Sample records for fluorodeoxyglucose brain positron

  1. [(18)F]-fluorodeoxyglucose positron emission tomography of the cat brain: A feasibility study to investigate osteoarthritis-associated pain.

    PubMed

    Guillot, Martin; Chartrand, Gabriel; Chav, Ramnada; Rousseau, Jacques; Beaudoin, Jean-François; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Lecomte, Roger; de Guise, Jacques A; Troncy, Eric

    2015-06-01

    The objective of this pilot study was to investigate central nervous system (CNS) changes related to osteoarthritis (OA)-associated chronic pain in cats using [(18)F]-fluorodeoxyglucose ((18)FDG) positron emission tomography (PET) imaging. The brains of five normal, healthy (non-OA) cats and seven cats with pain associated with naturally occurring OA were imaged using (18)FDG-PET during a standardized mild anesthesia protocol. The PET images were co-registered over a magnetic resonance image of a cat brain segmented into several regions of interest. Brain metabolism was assessed in these regions using standardized uptake values. The brain metabolism in the secondary somatosensory cortex, thalamus and periaqueductal gray matter was increased significantly (P ≤ 0.005) in OA cats compared with non-OA cats. This study indicates that (18)FDG-PET brain imaging in cats is feasible to investigate CNS changes related to chronic pain. The results also suggest that OA is associated with sustained nociceptive inputs and increased activity of the descending modulatory pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of Donepezil on Wernicke Aphasia After Bilateral Middle Cerebral Artery Infarction: Subtraction Analysis of Brain F-18 Fluorodeoxyglucose Positron Emission Tomographic Images.

    PubMed

    Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook

    2015-01-01

    Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.

  3. MRI and 18F-fluorodeoxyglucose positron emission tomography in hemimegalencephaly.

    PubMed

    Hoffmann, K T; Amthauer, H; Liebig, T; Hosten, N; Etou, A; Lehmann, T N; Farahati, J; Felix, R

    2000-10-01

    We report hemimegalencephaly in a 44-year-old woman with mental retardation, epilepsy and a mild hemiparesis. In addition to typical findings on MRI, 2-deoxy-2[18F]fluorodeoxyglucose positron-emission tomography (PET) demonstrated glucose hypometabolism of the affected hemisphere. The results of PET have been coregistered with morphological information from the MRI studies by image fusion.

  4. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.

    PubMed

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.

  5. Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Disseminated Cryptococcosis

    PubMed Central

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography–computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm. PMID:29142368

  6. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography.

    PubMed

    Kim, Yong Wook; Kim, Hyoung Seop; An, Young-sil

    2013-03-01

    Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness. However, there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI. This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI. We consecutively enrolled 17 patients with VS after HIBI, who experienced cardiopulmonary resuscitation. Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from 17 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis. Additionally, we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis. Compared with normal controls, the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus, bilateral posterior cingulate gyrus, bilateral middle frontal gyri, bilateral superior parietal gyri, bilateral middle occipital gyri, bilateral precentral gyri (PFEW correctecd < 0.0001), and increased brain metabolism in bilateral insula, bilateral cerebella, and the brainstem (PFEW correctecd < 0.0001). In covariance analysis, the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (Puncorrected < 0.005). Our study demonstrated that the precuneus, the posterior cingulate area and the frontoparietal cortex, which is a component of neural correlate for consciousness, may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI. In post-resuscitated HIBI, measurement of brain metabolism using PET

  7. Brain metabolism of children with profound deafness: a visual language activation study by 18F-fluorodeoxyglucose positron emission tomography.

    PubMed

    Fujiwara, Keizo; Naito, Yasushi; Senda, Michio; Mori, Toshiko; Manabe, Tomoko; Shinohara, Shogo; Kikuchi, Masahiro; Hori, Shin-Ya; Tona, Yosuke; Yamazaki, Hiroshi

    2008-04-01

    The use of fluorodeoxyglucose positron emission tomography (FDG-PET) with a visual language task provided objective information on the development and plasticity of cortical language networks. This approach could help individuals involved in the habilitation and education of prelingually deafened children to decide upon the appropriate mode of communication. To investigate the cortical processing of the visual component of language and the effect of deafness upon this activity. Six prelingually deafened children participated in this study. The subjects were numbered 1-6 in the order of their spoken communication skills. In the time period between an intravenous injection of 370 MBq 18F-FDG and PET scanning of the brain, each subject was instructed to watch a video of the face of a speaking person. The cortical radioactivity of each deaf child was compared with that of a group of normal- hearing adults using a t test in a basic SPM2 model. The widest bilaterally activated cortical area was detected in subject 1, who was the worst user of spoken language. By contrast, there was no significant difference between subject 6, who was the best user of spoken language with a hearing aid, and the normal hearing group.

  8. Unusual Asymptomatic Fluorodeoxyglucose Avid Pheochromocytoma in a Case of Myxoid Liposarcoma of the Extremity on 18-F Fluorodeoxyglucose Positron Emission Tomography-computed Tomography.

    PubMed

    Shivdasani, Divya; Singh, Natasha; Pereira, Melvika; Zade, Anand

    2017-01-01

    Sarcomas are a heterogeneous group of rare tumors and arise either from soft tissue or from bone. Soft-tissue sarcomas (STSs) initially metastasize to the lungs. Metastases to extrapulmonary sites such as liver, brain, and soft tissue distant from primary tumor usually develop later. However, cases with isolated adrenal metastasis without disseminated disease have been reported in literature. We present a case of primary myxoid liposarcoma of the lower limb, in which staging 18 -F fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) scan detected a suspicious FDG avid adrenal lesion which eventually on resection was diagnosed as asymptomatic pheochromocytoma. Pheochromocytomas have been reported to demonstrate FDG uptake mimicking metastasis. Hence, while interpreting FDG PET-CT scans in the context of STSs, both the extrapulmonary metastatic potential of aggressive histological subtypes of sarcoma and rare possibility of FDG avid coexistent benign tumor should be taken into consideration.

  9. Primary central nervous system lymphoma in an human immunodeficiency virus-infected patient mimicking bilateral eye sign in brain seen in fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusany; Thirugnanam, Rajasekar; Shibu, Deepu; Kalarikal, Radhakrishnan Edathurthy; Shinto, Ajit Sugunan

    2014-04-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) has proven useful in the diagnosis, staging, and detection of metastasis and posttreatment monitoring of several malignancies in human immunodeficiency virus (HIV)-infected patients. It also has the ability to make the important distinction between malignancy and infection in the evaluation of central nervous system (CNS) lesions, leading to the initiation of the appropriate treatment and precluding the need for invasive biopsy. We report an interesting case of HIV positive 35-year-old woman presented with headache, disorientation, and decreased level of consciousness. She underwent whole body PET/CT which showed multiple lesions in the cerebrum which mimics bilateral eye in brain. A diagnosis of a primary CNS lymphoma was made and patient was started on chemotherapy.

  10. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with (/sup 18/F)fluorodeoxyglucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedland, R.P.; Budinger, T.F.; Ganz, E.

    1983-08-01

    Alzheimer disease is the most common cause of dementia in adults. Despite recent advances in our understanding of its anatomy and chemistry, we remain largely ignorant of its pathogenesis, physiology, diagnosis, and treatment. Dynamic positron emission tomography using (/sup 18/F)fluorodeoxyglucose (FDG) was performed on the Donner 280-crystal ring in 10 subjects with dementia of the Alzheimer type and six healthy age-matched controls. Ratios comparing mean counts per resolution element in frontal, temporoparietal, and entire cortex regions in brain sections 10 mm thick obtained 40-70 min following FDG injection showed relatively less FDG uptake in the temporoparietal cortex bilaterally in allmore » the Alzheimer subjects (p less than 0.01). Left-right alterations were less prominent than the anteroposterior changes. This diminished uptake was due to lowered rates of FDG use and suggests that the metabolic effects of Alzheimer disease are most concentrated in the temporoparietal cortex. Positron emission tomography is a most powerful tool for the noninvasive in vivo assessment of cerebral pathophysiology in dementia.« less

  11. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    PubMed

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  12. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study.

    PubMed

    Van Laere, Koen; Vanhee, Annelies; Verschueren, Jolien; De Coster, Liesbeth; Driesen, An; Dupont, Patrick; Robberecht, Wim; Van Damme, Philip

    2014-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder primarily affecting the motor system, with extramotor involvement to a variable extent. Biomarkers for early differential diagnosis and prognosis are needed. An autosomal dominant hexanucleotide (GGGGCC) expansion in the noncoding region of the chromosome 9 open reading frame 72 (C9orf72) gene is the most frequent genetic cause of ALS, but its metabolic pattern has not been studied systematically. To evaluate the use of 18fluorodeoxyglucose-positron-emission tomography as a marker of ALS pathology and investigate whether a specific metabolic signature is present in patients with C9orf72 mutations. In total, 81 patients with a suspected diagnosis of ALS at University Hospital Leuven were prospectively investigated. All underwent detailed neurological examination and electrodiagnostic and genetic testing for the major known genetic causes of ALS (C9orf72, SOD1, TARDBP, and FUS). A diagnosis of ALS was made in 70 of 81 patients. Of these, 11 were C9orf72 positive and 59 were C9orf72 negative. In 7 patients, the diagnosis of primary lateral sclerosis was made; 4 patients had progressive muscular atrophy. A screened healthy control population was used for comparison. Positron-emission tomographic data were spatially normalized and analyzed using a predefined volume of interest and a voxel-based analysis (SPM8). Discriminant analysis was done both volume of interest based and voxel based using a support vector machine approach. Compared with control participants, 18fluorodeoxyglucose-positron-emission tomography showed perirolandic and variable prefrontal hypometabolism in most patients. Patients with primary lateral sclerosis showed a similar pattern. Patients with C9orf72-positive ALS had discrete relative hypometabolism in the thalamus and posterior cingulate compared with those with C9orf72-negative ALS. A posteriori-corrected discriminant analysis was able to correctly classify 95% of ALS cases and

  13. [Features of Acquired Immunodeficiency Syndrome-related Lymphoma on (18)F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography].

    PubMed

    Niu, Na; Zhu, Zhao-hui; Ma, Yan-ru; Xing, Hai-qun; Li, Fang

    2015-10-01

    To analyze the imaging features of (18)F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography(PET)/computed tomography (CT) in acquired immune deficiency syndrome-related lymphoma (ARL) patients correlated with their clinical signs, symptoms, and treatments. Five ARL patients underwent ¹⁸F-FDG PET/CT at Peking Union Medical College Hospital from October 2008 to January 2013. Two patients received two additional follow-up studies 6 months later. Among these 5 patients, ¹⁸FDG-PET/CT helped in diagnosis of two patient and changed therapeutic strategy in other two patients. In two patients underwent ¹⁸F-FDG PET/CT brain scans, low-metabolism lesion was newly found in cerebral cortex. Of 4 patients receiving highly active antiretroviral therapy, PET/CT also demonstrated diffusely elevated ¹⁸F-FDG uptake in subcutaneous adipose tissue in two patients. ¹⁸F-FDG PET/CT is a highly useful tool in the diagnosis and treatment of ARL patients, in particular in the identification of associated encephalopathy and lipodystrophy.

  14. Age- and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography.

    PubMed

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki

    2009-12-01

    The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Seventy-eight healthy subjects (32 males, mean age 46.6+/-18.2 years; 46 females, mean age 40.6+/-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake.

  15. Positron emission tomography reveals correlations between brain metabolism and mood changes in hyperthyroidism.

    PubMed

    Schreckenberger, M F; Egle, U T; Drecker, S; Buchholz, H G; Weber, M M; Bartenstein, P; Kahaly, G J

    2006-12-01

    Hyperthyroidism is frequently associated with emotional distress. The underlying cerebral processes of the endocrine-induced mood changes are unclear. The objective of this study was to investigate, for the first time, the neuronal correlates of thyrotoxicosis-associated psychic symptoms using positron emission tomography (PET). The study was designed as a cross-sectional trial. The study was performed at joint nuclear medicine and thyroid clinics. Twelve patients with untreated Graves' hyperthyroidism were evaluated. Levels of emotional distress were self-rated by means of the Hospital Anxiety and Depression Scale. Both patients and 20 age- and gender-matched euthyroid controls underwent a brain fluorodeoxyglucose PET scan. Subsequently, the functional relationship between brain metabolism and the psychometric scores was analyzed. Compared with controls and visualized by fluorodeoxyglucose PET, hyperthyroid patients showed a decreased (P < 0.0001) glucose metabolism in the limbic system (uncus and inferior temporal gyrus). Activation foci in the posterior cingulate and in the inferior parietal lobe were correlated with both anxiety and depression scales (P < 0.001). Compared with patients with normal anxiety levels, those with increased anxiety yielded an enhanced glucose metabolism (P < 0.001) in the bilateral sensory association cortex. Serum free T3/free T4 levels negatively correlated with regional glucose metabolism in the medial posterior cingulate. Thyrotoxicosis and associated psychic symptoms are correlated to regional metabolic changes in the main structures of the limbic/paralimbic system.

  16. [18F]-Fluorodeoxyglucose-Positron Emission Tomography in Rats with Prolonged Cocaine Self-Administration Suggests Potential Brain Biomarkers for Addictive Behavior

    PubMed Central

    Cannella, Nazzareno; Cosa-Linan, Alejandro; Roscher, Mareike; Takahashi, Tatiane T.; Vogler, Nils; Wängler, Björn; Spanagel, Rainer

    2017-01-01

    The DSM5-based dimensional diagnostic approach defines substance use disorders on a continuum from recreational drug use to habitual and ultimately addicted behavior. Biomarkers that are indicative of recreational drug use and addicted behavior are lacking. We performed a translational [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) study in the multi-dimensional 0/3crit model of cocaine addiction. Addict-like (3crit) and non-addict-like (0crit) rats, which shared identical life conditions and levels of cocaine self-administration, were acquired for FDG-PET under baseline conditions and following cocaine and yohimbine challenges. Compared to cocaine-naïve control rats, 0crit animals showed higher glucose uptake in the caudate putamen (CPu) and medial prefrontal cortex (mPFC) respect to naïve controls. 3crit animals did not show this adaptive higher glucose utilization, but had lower uptake in several cortical areas. Both cocaine and yohimbine challenges affected glucose uptake in control rats in several brain sites, but not in 0crit and 3crit rats, indicating that impaired glucose mobilization in response to these challenges is not specifically associated with addictive behavior. Compared to 0crit, 3crit rats showed higher reinstatement responses, which were negatively associated with glucose uptake in the ventral tegmental area. Data indicate that cocaine non-addict- and addict-like phenotypes are associated with several potential biomarkers. Specifically, we propose that increased glucose uptake in the CPu and mPFC is a function of controlled drug use, whereas a loss of striatal and prefrontal metabolic activity and reduced uptake in cortical areas are indicative of addictive behavior. PMID:29163237

  17. [18F]-Fluorodeoxyglucose-Positron Emission Tomography in Rats with Prolonged Cocaine Self-Administration Suggests Potential Brain Biomarkers for Addictive Behavior.

    PubMed

    Cannella, Nazzareno; Cosa-Linan, Alejandro; Roscher, Mareike; Takahashi, Tatiane T; Vogler, Nils; Wängler, Björn; Spanagel, Rainer

    2017-01-01

    The DSM5-based dimensional diagnostic approach defines substance use disorders on a continuum from recreational drug use to habitual and ultimately addicted behavior. Biomarkers that are indicative of recreational drug use and addicted behavior are lacking. We performed a translational [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) study in the multi-dimensional 0/3crit model of cocaine addiction. Addict-like (3crit) and non-addict-like (0crit) rats, which shared identical life conditions and levels of cocaine self-administration, were acquired for FDG-PET under baseline conditions and following cocaine and yohimbine challenges. Compared to cocaine-naïve control rats, 0crit animals showed higher glucose uptake in the caudate putamen (CPu) and medial prefrontal cortex (mPFC) respect to naïve controls. 3crit animals did not show this adaptive higher glucose utilization, but had lower uptake in several cortical areas. Both cocaine and yohimbine challenges affected glucose uptake in control rats in several brain sites, but not in 0crit and 3crit rats, indicating that impaired glucose mobilization in response to these challenges is not specifically associated with addictive behavior. Compared to 0crit, 3crit rats showed higher reinstatement responses, which were negatively associated with glucose uptake in the ventral tegmental area. Data indicate that cocaine non-addict- and addict-like phenotypes are associated with several potential biomarkers. Specifically, we propose that increased glucose uptake in the CPu and mPFC is a function of controlled drug use, whereas a loss of striatal and prefrontal metabolic activity and reduced uptake in cortical areas are indicative of addictive behavior.

  18. Trails on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Leading to Diagnosis of Testicular Adrenal Rest Tumor.

    PubMed

    Kashyap, Raghava

    2018-01-01

    Testicular adrenal rest tumors (TARTs) are secondary to hypertrophy of adrenal rest cells in the rete testis in settings of hypersecretion of androgens. We present a case of congenital adrenal hyperplasia with TART with clues to the diagnosis on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). To the best of our knowledge, this is the first reported case on the role of 18 F-FDG PET/CT in TART.

  19. F-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Appearance of Extramedullary Hematopoesis in a Case of Primary Myelofibrosis

    PubMed Central

    Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647

  20. Cardiac Sarcoidosis Concomitant with Large-vessel Aortitis Detected by 18F-fluorodeoxyglucose Positron Emission Tomography.

    PubMed

    Higuchi, Yoshihiro; Kimoto, Yasutaka; Tanoue, Rika; Tokunou, Tomotake; Tomonari, Kenichiro; Maeda, Toyoki; Horiuchi, Takahiko

    2018-06-01

    We herein report a case of concurrent cardiac sarcoidosis and large-vessel aortitis detected by 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) and followed up during immunosuppressive therapy. After high-dose prednisolone administration (1 mg/kg), serial FDG-PET showed that almost all of the abnormal FDG uptake in the heart and extracardiac region, including the abdominal to bilateral iliac arteries, had been disappeared. During the tapering of prednisolone, additive methotrexate therapy was needed to treat the recurrence of cardiac sarcoidosis. FDG-PET is a useful tool for detecting cardiac sarcoidosis concomitant with large-vessel aortitis and monitoring the effectiveness of immunosuppressive therapy.

  1. [Use of positron-emission tomography with F18-fluorodeoxyglucose for the assessment of lung lesions suspicious of malignancy].

    PubMed

    Jofré, M Josefina; Massardo, Teresa; González, Patricio; Canessa, José; Sierralta, Paulina; Humeres, Pamela; Galaz, Rodrigo; Valdebenito, Robert

    2005-05-01

    Positron-emission tomography (PET) with F18-fluorodeoxyglucose (FDG) is very helpful in the evaluation and management of lung lesions. It is specially useful for the characterization of solitary nodules, for the staging, evaluation of recurrence and therapeutic response in non-small cell lung cancer, for the evaluation of small cell lung cancer and for the assessment of pulmonary metastases. This article is a literature review on PET with FDG in lung cancer. A preliminary analysis of PET results at the Military Hospital in Santiago, Chile, is also presented.

  2. Usefulness of fluorodeoxyglucose positron emission tomography/computed tomography for detection of a neuroblastic nodule in a ganglioneuroblastoma: a case report.

    PubMed

    Takeda, Yuka; Sano, Hideki; Kawano, Asuka; Mochizuki, Kazuhiro; Takahashi, Nobuhisa; Kobayashi, Shogo; Ohara, Yoshihiro; Tasaki, Kazuhiro; Hosoya, Mitusuaki; Kikuta, Atsushi

    2018-05-03

    Ganglioneuroblastoma, nodular is defined as a composite tumor of biologically distinct clones. The peripheral neuroblastic tumors in this category are characterized by the presence of grossly visible neuroblastoma nodules coexisting with ganglioneuroblastoma, intermixed, or with ganglioneuroma. Making a correct diagnosis of ganglioneuroblastoma, nodular is often difficult by biopsy or partial tumor resection, because the neuroblastic nodule could be hidden and not sampled for pathological examination. We report a case of a Japanese boy aged 3 years, 8 months, with an unresectable abdominal tumor and elevated vanillylmandelic acid and homovanillic acid levels. The initial biopsy was ganglioneuroma. However, after the second biopsy from a hidden neuroblastoma nodule that was clearly highlighted by fluorodeoxyglucose positron emission tomography/computed tomography, we reached the diagnosis of ganglioneuroblastoma, nodular. Because the nodule demonstrated neuroblastoma, differentiating subtype, with a low mitosis-karyorrhexis index (favorable histology) and nonamplified MYCN, the boy was treated according to the intermediate-risk protocol and is now alive and well 4 years after the diagnosis. This case illustrates the critical role of fluorodeoxyglucose positron emission tomography/computed tomography for detecting a neuroblastoma nodule in a ganglioneuroblastoma.

  3. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly. Published by Elsevier Inc.

  4. 18F-Fluoride and 18F-Fluorodeoxyglucose Positron Emission Tomography After Transient Ischemic Attack or Minor Ischemic Stroke

    PubMed Central

    Jenkins, William S. A.; Irkle, Agnese; Moss, Alastair; Sng, Greg; Forsythe, Rachael O.; Clark, Tim; Roberts, Gemma; Fletcher, Alison; Lucatelli, Christophe; Rudd, James H. F.; Davenport, Anthony P.; Mills, Nicholas L.; Al-Shahi Salman, Rustam; Dennis, Martin; Whiteley, William N.; van Beek, Edwin J. R.; Dweck, Marc R.; Newby, David E.

    2017-01-01

    Background— Combined positron emission tomography (PET) and computed tomography (CT) can assess both anatomy and biology of carotid atherosclerosis. We sought to assess whether 18F-fluoride or 18F-fluorodeoxyglucose can identify culprit and high-risk carotid plaque. Methods and Results— We performed 18F-fluoride and 18F-fluorodeoxyglucose PET/CT in 26 patients after recent transient ischemic attack or minor ischemic stroke: 18 patients with culprit carotid stenosis awaiting carotid endarterectomy and 8 controls without culprit carotid atheroma. We compared standardized uptake values in the clinically adjudicated culprit to the contralateral asymptomatic artery, and assessed the relationship between radiotracer uptake and plaque phenotype or predicted cardiovascular risk (ASSIGN score [Assessing Cardiovascular Risk Using SIGN Guidelines to Assign Preventive Treatment]). We also performed micro PET/CT and histological analysis of excised plaque. On histological and micro PET/CT analysis, 18F-fluoride selectively highlighted microcalcification. Carotid 18F-fluoride uptake was increased in clinically adjudicated culprit plaques compared with asymptomatic contralateral plaques (log10standardized uptake valuemean 0.29±0.10 versus 0.23±0.11, P=0.001) and compared with control patients (log10standardized uptake valuemean 0.29±0.10 versus 0.12±0.11, P=0.001). 18F-Fluoride uptake correlated with high-risk plaque features (remodeling index [r=0.53, P=0.003], plaque burden [r=0.51, P=0.004]), and predicted cardiovascular risk [r=0.65, P=0.002]). Carotid 18F-fluorodeoxyglucose uptake appeared to be increased in 7 of 16 culprit plaques, but no overall differences in uptake were observed in culprit versus contralateral plaques or control patients. However, 18F-fluorodeoxyglucose did correlate with predicted cardiovascular risk (r=0.53, P=0.019), but not with plaque phenotype. Conclusions— 18F-Fluoride PET/CT highlights culprit and phenotypically high-risk carotid plaque

  5. 68Gallium-Arginine-Glycine-Aspartic Acid and 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Chondroblastic Osteosarcoma of the Skull.

    PubMed

    Orunmuyi, Akintunde; Modiselle, Moshe; Lengana, Thabo; Ebenhan, Thomas; Vorster, Mariza; Sathekge, Mike

    2017-09-01

    We report the case of a 32 year-old male with Chondroblastic Osteosarcoma of the skull, which was imaged with both 18 [F]fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) and 68 Gallium-arginine-glycine-aspartic acid ( 68 Ga-RGD) PET/CT. The 18 F-FDG PET/CT did not demonstrate the tumour, whereas the 68 Ga-RGD PET/CT clearly depicted a left-sided frontal tumour. 68 Ga-RGD PET/CT may be a clinically useful imaging modality for early detection of recurrent osteosarcoma, considering the limitations of 18 F-FDG PET in a setting of low glycolytic activity.

  6. Pulmonary suture abscess with false-positive 18F-fluorodeoxyglucose positron emission scan mimicking lung cancer recurrence.

    PubMed

    Iwasaki, Teruo; Nakagawa, Katsuhiro; Katsura, Hiroshi; Nakane, Shigeru; Kawahara, Kunimitsu; Fukuda, Haruyuki

    2006-08-01

    We present the case of a 57-year-old woman with pulmonary suture abscess. She had undergone right S3 segmentectomy for early lung adenocarcinoma 7 years before and right breast-conserving surgery for invasive ductal carcinoma 5 months previously, followed by irradiation plus endocrine therapy. Chest radiography and computed tomography revealed an irregular mass (3.5 cm in diameter) between the residual S1 segment and the middle lobe, neighboring the staple line of the segmentectomy. 18F-fluorodeoxyglucose uptake into the mass increased, seen by positron emission scans. Therefore, we could not rule out the possibility of local recurrence of lung cancer and resected it. Pathologically and microbiologically, the mass was a suture abscess arising around the nylon suture of the previous segmentectomy. This lesion was the result of a foreign-body reaction, as confirmed by polarized microscopy. Moreover, titanium staples at the segmentectomy and breast-conserving surgery may also have contributed to this condition.

  7. The metabolism of the human brain studied with positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitz, T.; Ingvar, D.H.; Widen, L.

    1985-01-01

    This volume presents coverage of the use of positron emission tomography (PET) to study the human brain. The contributors assess new developments in high-resolution positron emission tomography, cyclotrons, radiochemistry, and tracer kinetic models, and explore the use of PET in brain energy metabolism, blood flow, and protein synthesis measurements, receptor analysis, and pH determinations, In addition, they discuss the relevance and applications of positron emission tomography from the perspectives of physiology, neurology, and psychiatry.

  8. False-positive 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with metallic implants following chondrosarcoma resection.

    PubMed

    Zhou, P U; Tang, Jinliang; Zhang, Dong; Li, Guanghui

    2016-05-01

    Positron emission tomography (PET) with fluorine-18-labeled fluorodeoxyglucose ( 18 F-FDG) has been used for the staging and evaluation of recurrence in cancer patients. We herein report a false-positive result of 18 F-FDG PET/computed tomography (CT) scan in a patient following chondrosarcoma resection and metallic implanting. A 35-year-old male patient with chondrosarcoma of the left iliac bone underwent radical resection, metal brace implanting and radiotherapy. A high uptake of 18 F-FDG was observed in the metallic implants and adjacent tissue during PET/CT scanning in the 5th year of follow-up. Tissue biopsy and follow-up examination identified no tumor recurrence or infection at these sites, suggesting that the results of 18 F-FDG PET/CT must be interpreted with caution in cancer patients with metallic implants.

  9. F-18 fluorodeoxyglucose: Its potential in differentiating between stress fracture and neoplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, R.; Ahonen, A.; Virtama, P.

    1989-12-01

    F-18 fluorodeoxyglucose (FDG) accumulates into regions of enhanced glucose uptake and metabolism such as the brain, heart, and malignant tumors. The clinical usefulness of this positron-emitting radiopharmaceutical is illustrated in a case where the clinical picture and CT indicated a malignant bone lesion in the clavicle. Histologically a stress fracture was found secondary to chronic strain on the clavicle. On follow-up the lesion's course was benign. Planar imaging with F-18 FDG was performed twice during follow-up, and on both occasions there was no accumulation of radioactivity over the suspicious area, indicating normal glucose consumption. This case demonstrates the differential diagnosticmore » potential of F-18 FDG and shows that clinically useful information may be obtained without a position emission tomograph.« less

  10. [Solitary Peripheral Pulmonary Squamous Cell Papilloma;Diagnostic Significance of 18F-fluorodeoxyglucose Positron Emission Tomography Findings].

    PubMed

    Hayashi, Tetsuya; Tachibana, Syuichi; Nakao, Keiichi; Tokitsu, Kosuke; Morita, Takuya; Kishima, Genichi

    2017-04-01

    The patient was a 79-year-old woman who had received enucleation of right pulmonary papilloma 7 years earlier. She experienced bloody sputum and was therefore referred to our hospital. Chest computed tomography revealed a mass shadow(21 mm) in the right upper lobe (S2). By bronchoscopy, there was no bulging lesion in the visible range. SCC and CEA increased to 6.4 ng/ml and 6.42 ng/ml, respectively. Whole-body 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) showed increased FDG uptake in the region of the right-lung mass shadow (maximum standardized uptake value 12.95). Since malignancy could not be ruled out, a wedge resection was performed. The post-operative histopathologic diagnosis was squamous cell papilloma. Our literature review showed 12 out of 14 cases with solitary papilloma of the peripheral lung to have increased FDG uptake. Ki-67 positive cells were confirmed in the basal layers of the epithelium, and active cell proliferation of the papilloma is likely to be a cause of increased FDG uptake.

  11. The Role of Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Aggressive Histological Subtypes of Thyroid Cancer: An Overview

    PubMed Central

    Treglia, Giorgio; Annunziata, Salvatore; Muoio, Barbara; Salvatori, Massimo; Ceriani, Luca; Giovanella, Luca

    2013-01-01

    Aggressive histological subtypes of thyroid cancer are rare and have a poor prognosis. The most important aggressive subtypes of thyroid cancer are Hürthle cell carcinoma (HCTC) and anaplastic and poorly differentiated carcinoma (ATC and PDTC). The American Thyroid Association recently published guidelines for the management of patients with ATC, but no specific guidelines have been done about HCTC. We performed an overview of the literature about the role of Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (FDG-PET or PET/CT) in aggressive histological subtypes of thyroid cancer. Only few original studies about the role of FDG-PET or PET/CT in HCTC, PDTC, and ATC have been published in the literature. FDG-PET or PET/CT seems to be useful in staging or followup of invasive and metastatic HCTC. FDG-PET or PET/CT should be used in patients with ATC in initial staging and in the followup after surgery to evaluate metastatic disease. Some authors suggest the use of FDG-PET/CT in staging of PDTC, but more studies are needed to define the diagnostic use of FDG-PET/CT in this setting. Limited experience suggests the usefulness of FDG-PET or PET/CT in patients with more aggressive histological subtypes of DTC. However, DTC presenting as radioiodine refractory and FDG-PET positive should be considered aggressive tumours with poor prognosis. PMID:23653645

  12. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview.

    PubMed

    Treglia, Giorgio; Annunziata, Salvatore; Muoio, Barbara; Salvatori, Massimo; Ceriani, Luca; Giovanella, Luca

    2013-01-01

    Aggressive histological subtypes of thyroid cancer are rare and have a poor prognosis. The most important aggressive subtypes of thyroid cancer are Hürthle cell carcinoma (HCTC) and anaplastic and poorly differentiated carcinoma (ATC and PDTC). The American Thyroid Association recently published guidelines for the management of patients with ATC, but no specific guidelines have been done about HCTC. We performed an overview of the literature about the role of Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (FDG-PET or PET/CT) in aggressive histological subtypes of thyroid cancer. Only few original studies about the role of FDG-PET or PET/CT in HCTC, PDTC, and ATC have been published in the literature. FDG-PET or PET/CT seems to be useful in staging or followup of invasive and metastatic HCTC. FDG-PET or PET/CT should be used in patients with ATC in initial staging and in the followup after surgery to evaluate metastatic disease. Some authors suggest the use of FDG-PET/CT in staging of PDTC, but more studies are needed to define the diagnostic use of FDG-PET/CT in this setting. Limited experience suggests the usefulness of FDG-PET or PET/CT in patients with more aggressive histological subtypes of DTC. However, DTC presenting as radioiodine refractory and FDG-PET positive should be considered aggressive tumours with poor prognosis.

  13. False-positive 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with metallic implants following chondrosarcoma resection

    PubMed Central

    ZHOU, PU; TANG, JINLIANG; ZHANG, DONG; LI, GUANGHUI

    2016-01-01

    Positron emission tomography (PET) with fluorine-18-labeled fluorodeoxyglucose (18F-FDG) has been used for the staging and evaluation of recurrence in cancer patients. We herein report a false-positive result of 18F-FDG PET/computed tomography (CT) scan in a patient following chondrosarcoma resection and metallic implanting. A 35-year-old male patient with chondrosarcoma of the left iliac bone underwent radical resection, metal brace implanting and radiotherapy. A high uptake of 18F-FDG was observed in the metallic implants and adjacent tissue during PET/CT scanning in the 5th year of follow-up. Tissue biopsy and follow-up examination identified no tumor recurrence or infection at these sites, suggesting that the results of 18F-FDG PET/CT must be interpreted with caution in cancer patients with metallic implants. PMID:27123290

  14. Application of fluorodeoxyglucose positron emission tomography in the management of head and neck cancers

    PubMed Central

    Siddiqui, Farzan; Yao, Min

    2014-01-01

    The use of fluorodeoxyglucose positron emission tomography (FDG PET) scan technology in the management of head and neck cancers continues to increase. We discuss the biology of FDG uptake in malignant lesions and also discuss the physics of PET imaging. The various parameters described to quantify FDG uptake in cancers including standardized uptake value, metabolic tumor volume and total lesion glycolysis are presented. PET scans have found a significant role in the diagnosis and staging of head and neck cancers. They are also being increasingly used in radiation therapy treatment planning. Many groups have also used PET derived values to serve as prognostic indicators of outcomes including loco-regional control and overall survival. FDG PET scans are also proving very useful in assessing the efficacy of treatment and management and follow-up of head and neck cancer patients. This review article focuses on the role of FDG-PET computed tomography scans in these areas for squamous cell carcinoma of the head and neck. We present the current state of the art and speculate on the future applications of this technology including protocol development, newer imaging methods such as combined magnetic resonance and PET imaging and novel radiopharmaceuticals that can be used to further study tumor biology. PMID:24976927

  15. Fluorodeoxyglucose--positive internal mammary lymph node in breast cancer patients with silicone implants: is it always metastatic cancer?

    PubMed

    Soudack, Michalle; Yelin, Alon; Simansky, David; Ben-Nun, Alon

    2013-07-01

    Patients with breast cancer following mastectomy and silicone implant reconstruction may have enlarged internal mammary lymph nodes with pathological uptake on positron emission tomography with (18)F-fluorodeoxyglucose. This lymphadenopathy is usually considered as metastatic in nature, but has also been reported to be related to other conditions, including silicon migration. The purpose of this study was to determine the rate of metastatic disease in this unique group of patients. A retrospective comparative study of 12 female patients with breast cancer with silicone implants referred for biopsy due to isolated internal mammary lymph node fluorodeoxyglucose uptake on positron emission tomography. Five patients (41.6%) had histological findings related to silicone (n = 4) or non-specific inflammation (n = 1). The remaining 7 (58.3%) had histological evidence of cancer recurrence. There was no significant difference in the fluorodeoxyglucose-standardized uptake value between the two groups. Fluorodeoxyglucose-positive mammary lymph nodes in patients with breast cancer following silicone implant reconstruction may be due to metastatic deposits, non-specific inflammation or silicone migration. Clinical and imaging characteristics are insufficient in differentiating between these conditions. Biopsy is recommended prior to initiation of further treatment.

