including Na(+), K(+), Ag(+), Hg(2+), Cd(2+), Co(2+), Cu(2+), Cr(3+), Mn(2+), Ba(2+), Zn(2+), Ni(2+), Mg(2+), Ca(2+), and Pb(2+). Moreover, the fluorescence intensity of Tyloxapol has shown a linear response to Fe(3+) in the concentration range of 0-100 μmol L(-1) with a detection limit of 2.2 μmol L(-1) in aqueous solution. Next, based on a competition mechanism, another turn-on sensing application of the Tyloxapol/Fe(3+) platform to probe dopamine (DA) against various other biological molecules such as other neurotransmitters or amino acids (norepinephrine bitartrate, acetylcholine chloride, alanine, valine, phenylalanine, tyrosine, leucine, glycine, histidine) were also investigated. It is expected that our strategy may offer a new approach for developing simple, cost-effective, rapid and sensitive sensors in biological and environmental applications. PMID:27216398

  20. Cationic-perylene-G-quadruplex complex based fluorescent biosensor for label-free detection of Pb(2+).

    PubMed

    Zhao, Xu-Hua; Gong, Liang; Wu, Yuan; Zhang, Xiao-Bing; Xie, Jun

    2016-03-01

    In this work we use a water-soluble cationic perylene derivative (compound 1) as the G-quadruplex (G4) structure fluorescence indicator to construct a fluorescent biosensor for simple, rapid and label-free detection of Pb(2+). In the absence of Pb(2+), strong electrostatic interactions between compound 1 and the G-rich DNA probe (PW17) induced the aggregation of compound 1 and resulted in the fluorescence quenching. In the presence of Pb(2+), the PW17 formed Pb(2+)-stabilized G4 structure, which reduced the aggregation of compound 1 and gave rise to high fluorescence. This allowed us to use convenient "mix-and-detect" protocol for quantitative analysis of Pb(2+). Since Pb(2+) can specially induce PW17 to form compact DNA fold, our proposed biosensor displayed high selectivity for Pb(2+). It also exhibited a high sensitivity to Pb(2+), with a limit of detection of 5.0nM observed. Furthermore, the biosensor was applied for the detection of Pb(2+) in urine and paint samples, and both showed satisfactory results. PMID:26717819

  1. A label-free and sensitive fluorescent assay for one step detection of protein kinase activity and inhibition.

    PubMed

    Wang, Lei; Yan, Xu; Su, Xingguang

    2016-09-01

    In this paper, a label-free, highly sensitive and simple assay for one step detection of protein kinase (PKA) activity and inhibition that avoids the fluorescent dye process has been established. The detection was based on the fluorescence (FL) quenching of peptide-Ag nanoclusters (Ag NCs) caused by antibody modified Au nanoparticles (anti-Au NPs) via fluorescence resonance energy transfer (FRET). With PKA and adenosine 5'-triphosphate (ATP) introduced, the substrate peptide of Ag NCs could react with PKA via targeted phosphorylation, and followed by the linking interactions between peptide-Ag NCs and anti-Au NPs. According to the fluorescence quenching of Ag NCs, the activity of protein kinase can be facilely monitored in the range of 0.1-2000 mU/μL with high sensitivity. The detection limit for PKA is 0.039 mU/μL. We further explored the inhibitory effect of H-89 for protein kinase activity. The developed method was also applied to the investigation of drug-induced PKA activation in HeLa cells, which provides a promising means for screening of kinase-related drugs and the clinical diagnosis of disease. PMID:27543031

  2. Uptake and distribution of fluorescently labeled cobalamin in neoplastic and healthy breast tissue

    NASA Astrophysics Data System (ADS)

    Cannon, Michelle J.; McGreevy, James M.; Holden, Joseph A.; West, Frederick G.; Grissom, Charles B.

    2000-05-01

    Fluorescent analogs of cobalamin (vitamin B12) have been developed as diagnostic markers of cancer cells. These compounds are recognized by transcobalamin, a cobalamin transport protein, with high affinity, as shown by surface plasmon resonance. The cellular sequestration and gross distribution of fluorescent cobalamin bioconjugates in breast tissue is being examined by epifluorescence microscopy. The distribution of each compound is being evaluated in proliferative and non-proliferative tissue, i.e. normal tissue and breast carcinoma. The results of preliminary studies suggest that fluorescent analogs of cobalamin may be a useful tool in therapeutic breast operations to define tumor margins and to distinguish neoplastic breast tissue from healthy breast tissue.

  3. Assessment of fluorescent-labeled bacteria for evaluation of in vivo uptake of bacteria (Vibrio spp.) by crustacean larvae.

    PubMed

    Soto-Rodriguez, S A; Simões, N; Jones, D A; Roque, A; Gomez-Gil, B

    2003-01-01

    Available methods to study crustacean digestive tract colonization by bacteria are laborious, time-consuming, and do not permit in vivo assays and observation. This paper reports on a rapid and consistent technique to apply a fluorescent label to bacteria, which can then be presented to filter-feeding crustacea such as Artemia and penaeid larvae for later in situ bacterial distribution observation. Three luminescent Vibrio spp. were stained and observed inside Artemia nauplii, shrimp zoea and mysis stages, Vibrio harveyi type strain ATCC 14126, M(1) (pathogenic) and Ea (non-pathogenic). Factors such as dye (DTAF) concentration, exposure time/temperature and sonication time were evaluated. Viability of the dye and stained bacteria were tested at 4, -20 and -70 degrees C storage temperatures for up to 81 days. Results show that 4 and -20 degrees C storage temperatures are not recommended. At -70 degrees C, both bacteria and dye are optimally preserved. Monodispersed fluorescent-labeled bacterial cells can be observed inside the digestive tract of crustacean larvae at a density of inoculation as high as 5.2 x 10(6) CFU ml(-1). After 2 to 4 h, some leaching occurs, increasing difficulty in observation, although after 24 h, it is still possible to observe monodispersed FLB inside the digestive tract of crustacean larvae. Autofluorescence may complicate observation when filter-feeding crustacean larvae are co-fed with microalgae. PMID:12401232

  4. Use of the fluorescent probe LAURDAN to label and measure inner membrane fluidity of endospores of Clostridium spp.

    PubMed

    Hofstetter, Simmon; Denter, Christian; Winter, Roland; McMullen, Lynn M; Gänzle, Michael G

    2012-10-01

    A method for measuring the fluidity of inner membranes of populations of endospores of Clostridium spp. with a fluorescent dye was developed. Cells of Clostridium beijerinckii ATCC 8260 and Clostridium sporogenes ATCC 7955 were allowed to sporulate in the presence of 6-dodecanoyl-2-dimethylaminonaphthalene (LAURDAN) on a soil-based media. Labeling of endospores with LAURDAN did not affect endospore viability. Removal of the outer membranes of endospores was done using a chemical treatment and confirmed using transmission electron microscopy (TEM). Two-photon confocal laser scanning microscopy (CLSM), and generalized polarization (GP) measurements were used to assess fluorescence of endospores. Lipid composition analysis of cells and endospores was done to determine whether differences in GP values are attributable to differences in membrane composition. Removal of the outer membranes of endospores did not significantly impact GP values. Decoated, labeled endospores of C. sporogenes ATCC 7955 and C. beijerinckii ATCC 8260 exhibited GP values of 0.77±0.031 and 0.74±0.027 respectively. Differences in ratios of fatty acids between cells and endospores are unlikely to be responsible for high GP values observed in endospores. These GP values indicate high levels of lipid order and the exclusion of water from within inner membranes of endospores. PMID:22884687

  5. Improving the visualization of fluorescently tagged nanoparticles and fluorophore-labeled molecular probes by treatment with CuSO(4) to quench autofluorescence in the rat inner ear.

    PubMed

    Zhang, Ya; Zhang, Weikai; Johnston, Alexander H; Newman, Tracey A; Pyykkö, Ilmari; Zou, Jing

    2010-10-01

    Fluorescent tags and fluorophore-conjugated molecular probes have been extensively employed in histological studies to demonstrate nanoparticle distribution in inner ear cell populations. However, autofluorescence that exists in the rodent cochleae disturbs visualization of the fluorescent tags and fluorophore labeling. In the present work, we aimed to improve the visualization of fluorescently tagged nanoparticles and fluorophore-labeled molecular probes by treatment with CuSO(4) to quench autofluorescence in the rat inner ear. The in vivo study was performed on eight- to nine-month-old rats using confocal laser scanning microscopy, and the in vitro study was carried out with DiI-tagged poly(ethylene glycol) and poly(capro-lactone) polymersomes and different fluorescent-labeling agents using a spectrofluorometer. The nanoparticles were intratympanically administered using either an osmotic pump or transtympanic injection. Abundant autofluorescence was detected in spiral ganglion cells (SGCs), stria marginal cells, spiral ligament fibrocytes (SL) and the subcuticular cytoplasm of inner hair cells (IHCs). Sparsely distributed faint autofluorescence was also visualized in outer hair cells (OHCs). The autofluorescence was eliminated by treatment with 1 mM CuSO(4) (in 0.01 M ammonium acetate buffer) for 70-90 min, while the fluorescent tag in the nanoparticle was absolutely preserved and the labeling fluorescence signals of the molecular probes were mostly retained. PMID:20659540

  6. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    SciTech Connect

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.

  7. Correlative Fluorescence and Scanning Electron Microscopy of Labelled Core Fucosylated Glycans Using Cryosections Mounted on Carbon-Patterned Glass Slides.

    PubMed

    Vancová, Marie; Nebesářová, Jana

    2015-01-01

    The aim of the study is co-localization of N-glycans with fucose attached to N-acetylglucosamine in α1,3 linkage, that belong to immunogenic carbohydrate epitopes in humans, and N-glycans with α1,6-core fucose typical for mammalian type of N-linked glycosylation. Both glycan epitopes were labelled in cryosections of salivary glands isolated from the tick Ixodes ricinus. Salivary glands secrete during feeding many bioactive molecules and influence both successful feeding and transmission of tick-borne pathogens. For accurate and reliable localization of labelled glycans in both fluorescence and scanning electron microscopes, we used carbon imprints of finder or indexed EM grids on glass slides. We discuss if the topographical images can provide information about labelled structures, the working setting of the field-emission scanning electron microscope and the influence of the detector selection (a below-the-lens Autrata improved YAG detector of back-scattered electrons; in-lens and conventional Everhart-Thornley detectors of secondary electrons) on the imaging of gold nanoparticles, quantum dots and osmium-stained membranes. PMID:26690057

  8. Correlative Fluorescence and Scanning Electron Microscopy of Labelled Core Fucosylated Glycans Using Cryosections Mounted on Carbon-Patterned Glass Slides

    PubMed Central

    Vancová, Marie; Nebesářová, Jana

    2015-01-01

    The aim of the study is co-localization of N-glycans with fucose attached to N-acetylglucosamine in α1,3 linkage, that belong to immunogenic carbohydrate epitopes in humans, and N-glycans with α1,6-core fucose typical for mammalian type of N-linked glycosylation. Both glycan epitopes were labelled in cryosections of salivary glands isolated from the tick Ixodes ricinus. Salivary glands secrete during feeding many bioactive molecules and influence both successful feeding and transmission of tick-borne pathogens. For accurate and reliable localization of labelled glycans in both fluorescence and scanning electron microscopes, we used carbon imprints of finder or indexed EM grids on glass slides. We discuss if the topographical images can provide information about labelled structures, the working setting of the field-emission scanning electron microscope and the influence of the detector selection (a below-the-lens Autrata improved YAG detector of back-scattered electrons; in-lens and conventional Everhart-Thornley detectors of secondary electrons) on the imaging of gold nanoparticles, quantum dots and osmium-stained membranes. PMID:26690057

  9. Decorating the Edges of a 2D Polymer with a Fluorescence Label.

    PubMed

    Zhao, Yingjie; Bernitzky, Richard H M; Kory, Max J; Hofer, Gregor; Hofkens, Johan; Schlüter, A Dieter

    2016-07-20

    This work proves the existence and chemical addressability of defined edge groups of a 2D polymer. Pseudohexagonally prismatic single crystals consisting of layered stacks of a 2D polymer are used. They should expose anthracene-based edge groups at the six (100) but not at the two pseudohexagonal (001) and (001̅) faces. The crystals are reacted with the isotopically enriched dienophiles maleic anhydride and a C18-alkyl chain-modified maleimide. In both cases the corresponding Diels-Alder adducts between these reagents and the edge groups are formed as confirmed by solid state NMR spectroscopy. The same applies to a maleimide derivative carrying a BODIPY dye which was chosen for its fluorescence to be out of the range of the self-fluorescence of the 2D polymer crystals stemming from contained template molecules. If the crystals are excited at λ = 633 nm, their (100) faces and thus their rims fluoresce brightly, while the pseudohexagonal faces remain silent. This is visible when the crystals lie on a pseudohexagonal face. Lambda-mode laser scanning microscopy confirms this fluorescence to originate from the BODIPY dye. Micromechanical exfoliation of the dye-modified crystals results in thinner sheet packages which still exhibit BODIPY fluorescence right at the rim of these packages. This work establishes the chemical nature of the edge groups of a 2D polymer and is also the first implementation of an edge group modification similar to end group modifications of linear polymers. PMID:27347597

  10. Nonviral in situ green fluorescent protein labeling and culture of primary, adult human hair follicle epithelial progenitor cells.

    PubMed

    Tiede, Stephan; Koop, Norbert; Kloepper, Jennifer E; Fässler, Reinhard; Paus, Ralf

    2009-11-01

    In this article we show that cloning of the human K15 promoter before a green fluorescence protein (GFP)/geneticin-resistance cassette and transfection of microdissected, organ-cultured adult human scalp hair follicles generates specific K15 promoter-driven GFP expression in their stem cell-rich bulge region. K15-GFP+ cells can be visualized in situ by GFP fluorescence and 2-photon laser scanning microscopy. Vital K15-GFP+ progenitor cells can then be selected by using the criteria of their green fluorescence, adhesion to collagen type IV and fibronectin, and geneticin resistance. Propagated K15-GFP+ cells express epithelial progenitor markers, show the expected differential gene expression profile of human bulge epithelium, and form holoclones. This application of nonretroviral, K15 promoter-driven, GFP labeling to adult human hair follicles facilitates the characterization and manipulation of human epithelial stem cells, both in situ and in vitro, and should be transferable to other complex human tissues. PMID:19750535

  11. A label-free fluorescent molecular beacon based on DNA-Ag nanoclusters for the construction of versatile Biosensors.

    PubMed

    Cao, Qiao; Teng, Ye; Yang, Xuan; Wang, Jin; Wang, Erkang

    2015-12-15

    In this paper, we developed a simple, low-cost and sensitive DNA sequences detection biosensor based on a label-free molecular beacon (MB) whose DNA hairpin structure terminal has a guanine-rich sequence that can enhance fluorescence of silver nanoclusters (Ag NCs). Without hybridization between hairpin probe and target DNA, the Ag NCs presented bright fluorescence for the proximity of guanine-rich sequences (GRSs). After binding with target DNA, the hairpin shape was destroyed which results in a decrease of the Ag NCs fluorescence intensity. With this biosensor, we detected three disease-related genes that were the human immunodeficiency virus (HIV) gene, hepatitis B virus (HBV) gene and human T-lymphotropic virus type I (HTLV-I) gene. The detection limits based on S/N of 3 were 4.4 nM, 6.8 nM and 8.5 nM for HIV gene, HBV gene and HTLV-I gene, respectively. Our sensor was also of high selectivity and could distinguish even one nucleotide mismatched target. PMID:26159151

  12. A Fluorescent Thermometer Based on a Pyrene-Labeled Thermoresponsive Polymer

    PubMed Central

    Pietsch, Christian; Vollrath, Antje; Hoogenboom, Richard; Schubert, Ulrich S.

    2010-01-01

    Thermoresponsive polymers that undergo a solubility transition by variation of the temperature are important materials for the development of ‘smart’ materials. In this contribution we exploit the solubility phase transition of poly(methoxy diethylene glycol methacrylate), which is accompanied by a transition from hydrophilic to hydrophobic, for the development of a fluorescent thermometer. To translate the polymer phase transition into a fluorescent response, the polymer was functionalized with pyrene resulting in a change of the emission based on the microenvironment. This approach led to a soluble polymeric fluorescent thermometer with a temperature range from 11 °C to 21 °C. The polymer phase transition that occurs during sensing is studied in detail by dynamic light scattering. PMID:22163636

  13. Color-matched and fluorescence-labeled esophagus phantom and its applications

    PubMed Central

    Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.

    2013-01-01

    Abstract. We developed a stable, reproducible three-dimensional optical phantom for the evaluation of a wide-field endoscopic molecular imaging system. This phantom mimicked a human esophagus structure with flexibility to demonstrate body movements. At the same time, realistic visual appearance and diffuse spectral reflectance properties of the tissue were simulated by a color matching methodology. A photostable dye-in-polymer technology was applied to represent biomarker probed “hot-spot” locations. Furthermore, fluorescent target quantification of the phantom was demonstrated using a 1.2 mm ultrathin scanning fiber endoscope with concurrent fluorescence-reflectance imaging. PMID:23403908

  14. One-step synthesis of fluorescently labelled, single-walled carbon nanotubes.

    PubMed

    Guaragno, Michelle L; Gottardi, Riccardo; Fedorchak, Morgan V; Roy, Abhijit; Kumta, Prashant N; Little, Steven R

    2015-12-18

    Single-walled carbon nanotubes (SWNTs) can be labelled with functional moieties that endow them with a number of unique characteristics, which can be applicable to biomedical applications such as imaging. Herein we describe a facile, one-step esterification process to functionalize SWNT with fluorescein. PMID:26458421

  15. Efficient labeling in vitro with non-ionic gadolinium magnetic resonance imaging contrast agent and fluorescent transfection agent in bone marrow stromal cells of neonatal rats.

    PubMed

    Li, Ying-Qin; Tang, Ying; Fu, Rao; Meng, Qiu-Hua; Zhou, Xue; Ling, Ze-Min; Cheng, Xiao; Tian, Su-Wei; Wang, Guo-Jie; Liu, Xue-Guo; Zhou, Li-Hua

    2015-07-01

    Although studies have been undertaken on gadolinium labeling-based molecular imaging in magnetic resonance imaging (MRI), the use of non-ionic gadolinium in the tracking of stem cells remains uncommon. To investigate the efficiency in tracking of stem cells with non-ionic gadolinium as an MRI contrast agent, a rhodamine-conjugated fluorescent reagent was used to label bone marrow stromal cells (BMSCs) of neonatal rats in vitro, and MRI scanning was undertaken. The fluorescent-conjugated cell uptake reagents were able to deliver gadodiamide into BMSCs, and cell uptake was verified using flow cytometry. In addition, the labeled stem cells with paramagnetic contrast medium remained detectable by an MRI monitor for a minimum of 28 days. The present study suggested that this method can be applied efficiently and safely for the labeling and tracking of bone marrow stromal cells in neonatal rats. PMID:25816076

  16. Efficient labeling in vitro with non-ionic gadolinium magnetic resonance imaging contrast agent and fluorescent transfection agent in bone marrow stromal cells of neonatal rats

    PubMed Central

    LI, YING-QIN; TANG, YING; FU, RAO; MENG, QIU-HUA; ZHOU, XUE; LING, ZE-MIN; CHENG, XIAO; TIAN, SU-WEI; WANG, GUO-JIE; LIU, XUE-GUO; ZHOU, LI-HUA

    2015-01-01

    Although studies have been undertaken on gadolinium labeling-based molecular imaging in magnetic resonance imaging (MRI), the use of non-ionic gadolinium in the tracking of stem cells remains uncommon. To investigate the efficiency in tracking of stem cells with non-ionic gadolinium as an MRI contrast agent, a rhodamine-conjugated fluorescent reagent was used to label bone marrow stromal cells (BMSCs) of neonatal rats in vitro, and MRI scanning was undertaken. The fluorescent-conjugated cell uptake reagents were able to deliver gadodiamide into BMSCs, and cell uptake was verified using flow cytometry. In addition, the labeled stem cells with paramagnetic contrast medium remained detectable by an MRI monitor for a minimum of 28 days. The present study suggested that this method can be applied efficiently and safely for the labeling and tracking of bone marrow stromal cells in neonatal rats. PMID:25816076

  17. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  18. Label-free bacterial imaging with deep-UV-laser-induced native fluorescence.

    PubMed

    Bhartia, Rohit; Salas, Everett C; Hug, William F; Reid, Ray D; Lane, Arthur L; Edwards, Katrina J; Nealson, Kenneth H

    2010-11-01

    We introduce a near-real-time optical imaging method that works via the detection of the intrinsic fluorescence of life forms upon excitation by deep-UV (DUV) illumination. A DUV (<250-nm) source enables the detection of microbes in their native state on natural materials, avoiding background autofluorescence and without the need for fluorescent dyes or tags. We demonstrate that DUV-laser-induced native fluorescence can detect bacteria on opaque surfaces at spatial scales ranging from tens of centimeters to micrometers and from communities to single cells. Given exposure times of 100 μs and low excitation intensities, this technique enables rapid imaging of bacterial communities and cells without irreversible sample alteration or destruction. We also demonstrate the first noninvasive detection of bacteria on in situ-incubated environmental experimental samples from the deep ocean (Lo'ihi Seamount), showing the use of DUV native fluorescence for in situ detection in the deep biosphere and other nutrient-limited environments. PMID:20817797

  19. New Environment-Sensitive Multichannel DNA Fluorescent Label for Investigation of the Protein-DNA Interactions

    PubMed Central

    Vorobjev, Yuri N.; Barthes, Nicolas P. F.; Michel, Benoît Y.; Burger, Alain; Fedorova, Olga S.

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5′-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified. PMID:24925085

  20. New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions.

    PubMed

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Vorobjev, Yuri N; Barthes, Nicolas P F; Michel, Benoît Y; Burger, Alain; Fedorova, Olga S

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5'-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified. PMID:24925085

  1. Synthesis of BODIPY derivatives substituted with various bioconjugatable linker groups: a construction kit for fluorescent labeling of receptor ligands.

    PubMed

    Heisig, Fabian; Gollos, Sabrina; Freudenthal, Sven J; El-Tayeb, Ali; Iqbal, Jamshed; Müller, Christa E

    2014-01-01

    The goal of the present study was to design small, functionalized green-emitting BODIPY dyes, which can readily be coupled to target molecules such as receptor ligands, or even be integrated into their pharmacophores. A simple two-step one-pot procedure starting from 2,4-dimethylpyrrole and ω-bromoalkylcarboxylic acid chlorides was used to obtain new ω-bromoalkyl-substituted BODIPY fluorophores (1a-1f) connected via alkyl spacers of different length to the 8-position of the fluorescent dye. The addition of radical inhibitors reduced the amount of side products. The ω-bromoalkyl-substituted BODIPYs were further converted to introduce various functional groups: iodo-substituted dyes were obtained by Finkelstein reaction in excellent yields; microwave-assisted reaction with methanolic ammonia led to fast and clean conversion to the amino-substituted dyes; a hydroxyl-substituted derivative was prepared by reaction with sodium ethylate, and thiol-substituted BODIPYs were obtained by reaction of 1a-1f with potassium thioacetate followed by alkaline cleavage of the thioesters. Water-soluble derivatives were prepared by introducing sulfonate groups into the 2- and 6-position of the BODIPY core. The synthesized BODIPY derivatives showed high fluorescent yields and appeared to be stable under basic, reducing and oxidative conditions. As a proof of concept, 2-thioadenosine was alkylated with bromoethyl-BODIPY 1b. The resulting fluorescent 2-substituted adenosine derivative 15 displayed selectivity for the A3 adenosine receptor (ARs) over the other AR subtypes, showed agonistic activity, and may thus become a useful tool for studying A3ARs, or a lead structure for further optimization. The new functionalized dyes may be widely used for fluorescent labeling allowing the investigation of biological targets and processes. PMID:24052460

  2. Using infrared spectroscopy of a nitrile labeled phenylalanine and tryptophan fluorescence to probe the α-MSH peptide's side-chain interactions with a micelle model membrane

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier D.; Levonyak, Nicholas S.; Schneider, Sydney C.; Smith, Matthew J.; Cremeens, Matthew E.

    2014-01-01

    The interactions of α-MSH (Ac-SYSMEHFRWGKPV-NH2) side-chains were biophysically characterized with a micelle model membrane and in model intracellular bacterial conditions using infrared (IR) spectroscopy of a nitrile labeled α-MSH analogue, circular dichroism (CD), and tryptophan fluorescence. Local changes detected by the tryptophan and a nitrile-labeled phenylalanine using fluorescence and infrared spectroscopies, respectively, suggest that the Trp9 side-chain in the conserved core (HisPheArgTrp) of α-MSH is buried in an SDS micellar environment, while Phe(CN)7 does not appear to be buried.

  3. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes.

    PubMed

    Ren, Xiaomei; El-Sagheer, Afaf H; Brown, Tom

    2016-05-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  4. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  5. ZrO2 nanoparticles labeled via a native protein corona: detection by fluorescence microscopy and Raman microspectroscopy in rat lungs.