  16. Brain Positron Emission Tomography-Computed Tomography Gender Differences in Tinnitus Patients.

    PubMed

    Shlamkovich, Nathan; Gavriel, Haim; Eviatar, Ephraim; Lorberboym, Mordechay; Aviram, Eliad

    2016-10-01

    Increased metabolism in the left auditory cortex has been reported in tinnitus patients. However, gender difference has not been addressed. To assess the differences in Positron emission tomography-computed tomography (PET-CT) results between the genders in tinnitus patients. Retrospective cohort. Included were patients referred to our clinic between January 2011 and August 2013 who complained of tinnitus and underwent fluorodeoxyglucose (FDG)-PET to assess brain metabolism. Univariate and multivariate nominal logistic regressions were used to evaluate the association between upper temporal gyrus (UTG; right and left) and gender. Included were 140 patients (87 males) with an average age of 52.5 yr (median = 53.1). Bilateral tinnitus was found in 85 patients (60.7%), left sided in 30 (21.4%), and right sided in 21(15%). Increased uptake in the UTG was found in 60% of the patients on either side. Males had a statistically significant increased uptake in the UTG in those with unilateral tinnitus and in the entire population. We present the largest study reported so far on tinnitus patients who have undergone FDG-PET-CT. We found a statistically significant difference between the genders in FDG uptake by the UTG. Further investigations should be undertaken to reveal the etiologies for these differences and to assess different therapeutic protocols according to gender. American Academy of Audiology

  17. Cerebral interregional correlations of associative language processing: a positron emission tomography activation study using fluorine-18 fluorodeoxyglucose.

    PubMed

    Schreckenberger, M; Gouzoulis-Mayfrank, E; Sabri, O; Arning, C; Schulz, G; Tuttass, T; Wagenknecht, G; Kaiser, H J; Sass, H; Buell, U

    1998-11-01

    Even though there have been numerous positron emission tomography (PET) activation studies on the perfusional and metabolic bases of language processing, little is known about the intracerebral functional network of language and cognitive processes. It was the aim of this study to investigate the cerebral interregional correlations during voluntary word association versus word repetition in healthy subjects to gain insight into the functional connectivity of associative speech processing. Due to individual variability in functional anatomy, the study protocol was designed as an averaged single-subject study. Eight healthy volunteers performed a verbal association task during fluorine-18 fluorodeoxyglucose (18F-FDG) PET scanning. Two different tasks were performed in randomized order: (a) word repetition (after auditory presentation of nouns) as a control condition, and (b) word association (after auditory presentation of nouns) as a specific semantic activation. The regional metabolic rate of glucose (rMRGlu) was calculated after brain regionalization [112 regions of interest on individual 3D flash magnetic resonance imaging (MRI)] and PET/MRI realignment. Statistical analysis was performed for comparison of association and repetition and for calculation of interregional correlation coefficients during both tasks. Compared with word repetition, word association was associated with significant increases in rMRGlu in the left prefrontal cortex, the left frontal operculum (Broca's area) and the left insula, indicating involvement of these areas in associative language processing. Decreased rMRGlu was found in the left posterior cingulum during word association. During word repetition, highly significant negative correlations were found between the left prefrontal cortex, the contralateral cortex areas and the ipsilateral posterior cingulum. These negative correlations were almost completely eliminated during the association task, suggesting a functional decoupling of

  18. An automated normative-based fluorodeoxyglucose positron emission tomography image-analysis procedure to aid Alzheimer disease diagnosis using statistical parametric mapping and interactive image display

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Ge, Xiaolin; Yao, Li; Bandy, Dan; Alexander, Gene E.; Prouty, Anita; Burns, Christine; Zhao, Xiaojie; Wen, Xiaotong; Korn, Ronald; Lawson, Michael; Reiman, Eric M.

    2006-03-01

    Having approved fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of Alzheimer's disease (AD) in some patients, the Centers for Medicare and Medicaid Services suggested the need to develop and test analysis techniques to optimize diagnostic accuracy. We developed an automated computer package comparing an individual's FDG PET image to those of a group of normal volunteers. The normal control group includes FDG-PET images from 82 cognitively normal subjects, 61.89+/-5.67 years of age, who were characterized demographically, clinically, neuropsychologically, and by their apolipoprotein E genotype (known to be associated with a differential risk for AD). In addition, AD-affected brain regions functionally defined as based on a previous study (Alexander, et al, Am J Psychiatr, 2002) were also incorporated. Our computer package permits the user to optionally select control subjects, matching the individual patient for gender, age, and educational level. It is fully streamlined to require minimal user intervention. With one mouse click, the program runs automatically, normalizing the individual patient image, setting up a design matrix for comparing the single subject to a group of normal controls, performing the statistics, calculating the glucose reduction overlap index of the patient with the AD-affected brain regions, and displaying the findings in reference to the AD regions. In conclusion, the package automatically contrasts a single patient to a normal subject database using sound statistical procedures. With further validation, this computer package could be a valuable tool to assist physicians in decision making and communicating findings with patients and patient families.

  19. The role of Fluorine-18-Fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma.

    PubMed

    Quartuccio, Natale; Treglia, Giorgio; Salsano, Marco; Mattoli, Maria Vittoria; Muoio, Barbara; Piccardo, Arnoldo; Lopci, Egesta; Cistaro, Angelina

    2013-06-01

    The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with Fluorine-18-Fluorodeoxyglucose (FDG) in patients with osteosarcoma (OS). A comprehensive literature search of published studies through October 10(th), 2012 in PubMed/MEDLINE, Embase and Scopus databases regarding whole-body FDG-PET and FDG-PET/CT in patients with OS was performed. We identified 13 studies including 289 patients with OS. With regard to the staging and restaging of OS, the diagnostic performance of FDG-PET and PET/CT seem to be high; FDG-PET and PET/CT seem to be superior to bone scintigraphy and conventional imaging methods in detecting bone metastases; conversely, spiral CT seems to be superior to FDG-PET in detecting pulmonary metastases from OS. Metabolic imaging may provide additional information in the evaluation of OS patients. The combination of FDG-PET or FDG-PET/CT with conventional imaging methods seems to be a valuable tool in the staging and restaging of OS and may have a relevant impact on the treatment planning.

  20. Positron emission tomography scans obtained for the evaluation of cognitive dysfunction.

    PubMed

    Silverman, Daniel H S; Mosconi, Lisa; Ercoli, Linda; Chen, Wei; Small, Gary W

    2008-07-01

    The degree of intactness of human cognitive functioning for a given individual spans a wide spectrum, ranging from normal to severely demented. The differential diagnosis for the causes of impairment along that spectrum is also wide, and often difficult to distinguish clinically, which has led to an increasing role for neuroimaging tools in that evaluation. The most frequent causes of dementia are neurodegenerative disorders, Alzheimer's disease being the most prevalent among them, and they produce significant alterations in brain metabolism, with devastating neuropathologic, clinical, social, and economic consequences. These alterations are detectable through positron emission tomography (PET), even in their earliest stages. The most commonly performed PET studies of the brain are performed with (18)F-fluorodeoxyglucose as the imaged radiopharmaceutical. Such scans have demonstrated diagnostic and prognostic utility for clinicians evaluating patients with cognitive impairment and in distinguishing among primary neurodegenerative disorders and other etiologies contributing to cognitive decline. In addition to focusing on the effects on cerebral metabolism examined with (18)F-fluorodeoxyglucose PET, some other changes occurring in the brains of cognitively impaired patients assessable with other radiotracers will be considered. As preventive and disease-modifying treatments are developed, early detection of accurately diagnosed disease processes facilitated by the use of PET has the potential to substantially impact on the enormous human toll exacted by these diseases.

  1. Higher fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) uptake in tuberculous compared to bacterial spondylodiscitis.

    PubMed

    Bassetti, Matteo; Merelli, Maria; Di Gregorio, Fernando; Della Siega, Paola; Screm, Maria; Scarparo, Claudio; Righi, Elda

    2017-06-01

    Tuberculous spondylodiscitis can be difficult to diagnose because of its nonspecific symptoms and the similarities with non-tubercular forms of spinal infection. Fluorine-18-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG PET-CT) is increasingly used for the diagnosis and monitoring of tubercular diseases. Retrospective, case-control study comparing tuberculous spondylodiscitis with biopsy-confirmed pyogenic spondylodiscitis in the period 2010-2012. Ten cases of tuberculous spondylodiscitis and 20 controls were included. Compared to pyogenic, tuberculous spondylodiscitis was more frequent in younger patients (P = 0.01) and was more often associated with thoraco-lumbar tract lesions (P = 0.01) and multiple vertebral involvement (P = 0.01). Significantly higher maximum standardized uptake values (SUV) at FDG-PET were displayed by tuberculous spondylodiscitis compared to controls (12.4 vs. 7.3, P = 0.003). SUV levels above 8 showed the highest value of specificity (0.80). Mean SUV reduction of 48% was detected for tuberculous spondylodiscitis at 1-month follow-up. Higher SUV levels at FDG-PET were detected in tuberculous compared with pyogenic spondylodiscitis. PET-CT use appeared useful in the disease follow-up after treatment initiation.

  2. 18F-Fluorodeoxyglucose Positron Emission Tomography/CT Scanning in Diagnosing Vascular Prosthetic Graft Infection

    PubMed Central

    Saleem, Ben R.; Pol, Robert A.; Slart, Riemer H. J. A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.

    2014-01-01

    Vascular prosthetic graft infection (VPGI) is a severe complication after vascular surgery. CT-scan is considered the diagnostic tool of choice in advanced VPGI. The incidence of a false-negative result using CT is relatively high, especially in the presence of low-grade infections. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning has been suggested as an alternative for the diagnosis and assessment of infectious processes. Hybrid 18F-FDG PET/CT has established the role of 18F-FDG PET for the assessment of suspected VPGI, providing accurate anatomic localization of the site of infection. However, there are no clear guidelines for the interpretation of the uptake patterns of 18F-FDG as clinical tool for VPGI. Based on the available literature it is suggested that a linear, diffuse, and homogeneous uptake should not be regarded as an infection whereas focal or heterogeneous uptake with a projection over the vessel on CT is highly suggestive of infection. Nevertheless, 18F-FDG PET and 18F-FDG PET/CT can play an important role in the detection of VPGI and monitoring response to treatment. However an accurate uptake and pattern recognition is warranted and cut-off uptake values and patterns need to be standardized before considering the technique to be the new standard. PMID:25210712

  3. Lymphadenopathy resulting from acute toxoplasmosis mimicking relapse of non-Hodgkin's lymphoma on fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Joshi, Prathamesh; Lele, Vikram; Mahajan, Pravin

    2012-01-01

    We report a case documenting fluorodeoxyglucose (FDG) accumulation in cervical, supraclavicular and axillary lymph nodes resulting from acute toxoplasmosis. A 50-year-old Indian female with history of non-Hodgkin's lymphoma (NHL) of left breast, postchemotherapy status, was found to have hypermetabolic right cervical, supraclavicular and axillary lymph nodes on a surveillance FDG positron emission tomography/computed tomography (PET/CT) scan. Her previous two PET/CT scans were unremarkable with no evidence of metabolically active disease. Therefore, a differential diagnosis of relapse of NHL versus infectious/inflammatory pathology was raised in the report. Biopsy of axillary lymph node demonstrated features characteristic of toxoplasmosis. The serological test results were also compatible with acute toxoplasmosis infection. Infective and inflammatory diseases are known to accumulate FDG, resulting in false positives for malignancy. This case demonstrates lymph nodal toxoplasmosis as a potential cause of false positive FDG PET/CT findings in patients with known malignancy and highlights the importance of histopathological and laboratory correlation for the accurate interpretation of FDG PET/CT scans.

  4. Positron Emission Tomography With 18F-Fluorodeoxyglucose in Patients With Sickle Cell Acute Chest Syndrome

    PubMed Central

    de Prost, Nicolas; Sasanelli, Myriam; Deux, Jean-François; Habibi, Anoosha; Razazi, Keyvan; Galactéros, Frédéric; Meignan, Michel; Maître, Bernard; Brun-Buisson, Christian; Itti, Emmanuel; Dessap, Armand Mekontso

    2015-01-01

    Abstract The acute chest syndrome (ACS) is the main cause of mortality among adult patients with sickle cell disease (SCD). Its pathophysiology is still unclear. Using positron emission tomography (PET) with 18F-fluorodeoxyglucose [18F-fluorodeoxyglucose (18F-FDG)], we explored the relationship between regional lung density and lung metabolism, as a reflection of lung neutrophilic infiltration during ACS. Patients were prospectively enrolled in a single-center study. Dual modality chest PET/computed tomography (CT) scans were performed, with 18F-FDG emission scans for quantification of regional 18F-FDG uptake and CT scans with radiocontrast agent to check for pulmonary artery thrombosis. Regional lung 18F-FDG uptake was quantified in ACS patients and in SCD patients without ACS (SCD non-ACS controls). Maximal (SUVmax) and mean (SUVmean) standardized uptake values were computed. Seventeen patients with ACS (mean age 28.3 ± 6.4 years) were included. None died nor required invasive mechanical ventilation. The main lung opacity on CT scans was lower lobe consolidation. Lungs of patients with ACS exhibited higher SUVmax than those of SCD non-ACS controls (2.5 [2.1–2.9] vs 0.8 [0.6–1.0]; P < 0.0001). Regional SUVmax and SUVmean was higher in lower than in upper lobes of ACS patients (P < 0.001) with a significant correlation between lung density and SUVmax (R2 = 0.78). SUVmean was higher in upper lobes of ACS patients than in lungs of SCD non-ACS controls (P < 0.001). Patients with SUVmax >2.5 had longer intensive care unit (ICU) stay than others (7 [6–11] vs 4 [3–6] days; P = 0.016). Lungs of patients with ACS exhibited higher 18F-FDG uptake than SCD non-ACS controls. Lung apices had normal aeration and lower 18F-FDG uptake than lung bases, but higher 18F-FDG uptake than lungs of SCD non-ACS controls. Patients with higher lung 18F-FDG uptake had longer ICU stay than others. PMID:25950690

  5. (18)F-Fluorodeoxyglucose Positron Emission Tomography Can Quantify and Predict Esophageal Injury During Radiation Therapy.

    PubMed

    Niedzielski, Joshua S; Yang, Jinzhong; Liao, Zhongxing; Gomez, Daniel R; Stingo, Francesco; Mohan, Radhe; Martel, Mary K; Briere, Tina M; Court, Laurence E

    2016-11-01

    We sought to investigate the ability of mid-treatment (18)F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized (18)F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We used nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion. Symptom progression was predicted with an AUC of 0

  6. Evaluation of chemotherapy response in patients with advanced head and neck cancer using [F-18]fluorodeoxyglucose positron emission tomography.

    PubMed

    Lowe, V J; Dunphy, F R; Varvares, M; Kim, H; Wittry, M; Dunphy, C H; Dunleavy, T; McDonough, E; Minster, J; Fletcher, J W; Boyd, J H

    1997-12-01

    [F-18]Fluorodeoxyglucose (FDG)-positron emission tomography (PET) can measure the metabolic activity of tissues; FDG-PET may be able to predict response to chemotherapy by identifying changes in tumor metabolism. Measurement of response to treatment may help improve survival in the management of advanced head and neck cancer. We evaluated this particular use of FDG-PET in patients participating in a neoadjuvant organ-preservation protocol using taxol and carboplatin and compared pathologic response after chemotherapy with changes in tumor metabolism measured by FDG-PET. Serial FDG-PET studies (n = 56) were performed in patients (n = 28) with stage III/IV head and neck cancer participating in a neoadjuvant organ-preservation protocol. The FDG-PET studies were performed before and after chemotherapy. All patients had tissue biopsies before and after chemotherapy. Patients were classified as pathologic complete response (PCR) or residual disease (RD) based on tissue biopsies. Visual analysis of PET scans was performed to identify patients with complete response by PET, and these findings were compared with pathology results. Metabolic changes were also evaluated using standardized uptake ratios (SUR) of FDG. The sensitivity and specificity of PET for residual cancer after therapy was 90% (19/21) and 83% (5/6), respectively. Two patients had initially negative biopsies and positive PET studies for persistent disease. Pathology review and rebiospy led to confirmation of the PET results in these cases, giving a sensitivity of 90% for initial tissue biopsy. In this preliminary analysis, FDG-PET was accurate in classifying response to chemotherapy in most patients. Fluorodeoxyglucose-PET may identify residual viable tumor when it is otherwise undetectable.

  7. The role of Fluorine-18-Fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma

    PubMed Central

    Quartuccio, Natale; Treglia, Giorgio; Salsano, Marco; Mattoli, Maria Vittoria; Muoio, Barbara; Piccardo, Arnoldo; Lopci, Egesta; Cistaro, Angelina

    2013-01-01

    Background The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with Fluorine-18-Fluorodeoxyglucose (FDG) in patients with osteosarcoma (OS). Methods A comprehensive literature search of published studies through October 10th, 2012 in PubMed/MEDLINE, Embase and Scopus databases regarding whole-body FDG-PET and FDG-PET/CT in patients with OS was performed. Results We identified 13 studies including 289 patients with OS. With regard to the staging and restaging of OS, the diagnostic performance of FDG-PET and PET/CT seem to be high; FDG-PET and PET/CT seem to be superior to bone scintigraphy and conventional imaging methods in detecting bone metastases; conversely, spiral CT seems to be superior to FDG-PET in detecting pulmonary metastases from OS Conclusions Metabolic imaging may provide additional information in the evaluation of OS patients. The combination of FDG-PET or FDG-PET/CT with conventional imaging methods seems to be a valuable tool in the staging and restaging of OS and may have a relevant impact on the treatment planning. PMID:23801904

  8. Clusters of Low (18)F-Fluorodeoxyglucose Uptake Voxels in Combat Veterans with Traumatic Brain Injury and Post-Traumatic Stress Disorder.

    PubMed

    Buchsbaum, Monte S; Simmons, Alan N; DeCastro, Alex; Farid, Nikdokht; Matthews, Scott C

    2015-11-15

    Individuals with mild traumatic brain injury (TBI) show diminished metabolic activity when studied with positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG). Since blast injury may not be localized in the same specific anatomical areas in every patient or may be diffuse, significance probability mapping may be vulnerable to false-negative detection of abnormalities. To address this problem, we used an anatomically independent measure to assess PET scans: increased numbers of contiguous voxels that are 2 standard deviations below values found in an uninjured control group. We examined this in three age-matched groups of male patients: 16 veterans with a history of mild TBI, 17 veterans with both mild TBI and post-traumatic stress disorder (PTSD), and 15 veterans without either condition. After FDG administration, subjects performed a modified version of the California Verbal Learning Task. Clusters of low uptake voxels were identified by computing the mean and standard deviation for each voxel in the healthy combat veteran group and then determining the voxel-based z-score for the patient groups. Abnormal clusters were defined as those that contained contiguous voxels with a z-score <-2. Patients with mild TBI alone and patients with TBI+PTSD had larger clusters of low uptake voxels, and cluster size significantly differentiated the mild TBI groups from combat controls. Clusters were more irregular in shape in patients, and patients also had a larger number of low-activity voxels throughout the brain. In mild TBI and TBI+PTSD patients, but not healthy subjects, cluster volume was significantly correlated with verbal learning during FDG uptake.

  9. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see.

    PubMed

    Cocker, Myra S; Mc Ardle, Brian; Spence, J David; Lum, Cheemun; Hammond, Robert R; Ongaro, Deidre C; McDonald, Matthew A; Dekemp, Robert A; Tardif, Jean-Claude; Beanlands, Rob S B

    2012-12-01

    Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [(18)F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.

  10. Effect of gender on glucose utilization rates in healthy humans: A positron emission tomography study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, S.A.; Schapiro, M.B.; Grady, C.L.

    Positron emission tomography (PET) was used with 18fluorodeoxyglucose to see if gender differences in resting cerebral glucose utilization could be detected. Thirty-two healthy subjects (15 women and 17 men; age range: 21-38 yr) were examined using a high-resolution PET scanner to determine the regional cerebral metabolic rate for glucose (CMRglc) in 65 gray matter regions of interest. Whole brain CMRglc did not differ significantly between the two genders, nor did any of the regional CMRglc values. Only 1 of 65 ratios of regional-to-whole brain CMRglc differed significantly between men and women, which is consistent with chance. These results indicate thatmore » there are no differences in resting regional cerebral glucose utilization between young men and women.« less

  11. Discriminative Power of Arterial Spin Labeling Magnetic Resonance Imaging and 18F-Fluorodeoxyglucose Positron Emission Tomography Changes for Amyloid-β-Positive Subjects in the Alzheimer's Disease Continuum.

    PubMed

    Tosun, Duygu; Schuff, Norbert; Jagust, William; Weiner, Michael W

    2016-01-01

    Recent studies have demonstrated that arterial spin labeling magnetic resonance imaging (ASL-MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) identify similar regional abnormalities and have comparable diagnostic accuracy in Alzheimer's disease (AD). The agreement between these modalities in the AD continuum, which is an important concept for early detection and disease monitoring, is yet unclear. We aimed to assess the ability of the cerebral blood flow (CBF) measures from ASL-MRI and cerebral metabolic rate for glucose (CMRgl) measures from FDG-PET to distinguish amyloid-β-positive (Aβ+) subjects in the AD continuum from healthy controls. The study included asymptomatic, cognitively normal (CN) controls and patients with early mild cognitive impairment (MCI), late MCI, and AD, all with significant levels of cortical Aβ based on their florbetapir PET scans to restrict the study to patients truly in the AD continuum. The discrimination power of each modality was based on the whole-brain patterns of CBF and CMRgl changes identified by partial least squares logistic regression, a multivariate analysis technique. While CBF changes in the posterior inferior aspects of the brain and a pattern of CMRgl changes in the superior aspects of the brain including frontal and parietal regions best discriminated the Aβ+ subjects in the early disease stages from the Aβ- CN subjects, there was a greater agreement in the whole-brain patterns of CBF and CMRgl changes that best discriminated the Aβ+ subjects from the Aβ- CN subjects in the later disease stages. Despite the differences in the whole-brain patterns of CBF and CMRgl changes, the discriminative powers of both modalities were similar with statistically nonsignificant performance differences in sensitivity and specificity. The results comparing measurements of CBF to CMRgl add to previous reports that MRI-measured CBF has a similar diagnostic ability to detect AD as has FDG-PET. Our findings that CBF

  12. Methods and applications of positron-based medical imaging

    NASA Astrophysics Data System (ADS)

    Herzog, H.

    2007-02-01

    Positron emission tomography (PET) is a diagnostic imaging method to examine metabolic functions and their disorders. Dedicated ring systems of scintillation detectors measure the 511 keV γ-radiation produced in the course of the positron emission from radiolabelled metabolically active molecules. A great number of radiopharmaceuticals labelled with 11C, 13N, 15O, or 18F positron emitters have been applied both for research and clinical purposes in neurology, cardiology and oncology. The recent success of PET with rapidly increasing installations is mainly based on the use of [ 18F]fluorodeoxyglucose (FDG) in oncology where it is most useful to localize primary tumours and their metastases.

  13. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion thatmore » bulimia is a diagnostic grouping distinct from these disorders.« less

  14. Simultaneous whole body 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with 18F-fluorodeoxyglucose positron emission tomography computed tomography

    PubMed Central

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-01-01

    AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was

  15. Simultaneous whole body (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with (18)F-fluorodeoxyglucose positron emission tomography computed tomography.

    PubMed

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-03-28

    To describe our preliminary experience with simultaneous whole body (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated (18)F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than

  16. Volume-Based Parameters of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Improve Disease Recurrence Prediction in Postmastectomy Breast Cancer Patients With 1 to 3 Positive Axillary Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Naomi, E-mail: haruhi0321@gmail.com; Department of Radiology, Ehime University, Ehime; Kataoka, Masaaki

    Purpose: To determine whether volume-based parameters on pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer patients treated with mastectomy without adjuvant radiation therapy are predictive of recurrence. Methods and Materials: We retrospectively analyzed 93 patients with 1 to 3 positive axillary nodes after surgery, who were studied with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography for initial staging. We evaluated the relationship between positron emission tomography parameters, including the maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), and clinical outcomes. Results: The median follow-up duration was 45 months. Recurrence was observed in 11 patients.more » Metabolic tumor volume and TLG were significantly related to tumor size, number of involved nodes, nodal ratio, nuclear grade, estrogen receptor (ER) status, and triple negativity (TN) (all P values were <.05). In receiver operating characteristic curve analysis, MTV and TLG showed better predictive performance than tumor size, ER status, or TN (area under the curve: 0.85, 0.86, 0.79, 0.74, and 0.74, respectively). On multivariate analysis, MTV was an independent prognostic factor of locoregional recurrence-free survival (hazard ratio 34.42, 95% confidence interval 3.94-882.71, P=.0008) and disease-free survival (DFS) (hazard ratio 13.92, 95% confidence interval 2.65-103.78, P=.0018). The 3-year DFS rate was 93.8% for the lower MTV group (<53.1; n=85) and 25.0% for the higher MTV group (≥53.1; n=8; P<.0001, log–rank test). The 3-year DFS rate for patients with both ER-positive status and MTV <53.1 was 98.2%; and for those with ER-negative status and MTV ≥53.1 it was 25.0% (P<.0001). Conclusions: Volume-based parameters improve recurrence prediction in postmastectomy breast cancer patients with 1 to 3 positive nodes. The addition of MTV to ER status or TN has

  17. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography evaluation of subcutaneous panniculitis-like T cell lymphoma and treatment response

    PubMed Central

    Gorodetskiy, Vadim R; Mukhortova, Olga V; Aslanidis, Irakli P; Klapper, Wolfram; Probatova, Natalya A

    2016-01-01

    Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a very rare variant of non-Hodgkin’s lymphoma. Currently, there is no standard imaging method for staging of SPTCL nor for assessment of treatment response. Here, we describe our use of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging and monitoring of treatment response in 3 cases of SPTCL. Primary staging by PET/CT showed that all 3 patients had multiple foci in the subcutaneous fat tissue, with SUVmax from 10.5 to 14.6. Involvement of intra-abdominal fat with high SUVmax was identified in 2 of the patients. Use of the triple drug regimen of gemcitabine, cisplatin and methylprednisolone (commonly known as “GEM-P”) as first-line therapy or second-line therapy facilitated complete metabolic response for all 3 cases. FDG PET/CT provides valuable information for staging and monitoring of treatment response and can reveal occult involvement of the intra-abdominal visceral fat. High FDG uptake on pre-treatment PET can identify patients with aggressive disease and help in selection of first-line therapy. PMID:27672640

  18. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study.

    PubMed

    Courchesne-Loyer, Alexandre; Croteau, Etienne; Castellano, Christian-Alexandre; St-Pierre, Valérie; Hennebelle, Marie; Cunnane, Stephen C

    2017-07-01

    Ketones (principally β-hydroxybutyrate and acetoacetate (AcAc)) are an important alternative fuel to glucose for the human brain, but their utilisation by the brain remains poorly understood. Our objective was to use positron emission tomography (PET) to assess the impact of diet-induced moderate ketosis on cerebral metabolic rate of acetoacetate (CMRa) and glucose (CMRglc) in healthy adults. Ten participants (35 ± 15 y) received a very high fat ketogenic diet (KD) (4.5:1; lipid:protein plus carbohydrates) for four days. CMRa and CMRglc were quantified by PET before and after the KD with the tracers, 11 C-AcAc and 18 F-fluorodeoxyglucose ( 18 F-FDG), respectively. During the KD, plasma ketones increased 8-fold ( p = 0.005) while plasma glucose decreased by 24% ( p = 0.005). CMRa increased 6-fold ( p = 0.005), whereas CMRglc decreased by 20% ( p = 0.014) on the KD. Plasma ketones were positively correlated with CMRa (r = 0.93; p < 0.0001). After four days on the KD, CMRa represented 17% of whole brain energy requirements in healthy adults with a 2-fold difference across brain regions (12-24%). The CMR of ketones (AcAc and β-hydroxybutyrate combined) while on the KD was estimated to represent about 33% of brain energy requirements or approximately double the CMRa. Whether increased ketone availability raises CMR of ketones to the same extent in older people as observed here or in conditions in which chronic brain glucose hypometabolism is present remains to be determined.

  19. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Can Quantify and Predict Esophageal Injury During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzielski, Joshua S., E-mail: jsniedzielski@mdanderson.org; University of Texas Houston Graduate School of Biomedical Science, Houston, Texas; Yang, Jinzhong

    Purpose: We sought to investigate the ability of mid-treatment {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. Methods and Materials: This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized {sup 18}F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We usedmore » nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Results: Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion

  20. Coronary Plaque Morphology and the Anti-Inflammatory Impact of Atorvastatin: A Multicenter 18F-Fluorodeoxyglucose Positron Emission Tomographic/Computed Tomographic Study.

    PubMed

    Singh, Parmanand; Emami, Hamed; Subramanian, Sharath; Maurovich-Horvat, Pal; Marincheva-Savcheva, Gergana; Medina, Hector M; Abdelbaky, Amr; Alon, Achilles; Shankar, Sudha S; Rudd, James H F; Fayad, Zahi A; Hoffmann, Udo; Tawakol, Ahmed

    2016-12-01

    Nonobstructive coronary plaques manifesting high-risk morphology (HRM) associate with an increased risk of adverse clinical cardiovascular events. We sought to test the hypothesis that statins have a greater anti-inflammatory effect within coronary plaques containing HRM. In this prospective multicenter study, 55 subjects with or at high risk for atherosclerosis underwent 18 F-fluorodeoxyglucose positron emission tomographic/computed tomographic imaging at baseline and after 12 weeks of treatment with atorvastatin. Coronary arterial inflammation ( 18 F-fluorodeoxyglucose uptake, expressed as target-to-background ratio) was assessed in the left main coronary artery (LMCA). While blinded to the PET findings, contrast-enhanced computed tomographic angiography was performed to characterize the presence of HRM (defined as noncalcified or partially calcified plaques) in the LMCA. Arterial inflammation (target-to-background ratio) was higher in LMCA segments with HRM than those without HRM (mean±SEM: 1.95±0.43 versus 1.67±0.32 for LMCA with versus without HRM, respectively; P=0.04). Moreover, atorvastatin treatment for 12 weeks reduced target-to-background ratio more in LMCA segments with HRM than those without HRM (12 week-baseline Δtarget-to-background ratio [95% confidence interval]: -0.18 [-0.35 to -0.004] versus 0.09 [-0.06 to 0.26]; P=0.02). Furthermore, this relationship between coronary plaque morphology and change in LMCA inflammatory activity remained significant after adjusting for baseline low-density lipoprotein and statin dose (β=-0.27; P=0.038). In this first study to evaluate the impact of statins on coronary inflammation, we observed that the anti-inflammatory impact of statins is substantially greater within coronary plaques that contain HRM features. These findings suggest an additional mechanism by which statins disproportionately benefit individuals with more advanced atherosclerotic disease. URL: http://www.clinicaltrials.gov. Unique identifier

  1. Brain abnormalities in murderers indicated by positron emission tomography.

    PubMed

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  2. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  3. Quantitative Analysis of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo; Song, Jie

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162more » robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e

  4. (18)F-fluorodeoxyglucose positron emission tomography/computed tomography comparison of gastric lymphoma and gastric carcinoma.

    PubMed

    Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui

    2016-09-14

    To compare (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent (18)F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ(2) test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma.

  5. 18F-fluorodeoxyglucose positron emission tomography/computed tomography comparison of gastric lymphoma and gastric carcinoma

    PubMed Central

    Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui

    2016-01-01

    AIM To compare 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. METHODS Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent 18F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ2 test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. RESULTS Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. CONCLUSION PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma. PMID:27678362

  6. Usefulness of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography in patients with large-vessel vasculitis: a systematic review.

    PubMed

    Treglia, Giorgio; Mattoli, Maria Vittoria; Leccisotti, Lucia; Ferraccioli, Gianfranco; Giordano, Alessandro

    2011-10-01

    The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with fluorine-18-fluorodeoxyglucose (FDG) in patients with large-vessel vasculitis (LVV). A comprehensive literature search of published studies through April 2011 in PubMed/MEDLINE and Scopus databases regarding whole-body FDG-PET and PET/CT in patients with LVV was performed. We identified 32 studies including 604 LVV patients. The main findings of these studies are presented. The conclusions are the following: (1) FDG-PET and PET/CT are useful imaging methods in the initial diagnosis and in the assessment of activity and extent of disease in patients with LVV; (2) the correlation between FDG-PET findings and serological levels of inflammatory markers, as well as the usefulness of FDG-PET and PET/CT in evaluating treatment response, remains unclear; (3) it appears that there is a superiority of FDG-PET and PET/CT over conventional imaging methods in the diagnosis of LVV, but not in assessing disease activity under immunosuppressive treatment, in predicting relapse or in evaluating vascular complications; and (4) given the heterogeneity between studies with regard to PET analysis and diagnostic criteria, a standardization of the technique is needed.

  7. Non-small cell lung cancer brain metastasis screening in the era of positron emission tomography-CT staging: Current practice and outcomes.

    PubMed

    Diaz, Mauricio E; Debowski, Maciej; Hukins, Craig; Fielding, David; Fong, Kwun M; Bettington, Catherine S

    2018-05-10

    Several clinical guidelines indicate that brain metastasis screening (BMS) should be guided by disease stage in non-small cell lung cancer (NSCLC). We estimate that screening is performed more broadly in practice, and patients undergo brain imaging at considerable cost with questionable benefit. Our aim was to quantify the use and detection rate of BMS in a contemporary cohort staged with 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (PET-CT). We conducted a retrospective review of prospectively collected data from three major lung cancer referral centres in Brisbane between January 2011 and December 2015. Patients included had a new diagnosis of NSCLC and had undergone a PET-CT to stage extra-cranial disease. BMS was defined as dedicated brain imaging with contrast-enhanced computed tomography (CE-CT) or magnetic resonance (MR), in the absence of clinically apparent neurological deficits. A total of 1751 eligible cases were identified and of these 718 (41%) underwent BMS. The majority had CE-CT imaging (n = 703). Asymptomatic brain metastases (BM) were detected in 18 patients (2.5%). Of these patients, 12 had concurrent non-brain metastases. Only six patients (0.8%) had BM alone. The rate of detection increased with N-stage (P = 0.02) and overall stage (P < 0.001). It was 0.5%, 1%, 1.6% and 7.3% for stage I, II, III and IV respectively. The overall screening rate increased with T-stage (P = 0.001), N-Stage (P < 0.001) and overall stage (P < 0.001). Non-small cell lung cancer BMS practices remain at odds with published guidelines. The low number of occult BMs detected supports the existing international recommendations. Rationalising BMS would minimise the burden on patients and the health care system. © 2018 The Royal Australian and New Zealand College of Radiologists.

  8. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumsey, J.M.; Duara, R.; Grady, C.

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic ratesmore » (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.« less

  9. Detection of thoracic aortic prosthetic graft infection with 18F-fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Tokuda, Yoshiyuki; Oshima, Hideki; Araki, Yoshimori; Narita, Yuji; Mutsuga, Masato; Kato, Katsuhiko; Usui, Akihiko

    2013-06-01

    To investigate the diagnostic value of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in detecting thoracic aortic prosthetic graft infection. Nine patients with clinically suspected thoracic aortic graft infection underwent FDG-PET/CT scanning. In these patients, the diagnoses could not be confirmed using conventional modalities. The patients' clinical courses were retrospectively reviewed. On the basis of surgical, microbiological and clinical follow-up findings, the aortic grafts were considered infected in 4 patients and not infected in 5. All 4 patients with graft infection (root: 2 cases, arch: 1 case and descending: 1 case) eventually underwent in situ re-replacement. Two of the 4 patients also had abdominal grafts; however, only the thoracic grafts were replaced because uptake was low around the abdominal grafts. The maximal standardized uptake value (SUVmax) in the perigraft area was higher in the infected group than in the non-infected group (11.4 ± 4.5 vs 6.9 ± 6.4), although the difference was not statistically significant. According to the receiver operating characteristic analysis, SUVmax >8 appeared to be the cut-off value in distinguishing the two groups (sensitivity: 1.0 and specificity: 0.8). FDG-PET/CT is useful for confirming the presence of graft infection by detecting high uptake around grafts and excluding other causes of inflammation. An SUVmax value greater than 8 around a graft suggests the presence of graft infection. In addition, FDG-PET/CT can be used to clarify the precise extent of infection. This is especially useful if multiple separated prosthetic grafts have been implanted.

  10. Orbital flourine-18-fluorodeoxyglucose positron emission tomography in patients with Graves' disease for evaluation of active inflammation.

    PubMed

    Uslu-Beşli, Lebriz; Kabasakal, Levent; Sağer, Sait; Cicik, Erdoğan; Asa, Sertaç; Sönmezoğlu, Kerim

    2017-11-01

    Prediction and early diagnosis of orbitopathy is needed in patients with Graves' disease, especially when radioiodine therapy is planned. Positron emission tomography/computerized tomography (PET/CT) using flourine-18-fluorodeoxyglucose (FDG) is an effective imaging modality in detection of inflammation, however, its ability to detect orbital inflammation has not been well studied. The aim of our study is to determine the ability of FDG PET/CT to detect orbital inflammation related with Graves' disease, identify active orbitopathy, predict the radioiodine-triggered orbitopathy, and find out the effects of radioiodine on orbital inflammation. Total 31 Graves' disease patients and 17 controls were included. All Graves' disease patients underwent cranial FDG PET/CT imaging prior therapy. Radioiodine therapy and post-treatment PET/CT study was applied to 21 patients. PET/CT images of all examinees were evaluated, measuring extraocular muscle maximum standard uptake value (SUVmax) and muscle thickness. FDG uptake was increased in the majority of extraocular muscles in Graves' disease patients in comparison to controls and this increase was found to be irrelevant from muscle thickness. Extraocular muscle SUVmax values did not increase in Graves' orbitopathy patients who received radioiodine under corticosteroid prophylaxis. SUVmax level of all orbital rectus muscles were increased after radioiodine therapy in nonsmokers, whereas no increase was detected in smokers. FDG PET/CT may be helpful in detection of extraocular muscle inflammation and it may show ongoing orbitopathy in early stages of inflammation before anatomical changes occur.

  11. 18-Fluorodeoxy-Glucose Positron Emission Tomography- Computed Tomography (18-FDG-PET/CT) for Gross Tumor Volume (GTV) Delineation in Gastric Cancer Radiotherapy

    PubMed

    Dębiec, Kinga; Wydmański, Jerzy; Gorczewska, Izabela; Leszczyńska, Paulina; Gorczewski, Kamil; Leszczyński, Wojciech; d’Amico, Andrea; Kalemba, Michał

    2017-11-26

    Purpose: Evaluation of the 18-fluorodeoxy-glucose positron emission tomography-computed tomography (18-FDGPET/ CT) for gross tumor volume (GTV) delineation in gastric cancer patients undergoing radiotherapy. Methods: In this study, 29 gastric cancer patients (17 unresectable and 7 inoperable) were initially enrolled for radical chemoradiotherapy (45Gy/25 fractions + chemotherapy based on 5 fluorouracil) or radiotherapy alone (45Gy/25 fractions) with planning based on the 18-FDG-PET/CT images. Five patients were excluded due to excess blood glucose levels (1), false-negative positron emission tomography (1) and distant metastases revealed by 18-FDG-PET/CT (3). The analysis involved measurement of metabolic tumor volumes (MTVs) performed on PET/CT workstations. Different threshold levels of the standardized uptake value (SUV) and liver uptake were set to obtain MTVs. Secondly, GTVPET values were derived manually using the positron emission tomography (PET) dataset blinded to the computed tomography (CT) data. Subsequently, GTVCT values were delineated using a radiotherapy planning system based on the CT scans blinded to the PET data. The referenced GTVCT values were correlated with the GTVPET and were compared with a conformality index (CI). Results: The mean CI was 0.52 (range, 0.12-0.85). In 13/24 patients (54%), the GTVPET was larger than GTVCT, and in the remainder, GTVPET was smaller. Moreover, the cranio-caudal diameter of GTVPET in 16 cases (64%) was larger than that of GTVCT, smaller in 7 cases (29%), and unchanged in one case. Manual PET delineation (GTVPET) achieved the best correlation with GTVCT (Pearson correlation = 0.76, p <0.0001). Among the analyzed MTVs, a statistically significant correlation with GTVCT was revealed for MTV10%SUVmax (r = 0.63; p = 0.0014), MTVliv (r = 0.60; p = 0.0021), MTVSUV2.5 (r = 0.54; p = 0.0063); MTV20%SUVmax (r = 0.44; p = 0.0344); MTV30%SUVmax (r = 0.44; p = 0.0373). Conclusion: 18-FDG-PET/CT in gastric cancer radiotherapy

  12. Positron Emission Tomography (PET) and Positron Scanning

    Science.gov Websites

    National Laboratory 'Positron Emission Tomography ... [is a medical imaging technique that] can track human brain.' Edited excerpts from from Medical Applications of Non-Medical Research: Applications Technical Report, November 1988 High-resolution PET (Positron Emission Tomography) for Medical Science

  13. Incidental detection of prostate-specific antigen-negative metastatic prostate cancer initially presented with solitary pulmonary nodule on fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Erdogan, Ezgi Basak; Buyukpinarbasili, Nur; Ziyade, Sedat; Akman, Tolga; Turk, Haci Mehmet; Aydin, Mehmet

    2015-01-01

    A 71-year-old male patient with solitary pulmonary nodule underwent fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) showing slightly increased FDG uptake in this nodule. In addition, PET/CT detected hypermetabolic sclerotic bone lesions in the right second rib and 7th thoracic vertebrae, which were interpreted as possible metastases, and mildly increased FDG uptake in the prostate gland highly suspicious of malignancy. The patient's prostate-specific antigen (PSA) level was within normal range (3.8 ng/dL). The histopathological examination of the lung nodule and right second rib lesion proved metastases from prostate cancer, then the prostate biopsy-confirmed prostate adenocarcinoma. The unique feature of this case is to emphasize the importance of performing PET/CT for solitary pulmonary nodule in detecting PSA-negative metastatic prostate cancer. This case indicated that it should be kept in mind that, even if the PSA is negative, a lung metastasis of prostate cancer may be an underlying cause in patients evaluated for solitary pulmonary nodule by FDG PET/CT. PMID:26170575

  14. Prevalence and prognosis of prodromal Alzheimer's disease as assessed by magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography in a community: reanalysis from the Osaki-Tajiri Project.

    PubMed

    Meguro, Kenichi; Akanuma, Kyoko; Meguro, Mitsue; Yamaguchi, Satoshi; Ishii, Hiroshi; Tashiro, Manabu

    2016-03-01

    Dubois et al. proposed the criteria for prodromal Alzheimer's disease (AD) to detect dementia in its very early stage. Because detection requires magnetic resonance imaging and (18) F-fluorodeoxyglucose-positron emission tomography (PET), the prevalence and prognosis have not been fully investigated. Our database included 346 healthy participants (Clinical Dementia Rating (CDR) 0), 119 with questionable dementia (CDR 0.5), and 32 dementia participants (CDR 1+) and was applied to investigate the prevalence of prodromal AD. Forty-four CDR 0.5 participants (37%) were randomly selected to undergo (18) F-fluorodeoxyglucose-PET. The same percentage was applied to select 128 CDR 0 and 12 CDR 1 + participants (total: n = 184) to calculate the prevalence. A neuroradiologist classified the PET images in a blinded manner based on the criteria of Silverman et al. Participants were considered to have prodromal AD if they exhibited 'parietal/temporal +/- frontal hypometabolism' (PET) with hippocampal atrophy (magnetic resonance imaging). Eighteen CDR 0.5 participants (40.9%) met the criteria for prodromal AD, which was a prevalence rate of 9.8% among older adults aged ≥ 65 years. Thirteen prodromal AD participants (72%) converted to AD during the 5-year follow-up period. The concept and criteria for prodromal AD are useful for predicting which subjects in a community will convert to AD. © 2015 The Authors. Psychogeriatrics © 2015 Japanese Psychogeriatric Society.

  15. Effects of lithium on brain glucose metabolism in healthy men.

    PubMed

    Kohno, Tomoya; Shiga, Tohru; Toyomaki, Atsuhito; Kusumi, Ichiro; Matsuyama, Tetsuaki; Inoue, Tetsuya; Katoh, Chietsugu; Koyama, Tsukasa; Tamaki, Nagara

    2007-12-01

    Lithium is clinically available for the treatment of mood disorders. However, it has remained unclear how lithium acts on the brain to produce its effects. The aim of this study was to evaluate the effects of chronic lithium on human brain activity using positron emission tomography and clarify the correlation between brain activity changes and cognitive functional changes as induced by chronic lithium administration. A total of 20 healthy male subjects (mean age, 32 +/- 6 years) underwent positron emission tomographic scans with F-fluorodeoxyglucose and a battery of neuropsychological tests at baseline condition and after 4 weeks of lithium administration. Brain metabolic data were analyzed using statistical parametric mapping. Lithium increased relative regional cerebral glucose metabolism (rCMRglc) in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased rCMRglc in the right cerebellum and left lingual gyrus/cuneus. There was no difference in any of the variables of cognitive functions between the baseline condition and after chronic lithium administration. There was no correlation between rCMRglc changes in any of the brain regions and individual variable changes in any of the neuropsychological tests. The results suggest that the effects of chronic lithium are associated with increased activity in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased activity in the right cerebellum and left lingual gyrus/cuneus.

  16. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors: comparison with positron emission tomography/computed tomography.

    PubMed

    Nakajo, Kazuya; Tatsumi, Mitsuaki; Inoue, Atsuo; Isohashi, Kayako; Higuchi, Ichiro; Kato, Hiroki; Imaizumi, Masao; Enomoto, Takayuki; Shimosegawa, Eku; Kimura, Tadashi; Hatazawa, Jun

    2010-02-01

    We compared the diagnostic accuracy of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and PET/magnetic resonance imaging (MRI) fusion images for gynecological malignancies. A total of 31 patients with gynecological malignancies were enrolled. FDG-PET images were fused to CT, T1- and T2-weighted images (T1WI, T2WI). PET-MRI fusion was performed semiautomatically. We performed three types of evaluation to demonstrate the usefulness of PET/MRI fusion images in comparison with that of inline PET/CT as follows: depiction of the uterus and the ovarian lesions on CT or MRI mapping images (first evaluation); additional information for lesion localization with PET and mapping images (second evaluation); and the image quality of fusion on interpretation (third evaluation). For the first evaluation, the score for T2WI (4.68 +/- 0.65) was significantly higher than that for CT (3.54 +/- 1.02) or T1WI (3.71 +/- 0.97) (P < 0.01). For the second evaluation, the scores for the localization of FDG accumulation showing that T2WI (2.74 +/- 0.57) provided significantly more additional information for the identification of anatomical sites of FDG accumulation than did CT (2.06 +/- 0.68) or T1WI (2.23 +/- 0.61) (P < 0.01). For the third evaluation, the three-point rating scale for the patient group as a whole demonstrated that PET/T2WI (2.72 +/- 0.54) localized the lesion significantly more convincingly than PET/CT (2.23 +/- 0.50) or PET/T1WI (2.29 +/- 0.53) (P < 0.01). PET/T2WI fusion images are superior for the detection and localization of gynecological malignancies.

  17. 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma

    PubMed Central

    Giraudo, Chiara; Raderer, Markus; Karanikas, Georgios; Weber, Michael; Kiesewetter, Barbara; Dolak, Werner; Simonitsch-Klupp, Ingrid; Mayerhoefer, Marius E.

    2016-01-01

    Objectives The aim of this study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to 18F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes. Materials and Methods Patients with histologically proven lymphoma were enrolled in this prospective, institutional review board–approved study. After a single 18F-FDG injection, patients consecutively underwent 18F-FDG PET⁄CT and 18F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on 18F-FDG PET/CT and 18F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean). Results Thirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for 18F-FDG PET/CT, 18F-FDG PET/MR, and 18F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. 18F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and 18F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between 18F-FDG PET/MR DWI and 18F-FDG PET/CT, 99.2% (κ, 0.96) between 18F-FDG PET/MR and 18F-FDG PET/CT, and 99.4% (κ, 0.97) between 18F-FDG PET/MR DWI and 18F-FDG PET/MR. There was a strong correlation between 18F-FDG PET/CT and 18F-FDG PET/MR for SUVmax (r = 0

  18. Preoperative evaluation of patients with squamous cell carcinoma of the oral cavity: fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography and ultrasonography versus histopathology.

    PubMed

    Sugawara, Chieko; Takahashi, Akira; Kubo, Michiko; Otsuka, Hideki; Ishimaru, Naozumi; Miyamoto, Youji; Honda, Eiichi

    2012-10-01

    The purpose of this retrospective study was to compare fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) and ultrasonography (US) in the staging of patients with squamous cell carcinoma of the oral cavity. We compared preoperative evaluations regarding lymph nodes using PET/CT, US, and both methods. The cutoff for the maximum standardized uptake value (SUV(max)) in PET/CT was set at 2.7 by a receiver operating characteristic analysis that was based on the histopathological diagnosis. US was used to examine internal structural changes on B-mode and hilar vascularity on power Doppler. The performance of PET/CT and US in combination was better than that of each modality separately. However, there were histopathological changes that could not be detected on PET/CT or US. PET/CT could not detect nodes with necrotic or cystic changes. US could not detect lymph nodes that did not have abnormal structures. PET/CT and US are complementary tools to evaluate preoperative patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Application of positron emission tomography to neuroimaging in sports sciences.

    PubMed

    Tashiro, Manabu; Itoh, Masatoshi; Fujimoto, Toshihiko; Masud, Md Mehedi; Watanuki, Shoichi; Yanai, Kazuhiko

    2008-08-01

    To investigate exercise-induced regional metabolic and perfusion changes in the human brain, various methods are available, such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), near-infrared spectroscopy (NIRS) and electroencephalography (EEG). In this paper, details of methods of metabolic measurement using PET, [(18)F]fluorodeoxyglucose ([(18)F]FDG) and [(15)O]radio-labelled water ([(15)O]H(2)O) will be explained. Functional neuroimaging in the field of neuroscience was started in the 1970s using an autoradiography technique on experimental animals. The first human functional neuroimaging exercise study was conducted in 1987 using a rough measurement system known as (133)Xe inhalation. Although the data was useful, more detailed and exact functional neuroimaging, especially with respect to spatial resolution, was achieved by positron emission tomography. Early studies measured the cerebral blood flow changes during exercise. Recently, PET was made more applicable to exercise physiology and psychology by the use of the tracer [(18)F]FDG. This technique allowed subjects to be scanned after an exercise task is completed but still obtain data from the exercise itself, which is similar to autoradiography studies. In this report, methodological information is provided with respect to the recommended protocol design, the selection of the scanning mode, how to evaluate the cerebral glucose metabolism and how to interpret the regional brain activity using voxel-by-voxel analysis and regions of interest techniques (ROI). Considering the important role of exercise in health promotion, further efforts in this line of research should be encouraged in order to better understand health behavior. Although the number of research papers is still limited, recent work has indicated that the [(18)F]FDG-PET technique is a useful tool to understand brain activity during exercise.

  20. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  1. Radiation-Induced Liver Injury Mimicking Metastatic Disease in a Patient With Esophageal Cancer: Correlation of Positron Emission Tomography/Computed Tomography With Magnetic Resonance Imaging and Literature Review.

    PubMed

    Rabe, Tiffany M; Yokoo, Takeshi; Meyer, Jeffrey; Kernstine, Kemp H; Wang, David; Khatri, Gaurav

    2016-01-01

    Post-radiation therapy evaluation of distal esophageal cancers with positron emission tomography/computed tomography can be problematic. Differentiation of recurrent neoplasm from postradiation changes is difficult in areas of fluorodeoxyglucose avidity in adjacent, incidentally irradiated organs. Few studies have described the magnetic resonance imaging appearance of radiation-induced hepatic injury. We report a case of focal radiation-induced liver injury with a new focus of fluorodeoxyglucose uptake on posttreatment positron emission tomography as well as masslike enhancement and signal abnormality on magnetic resonance imaging, thus mimicking new liver metastasis. Correlation with radiation planning images suggested the correct diagnosis, which was confirmed on follow-up imaging.

  2. Metabolic monitoring of advanced uterine cervical cancer neoadjuvant chemotherapy by using [F-18]-Fluorodeoxyglucose positron emission tomography: preliminary results in three patients.

    PubMed

    Yoshida, Yoshio; Kurokawa, Tetsuji; Kawahara, Kazumi; Yagihara, Akira; Tsuchida, Tatsuro; Okazawa, Hidehiko; Fujibayashi, Yasuhisa; Yonekura, Yoshiharu; Kotsuji, Fumikazu

    2004-12-01

    The aim of this report is to describe the potential clinical utility of tracer [F-18]-Fluorodeoxyglucose (FDG) uptake, quantitated as a standardized uptake value (SUV) by positron emission tomography (PET), to evaluate treatment response to neoadjuvant chemotherapy (NAC) in advanced uterine cervical cancer. We briefly describe the clinical courses of three women with advanced cervical cancer who were treated with neoadjuvant chemotherapy (NAC) prior to radical hysterectomy and who were analyzed for correlation with the decrease in tumor volume by magnetic resonance imaging (MRI), in SUV by FDG-PET, and by histologic response. In these individuals, tumor volume and SUV were decreased by NAC. The decrease in SUV by FDG-PET was better correlated to histologic response for NAC than MRI was in advanced cervical cancer. Measurement of SUV by FDG-PET has clinical utility in evaluating treatment response for NAC in advanced cervical cancer. Although work in this field is still in the early stages, this report demonstrates that SUV by FDG-PET has the potential to become the new standard for monitoring the treatment response of NAC in cervical cancer. This monitoring approach must be proven in a larger number of patients for both primary and secondary lesions and should be further explored in another gynecologic cancer.

  3. [Positron emission tomography in the diagnosis of recurrent growth of brain tumors].

    PubMed

    Skvortsova, T Iu; Brodskaia, Z L; Rudas, M S; Mozhaev, S V; Gurchin, A F; Medvedev, S V

    2005-01-01

    The authors analyzed the results of 11C-methionine positron emission tomography (PET) in 101 patients with suspected recurrent brain tumor. The diagnosis was confirmed in 72 patients. The increased 11C-methionine uptake in the initial tumor area is considered to be a crucial PET evidence of a recurrent tumor. On the other hand, brain tissue histological changes associated with surgery, radiation, and chemotherapy were characterized by the low uptake of the tracer. The sensitivity and specificity of PET scanning in detecting tumor recurrence were found to be 95.8 and 96.5%, respectively. 11C-methionine PET is proposed as a reliable technique for early differentiating between a recurrent brain tumor and treatment-induced nonneoplastic changes.

  4. Studies of the brain cannabinoid system using positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatley, S.J.; Volkow, N.D.

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies ofmore » cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.« less

  5. Esophageal cancer associated with a sarcoid-like reaction and systemic sarcoidosis in lymph nodes: supportive findings of [18F]-fluorodeoxyglucose positron emission tomography-computed tomography during neoadjuvant therapy.

    PubMed

    Kishino, Takayoshi; Okano, Keiichi; Ando, Yasuhisa; Suto, Hironobu; Asano, Eisuke; Oshima, Minoru; Fujiwara, Masao; Usuki, Hisashi; Kobara, Hideki; Masaki, Tsutomu; Ibuki, Emi; Kushida, Yoshio; Haba, Reiji; Suzuki, Yasuyuki

    2018-06-25

    In patients with esophageal cancer, differentiation between lymph node metastasis and lymphadenopathies from sarcoidosis or sarcoid-like reactions of lymph nodes is clinically important. Herein, we report two esophageal cancer cases with lymph node involvement of sarcoid-like reaction or sarcoidosis. One patient received chemotherapy and the other chemoradiotherapy as initial treatments. In both cases, [ 18 F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT) was performed before and after chemo(radio)therapy. After the treatment, FDG uptake was not detected in the primary tumor, but it was slightly reduced in the hilar and mediastinal lymph nodes in both cases. These non-identical responses to chemo(radio)therapy suggest the presence of sarcoid-like reaction of lymph nodes associated with squamous cell carcinoma of the esophagus. Curative surgical resection was performed as treatment. These FDG-PET/CT findings may be helpful to distinguish between metastasis and sarcoidosis-associated lymphadenopathy in esophageal cancer.

  6. The role of 18F-fluorodeoxyglucose positron emission tomography in the management of patients with pancreatic adenocarcinoma.

    PubMed

    Kadhim, Lujaien A; Dholakia, Avani S; Herman, Joseph M; Wahl, Richard L; Chaudhry, Muhammad A

    2013-12-01

    Pancreatic cancer continues to have a grim prognosis with 5-year survival rates at less than 5 %. It is a particularly challenging health problem given these poor survival outcomes, aggressive tumor biology, and late onset of symptoms. Most patients present with advanced unresectable cancer however, margin-negative resection provides a rare chance for cure for patients with resectable disease. The standard imaging modality for the diagnosis and management of pancreatic cancer is contrast-enhanced multidetector computed tomography. Remarkable advances in CT technology have led to improvements in the ability to detect small tumors and intricate vasculature involvement by the tumor, yet CT is still restricted to providing a morphological portrait of the tumor. Diagnosis can be challenging due to similar appearance of certain benign and malignant disease. Distant metastatic disease can be silent on CT leading to improper staging, and thus management, of certain patients. Furthermore, radiation-induced fibrosis and necrosis complicate assessment of treatment response by CT alone. F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG-PET) is becoming a prevalent tool employed by physicians to improve accuracy in these clinical scenarios. Malignant transformation causes a high metabolic activity of cancer cells. 18 F-FDG-PET captures this functional activity of malignancies by capturing areas with high glucose utilization rates. Imaging function rather than morphological appearance, 18 F-FDG-PET has a unique role in the management of oncology patients with the ability to detect regions of tumor involvement that may be silent on conventional imaging. Literature on the sensitivity and specificity of 18 F-FDG-PET fails to reach a consensus, and improvements resulting in hybridization of 18 F-FDG-PET and CT imaging techniques are preliminary. Here we review the potential role of 18 F-FDG-PET and PET/CT in improving accuracy in the initial evaluation and subsequent

  7. Impact of 18F-fluorodeoxyglucose positron emission tomography before and after definitive radiation therapy in patients with apparently solitary plasmacytoma.

    PubMed

    Kim, Paul J; Hicks, Rodney J; Wirth, Andrew; Ryan, Gail; Seymour, John F; Prince, H Miles; Mac Manus, Michael P

    2009-07-01

    To evaluate the impact of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%). Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.

  8. Diagnostic utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) in asymptomatic subjects at increased risk for Alzheimer's disease.

    PubMed

    Drzezga, Alexander; Altomare, Daniele; Festari, Cristina; Arbizu, Javier; Orini, Stefania; Herholz, Karl; Nestor, Peter; Agosta, Federica; Bouwman, Femke; Nobili, Flavio; Walker, Zuzana; Frisoni, Giovanni Battista; Boccardi, Marina

    2018-05-13

    To assess the clinical utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of early signs of neurodegeneration in conditions of increased risk for Alzheimer's disease (AD) as defined by: subjective cognitive decline (SCD), evidence of cerebral amyloid-pathology, apolipoprotein E (APOE) ε4-positive genotype, or autosomal dominant forms of AD (ADAD) in asymptomatic stages. A comprehensive literature search was conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted using the Delphi method on three different diagnostic scenarios. The level of empirical study evidence for the use of FDG-PET to detect meaningful early signs of neurodegeneration was considered to be poor for ADAD and lacking for SCD and asymptomatic persons at risk, based on APOE ε4-positive genotype or cerebral amyloid pathology. Consequently, and consistent with current diagnostic criteria, panelists decided not to recommend routine clinical use of FDG-PET in these situations and to currently mainly reserve it for research purposes. Currently, there is limited evidence on which to base recommendations regarding the clinical routine use of FDG-PET to detect diagnostically meaningful early signs of neurodegeneration in asymptomatic subjects with ADAD, with APOE ε4-positive genotype, or with cerebral amyloid pathology, and in subjects with SCD. Future prospective studies are warranted and in part already ongoing, aiming to assess the added value of FDG-PET in this context beyond research applications.

  9. Utility of 18F-fluorodeoxyglucose-positron emission tomography in the differential diagnosis of benign and malignant gynaecological tumours.

    PubMed

    Takagi, Hiroaki; Sakamoto, Jinichi; Osaka, Yasuhiro; Shibata, Takeo; Fujita, Satoko; Sasagawa, Toshiyuki

    2018-02-05

    Positron emission tomography/computed tomography (PET/CT) involving 18F-fluorodeoxyglucose (FDG) is widely used for systemic cancer and recurrence diagnosis. However, the differential diagnosis of benign and malignant gynaecological tumours according to FDG accumulation is unclear. This study aimed to investigate the intensity of FDG uptake/metabolic activity for the differential diagnosis of benign and malignant gynaecological tumours. This study included seven patients with physiological phenomena, 34 with benign tumours, 13 with borderline malignant tumours and 119 with malignant tumours who underwent 18F-FDG PET/CT. We assessed the maximum standardized uptake value (SUVmax) and determined its utility in the diagnosis of benign and malignant tumours using a receiver operating characteristic (ROC) curve analysis. Among the 63 patients with ovarian tumours, the mean SUVmax of 22 patients with benign ovarian tumours was 2.48 and the mean SUVmax of 41 patients with malignant ovarian tumours was 10.98 (P < 0.001). In the ROC curve analysis, the area under the curve (AUC) was 0.977, with a 95% confidence interval of 0.947-1.000. With a cut-off value of 3.97 for the optimal SUVmax, the sensitivity and specificity were 95.1% and 86.4%, respectively. In addition, the AUC was 0.911 (95% CI: 0.768-1.000) for the assessment of uterine myomas and sarcomas. With a cut-off value of 10.62 for the optimal SUVmax, the sensitivity and specificity were 91.7% and 86.7% respectively. The SUVmax value helps differentiate benign and malignant ovarian tumours, as well as uterine myomas and uterine sarcomas. © 2018 The Royal Australian and New Zealand College of Radiologists.

  10. Usefulness of esophagogastroduodenoscopy and 18F-fluorodeoxyglucose positron-emission tomography in detecting synchronous multiple primary cancers with oral cancer.

    PubMed

    Ishibashi-Kanno, Naomi; Yamagata, Kenji; Uchida, Fumihiko; Hasegawa, Shogo; Yanagawa, Toru; Bukawa, Hiroki

    2017-12-01

    The purpose of this study is to compare the value of screening for synchronous multiple primary cancers in other organs by esophagogastroduodenoscopy (EGD) or 18 F-fluorodeoxyglucose positron-emission tomography (PET-CT) in patients newly diagnosed with oral cancer. We retrospectively examined consecutive Japanese patients who were diagnosed with oral squamous cell carcinoma (OSCC) and were screened for synchronous multiple primary cancers in other organs by EGD and/or PET-CT between January 2010 and December 2015 at our institution. The study included 190 patients (106 males and 84 females) from 36 to 93 years of age (median age 68.8 years). The patients were screened by EGD, PET-CT, or both before beginning treatment for OSCC. Of 190 Japanese patients with OSCC, 15 had multiple primary cancers: 13 patients had double cancer and two had triple cancers. The sites of the 17 multiple primary cancers were gastric (6), esophageal (4), and lung (3), and ovarian, colon, liver, and thyroid (1 each). All of the gastric and esophageal cancers were found by EGD and were not detected by PET-CT. For three patients, the detection of multiple cancers affected the treatment modality or order of treatment selected for the OSCC. In two cases, the oral cancer and multiple primary cancer(s) in another organ were resected simultaneously by joint surgical teams. PET-CT for oral cancer patients is an effective supporting diagnostic tool. However, the ability of PET-CT has some limitations. Especially for early detection of the upper gastrointestinal cancers, it is necessary to be supplemented by EGD.

  11. CATEGORICAL AND CORRELATIONAL ANALYSES OF BASELINE FLUORODEOXYGLUCOSE POSITRON EMISSION TOMOGRAPHY IMAGES FROM THE ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE (ADNI)

    PubMed Central

    Langbaum, Jessica B.S.; Chen, Kewei; Lee, Wendy; Reschke, Cole; Bandy, Dan; Fleisher, Adam S.; Alexander, Gene E.; Foster, Norman L.; Weiner, Michael W.; Koeppe, Robert A.; Jagust, William J.; Reiman, Eric M.

    2010-01-01

    In mostly small single-center studies, Alzheimer’s disease (AD) is associated with characteristic and progressive reductions in fluorodeoxyglucose positron emission tomography (PET) measurements of the regional cerebral metabolic rate for glucose (CMRgl). The AD Neuroimaging Initiative (ADNI) is acquiring FDG PET, volumetric magnetic resonance imaging, and other biomarker measurements in a large longitudinal multi-center study of initially mildly affected probable AD (pAD) patients, amnestic mild cognitive impairment (aMCI) patients, who are at increased AD risk, and cognitively normal controls (NC), and we are responsible for analyzing the PET images using statistical parametric mapping (SPM). Here we compare baseline CMRgl measurements from 74 pAD patients and 142 aMCI patients to those from 82 NC, we correlate CMRgl with categorical and continuous measures of clinical disease severity, and we compare apolipoprotein E (APOE) ε4 carriers to non-carriers in each of these subject groups. In comparison with NC, the pAD and aMCI groups each had significantly lower CMRgl bilaterally in posterior cingulate, precuneus, parietotemporal and frontal cortex. Similar reductions were observed when categories of disease severity or lower Mini-Mental State Exam (MMSE) scores were correlated with lower CMRgl. However, when analyses were restricted to the pAD patients, lower MMSE scores were significantly correlated with lower left frontal and temporal CMRgl. These findings from a large, multi-site study support previous single-site findings, supports the characteristic pattern of baseline CMRgl reductions in AD and aMCI patients, as well as preferential anterior CMRgl reductions after the onset of AD dementia. PMID:19349228

  12. Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study.

    PubMed Central

    Jansen, H M; van der Naalt, J; van Zomeren, A H; Paans, A M; Veenma-van der Duin, L; Hew, J M; Pruim, J; Minderhoud, J M; Korf, J

    1996-01-01

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Co-PET) as a calcium tracer enables imaging of affected tissue in traumatic brain injury. The aim was to determine whether additional information can be gained by Co-PET in the diagnosis of moderate traumatic brain injury and to assess any prognostic value of Co-PET. Five patients with recent moderately severe traumatic brain injury were studied. CT was performed on the day of admission, EEG within one week, and MRI and Co-PET within four weeks of injury. Clinical assessment included neurological examination, GCS, neuropsychological testing, and Glasgow outcome scale (GOS) after one year. Co-PET showed focal uptake that extended beyond the morphological abnormalities shown by MRI and CT, in brain regions that were actually diagnosed with EEG. Thus Co-PET is potentially useful for diagnostic localisation of both structural and functional abnormalities in moderate traumatic brain injury. Images PMID:8708661

  13. Regional brain volumetry and brain function in severely brain-injured patients.

    PubMed

    Annen, Jitka; Frasso, Gianluca; Crone, Julia Sophia; Heine, Lizette; Di Perri, Carol; Martial, Charlotte; Cassol, Helena; Demertzi, Athena; Naccache, Lionel; Laureys, Steven

    2018-04-01

    The relationship between residual brain tissue in patients with disorders of consciousness (DOC) and the clinical condition is unclear. This observational study aimed to quantify gray (GM) and white matter (WM) atrophy in states of (altered) consciousness. Structural T1-weighted magnetic resonance images were processed for 102 severely brain-injured and 52 healthy subjects. Regional brain volume was quantified for 158 (sub)cortical regions using Freesurfer. The relationship between regional brain volume and clinical characteristics of patients with DOC and conscious brain-injured patients was assessed using a linear mixed-effects model. Classification of patients with unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS) using regional volumetric information was performed and compared to classification using cerebral glucose uptake from fluorodeoxyglucose positron emission tomography. For validation, the T1-based classifier was tested on independent datasets. Patients were characterized by smaller regional brain volumes than healthy subjects. Atrophy occurred faster in UWS compared to MCS (GM) and conscious (GM and WM) patients. Classification was successful (misclassification with leave-one-out cross-validation between 2% and 13%) and generalized to the independent data set with an area under the receiver operator curve of 79% (95% confidence interval [CI; 67-91.5]) for GM and 70% (95% CI [55.6-85.4]) for WM. Brain volumetry at the single-subject level reveals that regions in the default mode network and subcortical gray matter regions, as well as white matter regions involved in long range connectivity, are most important to distinguish levels of consciousness. Our findings suggest that changes of brain structure provide information in addition to the assessment of functional neuroimaging and thus should be evaluated as well. Ann Neurol 2018;83:842-853. © 2018 American Neurological Association.

  14. Pretreatment maximum standardized uptake value of (18)F-fluorodeoxyglucose positron emission tomography as a predictor of distant metastasis in adenoid cystic carcinoma of the head and neck.

    PubMed

    Kim, Donghyun; Kim, Wontaek; Lee, Joohye; Ki, Yongkan; Lee, Byungjoo; Cho, Kyusup; Kim, Seongjang; Nam, Jiho; Lee, Jinchoon; Kim, Dongwon

    2016-05-01

    The purpose of this study was to determine whether the maximum standardized uptake value (SUVmax) of the primary tumor on pretreatment (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) has prognostic significance in patients with adenoid cystic carcinoma (ACC) of the head and neck. A retrospective review was carried out on 34 patients with ACC of the head and neck who underwent pretreatment (18)F-FDG PET imaging from June 2005 through July 2009. All patients underwent surgery with curative intent, and 26 of them received adjuvant radiotherapy (RT). When subjects were stratified into 2 groups according to a cutoff value for SUVmax of 4.15, the risk of distant metastasis was significantly high in patients with high SUVmax (p = .014). Multivariate analysis showed that high SUVmax and histologic grade 3 were independent poor prognostic factors for distant metastasis-free and disease-free survival. Pretreatment SUVmax of the primary tumor is an independent prognostic factor in patients with ACC of the head and neck. © 2015 Wiley Periodicals, Inc.

  15. Effect of furosemide administration before F-18 fluorodeoxyglucose positron emission tomography/computed tomography on urine radioactivity and detection of uterine cervical cancer.