    PubMed

    Silge, Anja; Bräutigam, Katharina; Bocklitz, Thomas; Rösch, Petra; Vennemann, Antje; Schmitz, Inge; Popp, Jürgen; Wiemann, Martin

    2015-08-01

    ZrO2 nanoparticles are frequently used in composite materials such as dental fillers from where they may be released and inhaled upon polishing and grinding. Since the overall distribution of ZrO2 NP inside the lung parenchyma can hardly be observed by routine histology, here a labeling with a fluorphore was used secondary to the adsorption of serum proteins. Particles were then intratracheally instilled into rat lungs. After 3 h fluorescent structures consisted of agglomerates scattered throughout the lung parenchyma, which were mainly concentrated in alveolar macrophages after 3 d. A detection method based on Raman microspectroscopy was established to investigate the chemical composition of those fluorescent structures in detail. Raman measurements were arranged such that no spectral interference with the protein-bound fluorescence label was evident. Applying chemometrical methods, Raman signals of the ZrO2 nanomaterial were co-localized with the fluorescence label, indicating the stability of the nanomaterial-protein-dye complex inside the rat lung. The combination of Raman microspectroscopy and adsorptive fluorescence labeling may, therefore, become a useful tool for studying the localization of protein-coated nanomaterials in cells and tissues. PMID:26087290

  6. Excitonic Heterodimer Formation in an HIV-1 Oligonucleotide Labeled with a Donor-Acceptor Pair Used for Fluorescence Resonance Energy Transfer

    PubMed Central

    Bernacchi, Serena; Piémont, Etienne; Potier, Noelle; Dorsselaer, Alain van; Mély, Yves

    2003-01-01

    In this study, we investigated the absorbance and fluorescence properties of cTAR, the complementary DNA sequence of the transactivation response element of the HIV-1 genome, doubly end-labeled by different dyes, 5(and 6)-carboxyfluorescein (Fl) and 5(and 6)-carboxytetramethylrhodamine (TMR), frequently used in fluorescence resonance energy transfer (FRET) studies. This oligonucleotide forms a stable stem-loop structure. The absorption spectrum of this species clearly differed from that of a doubly labeled cTAR derivative in which the terminal part of the stem is melted and from an equimolecular mixture of singly labeled species. Moreover, no significant TMR fluorescence change accompanies the dramatic Fl intensity increase when the doubly labeled native cTAR was melted by temperature or annealed with its complementary sequence. Both elements suggest the formation of an H-type ground-state heterodimer between Fl and TMR that may be described by the molecular exciton model. Moreover, time-resolved fluorescence further suggests that the nonfluorescent heterodimer is in equilibrium with a small population of partially melted species showing FRET. Based on the spectral shifts associated with heterodimer formation, an interchromophore distance of 7.7 Å was calculated. Both the excitonic signal and the Fl fluorescence were used as sensitive tools to monitor the temperature-mediated and HIV nucleocapsid protein-mediated annealing of cTAR with its complementary sequence. PMID:12524317

  7. Excitonic heterodimer formation in an HIV-1 oligonucleotide labeled with a donor-acceptor pair used for fluorescence resonance energy transfer.

    PubMed

    Bernacchi, Serena; Piémont, Etienne; Potier, Noelle; Dorsselaer, Alain van; Mély, Yves

    2003-01-01

    In this study, we investigated the absorbance and fluorescence properties of cTAR, the complementary DNA sequence of the transactivation response element of the HIV-1 genome, doubly end-labeled by different dyes, 5(and 6)-carboxyfluorescein (Fl) and 5(and 6)-carboxytetramethylrhodamine (TMR), frequently used in fluorescence resonance energy transfer (FRET) studies. This oligonucleotide forms a stable stem-loop structure. The absorption spectrum of this species clearly differed from that of a doubly labeled cTAR derivative in which the terminal part of the stem is melted and from an equimolecular mixture of singly labeled species. Moreover, no significant TMR fluorescence change accompanies the dramatic Fl intensity increase when the doubly labeled native cTAR was melted by temperature or annealed with its complementary sequence. Both elements suggest the formation of an H-type ground-state heterodimer between Fl and TMR that may be described by the molecular exciton model. Moreover, time-resolved fluorescence further suggests that the nonfluorescent heterodimer is in equilibrium with a small population of partially melted species showing FRET. Based on the spectral shifts associated with heterodimer formation, an interchromophore distance of 7.7 A was calculated. Both the excitonic signal and the Fl fluorescence were used as sensitive tools to monitor the temperature-mediated and HIV nucleocapsid protein-mediated annealing of cTAR with its complementary sequence. PMID:12524317

  8. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.

    2016-04-01

    Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.

  9. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy.

    PubMed

    Alfonso-García, Alba; Smith, Tim D; Datta, Rupsa; Luu, Thuy U; Gratton, Enrico; Potma, Eric O; Liu, Wendy F

    2016-04-30

    Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images. PMID:27086689

  10. Imaging green fluorescent protein-labeled neurons using light and electron microscopy.

    PubMed

    Knott, Graham W

    2013-06-01

    The ability to observe axons and dendrites with transmission electron microscopy (EM) after they have been previously imaged live with laser-scanning microscopy is a useful technique to study their synaptic connectivity. This protocol provides a detailed method by which neurons that were imaged in a live brain or slice culture can be reimaged using EM. First, brain tissue expressing green fluorescent protein (GFP) is chemically fixed. Then, an immunocytochemistry process is used to render the fluorescent protein electron dense so that it can first be located using light microscopy and then serial thin-sectioned for EM so that the ultrastructure of specific parts of neurites can be analyzed in three dimensions. Patterns of blood vessels observed in the live brain are used to locate the previously imaged neurons. The method described here allows for a complete three-dimensional (3D) reconstruction to be made of the imaged structures from serial electron micrographs. PMID:23734023

  11. An Expedient Synthesis of Fluorescent Labeled Ceramide-1-phosphate Analogues1

    PubMed Central

    Boldyrev, I. A.; Brown, R. E.; Molotkovsky, J. G.

    2016-01-01

    A synthesis for fluorescent analogs of ceramide-1-phosphate bearing 9-anthrylvinyl or 4,4-difluoro-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY) fluorophore at co-position of fatty acid residue was carried out. The key stage of the synthesis is hydrolysis of corresponding sphingomyelins catalyzed by phospholipase D from Streptomyces chromofuscus; the enzymatic yield has been raised to 50–70% by appliance of organic solvent in the incubation medium.

  12. Selection and Characterization of a Novel DNA Aptamer for Label-Free Fluorescence Biosensing of Ochratoxin A

    PubMed Central

    McKeague, Maureen; Velu, Ranganathan; Hill, Kayla; Bardóczy, Viola; Mészáros, Tamás; DeRosa, Maria C.

    2014-01-01

    Nucleic acid aptamers are emerging as useful molecular recognition tools for food safety monitoring. However, practical and technical challenges limit the number and diversity of available aptamer probes that can be incorporated into novel sensing schemes. This work describes the selection of novel DNA aptamers that bind to the important food contaminant ochratoxin A (OTA). Following 15 rounds of in vitro selection, sequences were analyzed for OTA binding. Two of the isolated aptamers demonstrated high affinity binding and selectivity to this mycotoxin compared to similar food adulterants. These sequences, as well as a truncated aptamer (minimal sequence required for binding), were incorporated into a SYBR® Green I fluorescence-based OTA biosensing scheme. This label-free detection platform is capable of rapid, selective, and sensitive OTA quantification with a limit of detection of 9 nM and linear quantification up to 100 nM. PMID:25153252

  13. A label-free fluorescent adenosine triphosphate biosensor via overhanging aptamer-triggered enzyme protection and target recycling amplification.

    PubMed

    Wang, Zhaoyin; Zhao, Jian; Dai, Zhihui

    2016-06-20

    Herein, a label-free fluorescent adenosine triphosphate (ATP) aptasensor is fabricated with a DNA hairpin and an overhanging aptamer. In the presence of ATP, the overhanging sequences of the aptamer may form preferred substrates of exo III, and thus trigger the enzyme-assisted amplification, which results in the release of G-rich sequences. Free G-rich sequences subsequently generate an enhanced flourescent signal by binding with thioflavin T. However, if ATP is absent, the overhanging sequence can induce steric hindrance and protect the DNA hairpin against the digestion of exo III, significantly reducing the noise of this biosensor. Accordingly, the signal-to-noise ratio of the sensing system is greatly improved, which ensures the desirable analytical performance of the proposed aptasensor both in pure samples and real samples. PMID:27221644

  14. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A.

    PubMed

    McKeague, Maureen; Velu, Ranganathan; Hill, Kayla; Bardóczy, Viola; Mészáros, Tamás; DeRosa, Maria C

    2014-08-01

    Nucleic acid aptamers are emerging as useful molecular recognition tools for food safety monitoring. However, practical and technical challenges limit the number and diversity of available aptamer probes that can be incorporated into novel sensing schemes. This work describes the selection of novel DNA aptamers that bind to the important food contaminant ochratoxin A (OTA). Following 15 rounds of in vitro selection, sequences were analyzed for OTA binding. Two of the isolated aptamers demonstrated high affinity binding and selectivity to this mycotoxin compared to similar food adulterants. These sequences, as well as a truncated aptamer (minimal sequence required for binding), were incorporated into a SYBR® Green I fluorescence-based OTA biosensing scheme. This label-free detection platform is capable of rapid, selective, and sensitive OTA quantification with a limit of detection of 9 nM and linear quantification up to 100 nM. PMID:25153252

  15. Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy.

    PubMed

    Gilkey, M J; Krishnan, V; Scheetz, L; Jia, X; Rajasekaran, A K; Dhurjati, P S

    2015-03-01

    A physiologically based pharmacokinetic (PBPK) model was developed that describes the concentration and biodistribution of fluorescently labeled nanoparticles in mice used for the controlled delivery of dexamethasone in acute lymphoblastic leukemia (ALL) therapy. The simulated data showed initial spikes in nanoparticle concentration in the liver, spleen, and kidneys, whereas concentration in plasma decreased rapidly. These simulation results were consistent with previously published in vivo data. At shorter time scales, the simulated data predicted decrease of nanoparticles from plasma with concomitant increase in the liver, spleen, and kidneys before decaying at longer timepoints. Interestingly, the simulated data predicted an unaccounted accumulation of about 50% of the injected dose of nanoparticles. Incorporation of an additional compartment into the model justified the presence of unaccounted nanoparticles in this compartment. Our results suggest that the proposed PBPK model can be an excellent tool for prediction of optimal dose of nanoparticle-encapsulated drugs for cancer treatment. PMID:26225236

  16. Physiologically Based Pharmacokinetic Modeling of Fluorescently Labeled Block Copolymer Nanoparticles for Controlled Drug Delivery in Leukemia Therapy

    PubMed Central

    Gilkey, MJ; Krishnan, V; Scheetz, L; Jia, X; Rajasekaran, AK; Dhurjati, PS

    2015-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed that describes the concentration and biodistribution of fluorescently labeled nanoparticles in mice used for the controlled delivery of dexamethasone in acute lymphoblastic leukemia (ALL) therapy. The simulated data showed initial spikes in nanoparticle concentration in the liver, spleen, and kidneys, whereas concentration in plasma decreased rapidly. These simulation results were consistent with previously published in vivo data. At shorter time scales, the simulated data predicted decrease of nanoparticles from plasma with concomitant increase in the liver, spleen, and kidneys before decaying at longer timepoints. Interestingly, the simulated data predicted an unaccounted accumulation of about 50% of the injected dose of nanoparticles. Incorporation of an additional compartment into the model justified the presence of unaccounted nanoparticles in this compartment. Our results suggest that the proposed PBPK model can be an excellent tool for prediction of optimal dose of nanoparticle-encapsulated drugs for cancer treatment. PMID:26225236

  17. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags.

    PubMed

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-06-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in "Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans" (Kang et al., 2016 [1]). PMID:27222848

  18. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags

    PubMed Central

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-01-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in “Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans” (Kang et al., 2016 [1]). PMID:27222848

  19. A fluorescent graphitic carbon nitride nanosheet biosensor for highly sensitive, label-free detection of alkaline phosphatase

    NASA Astrophysics Data System (ADS)

    Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-02-01

    Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L-1 with a low detection limit of 0.08 U L-1, which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L-1 with a low detection limit of 0.08 U L-1, which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08278a

  20. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-01

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration. PMID:26105778

  1. Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell.

    PubMed

    Kačenka, Michal; Kaman, Ondřej; Kikerlová, Soňa; Pavlů, Barbora; Jirák, Zdeněk; Jirák, Daniel; Herynek, Vít; Černý, Jan; Chaput, Frédéric; Laurent, Sophie; Lukeš, Ivan

    2015-06-01

    Novel synthetic approaches for the development of multimodal imaging agents with high chemical stability are demonstrated. The magnetic cores are based on La0.63Sr0.37MnO3 manganite prepared as individual grains using a flux method followed by additional thermal treatment in a protective silica shell allowing to enhance their magnetic properties. The cores are then isolated and covered de novo with a hybrid silica layer formed through the hydrolysis and polycondensation of tetraethoxysilane and a fluorescent silane synthesized from rhodamine, piperazine spacer, and 3-iodopropyltrimethoxysilane. The aminoalkyltrialkoxysilanes are strictly avoided and the resulting particles are hydrolytically stable and do not release dye. The high colloidal stability of the material and the long durability of the fluorescence are reinforced by an additional silica layer on the surface of the particles. Structural and magnetic studies of the products using XRD, TEM, and SQUID magnetometry confirm the importance of the thermal treatment and demonstrate that no mechanical treatment is required for the flux-synthesized manganite. Detailed cell viability tests show negligible or very low toxicity at concentrations at which excellent labeling is achieved. Predominant localization of nanoparticles in lysosomes is confirmed by immunofluorescence staining. Relaxometric and biological studies suggest that the functionalized nanoparticles are suitable for imaging applications. PMID:25702866

  2. An assay for 26S proteasome activity based on fluorescence anisotropy measurements of dye-labeled protein substrates.

    PubMed

    Bhattacharyya, Sucharita; Renn, Jonathan P; Yu, Houqing; Marko, John F; Matouschek, Andreas

    2016-09-15

    The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein. PMID:27296635

  3. The stiffness of dsRNA: hydrodynamic studies on fluorescence-labelled RNA segments of bovine rotavirus.

    PubMed Central

    Kapahnke, R; Rappold, W; Desselberger, U; Riesner, D

    1986-01-01

    The sedimentation coefficients of dsRNA segments of bovine rotavirus were determined in the analytical ultracentrifuge. The eleven segments were separated by preparative gel electrophoresis, and isolated by elution from gel pieces. The RNA was labelled by the intercalating fluorescent dye ethidium bromide at a ratio bound dye per base pair between 0.003 to 0.018. The analytical ultracentrifuge was equipped with a fluorescence recording optics. Sedimentation coefficients could be determined with amounts of RNA as little as 8 ng. All sedimentation coefficients were extrapolated to zero-concentration, zero-dye binding, and zero-impurities from the preparative gel electrophoresis. The hydrodynamic model of flexible cylinders was applied for the interpretation of the sedimentation coefficients. All dsRNA segments of rotavirus (663-3409 base pairs) and the dsRNA5 of cucumber mosaic virus (335 base pairs) fit the model of a "worm-like" or flexible cylinder with a persistence length of 1125 A and a hydrated diameter of 30 A. The results are compared with data from the literature on the persistence lengths of the B- and Z-forms of dsDNA and of viroids. Images PMID:3010231

  4. Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery.

    PubMed Central

    Simon, J R; Gough, A; Urbanik, E; Wang, F; Lanni, F; Ware, B R; Taylor, D L

    1988-01-01

    Properties of filamentous acetamidofluorescein-labeled actin and acetamidotetramethylrhodamine-labeled actin (AF and ATR-actin, respectively) were examined to resolve discrepancies in the reported translational diffusion coefficients of F-actin measured in vitro by FPR and other techniques. Using falling-ball viscometry and two independent versions of fluorescence photobleaching recovery (FPR), the present data indicate that several factors are responsible for these discrepancies. Gel filtration chromatography profoundly affects the viscosity of actin solutions and filament diffusion coefficients. ATR-actin and, to a lesser degree, AF-actin show a reduction in viscosity in proportion to the fraction labeled, presumably due to filament shortening. Actin filaments containing AF-actin or ATR-actin are susceptible to photoinduced damage, including a covalent cross-linking of actin protomers within filaments and an apparent cleavage of filaments detected by a decrease of the measured viscosity and an increase in the measured filament diffusion coefficients. Quantum yields of the two photoinduced effects are quite different. Multiple cross-links are produced relative to each photobleaching event, whereas less than 1% filament cleavage occurs. Substantial differences in the filament diffusion coefficients measured by FPR are also the result of differences in illumination geometry and sampling time. However, under controlled conditions, FPR can be used as a quantitative tool for measuring the hydrodynamic properties of actin filaments. Incremented filament shortening caused by photoinduced cleavage or incremental addition of filament capping proteins produces a continuous and approximately linear increase of filament diffusion coefficients, indicating that filaments are not associated in solution. Our results indicate that actin filaments exhibit low mobilities and it is inferred that actin filaments formed in vitro by column-purified actin, under standard conditions, are

  5. Colloidal core-seeded semiconductor nanorods as fluorescent labels for in-vitro diagnostics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chan, YinThai

    2016-03-01

    Colloidal semiconductor nanocrystals are ideal fluorophores for clinical diagnostics, therapeutics, and highly sensitive biochip applications due to their high photostability, size-tunable color of emission and flexible surface chemistry. The relatively recent development of core-seeded semiconductor nanorods showed that the presence of a rod-like shell can confer even more advantageous physicochemical properties than their spherical counterparts, such as large multi-photon absorption cross-sections and facet-specific chemistry that can be exploited to deposit secondary nanoparticles. It may be envisaged that these highly fluorescent nanorods can be integrated with large scale integrated (LSI) microfluidic systems that allow miniaturization and integration of multiple biochemical processes in a single device at the nanoliter scale, resulting in a highly sensitive and automated detection platform. In this talk, I will describe a LSI microfluidic device that integrates RNA extraction, reverse transcription to cDNA, amplification and target pull-down to detect histidine decarboxylase (HDC) gene directly from human white blood cells samples. When anisotropic colloidal semiconductor nanorods (NRs) were used as the fluorescent readout, the detection limit was found to be 0.4 ng of total RNA, which was much lower than that obtained using spherical quantum dots (QDs) or organic dyes. This was attributed to the large action cross-section of NRs and their high probability of target capture in a pull-down detection scheme. The combination of large scale integrated microfluidics with highly fluorescent semiconductor NRs may find widespread utility in point-of-care devices and multi-target diagnostics.

  6. Carbon fluoroxide nanoparticles as fluorescent labels and sonosensitizers for theranostic applications

    NASA Astrophysics Data System (ADS)

    Kharin, Alexander; Syshchyk, Olga; Geloen, Alain; Alekseev, Sergey; Rogov, Andrey; Lysenko, Vladimir; Timoshenko, Victor

    2015-08-01

    Carbon fluoroxide (CFO) nanoparticles (NPs) produced from silicon carbide wafers are used as both fluorescent probes and sonosensitizers for theranostic application. In vitro cell tests were carried out to investigate the feasibility of ultrasound-based therapy with the use of the CFO NPs. The NPs that penetrated inside the cells were shown to provoke cell destruction after application of an ultrasound treatment. No significant toxic effect was observed when the cells were treated with NP concentrations up to 0.5 mg ml-1 without applying ultrasound treatment. The obtained results open a new way toward cancer therapy strategies.

  7. The fluorescence of chlorophyll and yellow substances in natural waters: A note on the problems of measurement and the importance of their remote sensing

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.

    1975-01-01

    There are two chromophylls which, if sensed remotely from high altitude, would revolutionize the ability to survey large areas of the world's oceans. The chromophylls of importance are: the photosynthetic pigments of plankton algae and a group of organic materials frequently termed dissolved yellow substances. These are derived from plants and carried into the ocean by fresh water inflow. The attenuation of light by phytoplankton is characterized by two distinctive bands (450, 675 nm) which represent absorption by chloroplastic pigments. Yellow substances are characterized by a strong ultraviolet absorption which tails over into the visible region. It is emphasized that chlorophyll determination could be a unique technique for estimating the extent of eutrophication in coastal waters, and that a high altitude observer equipped with temperature, chlorophyll and yellow substance sensors has the possibility of detecting the magnitude of eutrophication and its sources by using laser induced fluorescent devices.

  8. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy

    NASA Astrophysics Data System (ADS)

    Taik Lim, Yong; Cho, Mi Young; Noh, Young-Woock; Chung, Jin Woong; Chung, Bong Hyun

    2009-11-01

    This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN- γ) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.

  9. Development of indirect competitive fluorescence immunoassay for 2,2',4,4'-tetrabromodiphenyl ether using DNA/dye conjugate as antibody multiple labels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An indirect competitive fluorescence immunoassay using DNA/dye conjugate as antibody multiple labels was developed on 96-well plates for the identification and quantification of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in aqueous samples. A hapten, 2,4,2'-tribromodiphenyl ether-4’-aldehyde was sy...

  10. Genetic diversity analysis of sugarcane germplasm based on fluorescence-labeled simple sequence repeat markers and a capillary electrophoresis-based genotyping platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity analysis, which refers to the elaboration of total extent of genetic characteristics in the genetic makeup of a certain species, constitutes a classical strategy for the study of diversity, population genetic structure, and breeding practices. In this study, fluorescence-labeled se...

  11. Label-free NIR reflectance imaging as a complimentary tool for two-photon fluorescence microscopy: multimodal investigation of stroke (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S.

    2016-03-01

    Two-photon imaging combined with targeted fluorescent indicators is extensively used for visualizing critical features of brain functionality and structural plasticity. Back-scattered photons from the NIR laser provide complimentary information without introducing any exogenous labelling. Here, we describe a versatile approach that, by collecting the reflected NIR light, provides structural details on the myelinated axons and blood vessels in the brain, both in fixed samples and in live animals. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from Thy1-GFPm mice, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Label-free detection of axonal elongations over the layer 2/3 of mouse cortex under a cranial window was also possible in live brain. Finally, blood flow could be measured in vivo, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated simultaneously.

  12. Fluorescent dye technique as an alternative to gfp-labeled plasmid for visualization of Escherichia coli O157:H7 cells on romaine lettuce leaves following sanitizer treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The task of imaging Escherichia coli O157:H7 cells on artificially inoculated produce often requires genetic modification of the cells through the introduction of gfp-labeled plasmid. However, these modified cells do not behave as the parent cells and the auto fluorescence of lettuce leaves interfe...

  13. Improvement of detection sensitivity of T-2 and HT-2 toxins using different fluorescent labeling reagents by high-performance liquid chromatography.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T-2 and HT-2 toxins are Fusarium mycotoxins that can occur in cereals and cereal-based products. Three novel fluorescent labeling reagents, i.e. 1-naphthoyl chloride (1-NC), 2-naphthoyl chloride (2-NC), and pyrene-1-carbonyl cyanide (PCC), were used for the determination of T-2 and HT-2 toxins by ...

  14. Three dimensional dual labelled DNA fluorescent in situ hybridization analysis in fixed tissue sections

    PubMed Central

    Kernohan, Kristin D.; Bérubé, Nathalie G.

    2014-01-01

    Emerging studies demonstrate that three-dimensional organization of chromatin in the nucleus plays a vital role in regulating the genome. DNA fluorescent in situ hybridization (FISH) is a common molecular technique used to visualize the location of DNA sequences. The vast majority of DNA FISH studies are conducted on cultured cells due to the technical difficulties encountered using fixed tissue sections. However, the use of cultured cells poses important limitations that could yield misleading results, making in vivo analysis a far superior approach. Here we present a protocol for multiplexed three dimensional DNA FISH in mouse brain sections, which is also applicable to other tissues. Paraffin-embedded tissues could be used but the embedding and preparation of the samples is time-consuming and often associated with poor antigenicity. To overcome this problem we:•developed a FISH technique using fixed, frozen cryosections;•provide specific instructions for tissue processing for proper fixation and freezing, including equilibration in sucrose gradients to maintain proper cellular structure;•include optimized permeabilization and washing steps to achieve specific signal and to limit background fluorescence in tissue sections. PMID:26150931

  15. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    PubMed

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. PMID:23261400

  16. Behavior of substances labeled with /sup 3/H-proline and /sup 3/H-fucose in the cellular processes of odontoblasts and ameloblasts

    SciTech Connect

    Warshawsky, H.; Josephsen, K.

    1981-05-01

    Odontoblasts are cells with single cytoplasmic processes that grow longer as more dentin is elaborated. Ameloblasts also have single processes and it has been postulated that they too grow longer as more enamel is made. Support for this hypothesis was obtained using rat incisors to investigate the behavior of substances labeled with /sup 3/H-proline and /sup 3/H-fucose. A comparison was made between odontoblasts, which have processes known to grow and remain within the dentin, and the ameloblasts whose Tomes' processes are hypothesized to grow and leave remnants in the completed enamel. With /sup 3/H-proline, the odontoblast bodies are labeled at the early time intervals. With /sup 3/H-fucose, the cell bodies are labeled at the early intervals and the newly formed glycoproteins are deposited into the predentin. Almost immediately, these are progressively added to the dentin at the calcification front. With time a gradient of labeling extends from the unlabeled dentin toward the odontoblast bodies. Unlike the behavior of labeled proteins, by 1 and 2 days labeled glycoproteins appear along the entire length of the odontoblast processes. In the enamel, no Tomes' processes are present during maturation. With /sup 3/H-proline, reactions are adjacent to the cells and diffuse toward, but do not reach the dentino-enamel junction by 1 and 2 days. With /sup 3/H-fucose, reactions appear over the enamel near the cells. By 1 and 2 days no diffusive pattern is seen, but grains are concentrated near the dentino-enamel junction, in a region containing holes known to be the beginning of Tomes' processes. Since odontoblast glycoproteins migrate along odontoblast processes, it was postulated that cytoplasmic remnants were present in enamel along which ameloblast glycoproteins could also migrate to reach the holes at the dentino-enamel junction.

  17. Characterization of Glycoconjugates of Extracellular Polymeric Substances in Tufa-Associated Biofilms by Using Fluorescence Lectin-Binding Analysis▿ †

    PubMed Central

    Zippel, B.; Neu, T. R.

    2011-01-01

    Freshwater tufa deposits are the result of calcification associated with biofilms dominated by cyanobacteria. Recent investigations highlighted the fact that the formation of microbial calcium carbonates is mainly dependent on the saturation index, which is determined by pH, the ion activity of Ca2+ and CO32−, and the occurrence of extracellular polymeric substances (EPS) produced by microorganisms. EPS, which contain carboxyl and/or hydroxyl groups, can strongly bind cations. This may result in inhibition of CaCO3 precipitation. In contrast, the formation of templates for crystal nucleation was reported by many previous investigations. The purposes of this study were (i) to characterize the in situ distribution of EPS glycoconjugates in tufa-associated biofilms of two German hard-water creeks by employing fluorescence lectin-binding analysis (FLBA), (ii) to verify the specific lectin-binding pattern by competitive-inhibition assays, and (iii) to assess whether carbonates are associated with structural EPS domains. Three major in situ EPS domains (cyanobacterial, network-like, and cloud-like structures) were detected by FLBA in combination with laser scanning microscopy (LSM). Based on lectin specificity, the EPS glycoconjugates produced by cyanobacteria contained mainly fucose, amino sugars (N-acetyl-glucosamine and N-acetyl-galactosamine), and sialic acid. Tufa deposits were irregularly covered by network-like EPS structures, which may originate from cyanobacterial EPS secretions. Cloud-like EPS glycoconjugates were dominated by sialic acid, amino sugars, and galactose. In some cases calcium carbonate crystals were associated with cyanobacterial EPS glycoconjugates. The detection of amino sugars and calcium carbonate in close association with decaying sheath material indicated that microbially mediated processes might be important for calcium carbonate precipitation in freshwater tufa systems. PMID:21097578

  18. Improved tracking and resolution of bacteria in holographic microscopy using dye and fluorescent protein labeling

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, YongBin; Kühn, Jonas; Liewer, Kurt

    2016-04-01

    Digital holographic microscopy (DHM) is an emerging imaging technique that permits instantaneous capture of a relatively large sample volume. However, large volumes usually come at the expense of lower spatial resolution, and the technique has rarely been used with prokaryotic cells due to their small size and low contrast. In this paper we demonstrate the use of a Mach-Zehnder dual-beam instrument for imaging of labeled and unlabeled bacteria and microalgae. Spatial resolution of 0.3 micrometers is achieved, providing a sampling of several pixels across a typical prokaryotic cell. Both cellular motility and morphology are readily recorded. The use of dyes provides both amplitude and phase contrast improvement and is of use to identify cells in dense samples.

  19. Improved Tracking and Resolution of Bacteria in Holographic Microscopy Using Dye and Fluorescent Protein Labeling

    PubMed Central

    Nadeau, Jay L.; Cho, Yong Bin; Kühn, Jonas; Liewer, Kurt

    2016-01-01

    Digital holographic microscopy (DHM) is an emerging imaging technique that permits instantaneous capture of a relatively large sample volume. However, large volumes usually come at the expense of lower spatial resolution, and the technique has rarely been used with prokaryotic cells due to their small size and low contrast. In this paper we demonstrate the use of a Mach-Zehnder dual-beam instrument for imaging of labeled and unlabeled bacteria and microalgae. Spatial resolution of 0.3 μm is achieved, providing a sampling of several pixels across a typical prokaryotic cell. Both cellular motility and morphology are readily recorded. The use of dyes provides both amplitude and phase contrast improvement and is of use to identify cells in dense samples. PMID:27242995

  20. Improved Tracking and Resolution of Bacteria in Holographic Microscopy Using Dye and Fluorescent Protein Labeling.

    PubMed

    Nadeau, Jay L; Cho, Yong Bin; Kühn, Jonas; Liewer, Kurt

    2016-01-01

    Digital holographic microscopy (DHM) is an emerging imaging technique that permits instantaneous capture of a relatively large sample volume. However, large volumes usually come at the expense of lower spatial resolution, and the technique has rarely been used with prokaryotic cells due to their small size and low contrast. In this paper we demonstrate the use of a Mach-Zehnder dual-beam instrument for imaging of labeled and unlabeled bacteria and microalgae. Spatial resolution of 0.3 μm is achieved, providing a sampling of several pixels across a typical prokaryotic cell. Both cellular motility and morphology are readily recorded. The use of dyes provides both amplitude and phase contrast improvement and is of use to identify cells in dense samples. PMID:27242995

  1. Use of Lanthanide-Containing Polyoxometalates to Sensitise the Emission of Fluorescent Labelled Serum Albumin.

    PubMed

    Holmes-Smith, A Sheila; Crisp, Jacob; Hussain, Firasat; Patzke, Greta R; Hungerford, Graham

    2016-02-01

    Monitoring the interaction of biomolecules is important, and the use of energy transfer is a principal technique in elucidating nanoscale interactions. Lanthanide compounds are promising luminescent probes for biological samples as their emission is longer-lived than any native autofluorescence. Polyoxometalates (POMs) are interesting structural motifs to incorporate lanthanides, offering low toxicity and a size pertinent for biological applications. Here, we employ iso-structured POMs containing either terbium or europium and assess their interaction with serum albumin by sensitisation of a fluorescent tag on the protein via LRET (luminescence resonance energy transfer) by exciting the lanthanide. Time-resolved measurements showed energy transfer with an efficiency of over 90% for the POM-protein systems. The Tb-POM results were relatively straightforward, while those with the iso-structured Eu-POM were complicated by the effect of protein shielding from the aqueous environment. PMID:26642428

  2. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis.

    PubMed

    Slusarewicz, Paul; Pagano, Stefanie; Mills, Christopher; Popa, Gabriel; Chow, K Martin; Mendenhall, Michael; Rodgers, David W; Nielsen, Martin K

    2016-07-01

    Intestinal parasites are a concern in veterinary medicine worldwide and for human health in the developing world. Infections are identified by microscopic visualisation of parasite eggs in faeces, which is time-consuming, requires technical expertise and is impractical for use on-site. For these reasons, recommendations for parasite surveillance are not widely adopted and parasite control is based on administration of rote prophylactic treatments with anthelmintic drugs. This approach is known to promote anthelmintic resistance, so there is a pronounced need for a convenient egg counting assay to promote good clinical practice. Using a fluorescent chitin-binding protein, we show that this structural carbohydrate is present and accessible in shells of ova of strongyle, ascarid, trichurid and coccidian parasites. Furthermore, we show that a cellular smartphone can be used as an inexpensive device to image fluorescent eggs and, by harnessing the computational power of the phone, to perform image analysis to count the eggs. Strongyle egg counts generated by the smartphone system had a significant linear correlation with manual McMaster counts (R(2)=0.98), but with a significantly lower coefficient of variation (P=0.0177). Furthermore, the system was capable of differentiating equine strongyle and ascarid eggs similar to the McMaster method, but with significantly lower coefficients of variation (P<0.0001). This demonstrates the feasibility of a simple, automated on-site test to detect and/or enumerate parasite eggs in mammalian faeces without the need for a laboratory microscope, and highlights the potential of smartphones as relatively sophisticated, inexpensive and portable medical diagnostic devices. PMID:27025771

  3. Silica-coated liposomes loaded with quantum dots as labels for multiplex fluorescent immunoassay.

    PubMed

    Beloglazova, N V; Goryacheva, O A; Speranskaya, E S; Aubert, T; Shmelin, P S; Kurbangaleev, V R; Goryacheva, I Yu; De Saeger, S

    2015-03-01

    This manuscript describes synthesis and followed application of silica-coated liposomes loaded with quantum dots as a perspective label for immunoaasay. The hollow spherical structure of liposomes makes them an attractive package material for encapsulation of multiple water-insoluble quantum dots and amplifying the analytical signal. Silica coverage ensures the stability of the loaded liposomes against fusion and internal leakage during storage, transporting, application and also provides groups for bioconugation. For the first time these nanostructures were employed for the sensitive multiplex immunochemical determination of two analytes. As a model system mycotoxins zearalenone and aflatoxin B1 were detected in cereals. For simplification of multiassay results' evaluation the silanized liposomed loaded with QDs of different colors were used. The IC50 values for the simultaneous determination of zearalenone and aflatoxin B1 were 16.2 and 18 µg kg(-1) for zearalenone and 2.2 and 2.6 µg kg(-1) for aflatoxin B1 in wheat and maize, respectively. As confirmatory method, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used. PMID:25618647

  4. Dark Hydrazone Fluorescence Labeling Agents Enable Imaging of Cellular Aldehydic Load.

    PubMed

    Yuen, Lik Hang; Saxena, Nivedita S; Park, Hyun Shin; Weinberg, Kenneth; Kool, Eric T

    2016-08-19

    Aldehydes are key intermediates in many cellular processes, from endogenous metabolic pathways like glycolysis to undesired exogenously induced processes such as lipid peroxidation and DNA interstrand cross-linking. Alkyl aldehydes are well documented to be cytotoxic, affecting the functions of DNA and protein, and their levels are tightly regulated by the oxidative enzyme ALDH2. Mutations in this enzyme are associated with cardiac damage, diseases such as Fanconi anemia (FA), and cancer. Many attempts have been made to identify and quantify the overall level of these alkyl aldehydes inside cells, yet there are few practical methods available to detect and monitor these volatile aldehydes in real time. Here, we describe a multicolor fluorogenic hydrazone transfer ("DarkZone") system to label alkyl aldehydes, yielding up to 30-fold light-up response in vitro. A cell-permeant DarkZone dye design was applied to detect small-molecule aldehydes in the cellular environment. The new dye design also enabled the monitoring of cellular acetaldehyde production from ethanol over time by flow cytometry, demonstrating the utility of the DarkZone dyes for measuring and imaging the aldehydic load related to human disease. PMID:27326450

  5. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: First in-human results

    PubMed Central

    Sturm, Matthew B.; Joshi, Bishnu P.; Lu, Shaoying; Piraka, Cyrus; Khondee, Supang; Elmunzer, B. Joseph; Kwon, Richard S.; Beer, David G.; Appelman, Henry; Turgeon, D. Kim; Wang, Thomas D.

    2013-01-01

    Esophageal adenocarcinoma is rising rapidly in incidence, and usually develops from Barrett’s esophagus, a precursor condition commonly found in patients with chronic acid reflux. Pre-malignant lesions are challenging to detect on conventional screening endoscopy because of their flat appearance. Molecular changes can be used to improve detection of early neoplasia. We have developed a peptide that binds specifically to high-grade dysplasia and adenocarcinoma. We first applied the peptide ex vivo to esophageal specimens from 17 patients to validate specific binding. Next, we performed confocal endomicroscopy in vivo in 25 human subjects after topical peptide administration and found 3.8-fold greater fluorescence intensity for esophageal neoplasia compared with Barrett’s esophagus and squamous epithelium with 75% sensitivity and 97% specificity. No toxicity was attributed to the peptide in either animal or patient studies. Therefore, our first-in-humans results show that this targeted imaging agent is safe, and may be useful for guiding tissue biopsy and for early detection of esophageal neoplasia and potentially other cancers of epithelial origin, such as bladder, colon, lung, pancreas, and stomach. PMID:23658246

  6. Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques.

    PubMed

    Ward, Richard J; Milligan, Graeme

    2014-01-01

    The interaction between ligands and the G protein-coupled receptors (GPCRs) to which they bind has long been the focus of intensive investigation. The signalling cascades triggered by receptor activation, due in most cases to ligand binding, are of great physiological and medical importance; indeed, GPCRs are targeted by in excess of 30% of small molecule therapeutic medicines. Attempts to identify further pharmacologically useful GPCR ligands, for receptors with known and unknown endogenous ligands, continue apace. In earlier days direct assessment of such interactions was restricted largely to the use of ligands incorporating radioactive isotope labels as this allowed detection of the ligand and monitoring its interaction with the GPCR. This use of such markers has continued with the development of ligands labelled with fluorophores and their application to the study of receptor-ligand interactions using both light microscopy and resonance energy transfer techniques, including homogenous time-resolved fluorescence resonance energy transfer. Details of ligand-receptor interactions via X-ray crystallography are advancing rapidly as methods suitable for routine production of substantial amounts and stabilised forms of GPCRs have been developed and there is hope that this may become as routine as the co-crystallisation of serine/threonine kinases with ligands, an approach that has facilitated widespread use of rapid structure-based ligand design. Conformational changes involved in the activation of GPCRs, widely predicted by biochemical and biophysical means, have inspired the development of intramolecular FRET-based sensor forms of GPCRs designed to investigate the events following ligand binding and resulting in a signal propagation across the cell membrane. Finally, a number of techniques are emerging in which ligand-GPCR binding can be studied in ways that, whilst indirect, are able to monitor its results in an unbiased and integrated manner. This article is part

  7. Electrochemical immobilization of Fluorescent labelled probe molecules on a FTO surface for affinity detection based on photo-excited current

    NASA Astrophysics Data System (ADS)

    Haruyama, Tetsuya; Wakabayashi, Ryo; Cho, Takeshi; Matsuyama, Sho-taro

    2011-10-01

    Photo-excited current can be generated at a molecular interface between a photo-excited molecules and a semi-conductive material in appropriate condition. The system has been recognized for promoting photo-energy devices such as an organic dye sensitized solar-cell. The photo-current generated reactions are totally dependent on the interfacial energy reactions, which are in a highly fluctuated interfacial environment. The authors investigated the photo-excited current reaction to develop a smart affinity detection method. However, in order to perform both an affinity reaction and a photo-excited current reaction at a molecular interface, ordered fabrications of the functional (affinity, photo-excitation, etc.) molecules layer on a semi-conductive surface is required. In the present research, we would like to present the fabrication and functional performance of photo-excited current-based affinity assay device and its application for detection of endocrine disrupting chemicals. On the FTO surface, fluorescent pigment labelled affinity peptide was immobilized through the EC tag (electrochemical-tag) method. The modified FTO produced a current when it was irradiated with diode laser light. However, the photo current decreased drastically when estrogen (ES) coexisted in the reaction solution. In this case, immobilized affinity probe molecules formed a complex with ES and estrogen receptor (ER). The result strongly suggests that the photo-excited current transduction between probe molecule-labelled cyanine pigment and the FTO surface was partly inhibited by a complex that formed at the affinity oligo-peptide region in a probe molecule on the FTO electrode. The bound bulky complex may act as an impediment to perform smooth transduction of photo-excited current in the molecular interface. The present system is new type of photo-reaction-based analysis. This system can be used to perform simple high-sensitive homogeneous assays.

  8. Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants

    SciTech Connect

    Wang, Dengjun; Su, Chuming; Liu, Chongxuan; Zhou, Dongmei

    2014-05-01

    Hydroxyapatite nanoparticle (nHAP) is being used to remediate soils and aquifers contaminated with metals and radionuclides; however, the mobility of nHAP is still poorly understood in subsurface granular environments. In this study, transport and retention kinetics of alizarin red S (ARS)-labeled nHAP were investigated in water-saturated quartz sand at low concentrations of surfactants: sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant, 0–50 mg L–1) and cetyltrimethylammonium bromide (CTAB, a cationic surfactant, 0–5 mg L–1). Both surfactants were found to have a marked effect on the electrokinetic properties of ARS-nHAP and, consequently, on their transport and retention behaviors. Transport of nanoparticles (NPs) increased significantly with increasing SDBS concentration, largely because of enhanced colloidal stability and reduced aggregate size arising from enhanced electrostatic, osmotic, and elastic-steric repulsions between ARS-nHAP and sand grains. Conversely, transport decreased significantly in the presence of increasing CTAB concentrations due to reduced surface charge and consequential enhanced aggregation of the NPs. Osmotic and elastic-steric repulsions played only a minor role in enhancing the colloidal stability of ARS-nHAP in the presence of CTAB. Retention profiles of ARS-nHAP exhibited hyperexponential-shapes (decreasing rates of retention with increasing distance) for all conditions tested, and became more pronounced as CTAB concentration increased. The phenomenon was attributed to the aggregation and ripening of ARS-nHAP in the presence of surfactants, particularly CTAB. Overall, the present study suggests that surfactants at environmentally relevant concentrations may be an important consideration in employing nHAP for engineered in-situ remediation of certain metals and radionuclides in contaminated soils and aquifers.

  9. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies.

    PubMed

    Fiel, Luana Almeida; Contri, Renata Vidor; Bica, Juliane Freitas; Figueiró, Fabrício; Battastini, Ana Maria Oliveira; Guterres, Sílvia Stanisçuaski; Pohlmann, Adriana Raffin

    2014-01-01

    The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance ((1)H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter (D 4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) (z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was

  10. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies

    NASA Astrophysics Data System (ADS)

    Fiel, Luana Almeida; Contri, Renata Vidor; Bica, Juliane Freitas; Figueiró, Fabrício; Battastini, Ana Maria Oliveira; Guterres, Sílvia Stanisçuaski; Pohlmann, Adriana Raffin

    2014-05-01

    The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter ( D 4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) ( z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was detected

  11. A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules.

    PubMed

    Park, Ki Soo; Park, Hyun Gyu

    2015-02-15

    A novel, label-free, turn-on fluorescence strategy to detect molecules that bind to adenine-rich DNA sequences has been developed. The probe employs DNA-templated silver nanoclusters (DNA-AgNCs) as the key detection component. The new strategy relies on the formation of non-Watson-Crick homo-adenine DNA duplex, triggered by strong interactions with homo-adenine binding molecules, which brings a guanine-rich sequence in one strand close to DNA-AgNCs located on the opposite strand. This phenomenon transforms weakly fluorescent AgNCs into highly emissive species that display bright red fluorescence. Finally, we have shown that the new fluorescence turn-on strategy can be employed to detect coralyne, the most representative homo-adenine binding molecule that triggers formation of a non-Watson-Crick homo-adenine DNA duplex. PMID:25441410

  12. Insights into Vibrio cholerae Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria

    PubMed Central

    Millet, Yves A.; Alvarez, David; Ringgaard, Simon; von Andrian, Ulrich H.; Davis, Brigid M.; Waldor, Matthew K.

    2014-01-01

    Vibrio cholerae, the agent of cholera, is a motile non-invasive pathogen that colonizes the small intestine (SI). Most of our knowledge of the processes required for V. cholerae intestinal colonization is derived from enumeration of wt and mutant V. cholerae recovered from orogastrically infected infant mice. There is limited knowledge of the distribution of V. cholerae within the SI, particularly its localization along the villous axis, or of the bacterial and host factors that account for this distribution. Here, using confocal and intravital two-photon microscopy to monitor the localization of fluorescently tagged V. cholerae strains, we uncovered unexpected and previously unrecognized features of V. cholerae intestinal colonization. Direct visualization of the pathogen within the intestine revealed that the majority of V. cholerae microcolonies attached to the intestinal epithelium arise from single cells, and that there are notable regiospecific aspects to V. cholerae localization and factors required for colonization. In the proximal SI, V. cholerae reside exclusively within the developing intestinal crypts, but they are not restricted to the crypts in the more distal SI. Unexpectedly, V. cholerae motility proved to be a regiospecific colonization factor that is critical for colonization of the proximal, but not the distal, SI. Furthermore, neither motility nor chemotaxis were required for proper V. cholerae distribution along the villous axis or in crypts, suggesting that yet undefined processes enable the pathogen to find its niches outside the intestinal lumen. Finally, our observations suggest that host mucins are a key factor limiting V. cholerae intestinal colonization, particularly in the proximal SI where there appears to be a more abundant mucus layer. Collectively, our findings demonstrate the potent capacity of direct pathogen visualization during infection to deepen our understanding of host pathogen interactions. PMID:25275396

  13. Effects of irradiation and pH on fluorescence properties and flocculation of extracellular polymeric substances from the cyanobacterium Chroococcus minutus.

    PubMed

    Song, Wenjuan; Zhao, Chenxi; Mu, Shuyong; Pan, Xiangliang; Zhang, Daoyong; Al-Misned, Fahad A; Mortuza, M Golam

    2015-04-01

    Microbial extracellular polymeric substances (EPS) may flocculate or be decomposed when environmental factors change, which significantly influences nutrient cycling and transport of heavy metals. However, little information is available on the stability of EPS in natural environments. Fluorescence and flocculation properties of EPS from Chroococcus minutus under different irradiation and pH conditions were studied. Two aromatic protein-like fluorescence peaks and one tyrosine protein-like peak were identified from the excitation-emission-matrix (EEM) fluorescence spectra of EPS. UVB (ultraviolet B) and solar irradiation increased the fluorescence intensity of all the three peaks while UVC (ultraviolet C) irradiation had little effect. EPS formed unstable flocs after exposure to UV (ultraviolet) irradiation and formed stable flocs under solar irradiation. EPS were prone to flocculation under highly acidic conditions and minimal fluorescence of peaks was observed. The fluorophores in EPS were relatively stable under neutral and alkaline conditions. These findings are helpful for understanding the behavior of EPS in aquatic environments and their role in biogeochemical cycles of the elements. PMID:25731101

  14. Estimation of Uptake of Humic Substances from Different Sources by Escherichia coli Cells under Optimum and Salt Stress Conditions by Use of Tritium-Labeled Humic Materials▿

    PubMed Central

    Kulikova, Natalia A.; Perminova, Irina V.; Badun, Gennady A.; Chernysheva, Maria G.; Koroleva, Olga V.; Tsvetkova, Eugenia A.

    2010-01-01

    The primary goal of this paper is to demonstrate potential strengths of the use of tritium-labeled humic substances (HS) to quantify their interaction with living cells under various conditions. A novel approach was taken to study the interaction between a model microorganism and the labeled humic material. The bacterium Escherichia coli was used as a model microorganism. Salt stress was used to study interactions of HS with living cells under nonoptimum conditions. Six tritium-labeled samples of HS originating from coal, peat, and soil were examined. To quantify their interaction with E. coli cells, bioconcentration factors (BCF) were calculated and the amount of HS that penetrated into the cell interior was determined, and the liquid scintillation counting technique was used as well. The BCF values under optimum conditions varied from 0.9 to 13.1 liters kg−1 of cell biomass, whereas under salt stress conditions the range of corresponding values increased substantially and accounted for 0.2 to 130 liters kg−1. The measured amounts of HS that penetrated into the cells were 23 to 167 mg and 25 to 465 mg HS per kg of cell biomass under optimum and salt stress conditions, respectively. This finding indicated increased penetration of HS into E. coli cells under salt stress. PMID:20639375

  15. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.

    PubMed

    Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu

    2016-11-15

    Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. PMID:27295571

  16. Fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids in model membranes is connected not to lipid mobility but to probe location.