    PubMed

    d'Amico, Andrea; Gorczewska, Izabela; Gorczewski, Kamil; Turska-d'Amico, Maria; Di Pietro, Marco

    2014-01-01

    In evaluating uterine cervical cancer with ¹⁸F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT), there may be overlap between the FDG activity at tumor sites and nonspecific radioactivity in the urine. We evaluated the efficacy of furosemide premedication with routine hydration to obtain better contrast and less overlap between cervical cancer and the urinary bladder. We retrospectively evaluated 166 patients who had primary or relapsed cervical cancer and underwent FDG PET/CT scanning with (133 patients) or without (33 patients) furosemide premedication (10 mg intravenous, slowly injected 30 min before the scan). We calculated bladder and tumor maximum and median standardized uptake value (SUVmax and SUVmed), and overlap between tumor and urinary activity was detected visually. Overlap between urinary and tumor radioactivity was observed in 8 of 133 scans (6%) in patients who receive furosemide and in 3 of 33 scans (9%) in patients who did not receive furosemide. The SUVmax and SUVmed for the bladder were significantly lower in patients who were pretreated with furosemide (SUVmax, 6.3; SUVmed, 4.6) than patients who were not pretreated with furosemide (SUVmax, 8.8 [P ≤ 0.008]; SUVmed, 6.5 [P ≤ 0.002]). The tumor SUVmax and SUVmed were similar between the patient groups. Furosemide premedication before FDG PET/CT scanning may enable improved evaluation of activity and extension of cervical cancer.

  16. N-(/sup 11/C)-methyl-p-substituted phentermine analogs as potential brain blood flow agents for positron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizuka, H.; Elmaleh, D.R.; Boudreaux, G.J.

    The addition of a methyl group to the ..cap alpha..-position of amphetamine increases both the lipophilicity of the agent and its resistance to metabolism by monoamine oxidase. In addition, since tritium substituted phenteramine analog studies suggested that the p-halo phentermines had a greater concentration in the brain and prolonged retention time, the authors evaluated the biological behavior of positron labeled ..cap alpha..-methylamphetamine (phenteramine) in rats, dogs and monkeys. The N-(/sup 11/C) methyl analogs of p-chloro (I) and p-fluoro (II) phentermines were prepared by methylation of their primary amines using /sup 11/Ch/sub 3/I. Biodistribution studies in rats shows brain uptake ismore » in the range of 1% dose/gr at 5 and 15 min for both agents. The activity in blood and eyes is low. Sequential images of the dogs' brain over 1 hour revealed a clearance of <15%. Images of the monkey brain were also obtained using a MGH positron camera PCR-I.« less

  17. Diagnosis of sinusoidal obstruction syndrome by positron emission tomography/computed tomography: report of two cases treated by defibrotide.

    PubMed

    Gauthé, Mathieu; Bozec, Laurence; Bedossa, Pierre

    2014-11-01

    Sinusoidal obstruction syndrome (SOS) is a potentially fatal liver injury that mainly occurs after myeloablative chemotherapy. We report two cases of SOS investigated by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and treated with defibrotide. © 2014 by the American Association for the Study of Liver Diseases.

  18. Prospective Evaluation of 18F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome.

    PubMed

    Rischpler, Christoph; Dirschinger, Ralf J; Nekolla, Stephan G; Kossmann, Hans; Nicolosi, Stefania; Hanus, Franziska; van Marwick, Sandra; Kunze, Karl P; Meinicke, Alexander; Götze, Katharina; Kastrati, Adnan; Langwieser, Nicolas; Ibrahim, Tareq; Nahrendorf, Matthias; Schwaiger, Markus; Laugwitz, Karl-Ludwig

    2016-04-01

    The immune system orchestrates the repair of infarcted myocardium. Imaging of the cellular inflammatory response by (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/magnetic resonance imaging in the heart has been demonstrated in preclinical and clinical studies. However, the clinical relevance of post-MI (18)F-FDG uptake in the heart has not been elucidated. The objective of this study was to explore the value of (18)F-FDG positron emission tomography/magnetic resonance imaging in patients after acute myocardial infarction as a biosignal for left ventricular functional outcome. We prospectively enrolled 49 patients with ST-segment-elevation myocardial infarction and performed (18)F-FDG positron emission tomography/magnetic resonance imaging 5 days after percutaneous coronary intervention and follow-up cardiac magnetic resonance imaging after 6 to 9 months. In a subset of patients, (99m)Tc-sestamibi single-photon emission computed tomography was performed with tracer injection before revascularization. Cellular innate immune response was analyzed at multiple time points. Segmental comparison of (18)F-FDG-uptake and late gadolinium enhancement showed substantial overlap (κ=0.66), whereas quantitative analysis demonstrated that (18)F-FDG extent exceeded late gadolinium enhancement extent (33.2±16.2% left ventricular myocardium versus 20.4±10.6% left ventricular myocardium, P<0.0001) and corresponded to the area at risk (r=0.87, P<0.0001). The peripheral blood count of CD14(high)/CD16(+) monocytes correlated with the infarction size and (18)F-FDG signal extent (r=0.53, P<0.002 and r=0.42, P<0.02, respectively). (18)F-FDG uptake in the infarcted myocardium was highest in areas with transmural scar, and the standardized uptake valuemean was associated with left ventricular functional outcome independent of infarct size (Δ ejection fraction: P<0.04, Δ end-diastolic volume: P<0.02, Δ end-systolic volume: P<0.005). In this study, the intensity of (18

  19. Heterogeneity of Glucose Metabolism in Esophageal Cancer Measured by Fractal Analysis of Fluorodeoxyglucose Positron Emission Tomography Image: Correlation between Metabolic Heterogeneity and Survival.

    PubMed

    Tochigi, Toru; Shuto, Kiyohiko; Kono, Tsuguaki; Ohira, Gaku; Tohma, Takayuki; Gunji, Hisashi; Hayano, Koichi; Narushima, Kazuo; Fujishiro, Takeshi; Hanaoka, Toshiharu; Akutsu, Yasunori; Okazumi, Shinichi; Matsubara, Hisahiro

    2017-01-01

    Intratumoral heterogeneity is a well-recognized characteristic feature of cancer. The purpose of this study is to assess the heterogeneity of the intratumoral glucose metabolism using fractal analysis, and evaluate its prognostic value in patients with esophageal squamous cell carcinoma (ESCC). 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) studies of 79 patients who received curative surgery were evaluated. FDG-PET images were analyzed using fractal analysis software, where differential box-counting method was employed to calculate the fractal dimension (FD) of the tumor lesion. Maximum standardized uptake value (SUVmax) and FD were compared with overall survival (OS). The median SUVmax and FD of ESCCs in this cohort were 13.8 and 1.95, respectively. In univariate analysis performed using Cox's proportional hazard model, T stage and FD showed significant associations with OS (p = 0.04, p < 0.0001, respectively), while SUVmax did not (p = 0.1). In Kaplan-Meier analysis, the low FD tumor (<1.95) showed a significant association with favorable OS (p < 0.0001). In wthe multivariate analysis among TNM staging, serum tumor markers, FD, and SUVmax, the FD was identified as the only independent prognostic factor for OS (p = 0.0006; hazards ratio 0.251, 95% CI 0.104-0.562). Metabolic heterogeneity measured by fractal analysis can be a novel imaging biomarker for survival in patients with ESCC. © 2016 S. Karger AG, Basel.

  20. Ultrasound, elastography, and fluorodeoxyglucose positron emission tomography/computed tomography imaging in Riedel's thyroiditis: report of two cases.

    PubMed

    Slman, Rouba; Monpeyssen, Hervé; Desarnaud, Serge; Haroche, Julien; Fediaevsky, Laurence Du Pasquier; Fabrice, Menegaux; Seret-Begue, Dominique; Amoura, Zahir; Aurengo, André; Leenhardt, Laurence

    2011-07-01

    Riedel's thyroiditis (RT) is a rare disease characterized by a chronic inflammatory lesion of the thyroid gland with invasion by a dense fibrosis. Publications of the imaging features of RT are scarce. To our knowledge, ultrasound elastography (USE) findings have not been previously reported. Therefore, we describe two patients with RT who were imaged with ultrasonography (US), USE, and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). Two women were referred for a large, hard goiter with compressive symptoms (dyspnea and dysphagia); in one patient, the goiter was associated with retroperitoneal fibrosis. In both cases, RT was confirmed by surgical biopsy with pathological examination. Thyroid US imaging was performed with a US scan and a 10-13 MHz linear transducer. The hardness of the tissues was analyzed using transient USE (ShearWave, Aixplorer-SuperSonic Imagine). PET/CT scanning was performed with a Philips Gemini GXL camera (GE Medical Systems). In the first patient, US examination revealed a compressive multinodular goiter with large solid hypoechoic and poorly vascularized areas adjacent to the nodules. The predominant right nodule was hypoechoic with irregular margins. The second patient had a hypoechoic goiter with large bilateral hypoechoic areas. In both cases, an unusual feature was observed: the presence of tissue surrounding the primitive carotid artery, associated with thrombi of the internal jugular vein. Further, USE showed heterogeneity in the stiffness values of the thyroid parenchyma varying between 21 kPa and 281 kPa. FDG-PET/CT imaging showed uptake foci in the thyroid gland. In both cases, US showed a decrease in the thyroid gland volume and the disappearance of encasement of the neck vasculature in response to corticosteroid treatment. In contrast, the FDG-PET/CT features remained unchanged. US features, such as vascular encasement and improvement under corticosteroid treatment, seem to be specific to this

  1. Role for positron emission tomography in skeletal diseases.

    PubMed

    Duet, Michèle; Pouchot, Jacques; Lioté, Frédéric; Faraggi, Marc

    2007-01-01

    Imaging plays a prominent role in the diagnosis and management of rheumatic diseases. Conventional imaging methods provide high-resolution structural information but usually fail to distinguish between active lesions and residual changes. Positron emission tomography (PET) with the tracer 18F-fluorodeoxyglucose (18F-FDG) was recently introduced into clinical practice as a means of obtaining information on both structure and metabolic activity. 18F-FDG-PET is widely used in oncology and may be valuable in patients with infections or inflammatory diseases, most notably vasculitis. Although encouraging results have been published, the number of studies remains small, as 18F-FDG-PET is an expensive investigation that is not available everywhere. Further work is needed to determine the cost-effectiveness ratio of 18F-FDG-PET in patients with infections or inflammatory diseases. Imaging plays a prominent role in the diagnosis and management of many musculoskeletal diseases. Although considerable progress has been made recently, the structural information supplied by conventional imaging methods is inadequate in some patients. Positron emission tomography (PET) after injection of 18fluorodeoxyglucose (18F-FDG) provides information on tissue metabolism. The usefulness of 18F-FDG-PET in oncology is now widely recognized. Other uses are emerging, in part thanks to the development of new cameras that combine dedicated detectors and an X-scanner in order to ensure accurate three-dimensional localization of metabolically active lesions. However, the exact role for 18F-FDG-PET needs to be studied in larger populations of patients.

  2. Usefulness of positron emission tomography in primary intestinal follicular lymphoma

    PubMed Central

    Tari, Akira; Asaoku, Hideki; Kunihiro, Masaki; Tanaka, Shinji; Yoshino, Tadashi

    2013-01-01

    Double-balloon enteroscopy (DBE) and video capsule endoscopy are useful for the diagnosis of lymphoma in the small intestine. However, DBE cannot be safely performed in cases with passage disturbance due to wall thickening and stenosis. Additionally, video capsule endoscopy cannot be performed in such cases because of the risk of retention. Here, we report 4 cases of primary follicular lymphoma of the gastrointestinal tract that could be detected using 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (PET-CT). The endoscopic findings of these 4 cases included lesions with wall thickening, which comprised macroscopically clusters of nodules, dense clusters of whitish granules or small nodules, fold thickening and ulcers with irregular margins that occupied the whole lumen with edematous mucosa. All patients fulfilled the World Health Organization grade 1 criteria. 18F-fluorodeoxyglucose PET-CT can help predict the risks that may result from certain endoscopic examinations, such as DBE and video capsule endoscopy. PMID:23569346

  3. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to tyrosine-kinase inhibitors in patients with metastatic primary renal cell carcinoma.

    PubMed

    Caldarella, Carmelo; Muoio, Barbara; Isgrò, Maria Antonietta; Porfiri, Emilio; Treglia, Giorgio; Giovanella, Luca

    2014-09-01

    Positron emission tomography-computed tomography (PET-CT) using fluorodeoxyglucose (FDG) is increasingly used in the evaluation of patients with advanced renal cell carcinoma (RCC), primarily for staging purposes. The aim of this paper is to perform a systematic review about the usefulness of PET-CT using FDG in response assessment after treatment with tyrosine-kinase inhibitors (TKIs) in patients with advanced RCC. The scientific literature about the role of PET-CT using FDG in the assessment of response to treatment with TKIs in patients affected by advanced RCC was systematically reviewed. Seven studies about the role of PET-CT using FDG in the response assessment after treatment with TKIs (essentially sunitinib and sorafenib) in advanced RCC were retrieved in full-text and analysed, to determine the predictive role of this morpho-functional imaging method on patient outcome. To date, the role of PET-CT using FDG in evaluating the response to TKIs in metastatic RCC patients is still not well defined, partly due to heterogeneity of available studies; however, PET-CT reveals potential role for the selection of patients undergoing therapy with TKIs. The use of contrast-enhanced PET-CT appears to be promising for a "multi-dimensional" evaluation of treatment response in these patients.

  4. Early Changes by 18Fluorodeoxyglucose Positron Emission Tomography Coregistered with Computed Tomography Predict Outcome after Mycobacterium tuberculosis Infection in Cynomolgus Macaques

    PubMed Central

    Coleman, M. Teresa; Maiello, Pauline; Tomko, Jaime; Frye, Lonnie James; Fillmore, Daniel; Janssen, Christopher; Klein, Edwin

    2014-01-01

    Cynomolgus macaques infected with low-dose Mycobacterium tuberculosis develop both active tuberculosis and latent infection similar to those of humans, providing an opportunity to study the clinically silent early events in infection. 18Fluorodeoxyglucose radiotracer with positron emission tomography coregistered with computed tomography (FDG PET/CT) provides a noninvasive method to measure disease progression. We sought to determine temporal patterns of granuloma evolution that distinguished active-disease and latent outcomes. Macaques (n = 10) were infected with low-dose M. tuberculosis with FDG PET/CT performed during infection. At 24 weeks postinfection, animals were classified as having active disease (n = 3) or latent infection (n = 6), with one “percolator” monkey. Imaging characteristics (e.g., lesion number, metabolic activity, size, mineralization, and distribution of lesions) were compared among active and latent groups. As early as 3 weeks postinfection, more pulmonary granulomas were observed in animals that would later develop active disease than in those that would develop latent infection. Over time, new lesions developed in active-disease animals but not in latent animals. Granulomas and mediastinal lymph nodes from active-disease but not latent animals consistently increased in metabolic activity at early time points. The presence of fewer lesions at 3 weeks and the lack of new lesion development in animals with latent infection suggest that innate and rapid adaptive responses are critical to preventing active tuberculosis. A greater emphasis on innate responses and/or rapid recruitment of adaptive responses, especially in the airway, should be emphasized in newer vaccine strategies. PMID:24664509

  5. Lung Hot Spot Without Corresponding Computed Tomography Abnormality on Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Artifactual or Real, Iatrogenic or Pathologic?

    PubMed

    Liu, Yiyan

    Focal lung uptake without corresponding lesions or abnormalities on computed tomography (CT) scan poses a dilemma in the interpretation of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). A limited number of case reports have previously suggested an artifactual or iatrogenic nature of the uptake. In the present study, 8 relevant cases were included within a retrospective search of the database. Medical records were reviewed for follow-up radiological and pathologic information. In 7 of 8 cases with focal increased FDG uptake but no corresponding lesions or abnormalities on CT scan, the lung hot spots were artifactual or iatrogenic upon follow-up diagnostic chest CT or repeated PET/CT or both the scans. Microemboli were most likely a potential cause of the pulmonary uptake, with or without partial paravenous injection. One case in the series had a real pulmonary lesion demonstrated on follow-up PET/CT scans and on surgical pathology, although the initial integrated CT and follow-up diagnostic chest CT scans revealed negative findings to demonstrate pulmonary abnormalities corresponding to the hot spot on the PET scan. In conclusion, the finding of a lung hot spot in the absence of anatomical abnormality on FDG PET/CT was most likely artifactual or iatrogenic, but it might also represent a real pulmonary lesion. Nonvisualization of anatomical abnormality could be because of its small size and position directly overlying a segmental vessel. Further image follow-up is necessary and important to clarify the nature of the uptake. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Impact of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Before and After Definitive Radiation Therapy in Patients With Apparently Solitary Plasmacytoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Paul J.; Hicks, Rodney J.; Wirth, Andrew

    2009-07-01

    Purpose: To evaluate the impact of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Methods and Materials: Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Results: Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%).more » Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). Conclusions: FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.« less

  7. Occipital and Cingulate Hypometabolism are Significantly Under-Reported on 18-Fluorodeoxyglucose Positron Emission Tomography Scans of Patients with Lewy Body Dementia.

    PubMed

    Hamed, Moath; Schraml, Frank; Wilson, Jeffrey; Galvin, James; Sabbagh, Marwan N

    2018-01-01

    To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB). Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients. This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads. On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (p<0.05). Occipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these in vivo biomarkers.

  8. 18F-fluorodeoxyglucose positron emission tomography/computed tomography findings of gastric lymphoma: Comparisons with gastric cancer.

    PubMed

    Wu, Jiang; Zhu, Hong; Li, Kai; Wang, Xin-Gang; Gui, Yi; Lu, Guang-Ming

    2014-10-01

    The role of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18 F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18 F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18 F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18 F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUV max ) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUV max was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUV max of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between

  9. 18F-fluorodeoxyglucose positron emission tomography/computed tomography findings of gastric lymphoma: Comparisons with gastric cancer

    PubMed Central

    WU, JIANG; ZHU, HONG; LI, KAI; WANG, XIN-GANG; GUI, YI; LU, GUANG-MING

    2014-01-01

    The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUVmax) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUVmax was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUVmax of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between gastric

  10. Diagnostic importance of contrast enhanced (18)F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: Our experience.

    PubMed

    Jain, Avani S; Shelley, Simon; Muthukrishnan, Indirani; Kalal, Shilpa; Amalachandran, Jaykanth; Chandran, Sureshkumar

    2016-01-01

    To assess the diagnostic utility of contrast-enhanced (18)F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-ceCT) in localization of tumors in patients with clinical diagnosis of tumor-induced osteomalacia (TIO), in correlation with histopathological results. Eight patients (five male and three female) aged 24-60 (mean 42) years with a clinical diagnosis of TIO were included in this prospective study. They underwent whole body (head to toe) FDG PET-ceCT following a standard protocol on Philips GEMINI TF PET-CT scanner. The FDG PET-ceCT results were correlated with postoperative histology findings and clinical follow-up. All the patients had an abnormal PET-ceCT study. The sensitivity of PET-ceCT was 87.5%, and positive predictive value was 100%. The tumor was located in the craniofacial region in 6/8 patients and in bone in 2/8 patients. Hemangiopericytoma was the most common reported histology. All patients underwent surgery, following which they demonstrated clinical improvement. However, one patient with atypical findings on histology did not show any clinical improvement, hence, underwent (68)Gallium-DOTANOC PET-ceCT scan for relocalization of the site of the tumor. The tumors causing TIO are small in size and usually located in obscure sites in the body. Hence, head to toe protocol should be followed for FDG PET-ceCT scans with the inclusion of upper limbs. Once the tumor is localized, regional magnetic resonance imaging can be performed for better characterization of soft tissue lesion. Imaging with FDG PET-ceCT plays an important role in detecting the site of the tumor and thereby facilitating timely management.

  11. [18]Fluorodeoxyglucose Positron Emission Tomography for the Textural Features of Cervical Cancer Associated with Lymph Node Metastasis and Histological Type.

    PubMed

    Shen, Wei-Chih; Chen, Shang-Wen; Liang, Ji-An; Hsieh, Te-Chun; Yen, Kuo-Yang; Kao, Chia-Hung

    2017-09-01

    In this study, we investigated the correlation between the lymph node (LN) status or histological types and textural features of cervical cancers on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. We retrospectively reviewed the imaging records of 170 patients with International Federation of Gynecology and Obstetrics stage IB-IVA cervical cancer. Four groups of textural features were studied in addition to the maximum standardized uptake value (SUV max ), metabolic tumor volume, and total lesion glycolysis (TLG). Moreover, we studied the associations between the indices and clinical parameters, including the LN status, clinical stage, and histology. Receiver operating characteristic curves were constructed to evaluate the optimal predictive performance among the various textural indices. Quantitative differences were determined using the Mann-Whitney U test. Multivariate logistic regression analysis was performed to determine the independent factors, among all the variables, for predicting LN metastasis. Among all the significant indices related to pelvic LN metastasis, homogeneity derived from the gray-level co-occurrence matrix (GLCM) was the sole independent predictor. By combining SUV max , the risk of pelvic LN metastasis can be scored accordingly. The TLG mean was the independent feature of positive para-aortic LNs. Quantitative differences between squamous and nonsquamous histology can be determined using short-zone emphasis (SZE) from the gray-level size zone matrix (GLSZM). This study revealed that in patients with cervical cancer, pelvic or para-aortic LN metastases can be predicted by using textural feature of homogeneity from the GLCM and TLG mean, respectively. SZE from the GLSZM is the sole feature associated with quantitative differences between squamous and nonsquamous histology.

  12. Estradiol modulates neural response to conspecific and heterospecific song in female house sparrows: An in vivo positron emission tomography study

    PubMed Central

    Stabile, Frank A.; Carson, Richard E.

    2017-01-01

    Although there is growing evidence that estradiol modulates female perception of male sexual signals, relatively little research has focused on female auditory processing. We used in vivo 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging to examine the neuronal effects of estradiol and conspecific song in female house sparrows (Passer domesticus). We assessed brain glucose metabolism, a measure of neuronal activity, in females with empty implants, estradiol implants, and empty implants ~1 month after estradiol implant removal. Females were exposed to conspecific or heterospecific songs immediately prior to imaging. The activity of brain regions involved in auditory perception did not differ between females with empty implants exposed to conspecific vs. heterospecific song, but neuronal activity was significantly reduced in females with estradiol implants exposed to heterospecific song. Furthermore, our within-individual design revealed that changes in brain activity due to high estradiol were actually greater several weeks after peak hormone exposure. Overall, this study demonstrates that PET imaging is a powerful tool for assessing large-scale changes in brain activity in living songbirds, and suggests that after breeding is done, specific environmental and physiological cues are necessary for estradiol-stimulated females to lose the selectivity they display in neural response to conspecific song. PMID:28832614

  13. Preoperative predictive model of cervical lymph node metastasis combining fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography findings and clinical factors in patients with oral or oropharyngeal squamous cell carcinoma.

    PubMed

    Mochizuki, Yumi; Omura, Ken; Nakamura, Shin; Harada, Hiroyuki; Shibuya, Hitoshi; Kurabayashi, Toru

    2012-02-01

    This study aimed to construct a preoperative predictive model of cervical lymph node metastasis using fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography ((18)F-FDG PET/CT) findings in patients with oral or oropharyngeal squamous cell carcinoma (SCC). Forty-nine such patients undergoing preoperative (18)F-FDG PET/CT and neck dissection or lymph node biopsy were enrolled. Retrospective comparisons with spatial correlation between PET/CT and the anatomical sites based on histopathological examinations of surgical specimens were performed. We calculated a logistic regression model, including the SUVmax-related variable. When using the optimal cutoff point criterion of probabilities calculated from the model that included either clinical factors and delayed-phase SUVmax ≥0.087 or clinical factors and maximum standardized uptake (SUV) increasing rate (SUV-IR) ≥ 0.100, it significantly increased the sensitivity, specificity, and accuracy (87.5%, 65.7%, and 75.2%, respectively). The use of predictive models that include clinical factors and delayed-phase SUVmax and SUV-IR improve preoperative nodal diagnosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A new brain positron emission tomography scanner with semiconductor detectors for target volume delineation and radiotherapy treatment planning in patients with nasopharyngeal carcinoma.

    PubMed

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET(CONV)WB) versus the new brain (BR) PET system using semiconductor detectors (PET(NEW)BR). Twelve patients with NPC were enrolled in this study. [(18)F]Fluorodeoxyglucose-PET images were acquired using both the PET(NEW)BR and the PET(CONV)WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET(CONV)WB and PET(NEW)BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET(CONV)WB (GTV(CONV)) images or PET(NEW)BR (GTV(NEW)) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. The average absolute volume (±standard deviation [SD]) of GTV(NEW) was 15.7 ml (±9.9) ml, and that of GTV(CONV) was 34.0 (±20.5) ml. The average GTV(NEW) was significantly smaller than that of GTV(CONV) (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN(NEW)) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy treatment planning. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Impacts of biological and procedural factors on semiquantification uptake value of liver in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography imaging.

    PubMed

    Mahmud, Mohd Hafizi; Nordin, Abdul Jalil; Ahmad Saad, Fathinul Fikri; Azman, Ahmad Zaid Fattah

    2015-10-01

    Increased metabolic activity of fluorodeoxyglucose (FDG) in tissue is not only resulting of pathological uptake, but due to physiological uptake as well. This study aimed to determine the impacts of biological and procedural factors on FDG uptake of liver in whole body positron emission tomography/computed tomography (PET/CT) imaging. Whole body fluorine-18 ((18)F) FDG PET/CT scans of 51 oncology patients have been reviewed. Maximum standardized uptake value (SUVmax) of lesion-free liver was quantified in each patient. Pearson correlation was performed to determine the association between the factors of age, body mass index (BMI), blood glucose level, FDG dose and incubation period and liver SUVmax. Multivariate regression analysis was established to determine the significant factors that best predicted the liver SUVmax. Then the subjects were dichotomised into four BMI groups. Analysis of variance (ANOVA) was established for mean difference of SUVmax of liver between those BMI groups. BMI and incubation period were significantly associated with liver SUVmax. These factors were accounted for 29.6% of the liver SUVmax variance. Statistically significant differences were observed in the mean SUVmax of liver among those BMI groups (P<0.05). BMI and incubation period are significant factors affecting physiological FDG uptake of liver. It would be recommended to employ different cut-off value for physiological liver SUVmax as a reference standard for different BMI of patients in PET/CT interpretation and use a standard protocol for incubation period of patient to reduce variation in physiological FDG uptake of liver in PET/CT study.

  16. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    PubMed Central

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  17. Diagnostic importance of contrast enhanced 18F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: Our experience

    PubMed Central

    Jain, Avani S.; Shelley, Simon; Muthukrishnan, Indirani; Kalal, Shilpa; Amalachandran, Jaykanth; Chandran, Sureshkumar

    2016-01-01

    Aims and Objectives: To assess the diagnostic utility of contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-ceCT) in localization of tumors in patients with clinical diagnosis of tumor-induced osteomalacia (TIO), in correlation with histopathological results. Materials and Methods: Eight patients (five male and three female) aged 24–60 (mean 42) years with a clinical diagnosis of TIO were included in this prospective study. They underwent whole body (head to toe) FDG PET-ceCT following a standard protocol on Philips GEMINI TF PET-CT scanner. The FDG PET-ceCT results were correlated with postoperative histology findings and clinical follow-up. Results: All the patients had an abnormal PET-ceCT study. The sensitivity of PET-ceCT was 87.5%, and positive predictive value was 100%. The tumor was located in the craniofacial region in 6/8 patients and in bone in 2/8 patients. Hemangiopericytoma was the most common reported histology. All patients underwent surgery, following which they demonstrated clinical improvement. However, one patient with atypical findings on histology did not show any clinical improvement, hence, underwent 68Gallium-DOTANOC PET-ceCT scan for relocalization of the site of the tumor. Conclusion: The tumors causing TIO are small in size and usually located in obscure sites in the body. Hence, head to toe protocol should be followed for FDG PET-ceCT scans with the inclusion of upper limbs. Once the tumor is localized, regional magnetic resonance imaging can be performed for better characterization of soft tissue lesion. Imaging with FDG PET-ceCT plays an important role in detecting the site of the tumor and thereby facilitating timely management. PMID:26917888

  18. Prognostic Value of SUVmax Measured by Pretreatment Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Patients with Ewing Sarcoma

    PubMed Central

    Hwang, Jae Pil; Lim, Ilhan; Kong, Chang-Bae; Jeon, Dae Geun; Byun, Byung Hyun; Kim, Byung Il; Choi, Chang Woon; Lim, Sang Moo

    2016-01-01

    Aim The aim of this retrospective study was to determine whether glucose metabolism assessed by using Fluorine-18 (F-18) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) provides prognostic information independent of established prognostic factors in patients with Ewing sarcoma. Methods We retrospectively reviewed the medical records of 34 patients (men, 19; women, 15; mean age, 14.5 ± 9.7 years) with pathologically proven Ewing sarcoma. They had undergone F-18 FDG PET/CT as part of a pretreatment workup between September 2006 and April 2012. In this analysis, patients were classified by age, sex, initial location, size, and maximum standardized uptake value (SUVmax). The relationship between FDG uptake and survival was analyzed using the Kaplan-Meier method with the log-rank test and Cox’s proportional hazards regression model. Results The median survival time for all 34 subjects was 999 days and the median SUV by using PET/CT was 5.8 (range, 2–18.1). Patients with a SUVmax ≤ 5.8 survived significantly longer than those with a SUVmax > 5.8 (median survival time, 1265 vs. 656 days; p = 0.002). Survival was also found to be significantly related to age (p = 0.024), size (p = 0.03), and initial tumor location (p = 0.036). Multivariate analysis revealed that a higher SUVmax (p = 0.003; confidence interval [CI], 3.63–508.26; hazard ratio [HR], 42.98), older age (p = 0.023; CI, 1.34–54.80; HR, 8.59), and higher stage (p = 0.03; CI, 1.21–43.95; HR, 7.3) were associated with worse overall survival. Conclusions SUVmax measured by pretreatment F-18-FDG PET/CT can predict overall survival in patients with Ewing sarcoma. PMID:27100297

  19. Improvement of depressive symptoms in patients with moderate-to-severe psoriasis treated with ustekinumab: an open label trial validated using beck depression inventory, Hamilton depression rating scale measures and 18fluorodeoxyglucose (FDG) positron emission tomography (PET).

    PubMed

    Kim, Seong-Jang; Park, Min-Young; Pak, Kyoungjune; Han, Junhee; Kim, Gun-Wook; Kim, Hoon-Soo; Ko, Hyun-Chang; Kim, Moon-Bum; Kim, Byung-Soo

    2018-05-07

    Psoriasis is a chronic skin disease associated with psychiatric co-morbidities, especially depression. Early detection of psychological vulnerability in patients with psoriasis seems to be of great clinical importance and significantly impacts the quality of life of the patients. We sought to clarify the association between psoriasis and depressive symptoms in patients with moderate-to-severe psoriasis, and to determine the risk factors for depressive symptoms and analyze the effect of ustekinumab on the symptoms. We also aimed to evaluate the changes in glucose metabolism using 18 fluorodeoxyglucose (FDG) positron emission tomography (FDG-PET). Fifteen patients with moderate-to-severe psoriasis scheduled to be treated with ustekinumab were enrolled. At baseline and after achieving a 75% reduction in the Psoriasis Area and Severity Index (PASI) score (PASI75), all patients underwent a psychiatric interview and FDG-PET. Fifteen healthy volunteers were enrolled for comparison. Patients with moderate-to-severe psoriasis were more depressed than those in the control group were (p < .05). The severity of psoriasis at baseline did not correlate with the depression symptoms. Treatment with ustekinumab significantly reduced the depressive symptoms, as verified using Beck Depression Inventory and Hamilton Depression Rating Scale psychiatric interviews (p < .05). However, FDG-PET of the brain showed no significant difference before and after PASI75 achievement using ustekinumab injection. Patients with moderate-to-severe psoriasis are at an increased risk for depressive symptoms, and treatment with ustekinumab may be beneficial. FDG-PET does not reflect the changes in depressive symptoms in such patients.

  20. Influence of the partial volume correction method on 18F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM

    PubMed Central

    Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian

    2014-01-01

    Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For OSEM, image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-fluorodeoxyglucose dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation GTM PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in CMRGlc estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation

  1. Fluorodeoxyglucose /sup 18/F scan in Alzheimer's disease and multi-infarct dementia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, D.F.; Kuhl, D.E.; Hawkins, R.A.

    1983-11-01

    Patients with Alzheimer's disease and multi-infarct dementia were studied with scans using fluorodeoxyglucose tagged with fluorine 18. The rates of glucose metabolism were calculated. Patients with Alzheimer's dementia showed decreased metabolism in all areas of the brain but with preferential sparing of the primary motor and sensory cortex. Patients with multi-infarct dementia also had global reductions in glucose metabolic rates when compared with normal control subjects, but the areas of hypometabolism were focal and asymmetric.

  2. Radioisotope generators for short-lived positron emitters applicable to positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yano, Y.

    1989-04-01

    Radioisotope generators provide short-lived positron emitters for positron emission tomography (PET) without the need for an on-site cyclotron. These generators consist of a long-lived parent radionuclide, generally produced on an accelerator, from which the short-lived daughter radionuclide is separated and used as needed. Generators developed and applied to PET studies include 288 d 68Ge for 68 min 68Ga, 25 d 82Sr for 76 s 82Rb and 20.1 h 122Xe for 3.6 min 122I. These radiotracers have been used for the assessment of myocardial and brain blood flow in patient studies. Additionally, 82Rb has been used to determine the breakdown in the blood brain barrier in brain tumor patients who have undergone radiation therapy. When used in conjunction with 18F-fluorodeoxylucose produced on a regional cyclotron for the measurement of glucose utilization in brain tumors, differential diagnosis can be made between tumor regrowth and radiation therapy necrosis. Other possible applications include the detection of vascular lesions with 68Ga labeled platelets or porphyrins.

  3. Textural features of 18F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection.

    PubMed

    Saleem, Ben R; Beukinga, Roelof J; Boellaard, Ronald; Glaudemans, Andor W J M; Reijnen, Michel M P J; Zeebregts, Clark J; Slart, Riemer H J A

    2017-05-01

    The clinical problem in suspected aortoiliac graft infection (AGI) is to obtain proof of infection. Although 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography scanning (PET) has been suggested to play a pivotal role, an evidence-based interpretation is lacking. The objective of this retrospective study was to examine the feasibility and utility of 18 F-FDG uptake heterogeneity characterized by textural features to diagnose AGI. Thirty patients with a history of aortic graft reconstruction who underwent 18 F-FDG PET/CT scanning were included. Sixteen patients were suspected to have an AGI (group I). AGI was considered proven only in the case of a positive bacterial culture. Positive cultures were found in 10 of the 16 patients (group Ia), and in the other six patients, cultures remained negative (group Ib). A control group was formed of 14 patients undergoing 18 F-FDG PET for other reasons (group II). PET images were assessed using conventional maximal standardized uptake value (SUVmax), tissue-to-background ratio (TBR), and visual grading scale (VGS). Additionally, 64 different 18 F-FDG PET based textural features were applied to characterize 18 F-FDG uptake heterogeneity. To select candidate predictors, univariable logistic regression analysis was performed (α = 0.16). The accuracy was satisfactory in case of an AUC > 0.8. The feature selection process yielded the textural features named variance (AUC = 0.88), high grey level zone emphasis (AUC = 0.87), small zone low grey level emphasis (AUC = 0.80), and small zone high grey level emphasis (AUC = 0.81) most optimal for distinguishing between groups I and II. SUVmax, TBR, and VGS were also able to distinguish between these groups with AUCs of 0.87, 0.78, and 0.90, respectively. The textural feature named short run high grey level emphasis was able to distinguish group Ia from Ib (AUC = 0.83), while for the same task the TBR and VGS were not found to be predictive. SUVmax

  4. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    PubMed

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM.