    PubMed

    Amaro, Mariana; Filipe, Hugo A L; Prates Ramalho, J P; Hof, Martin; Loura, Luís M S

    2016-03-14

    Nitrobenzoxadiazole (NBD)-labeled lipids are popular fluorescent membrane probes. However, the understanding of important aspects of the photophysics of NBD remains incomplete, including the observed shift in the emission spectrum of NBD-lipids to longer wavelengths following excitation at the red edge of the absorption spectrum (red-edge excitation shift or REES). REES of NBD-lipids in membrane environments has been previously interpreted as reflecting restricted mobility of solvent surrounding the fluorophore. However, this requires a large change in the dipole moment (Δμ) of NBD upon excitation. Previous calculations of the value of Δμ of NBD in the literature have been carried out using outdated semi-empirical methods, leading to conflicting values. Using up-to-date density functional theory methods, we recalculated the value of Δμ and verified that it is rather small (∼2 D). Fluorescence measurements confirmed that the value of REES is ∼16 nm for 1,2-dioleoyl-sn-glycero-3-phospho-l-serine-N-(NBD) (NBD-PS) in dioleoylphosphatidylcholine vesicles. However, the observed shift is independent of both the temperature and the presence of cholesterol and is therefore insensitive to the mobility and hydration of the membrane. Moreover, red-edge excitation leads to an increased contribution of the decay component with a shorter lifetime, whereas time-resolved emission spectra of NBD-PS displayed an atypical blue shift following excitation. This excludes restrictions to solvent relaxation as the cause of the measured REES and TRES of NBD, pointing instead to the heterogeneous transverse location of probes as the origin of these effects. The latter hypothesis was confirmed by molecular dynamics simulations, from which the calculated heterogeneity of the hydration and location of NBD correlated with the measured fluorescence lifetimes/REES. Globally, our combination of theoretical and experiment-based techniques has led to a considerably improved understanding of

  17. CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis.

    PubMed

    McCaffrey, Jennifer; Sibert, Justin; Zhang, Bin; Zhang, Yonggang; Hu, Wenhui; Riethman, Harold; Xiao, Ming

    2016-01-29

    We have developed a new, sequence-specific DNA labeling strategy that will dramatically improve DNA mapping in complex and structurally variant genomic regions, as well as facilitate high-throughput automated whole-genome mapping. The method uses the Cas9 D10A protein, which contains a nuclease disabling mutation in one of the two nuclease domains of Cas9, to create a guide RNA-directed DNA nick in the context of an in vitro-assembled CRISPR-CAS9-DNA complex. Fluorescent nucleotides are then incorporated adjacent to the nicking site with a DNA polymerase to label the guide RNA-determined target sequences. This labeling strategy is very powerful in targeting repetitive sequences as well as in barcoding genomic regions and structural variants not amenable to current labeling methods that rely on uneven distributions of restriction site motifs in the DNA. Importantly, it renders the labeled double-stranded DNA available in long intact stretches for high-throughput analysis in nanochannel arrays as well as for lower throughput targeted analysis of labeled DNA regions using alternative methods for stretching and imaging the labeled long DNA molecules. Thus, this method will dramatically improve both automated high-throughput genome-wide mapping as well as targeted analyses of complex regions containing repetitive and structurally variant DNA. PMID:26481349

  18. A fluorous porous polymer monolith photo-patterned chromatographic column for the separation of a flourous/fluorescently labeled peptide within a microchip.

    PubMed

    Xu, Zhenpo; Oleschuk, Richard D

    2014-02-01

    A fluorous porous polymer stationary phase is photo-patterned within a glass microfluidic chip to conduct CEC. During free radical-initiated polymerization, extraneous polymer forms and contributes to excessive microfluidic channel clogging. Nitrobenzene is explored as free radical quencher to limit clogging by minimizing extraneous polymer formation and a number of initiator to quencher ratios are explored with a 0.5:1 quencher (nitrobenzene): initiator (benzoin methyl ether) molar ratio shown to be optimal. The microchip patterned with a fluorous monolith was used to carry out the electrochromatographic analysis of a mixture containing fluorescent and fluorous labeling products. The fluorous monolithic column shows fluorous selectivity for compounds labeled with perfluoromethylene tags and a custom peptide is synthesized that possesses functional groups that can be both fluorescently and fluorously labeled. MALDI MS was used to identify the labeled fragments and microchip based electrochromatography was used to analyze the resulting labeling mixture. This is the first report to our knowledge that uses fluorous porous polymer monolith within a microchip to separate analytes using fluorous-fluorous interactions. PMID:24170603

  19. Continuous fluorescence microphotolysis of anthracene-labeled phospholipids in membranes. Theoretical approach of the simultaneous determination of their photodimerization and lateral diffusion rates.

    PubMed Central

    Ferrières, X; Lopez, A; Altibelli, A; Dupou-Cezanne, L; Lagouanelle, J L; Tocanne, J F

    1989-01-01

    Anthracene is a fluorescent and photoactivatable (dimerization) group which can be used for investigating the lateral distribution and dynamics of lipids in membranes. In fluorescence recovery after photobleaching or in microphotolysis experiments, and when using this fluorophore, the bleaching (or microphotolysis) step in the illuminated part of the membrane is in fact the sum of two antagonistic processes: fluorescence decay, which is due to dimerization of anthracene residues, and fluorescence recovery, which is due to a diffusion mediated exchange of bleached and unbleached particles between the illuminated and diffusion area in the membrane. Here, we propose a new mathematical algorithm that enables such a second-order reaction-diffusion process to be analyzed. After coupling a fluorescence recovery step to a microphotolysis step, this algorithm allows us to calculate the lateral diffusion coefficient D and the photodimerization constant K of anthracene-labeled lipids in membranes, two parameters which contribute to the understanding of the fluidity of the lipid phase in membranes. This algorithm also provides us with a complete description of the anthracene-labeled molecules distribution in the illuminated and diffusion area, at any time of the experiment. The fluorescence recovery after microphotolysis procedure we propose was tested with an anthracene-labeled phosphatidylcholine inserted in egg-phosphatidylcholine multilayers, in monolayers adsorbed onto alkylated glass surfaces and in the plasma membrane of Chinese hamster ovary cells. It is shown that this procedure can also be used to evaluate the important parameters of probe mobile fraction and to determine the relative size of the illuminated and diffusion areas. This will enable membranes to be explored in terms of microdomains and/or macrodomains. PMID:2765646

  20. Cell cycle synchronization of E. coli using the stringent response, with fluorescence labeling assays for DNA content and replication

    PubMed Central

    Ferullo, Daniel J.; Cooper, Deani L.; Moore, Hayley R.; Lovett, Susan T.

    2009-01-01

    We describe a method for synchronization of the cell cycle in the bacterium E. coli. Treatment of asynchronous cultures with the amino acid analog, DL-serine hydroxamate, induces the stringent response, with concomitant arrest of DNA replication at initiation. Following release of the stringent response, cells initiate DNA replication in synchrony, as determined by flow cytometry for DNA content, Southern blotting and microscopy. This method has the advantage that it can be used in fully wild-type cells, at different growth rates, and may be applicable to other bacterial species with replication control by the stringent response. We also elaborate other methods useful for establishing cell cycle parameters in bacterial populations. We describe flow cytometric methods for analyzing bacterial populations for DNA content using the DNA-specific dye PicoGreen, readily detected by most commercial flow cytometers. We also present an method for incorporation of the nucleotide ethynyl-deoxyuridine, EdU, followed by “click” labeling with fluorescent dyes, which allows us to measure and visualize newly replicated DNA in fixed E. coli K-12 cells under non-denaturing conditions. PMID:19245839

  1. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication.

    PubMed

    Ferullo, Daniel J; Cooper, Deani L; Moore, Hayley R; Lovett, Susan T

    2009-05-01

    We describe a method for synchronization of the cell cycle in the bacterium Escherichia coli. Treatment of asynchronous cultures with the amino acid analog, dl-serine hydroxamate, induces the stringent response, with concomitant arrest of DNA replication at initiation. Following release of the stringent response, cells initiate DNA replication in synchrony, as determined by flow cytometry for DNA content, Southern blotting and microscopy. This method has the advantage that it can be used in fully wild-type cells, at different growth rates, and may be applicable to other bacterial species with replication control by the stringent response. We also elaborate other methods useful for establishing cell cycle parameters in bacterial populations. We describe flow cytometric methods for analyzing bacterial populations for DNA content using the DNA-specific dye PicoGreen, readily detected by most commercial flow cytometers. We also present an method for incorporation of the nucleotide ethynyl-deoxyuridine, EdU, followed by "click" labeling with fluorescent dyes, which allows us to measure and visualize newly replicated DNA in fixed E. coli K-12 cells under non-denaturing conditions. PMID:19245839

  2. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    PubMed Central

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.

    2012-01-01

    Abstract. We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation. PMID:22559690

  3. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    PubMed

    Zhang, Kaihui; Liu, Shu; Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  4. Holistic assessment of covalently labeled core-shell polymeric nanoparticles with fluorescent contrast agents for theranostic applications.

    PubMed

    Gustafson, Tiffany P; Lim, Young H; Flores, Jeniree A; Heo, Gyu Seong; Zhang, Fuwu; Zhang, Shiyi; Samarajeewa, Sandani; Raymond, Jeffery E; Wooley, Karen L

    2014-01-21

    The successful development of degradable polymeric nanostructures as optical probes for use in nanotheranostic applications requires the intelligent design of materials such that their surface response, degradation, drug delivery, and imaging properties are all optimized. In the case of imaging, optimization must result in materials that allow differentiation between unbound optical contrast agents and labeled polymeric materials as they undergo degradation. In this study, we have shown that use of traditional electrophoretic gel-plate assays for the determination of the purity of dye-conjugated degradable nanoparticles is limited by polymer degradation characteristics. To overcome these limitations, we have outlined a holistic approach to evaluating dye and peptide-polymer nanoparticle conjugation by utilizing steady-state fluorescence, anisotropy, and emission and anisotropy lifetime decay profiles, through which nanoparticle-dye binding can be assessed independently of perturbations, such as those presented during the execution of electrolyte gel-based assays. This approach has been demonstrated to provide an overall understanding of the spectral signature-structure-function relationship, ascertaining key information on interactions between the fluorophore, polymer, and solvent components that have a direct and measurable impact on the emissive properties of the optical probe. The use of these powerful techniques provides feedback that can be utilized to improve nanotheranostics by evaluating dye emissivity in degradable nanotheranostic systems, which has become increasingly important as modern platforms transition to architectures intentionally reliant on degradation and built-in environmental responses. PMID:24392760

  5. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.; Gratton, Enrico

    2012-04-01

    We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.

  6. Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord

    PubMed Central

    Uckermann, Ortrud; Galli, Roberta; Beiermeister, Rudolf; Sitoci-Ficici, Kerim-Hakan; Later, Robert; Leipnitz, Elke; Neuwirth, Ales; Chavakis, Triantafyllos; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Activation of CNS resident microglia and invasion of external macrophages plays a central role in spinal cord injuries and diseases. Multiphoton microscopy based on intrinsic tissue properties offers the possibility of label-free imaging and has the potential to be applied in vivo. In this work, we analyzed cellular structures displaying endogenous two-photon excited fluorescence (TPEF) in the pathologic spinal cord. It was compared qualitatively and quantitatively to Iba1 and CD68 immunohistochemical staining in two models: rat spinal cord injury and mouse encephalomyelitis. The extent of tissue damage was retrieved by coherent anti-Stokes Raman scattering (CARS) and second harmonic generation imaging. The pattern of CD68-positive cells representing postinjury activated microglia/macrophages was colocalized to the TPEF signal. Iba1-positive microglia were found in areas lacking any TPEF signal. In peripheral areas of inflammation, we found similar numbers of CD68-positive microglia/macrophages and TPEF-positive structures while the number of Iba1-positive cells was significantly higher. Therefore, we conclude that multiphoton imaging of unstained spinal cord tissue enables retrieving the extent of microglia activation by acquisition of endogenous TPEF. Future application of this technique in vivo will enable monitoring inflammatory responses of the nervous system allowing new insights into degenerative and regenerative processes. PMID:26355949

  7. Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord.

    PubMed

    Uckermann, Ortrud; Galli, Roberta; Beiermeister, Rudolf; Sitoci-Ficici, Kerim-Hakan; Later, Robert; Leipnitz, Elke; Neuwirth, Ales; Chavakis, Triantafyllos; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Activation of CNS resident microglia and invasion of external macrophages plays a central role in spinal cord injuries and diseases. Multiphoton microscopy based on intrinsic tissue properties offers the possibility of label-free imaging and has the potential to be applied in vivo. In this work, we analyzed cellular structures displaying endogenous two-photon excited fluorescence (TPEF) in the pathologic spinal cord. It was compared qualitatively and quantitatively to Iba1 and CD68 immunohistochemical staining in two models: rat spinal cord injury and mouse encephalomyelitis. The extent of tissue damage was retrieved by coherent anti-Stokes Raman scattering (CARS) and second harmonic generation imaging. The pattern of CD68-positive cells representing postinjury activated microglia/macrophages was colocalized to the TPEF signal. Iba1-positive microglia were found in areas lacking any TPEF signal. In peripheral areas of inflammation, we found similar numbers of CD68-positive microglia/macrophages and TPEF-positive structures while the number of Iba1-positive cells was significantly higher. Therefore, we conclude that multiphoton imaging of unstained spinal cord tissue enables retrieving the extent of microglia activation by acquisition of endogenous TPEF. Future application of this technique in vivo will enable monitoring inflammatory responses of the nervous system allowing new insights into degenerative and regenerative processes. PMID:26355949

  8. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome

    PubMed Central

    Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  9. Comparison of quantitative performance of three fluorescence labels in CE/LIF analysis of aspartate and glutamate in brain microdialysate.

    PubMed

    Wagner, Zsolt; Tábi, Tamás; Zachar, Gergely; Csillag, András; Szöko, Eva

    2011-10-01

    Three different fluorescent tags have been compared for the quantitative analysis of aspartate and glutamate in brain microdialysate samples. Separation conditions have been optimized to achieve short analysis time using reversed polarity separation in coated capillary. Method validation has revealed similar quantification limit of 0.1 μM of analytes using either of the labels, although LOD values were different: 7.8-9.8 nM for 4-fluoro-7-nitro-2,1,3-benzoxadiazole, 3.5 nM for fluorescein-5-isothiocyanate and 1.3-1.5 nM for carboxyfluorescein succinimidyl ester derivatives. The almost two orders of magnitude difference between LOD and LOQ values is likely due to the unreliable derivatization reaction at low sample concentration. Based on the superior stability, FITC derivatization was used for the analysis of biological samples. The applicability of the method has been demonstrated by analyzing basal and potassium evoked amino acid concentrations in individual brain microdialysate samples. PMID:22009769

  10. Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline

    NASA Astrophysics Data System (ADS)

    Park, Ki Soo; Oh, Seung Soo; Soh, H. Tom; Park, Hyun Gyu

    2014-08-01

    A novel, label-free, fluorescence based sensor for theophylline has been developed. In the new sensor system, an abasic site-incorporated duplex DNA probe serves as both a pocket for recognition of theophylline and a template for the preparation of fluorescent silver nanoclusters. The strategy relies on theophylline-controlled formation of fluorescent silver nanoclusters from abasic site-incorporated duplex DNA. When theophylline is not present, silver ions interact with the cytosine groups opposite to the abasic site in duplex DNA. This interaction leads to efficient formation of intensely red fluorescent silver nanoclusters. In contrast, when theophylline is bound at the abasic site through pseudo base-pairing with appropriately positioned cytosines, silver ion binding to the cytosine nucleobase is prevented. Consequently, fluorescent silver nanoclusters are not formed causing a significant reduction of the fluorescence signal. By employing this new sensor, theophylline can be highly selectively detected at a concentration as low as 1.8 μM. Finally, the diagnostic capability and practical application of this sensor were demonstrated by its use in detecting theophylline in human blood serum.A novel, label-free, fluorescence based sensor for theophylline has been developed. In the new sensor system, an abasic site-incorporated duplex DNA probe serves as both a pocket for recognition of theophylline and a template for the preparation of fluorescent silver nanoclusters. The strategy relies on theophylline-controlled formation of fluorescent silver nanoclusters from abasic site-incorporated duplex DNA. When theophylline is not present, silver ions interact with the cytosine groups opposite to the abasic site in duplex DNA. This interaction leads to efficient formation of intensely red fluorescent silver nanoclusters. In contrast, when theophylline is bound at the abasic site through pseudo base-pairing with appropriately positioned cytosines, silver ion binding to

  11. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.

    PubMed

    Shangguan, Jingfang; Li, Yuhong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Zou, Zhen; Shi, Hui

    2015-07-01

    Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h. PMID:25963028

  12. Fate of biopolymers during rapeseed meal and wheat bran composting as studied by two-dimensional correlation spectroscopy in combination with multiple fluorescence labeling techniques.

    PubMed

    Wang, Li-Ping; Shen, Qi-Rong; Yu, Guang-Hui; Ran, Wei; Xu, Yang-Chun

    2012-02-01

    Detailed knowledge of the molecular events during composting is important in improving the efficiency of this process. By combining two-dimensional Fourier transform infrared (FTIR) correlation spectroscopy and multiple fluorescent labeling, it was possible to study the degradation of biopolymers during rapeseed meal and wheat bran composting. Two-dimensional FTIR correlation spectroscopy provided structural information and was used to deconvolute overlapping bands found in the compost FTIR spectra. The degradation of biopolymers in rapeseed meal and wheat bran composts followed the sequence: cellulose, heteropolysaccharides, and proteins. Fluorescent labeling suggested that cellulose formed an intact network-like structure and the other biopolymers were embedded in the core of this structure. The sequence of degradation of biopolymers during composting was related to their distribution patterns. PMID:22182472

  13. Measurement of the uptake of a 14C-labelled fluorescent whitening agent by fish from water and through a model food chain.

    PubMed

    Feron, J P; Hitz, H R

    1975-01-01

    A laboratory technique is described which simulates the uptake of a fluorescent whitening agent by fish directly from the water and indirectly through a model food chain. The use of radioactive labelled material enables the direct and indirect uptake and possible accumulation of the compounds to be measured quantitatively. The results are expressed as concentration factors. Between ecological and toxicological data a safety relationship is established. PMID:1064532

  14. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols.

    PubMed

    Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2016-07-15

    Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. PMID:27015151

  15. CdTe/CdS-MPA quantum dots as fluorescent probes to label yeast cells: synthesis, characterization and conjugation with Concanavalin A

    NASA Astrophysics Data System (ADS)

    Kato, Ilka T.; Santos, Camila C.; Benetti, Endi; Tenório, Denise P. L. A.; Cabral Filho, Paulo E.; Sabino, Caetano P.; Fontes, Adriana; Santos, Beate S.; Prates, Renato A.; Ribeiro, Martha S.

    2012-03-01

    Candida albicans is the most frequent human opportunistic pathogenic fungus and one of the most important causes of nosocomial infections. In fact, diagnosis of invasive candidiasis presents unique problems. The aim of this work was to evaluate, by fluorescence image analysis, cellular labeling of C. albicans with CdTe/CdS quantum dots conjugated or not to concanavalin A (ConA). Yeast cells were incubated with CdTe/CdS quantum dots (QD) stabilized with mercaptopropionic acid (MPA) (emission peak at 530 nm) for 1 hour. In the overall study we observed no morphological alterations. The fluorescence microscopic analysis of the yeast cells showed that the non-functionalized QDs do not label C. albicans cells, while for the QD conjugated to ConA the cells showed a fluorescence profile indicating that the membrane was preferentially marked. This profile was expected since Concanavalin A is a protein that binds specifically to terminal carbohydrate residues at the membrane cell surface. The results suggest that the QD-labeled Candida cells represent a promising tool to open new possibilities for a precise evaluation of fungal infections in pathological conditions.

  16. Magneto-immunocapture with on-bead fluorescent labeling of amyloid-β peptides: towards a microfluidized-bed-based operation.

    PubMed

    Mai, Thanh Duc; Pereiro, Iago; Hiraoui, Mohamed; Viovy, Jean-Louis; Descroix, Stéphanie; Taverna, Myriam; Smadja, Claire

    2015-09-01

    A new sample treatment approach for sensitive determination of three amyloid-β peptides (Aβ 1-42, Aβ 1-40 and Aβ 1-38) with capillary electrophoresis coupled with laser induced fluorescent detection is reported herein. These Aβ peptides are considered an important family of biomarkers in the cerebrospinal fluid (CSF) for early diagnosis of Alzheimer's disease (AD). Due to their extremely low abundance in CSF (down to sub nM ranges), batch-wise preconcentration via magneto-immunocapture with enrichment factors up to 100 was implemented. The Aβ peptides were first captured onto magnetic micro-beads. Then, on-beads fluorescent labeling of the captured Aβ peptides were carried out to avoid the unwanted presence of extra fluorescent dye in the eluent as in the case of in-solution labeling. Finally thermal elution was performed and eluted labeled peptides were analyzed off line with CE-LIF. The Aβ-capturing efficiencies of different commercially available antibodies grafted onto magnetic beads were tested. Aβ peptides in CSF samples collected from AD's patients and healthy persons (used as controls) were measured and evaluated. As a proof of concept, the developed strategy was adapted into a miniaturized fluidized bed configuration that has the potential for coupling with a microchip separation system. PMID:26206107

  17. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia

    PubMed Central

    Klinger-Strobel, Mareike; Ernst, Julia; Lautenschläger, Christian; Pletz, Mathias W; Fischer, Dagmar; Makarewicz, Oliwia

    2016-01-01

    Strategies that target and treat biofilms are widely applied to bacterial cultures using popular live/dead staining techniques with mostly red or green fluorescent markers (eg, with SYTO® 9, propidium iodide, fluorescein). Therefore, visualizing drugs or micro- and nanoparticulate delivery systems to analyze their distribution and effects in biofilms requires a third fluorescent dye that does not interfere with the properties of the live/dead markers. The present study establishes and evaluates a model for tracking polymeric particles in fluorescently stained biological material. To this end, poly(d,l-lactide-co-glycolide) (PLGA)-based micro- and nanoparticles were used as well-established model systems, which, because of their favorable safety profiles, are expected to play important future roles with regard to drug delivery via inhalation. PLGA was covalently and stably labeled with 7-amino-4-methyl-3-coumarinylacetic acid (AMCA), after which blue fluorescent poly(ethylene glycol)-block-PLGA (PEG-PLGA) particles were prepared using a mixture of fluorescent AMCA-PLGA and PEG-PLGA. Because chitosan is known to reduce negative surface charge, blue fluorescent PEG-PLGA-particles with chitosan were also prepared. These micro- and nanoparticles were physicochemically characterized and could be clearly distinguished from live/dead stained bacteria in biofilms using confocal laser scanning microscopy. PMID:26917959

  18. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia.

    PubMed

    Klinger-Strobel, Mareike; Ernst, Julia; Lautenschläger, Christian; Pletz, Mathias W; Fischer, Dagmar; Makarewicz, Oliwia

    2016-01-01

    Strategies that target and treat biofilms are widely applied to bacterial cultures using popular live/dead staining techniques with mostly red or green fluorescent markers (eg, with SYTO(®) 9, propidium iodide, fluorescein). Therefore, visualizing drugs or micro- and nanoparticulate delivery systems to analyze their distribution and effects in biofilms requires a third fluorescent dye that does not interfere with the properties of the live/dead markers. The present study establishes and evaluates a model for tracking polymeric particles in fluorescently stained biological material. To this end, poly(D,L-lactide-co-glycolide) (PLGA)-based micro- and nanoparticles were used as well-established model systems, which, because of their favorable safety profiles, are expected to play important future roles with regard to drug delivery via inhalation. PLGA was covalently and stably labeled with 7-amino-4-methyl-3-coumarinylacetic acid (AMCA), after which blue fluorescent poly(ethylene glycol)-block-PLGA (PEG-PLGA) particles were prepared using a mixture of fluorescent AMCA-PLGA and PEG-PLGA. Because chitosan is known to reduce negative surface charge, blue fluorescent PEG-PLGA-particles with chitosan were also prepared. These micro- and nanoparticles were physicochemically characterized and could be clearly distinguished from live/dead stained bacteria in biofilms using confocal laser scanning microscopy. PMID:26917959

  19. "Turn on" and label-free core-shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+

    NASA Astrophysics Data System (ADS)

    Pang, Yuanfeng; Rong, Zhen; Xiao, Rui; Wang, Shengqi

    2015-03-01

    A turn on and label-free fluorescent apasensor for Hg2+ with high sensitivity and selectivity has been demonstrated in this report. Firstly, core-shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg2+ was added to the aptamer-Ag@SiO2 NPs and TO mixture buffer solution, the aptamer strand can bind Hg2+ to form T-Hg2+-T complex with a hairpin structure which TO can insert into. When clamped by the nucleic acid bases, the fluorescence quanta yield of TO will be increased under laser excitation and emitted a fluorescence emission. Furthermore, the fluorescence emission can be amplified largely by the MEF effect of the Ag@SiO2 NPs. The whole experiment can be finished within 30 min and the limit of detection is 0.33 nM even with interference by high concentrations of other metal ions. Finally, the sensor was applied for detecting Hg2+ in different real water samples with satisfying recoveries over 94%.

  20. "Turn on" and label-free core−shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+

    PubMed Central

    Pang, Yuanfeng; Rong, Zhen; Xiao, Rui; Wang, Shengqi

    2015-01-01

    A turn on and label-free fluorescent apasensor for Hg2+ with high sensitivity and selectivity has been demonstrated in this report. Firstly, core−shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg2+ was added to the aptamer-Ag@SiO2 NPs and TO mixture buffer solution, the aptamer strand can bind Hg2+ to form T-Hg2+-T complex with a hairpin structure which TO can insert into. When clamped by the nucleic acid bases, the fluorescence quanta yield of TO will be increased under laser excitation and emitted a fluorescence emission. Furthermore, the fluorescence emission can be amplified largely by the MEF effect of the Ag@SiO2 NPs. The whole experiment can be finished within 30 min and the limit of detection is 0.33 nM even with interference by high concentrations of other metal ions. Finally, the sensor was applied for detecting Hg2+ in different real water samples with satisfying recoveries over 94%. PMID:25819733

  1. Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline.