  5. Diagnostic Performance of (18)F-Fluorodeoxyglucose in 162 Small Pulmonary Nodules Incidentally Detected in Subjects Without a History of Malignancy.

    PubMed

    Calcagni, Maria Lucia; Taralli, Silvia; Cardillo, Giuseppe; Graziano, Paolo; Ialongo, Pasquale; Mattoli, Maria Vittoria; Di Franco, Davide; Caldarella, Carmelo; Carleo, Francesco; Indovina, Luca; Giordano, Alessandro

    2016-04-01

    Solitary pulmonary nodule (SPN) still represents a diagnostic challenge. The aim of our study was to evaluate the diagnostic performance of (18)F-fluorodeoxyglucose positron emission tomography-computed tomography in one of the largest samples of small SPNs, incidentally detected in subjects without a history of malignancy (nonscreening population) and undetermined at computed tomography. One-hundred and sixty-two small (>0.8 to 1.5 cm) and, for comparison, 206 large nodules (>1.5 to 3 cm) were retrospectively evaluated. Diagnostic performance of (18)F-fluorodeoxyglucose visual analysis, receiver-operating characteristic (ROC) analysis for maximum standardized uptake value (SUVmax), and Bayesian analysis were assessed using histology or radiological follow-up as a golden standard. In 162 small nodules, (18)F-fluorodeoxyglucose visual and ROC analyses (SUVmax = 1.3) provided 72.6% and 77.4% sensitivity and 88.0% and 82.0% specificity, respectively. The prevalence of malignancy was 38%; Bayesian analysis provided 78.8% positive and 16.0% negative posttest probabilities of malignancy. In 206 large nodules (18)F-fluorodeoxyglucose visual and ROC analyses (SUVmax = 1.9) provided 89.5% and 85.1% sensitivity and 70.8% and 79.2% specificity, respectively. The prevalence of malignancy was 65%; Bayesian analysis provided 85.0% positive and 21.6% negative posttest probabilities of malignancy. In both groups, malignant nodules had a significant higher SUVmax (p < 0.0001) than benign nodules. Only in the small group, malignant nodules were significantly larger (p = 0.0054) than benign ones. (18)F-fluorodeoxyglucose can be clinically relevant to rule in and rule out malignancy in undetermined small SPNs, incidentally detected in nonscreening population with intermediate pretest probability of malignancy, as well as in larger ones. Visual analysis can be considered an optimal diagnostic criterion, adequately detecting a wide range of malignant nodules with different metabolic

  6. Fluorine-18-fluorodeoxyglucose positron emission tomography as an objective substitute for CT morphologic response criteria in patients undergoing chemotherapy for colorectal liver metastases.

    PubMed

    Nishioka, Yujiro; Yoshioka, Ryuji; Gonoi, Wataru; Sugawara, Toshitaka; Yoshida, Shuntaro; Hashimoto, Masaji; Shindoh, Junichi

    2018-05-01

    The computed tomography (CT) morphologic response of colorectal liver metastases (CLM) after chemotherapy is reportedly correlated with pathologic response and survival outcomes of patients undergoing surgery. However, they are rather subjective criteria and not evaluable without adequate quality of contrast-enhanced CT images. This study sought the potential use of fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) as an objective substitute for predicting pathological viability of CLM after chemotherapy. Predictive ability of tumor viability of ≤10% was compared between FDG-PET/CT and contrast-enhanced CT in 34 patients who underwent curative surgical resection for CLM after chemotherapy. The CT morphology and response were defined according to the reported criteria (Chun YS, JAMA 2009). The mean standard uptake value (SUV-mean) in CLM was significantly lower in patients with group 1 and group 2 CT morphology (median, 2.53 and 3.00, respectively) than in group 3 (median, 3.32). The tumor SUV-mean showed moderate correlation with the tumor pathologic viability (r = 0.660, P < 0.0001). A receiver operating characteristic curve analysis revealed that both the tumor SUV-mean (area under the curve [AUC], 0.916; the cut-off value, 3.00) and the CT morphology (AUC, 0.882) have excellent predictive power for ≤10% of tumor viability, while degree of tumor shrinkage showed lower predictive power (AUC, 0.692). FDG-PET shows significant correlation with pathologic viability of CLM after chemotherapy and may offer additional objective information for estimating tumor viability when the CT morphologic response is not evaluable.

  7. Functional brain imaging in 14 patients with dissociative amnesia reveals right inferolateral prefrontal hypometabolism.

    PubMed

    Brand, Matthias; Eggers, Carsten; Reinhold, Nadine; Fujiwara, Esther; Kessler, Josef; Heiss, Wolf-Dieter; Markowitsch, Hans J

    2009-10-30

    Dissociative amnesia is a condition usually characterized by severely impaired retrograde memory functioning in the absence of structural brain damage. Recent case studies nevertheless found functional brain changes in patients suffering from autobiographical-episodic memory loss in the cause of dissociative amnesia. Functional changes were demonstrated in both resting state and memory retrieval conditions. In addition, some but not all cases also showed other neuropsychological impairments beyond retrograde memory deficits. However, there is no group study available that examined potential functional brain abnormalities and accompanying neuropsychological deteriorations in larger samples of patients with dissociative retrograde amnesia. We report functional imaging and neuropsychological data acquired in 14 patients with dissociative amnesia following stressful or traumatic events. All patients suffered from autobiographical memory loss. In addition, approximately half of the patients had deficits in anterograde memory and executive functioning. Accompanying functional brain changes were measured by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET). Regional glucose utilization of the patients was compared with that of 19 healthy subjects, matched for age and gender. We found significantly decreased glucose utilization in the right inferolateral prefrontal cortex in the patients. Hypometabolism in this brain region, known to be involved in retrieval of autobiographical memories and self-referential processing, may be a functional brain correlate of dissociative amnesia.

  8. 18 F-Fluorodeoxyglucose-Positron Emission Tomography As an Imaging Biomarker in a Prospective, Longitudinal Cohort of Patients With Large Vessel Vasculitis.

    PubMed

    Grayson, Peter C; Alehashemi, Sara; Bagheri, Armin A; Civelek, Ali Cahid; Cupps, Thomas R; Kaplan, Mariana J; Malayeri, Ashkan A; Merkel, Peter A; Novakovich, Elaine; Bluemke, David A; Ahlman, Mark A

    2018-03-01

    To assess the clinical value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in a prospective cohort of patients with large vessel vasculitis (LVV) and comparator subjects. Patients with Takayasu arteritis and giant cell arteritis were studied, along with a comparator group consisting of patients with hyperlipidemia, patients with diseases that mimic LVV, and healthy controls. Participants underwent clinical evaluation and FDG-PET imaging, and patients with LVV underwent serial imaging at 6-month intervals. We calculated sensitivity and specificity of FDG-PET interpretation for distinguishing patients with clinically active LVV from comparator subjects and from patients with disease in clinical remission. A qualitative summary score based on global arterial FDG uptake, the PET Vascular Activity Score (PETVAS), was used to study associations between activity on PET scan and clinical characteristics and to predict relapse. A total of 170 FDG-PET scans were performed in 115 participants (56 patients with LVV and 59 comparator subjects). FDG-PET distinguished patients with clinically active LVV from comparator subjects with a sensitivity of 85% (95% confidence interval [95% CI] 69, 94) and a specificity of 83% (95% CI 71, 91). FDG-PET scans were interpreted as active vasculitis in most patients with LVV in clinical remission (41 of 71 [58%]). Clinical disease activity status, disease duration, body mass index, and glucocorticoid use were independently associated with activity on PET scan. Among patients who underwent PET during clinical remission, future clinical relapse was more common in patients with a high PETVAS than in those with a low PETVAS (55% versus 11%; P = 0.03) over a median follow-up period of 15 months. FDG-PET provides information about vascular inflammation that is complementary to, and distinct from, clinical assessment in LVV. FDG-PET scan activity during clinical remission was associated with future clinical relapse. © 2017

  9. Kinetic modeling of PET-FDG in the brain without blood sampling.

    PubMed

    Bentourkia, M'hamed

    2006-12-01

    The aim in this work is to report a new method to calculate parametric images from a single scan acquisition with positron emission tomography (PET) and fluorodeoxyglucose (FDG) in the human brain without blood sampling. It is usually practical for research or clinical purposes to inject the patient in an isolated room and to start the PET acquisition only for some 10-20 min, about 30 min after FDG injection. In order to calculate the cerebral metabolic rates for glucose (CMRG), usually several blood samples are required. The proposed method considers the relation between the uptake of the tracer in the cerebellum as a reference tissue and the population based input curve. Similar results were obtained for CMRG values with the present method in comparison to the usual autoradiographic and the non-linear least squares fitting of regions of interest.

  10. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    PubMed

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  11. Florbetapir (18F) for brain amyloid positron emission tomography: highlights on the European marketing approval.

    PubMed

    Cortes-Blanco, Anabel; Prieto-Yerro, Concha; Martinez-Lazaro, Raul; Zamora, Javier; Jiménez-Huete, Adolfo; Haberkamp, Marion; Pohly, Johannes; Enzmann, Harald; Zinserling, Jörg; Strassmann, Valerie; Broich, Karl

    2014-10-01

    Florbetapir (18F) for brain amyloid positron emission tomography (PET) imaging has been recently approved in Europe to estimate β-amyloid neuritic plaque density in the brain when the subject is still alive. Such density is one of the key issues for the definitive diagnosis of Alzheimer's disease (AD) at autopsy. This capability of florbetapir (18F) is regarded as a significant improvement in the diagnostic procedures for adult patients with cognitive impairment who are being evaluated for AD and other causes of cognitive impairment. The current paper highlights the specific characteristics of the European marketing authorization of florbetapir (18F). Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  12. Positron emission tomography with [ 18F]-FDG in oncology

    NASA Astrophysics Data System (ADS)

    Talbot, J. N.; Petegnief, Y.; Kerrou, K.; Montravers, F.; Grahek, D.; Younsi, N.

    2003-05-01

    Positron Emission Tomography (PET) is a several decade old imaging technique that has more recently demonstrated its utility in clinical applications. The imaging agents used for PET contain a positron emmiter coupled to a molecule that drives the radionuclide to target organs or to tissues performing the targetted biological function. PET is then part of functional imaging. As compared to conventional scintigraphy that uses gamma photons, the coincidence emission of two 511 keV annihilation photons in opposite direction that finally results from by beta plus decay makes it possible for PET to get rid of the collimators that greatly contribute to the poor resolution of scintigraphy. In this article, the authors describe the basics of physics for PET imaging and report on the clinical performances of the most commonly used PET tracer: [ 18F]-fluorodeoxyglucose (FDG). A recent and promising development in this field is fusion of images coming from different imaging modalities. New PET machines now include a CT and this fusion is therefore much easier.

  13. Prevalence and risk of malignancy of focal incidental uptake detected by fluorine-18-fluorodeoxyglucose positron emission tomography in the parotid gland: a meta-analysis.

    PubMed

    Treglia, Giorgio; Bertagna, Francesco; Sadeghi, Ramin; Muoio, Barbara; Giovanella, Luca

    2015-12-01

    This study aimed at performing a meta-analysis on the prevalence and risk of malignancy of focal parotid incidental uptake (FPIU) detected by hybrid fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) or (18)F-FDG PET alone. A comprehensive literature search of studies published up to July 2014 was performed. Records reporting at least 5 FPIUs were selected. Pooled prevalence and malignancy risk of FPIU were calculated including 95 % confidence intervals (95 % CI). Twelve records were selected for our meta-analysis. Pooled prevalence of FPIU detected by (18)F-FDG PET or PET/CT was 0.6 % (95 % CI 0.4-0.7 %), collecting data of 220 patients with FPIU. Overall, 181 FPIUs underwent further evaluation and 165 FPIUs were pathologically proven. Pooled risk of malignancy was 9.6 % (95 % CI 5.4-14.8 %), 10.9 % (95 % CI 5.8-17.3 %) and 20.4 % (95 % CI 12.3-30 %), considering all FPIUs detected, only those which underwent further evaluation and only those pathologically proven, respectively. Selection bias in the included studies, the heterogeneity among studies and the publication bias are limitations of our meta-analysis. Overall FPIUs are observed in about 1 % of (18)F-FDG PET or PET/CT scans and they are benign in most of the cases. Nevertheless, further evaluation is needed whenever FPIUs are detected by (18)F-FDG-PET or PET/CT to exclude malignant lesions or with possible malignant degeneration. Prospective studies are needed to confirm the findings reported by our meta-analysis.

  14. Occupancy of Norepinephrine Transporter by Duloxetine in Human Brains Measured by Positron Emission Tomography with (S,S)-[18F]FMeNER-D2.

    PubMed

    Moriguchi, Sho; Takano, Harumasa; Kimura, Yasuyuki; Nagashima, Tomohisa; Takahata, Keisuke; Kubota, Manabu; Kitamura, Soichiro; Ishii, Tatsuya; Ichise, Masanori; Zhang, Ming-Rong; Shimada, Hitoshi; Mimura, Masaru; Meyer, Jeffrey H; Higuchi, Makoto; Suhara, Tetsuya

    2017-12-01

    The norepinephrine transporter in the brain has been targeted in the treatment of psychiatric disorders. Duloxetine is a serotonin and norepinephrine reuptake inhibitor that has been widely used for the treatment of depression. However, the relationship between dose and plasma concentration of duloxetine and norepinephrine transporter occupancy in the human brain has not been determined. In this study, we examined norepinephrine transporter occupancy by different doses of duloxetine. We calculated norepinephrine transporter occupancies from 2 positron emission tomography scans using (S,S)-[18F]FMeNER-D2 before and after a single oral dose of duloxetine (20 mg, n = 3; 40 mg, n = 3; 60 mg, n =2). Positron emission tomography scans were performed from 120 to 180 minutes after an i.v. bolus injection of (S,S)-[18F]FMeNER-D2. Venous blood samples were taken to measure the plasma concentration of duloxetine just before and after the second positron emission tomography scan. Norepinephrine transporter occupancy by duloxetine was 29.7% at 20 mg, 30.5% at 40 mg, and 40.0% at 60 mg. The estimated dose of duloxetine inducing 50% norepinephrine transporter occupancy was 76.8 mg, and the estimated plasma drug concentration inducing 50% norepinephrine transporter occupancy was 58.0 ng/mL. Norepinephrine transporter occupancy by clinical doses of duloxetine was approximately 30% to 40% in human brain as estimated using positron emission tomography with (S,S)-[18F]FMeNER-D2. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  15. Positron emission tomography in oncology: the most sophisticated imaging technology.

    PubMed

    Lacić, M; Maisey, M N; Kusić, Z

    1997-01-01

    The primary aim of this paper is to present a new nuclear medicine technology, which has just recently crossed over the clinical-research barrier. Positron emission tomography (PET) has become one of the routine functional imaging techniques in the most developed countries. The biggest advantage of PET is the usage of short-lived positron emission radionuclides, e.g., fluorine-18 (F-18), carbon-11 (C-11), nitrogen-13, and oxygen-15 (0-15). These radionuclides could be incorporated (H2O15) or linked (F-18 fluorodeoxyglucose (FDG) to different metabolically active molecules. In this way, it is possible to image and quantify the metabolic activity of various disorders and diseases including different types of tumors. The authors have concentrated on the PET rule in oncology. FDG and C-11 methionine are the most widely used PET radiopharmaceuticals in tumor imaging today, thus the results of human PET studies with FDG and C-11 methionine in the evaluation of tumors have been reviewed. The facts about the mechanism of uptake of both metabolic PET radiopharmaceuticals as well as the kinetics of tracers in normal and tumor tissue are described. The problem of accumulation of these tracers in some benign lesions is also mentioned. PET could be used for the evaluation of tumor response to therapy and duration of therapeutic effects in follow-up studies. PET offers a unique possibility to fully quantify the tumor metabolic activity, although semi-quantitative approaches are clinically more convenient. At the end, comparative studies of FDG and C-11 methionine in tumor evaluation are analyzed. A double-tracer FDG and C-11 methionine scanning protocol has been suggested as very useful for the assessment of brain tumor. This finding was also supported by the authors' data.

  16. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr; CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice; Kerrou, Khaldoun

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake valuemore » (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.« less

  17. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegon, A.; Biegon, A.; Kim, S.-W.

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [{sup 11}C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in [{sup 11}C]vorozole binding. The amygdala and preoptic area showed the largestmore » reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.« less

  18. Pertuzumab and Erlotinib in Patients With Relapsed Non-Small Cell Lung Cancer: A Phase II Study Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging

    PubMed Central

    Mileshkin, Linda; Townley, Peter; Gitlitz, Barbara; Eaton, Keith; Mitchell, Paul; Hicks, Rodney; Wood, Katie; Amler, Lucas; Fine, Bernard M.; Loecke, David; Pirzkall, Andrea

    2014-01-01

    Background. Combination blockade of human epidermal growth factor receptor (HER) family signaling may confer enhanced antitumor activity than single-agent blockade. We performed a single-arm study of pertuzumab, a monoclonal antibody that inhibits HER2 dimerization, and erlotinib in relapsed non-small cell lung cancer (NSCLC). Methods. Patients received pertuzumab (840-mg loading dose and 420-mg maintenance intravenously every 3 weeks) and erlotinib (150-mg or 100-mg dose orally, daily). The primary endpoint was response rate (RR) by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) at day 56 in all patients and those with EGFR wild-type tumors. Results. Of 41 patients, 28 (68.3%) experienced treatment-related grade ≥3 adverse events, including pneumatosis intestinalis (3 patients), resulting in early cessation of enrollment. Tissue samples from 32 patients showed mutated EGFR status in 9 of 41 (22%) and wild-type EGFR in 23 of 41 (56%). The FDG-PET RR for patients with assessments at day 56 was 19.5% in all patients (n = 41) and 8.7% in patients with wild-type EGFR NSCLC (n = 23). Investigator-assessed computed tomography RR at day 56 was 12.2%. Conclusion. FDG-PET suggests that pertuzumab plus erlotinib is an active combination, but combination therapy was poorly tolerated, which limits its clinical applicability. More research is warranted to identify drug combinations that disrupt HER receptor signaling but that exhibit improved tolerability profiles. PMID:24457379

  19. Fluorodeoxyglucose positron emission tomography–computed tomography in evaluation of pelvic and para-aortic nodal involvement in early stage and operable cervical cancer: Comparison with surgicopathological findings

    PubMed Central

    Bansal, Vandana; Damania, Kaizad; Sharma, Anshu Rajnish

    2011-01-01

    Introduction: Nodal metastases in cervical cancer have prognostic implications. Imaging is used as an adjunct to clinical staging for evaluation of nodal metastases. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has an advantage of superior resolution of its CT component and detecting nodal disease based on increased glycolytic activity rather than node size. But there are limited studies describing its limitations in early stage cervical cancers. Objective: We have done meta-analysis with an objective to evaluate the efficacy of FDG PET/CT and its current clinical role in early stage and operable cervical cancer. Materials and Methods: Studies in which FDG PET/CT was performed before surgery in patients with early stage cervical cancers were included for analysis. PET findings were confirmed with histopathological diagnosis rather than clinical follow-up. FDG PET/CT showed lower sensitivity and clinically unacceptable negative predictive value in detecting nodal metastases in early stage cervical cancer and therefore, can not replace surgicopathological staging. False negative results in presence of microscopic disease and sub-centimeter diseased nodes are still the area of concern for metabolic imaging. However, these studies are single institutional and performed in a small group of patients. There is enough available evidence of clinical utility of FDG PET/CT in locally advanced cervical cancer. But these results can not be extrapolated for early stage disease. Conclusion: The current data suggest that FDG PET/CT is suboptimal in nodal staging in early stage cervical cancer. PMID:23559711

  20. Brain imaging study of the acute effects of Delta9-tetrahydrocannabinol (THC) on attention and motor coordination in regular users of marijuana.

    PubMed

    Weinstein, Aviv; Brickner, Orit; Lerman, Hedva; Greemland, Mazal; Bloch, Miki; Lester, Hava; Chisin, Roland; Mechoulam, Raphael; Bar-Hamburger, Rachel; Freedman, Nanette; Even-Sapir, Einat

    2008-01-01

    Twelve regular users of marijuana underwent two positron emission tomography (PET) scans using [18F] Fluorodeoxyglucose (FDG), one while subject to the effects of 17 mg THC, the other without THC. In both sessions, a virtual reality maze task was performed during the FDG uptake period. When subject to the effects of 17 mg THC, regular marijuana smokers hit the walls more often on the virtual maze task than without THC. Compared to results without THC, 17 mg THC increased brain metabolism during task performance in areas that are associated with motor coordination and attention in the middle and medial frontal cortices and anterior cingulate, and reduced metabolism in areas that are related to visual integration of motion in the occipital lobes. These findings suggest that in regular marijuana users, the immediate effects of marijuana may impact on cognitive-motor skills and brain mechanisms that modulate coordinated movement and driving.

  1. Schooling mediates brain reserve in Alzheimer's disease: findings of fluoro-deoxy-glucose-positron emission tomography.

    PubMed

    Perneczky, R; Drzezga, A; Diehl-Schmid, J; Schmid, G; Wohlschläger, A; Kars, S; Grimmer, T; Wagenpfeil, S; Monsch, A; Kurz, A

    2006-09-01

    Functional imaging studies report that higher education is associated with more severe pathology in patients with Alzheimer's disease, controlling for disease severity. Therefore, schooling seems to provide brain reserve against neurodegeneration. To provide further evidence for brain reserve in a large sample, using a sensitive technique for the indirect assessment of brain abnormality (18F-fluoro-deoxy-glucose-positron emission tomography (FDG-PET)), a comprehensive measure of global cognitive impairment to control for disease severity (total score of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery) and an approach unbiased by predefined regions of interest for the statistical analysis (statistical parametric mapping (SPM)). 93 patients with mild Alzheimer's disease and 16 healthy controls underwent 18F-FDG-PET imaging of the brain. A linear regression analysis with education as independent and glucose utilisation as dependent variables, adjusted for global cognitive status and demographic variables, was conducted in SPM2. The regression analysis showed a marked inverse association between years of schooling and glucose metabolism in the posterior temporo-occipital association cortex and the precuneus in the left hemisphere. In line with previous reports, the findings suggest that education is associated with brain reserve and that people with higher education can cope with brain damage for a longer time.

  2. Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: a systematic review and a meta-analysis.

    PubMed

    Treglia, Giorgio; Sadeghi, Ramin; Annunziata, Salvatore; Zakavi, Seyed Rasoul; Caldarella, Carmelo; Muoio, Barbara; Bertagna, Francesco; Ceriani, Luca; Giovanella, Luca

    2013-12-01

    To systematically review and meta-analyse published data about the diagnostic performance of Fluorine-18-Fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in osteomyelitis related to diabetic foot. A comprehensive literature search of studies on (18)F-FDG-PET and PET/CT in patients with diabetic foot was performed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) and area under the summary ROC curve of (18)F-FDG-PET and PET/CT in patients with osteomyelitis related to diabetic foot were calculated. Nine studies comprising 299 patients with diabetic foot were included in the qualitative analysis (systematic review) and discussed. The quantitative analysis (meta-analysis) of four selected studies provided the following results on a per patient-based analysis: sensitivity was 74% [95% confidence interval (95%CI): 60-85%], specificity 91% (95%CI: 85-96%), LR+ 5.56 (95%CI: 2.02-15.27), LR- 0.37 (95%CI: 0.10-1.35), and DOR 16.96 (95%CI: 2.06-139.66). The area under the summary ROC curve was 0.874. In patients with suspected osteomyelitis related to diabetic foot (18)F-FDG-PET and PET/CT demonstrated a high specificity, being potentially useful tools if combined with other imaging methods such as MRI. Nevertheless, the literature focusing on the use of (18)F-FDG-PET and PET/CT in this setting remains still limited. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Spatial distribution of resting-state BOLD regional homogeneity as a predictor of brain glucose uptake: A study in healthy aging.

    PubMed

    Bernier, Michaël; Croteau, Etienne; Castellano, Christian-Alexandre; Cunnane, Stephen C; Whittingstall, Kevin

    2017-04-15

    Positron emission tomography using [18F]-fluorodeoxyglucose (PET-FDG) is the primary imaging modality used to measure glucose metabolism in the brain (CMRGlu). CMRGlu has been used as a biomarker of brain aging and neurodegenerative diseases, but the complexity and invasive nature of PET often limits its use in research. There is therefore great interest in developing non-invasive metrics for estimating brain CMRGlu. We therefore investigated resting state fMRI metrics such as regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) and regional global connectivity (Closeness) with multiple analytical approaches to determine their relationship to CMRGlu. We investigated this relation in two distinct cognitively healthy populations separated by age (27 young adults and 35 older adults). Overall, we found that both regionally and across participants, ReHo strongly correlated with CMRGlu in healthy young and older adults. Moreover, ReHo demonstrated the same age-related differences as CMRGlu throughout all cortical regions, particularly in the default network and frontal areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Rationale and design of dal-PLAQUE: A study assessing efficacy and safety of dalcetrapib on progression or regression of atherosclerosis using magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Fayad, Zahi A.; Mani, Venkatesh; Woodward, Mark; Kallend, David; Bansilal, Sameer; Pozza, Joseph; Burgess, Tracy; Fuster, Valentin; Rudd, James H. F.; Tawakol, Ahmed; Farkouh, Michael E.

    2014-01-01

    dal-PLAQUE is a placebo-controlled multicenter study designed to assess the effect of dalcetrapib on imaging measures of plaque inflammation and plaque burden. dal-PLAQUE is a multimodality imaging study in the context of the large dal-HEART Program. Decreased high-density lipoprotein cholesterol is linked to increased risk of coronary heart disease (CHD). Dalcetrapib, a compound that increases high-density lipoprotein cholesterol by modulating cholesteryl ester transfer protein, is being studied to assess if it can reduce the progression of atherosclerotic disease and thereby decrease cardiovascular morbidity and mortality. Patients with CHD or CHD-risk equivalents were randomized to receive 600 mg dalcetrapib or placebo daily for 24 months, in addition to conventional lipid-lowering medication and other medications for cardiovascular risk factors. The primary outcomes are the effect of dalcetrapib on 18F-fluorodeoxyglucose positron emission tomography target-to-background ratio after 6 months and magnetic resonance imaging (MRI) plaque burden (wall area, wall thickness, total vessel area, and wall area/total vessel area ratio) after 12 months. Secondary objectives include positron emission tomography target-to-background ratio at 3 months and MRI plaque burden at 6 and 24 months; plaque composition at 6, 12, and 24 months; and aortic compliance at 6 months. A tertiary objective is to examine the dynamic contrast-enhanced MRI parameters of plaque neovascularization. In total, 189 subjects entered screening, and 130 were randomized. dal-PLAQUE will provide important information on the effects of dalcetrapib on markers of inflammation and atherosclerotic plaque burden and, thereby, on the safety of cholesteryl ester transfer protein modulation with dalcetrapib. Results are expected in 2011. PMID:21835280

  5. Effect of whole brain radiation on local cerebral glucose utilization in the rat.

    PubMed

    d'Avella, D; Cicciarello, R; Albiero, F; Mesiti, M; Gagliardi, M E; Russi, E; d'Aquino, A; Princi, P; d'Aquino, S

    1991-04-01

    We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of whole-brain x-radiation on local cerebral glucose utilization in the rat brain. Animals were exposed to conventional fractionation (200 +/- 4 cGy/day, 5 days/week; total dose, 4000 cGy). Metabolic experiments were made 2 to 3 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased after irradiation. Statistically significant decreases in metabolic activity were observed in 13 of 27 brain regions studied. In general, the brain areas with the highest basal metabolic rates showed the greatest percentage of decrease in glucose utilization. The concept that radiation suppresses glucose utilization before any morphological change takes place in the cell structures was the basis of this study. Metabolic alterations after irradiation may explain the syndrome of early delayed deterioration observed in humans after whole-brain radiotherapy. These studies have applications to observations made with the [18F]-fluorodeoxyglucose method in conjunction with positron emission tomographic scans in patients receiving radiation therapy for intracranial malignancies. The data reported here also have potential clinical implications for the evaluation of a risk/benefit ratio for radiotherapy in patients with benign neurosurgical diseases or children undergoing prophylactic treatment of the central nervous system.

  6. Topological Organization of Metabolic Brain Networks in Pre-Chemotherapy Cancer with Depression: A Resting-State PET Study

    PubMed Central

    An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing

    2016-01-01

    This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients. PMID:27832148

  7. Topological Organization of Metabolic Brain Networks in Pre-Chemotherapy Cancer with Depression: A Resting-State PET Study.

    PubMed

    Fang, Lei; Yao, Zhijun; An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing

    2016-01-01

    This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients.

  8. Clinical Usefulness of {sup 18}F-Fluorodeoxyglucose-Positron Emission Tomography in Patients With Locally Advanced Pancreatic Cancer Planned to Undergo Concurrent Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jee Suk; Choi, Seo Hee; Lee, Youngin

    2014-09-01

    Purpose: To assess the role of coregistered {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) in detecting radiographically occult distant metastasis (DM) at staging in patients with locally advanced pancreatic cancer (LAPC) and to study whether FDG-PET parameters can predict relatively long-term survival in patients who are more likely to benefit from chemoradiation therapy (CRT). Methods and Materials: From our institutional database, we identified 388 LAPC patients with M0 on conventional computed tomography (CT) who were planned to undergo CRT. Coregistered FDG-PET staging was offered to all patients, and follow-up FDG-PET was used at the clinical discretion of the physician. Results: FDG-PET detectedmore » unsuspected CT-occult DM in 33% of all 388 patients and allowed them to receive systemic therapy immediately. The remaining 260 patients (PET-M0) underwent CRT selectively as an initial treatment. Early DM arose in 13.1% of 260 patients, and the 1-year estimated locoregional recurrence rate was 5.4%. Median overall survival (OS) and progression-free survival (PFS) were 14.6 and 9.3 months, respectively, at a median follow-up time of 32.3 months (range, 10-99.1 months). Patients with a baseline standardized uptake value (SUV) <3.5 and/or SUV decline ≥60% had significantly better OS and PFS than those having none, even after adjustment for all potential confounding variables (all P<.001). Conclusions: FDG-PET can detect radiographically occult DM at staging in one-third of patients and spare them from the potentially toxic therapy. Additionally, FDG-PET parameters including baseline SUV and SUV changes may serve as useful clinical markers for predicting the prognosis in LAPC patients.« less

  9. 18F-fluorodeoxyglucose-positron emission tomography scanning is more useful in followup than in the initial assessment of patients with Erdheim-Chester disease.

    PubMed

    Arnaud, Laurent; Malek, Zoulikha; Archambaud, Frédérique; Kas, Aurélie; Toledano, Dan; Drier, Aurélie; Zeitoun, Delphine; Cluzel, Philippe; Grenier, Philippe A; Chiras, Jacques; Piette, Jean-Charles; Amoura, Zahir; Haroche, Julien

    2009-10-01

    Erdheim-Chester disease (ECD) is a rare form of non-Langerhans' cell histiocytosis. The aim of this study was to assess the value of whole-body scanning with (18)F-fluorodeoxyglucose-positron emission tomography (FDG-PET) in a large cohort of ECD patients from a single center. We retrospectively reviewed all PET scans performed on 31 patients with ECD who were referred to our department between 2005 and 2008. PET images were reviewed by 2 independent nuclear medicine specialist physicians and were compared with other imaging modalities performed within 15 days of each PET scan. Thirty-one patients (10 women and 21 men; median age 59.5 years) underwent a total of 65 PET scans. Twenty-three patients (74%) were untreated at the time of the initial PET scan, whereas 30 of the 34 followup PET scans (88%) were performed in patients who were undergoing immunomodulatory therapy. Comparison of the initial and followup PET scans with other imaging modalities revealed that the sensitivity of PET scanning varied greatly among the different organs studied (range 4.3-100%), while the specificity remained high (range 69.2-100%). Followup PET scans were particularly helpful in assessing central nervous system (CNS) involvement, since the PET scan was able to detect an early therapeutic response of CNS lesions, even before magnetic resonance imaging showed a decrease in their size. PET scanning was also very helpful in evaluating the cardiovascular system, which is a major prognostic factor in ECD, by assessing the heart and the entire vascular tree during a single session. The results of our large, single-center, retrospective study suggest that the findings of a FDG-PET scan may be interesting in the initial assessment of patients with ECD, but its greater contribution is in followup of these patients.

  10. Potential Use of {sup 18}F-fluorodeoxyglucose Positron Emission Tomography–Based Quantitative Imaging Features for Guiding Dose Escalation in Stage III Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, David V., E-mail: dvfried@mdanderson.org; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas; Mawlawi, Osama

    2016-02-01

    Purpose: To determine whether previously identified quantitative image features (QIFs) based on {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) (co-occurrence matrix energy and solidity) are able to isolate subgroups of patients who would receive a benefit or detriment from dose escalation in terms of overall survival (OS) or progression-free survival (PFS). Methods and Materials: Subgroups of a previously analyzed 225 patient cohort were generated with the use of 5-percentile increment cutoff values of disease solidity and primary tumor co-occurrence matrix energy. The subgroups were analyzed with a log-rank test to determine whether there was a difference in OS and PFS betweenmore » patients treated with 60 to 70 Gy and those receiving 74 Gy. Results: In the entire patient cohort, there was no statistical difference in terms of OS or PFS between patients receiving 74 Gy and those receiving 60 to 70 Gy. It was qualitatively observed that as disease solidity and primary co-occurrence matrix energy increased, patients receiving 74 Gy had an improved OS and PFS compared with those receiving 60 to 70 Gy. The opposite trend (detriment of receiving 74 Gy) was also observed regarding low values of disease solidity and primary co-occurrence matrix energy. Conclusions: FDG-PET–based QIFs were found to be capable of isolating subgroups of patients who received a benefit or detriment from dose escalation.« less

  11. Voxel-based comparison of brain glucose metabolism between patients with Cushing's disease and healthy subjects.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Li, Fang; Wang, Renzhi; Cheng, Xin

    2018-01-01

    Cognitive impairment and psychiatric symptoms are common in patients with Cushing's disease (CD) owing to elevated levels of glucocorticoids. Molecular neuroimaging methods may help to detect changes in the brain of patients with CD. The aim of this study was to investigate the characteristics of brain metabolism and its association with serum cortisol level in CD. We compared brain metabolism, as measured using [ 18 F]-fluorodeoxyglucose positron emission tomography (FDG PET), between 92 patients with CD and 118 normal subjects on a voxel-wise basis. Pearson correlation was performed to evaluate the association between cerebral FDG uptake and serum cortisol level in patients with CD. We demonstrated that certain brain regions in patients with CD showed significantly increased FDG uptake, including the basal ganglia, anteromedial temporal lobe, thalamus, precentral cortex, and cerebellum. The clusters that demonstrated significantly decreased uptake were mainly located in the medial and lateral frontal cortex, superior and inferior parietal lobule, medial occipital cortex, and insular cortex. The metabolic rate of the majority of these regions was found to be significantly correlated with the serum cortisol level. Our findings may help to explain the underlying mechanisms of cognitive impairment and psychiatric symptoms in patients exposed to excessive glucocorticoids and evaluate the efficacy of treatments during follow-up.

  12. Positron Emission Tomography of Brain β-Amyloid and Tau Levels in Adults With Down Syndrome

    PubMed Central

    Nelson, Linda D.; Siddarth, Prabha; Kepe, Vladimir; Scheibel, Kevin E.; Huang, S. C.; Barrio, Jorge R.; Small, Gary W.

    2012-01-01

    Objectives To determine the neuropathological load in the living brain of nondemented adults with Down syndrome using positron emission tomography with 2-(1-{6-[(2-fluorine 18–labeled fluoroethyl)methylamino]-2-napthyl}ethylidene) malononitrile ([18F]FDDNP) and to assess the influence of age and cognitive and behavioral functioning. For reference, [18F]FDDNP binding values and patterns were compared with those from patients with Alzheimer disease and cognitively intact control participants. Design Cross-sectional clinical study. Participants Volunteer sample of 19 persons with Down syndrome without dementia (mean age, 36.7 years), 10 patients with Alzheimer disease (mean age, 66.5 years), and 10 controls (mean age, 43.8 years). Main Outcome Measures Binding of [18F]FDDNP in brain regions of interest, including the parietal, medial temporal, lateral temporal, and frontal lobes and posterior cingulate gyrus, and the average of all regions (global binding). Results The [18F]FDDNP binding values were higher in all brain regions in the Down syndrome group than in controls. Compared with the Alzheimer disease group, the Down syndrome group had higher [18F]FDDNP binding values in the parietal and frontal regions, whereas binding levels in other regions were comparable. Within the Down syndrome group, age correlated with [18F]FDDNP binding values in all regions except the posterior cingulate, and several measures of behavioral dysfunction showed positive correlations with global, frontal, parietal, and posterior cingulate [18F]FDDNP binding. Conclusions Consistent with neuropathological findings from postmortem studies, [18F]FDDNP positron emission tomography shows high binding levels in Down syndrome comparable to Alzheimer disease and greater levels than in members of a control group. The positive associations between [18F]FDDNP binding levels and age as well as behavioral dysfunction in Down syndrome are consistent with the age-related progression of Alzheimer

  13. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.

    PubMed

    Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

  14. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixedmore » in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.« less

  15. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation.

    PubMed

    Ceresoli, Giovanni Luca; Cattaneo, Giovanni Mauro; Castellone, Pietro; Rizzos, Giovanna; Landoni, Claudio; Gregorc, Vanesa; Calandrino, Riccardo; Villa, Eugenio; Messa, Cristina; Santoro, Armando; Fazio, Ferruccio

    2007-01-01

    Mediastinal elective node irradiation (ENI) in patients with non-small cell lung cancer candidate to radical radiotherapy is controversial. In this study, the impact of co-registered [18F]fluorodeoxyglucose-positron emission tomography (PET) and standard computed tomography (CT) on definition of target volumes and toxicity parameters was evaluated, by comparison with standard CT-based simulation with and without ENI. CT-based gross tumor volume (GTVCT) was first contoured by a single observer without knowledge of PET results. Subsequently, the integrated GTV based on PET/CT coregistered images (GTVPET/CT) was defined. Each patient was planned according to three different treatment techniques: 1) radiotherapy with ENI using the CT data set alone (ENI plan); 2) radiotherapy without ENI using the CT data set alone (no ENI plan); 3) radiotherapy without ENI using PET/CT fusion data set (PET plan). Rival plans were compared for each patient with respect to dose to the normal tissues (spinal cord, healthy lungs, heart and esophagus). The addition of PET-modified TNM staging in 10/21 enrolled patients (48%); 3/21 were shifted to palliative treatment due to detection of metastatic disease or large tumor not amenable to high-dose radiotherapy. In 7/18 (39%) patients treated with radical radiotherapy, a significant (> or =25%) change in volume between GTVCT and GTVPET/CT was observed. For all the organs at risk, ENI plans had dose values significantly greater than no-ENI and PET plans. Comparing no ENI and PET plans, no statistically significant difference was observed, except for maximum point dose to the spinal cord Dmax, which was significantly lower in PET plans. Notably, even in patients in whom PET/CT planning resulted in an increased GTV, toxicity parameters were fairly acceptable, and always more favorable than with ENI plans. Our study suggests that [18F]-fluorodeoxyglucose-PET should be integrated in no-ENI techniques, as it improves target volume delineation

  16. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Marco H.M., E-mail: marco.janssen@maastro.nl; Aerts, Hugo J.W.L.; Buijsen, Jeroen

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) andmore » transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a

  17. Quality control of positron emission tomography radiopharmaceuticals: An institutional experience.

    PubMed

    Shukla, Jaya; Vatsa, Rakhee; Garg, Nitasha; Bhusari, Priya; Watts, Ankit; Mittal, Bhagwant R

    2013-10-01

    To study quality control parameters of routinely prepared positron emission tomography (PET) radiopharmaceuticals. Three PET radiopharmaceuticals fluorine-18 fluorodeoxyglucose (F-18 FDG), N-13 ammonia (N-13 NH3), and Ga-68 DOTATATE (n = 25 each), prepared by standardized protocols were used. The radionuclide purity, radiochemical purity, residual solvents, pH, endotoxins, and sterility of these radiopharmaceuticals were determined. The physical half-life of radionuclide in radiopharmaceuticals, determined by both graphical and formula method, demonstrated purity of radionuclides used. pH of all PET radiopharmaceuticals used was in the range of 5-6.5. No microbial growth was observed in radiopharmaceutical preparations. The residual solvents, chemical impurity, and pyrogens were within the permissible limits. All three PET radiopharmaceuticals were safe for intravenous administration.

  18. Clinical experience with (18)F-fluorodeoxyglucose positron emission tomography and (123)I-metaiodobenzylguanine scintigraphy in pediatric neuroblastoma: complementary roles in follow-up of patients.

    PubMed

    Gil, Tae Young; Lee, Do Kyung; Lee, Jung Min; Yoo, Eun Sun; Ryu, Kyung-Ha

    2014-06-01

    To evaluate the potential utility of (123)I-metaiodobenzylguanine ((123)I-MIBG) scintigraphy and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) for the detection of primary and metastatic lesions in pediatric neuroblastoma (NBL) patients, and to determine whether (18)F-FDG PET is as beneficial as (123)I-MIBG imaging. We selected 8 NBL patients with significant residual mass after operation and who had paired (123)I-MIBG and (18)F-FDG PET images that were obtained during the follow-up. We retrospectively reviewed the clinical charts and the findings of 45 paired scans. Both scans correlated relatively well with the disease status as determined by standard imaging modalities during follow-up; the overall concordance rates were 32/45 (71.1%) for primary tumor sites and 33/45 (73.3%) for bone-bone marrow (BM) metastatic sites. In detecting primary tumor sites, (123)I-MIBG might be superior to (18)F-FDG PET. The sensitivity of (123)I-MIBG and (18)F-FDG PET were 96.7% and 70.9%, respectively, and their specificity were 85.7% and 92.8%, respectively. (18)F-FDG PET failed to detect 9 true NBL lesions in 45 follow-up scans (false negative rate, 29%) with positive (123)I-MIBG. For bone-BM metastatic sites, the sensitivity of (123)I-MIBG and (18)F-FDG PET were 72.7% and 81.8%, respectively, and the specificity were 79.1% and 100%, respectively. (123)I-MIBG scan showed higher false positivity (20.8%) than (18)F-FDG PET (0%). (123)I-MIBG is superior for delineating primary tumor sites, and (18)F-FDG PET could aid in discriminating inconclusive findings on bony metastatic NBL. Both scans can be complementarily used to clearly determine discrepancies or inconclusive findings on primary or bone-BM metastatic NBL during follow-up.

  19. The value of (18) F-fluorodeoxyglucose positron emission tomography for prediction of treatment response in gastrointestinal stromal tumors: a systematic review and meta-analysis.

    PubMed

    Hassanzadeh-Rad, Arman; Yousefifard, Mahmoud; Katal, Sanaz; Asady, Hadi; Fard-Esfahani, Armaghan; Moghadas Jafari, Ali; Hosseini, Mostafa

    2016-05-01

    Early detection of response to treatment is critically important in gastrointestinal stromal tumors (GIST). Therefore, the present systematic review and meta-analysis assessed the value of (18) f-fluorodeoxyglucose positron emission tomography ((18) FDG-PET) on prediction of therapeutic response of GIST patients to systemic treatments. The literature search was conducted using PubMed, SCOPUS, Cochrane, and Google Scholar databases, and review article references. Eligible articles were defined as studies included confirmed GIST patients who underwent (18) FDG-PET as well as assessing the screening role of it. Finally, 21 relevant articles were included. The analysis showed the pooled sensitivity and specificity of 18FDG-PET in evaluation of response to treatment of GIST patient were 0.90 (95% CI: 0.85-0.94; I(2)  = 52.59, P = 0.001) and 0.62 (95% CI: 0.49-0.75; I(2)  = 69.7, P = 0.001), respectively. In addition, the pooled prognostic odds ratio of (18) FDG-PET for was 14.99 (95% CI, 6.42-34.99; I(2)  = 100.0, P < 0.001). The Meta regression showed that sensitivity of (18) FDG-PET was higher if the sample size of study was equal or more than 30 cases (sensitivity = 0.93; 95% CI: 0.89-0.97), when using PET/CT (sensitivity = 0.92; 95% CI: 0.89-0.97), and self-design criteria (sensitivity = 0.93; 95% CI: 0.87-1.0). The present meta-analysis showed (18) FDG-PET has a significant value in predicting treatment response in GIST patients. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  20. Single-Cell Analysis of [18F]Fluorodeoxyglucose Uptake by Droplet Radiofluidics.

    PubMed

    Türkcan, Silvan; Nguyen, Julia; Vilalta, Marta; Shen, Bin; Chin, Frederick T; Pratx, Guillem; Abbyad, Paul

    2015-07-07

    Radiolabels can be used to detect small biomolecules with high sensitivity and specificity without interfering with the biochemical activity of the labeled molecule. For instance, the radiolabeled glucose analogue, [18F]fluorodeoxyglucose (FDG), is routinely used in positron emission tomography (PET) scans for cancer diagnosis, staging, and monitoring. However, despite their widespread usage, conventional radionuclide techniques are unable to measure the variability and modulation of FDG uptake in single cells. We present here a novel microfluidic technique, dubbed droplet radiofluidics, that can measure radiotracer uptake for single cells encapsulated into an array of microdroplets. The advantages of this approach are multiple. First, droplets can be quickly and easily positioned in a predetermined pattern for optimal imaging throughput. Second, droplet encapsulation reduces cell efflux as a confounding factor, because any effluxed radionuclide is trapped in the droplet. Last, multiplexed measurements can be performed using fluorescent labels. In this new approach, intracellular radiotracers are imaged on a conventional fluorescence microscope by capturing individual flashes of visible light that are produced as individual positrons, emitted during radioactive decay, traverse a scintillator plate placed below the cells. This method is used to measure the cell-to-cell heterogeneity in the uptake of tracers such as FDG in cell lines and cultured primary cells. The capacity of the platform to perform multiplexed measurements was demonstrated by measuring differential FDG uptake in single cells subjected to different incubation conditions and expressing different types of glucose transporters. This method opens many new avenues of research in basic cell biology and human disease by capturing the full range of stochastic variations in highly heterogeneous cell populations in a repeatable and high-throughput manner.

  1. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, P.J.; Salama, A.

    1994-10-01

    Whole-body PET scanning was performed using {sup 18}F-fluorodeoxyglucose (FDG) in two patients with hilar lymphadenopathy in whom the clinical differential diagnosis was between sarcoidosis and lymphoma. Both patients were later proven to have sarcoidosis. Uptake of {sup 18}FDG was seen in both intra- and extrathoracic lesions as well as in associated erythema nodosum. One patient underwent a repeat scan after steroid therapy where a marked decrease in hilar uptake was seen. Fluorine-18-fluorodeoxyglucose uptake is observed in lymph nodes with sarcoid involvement. Further investigation is necessary to assess if quantitative differences exist between sarcoid and malignant lymphadenopathy. 30 refs., 3 figs.

  2. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    PubMed Central

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  3. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    DOE PAGES

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; ...

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less

  4. A study of brain metabolism in fibromyalgia by positron emission tomography.

    PubMed

    Usui, Chie; Soma, Tsutomu; Hatta, Kotaro; Aratani, Satoko; Fujita, Hidetoshi; Nishioka, Kenya; Machida, Yutaka; Kuroiwa, Yoshiyuki; Nakajima, Toshihiro; Nishioka, Kusuki

    2017-04-03

    The aim of the present study was to determine the brain regions with altered metabolism in patients with treatment-naïve fibromyalgia (FM). We used [ 18 F] fluoro-d-glucose positron emission tomography to examine a total of 18 treatment-naïve FM patients and 18 age- and sex-matched healthy controls not suffering from pain. A voxel-by-voxel group analysis was performed using statistical parametric mapping. No significant voxel (peak)-level results were detected in this study; however, some regions were detected as significant-size clusters. There were no significant differences in brain metabolism between FM patients and controls. However, the right thalamus and left lentiform nucleus were hypermetabolic areas in FM patients with poor prognosis compared to the healthy controls. In contrast, the left insula and left lentiform nucleus were hypometabolic areas in FM patients with good prognosis compared to the healthy controls. Compared to FM patients with good prognosis, FM patients with poor prognosis showed significant hypermetabolism in the left thalamus, bilateral lentiform nucleus, and right parahippocampal gyrus. The present findings suggest an association between the metabolism in the thalamus, lentiform nucleus, and parahippocampal gyrus and prognosis in FM patients. Further study with a larger number of patients is required to confirm this association. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Biological imaging in radiation therapy: role of positron emission tomography.

    PubMed

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  6. The Anatomical Biological Value on Pretreatment (18)F-fluorodeoxyglucose Positron Emission Tomography Computed Tomography Predicts Response and Survival in Locally Advanced Head and Neck Cancer.

    PubMed

    Ashamalla, Hani; Mattes, Malcolm; Guirguis, Adel; Zaidi, Arifa; Mokhtar, Bahaa; Tejwani, Ajay

    2014-05-01

    (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has become increasingly relevant in the staging of head and neck cancers, but its prognostic value is controversial. The objective of this study was to evaluate different PET/CT parameters for their ability to predict response to therapy and survival in patients treated for head and neck cancer. A total of 28 consecutive patients with a variety of newly diagnosed head and neck cancers underwent PET/CT scanning at our institution before initiating definitive radiation therapy. All underwent a posttreatment PET/CT to gauge tumor response. Pretreatment PET/CT parameters calculated include the standardized uptake value (SUV) and the anatomical biological value (ABV), which is the product of SUV and greatest tumor diameter. Maximum and mean values were studied for both SUV and ABV, and correlated with response rate and survival. The mean pretreatment tumor ABVmax decreased from 35.5 to 7.9 (P = 0.0001). Of the parameters tested, only pretreatment ABVmax was significantly different among those patients with a complete response (CR) and incomplete response (22.8 vs. 65, respectively, P = 0.021). This difference was maximized at a cut-off ABVmax of 30 and those patients with ABVmax < 30 were significantly more likely to have a CR compared to those with ABVmax of ≥ 30 (93.8% vs. 50%, respectively, P = 0.023). The 5-year overall survival was 80% compared to 36%, respectively, (P = 0.028). Multivariate analysis confirmed that ABVmax was an independent prognostic factor. Our data supports the use of PET/CT, and specifically ABVmax, as a prognostic factor in head and neck cancer. Patients who have an ABVmax ≥ 30 were more likely to have a poor outcome with chemoradiation alone, and a more aggressive trimodality approach may be indicated in these patients.

  7. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the assessment of pleural abnormalities in cancer patients: a systematic review and a meta-analysis.

    PubMed

    Treglia, Giorgio; Sadeghi, Ramin; Annunziata, Salvatore; Lococo, Filippo; Cafarotti, Stefano; Prior, John O; Bertagna, Francesco; Ceriani, Luca; Giovanella, Luca

    2014-01-01

    To systematically review and meta-analyze published data about the diagnostic performance of Fluorine-18-Fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in the assessment of pleural abnormalities in cancer patients. A comprehensive literature search of studies published through June 2013 regarding the role of (18)F-FDG-PET and PET/CT in evaluating pleural abnormalities in cancer patients was performed. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odd ratio (DOR) of (18)F-FDG-PET or PET/CT on a per patient-based analysis were calculated. The area under the summary ROC curve (AUC) was calculated to measure the accuracy of these methods in the assessment of pleural abnormalities. Sub-analyses considering (18)F-FDG-PET/CT and patients with lung cancer only were carried out. Eight studies comprising 360 cancer patients (323 with lung cancer) were included. The meta-analysis of these selected studies provided the following results: sensitivity 86% [95% confidence interval (95%CI): 80-91%], specificity 80% [95%CI: 73-85%], LR+ 3.7 [95%CI: 2.8-4.9], LR- 0.18 [95%CI: 0.09-0.34], DOR 27 [95%CI: 13-56]. The AUC was 0.907. No significant improvement considering PET/CT studies only and patients with lung cancer was found. (18)F-FDG-PET and PET/CT demonstrated to be useful diagnostic imaging methods in the assessment of pleural abnormalities in cancer patients, nevertheless possible sources of false-negative and false-positive results should be kept in mind. The literature focusing on the use of (18)F-FDG-PET and PET/CT in this setting remains still limited and prospective studies are needed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. 18F-fluorodeoxyglucose positron emission tomography/computed tomography enables the detection of recurrent same-site deep vein thrombosis by illuminating recently formed, neutrophil-rich thrombus.

    PubMed

    Hara, Tetsuya; Truelove, Jessica; Tawakol, Ahmed; Wojtkiewicz, Gregory R; Hucker, William J; MacNabb, Megan H; Brownell, Anna-Liisa; Jokivarsi, Kimmo; Kessinger, Chase W; Jaff, Michael R; Henke, Peter K; Weissleder, Ralph; Jaffer, Farouc A

    2014-09-23

    Accurate detection of recurrent same-site deep vein thrombosis (DVT) is a challenging clinical problem. Because DVT formation and resolution are associated with a preponderance of inflammatory cells, we investigated whether noninvasive (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging could identify inflamed, recently formed thrombi and thereby improve the diagnosis of recurrent DVT. We established a stasis-induced DVT model in murine jugular veins and also a novel model of recurrent stasis DVT in mice. C57BL/6 mice (n=35) underwent ligation of the jugular vein to induce stasis DVT. FDG-PET/computed tomography (CT) was performed at DVT time points of day 2, 4, 7, 14, or 2+16 (same-site recurrent DVT at day 2 overlying a primary DVT at day 16). Antibody-based neutrophil depletion was performed in a subset of mice before DVT formation and FDG-PET/CT. In a clinical study, 38 patients with lower extremity DVT or controls undergoing FDG-PET were analyzed. Stasis DVT demonstrated that the highest FDG signal occurred at day 2, followed by a time-dependent decrease (P<0.05). Histological analyses demonstrated that thrombus neutrophils (P<0.01), but not macrophages, correlated with thrombus PET signal intensity. Neutrophil depletion decreased FDG signals in day 2 DVT in comparison with controls (P=0.03). Recurrent DVT demonstrated significantly higher FDG uptake than organized day 14 DVT (P=0.03). The FDG DVT signal in patients also exhibited a time-dependent decrease (P<0.01). Noninvasive FDG-PET/CT identifies neutrophil-dependent thrombus inflammation in murine DVT, and demonstrates a time-dependent signal decrease in both murine and clinical DVT. FDG-PET/CT may offer a molecular imaging strategy to accurately diagnose recurrent DVT. © 2014 American Heart Association, Inc.

  9. Contrast-enhanced [18F] fluorodeoxyglucose-positron emission tomography-computed tomography as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin.

    PubMed

    Jain, Avani; Srivastava, Madhur Kumar; Pawaskar, Alok Suresh; Shelley, Simon; Elangovan, Indirani; Jain, Hasmukh; Pandey, Somnath; Kalal, Shilpa; Amalachandran, Jaykanth

    2015-01-01

    To evaluate the advantages of contrast enhanced F-18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-contrast enhanced CT [CECT]) when used as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin (MUO). A total of 243 patients with fine needle aspiration cytology/biopsy proven MUO were included in this prospective study. Patients who were thoroughly evaluated for primary or primary tumor was detected by any other investigation were excluded from the analysis. Totally, 163 patients with pathological diagnosis of malignancy but no apparent sites of the primary tumor were finally selected for analysis. The site of probable primary malignancy suggested by PET-CECT was confirmed by biopsy/follow-up. PET-CECT suggested probable site of primary in 128/163 (78.52%) patients. In 30/35 remaining patients, primary tumor was not detected even after extensive work-up. In 5 patients, where PET-CECT was negative, primary was found on further extensive investigations or follow-up. The sensitivity, specificity, positive predictive value and negative predictive value of the study were 95.76%, 66.67%, 88.28% and 85.71% respectively. F-18 FDG PET-CECT aptly serves the purpose of initial imaging modality owing to high sensitivity, negative and positive predictive value. PET-CECT not only surveys the whole body for the primary malignancy but also stages the disease accurately. Use of contrast improves the diagnostic utility of modality as well as help in staging of the primary tumor. Although benefits of using PET-CECT as initial diagnostic modality are obvious from this study, there is a need for a larger study comparing conventional methods for diagnosing primary in patients with MUO versus PET-CECT.

  10. Contrast-enhanced [18F] fluorodeoxyglucose-positron emission tomography-computed tomography as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin

    PubMed Central

    Jain, Avani; Srivastava, Madhur Kumar; Pawaskar, Alok Suresh; Shelley, Simon; Elangovan, Indirani; Jain, Hasmukh; Pandey, Somnath; Kalal, Shilpa; Amalachandran, Jaykanth

    2015-01-01

    Background: To evaluate the advantages of contrast enhanced F-18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-contrast enhanced CT [CECT]) when used as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin (MUO). Materials and Methods: A total of 243 patients with fine needle aspiration cytology/biopsy proven MUO were included in this prospective study. Patients who were thoroughly evaluated for primary or primary tumor was detected by any other investigation were excluded from the analysis. Totally, 163 patients with pathological diagnosis of malignancy but no apparent sites of the primary tumor were finally selected for analysis. The site of probable primary malignancy suggested by PET-CECT was confirmed by biopsy/follow-up. Results: PET-CECT suggested probable site of primary in 128/163 (78.52%) patients. In 30/35 remaining patients, primary tumor was not detected even after extensive work-up. In 5 patients, where PET-CECT was negative, primary was found on further extensive investigations or follow-up. The sensitivity, specificity, positive predictive value and negative predictive value of the study were 95.76%, 66.67%, 88.28% and 85.71% respectively. Conclusions: F-18 FDG PET-CECT aptly serves the purpose of initial imaging modality owing to high sensitivity, negative and positive predictive value. PET-CECT not only surveys the whole body for the primary malignancy but also stages the disease accurately. Use of contrast improves the diagnostic utility of modality as well as help in staging of the primary tumor. Although benefits of using PET-CECT as initial diagnostic modality are obvious from this study, there is a need for a larger study comparing conventional methods for diagnosing primary in patients with MUO versus PET-CECT. PMID:26170563

  11. Progressive increase in brain glucose metabolism after intrathecal administration of autologous mesenchymal stromal cells in patients with diffuse axonal injury.

    PubMed

    Vaquero, Jesús; Zurita, Mercedes; Bonilla, Celia; Fernández, Cecilia; Rubio, Juan J; Mucientes, Jorge; Rodriguez, Begoña; Blanco, Edelio; Donis, Luis

    2017-01-01

    Cell therapy in neurological disability after traumatic brain injury (TBI) is in its initial clinical stage. We describe our preliminary clinical experience with three patients with diffuse axonal injury (DAI) who were treated with intrathecal administration of autologous mesenchymal stromal cells (MSCs). Three patients with established neurological sequelae due to DAI received intrathecally autologous MSCs. The total number of MSCs administered was 60 × 10 6 (one patient), 100 × 10 6 (one patient) and 300 × 10 6 (one patient). All three patients showed improvement after cell therapy, and subsequent studies with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) showed a diffuse and progressive increase in brain glucose metabolism. Our present results suggest benefit of intrathecal administration of MSCs in patients with DAI, as well as a relationship between this type of treatment and increase in brain glucose metabolism. These preliminary findings raise the question of convenience of assessing the potential benefit of intrathecal administration of MSCs for brain diseases in which a decrease in glucose metabolism represents a crucial pathophysiological finding, such as Alzheimer's disease (AD) and other dementias. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Comparative evaluation of iodine-131 metaiodobenzylguanidine and 18-fluorodeoxyglucose positron emission tomography in assessing neural crest tumors: Will they play a complementary role?

    PubMed

    Kundu, Soumyakanti; Kand, Purushottam; Basu, Sandip

    2017-01-01

    18-Fluorodeoxyglucose positron emission tomography (FDG-PET) has established a role in the evaluation of several malignancies. However, its precise clinical role in the neural crest cell tumors continues to evolve. The purpose of this study was to compare iodine-131 metaiodobenzylguanidine ( 131 I-MIBG) and FDG-PET of head to head in patients with neural crest tumors both qualitatively and semiquantitatively and to determine their clinical utility in disease status evaluation and further management. A total of 32 patients who had undergone 131 I-MIBG and FDG-PET prospectively were evaluated and clinicopathologically grouped into three categories: neuroblastoma, pheochromocytoma, and medullary carcinoma thyroid. In 18 patients of neuroblastoma, FDG PET and 131 I-MIBG showed patient-specific sensitivity of 84% and 72%, respectively. The mean maximum standardized uptake value (SUV max ) of primary lesions in patients with unfavorable histology was found to be relatively higher than those with favorable histology (5.18 ± 2.38 vs. 3.21 ± 1.69). The mean SUV max of two common sites (posterior superior iliac spine [PSIS] and greater trochanter) was higher in patients with involved marrow than those with uninvolved one (2.36 and 2.75 vs. 1.26 and 1.34, respectively). The ratio of SUV max of the involved/contralateral normal sites was 2.16 ± 1.9. In equivocal bone marrow results, the uptake pattern with SUV estimation can depict metastatic involvement and help in redirecting the biopsy site. Among seven patients of pheochromocytoma, FDG-PET revealed 100% patient-specific sensitivity. FDG-PET detected more metastatic foci than 131 I-MIBG (18 vs. 13 sites). In seven patients of medullary carcinoma thyroid, FDG-PET localized residual, recurrent, or metastatic disease with much higher sensitivity (32 metastatic foci with 72% patient specific sensitivity) than 131 I-MIBG, trending along the higher serum calcitonin levels. FDG-PET is not only a good complementary modality in

  13. {sup 18}F-Fluorodeoxyglucose/Positron Emission Tomography Predicts Patterns of Failure After Definitive Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohri, Nitin, E-mail: ohri.nitin@gmail.com; Bodner, William R.; Halmos, Balazs

    Background: We previously reported that pretreatment positron emission tomography (PET) identifies lesions at high risk for progression after concurrent chemoradiation therapy (CRT) for locally advanced non-small cell lung cancer (NSCLC). Here we validate those findings and generate tumor control probability (TCP) models. Methods: We identified patients treated with definitive, concurrent CRT for locally advanced NSCLC who underwent staging {sup 18}F-fluorodeoxyglucose/PET/computed tomography. Visible hypermetabolic lesions (primary tumors and lymph nodes) were delineated on each patient's pretreatment PET scan. Posttreatment imaging was reviewed to identify locations of disease progression. Competing risks analyses were performed to examine metabolic tumor volume (MTV) and radiation therapymore » dose as predictors of local disease progression. TCP modeling was performed to describe the likelihood of local disease control as a function of lesion size. Results: Eighty-nine patients with 259 hypermetabolic lesions (83 primary tumors and 176 regional lymph nodes) met the inclusion criteria. Twenty-eight patients were included in our previous report, and the remaining 61 constituted our validation cohort. The median follow-up time was 22.7 months for living patients. In 20 patients, the first site of progression was a primary tumor or lymph node treated with radiation therapy. The median time to progression for those patients was 11.5 months. Data from our validation cohort confirmed that lesion MTV predicts local progression, with a 30-month cumulative incidence rate of 23% for lesions above 25 cc compared with 4% for lesions below 25 cc (P=.008). We found no evidence that radiation therapy dose was associated with local progression risk. TCP modeling yielded predicted 30-month local control rates of 98% for a 1-cc lesion, 94% for a 10-cc lesion, and 74% for a 50-cc lesion. Conclusion: Pretreatment FDG-PET identifies lesions at risk for progression after CRT

  14. Pleuroperitoneal Mesothelioma: A Rare Entity on 18F-FDG PET/CT

    PubMed Central

    Sahoo, Manas Kumar; Mukherjee, Anirban; Girish; Parida, Kumar; Agarwal, Krishan Kant; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    Pleuroperitoneal mesothelioma is an extremely rare entity. Only few cases are reported worldwide. We hereby represent a case of pleural mesothelioma referred for F-18-Fluorodeoxyglucose positron emission tomography/computed tomography for response evaluation. Diffuse F-18-Fluorodeoxyglucose avid peritoneal and omental thickening noted which subsequently turned out to be mesothelial involvement on peritoneal biopsy. This case demonstrates the role of F-18-Fluorodeoxyglucose positron emission tomography/computed tomography in detecting other sites of involvement in case of malignant mesothelioma. PMID:28242997

  15. Virtual Reality Therapy for the Treatment of Alcohol Dependence: A Preliminary Investigation With Positron Emission Tomography/Computerized Tomography.

    PubMed

    Son, Ji Hyun; Lee, Sang Hoon; Seok, Ju Won; Kee, Baik Seok; Lee, Hyun Woong; Kim, Hyung Joon; Lee, Tae Kyung; Han, Doug Hyun

    2015-07-01

    Virtual reality therapy (VRT) uses multimodal stimulation that includes visual, auditory, olfactory, and gustatory stimuli. The aim of this study was to assess the effectiveness of VRT in treating subjects with alcohol dependence (AD) by evaluating changes in brain metabolism. The VRT protocol consisted of three steps: relaxation, presentation of a high-risk situation, and presentation of an aversive situation. Twelve alcohol-dependent subjects underwent 10 sessions of VRT. The alcohol-dependent subjects were assessed with 18F-fluorodeoxyglucose positron emission tomography images before and after VRT, whereas the control group underwent imaging according to the same protocol only at baseline. Compared with the healthy control group, AD subjects showed higher metabolism in the right lentiform nucleus and right temporal lobe (BA20) at baseline (P(FDR < .05) = .026). In addition, the metabolism in the left anterior cingulate was lower in subjects with AD (P(uncorr) = .001). After VRT, alcohol-dependent subjects showed decreased brain metabolism in the right lentiform nucleus (P(FDR < .05) = .026) and right temporal lobe (BA38, P(FDR < .05) = .032) relative to that at baseline. Our results suggest a neurobiological imbalance, notably, a high sensitivity to stimuli, in the limbic system in subjects with AD. Furthermore, we determined that metabolism decreased in the basal ganglia after VRT, which may explain the limbic-regulated responses of reward and regulation. Therefore, we tentatively recommend VRT to treat AD through its regulating effect on limbic circuits.

  16. Maternal high-fat feeding leads to alterations of brain glucose metabolism in the offspring: positron emission tomography study in a porcine model.

    PubMed

    Sanguinetti, Elena; Liistro, Tiziana; Mainardi, Marco; Pardini, Silvia; Salvadori, Piero A; Vannucci, Alessandro; Burchielli, Silvia; Iozzo, Patricia

    2016-04-01

    Maternal obesity negatively affects fetal development. Abnormalities in brain glucose metabolism are predictive of metabolic-cognitive disorders. We studied the offspring (aged 0, 1, 6, 12 months) of minipigs fed a normal vs high-fat diet (HFD), by positron emission tomography (PET) to measure brain glucose metabolism, and ex vivo assessments of brain insulin receptors (IRβ) and GLUT4. At birth, brain glucose metabolism and IRβ were twice as high in the offspring of HFD-fed than control mothers. During infancy and youth, brain glucose uptake, GLUT4 and IRβ increased in the offspring of control mothers and decreased in those of HFD-fed mothers, leading to a 40-85% difference (p < 0.05), and severe glycogen depletion, lasting until adulthood. Maternal high-fat feeding leads to brain glucose overexposure during fetal development, followed by long-lasting depression in brain glucose metabolism in minipigs. These features may predispose the offspring to develop metabolic-neurodegenerative diseases.

  17. Tumor heterogeneity measured on F-18 fluorodeoxyglucose positron emission tomography/computed tomography combined with plasma Epstein-Barr Virus load predicts prognosis in patients with primary nasopharyngeal carcinoma.

    PubMed

    Chan, Sheng-Chieh; Chang, Kai-Ping; Fang, Yu-Hua Dean; Tsang, Ngan-Ming; Ng, Shu-Hang; Hsu, Cheng-Lung; Liao, Chun-Ta; Yen, Tzu-Chen

    2017-01-01

    Plasma Epstein-Barr virus (EBV) DNA concentrations predict prognosis in patients with nasopharyngeal carcinoma (NPC). Recent evidence also indicates that intratumor heterogeneity on F-18 fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) scans is predictive of treatment outcomes in different solid malignancies. Here, we sought to investigate the prognostic value of heterogeneity parameters in patients with primary NPC. Retrospective cohort study. We examined 101 patients with primary NPC who underwent pretreatment 18 F-FDG PET/computed tomography. Circulating levels of EBV DNA were measured in all participants. The following PET heterogeneity parameters were collected: histogram-based heterogeneity parameters, second-order texture features (uniformity, contrast, entropy, homogeneity, dissimilarity, inverse difference moment), and higher-order (coarseness, contrast, busyness, complexity, strength) texture features. The median follow-up time was 5.14 years. Total lesion glycolysis (TLG), tumor heterogeneity measured by histogram-based parameter skewness, and the majority of second-order or higher-order texture features were significantly associated with overall survival (OS) and/or recurrence-free survival (RFS). In multivariate analysis, age (P =.005), EBV DNA load (P = .0002), and uniformity (P = .001) independently predicted OS. Only skewness retained the independent prognostic significance for RFS. Tumor stage, standardized uptake value, or TLG did not show an independent association with survival endpoints. The combination of uniformity, EBV DNA load, and age resulted in a more reliable prognostic stratification (P < .001). Tumor heterogeneity is superior to traditional PET parameters for predicting outcomes in primary NPC. The combination of uniformity with EBV DNA load can improve prognostic stratification in this clinical entity. 4 Laryngoscope, 127:E22-E28, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Emission computed tomography of /sup 18/F-fluorodeoxyglucose and /sup 13/N-ammonia in stroke and epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, D.E.; Phelps, M.E.; Engel, J. Jr.

    1980-01-01

    The ECAT Positron Tomograph was used to scan normal control subjects, stroke patients at various times during recovery, and patients with partial epilepsy during EEG monitoring. /sup 18/F-fluorodeoxyglucose (/sup 18/FDG) and /sup 13/N-Ammonia (/sup 13/NH/sub 3/) were used as indicators of abnormalities in local cerebral glucose utilization (LCMR/sub glc/) and relative perfusion, respectively. Hypometabolism, due to deactivation or minimal damage, was demonstrated with the /sup 18/FDG scan in deep structures and broad zones of cerebral cortex which appeared normal on x-ray CT (XCT) and /sup 99m/Tc pertechnetate scans. In patients with partial epilepsy, who had unilateral or focal electrical abnormalities,more » interictal /sup 18/FDG scan patterns clearly showed localized regions of decreased (20 to 50%) LCMR/sub glc/, which correlated anatomically with the eventual EEG localization.« less

  19. Examination of blood-brain barrier permeability in dementia of the Alzheimer type with (68Ga)EDTA and positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlageter, N.L.; Carson, R.E.; Rapoport, S.I.