    PubMed

    Park, Ki Soo; Oh, Seung Soo; Soh, H Tom; Park, Hyun Gyu

    2014-09-01

    A novel, label-free, fluorescence based sensor for theophylline has been developed. In the new sensor system, an abasic site-incorporated duplex DNA probe serves as both a pocket for recognition of theophylline and a template for the preparation of fluorescent silver nanoclusters. The strategy relies on theophylline-controlled formation of fluorescent silver nanoclusters from abasic site-incorporated duplex DNA. When theophylline is not present, silver ions interact with the cytosine groups opposite to the abasic site in duplex DNA. This interaction leads to efficient formation of intensely red fluorescent silver nanoclusters. In contrast, when theophylline is bound at the abasic site through pseudo base-pairing with appropriately positioned cytosines, silver ion binding to the cytosine nucleobase is prevented. Consequently, fluorescent silver nanoclusters are not formed causing a significant reduction of the fluorescence signal. By employing this new sensor, theophylline can be highly selectively detected at a concentration as low as 1.8 μM. Finally, the diagnostic capability and practical application of this sensor were demonstrated by its use in detecting theophylline in human blood serum. PMID:24901073

  2. Novel spectrophotometric determination of chloramphenicol and dexamethasone in the presence of non labeled interfering substances using univariate methods and multivariate regression model updating

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    2015-04-01

    Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  3. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan

    2015-06-01

    Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats ( p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group, and was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group ( p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

  4. Effect of Fluorescent Labels on Peptide and Amino Acid Sample Dimensionality in Two Dimensional nLC × μFFE Separations.

    PubMed

    Geiger, Matthew; Bowser, Michael T

    2016-02-16

    Multidimensional separations present a unique opportunity for generating the high peak capacities necessary for the analysis of complex biological mixtures. We have coupled nano liquid chromatography with micro free flow electrophoresis (nLC × μFFE) to produce high peak capacity separations of peptide and amino acid mixtures. Currently, μFFE largely relies on laser-induced fluorescence (LIF) detection. We have demonstrated that the choice of fluorescent label significantly affects the fractional coverage and peak capacity of nLC × μFFE separations of peptides and amino acids. Of the labeling reagents assessed, Chromeo P503 performed the best for nLC × μFFE separations of peptides. A nLC × μFFE analysis of a Chromeo P503-labeled BSA tryptic digest produced a 2D separation that made effective use of the available separation space (48%), generating a corrected peak capacity of 521 in a 5 min separation window (104 peaks/min). nLC × μFFE separations of NBD-F-labeled peptides produced similar fractional coverage and peak capacity, but this reagent was able to react with multiple reaction sites, producing an unnecessarily complex analyte mixture. NBD-F performed the best for nLC × μFFE separations of amino acids. NBD-F-labeled amino acids produced a 2D separation that covered 36% of the available separation space, generating a corrected peak capacity of 95 in a 75 s separation window (76 peaks/min). Chromeo P503 and Alexa Fluor 488-labeled amino acids were not effectively separated in the μFFE dimension, giving 2D separations with poor fractional coverage and peak capacity. PMID:26757484

  5. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats.

    PubMed

    Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan

    2015-12-01

    Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats (p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group which was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future. PMID:26078050

  6. Topology of AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, determined by site-directed fluorescence labeling.

    PubMed

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C; Abe, Keietsu

    2007-10-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity. PMID:17660287

  7. Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes.

    PubMed

    Pinilla-Macua, Itziar; Watkins, Simon C; Sorkin, Alexander

    2016-02-23

    Signaling from epidermal growth factor receptor (EGFR) to extracellular-stimuli-regulated protein kinase 1/2 (ERK1/2) is proposed to be transduced not only from the cell surface but also from endosomes, although the role of endocytosis in this signaling pathway is controversial. Ras is the only membrane-anchored component in the EGFR-ERK signaling axis, and therefore, its location determines intracellular sites of downstream signaling. Hence, we labeled endogenous H-Ras (HRas) with mVenus fluorescent protein using gene editing in HeLa cells. mVenus-HRas was primarily located at the plasma membrane, and in small amounts in tubular recycling endosomes and associated vesicles. EGF stimulation resulted in fast but transient activation of mVenus-HRas. Although EGF:EGFR complexes were rapidly accumulated in endosomes together with the Grb2 adaptor, very little, if any, mVenus-HRas was detected in these endosomes. Interestingly, the activities of MEK1/2 and ERK1/2 remained high beyond the point of the physical separation of HRas from EGF:EGFR complexes and down-regulation of Ras activity. Paradoxically, this sustained MEK1/2 and ERK1/2 activation was dependent on the active EGFR kinase. Cell surface biotinylation and selective inactivation of surface EGFRs suggested that a small fraction of active EGFRs remaining in the plasma membrane is responsible for continuous signaling to MEK1/2 and ERK1/2. We propose that, under physiological conditions of cell stimulation, EGFR endocytosis serves to spatially separate EGFR-Grb2 complexes and Ras, thus terminating Ras-mediated signaling. However, sustained minimal activation of Ras by a small pool of active EGFRs in the plasma membrane is sufficient for extending MEK1/2 and ERK1/2 activities. PMID:26858456

  8. Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers.

    PubMed

    Jain, Sunita; Jain, Rajinder K; McCouch, Susan R

    2004-09-01

    Genetic relationships among Indian aromatic and quality rice (Oryza sativa) germplasm were assessed using 30 fluorescently labeled rice microsatellite markers. The 69 rice genotypes used in this study included 52 Basmati and other scented/quality rice varieties from different parts of India and 17 indica and japonica varieties that served as controls. A total of 235 alleles were detected at the 30 simple sequence repeat (SSR) loci, 62 (26.4%) of which were present only in Basmati and other scented/quality rice germplasm accessions. The number of alleles per locus ranged from 3 to 22, with an average of 7.8, polymorphism information content (PIC) values ranged from 0.2 to 0.9, with an average of 0.6, and the size range between the smallest and the largest allele for a given microsatellite locus varied between 3 bp and 68 bp. Of the 30 SSR markers, 20 could distinguish traditional Basmati rice varieties, and a single panel of eight markers could be used to differentiate the premium traditional Basmati, cross-bred Basmati, and non-Basmati rice varieties having different commercial value in the market-place. When estimates of inferred ancestry or similarity coefficients were used to cluster varieties, the high-quality Indian aromatic and quality rice genotypes could be distinguished from both indica and japonica cultivars, and crossbred varieties could be distinguished from traditional Basmati rices. The results indicate that Indian aromatic and quality germplasm is genetically distinct from other groups within O. sativa and is the product of a long independent pattern of evolution. The data also suggest that there is scope for exploiting the genetic diversity of aromatic/quality rice germplasm available in India for national Basmati rice breeding programs. PMID:15309297

  9. Mixed-Dye-Based Label-Free and Sensitive Dual Fluorescence for the Product Detection of Nucleic Acid Isothermal Multiple-Self-Matching-Initiated Amplification.

    PubMed

    Ding, Xiong; Wu, Wenshuai; Zhu, Qiangyuan; Zhang, Tao; Jin, Wei; Mu, Ying

    2015-10-20

    Visual detections based on fluorescence and the color changes under natural light are two promising product detections for isothermal nucleic acid amplifications (INAAs) such as the isothermal multiple-self-matching-initiated amplification (IMSA) as point-of-care testing techniques. However, the currently used approaches have shortcomings in application. For the former, fluorescence changes recognized by naked eye may be indistinguishable because of single fluorescence emitted and strong background noise, which requires empirical preset of cutoff intensity values. For the latter, visual detection sensitivity under natural light is not comparable to that based on fluorescence. Herein, hydroxyl naphthol blue (HNB) and SYBR Green I (SG) were coupled to acquire a label-free dual fluorescence for the visual product detection of IMSA. The mixed-dye-loaded off-chip (tube-based) and on-chip (microfluidic chip-based) IMSAs for the detection of hepatitis B virus were conducted. The results demonstrated that this dual fluorescence could realize distinguishable fluorescent color changes to improve visual detection sensitivity and avoid the preset of cutoff values. Moreover, the mixed dye is stable when kept at room temperature and compatible with the IMSA's reagents without a contamination-prone step of opening tubes after amplification. Also, this coupled dye inherits the advantages of achieving color changes under natural light from HNB and real-time detection from SG. In conclusion, the mixed-dye-based dual fluorescence has a potential in the point-of-care testing application for realizing off-chip and on-chip product detection of IMSA, loop-mediated isothermal amplification (LAMP), or other INAAs. PMID:26383158

  10. Azide vs Alkyne Functionalization in Pt(II) Complexes for Post-treatment Click Modification: Solid-State Structure, Fluorescent Labeling, and Cellular Fate.

    PubMed

    Wirth, Regina; White, Jonathan D; Moghaddam, Alan D; Ginzburg, Aurora L; Zakharov, Lev N; Haley, Michael M; DeRose, Victoria J

    2015-12-01

    Tracking of Pt(II) complexes is of crucial importance toward understanding Pt interactions with cellular biomolecules. Post-treatment fluorescent labeling of functionalized Pt(II)-based agents using the bioorthogonal Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has recently been reported as a promising approach. Here we describe an azide-functionalized Pt(II) complex, cis-[Pt(2-azidobutyl)amido-1,3-propanediamine)Cl2] (1), containing the cis geometry and difunctional reactivity of cisplatin, and present a comparative study with its previously described alkyne-functionalized congener. Single-crystal X-ray diffraction reveals a dramatic change in the solid-state arrangement with exchange of the alkyne for an azide moiety wherein 1 is dominated by a pseudo-chain of Pt-Pt dimers and antiparallel alignment of the azide substituents, in comparison with a circular arrangement supported by CH/π(C≡C) interactions in the alkyne version. In vitro studies indicate similar DNA binding and click reactivity of both congeners observed by fluorescent labeling. Interestingly, complex 1 shows in vitro enhanced click reactivity in comparison to a previously reported azide-appended Pt(II) complex. Despite their similar behavior in vitro, preliminary in cellulo HeLa studies indicate a superior imaging potential of azide-functionalized 1. Post-treatment fluorescent labeling of 1 observed by confocal fluorescence microscopy shows nuclear and intense nucleolar localization. These results demonstrate the potential of 1 in different cell line localization studies and for future isolation and purification of Pt-bound targets. PMID:26512733

  11. Labelling of living mammalian spermatozoa with the fluorescent thiol alkylating agent, monobromobimane (MB): immobilization upon exposure to ultraviolet light and analysis of acrosomal status

    SciTech Connect

    Cummins, J.M.; Fleming, A.D.; Crozet, N.; Kuehl, T.J.; Kosower, N.S.; Yanagimachi, R.

    1986-03-01

    Living spermatozoa of seven mammalian species were treated with the thiol-alkylating fluorescent labelling compound, monobromobimane (MBBR). MB-labelling alone had no effect on sperm motility, nor on the time course or ability of golden hamster spermatozoa to undergo the acrosome reaction when capacitated in vitro. Exposure of MB-labelled spermatozoa to ultraviolet (UV) light and excitation of the MB fluorochrome resulted in virtually immediate immobilization of the spermatozoa without affecting acrosomal status. UV exposure of unlabelled spermatozoa for up to 30 sec had no effect upon motility. Immobilization of MB-labelled spermatozoa depended on the midpiece being irradiated, as irradiation of the head alone, or of the more distal parts of the principal piece, had little or no effect upon motility. Labelling with MB followed by immobilization of individually selected spermatozoa was most useful for detailing the course and site of occurrence of the acrosome reaction during penetration of the cumulus oophorus by golden hamster spermatozoa in vitro. In these often hyperactivated spermatozoa, precise determination of the acrosomal status could not often otherwise be made due to the difficulty in visualizing the acrosomal region of a vigorously thrashing, hyperactivated spermatozoon. This technique should prove valuable in a variety of studies on sperm motility, capacitation and fertilization, and could also be extended to other cell systems.

  12. A highly sensitive label-free sensor for Mercury ion (Hg²⁺) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer.

    PubMed

    Ge, Jia; Li, Xi-Ping; Jiang, Jian-Hui; Yu, Ru-Qin

    2014-05-01

    DNA sequences with guanine repeats can be induced to form G-quartets that adopt G-quadruplex structures in the presence of thioflavin T (ThT). ThT plays a dual role of inducing DNA sequences to fold into quadruplex structures and of sensing the change by its remarkable fluorescence enhancement. ThT binding to the DNA sequences with guanine repeats showed highly specific fluorescence enhancement compared with single/double-stranded DNA. In this work, we have utilized the conformational switch from G-quadruplex complex induced by fluorogenic dye ThT to Hg(2+) mediated T-Hg-T double-stranded DNA formation, thereby pioneering a facile approach to detect Hg(2+) with fluorescence spectrometry. Through this approach, Hg(2+) in aqueous solutions can be detected at 5 nM with fluorescence spectrometry in a facile way, with high selectivity against other metal ions. These results indicate the introduced label-free method for fluorescence spectrometric Hg(2+) detection is simple, quantitative, sensitive, and highly selective. PMID:24720966

  13. A universal label-free fluorescent aptasensor based on Ru complex and quantum dots for adenosine, dopamine and 17β-estradiol detection.

    PubMed

    Huang, Hailiang; Shi, Shuo; Gao, Xing; Gao, Ruru; Zhu, Ying; Wu, Xuewen; Zang, Ruimin; Yao, Tianming

    2016-05-15

    Based on specific aptamer binding properties, a strategy for adenosine, dopamine and 17β-estradiol detection was realised by employing Ru complex and quantum dots (QDs) as fluorescence probes. Ru complex, which could quench the fluorescence of QDs, preferred to bind with aptamer DNA and resulted in the fluorescence rise of QDs. When the aptamer DNA was incubated with the target first, it could not bind with Ru complex and the fluorescence of QDs was quenched. Under the optimal condition, the fluorescence intensity was linearly proportional to the concentration of adenosine, dopamine and 17β-estradiol with a limit of detection (LOD) of 101 nM, 19 nM and 37 nM, respectively. The experiments in fetal bovine serum were also carried out with good results. This universal method was rapid, label-free, low-cost, easy-operating and highly repeatable for the detection of adenosine, dopamine and 17β-estradiol. Qualitative detection by naked eyes was also available without complex instruments. It could also be extended to detect various analytes, such as metal ions, proteins and small molecules by using appropriate aptamers. PMID:26708240

  14. Label-Free and Sensitive Fluorescent Detection of Sequence-Specific Single-Strand DNA Based on S1 Nuclease Cleavage Effects

    PubMed Central

    Guan, Zheng; Liu, Jinchuan; Bai, Wenhui; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang; Lv, Guiyuan

    2014-01-01

    The ability to detect sequence-specific single-strand DNA (ssDNA) in complex, contaminant-ridden samples, using a fluorescent method directly without a DNA extraction and PCR step could simplify the detection of pathogens in the field and in the clinic. Here, we have demonstrated a simple label-free sensing strategy to detect ssDNA by employing its complementary ssDNA, S1 nuclease and nucleic acid fluorescent dyes. Upon clearing away redundant complementary ssDNA and possibly mismatched double strand DNA by using S1 nuclease, the fluorescent signal-to-noise ratio could be increased dramatically. It enabled the method to be adaptable to three different types of DNA fluorescent dyes and the ability to detect target ssDNA in complex, multicomponent samples, like tissue homogenate. The method can distinguish a two-base mismatch from avian influenza A (H1N1) virus. Also, it can detect the appearance of 50 pM target ssDNA in 0.5 µg·mL−1 Lambda DNA, and 50 nM target ssDNA in 5 µg·mL−1 Lambda DNA or in tissue homogenate. It is facile and cost-effective, and could be easily extended to detect other ssDNA with many common nucleic acid fluorescent dyes. PMID:25285445

  15. A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence.

    PubMed

    Wang, Kaiyu; Liao, Jian; Yang, Xiangyue; Zhao, Meng; Chen, Min; Yao, Weirong; Tan, Weihong; Lan, Xiaopeng

    2015-01-15

    A label-free fluorescence aptasensor for highly selective and sensitive detection of ATP and thrombin was developed by using PicoGreen (PG) as signal molecule and surface-bound metal-enhanced fluorescence (MEF) substrates (silver island films, SIFs) as signal enhancers. On binding with ATP or thrombin, aptamers undergo structure switching, leading to a reduction of fluorescence intensity of PG. Chang of fluorescence intensity can be magnified by SIFs. The limit of detection for ATP and thrombin is 1.3 nM and 0.073 nM, respectively. The fluorescence quenching efficiency is linear in the logarithmic scale with ATP concentration range from 10 nM to 100 μM (R(2)=0.995) and thrombin concentration range from 0.1 nM to 100 nM (R(2)=0.997). The coefficients of variation of the intra-assay reproducibility and inter-assay reproducibility for ATP (10 μM) assay are 3.8% and 5.2%, respectively. In addition, the aptasensor is stable and can be reliably used for ATP measurement in biological samples. Overall, the aptasensor can be a useful and cost effective tool for the specific detection of ATP, thrombin and potentially other biomolecules in biological samples. PMID:25086329

  16. Label-free and sensitive fluorescent detection of sequence-specific single-strand DNA based on S1 nuclease cleavage effects.

    PubMed

    Guan, Zheng; Liu, Jinchuan; Bai, Wenhui; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang; Lv, Guiyuan

    2014-01-01

    The ability to detect sequence-specific single-strand DNA (ssDNA) in complex, contaminant-ridden samples, using a fluorescent method directly without a DNA extraction and PCR step could simplify the detection of pathogens in the field and in the clinic. Here, we have demonstrated a simple label-free sensing strategy to detect ssDNA by employing its complementary ssDNA, S1 nuclease and nucleic acid fluorescent dyes. Upon clearing away redundant complementary ssDNA and possibly mismatched double strand DNA by using S1 nuclease, the fluorescent signal-to-noise ratio could be increased dramatically. It enabled the method to be adaptable to three different types of DNA fluorescent dyes and the ability to detect target ssDNA in complex, multicomponent samples, like tissue homogenate. The method can distinguish a two-base mismatch from avian influenza A (H1N1) virus. Also, it can detect the appearance of 50 pM target ssDNA in 0.5 µg · mL(-1) Lambda DNA, and 50 nM target ssDNA in 5 µg · mL(-1) Lambda DNA or in tissue homogenate. It is facile and cost-effective, and could be easily extended to detect other ssDNA with many common nucleic acid fluorescent dyes. PMID:25285445

  17. Antigen--antibody interactions in the reverse micellar system: quenching of the fluorescence of fluorescein-labeled atrazine by antibodies against atrazine.

    PubMed

    Matveeva, E G; Melik-Nubarov, N S; Miethe, P; Levashov, A V

    1996-02-01

    This work presents a new method for performing homogeneous fluoroimmunoassay in apolar organic media, quenching fluoroimmunoassay (QFIA). This method is based on utilization of the reverse micellar system of Aerosol OT (AOT) in n-octane as a medium for the analysis of compounds with low water solubility. It is shown using the system for determination of a hydrophobic pesticide atrazine as an example. The conjugate of atrazine with fluorescein (FA) serves as a label for fluorescence detection of antigen-antibody interaction in the reverse micellar system. The fluorescence quantum yield of this compound drastically depends on the micro-environment of the label in the reverse micelle system. Specifically, the binding of this conjugate with the antibodies solubilized in the reverse micelles results in fluorescence quenching. We found that quenching efficiency depends on the properties of the reverse micellar system (surfactant concentration, hydration degree w0, w0 = [water]/[surfactant], etc.). The optimal conditions for quenching of FA fluorescence by antibodies in reverse micelles of AOT in n-octane are low surfactant concentration and hydration degree, allowing one to get large reversed micelles (w0 = 15-20) capable of retaining solubilized antibodies. Addition of free atrazine results in displacement of the conjugate and restoration of its fluorescence. The sensitivity of the analysis to atrazine is only 10 times less than that of the commonly used method of homogeneous immunoassay, polarization fluoroimmunoassay, in aqueous solution using the same antibodies and conjugate. The advantage of QFIA in reverse micelles is that the analyte can be added when dissolved in nonpolar organic solvent. PMID:8742075

  18. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer.

    PubMed

    Ma, Jin-Liang; Yin, Bin-Cheng; Le, Huynh-Nhu; Ye, Bang-Ce

    2015-06-17

    We have developed a label-free method for sequence-specific DNA detection based on surface plasmon enhanced energy transfer (SPEET) process between fluorescent DNA/AgNC string and gold nanoparticles (AuNPs). DNA/AgNC string, prepared by a single-stranded DNA template encoded two emitter-nucleation sequences at its termini and an oligo spacer in the middle, was rationally designed to produce bright fluorescence emission. The proposed method takes advantage of two strategies. The first one is the difference in binding properties of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) toward AuNPs. The second one is SPEET process between fluorescent DNA/AgNC string and AuNPs, in which fluorescent DNA/AgNC string can be spontaneously adsorbed onto the surface of AuNPs and correspondingly AuNPs serve as "nanoquencher" to quench the fluorescence of DNA/AgNC string. In the presence of target DNA, the sensing probe hybridized with target DNA to form duplex DNA, leading to a salt-induced AuNP aggregation and subsequently weakened SPEET process between fluorescent DNA/AgNC string and AuNPs. A red-to-blue color change of AuNPs and a concomitant fluorescence increase were clearly observed in the sensing system, which had a concentration dependent manner with specific DNA. The proposed method achieved a detection limit of ∼2.5 nM, offering the following merits of simple design, convenient operation, and low experimental cost because of no chemical modification, organic dye, enzymatic reaction, or separation procedure involved. PMID:26024337

  19. New effects in Langmuir and Langmuir-Blodgett monolayers from fluorescently labelled phospholipids and their possible use for water quality control

    NASA Astrophysics Data System (ADS)

    Ivanov, G. R.; Geshev, N. I.

    2016-02-01

    Secondary water contamination poses significant challenges to the sensitivity and selectivity of sensors used for its detection and monitoring. Currently only lab tests can detect these contaminants and by the time this happens the contaminated water has entered the city water supply system. Fluorescent chromophore NitroBenzoxaDiazole (NBD) is very suitable and had been successfully used in biosensor applications due to its high sensitivity to close proximity polarity of the medium. Over the years we have discovered 3 new effects in NBD- labelled phospholipids which can significantly improve the performance of biosensors. The phospholipid matrix provides flexible biocompatible environment for immobilization of selectively reacting enzymes, microorganisms, DNA, immunoagents, whole cells. Use of single layer (3.1 nm thickness) films at the air-water interface (Langmuir films) or deposited on solid support as Langmuir-Blodgett (LB) film gives fast response times for real time monitoring (no slow diffusion processes) and precise molecule ordering and orientation. The first new effect was fluorescence self-quenching in Langmuir and LB films. In the liquid phase films exhibit normal fluorescence. Upon transition to solid phase fluorescence intensity is almost completely self-quenched and fluorescence lifetimes in the nanosecond region decrease 2 times. This is easily measured. Usually large heavy metal atoms quench fluorescence. We observed the opposite new effect when LB film is deposited in the solid phase from a subphase containing heavy metals. The third new effect is the obtaining of nanosized cylinders with bilayer thickness, which remain stable at least for months, when LB monolayer is deposited in the phase coexistence region at thermodynamic equilibrium. This greatly increases reacting surface and sensitivity of possible sensors. Almost all possible optical experimental methods were used for this research. This includes polarized ATR FTIR and polarized UV

  20. Long-term detection of fluorescently labeled human mesenchymal stem cell in vitro and in vivo by semi-automated microscopy.