    1987-02-01

    Positron emission tomography with (/sup 68/Ga)ethylenediaminetetraacetic acid ((/sup 68/Ga)EDTA) was used to examine the integrity of the blood-brain barrier (BBB) in five patients with dementia of the Alzheimer type and in five healthy age-matched controls. Within a scanning time of 90 min, there was no evidence that measurable intravascular tracer entered the brain in either the dementia or the control group. An upper limit for the cerebrovascular permeability-surface area product of (68Ga)EDTA was estimated as 2 X 10(-6) s-1 in both groups. The results provide no evidence for breakdown of the BBB in patients with dementia of the Alzheimer type.

  20. Late onset GM2 gangliosidosis mimicking spinal muscular atrophy.

    PubMed

    Jamrozik, Z; Lugowska, A; Gołębiowski, M; Królicki, L; Mączewska, J; Kuźma-Kozakiewicz, M

    2013-09-25

    A case of late onset GM2 gangliosidodis with spinal muscular atrophy phenotype followed by cerebellar and extrapyramidal symptoms is presented. Genetic analysis revealed compound heterozygous mutation in exon 10 of the HEXA gene. Patient has normal intelligence and emotional reactivity. Neuroimaging tests of the brain showed only cerebellar atrophy consistent with MR spectroscopy (MRS) abnormalities. (18)F-fluorodeoxyglucose positron emission tomography (18)F-FDG PET/CT of the brain revealed glucose hypometabolism in cerebellum and in temporal and occipital lobes bilaterally. © 2013 Elsevier B.V. All rights reserved.

  1. False-Positive [18F]fluorodeoxyglucose-avid lymph nodes on positron emission tomography-computed tomography after allogeneic but not autologous stem-cell transplantation in patients with lymphoma.

    PubMed

    Ulaner, Gary A; Lilienstein, Joshua; Gönen, Mithat; Maragulia, Jocelyn; Moskowitz, Craig H; Zelenetz, Andrew D

    2014-01-01

    Determine the clinical significance of [(18)F]fluorodeoxyglucose (FDG)-avid lesions in patients with lymphoma treated with stem-cell transplantation. All patients who underwent stem-cell transplantation for lymphoma at Memorial Sloan-Kettering Cancer Center between January 2005 and December 2009 and had post-transplantation FDG positron emission tomography/computed tomography (PET/CT) examinations were included. PET/CT examinations were evaluated for FDG-avid lesions suggestive of disease. Clinical records, biopsy results, and subsequent imaging examinations were evaluated for malignancy. Two hundred fifty-one patients were identified, 107 with allogeneic and 144 with autologous stem-cell transplantation. Of allogeneic stem-cell transplantation recipients, 50 had FDG-avid lesions suggestive of lymphoma, defined as FDG-avidity greater than liver background. However, only 29 of these 50 demonstrated lymphoma on biopsy, whereas biopsy attempts were benign in the other 21 patients. Sensitivity analysis determined that a 1.5-cm short axis nodal measurement distinguished patients with malignant from nonmalignant biopsies. In 21 of 22 patients with FDG-avid lymph nodes ≤ 1.5 cm, biopsy attempts were benign. In the absence of treatment, these nodes either resolved or were stable on repeat imaging. Disease-free survival of patients with FDG-avid ≤ 1.5 cm lymph nodes was comparable with patients without FDG-avid lesions. In comparison, autologous stem-cell transplantation patients rarely demonstrated FDG-avid lesions suggestive of disease without malignant pathology. Twenty percent (21 of 107) of patients with an allogeneic stem-cell transplantation demonstrated FDG-avid lymph nodes up to 1.5 cm in short axis on PET/CT, which did not represent active lymphoma. After allogeneic stem-cell transplantation of patients with lymphoma, benign FDG-avid ≤ 1.5 cm lymph nodes can mimic malignancy.

  2. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  3. ASSOCIATION BETWEEN GAB2 HAPLOTYPE AND HIGHER GLUCOSE METABOLISM IN ALZHEIMER'S DISEASE-AFFECTED BRAIN REGIONS IN COGNITIVELY NORMAL APOEε4 CARRIERS

    PubMed Central

    Liang, Winnie S.; Chen, Kewei; Lee, Wendy; Sidhar, Kunal; Corneveaux, Jason J.; Allen, April N.; Myers, Amanda; Villa, Stephen; Meechoovet, Bessie; Pruzin, Jeremy; Bandy, Daniel; Fleisher, Adam S.; Langbaum, Jessica B.S.; Huentelman, Matthew J.; Jensen, Kendall; Dunckley, Travis; Caselli, Richard J.; Kaib, Susan; Reiman, Eric M.

    2010-01-01

    In a genome-wide association study (GWAS) of late-onset Alzheimer's disease (AD), we found an association between common haplotypes of the GAB2 gene and AD risk in carriers of the apolipoprotein E (APOE) ε4 allele, the major late-onset AD susceptibility gene. We previously proposed the use of fluorodeoxyglucose positron emission tomography (FDG-PET) measurements as a quantitative presymptomatic endophenotype, more closely related to disease risk than the clinical syndrome itself, to help evaluate putative genetic and non-genetic modifiers of AD risk. In this study, we examined the relationship between the presence or absence of the relatively protective GAB2 haplotype and PET measurements of regional-to-whole brain FDG uptake in several AD-affected brain regions in 158 cognitively normal late-middle-aged APOEε4 homozygotes, heterozygotes, and non-carriers. GAB2 haplotypes were characterized using Affymetrix Genome-Wide Human SNP 6.0 Array data from each of these subjects. As predicted, the possibly protective GAB2 haplotype was associated with higher regional-to-whole brain FDG uptake in AD-affected brain regions in APOEε4 carriers. While additional studies are needed, this study supports the association between the possibly protective GAB2 haplotype and the risk of late-onset AD in APOEε4 carriers. It also supports the use of brain-imaging endophenotypes to help assess possible modifiers of AD risk. PMID:20888920

  4. Increased Brain Glucose Uptake After 12 Weeks of Aerobic High-Intensity Interval Training in Young and Older Adults.

    PubMed

    Robinson, Matthew M; Lowe, Val J; Nair, K Sreekumaran

    2018-01-01

    Aerobic exercise training can increase brain volume and blood flow, but the impact on brain metabolism is less known. We determined whether high-intensity interval training (HIIT) increases brain metabolism by measuring brain glucose uptake in younger and older adults. Brain glucose uptake was measured before and after HIIT or a sedentary (SED) control period within a larger exercise study. Study procedures were performed at the Mayo Clinic in Rochester, MN. Participants were younger (18 to 30 years) or older (65 to 80 years) SED adults who were free of major medical conditions. Group sizes were 15 for HIIT (nine younger and six older) and 12 for SED (six younger and six older). Participants completed 12 weeks of HIIT or SED. HIIT was 3 days per week of 4 × 4 minute intervals at over 90% of peak aerobic capacity (VO2peak) with 2 days per week of treadmill walking at 70% VO2peak. Resting brain glucose uptake was measured using 18F-fluorodeoxyglucose positron emission tomography scans at baseline and at week 12. Scans were performed at 96 hours after exercise. VO2peak was measured by indirect calorimetry. Glucose uptake increased significantly in the parietal-temporal and caudate regions after HIIT compared with SED. The gains with HIIT were not observed in all brain regions. VO2peak was increased for all participants after HIIT and did not change with SED. We demonstrate that brain glucose metabolism increased after 12 weeks of HIIT in adults in regions where it is reduced in Alzheimer's disease. Copyright © 2017 Endocrine Society

  5. What is the role of florine-18 fluorodeoxyglucose/positron emission tomography/computed tomography imaging in well-differentiated thyroid cancers with negative iodine-131 scan high thyroglobulin and normal anti-thyroglobulin levels.

    PubMed

    Döner, Rana Kaya; Sager, Sait; Görtan, Fatma Arzu; Topuz, Özge Vural; Akyel, Reşit; Vatankulu, Betül; Baran, Ahmet; Teksoz, Serkan; Sönmezoglu, Kerim

    2016-01-01

    This retrospective study aims to assess the cut-off value of thyroglobulin (Tg) levels in nux or metastatic well-differentiated thyroid cancers (DTCs) with normal anti-Tg levels using with fluorodeoxyglucose/positron emission tomography/computed tomography (FDG PET/CT). We reviewed FDG PET/CT images of 104 patients with well DTC (28 men, 76 women) whose: Iodine-131 (131 I) whole-body scanning was negative but had elevated Tg with normal anti-Tg levels. The overall sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of florine-18-FDG PET/CT findings were found to be 95.92%, 87.27%, 87.04%, 96.00%, and 91.35%, respectively. The best Tg cut-off value was found to be 10.4 ng/ml. In the Tg level <10.4 ng/ml group, the sensitivity, specificity, PPV, NPV, and accuracy of FDG PET/CT were found to be 94.1%, 91.30%, 88.8%, 95.4%, and 92.5%, respectively. In the other group, which Tg level ≥10.4 ng/ml, sensitivity, specificity, PPV, NPV, and accuracy of FDG PET/CT exams were found to be 96.8%, 84.3%, 86.1%, 96.4%, and 90.6%, respectively. FDG PET/CT imaging is a valuable imaging method in the evaluation of patients with elevated serum Tg levels and normal anti-Tg levels. Furthermore, it has potential utility in the dedifferentiation of active foci that are present, and in assessing optimal decision making during follow-up.

  6. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.

    PubMed

    Dollé, Frédéric

    2013-01-01

    Exploration of the living human brain in real-time and in a noninvasive way was for centuries only a dream, made, however, possible today with the remarkable development during the four last decades of powerful molecular imaging techniques, and especially positron emission tomography (PET). Molecular PET imaging relies, from a chemical point of view, on the use and preparation of a positron-emitting radiolabelled probe or radiotracer, notably compounds incorporating one of two short-lived radionuclides fluorine-18 (T1/2 : 109.8 min) and carbon-11 (T1/2 : 20.38 min). The growing availability and interest for the radiohalogen fluorine-18 in radiopharmaceutical chemistry undoubtedly results from its convenient half-life and the successful use in clinical oncology of 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG). The special interest of carbon-11 is not only that carbon is present in virtually all biomolecules and drugs allowing therefore for isotopic labelling of their chemical structures but also that a given molecule could be radiolabelled at different functions or sites, permitting to explore (or to take advantage of) in vivo metabolic pathways. PET chemistry includes production of these short-lived radioactive isotopes via nuclear transmutation reactions using a cyclotron, and is directed towards the development of rapid synthetic methods, at the trace level, for the introduction of these nuclides into a molecule, as well as the use of fast purification, analysis and formulation techniques. PET chemistry is the driving force in molecular PET imaging, and this special issue of the Journal of Labelled Compounds and Radiopharmaceuticals, which is strongly chemistry and radiochemistry-oriented, aims at illustrating, be it in part only, the state-of-the-art arsenal of reactions currently available and its potential for the research and development of specific molecular probes labelled with the positron emitters carbon-11 and fluorine-18, with optimal imaging

  7. TOPICAL REVIEW: Biological imaging in radiation therapy: role of positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-01

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  8. Risk Factors for Predicting Occult Lymph Node Metastasis in Patients with Clinical Stage I Non-small Cell Lung Cancer Staged by Integrated Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Kaseda, Kaoru; Asakura, Keisuke; Kazama, Akio; Ozawa, Yukihiko

    2016-12-01

    Lymph nodes in patients with non-small cell lung cancer (NSCLC) are often staged using integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). However, this modality has limited ability to detect micrometastases. We aimed to define risk factors for occult lymph node metastasis in patients with clinical stage I NSCLC diagnosed by preoperative integrated FDG-PET/CT. We retrospectively reviewed the records of 246 patients diagnosed with clinical stage I NSCLC based on integrated FDG-PET/CT between April 2007 and May 2015. All patients were treated by complete surgical resection. The prevalence of occult lymph node metastasis in patients with clinical stage I NSCLC was analysed according to clinicopathological factors. Risk factors for occult lymph node metastasis were defined using univariate and multivariate analyses. Occult lymph node metastasis was detected in 31 patients (12.6 %). Univariate analysis revealed CEA (P = 0.04), SUV max of the primary tumour (P = 0.031), adenocarcinoma (P = 0.023), tumour size (P = 0.002) and pleural invasion (P = 0.046) as significant predictors of occult lymph node metastasis. Multivariate analysis selected SUV max of the primary tumour (P = 0.049), adenocarcinoma (P = 0.003) and tumour size (P = 0.019) as independent predictors of occult lymph node metastasis. The SUV max of the primary tumour, adenocarcinoma and tumour size were risk factors for occult lymph node metastasis in patients with NSCLC diagnosed as clinical stage I by preoperative integrated FDG-PET/CT. These findings would be helpful in selecting candidates for mediastinoscopy or endobronchial ultrasound-guided transbronchial needle aspiration.

  9. Technical aspects of positron emission tomography/computed tomography in radiotherapy treatment planning.

    PubMed

    Scripes, Paola G; Yaparpalvi, Ravindra

    2012-09-01

    The usage of functional data in radiation therapy (RT) treatment planning (RTP) process is currently the focus of significant technical, scientific, and clinical development. Positron emission tomography (PET) using ((18)F) fluorodeoxyglucose is being increasingly used in RT planning in recent years. Fluorodeoxyglucose is the most commonly used radiotracer for diagnosis, staging, recurrent disease detection, and monitoring of tumor response to therapy (Lung Cancer 2012;76:344-349; Lung Cancer 2009;64:301-307; J Nucl Med 2008;49:532-540; J Nucl Med 2007;48:58S-67S). All the efforts to improve both PET and computed tomography (CT) image quality and, consequently, lesion detectability have a common objective to increase the accuracy in functional imaging and thus of coregistration into RT planning systems. In radiotherapy, improvement in target localization permits reduction of tumor margins, consequently reducing volume of normal tissue irradiated. Furthermore, smaller treated target volumes create the possibility of dose escalation, leading to increased chances of tumor cure and control. This article focuses on the technical aspects of PET/CT image acquisition, fusion, usage, and impact on the physics of RTP. The authors review the basic elements of RTP, modern radiation delivery, and the technical parameters of coregistration of PET/CT into RT computerized planning systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer

    PubMed Central

    Ali, Jason M.; Tasker, Angela; Peryt, Adam; Aresu, Giuseppe; Coonar, Aman S.

    2018-01-01

    Lung cancer is a common disease and the leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Following diagnosis of lung cancer, accurate staging is essential to guide clinical management and inform prognosis. Positron emission tomography (PET) in conjunction with computed tomography (CT)—as PET-CT has developed as an important tool in the multi-disciplinary management of lung cancer. This article will review the current evidence for the role of 18F-fluorodeoxyglucose (FDG) PET-CT in NSCLC diagnosis, staging, response assessment and follow up. PMID:29666818

  11. CHOLESTEROL-RELATED GENETIC RISK SCORES ARE ASSOCIATED WITH HYPOMETABOLISM IN ALZHEIMER’S-AFFECTED BRAIN REGIONS

    PubMed Central

    Reiman, Eric M.; Chen, Kewei; Caselli, Richard J.; Alexander, Gene E.; Bandy, Daniel; Adamson, Jennifer L.; Lee, Wendy; Cannon, Ashley; Stephan, Elizabeth A.; Stephan, Dietrich A.; Papassotiropoulos, Andreas

    2008-01-01

    We recently implicated a cluster of nine single nucleotide polymorphisms from seven cholesterol-related genes in the risk of Alzheimer’s disease (AD) in a European cohort, and we proposed calculating an aggregate cholesterol-related genetic score (CREGS) to characterize a person’s risk. In a separate study, we found that apolipoprotein E (APOE) ε4 gene dose, an established AD risk factor, was correlated with fluorodeoxyglucose (FDG) positron emission tomography (PET) measurements of hypometabolism in AD-affected brain regions in a cognitively normal American cohort, and we proposed using PET as a presymptomatic endophenotype to help assess putative modifiers of AD risk. Thus, the objective in the present study is to determine whether CREGS is related to PET measurements of hypometabolism in AD-affected brain regions. DNA and PET data from 141 cognitively normal late middle-aged APOE ε4 homozygotes, heterozygotes and non-carriers were analyzed to evaluate the relationship between CREGS and regional PET measurements. Cholesterol-related genetic risk scores were associated with hypometabolism in AD-affected brain regions, even when controlling for the effects of APOE ε4 gene dose. The results support the role of cholesterol-related genes in the predisposition to AD, and support the value of neuroimaging in the presymptomatic assessment of putative modifiers of AD risk. PMID:18280754

  12. Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan.

    PubMed

    Sun, Lijuan; Camps, Stefan G; Goh, Hui Jen; Govindharajulu, Priya; Schaefferkoetter, Joshua D; Townsend, David W; Verma, Sanjay K; Velan, S Sendhil; Sun, Lei; Sze, Siu Kwan; Lim, Su Chi; Boehm, Bernhard Otto; Henry, Christiani Jeyakumar; Leow, Melvin Khee-Shing

    2018-01-01

    Capsinoids are reported to increase energy expenditure (EE) via brown adipose tissue (BAT) stimulation. However, imaging of BAT activation by capsinoids remains limited. Because BAT activation is a potential therapeutic strategy for obesity and related metabolic disorders, we sought to prove that capsinoid-induced BAT activation can be visualized by 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). We compared capsinoids and cold exposure on BAT activation and whole-body EE. Twenty healthy participants (8 men, 12 women) with a mean age of 26 y (range: 21-35 y) and a body mass index (kg/m2) of 21.7 (range: 18.5-26.0) underwent 18F-FDG PET and whole-body calorimetry after ingestion of 12 mg capsinoids or ≤2 h of cold exposure (∼14.5°C) in a crossover design. Mean standardized uptake values (SUVs) of the region of interest and BAT volumes were calculated. Blood metabolites were measured before and 2 h after each treatment. All of the participants showed negligible 18F-FDG uptake post-capsinoid ingestion. Upon cold exposure, 12 participants showed avid 18F-FDG uptake into supraclavicular and lateral neck adipose tissues (BAT-positive group), whereas the remaining 8 participants (BAT-negative group) showed undetectable uptake. Capsinoids and cold exposure increased EE, although cold induced a 2-fold increase in whole-body EE and higher fat oxidation, insulin sensitivity, and HDL cholesterol compared with capsinoids. Capsinoids only increased EE in BAT-positive participants, which suggests that BAT mediates EE evoked by capsinoids. This implies that capsinoids stimulate BAT to a lesser degree than cold exposure as evidenced by 18F-FDG uptake below the presently accepted SUV thresholds defining BAT activation. This trial was registered at www.clinicaltrials.gov as NCT02964442. © 2018 American Society for Nutrition. All rights reserved.

  13. Comparison of Core-Needle Biopsy and Fine-Needle Aspiration for Evaluating Thyroid Incidentalomas Detected by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: A Propensity Score Analysis.

    PubMed

    Suh, Chong Hyun; Choi, Young Jun; Lee, Jong Jin; Shim, Woo Hyun; Baek, Jung Hwan; Chung, Han Cheol; Shong, Young Kee; Song, Dong Eun; Sung, Tae Yon; Lee, Jeong Hyun

    2017-10-01

    This study used a propensity score analysis to assess the roles of core-needle biopsy (CNB) and fine-needle aspiration (FNA) in the evaluation of thyroid incidentalomas detected on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). The study population was obtained from a historical cohort who underwent 18 F-FDG PET/CT between October 2008 and September 2015. Patients were included who underwent ultrasound-guided CNB or FNA for incidental focal uptake of 18 F-FDG in the thyroid gland on PET/CT. The primary study outcomes included the inconclusive result rates in the CNB and FNA groups. The secondary outcome measures included the non-diagnostic result rate and the diagnostic performance for neoplasms. Multivariate analysis, propensity score matching, and inverse probability weighting were conducted. A total of 1360 nodules from 1338 patients were included in this study: 859 nodules from 850 patients underwent FNA, and 501 nodules from 488 patients underwent CNB. Compared to FNA, CNB demonstrated a significantly lower inconclusive result rate in the pooled cohort (23.8% vs. 35.4%; p < 0.001), propensity score-matched cohorts (22.9% vs. 36.6%; p < 0.001), and with inverse probability weighting (22.4% vs. 35.2%; p < 0.001). Non-diagnostic result rates were also significantly lower in CNB than in FNA. The diagnostic performance of the two groups in the pooled and matched cohorts was similar, with no significant differences found. The significantly lower inconclusive result rates in CNB than in FNA were consistent within the propensity score-matched cohorts. Therefore, CNB appears to be a promising diagnostic tool for patients with thyroid incidentalomas detected on 18 F-FDG PET/CT.

  14. Clinical Significance of Fluorine-18-fluorodeoxyglucose Positron Emission Tomography/computed Tomography in the Follow-up of Colorectal Cancer: Searching off Approaches Increasing Specificity for Detection of Recurrence

    PubMed Central

    Okuyucu, Kursat; Hancerliogulları, Oguz; Alagoz, Engin; San, Huseyin; Arslan, Nuri

    2017-01-01

    Abstract Background Nearly 40% of colorectal cancer (CRC) recurs within 2 years after resection of primary tumor. Imaging with fluorine-18-fluorodeoxyglucose (l8F-FDG) positron emission tomography/computed tomography (PET/CT) is the most recent modality and often applied for the evaluation of metastatic spread during the follow-up period. Our goal was to study the diagnostic importance of 18F-FDG-PET/CT data of maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG) and the difference of SUVmax on dual-time imaging in CRC. Patients and methods We examined the SUVmax value of lesions on control or restaging 18F-FDG-PET/CT of 53 CRC patients. All lesions with increased SUVmax values were confirmed by colonoscopy or histopathology. We compared PET/CT results with conventional imaging modalities (CT, MRI) and tumor markers (carbohydrate antigen 19-9 [Ca 19-9], carcinoembryonic antigen [CEA]). Results Mean SUVmax was 6.9 ± 5.6 in benign group, 12.7 ± 6.1 in malignant group. Mean TLG values of malignant group and benign group were 401 and 148, respectively. 18F-FDG-PET/CT was truely positive in 48% of patients with normal Ca 19-9 or CEA levels and truely negative in 10% of cases with elevated Ca 19-9 or CEA. CT or MRI detected suspicious malignancy in 32% of the patients and 18F-FDG-PET/CT was truely negative in 35% of these cases. We found the most important and striking statistical difference of TLG value between the groups with benign and recurrent disease. Conclusions Although SUVmax is a strong metabolic parameter (p = 0.008), TLG seems to be the best predictor in recurrence of CRC (p = 0.001); both are increasing the specificity of 18F-FDG-PET/CT. PMID:29333115

  15. Clinical Significance of Fluorine-18-fluorodeoxyglucose Positron Emission Tomography/computed Tomography in the Follow-up of Colorectal Cancer: Searching off Approaches Increasing Specificity for Detection of Recurrence.

    PubMed

    Ince, Semra; Okuyucu, Kursat; Hancerliogulları, Oguz; Alagoz, Engin; San, Huseyin; Arslan, Nuri

    2017-12-01

    Nearly 40% of colorectal cancer (CRC) recurs within 2 years after resection of primary tumor. Imaging with fluorine-18-fluorodeoxyglucose ( l8 F-FDG) positron emission tomography/computed tomography (PET/CT) is the most recent modality and often applied for the evaluation of metastatic spread during the follow-up period. Our goal was to study the diagnostic importance of 18 F-FDG-PET/CT data of maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG) and the difference of SUVmax on dual-time imaging in CRC. We examined the SUVmax value of lesions on control or restaging 18 F-FDG-PET/CT of 53 CRC patients. All lesions with increased SUVmax values were confirmed by colonoscopy or histopathology. We compared PET/CT results with conventional imaging modalities (CT, MRI) and tumor markers (carbohydrate antigen 19-9 [Ca 19-9], carcinoembryonic antigen [CEA]). Mean SUVmax was 6.9 ± 5.6 in benign group, 12.7 ± 6.1 in malignant group. Mean TLG values of malignant group and benign group were 401 and 148, respectively. 18 F-FDG-PET/CT was truely positive in 48% of patients with normal Ca 19-9 or CEA levels and truely negative in 10% of cases with elevated Ca 19-9 or CEA. CT or MRI detected suspicious malignancy in 32% of the patients and 18 F-FDG-PET/CT was truely negative in 35% of these cases. We found the most important and striking statistical difference of TLG value between the groups with benign and recurrent disease. Although SUVmax is a strong metabolic parameter (p = 0.008), TLG seems to be the best predictor in recurrence of CRC (p = 0.001); both are increasing the specificity of 18 F-FDG-PET/CT.

  16. Histone Deacetylase Inhibitor MS-275 Exhibits Poor Brain Penetration: Pharmacokinetic Studies of [11C]MS-275 using Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.M.; Hooker, J.M.; Kim, S.W.

    2009-10-01

    MS-275 (entinostat) is a histone deacetylase (HDAC) inhibitor currently in clinical trials for the treatment of several types of cancer. Recent reports have noted that MS-275 can cross the blood-brain barrier (BBB) and cause region-specific changes in rodent brain histone acetylation. To characterize the pharmacokinetics and distribution of MS-275 in the brain using positron emission tomography (PET), we labeled the carbamate carbon of MS-275 with carbon-11. Using PET, we determined that [{sup 11}C]MS-275 has low uptake in brain tissue when administered intravenously to nonhuman primates. In rodent studies, we observed that pharmacokinetics and brain accumulation of [{sup 11}C]MS-275 were notmore » changed by the coadministration of large doses of unlabeled MS-275. These results, which both highlight the poor brain penetration of MS-275, clearly suggest its limitation as a therapeutic agent for the central nervous system (CNS). Moreover, our study demonstrates the effectiveness of PET at providing brain pharmacokinetic data for HDAC inhibitors. These data are important not only for the development of new compounds for peripheral cancer treatment (where CNS exclusion is often advantageous) but also for the treatment of neurological disorders (where CNS penetration is critical).« less

  17. Brain Metabolism of Less-Educated Patients With Alzheimer Dementia Studied by Positron Emission Tomography

    PubMed Central

    Huang, Yu Ching; Yen, Pao Sheng; Wu, Shwu Tzy; Chen, Jung Tai; Hung, Gung Uei; Kao, Chia Hung; Chen, Tai Yee; Ho, Feng Ming

    2015-01-01

    Abstract Alzheimer dementia (AD) is the commonest form of dementia. Although illiteracy is associated with high prevalence of dementia of the Alzheimer type (DAT), their relationship is still unclear. Nevertheless, mild DAT in illiterate participants seems to be due to brain atrophy. In this study, we compared the impact of brain metabolism efficiency in healthy participants and less-educated patients with mild DAT using 2-fluoro-2-deoxy-d-glucose (18F-FDG-PET) positron emission tomography. Out of 43 eligible less-educated participants with dementia, only 23 (14 women and 9 men) met Diagnostic and Statistical Manual (DSM)-III-R or DSM-IV criteria for DAT and AD and were included. Participants with intracranial insults were excluded by brain magnetic resonance imaging and participants with metabolic or systemic conditions were excluded by blood sampling. In addition, 16 cognitively normal elderly (age >70 years), including 7 women and 9 men, were enrolled in the sham group. The PET imaging data were analyzed using statistical parametric mapping (SPM8) to determine reliability and specificity. Glucose metabolic rate was low in the DAT group, especially in the middle temporal gyrus, middle frontal gyrus, superior frontal gyrus, inferior frontal gyrus, posterior cingulate gyrus, angular gyrus, parahippocampal gyrus, middle occipital gyrus, rectal gyrus, and lingual gyrus. Our results showed that DAT patients with less education not only have prominent clinical signs and symptoms related to dementia but also decreased gray matter metabolism. PMID:26222866

  18. Distinct brain metabolic patterns separately associated with cognition, motor function, and aging in Parkinson's disease dementia.

    PubMed

    Ko, Ji Hyun; Katako, Audrey; Aljuaid, Maram; Goertzen, Andrew L; Borys, Andrew; Hobson, Douglas E; Kim, Seok Min; Lee, Chong Sik

    2017-12-01

    We explored whether patients with Parkinson's disease dementia (PDD) show a distinct spatial metabolic pattern that characterizes cognitive deficits in addition to motor dysfunction. Eighteen patients with PDD underwent 3 separate positron emission tomography sessions with [ 18 F]fluorodeoxyglucose (for glucose metabolism), fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane (for dopamine transporter density) and Pittsburgh compound-B (for beta-amyloid load). We confirmed in PDD versus normal controls, overall hypometabolism in the posterior and prefrontal brain regions accompanied with hypermetabolism in subcortical structures and the cerebellar vermis. A multivariate network analysis then revealed 3 metabolic patterns that are separately associated with cognitive performance (p = 0.042), age (p = 0.042), and motor symptom severity (p = 0.039). The age-related pattern's association with aging was replicated in healthy controls (p = 0.047) and patients with Alzheimer's disease (p = 0.002). The cognition-related pattern's association with cognitive performance was observed, with a trend-level of correlation, in patients with dementia with Lewy bodies (p = 0.084) but not in patients with Alzheimer's disease (p = 0.974). We found no association with fluorinated N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane and Pittsburgh compound-B positron emission tomography with patients' cognitive performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Attenuation of cue-induced smoking urges and brain reward activity in smokers treated successfully with bupropion.

    PubMed

    Weinstein, A; Greif, J; Yemini, Z; Lerman, H; Weizman, A; Even-Sapir, E

    2010-06-01

    Twenty-two regular smokers (15+ cigarettes per day) were treated with bupropion and group therapy for 2 months. Subjects underwent positron emission tomography (PET) studies using measures of brain global and regional glucose metabolism (regional cerebral metabolic rates of glucose [rCMRglc]) with [18F]-Fluorodeoxyglucose (FDG) twice, after watching a videotape showing smoking scenes and after watching a control movie in counter-balanced order. A questionnaire of smoking urges (QSU) was filled in before and after watching both the movies. Changes in brain metabolic rates of FDG were analysed using Statistical Parametric Maps (SPM 2) in 11 smokers who abstained from smoking in comparison with 11 smokers who continued to smoke during the second month of treatment. Still-smokers had higher craving scores after watching the videotape showing smoking scenes compared with non-smokers. Second, watching the videotape showing smoking scenes compared with the control videotape in still-smokers resulted in increased metabolic rates in the striatum, thalamus and midbrain. Third, the ratings of the urge to smoke cigarettes while watching the videotape showing smoking scenes in still-smokers were associated with brain metabolic activity in the ventral striatum, anterior cingulate, orbitofrontal cortex, middle temporal lobe, hippocampus, insula, midbrain and thalamus. In conclusion, successfully treated smokers showed attenuated craving and reduced activity in the mesolimbic reward circuit.

  20. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity.

    PubMed

    Yin, Fei; Yao, Jia; Sancheti, Harsh; Feng, Tao; Melcangi, Roberto C; Morgan, Todd E; Finch, Caleb E; Pike, Christian J; Mack, Wendy J; Cadenas, Enrique; Brinton, Roberta D

    2015-07-01

    The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the present study determined genomic, biochemical, brain metabolic, and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in fluorodeoxyglucose-positron emission tomography (FDG-PET) brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/insulin-like growth factor 1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK/PGC1α) signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later-life vulnerability to hypometabolic conditions such as Alzheimer's. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Clinical importance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography in the management of patients with bronchoalveolar carcinoma: Role in the detection of recurrence.

    PubMed

    Skoura, Evangelia; Datseris, Ioannis E; Exarhos, Dimitrios; Chatziioannou, Sophia; Oikonomopoulos, Georgios; Samartzis, Alexandros; Giannopoulou, Chariklia; Syrigos, Konstantinos N

    2013-05-01

    [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been reported to have a low sensitivity in the initial diagnosis of bronchoalveolar carcinoma (BAC) due to BAC's low metabolic activity. The aim of this study was to assess the value of [ 18 F]FDG-PET/CT in the detection of BAC recurrence. Between February 2007 and September 2011, the [ 18 F]FDG-PET/CT scans that were performed on patients with known, histologically proven BAC were studied. A total of 24 [ 18 F]FDG-PET/CT scans were performed in 22 patients, including 16 males and 6 females, with a mean age of 65±9 years. Among the scans, 15 were performed to assess for possible recurrence with equivocal findings in conventional imaging methods and 9 for restaging post-therapy. In all cases conventional imaging studies (CT and MRI) were performed 5-30 days prior to PET/CT. Among the 24 [ 18 F]FDG-PET/CT scans, 18 were positive and 6 negative. Among the 15 [ 18 F]FDG-PET/CT scans performed for suspected recurrence, 34 lesions were detected and the mean maximum standardized uptake value (SUVmax) was 6.8±3.26. In nine scans, upstaging was observed, while two were in agreement with the findings of the conventional modalities. A greater number of lesions were detected in two scans and fewer lesions were detected in one, with no change in staging. Only one scan was negative. By contrast, in patients examined for restaging, there were only five lesions with a mean SUVmax of 4.86±3.18. Agreement between the findings of [ 18 F]FDG-PET/CT and the conventional modalities was observed in 8 out of 9 cases. Although [ 18 F]FDG-PET/CT has been reported to have a low sensitivity in the initial diagnosis of BAC, the present results indicate that when there is recurrence, the lesions become [ 18 F]FDG avid. [ 18 F]FDG-PET/CT may provide further information in patients evaluated for recurrence and thus improve patient management.

  2. Assessment of Collagen-Induced Arthritis Using Cyanine 5.5 Conjugated with Hydrophobically Modified Glycol Chitosan Nanoparticles: Correlation with 18F-Fluorodeoxyglucose Positron Emission Tomography Data

    PubMed Central

    Cha, Ji Hyeon; Lee, Sheen-Woo; Park, Kyeongsoon; Moon, Dae Hyuk; Kim, Kwangmeyung; Biswal, Sandip

    2012-01-01

    Objective To evaluate the potential and correlation between near-infrared fluorescence (NIRF) imaging using cyanine 5.5 conjugated with hydrophobically modified glycol chitosan nanoparticles (HGC-Cy5.5) and 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) imaging of collagen-induced arthritis (CIA). Materials and Methods We used 10 CIA and 3 normal mice. Nine days after the injecting collagen twice, microPET imaging was performed 40 minutes after the intravenous injection of 9.3 MBq 18F-FDG in 200 µL PBS. One day later, NIRF imaging was performed two hours after the intravenous injection of HGC-cy5.5 (5 mg/kg). We assessed the correlation between these two modalities in the knees and ankles of CIA mice. Results The mean standardized uptake values of 18F-FDG for knees and ankles were 1.68 ± 0.76 and 0.79 ± 0.71, respectively, for CIA mice; and 0.57 ± 0.17 and 0.54 ± 0.20 respectively for control mice. From the NIRF images, the total photon counts per 30 mm2 for knees and ankles were 2.32 ± 1.54 × 105 and 2.75 ± 1.51 × 105, respectively, for CIA mice, and 1.22 ± 0.27 × 105 and 0.88 ± 0.24 × 105, respectively, for control mice. These two modalities showed a moderate correlation for knees (r = 0.604, p = 0.005) and ankles (r = 0.464, p = 0.039). Moreover, both HGC-Cy5.5 (p = 0.002) and 18F-FDG-PET (p = 0.005) imaging also showed statistically significant differences between CIA and normal mice. Conclusion NIRF imaging using HGC-Cy5.5 was moderately correlated with 18F-FDG-PET imaging in the CIA model. As such, HGC-Cy5.5 imaging can be used for the early detection of rheumatoid arthritis. PMID:22778567

  3. Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers.