    PubMed

    Polzer, Hans; Volkmer, Elias; Saller, Maximilian M; Prall, Wolf C; Haasters, Florian; Drosse, Inga; Anz, David; Mutschler, Wolf; Schieker, Matthias

    2012-02-01

    The use of seeded scaffolds in regenerative medicine is limited by the low survival of transplanted mesenchymal stem cells (MSC). Current approaches aim at improving cell viability but require an adequate long-term detection of the transplanted cells. Unfortunately, commonly performed labeling techniques have not been validated for this purpose, and studies often reveal inconclusive results. Consequently, we intended to identify the most suitable method for long-term detection of human MSC (hMSC) in vitro and in vivo. hMSC were labeled using the vital stainings PKH26 and carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) as well as enhanced green fluorescent protein (eGFP) transduction. Metabolic activity and relative fluorescence intensity (RFI) were quantified in vitro over 21 days at 8 time points using standardized semi-automated microscopy and flow cytometry. In vivo, cell seeded scaffolds were subcutaneously implanted in nude mice, and RFI was analyzed over 42 days at 5 time points. In vitro, PKH26 and CFDA-SE significantly reduced metabolic activity. RFI of both stainings significantly decreased after 1 day and further faded to <1% after 7 days. In contrast, labeling with eGFP showed no metabolic effect on hMSC, and no significant reduction of RFI over the total period of 21 days. In vivo, RFI of eGFP labeled cells reached a plateau phase after 21 days and displayed a 3.8-fold higher RFI compared with PKH26 and CFDA-SE on day 42 evaluated in 280 field of views per scaffold using three scaffolds for each labeling technique and time point. We conclude that PKH26 and CFDA-SE are unsuitable for long-term detection of hMSC. eGFP transduction, in turn, allows long-term detection of hMSC in vitro and in vivo. Our results suggest that eGFP is currently the best option among the fluorescent labeling techniques to follow the fate of transplanted hMSC. PMID:21951128

  1. Speciation of Eu3+ bound to humic substances by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC)

    NASA Astrophysics Data System (ADS)

    Lukman, Steven; Saito, Takumi; Aoyagi, Noboru; Kimura, Takaumi; Nagasaki, Shinya

    2012-07-01

    The bioavailability and toxicity of metal ions including radionuclides in the biosphere are greatly influenced by their speciation. Humic substances (HSs) are important constituents of various soil and water systems and have significant impact on the speciation and mobility of metal ions because of their high affinity to metal ions. In this study, the speciation of europium (Eu3+), a chemical homologue of trivalent actinides, with HSs collected from various origins was investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The difficulties associated with the separation of the contribution of different Eu3+ species due to overlapping spectra or similar fluorescence lifetimes were addressed and mitigated by applying a multi-mode factor analysis, parallel factor analysis (PARAFAC), which resulted in the number, spectra, decay curves and relative fluorescence intensity profiles of different Eu3+ species. Subsequently, the interpretation of the Eu3+ species, was tackled by principal component analysis (PCA) and partial linear square (PLS) regression to deduce the nature of the Eu3+ species by taking into account the physicochemical properties of the HSs. Three factors corresponding to different Eu3+ species were obtained at 70 μM Eu3+ for all HSs investigated except for one humic acid. One of the factors corresponded to free Eu3+ ion interacting with HSs via diffusion. The remaining two factors were thought to be Eu3+ bound to HSs: one bound to acidic functional groups of HSs and the other to the sites of HSs influenced by the carbon backbone structures. It was also found that the latter factor exhibited strong energy transfer from the excited Eu3+ center to HSs. At lower Eu3+ concentration (10 μM), two factors having similar fluorescent characteristics to those of the second and third factors were obtained.

  2. Systemic labeling and visualization of dental sensory nerves by the novel fluorescent marker AM1-43.

    PubMed

    Nishikawa, Sumio

    2006-09-01

    Systemic labeling of sensory nerves was performed by injecting a small amount of the styryl dye AM1-43 subcutaneously to the back skin of 4-week-old mice in order to determine its ability to stain sensory nerves. One or 3 days later, dental tissues were fixed and cryosectioned. Molars showed bright nerve fibers in the periodontal ligament and pulp. Nerve fibers in dentinal tubules approximately 100 microm from the pulp were also labeled. In the incisor, there were only few labelings in the pulp, although free nerve endings and Ruffini-type mechanosensors in the periodontal ligament on the lingual side were brightly labeled. The AM1-43-positive fibers were also labeled by anti-PGP9.5. AM1-43 is an excellent marker for sensory nerves and it may be useful for further investigations of dental innervation and in exploring new analgesics for tooth pain. PMID:16955669

  3. Terminal protection of a small molecule-linked loop DNA probe for turn-on label-free fluorescence detection of proteins.

    PubMed

    Chen, Xuexu; Lin, Chunshui; Chen, Yiying; Luo, Feng; Wang, Yiru; Chen, Xi

    2016-09-15

    A novel label-free turn-on fluorescence biosensor for the determination of streptavidin (SA) was proposed. Using terminal protection of small molecule-linked DNA chimeras, which can protect DNA from degradation by various exonucleases when the small molecule moieties are bound to their protein target, we designed a loop probe, where the 3'-end was modified with biotin to resist digestion by exonucleases in the presence of target SA. Coupled with an intercalating dye, SYBR Green I, strong enhancement of the fluorescence signals was obtained compared with that in the absence of SA. A linear correlation equation was obtained for SA from 0 to 200nM with a limit detection of 0.4nM. This strategy holds great promise for practical applications with good specificity and sensitivity. PMID:27107146

  4. Confocal Fluorescence Microscopy Studies of a Fluorophore-Labeled Dirhodium Compound: Visualizing Metal–Metal Bonded Molecules in Lung Cancer (A549) Cells

    PubMed Central

    2015-01-01

    The new dirhodium compound [Rh2(μ-O2CCH3)2(η1-O2CCH3)(phenbodipy)(H2O)3][O2CCH3] (1), which incorporates a bodipy fluorescent tag, was prepared and studied by confocal fluorescence microscopy in human lung adenocarcinoma (A549) cells. It was determined that 1 localizes mainly in lysosomes and mitochondria with no apparent nuclear localization in the 1–100 μM range. These results support the conclusion that cellular organelles rather than the nucleus can be targeted by modification of the ligands bound to the Rh24+ core. This is the first study of a fluorophore-labeled metal–metal bonded compound, work that opens up new venues for the study of intracellular distribution of dinuclear transition metal anticancer complexes. PMID:24854400

  5. Fluorescence Resonance Energy Transfer Glucose Sensor from Site-Specific Dual Labeling of Glucose/Galactose Binding Protein Using Ligand Protection

    PubMed Central

    Hsieh, Helen V.; Sherman, Douglas B.; Andaluz, Sandra A.; Amiss, Terry J.; Pitner, J. Bruce

    2012-01-01

    Background Site-selective modification of proteins at two separate locations using two different reagents is highly desirable for biosensor applications employing fluorescence resonance energy transfer (FRET), but few strategies are available for such modification. To address this challenge, sequential selective modification of two cysteines in glucose/galactose binding protein (GGBP) was demonstrated using a technique we call “ligand protection.” Method In this technique, two cysteines were introduced in GGBP and one cysteine is rendered inaccessible by the presence of glucose, thus allowing sequential attachment of two different thiol-reactive reagents. The mutant E149C/A213C/L238S was first labeled at E149C in the presence of the ligand glucose. Following dialysis and removal of glucose, the protein was labeled with a second dye, either Texas Red (TR) C5 bromoacetamide or TR C2 maleimide, at the second site, A213C. Results Changes in glucose-dependent fluorescence were observed that were consistent with FRET between the nitrobenzoxadiazole and TR fluorophores. Comparison of models and spectroscopic properties of the C2 and C5 TR FRET constructs suggests the greater rigidity of the C2 linker provides more efficient FRET. Conclusions The ligand protection strategy provides a simple method for labeling GGBP with two different fluorophores to construct FRET-based glucose sensors with glucose affinity within the human physiological glucose range (1–30 mM). This general strategy may also have broad utility for other protein-labeling applications. PMID:23294773

  6. A label-free fluorescence strategy for selective detection of nicotinamide adenine dinucleotide based on a dumbbell-like probe with low background noise.

    PubMed

    Chen, Xuexu; Lin, Chunshui; Chen, Yiying; Wang, Yiru; Chen, Xi

    2016-03-15

    In this work we developed a novel label-free fluorescence sensing approach for the detection of nicotinamide adenine dinucleotide (NAD(+)) based on a dumbbell-like DNA probe designed for both ligation reaction and digestion reaction with low background noise. SYBR Green I (SG I), a double-helix dye, was chosen as the readout fluorescence signal. In the absence of NAD(+), the ligation reaction did not occur, but the probe was digested to mononucleotides after the addition of exonuclease I (Exo I) and exonuclease I (Exo III), resulting in a weak fluorescence intensity due to the weak interaction between SG I and mononucleotides. In the presence of NAD(+), the DNA probe was ligated by Escherichia coli DNA ligase, blocking the digestion by Exo I and Exo III. As a result, SG I was intercalated into the stem part of the DNA dumbbell probe and fluorescence enhancement was achieved. This method was simple in design, fast to operate, with good sensitivity and selectivity which could discriminate NAD(+) from its analogs. PMID:26454831

  7. A label-free fluorescence assay for trypsin based on the electron transfer between oligonucleotide-stabilized Ag nanoclusters and cytochrome c.

    PubMed

    Hong, Mei-Lan; Li, Li-Juan; Han, Hui-Xia; Chu, Xia

    2014-01-01

    A label-free fluorescent assay for the detection of trypsin by using oligonucleotide-templated silver nanoclusters (Ag NCs) and cytochrome c (Cyt c) has been demonstrated. When negatively charged Ag NCs and positively charged Cyt c are mixed, they tend to form a hybrid complex, and then lead the fluorescence of Ag NCs to be quenched significantly due to electron transfer between Ag NCs and the heme cofactor of Cyt c. In the presence of trypsin, it catalyzes the hydrolytic cleavage of Cyt c to small peptide fragments, and releases the heme moiety from the Ag NCs/Cyt c complex; the quenched fluorescence restores therewith. By virtue of this specific response, the fluorescent biosensor has a linear range of from 0.7 to 4 μg mL(-1) and from 9 to 120 μg mL(-1) with a detection limit of 58.7 ng mL(-1). Aside from the easy manufacture aspect, our method also possesses a high signal-to-background ratio (~11), excellent selectivity and good biocompatibility, which makes it a promising bioanalysis for a trypsin activity assay. PMID:25109643

  8. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement.

    PubMed

    Li, Wei; Dong, Yifan; Wang, Xi; Li, Hui; Xu, Danke

    2015-04-15

    Depending on the strong affinity of polyA sequence to gold (or silver) surface, applicability of polyA-tailed DNA-gold (or silver) nanoparticle conjugates in homogeneous and heterogeneous protein assays was first demonstrated. Interestingly, when using polyA-tailed, fluophore-labeled DNA-AuNP conjugate, it was found that iodide and thiosulfate anions could act as the ligand displacing reagent to detach polyA-tailed DNA strands from AuNP surface and simultaneously activate the AuNP-quenched fluorophores by destroying the polyA-AuNP interaction via a divide-and-conquer strategy. Based on this new discovery, we have developed a novel, cost-effective and sandwich-type fluorescence turn-on aptasensor for highly sensitive and specific thrombin detection, what took advantage of aptamer-conjugated magnetic beads (apt-MBs) for protein capture and separation, and iodide-induced fluorescence recovery of activatable polyA-based AuNP probes through ligand displacement for fluorescence turn-on detection. This proposed aptasensor could detect thrombin specifically with a detection limit as low as 89pM, which was better than or comparable to many existing fluorescent thrombin assays. Importantly, employment of such polyA-based AuNP conjugate not only avoids the use of thiolated oligonucleotides and thiol-containing displacing reagents, but also offers new possibilities for fabricating convenient and cost-effective bioanalytical applications. PMID:25460880

  9. FLUORESCENT IN SITU DETECTION OF ENCEPHALITOZOON HELLEM SPORES WITH A 6-CARBOXYFLUORESCEIN-LABELED RIBOSOMAL RNA-TARGETED OLIGONUCLEOTIDE PROBE

    EPA Science Inventory

    A fluroescent in situ hybridization assay has been developed for the detection of the human-pathogenic microsporidian, Encephalitozoon hellem in water samples using epifluorescence microscopy. The assay employs a 19-nucleotide species-specific 6-carboxyfluorescein-labeled oligonu...

  10. "Doublex" fluorescent DNA sequencing: two independent sequences obtained simultaneously in one reaction with internal labeling and unlabeled primers.

    PubMed

    Wiemann, S; Stegemann, J; Zimmermann, J; Voss, H; Benes, V; Ansorge, W

    1996-02-15

    The novel "doublex" DNA sequencing technique that makes it possible to obtain simultaneously two independent sequences from one sequencing reaction with the use of unlabeled primers and internal labeling is described. The different sequencing products are labeled in parallel with fluorescein-15-dATP and Texas red-5-dCTP present in the same tube. The characteristics of T7 DNA polymerase are exploited to ensure that only either of the labeled dNTPs is incorporated into the corresponding sequencing products. Specificity of labeling is ensured by the selection of primers. One of the unlabeled primers is chosen to be followed by an "A," the other by a "C" to be incorporated immediately downstream from the primer binding site. The doublex sequencing technique is applicable to the simultaneous sequencing of either the same DNA template/strand or a mixture of different templates. Combinations of unlabeled and labeled primers in the same sequencing reaction are also possible. The two sequences can be determined in parallel and on-line in the same lanes of a gel with a novel automated DNA sequencer, which was previously described for use with labeled primers. PMID:8714594

  11. A new label-free fluorescent sensor for human immunodeficiency virus detection based on exonuclease III-assisted quadratic recycling amplification and DNA-scaffolded silver nanoclusters.

    PubMed

    Yang, Wen; Tian, Jianniao; Wang, Lijun; Fu, Shui; Huang, Hongyun; Zhao, Yanchun; Zhao, Shulin

    2016-05-10

    A label-free and sensitive fluorescence biosensing platform for human immunodeficiency virus gene (HIV-DNA) detection has been fabricated based on luminescent DNA-scaffolded silver nanoclusters (DNA/AgNCs) and autonomous exonuclease III (Exo III)-assisted recycling signal amplification. One long-chain DNA (X-DNA) molecule can hybridize with two assistant DNA (F-DNA) molecules and one HIV-DNA molecule; after Exo III digests X-DNA to liberate F-DNA and HIV-DNA. F-DNA combines with P-DNA (template of DNA/AgNCs), accordingly, P-DNA is cut and the fluorescence of the system is quenched. This assay can finish in one-step without any labelling of the DNA chain or complex construction, and the strategy is sensitive with the detection limit as low as 35 pM. At the same time, the approach exhibits good selectivity even against a single base mismatch. What's more, the method is able to monitor HIV-DNA in real human serum samples; it holds great potential for early diagnosis in gene-related diseases. PMID:27053438

  12. Two-photon excitation in chip electrophoresis enabling label-free fluorescence detection in non-UV transparent full-body polymer chips.

    PubMed

    Geissler, David; Belder, Detlev

    2015-12-01

    One of the most commonly employed detection methods in microfluidic research is fluorescence detection, due to its ease of integration and excellent sensitivity. Many analytes though do not show luminescence when excited in the visible light spectrum, require suitable dyes. Deep-ultraviolet (UV) excitation (<300 nm) allows label-free detection of a broader range of analytes but also mandates the use of expensive fused silica glass, which is transparent to UV light. Herein, we report the first application of label-free deep UV fluorescence detection in non-UV transparent full-body polymer microfluidic devices. This was achieved by means of two-photon excitation in the visible range (λex = 532 nm). Issues associated with the low optical transmittance of plastics in the UV range were successfully circumvented in this way. The technique was investigated by application to microchip electrophoresis of small aromatic compounds. Various polymers, such as poly(methyl methacrylate), cyclic olefin polymer, and copolymer as well as poly(dimethylsiloxane) were investigated and compared with respect to achievable LOD and ruggedness against photodamage. To demonstrate the applicability of the technique, the method was also applied to the determination of serotonin and tryptamine in fruit samples. PMID:26333008

  13. A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles.

    PubMed

    Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang

    2016-08-17

    In this work, we report a novel label-free fluorescence "turn off-on" biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS2 quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS2 QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS2 QDs surface were interacted with the amino groups (NH2), carboxyl groups (COOH) and hydroxyl groups (OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively "turned on". Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I0 (I and I0 were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2-192.5 nmol L(-1), And the detection limit could be down to 0.08 nmol L(-1). Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. PMID:27286773

  14. Fluorescent nanodiamond and lanthanide labelled in situ hybridization for the identification of RNA transcripts in fixed and CLARITY-cleared central nervous system tissues (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Parker, Lindsay M.; Staikopoulos, Vicky; Cordina, Nicole M.; Sayyadi, Nima; Hutchinson, Mark R.; Packer, Nicolle H.

    2016-03-01

    Despite significant advancement in the methodology used to conjugate, incorporate and visualize fluorescent molecules at the cellular and tissue levels, biomedical imaging predominantly relies on the limitations of established fluorescent molecules such as fluorescein, cyanine and AlexaFluor dyes or genetic incorporation of fluorescent proteins by viral or other means. These fluorescent dyes and conjugates are highly susceptible to photobleaching and compete with cellular autofluorescence, making biomedical imaging unreliable, difficult and time consuming in many cases. In addition, some proteins have low copy numbers and/or poor antibody recognition, further making detection and imaging difficult. We are developing better methods for imaging central nervous system neuroinflammatory markers using targeted mRNA transcripts labelled with fluorescent nanodiamonds or lanthanide chelates. These tags have increased signal and photostability and can also discriminate against tissue/cell autofluorescence. Brains and spinal cords from BALB/c mice with a chronic constriction model of neuropathic pain (neuroinflammation group) or that have undergone sham surgeries (control group) were collected. A subset of brains and spinal cords were perfused and fixed with paraformaldehyde (n=3 sham and n=3 pain groups) prior to sectioning and in situ hybridization using nanodiamond or lanthanide chelate conjugated complementary RNA probes. Another subset of brains and spinal cords from the same cohort of animals were perfused and processed for CLARITY hydrogel based clearing prior to in situ hybridization with the same probes. We will present our findings on the photostability, sensitivity and discrimination from background tissue autofluorescence of our novel RNA probes, compared to traditional fluorophore tags.

  15. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels.

    PubMed

    Hu, Gaoshuang; Sheng, Wei; Zhang, Yan; Wu, Xuening; Wang, Shuo

    2015-11-01

    A novel fluorescence immunoassay to detect fluoroquinolones in animal-derived foods was developed for the first time by use of upconversion nanoparticles as signal-probe labels. The bioassay system was established by the use of coating-antigen-modified polystyrene particles as immune-sensing probes for separation and anti-norfloxacin monoclonal antibody conjugated with carboxyl-functionalized NaYF4:Yb,Er upconversion nanoparticles which were prepared via a pyrolysis method and a subsequent ligand exchange process as fluorescent-signal probes (emission intensity recorded at 542 nm with excitation at 980 nm). Under optimized conditions, detection of fluoroquinolones was performed easily. The detection limit of this fluorescence immunoassay for norfloxacin, for example, was 10 pg mL(-1), within a wide linear range of 10 pg mL(-1) to 10 ng mL(-1) (R (2)  = 0.9959). For specificity analysis, the data obtained indicate this method could be applied in broad-spectrum detection of fluoroquinolones. The recoveries of norfloxacin-spiked animal-derived foods ranged from 82.37 to 132.22 %, with coefficients of variation of 0.24-25.06 %. The extraction procedure was rapid and simple, especially for milk samples, which could be analyzed directly without any pretreatment. In addition, the results obtained with the method were in good agreement with those obtained with commercial ELISA kits. The fluorescence immunoassay was more sensitive, especially with regard to the detection limit in milk samples (0.01 ng mL(-1) for norfloxacin): it was 50-fold more sensitive than commercial ELISA kits (0.5 ng mL(-1) for norfloxacin). The results show the proposed fluorescence immunoassay was facile, sensitive, and interference free, and is an alternative method for the quantitative detection of fluoroquinolone residues in animal-derived foods. PMID:26337749

  16. Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system.

    PubMed

    Singer, John T; Phennicie, Ryan T; Sullivan, Matthew J; Porter, Laura A; Shaffer, Valerie J; Kim, Carol H

    2010-06-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-beta-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacI(q) carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen. PMID:20363780

  17. Broad-Host-Range Plasmids for Red Fluorescent Protein Labeling of Gram-Negative Bacteria for Use in the Zebrafish Model System▿ †

    PubMed Central

    Singer, John T.; Phennicie, Ryan T.; Sullivan, Matthew J.; Porter, Laura A.; Shaffer, Valerie J.; Kim, Carol H.

    2010-01-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-β-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacIq carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen. PMID:20363780

  18. Facile Functionalization of Ag@SiO2 Core-Shell Metal Enhanced Fluorescence Nanoparticles for Cell Labeling

    PubMed Central

    Dong, Meicong; Tian, Yu; Pappas, Dimitri

    2014-01-01

    We describe a versatile approach for functionalizing core-shell Ag@SiO2 nanoparticles for live-cell imaging. The approach uses physical adsorption and does not need covalent linkage to synthesize antibody-based labels. The surface orientation is not controlled in this approach, but the signal enhancement is strong and consistent. Antibodies were then attached using a non-covalent process that takes advantage of biotin-avidin affinity. Metal-enhanced nanoparticles doped with rhodamine B were used as the luminescent reporter. The enhancement of rhodamine B was between 2.7–6.8 times. We demonstrated labeling of CD19+ Ramos B lymphocytes and CD4+ HuT 78 T lymphocytes using anti-CD19 and anti-CD4 nanocomposite labels, respectively. This physical adsorption process can accommodate a variety of fluorophore types, and has broad potential in bioanalytical and biosensing applications. PMID:24683421

  19. Impacts of fluorescent superparamagnetic iron oxide (SPIO)-labeled materials on biological characteristics and osteogenesis of bone marrow mesenchymal stem cells (BMSCs).

    PubMed

    Zhang, Guangping; Na, Zhenwen; Ren, Bin; Zhao, Xin; Liu, Weixian

    2015-01-01

    The aim of this study was to investigate the impacts of fluorescent superparamagnetic iron oxide particles (Molday ION Rhodamine B, MIRB) on bioactivities and osteogenetic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). The Cell Counting Kit-8 (CCK-8) method was used to detect the proliferation of superparamagnetic iron oxide (SPIO)-labeled BMSCs and observed the distribution of MIRB in cells; real time -polymerase chain reaction (RT-PCR) method was used to analyze the expressions of such osteogenesis-related genes as bone sialoprotein, alkaline phosphatase (ALP), RUNX2, bonemorphogeneticprotein-2 (BMP-2), type 1 collagen (COL-1) and type 3 collagen (COL-3); ALP-Alizarin red staining and poly-biochemical analyzer were used to qualitatively and quantitatively analyze the osteogenetic metabolites. The labeled MIRB particles distributed in the cytoplasm of BMSCs, the diameter of larger particles could be up to several hundred nanometers, and concentrated around the nuclei, the particles far away from the nuclei were smaller, but the labeled-cells' skeletons and adherent morphology did not change significantly; under the concentration of 25 μg Fe/mL of, MIRB did not affect cellular viabilities of BMSCs, but the gene expressions of bone sialoprotein, ALP, RUNX2 and BMP-2 were decreased, and the secretion amount of ALP and osteocalcin were also declined. MIRB would not affect the proliferation and cell structures of BMSCs, but the SPIO particles aggregated and formed larger granules around the nuclei, which might affect the osteogenesis of BMSCs. PMID:26550127

  20. Impacts of fluorescent superparamagnetic iron oxide (SPIO)-labeled materials on biological characteristics and osteogenesis of bone marrow mesenchymal stem cells (BMSCs)

    PubMed Central

    Zhang, Guangping; Na, Zhenwen; Ren, Bin; Zhao, Xin; Liu, Weixian

    2015-01-01

    The aim of this study was to investigate the impacts of fluorescent superparamagnetic iron oxide particles (Molday ION Rhodamine B, MIRB) on bioactivities and osteogenetic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). The Cell Counting Kit-8 (CCK-8) method was used to detect the proliferation of superparamagnetic iron oxide (SPIO)-labeled BMSCs and observed the distribution of MIRB in cells; real time -polymerase chain reaction (RT-PCR) method was used to analyze the expressions of such osteogenesis-related genes as bone sialoprotein, alkaline phosphatase (ALP), RUNX2, bonemorphogeneticprotein-2 (BMP-2), type 1 collagen (COL-1) and type 3 collagen (COL-3); ALP-Alizarin red staining and poly-biochemical analyzer were used to qualitatively and quantitatively analyze the osteogenetic metabolites. The labeled MIRB particles distributed in the cytoplasm of BMSCs, the diameter of larger particles could be up to several hundred nanometers, and concentrated around the nuclei, the particles far away from the nuclei were smaller, but the labeled-cells’ skeletons and adherent morphology did not change significantly; under the concentration of 25 μg Fe/mL of, MIRB did not affect cellular viabilities of BMSCs, but the gene expressions of bone sialoprotein, ALP, RUNX2 and BMP-2 were decreased, and the secretion amount of ALP and osteocalcin were also declined. MIRB would not affect the proliferation and cell structures of BMSCs, but the SPIO particles aggregated and formed larger granules around the nuclei, which might affect the osteogenesis of BMSCs. PMID:26550127

  1. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets.

    PubMed

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  2. Bromodeoxyuridine (BrdU) labeling and subsequent fluorescence activated cell sorting for culture-independent identification of dissolved organic carbon-degrading bacterioplankton.

    PubMed

    Robbins, Steven; Jacob, Jisha; Lu, Xinxin; Moran, Mary Ann; Mou, Xiaozhen

    2011-01-01

    Microbes are major agents mediating the degradation of numerous dissolved organic carbon (DOC) substrates in aquatic environments. However, identification of bacterial taxa that transform specific pools of DOC in nature poses a technical challenge. Here we describe an approach that couples bromodeoxyuridine (BrdU) incorporation, fluorescence activated cell sorting (FACS), and 16S rRNA gene-based molecular analysis that allows culture-independent identification of bacterioplankton capable of degrading a specific DOC compound in aquatic environments. Triplicate bacterioplankton microcosms are set up to receive both BrdU and a model DOC compound (DOC amendments), or only BrdU (no-addition control). BrdU substitutes the positions of thymidine in newly synthesized bacterial DNA and BrdU-labeled DNA can be readily immunodetected. Through a 24-hr incubation, bacterioplankton that are able to use the added DOC compound are expected to be selectively activated, and therefore have higher levels of BrdU incorporation (HI cells) than non-responsive cells in the DOC amendments and cells in no-addition controls (low BrdU incorporation cells, LI cells). After fluorescence immunodetection, HI cells are distinguished and physically separated from the LI cells by fluorescence activated cell sorting (FACS). Sorted DOC-responsive cells (HI cells) are extracted for DNA and taxonomically identified through subsequent 16S rRNA gene-based analyses including PCR, clone library construction and sequencing. PMID:21931294

  3. Bromodeoxyuridine (BrdU) Labeling and Subsequent Fluorescence Activated Cell Sorting for Culture-independent Identification of Dissolved Organic Carbon-degrading Bacterioplankton

    PubMed Central

    Lu, Xinxin; Moran, Mary Ann; Mou, Xiaozhen

    2011-01-01

    Microbes are major agents mediating the degradation of numerous dissolved organic carbon (DOC) substrates in aquatic environments. However, identification of bacterial taxa that transform specific pools of DOC in nature poses a technical challenge. Here we describe an approach that couples bromodeoxyuridine (BrdU) incorporation, fluorescence activated cell sorting (FACS), and 16S rRNA gene-based molecular analysis that allows culture-independent identification of bacterioplankton capable of degrading a specific DOC compound in aquatic environments. Triplicate bacterioplankton microcosms are set up to receive both BrdU and a model DOC compound (DOC amendments), or only BrdU (no-addition control). BrdU substitutes the positions of thymidine in newly synthesized bacterial DNA and BrdU-labeled DNA can be readily immunodetected 1,2. Through a 24-hr incubation, bacterioplankton that are able to use the added DOC compound are expected to be selectively activated, and therefore have higher levels of BrdU incorporation (HI cells) than non-responsive cells in the DOC amendments and cells in no-addition controls (low BrdU incorporation cells, LI cells). After fluorescence immunodetection, HI cells are distinguished and physically separated from the LI cells by fluorescence activated cell sorting (FACS) 3. Sorted DOC-responsive cells (HI cells) are extracted for DNA and taxonomically identified through subsequent 16S rRNA gene-based analyses including PCR, clone library construction and sequencing. PMID:21931294

  4. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS2 Nanosheets

    PubMed Central

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS2) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS2 is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS2 and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS2 can sense S1 nuclease with a low detection limit of 5 × 10−6 U/mL. Additionally, this method is cost-effective by using affordable WS2 as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  5. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. PMID:26572843

  6. Fluorescence polarization-based method with bisulfite conversion-specific one-label extension for quantification of single CpG dinucleotide methylation.

    PubMed

    Li, Shufen; Wang, Zhongju; Zhou, Lin; Luo, Fu; Zhao, Cunyou

    2015-07-01

    To quantify the methylation at individual CpG dinucleotide sites in large biological or clinical samples, we developed a bisulfite conversion-specific one-label extension (BS-OLE) method using visualization by fluorescence polarization (FP) measurement of methylation at single CpG sites in small amounts of genomic DNA. Genomic DNA was treated with sodium bisulfite to convert unmethylated cytosine to uracil leaving 5-methylcytosine unaltered, and BS-PCR was used to generate DNA template containing target CpG sites. BS-OLE uses a BS-primer hybridized immediately upstream of the target CpG site being examined and then fluorescent dCTP or dUTP is incorporated into the methylated (CpG) or unmethylated (TpG) form of the target site through single-nucleotide chain extension, yielding an FP ratio between the fluorescent dCTP- and dUTP-incorporated products as a measure of methylation. This provides stable estimates of the methylation level of human genomic DNA and of a 250-bp plasmid DNA segment containing a single TCGA TaqI cleavage site, in accordance with the results of a combined bisulfite restriction analysis method. We used BS-OLE to measure dose-dependent DNA hypomethylation in human embryonic kidney 293T cells treated with the DNA methyltransferase inhibitor 5-aza-dC. BS-OLE is well suited to high-throughput multi-sample applications in biological and medical studies. PMID:26334496

  7. Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg²⁺ using exonuclease III-assisted target recycling amplification.

    PubMed

    Xu, Mingdi; Gao, Zhuangqiang; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-05-15

    A new label-free DNA sensing protocol was designed for fluorescent detection of mercury(II) (Hg(2+)), coupling hairpin DNA-scaffolded silver nanocluster (DNA-AgNC) with exonuclease III-assisted target recycling amplification. The assay was carried out through target-induced conformational change of hairpin DNA, while the signal derived from the formed silver nanoclusters on hairpin DNA probes. Initially, target Hg(2+) was specifically coordinated with thymine-thymine (T-T) mismatches to form an intact hairpin DNA. Then, the newly formed hairpin DNA was digested through exonuclease III from blunt 3' termini and restrained at 3' protruding terminus, thus resulting in the release of target Hg(2+) from hairpin DNA. The liberated target Hg(2+) initiated the next cycling, thereby causing the conformational change of numerous hairpin probes from the stem-loop DNA structure to single-stranded DNA. Under the optimal conditions, the fluorescent intensity of the as-produced DNA-AgNCs decreased with the increasing Hg(2+) concentration within a dynamic range from 0.1 nM to 10nM with a detection limit (LOD) of 24 pM. Moreover, the low-cost fluorescent sensing system exhibited high reproducibility and good specificity, thus representing an optional sensing platform for rapid screening of Hg(2+) in environmental water samples. PMID:26741529

  8. Carbon dots as a fluorescent probe for label-free detection of physiological potassium level in human serum and red blood cells.

    PubMed

    Zhang, Lingyang; Chen, Shenna; Zhao, Qian; Huang, Haowen

    2015-06-23

    A unique photoluminescence carbon dots (CDs) with larger size were prepared by microwave-assisted method. Complex functional groups on the surface of the CDs facilitate the nanoparticles to form affinity with some metal ions. Taking advantage of the effective fluorescence quenching effect of K(+), a highly sensitive CD-based fluorescence analytical system for label-free detection of K(+) with limit of detection (LOD) 1.0×10(-12) M was established. The concentrations of potassium ion in biological samples such as human serum are usually found at millimolar levels or even higher. The proposed method begins with a substantial dilution of the sample to place the K(+) concentration in the dynamic range for quantification, which covers 3 orders of magnitude. This offers some advantages: the detection of K(+) only needs very small quantities of biological samples, and the dilution of samples such as serum may effectively eliminate the potential interferences that often originate from the background matrix. The determined potassium levels were satisfactory and closely comparable with the results given by the hospital, indicating that this fluorescent probe is applicable to detection of physiological potassium level with high accuracy. Compared with other relative biosensors requiring modified design, bio-molecular modification or/and sophisticated instruments, this CD-based sensor is very simple, cost-effective and easy detection, suggesting great potential applications for successively monitoring physiological potassium level and the change in biological system. PMID:26092345

  9. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum.

    PubMed

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Nameghi, Morteza Alinezhad; Ramezani, Mohammad; Abnous, Khalil

    2016-07-15

    Sensitive and fast detection of antibiotic residues in animal derived foods and blood serum is of great interest. In this study a fluorescent aptasensor was designed for selective and sensitive detection of streptomycin (STR) based on Exonuclease III (Exo III), SYBR Gold and aptamer complimentary strand. In the absence of STR, the fluorescence intensity is weak. Upon addition of STR, the aptamer binds to its target, leading to release of complementary strand from aptamer and more protection against Exo III function. Following addition of SYBR Gold, a strong fluorescence intensity is obtained. This aptasensor showed a high selectivity toward STR with a limit of detection (LOD) as low as 54.5 nM. The validity of the procedure and applicability of the aptasensor were successfully assessed by detection of STR in a spiked milk and blood serum without interference from the sample matrix. PMID:26948599

  10. A Novel Label-Free microRNA-155 Detection on the Basis of Fluorescent Silver Nanoclusters.

    PubMed

    Hosseini, Morteza; Akbari, Azam; Ganjali, Mohammad Reza; Dadmehr, Mehdi; Rezayan, Ali Hossein

    2015-07-01

    In this paper, a new approach for microRNA-155 (miRNA-155) detection was described based on the fluorescence quenching of oligonucleotide-templated silver nanoclusters (DNA-AgNCs). The specific DNA scaffold with two different nucleotides fragments were used: one was enriched with a cytosine sequence fragment (C12) that could result in DNA-AgNCs with a high quantum yield via a chemical reduction method, and the other was the probe fragment (5- CUGUUAAUGCUAAUCGUG-3) which could selectively bind to the miRNA-155. Thus, the as-prepared AgNCs could exhibit quenched fluorescence when binding to the target miRNA-155. The fluorescence ratio of the DNA-AgNCs was quenched in a linearly proportional manner to the concentration of the target in the range of 0.2 nM to 30 nM with a detection limit of 0.1 nM. PMID:25953605

  11. Synthesis and Preliminary Evaluation of a New 99mTc Labeled Substance P Analogue as a Potential Tumor Imaging Agent

    PubMed Central

    Mozaffari, Saeed; Erfani, Mostafa; Beiki, Davood; Johari Daha, Fariba; Kobarfard, Farzad; Balalaie, Saeed; Fallahi, Babak

    2015-01-01

    Neurokinin 1 receptors (NK1R) are overexpressed on several types of important human cancer cells. Substance P (SP) is the most specific endogenous ligand known for NK1Rs. Accordingly,a new SP analogue was synthesized and evaluated for detection of NK1R positive tumors.[6-hydrazinopyridine-3-carboxylic acid (HYNIC)-Tyr8-Met(O)11-SP] was synthesized and radiolabeled with 99mTc using ethylenediamine-N,N'-diacetic acid (EDDA)and Tricine as coligands. Common physicochemical properties of radioconjugate were studied and in-vitro cell line biological tests were accomplished to determine the receptor mediated characteristics. In-vivo biodistribution in normal and tumor bearingnude mice was also assessed. The cold peptide was prepared in high purity (>99%) and radiolabeled with 99mTc at high specific activities (84-112GBq/µmol) with an acceptable labeling yield (>95%). The radioconjugate was stable in-vitro in the presence of human serum and showed 44% protein binding to human serumalbumin. In-vitro cell line studies on U373MG cells showed an acceptable uptake up to 4.91 ± 0.22% with the ratio of 60.21 ± 1.19% for its specific fraction and increasing specific internalization during 4 h. Receptor binding assays on U373MG cells indicated a mean Kd of 2.46 ± 0.43 nM and Bmax of 128925 ± 8145 sites/cell. In-vivo investigations determined the specific tumor uptake in 3.36 percent of injected dose per gram (%ID/g) for U373MG cells and noticeable accumulations of activity in the intestines and lung. Predominant renal excretion pathway was demonstrated. Therefore, this new radiolabeled peptide could be a promising radiotracer for detection of NK1R positive primary or secondary tumors. PMID:25561916

  12. Optimization of time-resolved fluorescence assay for detection of europium-tetraazacyclododecyltetraacetic acid-labeled ligand-receptor interactions.

    PubMed

    De Silva, Channa R; Vagner, Josef; Lynch, Ronald; Gillies, Robert J; Hruby, Victor J

    2010-03-01

    Lanthanide-based luminescent ligand binding assays are superior to traditional radiolabel assays due to improving sensitivity and affordability in high-throughput screening while eliminating the use of radioactivity. Despite significant progress using lanthanide(III)-coordinated chelators such as diethylenetriaminepentaacetic acid (DTPA) derivatives, dissociation-enhanced lanthanide fluoroimmunoassays (DELFIAs) have not yet been successfully used with more stable chelators (e.g., tetraazacyclododecyltetraacetic acid [DOTA] derivatives) due to the incomplete release of lanthanide(III) ions from the complex. Here a modified and optimized DELFIA procedure incorporating an acid treatment protocol is introduced for use with Eu(III)-DOTA-labeled peptides. Complete release of Eu(III) ions from DOTA-labeled ligands was observed using hydrochloric acid (2.0M) prior to the luminescent enhancement step. [Nle(4),d-Phe(7)]-alpha-melanocyte-stimulating hormone (NDP-alpha-MSH) labeled with Eu(III)-DOTA was synthesized, and the binding affinity to cells overexpressing the human melanocortin-4 (hMC4) receptor was evaluated using the modified protocol. Binding data indicate that the Eu(III)-DOTA-linked peptide bound to these cells with an affinity similar to its DTPA analogue. The modified DELFIA procedure was further used to monitor the binding of an Eu(III)-DOTA-labeled heterobivalent peptide to the cells expressing both hMC4 and cholecystokinin-2 (CCK-2) receptors. The modified assay provides superior results and is appropriate for high-throughput screening of ligand libraries. PMID:19852924

  13. Visualization of Active Glucocerebrosidase in Rodent Brain with High Spatial Resolution following In Situ Labeling with Fluorescent Activity Based Probes

    PubMed Central

    Herrera Moro Chao, Daniela; Kallemeijn, Wouter W.; Marques, Andre R. A.; Orre, Marie; Ottenhoff, Roelof; van Roomen, Cindy; Foppen, Ewout; Renner, Maria C.; Moeton, Martina; van Eijk, Marco; Boot, Rolf G.; Kamphuis, Willem; Hol, Elly M.; Aten, Jan; Overkleeft, Hermen S.; Kalsbeek, Andries; Aerts, Johannes M. F. G.

    2015-01-01

    Gaucher disease is characterized by lysosomal accumulation of glucosylceramide due to deficient activity of lysosomal glucocerebrosidase (GBA). In cells, glucosylceramide is also degraded outside lysosomes by the enzyme glucosylceramidase 2 (GBA2) of which inherited deficiency is associated with ataxias. The interest in GBA and glucosylceramide metabolism in the brain has grown following the notion that mutations in the GBA gene impose a risk factor for motor disorders such as α-synucleinopathies. We earlier developed a β-glucopyranosyl-configured cyclophellitol-epoxide type activity based probe (ABP) allowing in vivo and in vitro visualization of active molecules of GBA with high spatial resolution. Labeling occurs through covalent linkage of the ABP to the catalytic nucleophile residue in the enzyme pocket. Here, we describe a method to visualize active GBA molecules in rat brain slices using in vivo labeling. Brain areas related to motor control, like the basal ganglia and motor related structures in the brainstem, show a high content of active GBA. We also developed a β-glucopyranosyl cyclophellitol-aziridine ABP allowing in situ labeling of GBA2. Labeled GBA2 in brain areas can be identified and quantified upon gel electrophoresis. The distribution of active GBA2 markedly differs from that of GBA, being highest in the cerebellar cortex. The histological findings with ABP labeling were confirmed by biochemical analysis of isolated brain areas. In conclusion, ABPs offer sensitive tools to visualize active GBA and to study the distribution of GBA2 in the brain and thus may find application to establish the role of these enzymes in neurodegenerative disease conditions such as α-synucleinopathies and cerebellar ataxia. PMID:26418157

  14. A novel graphene-based label-free fluorescence `turn-on' nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells

    NASA Astrophysics Data System (ADS)

    Ke, Yaotang; Garg, Bhaskar; Ling, Yong-Chien

    2016-02-01

    A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti4+. The as-prepared rGO@PDA-Ti4+-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti4+. The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti4+), leading to an excellent fluorescence `turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future.A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions

  15. A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer.

    PubMed

    Lv, Zhenzhen; Liu, Jinchuan; Bai, Wenhui; Yang, Shuming; Chen, Ailiang

    2015-02-15

    Highly sensitive detection of proteins is of great importance for effective clinical diagnosis and biomedical research. However, so far most detection methods rely on antibody-based immunoassays and are usually laborious and time-consuming with poor sensitivity. Here, we developed a simple and ultra-sensitive method to detect a biomarker protein-thrombin by taking advantage of the fluorescent probe Perylene tetracarboxylic acid diimide (PTCDI) derivatives and thrombin aptamer. The water-soluble dye PTCDI shows strong fluorescence in buffer solution for the existence of free dye monomer, but becomes weak after aggregation through self-assembly on nucleic acid aptamer. In the presence of thrombin, it specifically binds to thrombin aptamer which causes the conformational transition between aptamer and PTCDI and results in a significant fluorescence recovery. The results showed that as low as 40 pM of thrombin could be detected by this method. The high sensitivity of the developed sensing system mainly attributes to the ultra-sensitivity of the fluorescence intensity changes of PTCDI. With the specificity of aptamer, the assay exhibited high selectivity for thrombin against three other proteins (bovine serum albumin, lysozyme, mouse IgG) and 1% diluted fetal bovine serum. The detection method might be extended to sensitive detection of a variety of proteins for its advantages of isothermal conditions required, simple and rapid without multiple separation and washing steps. PMID:25310484

  16. Binding and Phagocytosis by Opsonized and Nonopsonized Channel Catfish Macrophages of Viable DsRed-fluorescent-labeled Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phagocyte-mediated killing of bacterial pathogens is one of the major defensive mechanisms in fish. The binding, uptake and destruction of recombinant fluorescent protein DsRed transformed Edwardsiella ictaluri by opsonized and nonopsonized channel catfish (Ictalurus punctatus) macrophages was chara...

  17. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  18. Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu(2+) and L-cysteine.

    PubMed

    Lin, Liping; Song, Xinhong; Chen, Yiying; Rong, Mingcong; Wang, Yiru; Zhao, Li; Zhao, Tingting; Chen, Xi

    2015-09-01

    In this work, europium-decorated graphene quantum dots (Eu-GQDs) were prepared by treating three-dimensional Eu-decorated graphene (3D Eu-graphene) via a strong acid treatment. Various characterizations revealed that Eu atoms were successfully complexed with the oxygen functional groups on the surface of graphene quantum dots (GQDs) with the atomic ratio of 2.54%. Compared with Eu free GQDs, the introduction of Eu atoms enhanced the electron density and improved the surface chemical activities of Eu-GQDs. Therefore, the obtained Eu-GQDs were used as a novel "off-on" fluorescent probe for the label-free determination of Cu(2+) and l-cysteine (L-Cys) with high sensitivity and selectivity. The fluorescence intensity of Eu-GQDs was quenched in the presence of Cu(2+) owing to the coordination reaction between Cu(2+) and carboxyl groups on the surface of the Eu-GQDs. The fluorescence intensity of Eu-GQDs recovered with the subsequent addition of L-Cys because of the strong affinity of Cu(2+) to L-Cys via the Cu-S bond. The experimental results showed that the fluorescence variation of the proposed approach had a good linear relationship in the range of 0.1-10 μM for Cu(2+) and 0.5-50 μM for L-Cys with corresponding detection limits of 0.056 μM for Cu(2+) and 0.31 μM for L-Cys. The current approach also displayed a special response to Cu(2+) and L-Cys over the other co-existing metal ions and amino acids, and the results obtained from buffer-diluted serum samples suggested its applicability in biological samples. PMID:26388385

  19. Detection of Early Stage Apoptotic Cells Based on Label-Free Cytochrome c Assay Using Bioconjugated Metal Nanoclusters as Fluorescent Probes.

    PubMed

    Shamsipur, Mojtaba; Molaabasi, Fatemeh; Hosseinkhani, Saman; Rahmati, Fereshteh

    2016-02-16

    Cytochrome c (Cyt c) is an important biomarker in cell lysates for the early stage of apoptosis or anticancer agents. Here, two novel label-free fluorescence assays based on hemoglobin-stabilized gold nanoclusters (Hb/AuNCs) and aptamer-stabilized silver nanoclusters (DNA/AgNCs) for analysis of Cyt c are presented. The heme group of the protein induces sensitive sensing platforms accompanied by the decreased fluorescence of both metal nanoclusters. The quenching processes observed found to be based on the fluorescence resonance energy transfer mechanism from Hb/AuNCs to Cyt c and photoinduced electron transfer from DNA/AgNCs to the aptamer-Cyt c complex. The linear range for Cyt c was found to be 0-10 μM for Hb/AuNCs and from 0 to 1 μM for DNA/AgNCs, with limits of detection of ∼15 nM. On the basis of strong binding affinity of DNA aptamers for their target proteins, the DNA/AgNCs probe was successfully applied to the quantitative determination of Cyt c in cell lysates, which opens a new avenue to early diagnostics and drug screening with high sensitivity. Compared to the conventional Western blot method, the presented assays are low cost, easy to prepare the fluorescent probes, and sensitive, while overall time for the detection and quantitation of Cyt c from isolated mitochondria is only 20 min. The proposed method for Cyt c detection may also be useful for the study of those materials that cause mitochondrial dysfunction and apoptotic cell death. PMID:26812937

  20. A novel graphene-based label-free fluorescence 'turn-on' nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells.

    PubMed

    Ke, Yaotang; Garg, Bhaskar; Ling, Yong-Chien

    2016-02-28

    A novel label-free fluorescence 'turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti(4+)-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti(4+)) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti(4+). The as-prepared rGO@PDA-Ti(4+)-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti(4+). The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti(4+)), leading to an excellent fluorescence 'turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future. PMID:26758942

  1. Heating drug delivery to vascular wall with Rhodamine B and fluorescence labeled Paclitaxel ranging 50 to 70°C: ex vivo study

    NASA Astrophysics Data System (ADS)

    Homma, R.; Shinozuka, M.; Shimazaki, N.; Arai, T.

    2016-03-01

    We studied heating drug delivery to vascular wall with Rhodamine B ranging 50 to 70°C ex vivo study. Porcine carotid artery was dipped in the heated Rhodamine B solution in 15 s and then cooled by 37°C saline. Rhodamine B concentration distribution in the vascular wall cross-section was measured by a fluorescence microscope using 550 nm for excitation and 620 nm emission for fluorescence detection. The total amount of measured fluorescence in the vascular wall was calculated as a indication of delivered Rhodamine B quantity. The delivered Rhodamine B quantity was increased with increasing heating temperature with 50 to 70°C. In the cases of 60 to 70°C heating, the delivered Rhodamine B quantity was 3.1 to 23.3 fold by that of 37°C. Defined penetration depth of the delivered Rhodamine B in the vascular wall was also significantly increased with 65°C and 70°C heating. We also studied heating drug delivery to the vascular wall with fluorescence labeled Paclitaxel with 70°C in 15 s and 60 s heating ex vivo. In both contact duration, the delivered Paclitaxel quantity was increased. To understand these drug delivery enhancement effects, we investigated the vascular cross-sectional structure change by the heating. Some holes over 50 nm in diameter appeared on the internal elastic lamina with 70°C heating. We prospected that vascular surface structure change by the heating might enhance drug delivery to the vascular wall.

  2. A label-free fluorescent probe for Hg2+ and biothiols based on graphene oxide and Ru-complex

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Yao, Tianming; Shi, Shuo; Cao, Yanlin; Sun, Wenliang

    2014-06-01

    A novel, selective and sensitive switch-on fluorescent sensor for Hg2+ and switch-off fluorescent probe for biothiols was developed by using [Ru(bpy)2(pip)]2+ as the signal reporter and graphene oxide (GO) as the quencher. Due to the affinity of GO towards single-stranded DNA (ss-DNA) and [Ru(bpy)2(pip)]2+, the three components assembled, resulting in fluorescence quenching. Upon addition of Hg2+, a double-stranded DNA (ds-DNA) via T-Hg2+-T base pairs was formed, and [Ru(bpy)2(pip)]2+ intercalated into the newly formed ds-DNA. Then, [Ru(bpy)2(pip)]2+ and ds-DNA were removed from the surface of GO, resulting in the restoration of fluorescence. Subsequently, upon addition of biothiols, Hg2+ was released from ds-DNA, due to the higher affinity of Hg2+ to the sulfur atoms of biothiols, which could induce ds-DNA unwinding to form ss-DNA. Then ss-DNA and [Ru(bpy)2(pip)]2+ were adsorbed on the surface of GO, the fluorescence of [Ru(bpy)2(pip)]2+ was quenched again. Therefore, the changes in emission intensity of [Ru(bpy)2(pip)]2+ directly correlated to the amount of detection target (Hg2+ or biothiols) in solution. The assay exhibited high sensitivity and selectivity, with the limits of detection for Hg2+, cysteine (Cys) and glutathione (GSH) to be 2.34 nM, 6.20 nM and 4.60 nM, respectively.

  3. Two-photon excited fluorescence of intrinsic fluorophores enables label-free assessment of adipose tissue function

    PubMed Central

    Alonzo, Carlo Amadeo; Karaliota, Sevasti; Pouli, Dimitra; Liu, Zhiyi; Karalis, Katia P.; Georgakoudi, Irene

    2016-01-01

    Current methods for evaluating adipose tissue function are destructive or have low spatial resolution. These limit our ability to assess dynamic changes and heterogeneous responses that occur in healthy or diseased subjects, or during treatment. Here, we demonstrate that intrinsic two-photon excited fluorescence enables functional imaging of adipocyte metabolism with subcellular resolution. Steady-state and time-resolved fluorescence from intracellular metabolic co-factors and lipid droplets can distinguish the functional states of excised white, brown, and cold-induced beige fat. Similar optical changes are identified when white and brown fat are assessed in vivo. Therefore, these studies establish the potential of non-invasive, high resolution, endogenous contrast, two-photon imaging to identify distinct adipose tissue types, monitor their functional state, and characterize heterogeneity of induced responses. PMID:27491409

  4. Monitoring triplex DNA formation with fluorescence resonance energy transfer between a fluorophore-labeled probe and intercalating dyes.

    PubMed

    Chiou, Chiuan-Chian; Chen, Shiau-Wen; Luo, Ji-Dung; Chien, Yu-Tzu

    2011-09-01

    Triplex-forming oligonucleotides (TFOs) are sequence-dependent DNA binders that may be useful for DNA targeting and detection. A sensitive and convenient method to monitor triplex formation by a TFO and its target DNA duplex is required for the application of TFO probes. Here we describe a novel design by which triplex formation can be monitored homogeneously without prelabeling the target duplex. The design uses a TFO probe tagged with a fluorophore that undergoes fluorescence resonance energy transfer with fluorescent dyes that intercalate into the target duplex. Through color compensation analysis, the specific emission of the TFO probe reveals the status of the triple helices. We used this method to show that triple helix formation with TFOs is magnesium dependent. We also demonstrated that the TFO probe can be used for detection of sequence variation in melting analysis and for DNA quantitation in real-time polymerase chain reaction. PMID:21609711

  5. Two-photon excited fluorescence of intrinsic fluorophores enables label-free assessment of adipose tissue function

    NASA Astrophysics Data System (ADS)

    Alonzo, Carlo Amadeo; Karaliota, Sevasti; Pouli, Dimitra; Liu, Zhiyi; Karalis, Katia P.; Georgakoudi, Irene

    2016-08-01

    Current methods for evaluating adipose tissue function are destructive or have low spatial resolution. These limit our ability to assess dynamic changes and heterogeneous responses that occur in healthy or diseased subjects, or during treatment. Here, we demonstrate that intrinsic two-photon excited fluorescence enables functional imaging of adipocyte metabolism with subcellular resolution. Steady-state and time-resolved fluorescence from intracellular metabolic co-factors and lipid droplets can distinguish the functional states of excised white, brown, and cold-induced beige fat. Similar optical changes are identified when white and brown fat are assessed in vivo. Therefore, these studies establish the potential of non-invasive, high resolution, endogenous contrast, two-photon imaging to identify distinct adipose tissue types, monitor their functional state, and characterize heterogeneity of induced responses.

  6. Two-photon excited fluorescence of intrinsic fluorophores enables label-free assessment of adipose tissue function.

    PubMed

    Alonzo, Carlo Amadeo; Karaliota, Sevasti; Pouli, Dimitra; Liu, Zhiyi; Karalis, Katia P; Georgakoudi, Irene

    2016-01-01

    Current methods for evaluating adipose tissue function are destructive or have low spatial resolution. These limit our ability to assess dynamic changes and heterogeneous responses that occur in healthy or diseased subjects, or during treatment. Here, we demonstrate that intrinsic two-photon excited fluorescence enables functional imaging of adipocyte metabolism with subcellular resolution. Steady-state and time-resolved fluorescence from intracellular metabolic co-factors and lipid droplets can distinguish the functional states of excised white, brown, and cold-induced beige fat. Similar optical changes are identified when white and brown fat are assessed in vivo. Therefore, these studies establish the potential of non-invasive, high resolution, endogenous contrast, two-photon imaging to identify distinct adipose tissue types, monitor their functional state, and characterize heterogeneity of induced responses. PMID:27491409

  7. Adsorption Behavior of Extracellular Polymeric Substances on Graphene Materials Explored by Fluorescence Spectroscopy and Two-Dimensional Fourier Transform Infrared Correlation Spectroscopy.

    PubMed

    Lee, Bo-Mi; Hur, Jin

    2016-07-19

    Adsorption isotherms of extracellular polymeric substances (EPS) on graphene oxide (GO) and reduced GO (rGO) were studied using fluorescence excitation-emission matrix-parallel factor analysis (EEM-PARAFAC) and two-dimensional correlation spectroscopy (2D-COS) combined with Fourier transform infrared spectroscopy (FTIR). Chemical reduction of GO resulted in a greater extent of carbon adsorption with a higher degree of isotherm nonlinearity, suggesting that heterogeneous adsorption sites were additionally created by GO reduction. Two protein-like and two humic-like components were identified from EPS by EEM-PARAFAC. Adsorption of protein-like components was greater than that of humic-like components, and the preferential adsorption was more pronounced for GO versus rGO. Adsorption of protein-like components was more governed by site-limiting mechanisms than humic-like components as shown by the higher isotherm nonlinearity. 2D-COS provided further information on the adsorption of secondary protein structures. Adsorption of the EPS structures related to amide I and aromatic C-C bands was greater for rGO versus GO. Protein structures of EPS were more favorable for adsorption in the order of α-helix → amide II → β-sheet structures with increasing site limitation. Our results revealed successful applicability of EEM-PARAFAC and 2D-COS in examining the adsorption behavior of heterogeneous biological materials on graphene materials. PMID:27348186

  8. Synthesis, characterization, and self-assembly with plasmid DNA of a quaternary ammonium derivative of pectic galactan and its fluorescent labeling for bioimaging applications.

    PubMed

    Chintakunta, Ramesh; Buaron, Nitsa; Kahn, Nicole; Moriah, Amana; Lifshiz, Rinat; Goldbart, Riki; Traitel, Tamar; Tyler, Betty; Brem, Henry; Kost, Joseph

    2016-10-01

    Quaternized derivatives of pectic galactan (QPG) were synthesized by a reaction of pectic galactan (PG) with 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) in the presence of aqueous sodium hydroxide solution under mild reaction conditions. The results showed that the concentration of CHPTAC and NaOH has great impact on the quaternization reaction. QPG was found to interact electrostatically with plasmid DNA in aqueous solution to form complexes in globular condensed morphology in a nanometer scale size ranging from 60 to 160nm. Complexes formed with QPG fluorescently labeled with 5-DTAF (QPG-5-DTAF) were introduced to the C6 rat glioma cell line, and were found to be able to enter the cell and approach the nucleus within 24h. The results suggest that this type of modified natural polysaccharide may have an advantage as a biocompatible and biodegradable gene delivery carrier and furthermore may serve as a cell specific carrier. PMID:27312642

  9. Label-free fluorescent biosensor based on the target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection.

    PubMed

    Chen, Jinghua; Lin, Jia; Zhang, Xi; Cai, Shuxian; Wu, Dongzhi; Li, Chunyan; Yang, Sheng; Zhang, Jing

    2014-03-19

    Non-invasive early diagnosis of breast cancer is the most effective way to improve the survival rate and increase more chances of breast-conserving. In this paper, we developed a label-free fluorescent biosensor based on nuclease assisted target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection in saliva. By employing the strategy, the sensor can detect as low as 20fM target DNA with high discrimination ability even against single-base mismatch sequence. To the best of our knowledge, the proposed sensor is the first attempt to apply Thioflavin T that possesses outstanding structural selectivity for G-quadruplex in DNA amplification techniques, which may represent a promising path toward direct breast cancer detection in saliva at the point of care. PMID:24594816

  10. Unit Title: Imaging the Insertion of Superecliptic pHluorin Labeled Dopamine D2 Receptor Using Total Internal Reflection Fluorescence Microscopy

    PubMed Central

    Daly, Kathryn M.; Li, Yun; Lin, Da-Ting

    2015-01-01

    A better understanding of mechanisms governing receptor insertion to the plasma membrane (PM) requires an experimental approach with excellent spatial and temporal resolutions. Here we present a strategy that enables dynamic visualization of insertion events for dopamine D2 receptors into the PM. This approach includes tagging a pH-sensitive GFP, superecliptic pHluorin, to the extracellular domain of the receptor. By imaging pHluorin-tagged receptors under total internal reflection fluorescence microscopy (TIRFM), we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This novel imaging approach can be applied to both secreted proteins and many membrane proteins with an extracellular domain labeled with superecliptic pHluorin, and will ultimately allow for detailed dissections of the key mechanisms governing secretion of soluble proteins or the insertion of different membrane proteins to the PM. PMID:25559003

  11. In vivo quantifying molecular specificity of Cy5.5-labeled cyclic 9-mer peptide probe with dynamic fluorescence imaging.

    PubMed

    Dai, Yunpeng; Yin, Jipeng; Huang, Yu; Chen, Xueli; Wang, Guodong; Liu, Yajun; Zhang, Xianghan; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin

    2016-04-01

    We quantified molecular specificity of Cy5.5-GX1 in vivo with dynamic fluorescence imaging to better understand its kinetic properties. According to whether or not free GX1 was injected and when it was injected, twelve of BGC-823 xenografted mice were randomly divided into three groups and underwent a 60 minute dynamic fluorescence scanning. Combined with a principal-component analysis, the binding potential (Bp) of the probe was determined by both Logan graphical analysis with reference tissue model (GARTM) and Lammertsma simplified reference tissue model (SRTM). The sum of the pharmacokinetic rate constants (SKRC) was quantified by the Gurfinkel exponential model (GEXPM). Cy5.5-GX1 specifically targeted tumor both in vitro and in vivo. We obtained similar quantification results of Bp (GARTM Bp = 0.582 ± 0.2655, SRTM Bp = 0.618 ± 0.2923), and obtained a good linear relation between the Bp value and the SKRC value. Our results indicate that the SKRC value is more suitable for an early-stage kinetic data analysis, and the Bp value depicts kinetic characteristics under the equilibrium state. Dynamic fluorescence imaging in conjunction with various kinetic models are optimal tools to quantify molecular specificity of the Cy5.5-GX1 probe in vivo. PMID:27446643

  12. In vivo quantifying molecular specificity of Cy5.5-labeled cyclic 9-mer peptide probe with dynamic fluorescence imaging

    PubMed Central

    Dai, Yunpeng; Yin, Jipeng; Huang, Yu; Chen, Xueli; Wang, Guodong; Liu, Yajun; Zhang, Xianghan; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin

    2016-01-01

    We quantified molecular specificity of Cy5.5-GX1 in vivo with dynamic fluorescence imaging to better understand its kinetic properties. According to whether or not free GX1 was injected and when it was injected, twelve of BGC-823 xenografted mice were randomly divided into three groups and underwent a 60 minute dynamic fluorescence scanning. Combined with a principal-component analysis, the binding potential (Bp) of the probe was determined by both Logan graphical analysis with reference tissue model (GARTM) and Lammertsma simplified reference tissue model (SRTM). The sum of the pharmacokinetic rate constants (SKRC) was quantified by the Gurfinkel exponential model (GEXPM). Cy5.5-GX1 specifically targeted tumor both in vitro and in vivo. We obtained similar quantification results of Bp (GARTM Bp = 0.582 ± 0.2655, SRTM Bp = 0.618 ± 0.2923), and obtained a good linear relation between the Bp value and the SKRC value. Our results indicate that the SKRC value is more suitable for an early-stage kinetic data analysis, and the Bp value depicts kinetic characteristics under the equilibrium state. Dynamic fluorescence imaging in conjunction with various kinetic models are optimal tools to quantify molecular specificity of the Cy5.5-GX1 probe in vivo. PMID:27446643

  13. Stalk segment 5 of the yeast plasma membrane H(+)-ATPase. Labeling with a fluorescent maleimide reveals a conformational change during glucose activation.

    PubMed

    Miranda, Manuel; Pardo, Juan Pablo; Allen, Kenneth E; Slayman, Carolyn W

    2002-10-25

    Glucose is well known to cause a rapid, reversible activation of the yeast plasma membrane H(+)-ATPase, very likely mediated by phosphorylation of two or more Ser/Thr residues near the C terminus. Recent mutagenesis studies have shown that glucose-dependent activation can be mimicked constitutively by amino acid substitutions in stalk segment 5 (S5), an alpha-helical stretch connecting the catalytic part of the ATPase with transmembrane segment 5 (Miranda, M., Allen, K. E., Pardo, J. P., and Slayman, C. W. (2001) J. Biol. Chem. 276, 22485-22490). In the present work, the fluorescent maleimide Alexa-488 has served as a probe for glucose-dependent changes in the conformation of S5. Experiments were carried out in a "3C" version of the ATPase, from which six of nine native cysteines had been removed by site-directed mutagenesis to eliminate background labeling by Alexa-488. In this construct, three of twelve cysteines introduced at various positions along S5 (A668C, S672C, and D676C) reacted with the Alexa dye in a glucose-independent manner, as shown by fluorescent labeling of the 100 kDa Pma1 polypeptide and by isolation and identification of the corresponding tryptic peptides. Especially significant was the fact that three additional cysteines reacted with Alexa-488 more rapidly (Y689C) or only (V665C and L678C) in plasma membranes from glucose-metabolizing cells. The results support a model in which the S5 alpha-helix undergoes a significant change in conformation to expose positions 665, 678, and 689 during glucose-dependent activation of the ATPase. PMID:12169695

  14. Low molecular weight poly (2-dimethylamino ethylmethacrylate) polymers with controlled positioned fluorescent labeling: Synthesis, characterization and in vitro interaction with human endothelial cells.

    PubMed

    Flebus, Luca; Lombart, François; Sevrin, Chantal; Defraigne, Jean-Olivier; Peters, Pierre; Parhamifar, Ladan; Molin, Daniel G M; Grandfils, Christian

    2015-01-15

    Poly (2-dimethylamino ethylmethacrylate) (PDMAEMA) is an attractive non-degradable polymer studied as nonviral vector for gene delivery but it can be also adopted for delivery of other biopharmaceutical drugs. As a parenteral carrier, the PDMAEMA free form (FF) might interact with tissues and cells. Few data are available on its selective internalization and efflux from cells, while the majority of studies published have followed the distribution of DNA complexed with PDMAEMA. In order to address polycation safety, the first aim was to synthesize by atom transfer radical polymerisation (ATRP) fluorescent labeled PDMAEMA of low molecular weight (Mw) (below 15 kDa), controlling the position and density of fluorescein. The second goal was to analyze the possible difference in uptake and subcellular distribution of this labeled FF polycation between human umbilical vein endothelial cells (HUVEC) and hCMEC/D3 cells. These two cell lines have been chosen in order to detect selectivity towards the blood-brain barrier (BBB). In both cases, polycation was detected along the plasma membrane followed by progressive migration to the peri-nuclear region, where it overlapped with lysosomal structures. The analysis by fluorescence-activated cell sorting (FACS) of the PDMAEMA uptake by hCMEC/D3 cells showed a significant (p<0.05) inhibition (40%) in presence of 2-dexoxy-D-glucose inhibitor, a result supporting an energy-dependence mechanism(s). Cytotoxicity study showed that low Mw PDMAEMA (10 kDa) lead to a minor cytotoxicity compared to the higher ones. As main conclusion this study highlights the similitude in cell trafficking of FF PDMAEMA and data previously reported for PDMAEMA/DNA complexes. PMID:25448588

  15. Comparison of formats for the development of fiber-optic biosensors utilizing sol-gel derived materials entrapping fluorescently-labelled protein.

    PubMed

    Flora, K; Brennan, J D

    1999-10-01

    The development of fiber-optic biosensors requires that a biorecognition element and a fluorescent reporter group be immobilized at or near the surface of an optical element such as a planar waveguide or optical fiber. In this study, we examined a model biorecognition element-reporter group couple consisting of human serum albumin that was site-selectively labelled at Cys 34 with iodoacetoxy-nitrobenzoxadiazole (HSA-NBD). The labelled protein was encapsulated into sol-gel derived materials that were prepared either as monoliths, as beads that were formed at the distal tip of a fused silica optical fiber, or as thin films that were dipcast along the length of a glass slide or optical fiber. For fiber-based studies, the entrapped protein was excited using a helium-cadmium laser that was launched into a single optical fiber, and emission was separated from the incident radiation using a perforated mirror beam-splitter, and detected using a monochromator-photomultiplier tube assembly. Changes in fluorescence intensity were generated by denaturant-induced conformational changes in the protein or by iodide quenching. The analytical parameters of merit for the different encapsulation formats, including minimum protein loading level, response time and limit-of-detection, were examined, as were factors such as protein accessibility, leaching and photobleaching. Overall, the results indicated that both beads and films were suitable for biosensor development. In both formats, a substantial fraction of the entrapped protein remained accessible, and the entrapped protein retained a large degree of conformational flexibility. Thin films showed the most rapid response times, and provided good detection limits for a model analyte. However, the entrapment of proteins into beads at the distal tip of fibers provided better signal-to-noise and signal-to-background ratios, and required less protein for preparation. Hence, beads appear to be the most viable method for interfacing of

  16. Phytoplankton IF-FISH: Species-specific labeling of cellular proteins by immunofluorescence (IF) with simultaneous species identification by fluorescence immunohybridization (FISH).

    PubMed

    Meek, Megan E; Van Dolah, Frances M

    2016-05-01

    Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. PMID:26948044

  17. Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates.

    PubMed

    O'Shea, Desmond J; O'Riordan, Tomás C; O'Sullivan, Paul J; Papkovsky, Dmitri B

    2007-02-01

    A rapid, homogenous, antibody-free assay for phosphatase enzymes was developed using the phosphorescent platinum (II)-coproporphyrin label (PtCP) and time-resolved fluorescent detection. An internally quenched decameric peptide substrate containing a phospho-tyrosine residue, labeled with PtCP-maleimide and dabcyl-NHS at its termini was designed. Phosphatase catalysed dephosphorylation of the substrate resulted in a minor increase in PtCP signal, while subsequent cleavage by chymotrypsin at the dephosphorylated Tyr-Leu site provided a 3.5 fold enhancement of PtCP phosphorescence. This phosphorescence phosphatase enhancement assay was optimized to a 96 well plate format with detection on a commercial TR-F plate reader, and applied to measure the activity and inhibition of alkaline phosphatase, recombinant human CD45, and tyrosine phosphatases in Jurkat cell lysates within 40 min. Parameters of these enzymatic reactions such as Km's, limits of detection (L.O.D's) and IC50 values for the non-specific inhibitor sodium orthovanadate were also determined. PMID:17386566

  18. In situ detection of bacteria in continuous-flow cultures of seawater sediment suspensions with fluorescently labelled rRNA-directed oligonucleotide probes.

    PubMed

    Bruns, A; Berthe-Corti, L

    1998-10-01

    rRNA-targeted and fluorescently labelled oligonucleotide probes were used to study the composition of natural bacterial populations in continuous-flow cultures of seawater sediment suspensions. The cultures were run as enrichment cultures with increasing dilution rates, and hexadecane as the sole carbon source. Total cell numbers were analysed by counting DAPI (4',6-diamidino-2-phenylindole)-stained cells. To differentiate the population composition, oligonucleotide probes for eubacteria, for Cytophaga/Flavobacteria, and for four subclasses of the Proteobacteria (alpha, beta, gamma and delta) were used. About 40-80% of the DAPI-stained cells could be detected with the EUB338 probe. Moreover, it was possible to detect a shift in the composition of the natural bacterial population with increasing dilution rate of the continuous culture, from large amounts of Cytophaga/Flavobacteria to large numbers of members of the gamma-Proteobacteria. The cell recovery rate for bacteria labelled with specific oligonucleotide probes was analysed with defined cell numbers of Rhodospirillum rubrum, Comamonas testosteroni and Desulfovibrio vulgaris subsp. vulgaris introduced into the seawater sediment suspension, and was determined to be 13.9-33.5%. The standard deviation determined for this method applied to sediment suspensions was +/- 8.3%. The results suggest that the application of the in situ hybridization technique allows a good insight into the structure of populations growing in sediment suspensions. PMID:9802019

  19. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  20. Separation and quantitative determination of cinacalcet metabolites in urine sample using RP-HPLC after derivation with a fluorescent labeling reagent.

    PubMed

    Farnoudian-Habibi, Amir; Jaymand, Mehdi

    2016-08-01

    In this investigation, a novel strategy for separation and quantitative determination of four metabolites of cinacalcet (M2a-Glu, M2b-Glu, M7-Gly, and M8-Gly) in human urine is suggested. The analytical assay is based on a pre-column derivation procedure of cinacalcet metabolites with 1-pyrenyldiazomethane (PDAM) as a fluorescent labeling reagent, and subsequently separation and quantitative determination with reverse-phase high-performance liquid chromatography (RP-HPLC) coupled with a fluorescence detector. Metabolites were separated on a Microsorb-MV 100-5 C18 chromatography column (250×4.6mm, 5μm) using acetate buffer (pH 3.5):methanol (30:70 v/v) as mobile phase at a flow rate of 1.0mLmin(-1). The method was fully validated in terms of linearity (r(2)>0.996; 1-10ngmL(-1)), precision (both intra-day and inter-day; RSD<6.2%), accuracy (92-110%), specificity, robustness (0.15%

  1. A Highly Selective and Sensitive Fluorescence Detection Method of Glyphosate Based on an Immune Reaction Strategy of Carbon Dot Labeled Antibody and Antigen Magnetic Beads.

    PubMed

    Wang, Duo; Lin, Bixia; Cao, Yujuan; Guo, Manli; Yu, Ying

    2016-08-01

    A sensitive fluorescence detection method for glyphosate (GLY) was established based on immune reaction. First, carbon dot labeled antibodies (lgG-CDs) which were able to specifically identify glyphosate were prepared with the environmentally friendly carbon dots (CDs) and glyphosate antibody (lgG). lgG-CDs could be used to in situ visualize the distribution of glyphosate in plant tissues. In order to eliminate the effects of excess lgG-CDs on the determination of GLY, antigen magnetic beads Fe3O4-GLY based on magnetic nanoparticles Fe3O4 and glyphosate were constructed and utilized to couple with the excess lgG-CDs. After magnetic separation to remove antigen magnetic beads, there was a linear relationship between the fluorescence intensity of lgG-CDs and the logarithmic concentration of glyphosate in the range of 0.01-80 μg/mL with a detection limit of 8 ng/mL. The method was used for the detection of glyphosate in Pearl River water, tea, and soil samples with satisfactory recovery ratio between 87.4% and 103.7%. PMID:27403652

  2. Sulfhydryl site-specific cross-linking and labeling of monoclonal antibodies by a fluorescent equilibrium transfer alkylation cross-link reagent.

    PubMed

    del Rosario, R B; Wahl, R L; Brocchini, S J; Lawton, R G; Smith, R H

    1990-01-01

    The site-specific intramolecular cross-linking of sulfhydryls of monoclonal antibodies via a new class of "equilibrium transfer alkylation cross-link (ETAC) reagents" is described. Following complete or partial reduction of interchain disulfides with dithiothreitol (DTT), two murine IgG2a monoclonal antibodies, 225.28S and 5G6.4, were reacted with alpha,alpha-bis[(p-tolylsulfonyl)methyl]-m-aminoacetophenone (ETAC 1a) and a fluorescent conjugated derivative, sulforhodamine B m-(alpha,alpha-bis(p-tolysulfonylmethyl)acetyl)anilide derivative (ETAC 1b). Reducing SDS-polyacrylamide gel electrophoresis analysis of the products from 1b indicated the formation of S-ETAC-S interchain heavy and light chain cross-links (approximately 23-34% overall yield by video-camera densitometry) which do not undergo disulfide-thiol exchange with DTT at 100 degrees C. In contrast, no interchain cross-links were observed upon reaction of unreduced or reduced antibody wherein the thiols have been previously alkylated with iodoacetamide. These results indicated site-specific cross-linking of interchain sulfhydryls and places their distance within 3-4 A. Flow cytometry of the ETAC 1b 5G6.4 cross-linked product using 77 IP3 human ovarian carcinoma target cells showed positive binding and retention of immunoreactivity. The in vivo biodistributions of 131I-labeled intact 5G6.4 and 125I-labeled reduced 5G6.4 + ETAC 1a product in rats were essentially identical over a period of 24 h. The present study illustrates the potential applications of labelable ETAC reagents as thiol-specific probes for a wide variety of immunological studies. PMID:2128870

  3. Thiazole orange as a fluorescent probe: Label-free and selective detection of silver ions based on the structural change of i-motif DNA at neutral pH.

    PubMed

    Kang, Bei Hua; Gao, Zhong Feng; Li, Na; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2016-08-15

    Silver ions have been widely applied to many fields and have harmful effects on environments and human health. Herein, a label-free optical sensor for Ag(+) detection is constructed based on thiazole orange (TO) as a fluorescent probe for the recognition of i-motif DNA structure change at neutral pH. Ag(+) can fold a C-rich single stranded DNA sequence into i-motif DNA structure at neutral pH and that folding is reversible by chelation with cysteine (Cys). The DNA folding process can be indicated by the fluorescence change of TO, which is non-fluorescent in free molecule state and emits strong fluorescence after the incorporation with i-motif DNA. Thus, a rapid, sensitive, and selective method for the detection of Ag(+) and Cys is developed with a detection limit of 17 and 280nM, respectively. It is worth noting that the mechanism underlying the increase of the fluorescence of thiazole orange in the presence of i-motif structure is explained. Moreover, a fluorescent DNA logic gate is successfully designed based on the Ag(+)/Cys-mediated reversible fluorescence changes. The proposed detection strategy is label-free and economical. In addition, this system shows a great promise for i-motif/TO complex to analyze Ag(+) in the real samples. PMID:27260446