    PubMed

    Raine, A; Meloy, J R; Bihrle, S; Stoddard, J; LaCasse, L; Buchsbaum, M S

    1998-01-01

    There appear to be no brain imaging studies investigating which brain mechanisms subserve affective, impulsive violence versus planned, predatory violence. It was hypothesized that affectively violent offenders would have lower prefrontal activity, higher subcortical activity, and reduced prefrontal/subcortical ratios relative to controls, while predatory violent offenders would show relatively normal brain functioning. Glucose metabolism was assessed using positron emission tomography in 41 comparisons, 15 predatory murderers, and nine affective murderers in left and right hemisphere prefrontal (medial and lateral) and subcortical (amygdala, midbrain, hippocampus, and thalamus) regions. Affective murderers relative to comparisons had lower left and right prefrontal functioning, higher right hemisphere subcortical functioning, and lower right hemisphere prefrontal/subcortical ratios. In contrast, predatory murderers had prefrontal functioning that was more equivalent to comparisons, while also having excessively high right subcortical activity. Results support the hypothesis that emotional, unplanned impulsive murderers are less able to regulate and control aggressive impulses generated from subcortical structures due to deficient prefrontal regulation. It is hypothesized that excessive subcortical activity predisposes to aggressive behaviour, but that while predatory murderers have sufficiently good prefrontal functioning to regulate these aggressive impulses, the affective murderers lack such prefrontal control over emotion regulation.

  4. Positron emission tomography/computed tomography imaging and rheumatoid arthritis.

    PubMed

    Wang, Shi-Cun; Xie, Qiang; Lv, Wei-Fu

    2014-03-01

    Rheumatoid arthritis (RA) is a phenotypically heterogeneous, chronic, destructive inflammatory disease of the synovial joints. A number of imaging tools are currently available for evaluation of inflammatory conditions. By targeting the upgraded glucose uptake of infiltrating granulocytes and tissue macrophages, positron emission tomography/computed tomography with fluorine-18 fluorodeoxyglucose ((18) F-FDG PET/CT) is available to delineate inflammation with high sensitivity. Recently, several studies have indicated that FDG uptake in affected joints reflects the disease activity of RA. In addition, usage of FDG PET for the sensitive detection and monitoring of the response to treatment has been reported. Combined FDG PET/CT enables the detailed assessment of disease in large joints throughout the whole body. These unique capabilities of FDG PET/CT imaging are also able to detect RA-complicated diseases. Therefore, PET/CT has become an excellent ancillary tool to assess disease activity and prognosis in RA. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  5. Successful resection of a giant mediastinal non-seminomatous germ cell tumor showing fluorodeoxyglucose accumulation after neoadjuvant chemotherapy: report of a case.

    PubMed

    Takada, Kazuki; Morodomi, Yosuke; Okamoto, Tatsuro; Suzuki, Yuzo; Fujishita, Takatoshi; Kitahara, Hirokazu; Shimamatsu, Shinichiro; Kohno, Mikihiro; Kawano, Daigo; Hidaka, Noriko; Nakanishi, Yoichi; Maehara, Yoshihiko

    2014-05-01

    A 32-year-old man presented with a mediastinal non-seminomatous germ cell tumor showing fluorodeoxyglucose (FDG) accumulation (maximum standardized uptake value = 22.21) and extremely elevated blood alpha-fetoprotein (AFP) level (9203.0 ng/ml). The patient underwent 4 cycles of neoadjuvant chemotherapy (cisplatin, bleomycin, and etoposide), which normalized the AFP level and reduced the tumor size, allowing complete resection without a support of extracorporeal circulation. Despite preoperative positron emission tomography revealing increased FDG uptake in the residual tumor (maximum standardized uptake value = 3.59), the pathologic evaluation revealed that no viable germ cell tumor cells remained. We believe FDG uptake should not be used as a criterion for surgical resection after neoadjuvant chemotherapy. It is appropriate to resect the residual tumor regardless of FDG uptake after induction chemotherapy if a tumor is resectable and the AFP level normalizes.

  6. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Wang, G.; Volkow, N.D.

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice,more » once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50

  7. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism.

    PubMed

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher

    2011-02-23

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ((18)F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ("on" condition) and once with both cell phones deactivated ("off" condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm(3)) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism (μmol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 μmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure

  8. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism

    PubMed Central

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher

    2011-01-01

    Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (µmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 µmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67–4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001

  9. Clinical determinants of fluorodeoxyglucose positron emission tomography/computed tomography in differentiated thyroid cancer patients with elevated thyroglobulin and negative (131)iodine whole body scans after (131)iodine therapy.

    PubMed

    Shamim, Syed Ejaz; Nang, Lee Boon; Shuaib, Ibrahim Lutfi; Muhamad, Nor Asiah

    2014-05-01

    A cross-sectional prospective study has been conducted on differentiated thyroid cancer (DTC) patients using negative (131)Iodine ((131)I) whole body scans and elevated thyroglobulin (Tg) levels. The main objective of this research was to determine the prevalence of the conversion of differentiated to dedifferentiated thyroid cancer patients during follow up at the Hospital Kuala Lumpur. It has been demonstrated that fluorodeoxyglucose (FDG) uptake is inversely proportional to the iodine concentration and to differentiation of the cells. Thirty-five patients with histologically proven DTC that have undergone total or near total thyroidectomy, and post (131)I radioactive iodine ablation therapy, were selected and prospectively analysed. The patients also had to show at least one negative whole body scan and Tg levels of 10 μg/L and above. The results of the FDG-Positron Emission Tomography/Computed Tomography (PET/CT) were then studied to determine the association and the predictors influencing the outcome by using univariable and multivariable analyses. Out of the thirty-five patients, 60% of them (twenty-one) showed positive results and 40% (fourteen) showed negative. Age, gender, and type of histopathology (HPE) showed significant associations with the positive results of the FDG-PET/CT. The results also showed no correlations observed between the Tg levels and standardised uptake value (SUV)max in the DTC patients with positive disease findings in the FDG-PET/CT. The predictor for this study was age. The prevalence of the conversion of differentiated to dedifferentiated thyroid cancer among patients with negative (131)I and elevated Tg was 60%, with age as the predictor. DTC patients aged 45 year-old and older were seven times more likely to have positive results of FDG-PET/CT imaging.

  10. The Accuracy of Integrated [18F] Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Detection of Pelvic and Para-aortic Nodal Metastasis in Patients with High Risk Endometrial Cancer

    PubMed Central

    Gholkar, Nikhil Shirish; Saha, Subhas Chandra; Prasad, GRV; Bhattacharya, Anish; Srinivasan, Radhika; Suri, Vanita

    2014-01-01

    Lymph nodal (LN) metastasis is the most important prognostic factor in high-risk endometrial cancer. However, the benefit of routine lymphadenectomy in endometrial cancer is controversial. This study was conducted to assess the accuracy of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography ([18F] FDG-PET/CT) in detection of pelvic and para-aortic nodal metastases in high-risk endometrial cancer. 20 patients with high-risk endometrial carcinoma underwent [18F] FDG-PET/CT followed by total abdominal hysterectomy, bilateral salpingo-oophorectomy and systematic pelvic lymphadenectomy with or without para-aortic lymphadenectomy. The findings on histopathology were compared with [18F] FDG-PET/CT findings to calculate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of [18F] FDG-PET/CT. The pelvic nodal findings were analyzed on a patient and nodal chain based criteria. The para-aortic nodal findings were reported separately. Histopathology documented nodal involvement in two patients (10%). For detection of pelvic nodes, on a patient based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 61.11%, PPV of 22.22%, NPV of 100% and accuracy of 65% and on a nodal chain based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 80%, PPV of 20%, NPV of 100%, and accuracy of 80.95%. For detection of para-aortic nodes, [18F] FDG-PET/CT had sensitivity of 100%, specificity of 66.67%, PPV of 20%, NPV of 100%, and accuracy of 69.23%. Although [18F] FDG-PET/CT has high sensitivity for detection of LN metastasis in endometrial carcinoma, it had moderate accuracy and high false positivity. However, the high NPV is important in selecting patients in whom lymphadenectomy may be omitted. PMID:25538488

  11. Clinical Determinants of Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Differentiated Thyroid Cancer Patients with Elevated Thyroglobulin and Negative 131Iodine Whole Body Scans after 131Iodine Therapy

    PubMed Central

    SHAMIM, Syed Ejaz; NANG, Lee Boon; SHUAIB, Ibrahim Lutfi; MUHAMAD, Nor Asiah

    2014-01-01

    Background: A cross-sectional prospective study has been conducted on differentiated thyroid cancer (DTC) patients using negative 131Iodine (131I) whole body scans and elevated thyroglobulin (Tg) levels. The main objective of this research was to determine the prevalence of the conversion of differentiated to dedifferentiated thyroid cancer patients during follow up at the Hospital Kuala Lumpur. It has been demonstrated that fluorodeoxyglucose (FDG) uptake is inversely proportional to the iodine concentration and to differentiation of the cells. Methods: Thirty-five patients with histologically proven DTC that have undergone total or near total thyroidectomy, and post 131I radioactive iodine ablation therapy, were selected and prospectively analysed. The patients also had to show at least one negative whole body scan and Tg levels of 10 μg/L and above. The results of the FDG-Positron Emission Tomography/Computed Tomography (PET/CT) were then studied to determine the association and the predictors influencing the outcome by using univariable and multivariable analyses. Results: Out of the thirty-five patients, 60% of them (twenty-one) showed positive results and 40% (fourteen) showed negative. Age, gender, and type of histopathology (HPE) showed significant associations with the positive results of the FDG-PET/CT. The results also showed no correlations observed between the Tg levels and standardised uptake value (SUV)max in the DTC patients with positive disease findings in the FDG-PET/CT. The predictor for this study was age. Conclusion: The prevalence of the conversion of differentiated to dedifferentiated thyroid cancer among patients with negative 131I and elevated Tg was 60%, with age as the predictor. DTC patients aged 45 year-old and older were seven times more likely to have positive results of FDG-PET/CT imaging. PMID:25246834

  12. Brain and Language.

    ERIC Educational Resources Information Center

    Damasio, Antonio R., Damasio, Hanna

    1992-01-01

    Discusses the advances made in understanding the brain structures responsible for language. Presents findings made using magnetic resonance imaging (MRI) and positron emission tomographic (PET) scans to study brain activity. These findings map the structures in the brain that manipulate concepts and those that turn concepts into words. (MCO)

  13. Modeling the relationship between fluorodeoxyglucose uptake and tumor radioresistance as a function of the tumor microenvironment.

    PubMed

    Jeong, Jeho; Deasy, Joseph O

    2014-01-01

    High fluorodeoxyglucose positron emission tomography (FDG-PET) uptake in tumors has often been correlated with increasing local failure and shorter overall survival, but the radiobiological mechanisms of this uptake are unclear. We explore the relationship between FDG-PET uptake and tumor radioresistance using a mechanistic model that considers cellular status as a function of microenvironmental conditions, including proliferating cells with access to oxygen and glucose, metabolically active cells with access to glucose but not oxygen, and severely hypoxic cells that are starving. However, it is unclear what the precise uptake levels of glucose should be for cells that receive oxygen and glucose versus cells that only receive glucose. Different potential FDG uptake profiles, as a function of the microenvironment, were simulated. Predicted tumor doses for 50% control (TD50) in 2 Gy fractions were estimated for each assumed uptake profile and for various possible cell mixtures. The results support the hypothesis of an increased avidity of FDG for cells in the intermediate stress state (those receiving glucose but not oxygen) compared to well-oxygenated (and proliferating) cells.

  14. Amyloid and tau signatures of brain metabolic decline in preclinical Alzheimer's disease.

    PubMed

    Pascoal, Tharick A; Mathotaarachchi, Sulantha; Shin, Monica; Park, Ah Yeon; Mohades, Sara; Benedet, Andrea L; Kang, Min Su; Massarweh, Gassan; Soucy, Jean-Paul; Gauthier, Serge; Rosa-Neto, Pedro

    2018-06-01

    We aimed to determine the amyloid (Aβ) and tau biomarker levels associated with imminent Alzheimer's disease (AD) - related metabolic decline in cognitively normal individuals. A threshold analysis was performed in 120 cognitively normal elderly individuals by modelling 2-year declines in brain glucose metabolism measured with [ 18 F]fluorodeoxyglucose ([ 18 F]FDG) as a function of [ 18 F]florbetapir Aβ positron emission tomography (PET) and cerebrospinal fluid phosphorylated tau biomarker thresholds. Additionally, using a novel voxel-wise analytical framework, we determined the sample sizes needed to test an estimated 25% drugeffect with 80% of power on changes in FDG uptake over 2 years at every brain voxel. The combination of [ 18 F]florbetapir standardized uptake value ratios and phosphorylated-tau levels more than one standard deviation higher than their respective thresholds for biomarker abnormality was the best predictor of metabolic decline in individuals with preclinical AD. We also found that a clinical trial using these thresholds would require as few as 100 individuals to test a 25% drug effect on AD-related metabolic decline over 2 years. These results highlight the new concept that combined Aβ and tau thresholds can predict imminent neurodegeneration as an alternative framework with a high statistical power for testing the effect of disease-modifying therapies on [ 18 F]FDG uptake decline over a typical 2-year clinical trial period in individuals with preclinical AD.

  15. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better?

    PubMed

    Im, Hyung-Jun; Bradshaw, Tyler; Solaiyappan, Meiyappan; Cho, Steve Y

    2018-02-01

    Numerous methods to segment tumors using 18 F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods.

  16. (18)F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors.

    PubMed

    Toyonaga, Takuya; Hirata, Kenji; Yamaguchi, Shigeru; Hatanaka, Kanako C; Yuzawa, Sayaka; Manabe, Osamu; Kobayashi, Kentaro; Watanabe, Shiro; Shiga, Tohru; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Kuge, Yuji; Tamaki, Nagara

    2016-07-01

    Tumor necrosis is one of the indicators of tumor aggressiveness. (18)F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake. This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR). In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively. FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for

  17. Positron emission tomography/computed tomography with 18F-fluorocholine improve tumor staging and treatment allocation in patients with hepatocellular carcinoma.

    PubMed

    Chalaye, Julia; Costentin, Charlotte E; Luciani, Alain; Amaddeo, Giuliana; Ganne-Carrié, Nathalie; Baranes, Laurence; Allaire, Manon; Calderaro, Julien; Azoulay, Daniel; Nahon, Pierre; Seror, Olivier; Mallat, Ariane; Soussan, Michael; Duvoux, Christophe; Itti, Emmanuel; Nault, Jean Charles

    2018-03-06

    Hepatocellular carcinoma (HCC) staging according to the Barcelona Clinical Liver Cancer (BCLC) classification is based on conventional imaging. The aim of our study was to assess the impact of dual-tracer 18F-fluorocholine and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) on tumor staging and treatment allocation. A total of 192 dual-tracer PET/CT scans (18F-fluorocholine and 18F-fluorodeoxyglucose PET/CT) were performed in 177 patients with HCC. BCLC staging and treatment proposal were retrospectively collected based on conventional imaging, along with any new lesions detected, and changes in BCLC classification or treatment allocation based on dual-tracer PET/CT. Patients were primarily men (87.5%) with cirrhosis (71%) due to alcohol ± non-alcoholic steatohepatitis (26%), viral infection (62%) or unknown causes (12%). Among 122 patients with PET/CT performed for staging, BCLC stage based on conventional imaging was 0/A in 61 patients (50%), B in 32 patients (26%) and C in 29 patients (24%). Dual-tracer PET/CT detected new lesions in 26 patients (21%), upgraded BCLC staging in 14 (11%) and modified treatment strategy in 17 (14%). In addition, dual-tracer PET/CT modified the final treatment in 4/9 (44%) patients with unexplained elevation of alpha-fetoprotein (AFP), 10/25 patients (40%) with doubtful lesions on conventional imaging and 3/36 patients (8%) waiting for liver transplantation without active HCC after tumor response following bridging therapy. When used for HCC staging, dual-tracer PET/CT enabled BCLC upgrading and treatment modification in 11% and 14% of patients, respectively. Dual-tracer PET/CT might also be useful in specific situations (an unexplained rise in AFP, doubtful lesions or pre-transplant evaluation of patients without active HCC). Using a combination of tracers 18F-fluorocholine and 18F-fluorodeoxyglucose when performing positron emission tomography/computed tomography (PET/CT), often called a PET

  18. A comparative study of quantitative assessment with fluorine-18-fluorodeoxyglucose positron-emission tomography and endoscopic ultrasound in oesophageal cancer.

    PubMed

    Borakati, Aditya; Razack, Abdul; Cawthorne, Chris; Roy, Rajarshi; Usmani, Sharjeel; Ahmed, Najeeb

    2018-07-01

    This study aims to assess the correlation between PET/CT and endoscopic ultrasound (EUS) parameters in patients with oesophageal cancer. All patients who had complete PET/CT and EUS staging performed for oesophageal cancer at our centre between 2010 and 2016 were included. Images were retrieved and analysed for a range of parameters including tumour length, volume and position relative to the aortic arch. Seventy patients were included in the main analysis. A strong correlation was found between EUS and PET/CT in the tumour length, the volume and the position of the tumour relative to the aortic arch. Regression modelling showed a reasonable predictive value for PET/CT in calculating EUS parameters, with r higher than 0.585 in some cases. Given the strong correlation between EUS and PET parameters, fluorine-18 fluorodeoxyglucose (F-FDG) PET can provide accurate information on the length and the volume of tumour in patients who either cannot tolerate EUS or have impassable strictures.

  19. The effect of education on regional brain metabolism and its functional connectivity in an aged population utilizing positron emission tomography.

    PubMed

    Kim, Jaeik; Chey, Jeanyung; Kim, Sang-Eun; Kim, Hoyoung

    2015-05-01

    Education involves learning new information and acquiring cognitive skills. These require various cognitive processes including learning, memory, and language. Since cognitive processes activate associated brain areas, we proposed that the brains of elderly people with longer education periods would show traces of repeated activation as increased synaptic connectivity and capillary in brain areas involved in learning, memory, and language. Utilizing positron emission topography (PET), this study examined the effect of education in the human brain utilizing the regional cerebral glucose metabolism rates (rCMRglcs). 26 elderly women with high-level education (HEG) and 26 with low-level education (LEG) were compared with regard to their regional brain activation and association between the regions. Further, graphical theoretical analysis using rCMRglcs was applied to examine differences in the functional network properties of the brain. The results showed that the HEG had higher rCMRglc in the ventral cerebral regions that are mainly involved in memory, language, and neurogenesis, while the LEG had higher rCMRglc in apical areas of the cerebrum mainly involved in motor and somatosensory functions. Functional connectivity investigated with graph theoretical analysis illustrated that the brain of the HEG compared to those of the LEG were overall more efficient, more resilient, and characterized by small-worldness. This may be one of the brain's mechanisms mediating the reserve effects found in people with higher education. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  20. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  1. Diagnosis and evaluation of gastric cancer by positron emission tomography

    PubMed Central

    Wu, Chen-Xi; Zhu, Zhao-Hui

    2014-01-01

    Gastric cancer is the second leading cause of cancer mortality worldwide. The diagnosis of gastric cancer has been significantly improved with the broad availability of gastrointestinal endoscopy. Effective technologies for accurate staging and quantitative evaluation are still in demand to merit reasonable treatment and better prognosis for the patients presented with advanced disease. Preoperative staging using conventional imaging tools, such as computed tomography (CT) and endoscopic ultrasonography, is inadequate. Positron emission tomography (PET), using 18F-fluorodeoxyglucose (FDG) as a tracer and integrating CT for anatomic localization, holds a promise to detect unsuspected metastasis and has been extensively used in a variety of malignancies. However, the value of FDG PET/CT in diagnosis and evaluation of gastric cancer is still controversial. This article reviews the current literature in diagnosis, staging, response evaluation, and relapse monitoring of gastric cancer, and discusses the current understanding, improvement, and future prospects in this area. PMID:24782610

  2. Comparison of whole body magnetic resonance imaging (WBMRI) to whole body computed tomography (WBCT) or 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) in patients with myeloma: Systematic review of diagnostic performance.

    PubMed

    Gariani, Joanna; Westerland, Olwen; Natas, Sarah; Verma, Hema; Cook, Gary; Goh, Vicky

    2018-04-01

    To undertake a systematic review to determine the diagnostic performance of whole body MRI (WBMRI) including diffusion weighted sequences (DWI) compared to whole body computed tomography (WBCT) or 18 F-fluorodeoxyglucose positron emission tomography/CT ( 18 F-FDG PET/CT) in patients with myeloma. Two researchers searched the primary literature independently for WBMRI studies of myeloma. Data were extracted focusing on the diagnostic ability of WBMRI versus WBCT and 18 F-FDG PET/CT. Meta-analysis was intended. 6 of 2857 articles were eligible that included 147 patients, published from 2008 to 2016. Studies were heterogeneous including both newly diagnosed & relapsed patients. All were single centre studies. Four of the six studies (66.7%) accrued prospectively and 5/6 (83.3%, 3 prospective) included WBMRI and 18 F-FDG PET/CT. Three of seven (42.9%) included DWI. The lack of an independent reference standard for individual lesions was noted in 5/6 (83.3%) studies. Studies reported that WBMRI detected more lesions than 18 F-FDG PET/CT (sensitivity 68-100% versus 47-100%) but was less specific (specificity 37-83% versus 62-85.7%). No paper assessed impact on management. Studies were heterogeneous, the majority lacking an independent reference standard. Future prospective trials should address these limitations and assess the impact of WBMRI on management. Copyright © 2018. Published by Elsevier B.V.

  3. Radiopharmaceuticals for Assessment of Altered Metabolism and Biometal Fluxes in Brain Aging and Alzheimer's Disease with Positron Emission Tomography.

    PubMed

    Xie, Fang; Peng, Fangyu

    2017-01-01

    Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.

  4. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    PubMed

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  5. Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus.

    PubMed

    Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R

    2016-11-01

    We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Suivi in situ de cultures tridimensionnelles en bioreacteur a perfusion grace a la tomographie d'emission par positrons

    NASA Astrophysics Data System (ADS)

    Chouinard, Julie

    The continuous assessment of developing tissue substitutes is crucial to understand their evolution over time. However, this represents quite a challenge when thick samples must be evaluated with standard microscopy techniques. Common characterization methods are time consuming and usually result in the destruction of the culture. Real-time, in situ, non-invasive and non-destructives methods are needed to monitor the growth of large non-transparent constructs in tissue engineering. Medical imaging modalities, which can provide information on the structure and function of internal organs and tissues in living organisms, have the potential of allowing repetitive monitoring of these 3D cultures in vitro. The working hypothesis of this thesis was to establish standard noninvasive and nondestructive real-time bioreactor imaging protocols for in situ monitoring of the viability and metabolism of endothelial cells when grown in perfused 3D fibrin gel scaffolds. To achieve this goal, a culture chamber with hollow fibers was designed and a pulsatile perfusion bioreactor system, able to promote cell survival and proliferation, was constructed and validated. Standard imaging protocols in Positron Emission Tomography (PET) are not adapted to image bioreactor systems. A suitable method had to be devised using the well-known radiotracer 18F-fluorodeoxyglucose ( 18FDG), a marker of glucose metabolism. Optimal uptake conditions were determined using cell monolayers and the best parameters were then applied on perfused 3D cultures to evaluate perfusion, cell viability and emerging cell structures. After only 12 hours of culture, the cell density could be estimated and cell structures were localized within the fibrin gels after 1-2 weeks of culture. PET is a promising tool for tissue engineering with many specific tracers available that might eventually be able to reveal new information on tissue development. Key words: Endothelial cells, Perfusion bioreactor, Positron Emission

  7. Preoperative [18F]fluorodeoxyglucose positron emission tomography standardized uptake value of neck lymph nodes predicts neck cancer control and survival rates in patients with oral cavity squamous cell carcinoma and pathologically positive lymph nodes.

    PubMed

    Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Wang, Hung-Ming; Ng, Shu-Hang; Hsueh, Chuen; Lee, Li-Yu; Lin, Chih-Hung; Chen, I-How; Huang, Shiang-Fu; Cheng, Ann-Joy; Yen, Tzu-Chen

    2009-07-15

    Survival in oral cavity squamous cell carcinoma (OSCC) depends heavily on locoregional control. In this prospective study, we sought to investigate whether preoperative maximum standardized uptake value of the neck lymph nodes (SUVnodal-max) may predict prognosis in OSCC patients. A total of 120 OSCC patients with pathologically positive lymph nodes were investigated. All subjects underwent a [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan within 2 weeks before radical surgery and neck dissection. All patients were followed up for at least 24 months after surgery or until death. Postoperative adjuvant therapy was performed in the presence of pathologic risk factors. Optimal cutoff values of SUVnodal-max were chosen based on 5-year disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). Independent prognosticators were identified by Cox regression analysis. The median follow-up for surviving patients was 41 months. The optimal cutoff value for SUVnodal-max was 5.7. Multivariate analyses identified the following independent predictors of poor outcome: SUVnodal-max >or=5.7 for the 5-year neck cancer control rate, distant metastatic rate, DFS, DSS, and extracapsular spread (ECS) for the 5-year DSS and OS. Among ECS patients, the presence of a SUVnodal-max >or=5.7 identified patients with the worst prognosis. A SUVnodal-max of 5.7, either alone or in combination with ECS, is an independent prognosticator for 5-year neck cancer control and survival rates in OSCC patients with pathologically positive lymph nodes.

  8. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study

    PubMed Central

    Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829

  9. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study.

    PubMed

    Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.

  10. False-Positive Cases of Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomographic Scans in Metastasis of Esophageal Cancer

    PubMed Central

    Yamatsuji, Tomoki; Ishida, Naomasa; Takaoka, Munenori; Hayashi, Jiro; Yoshida, Kazuhiro; Shigemitsu, Kaori; Urakami, Atsushi; Haisa, Minoru; Naomoto, Yoshio

    2017-01-01

    Of 129 esophagectomies at our institute from June 2010 to March 2015, we experienced three preoperative positron emission tomography-computed tomographic (PET/CT) false positives. Bone metastasis was originally suspected in 2 cases, but they were later found to be bone metastasis negative after a preoperative bone biopsy and clinical course observation. The other cases suspected of mediastinal lymph node metastasis were diagnosed as inflammatory lymphadenopathy by a pathological examination of the removed lymph nodes. Conducting a PET/CT is useful when diagnosing esophageal cancer metastasis, but we need to be aware of the possibility of false positives. Therapeutic decisions should be made based on appropriate and accurate diagnoses, with pathological diagnosis actively introduced if necessary. PMID:28469502

  11. Accuracy of 18F-FDOPA Positron Emission Tomography and 18F-FET Positron Emission Tomography for Differentiating Radiation Necrosis from Brain Tumor Recurrence.

    PubMed

    Yu, Jun; Zheng, Jingwei; Xu, Weilin; Weng, Jiaqi; Gao, Liansheng; Tao, Li; Liang, Feng; Zhang, Jianmin

    2018-06-01

    Distinguishing radiation necrosis from brain tumor recurrence remains challenging. We performed a meta-analysis to assess the diagnostic accuracy of 2 different amino acid tracers used in positron emission tomography/computed tomography scans: 18 F-FDOPA (6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine) and 18 F-FET (O-(2-18F-fluoroethyl)-L-tyrosine). We searched for studies in 3 databases: PubMed, Embase, and Chinese Biomedical databases. The data were extracted from eligible studies and then processed with heterogeneity test, threshold effect test, and calculations of sensitivity, specificity, and area under the summary receiver operating characteristic curve. Meta-regression and subgroup analyses were performed to explore the source of heterogeneity. A total of 48 studies ( 18 F-FDOPA, n = 21; 18 F-FET, n = 27) were included. Quantitative synthesis determined pooled weight values in the 18 F-FDOPA and 18 F-FET groups: sensitivity, 0.85 versus 0.82; specificity, 0.77 versus 0.80; diagnostic odds ratio, 21.7 versus 23.03; area under the curve (AUC) values, 0.8771 versus 0.8976 (P = 0.46). Moreover, the type of tumor was identified as the possible source of the significant heterogeneity (I 2  = 52%; P = 0.003) found in the 18 F-FDOPA group. In meta-regression and subgroup analyses, 18 F-FDOPA showed better diagnostic accuracy in patients with glioma compared with patients with brain metastases (AUC values, 0.9691 vs. 0.837; P < 0.01). 18 F-FDOPA also showed a significant advantage in the diagnosis of glioma recurrence compared with 18 F-FET (AUC values, 0.9691 vs. 0.9124; P = 0.015). Both 18 F-FDOPA and 18 F-FET exhibit moderate overall accuracy in diagnosing brain tumor recurrence from radiation necrosis. However, 18 F-FDOPA is more adept at diagnosing glioma recurrence compared with brain metastases, and it is more effective than 18 F-FET in diagnosing glioma recurrence. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Dual time point fluorodeoxyglucose positron emission tomography/computed tomography in differentiation between malignant and benign lesions in cancer patients. Does it always work?

    PubMed

    Saleh Farghaly, Hussein Rabie; Mohamed Sayed, Mohamed Hosny; Nasr, Hatem Ahmed; Abdelaziz Maklad, Ahmed Marzok

    2015-01-01

    Assess the added value of dual time point F-18-fluorodeoxyglucose positron emission tomography/computed tomography (DTP F-18-FDG-PET/CT) in the differentiation of malignant from a benign lesion in cancer patients. Totally, 140 F-18-FDG PET/CT scans of 60 cancer patients who underwent DTP protocol (early whole body PET/CT [E] at 60 min [range, 45-76 min] and delayed limited PET/CT [D] on areas of interest at 120 min [range, 108-153 min] after the tracer injection) were retrospectively reviewed. Visual and semi-quantitative analysis was performed on both early and delayed images. All findings were confirmed by histopathology and/or at least 3 months follow-up (F-18-FDG PET/CT, CT, or magnetic resonance imaging). The result was considered true positive (TP) if delayed standardized uptake value (SUV) of suspicious lesions increased and confirmed to be malignant, false positive (FP) if delayed SUV increased and confirmed to be benign, true negative (TN) if delayed SUV unchanged or decreased and confirmed to be benign, and false negative (FN) if delayed SUV unchanged or decreased and confirmed to be malignant. A total of 164 suspicious lesions were detected (20 presacral lesions, 18 lung nodules, 18 Hodgkin's disease (HD) lesions, 16 rectal lesions, 16 head and neck (H and N) lesions, 14 hepatic lesions, 14 non-Hodgkin's lymphoma (NHL) lesions, 12 mediastinal lymph nodes (LNs), 10 focal gastric uptake, 10 soft tissue lesions, 8 breast lesions, 4 peritoneal nodule, and 4 others). Sixty-four lesions were pathologically confirmed, and 100 lesions were confirmed based on 3-6 months follow-up. There were 62 TP lesions, 44 FP, 58 TN and no FN results. The overall sensitivity was 100% of DTP F-18-FDG PET/CT in detecting suspicious lesions. The specificity was 57% in differentiating malignant from benign lesions, and the accuracy was 73%. Positive predictive value was 59%, negative predictive value (NPV) 100%. All hepatic lesions were TP. Accuracy in metastatic hepatic lesions

  13. Solitary pulmonary nodule evaluation in regions endemic for infectious diseases: Do regional variations impact the effectiveness of fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Purandare, N C; Pramesh, C S; Agarwal, J P; Agrawal, A; Shah, S; Prabhash, K; Karimundackal, G; Jiwnani, S; Tandon, S; Rangarajan, V

    2017-01-01

    Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) has become a preferred imaging modality for the evaluation of solitary pulmonary nodule (SPN), particularly in the developed world. Since FDG can concentrate in infective/inflammatory lesions, the diagnostic utility of FDG-PET can be questioned, particularly in regions endemic for infectious decisions. To evaluate the accuracy of FDG-PET/CT in evaluation of SPNs in a population endemic for infectious disease and to assess if regional variations have an impact on its effectiveness. All patients who underwent an FDG/PET-CT with a clinico-radiological diagnosis of SPN categorized as indeterminate were included. Based on a maximum standardized uptake values (SUVmax) cut-off of 2.5, lesions were classified as benign (<2.5) or malignant (>2.5) and compared with gold standard histopathology. The diagnostic accuracy of PET-CT to detect malignancy was calculated. On the basis of final histopathology, lesions were grouped as (a) malignant nodules (b) infective/granulomatous nodules with a specific diagnosis and (c) nonspecific inflammatory nodules. The SUVmaxbetween these groups was compared using nonparametric statistical tests. A total of 191 patients (129 males, 62 females) with a median age of 64 years (range: 36-83) were included. Totally, 144 nodules (75.3%) were malignant and 47 were benign (24.7%). Adenocarcinoma (n = 84) was the most common malignancy. Tuberculosis (n = 16) and nonspecific infections (n = 24) were the two most common benign pathologies. There was a significant overlap in the metabolic uptake of malignant (median SUVmax-11.2, range: 3.3-34.6) and tuberculous nodules (median SUVmax-10.3, range: 2.7-22.5) with no statistically difference between their SUVmaxvalues (P = 0.43). The false-positive rate was 65.2% and the false-negative rate was 5.5%. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of FDG-PET/CT for detecting

  14. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  15. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  16. [Evaluation of therapies in oncology by positron emission tomography: towards therapeutical personalization].

    PubMed

    Bonardel, G; Vedrine, L; Aupee, O; Gontier, E; Le Garlantezec, P; Soret, M; Foehrenbach, H

    2009-02-01

    Recently introduced into clinical practice, positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) has proven its utility for diagnosis and staging of malignant diseases on account of its ability for tissue identification. Its utilization is now moving toward the evaluation of anti-tumoral effects of anticancer therapy, because of the correlation between the uptake of a metabolic tracer and malignant cells viability. Metabolic effects of chemotherapy are first observed in cells and this is the explanation for the precocity of scintigraphic visualisation of therapeutic activity. However, monitoring response with FDG-PET requires rigorous method and needs to take into account the limitations of SUV. Moreover, in order to go beyond the limitations of FDG, new tracers are developed and their main indication could be precisely the monitoring of therapy response. The properties of positron emitters allow us to foresee the labelling of the therapeutic molecules themselves in order to try them in vivo before their utilization for a given patient. These prospects are the ground for real treatment personalization in oncology. They open up a wide field of clinical research but the means for image acquisition and radioactive tracers production will be mandatory for anyone who wants to contribute to this work. Due to the current performances of the imaging systems, the critical point will be availability of equipment allowing the designing and synthesis of the radiopharmaceuticals of the future.

  17. Preliminary study of brain glucose metabolism changes in patients with lung cancer of different histological types.

    PubMed

    Li, Wei-Ling; Fu, Chang; Xuan, Ang; Shi, Da-Peng; Gao, Yong-Ju; Zhang, Jie; Xu, Jun-Ling

    2015-02-05

    Cerebral glucose metabolism changes are always observed in patients suffering from malignant tumors. This preliminary study aimed to investigate the brain glucose metabolism changes in patients with lung cancer of different histological types. One hundred and twenty patients with primary untreated lung cancer, who visited People's Hospital of Zhengzhou University from February 2012 to July 2013, were divided into three groups based on histological types confirmed by biopsy or surgical pathology, which included adenocarcinoma (52 cases), squamous cell carcinoma (43 cases), and small-cell carcinoma (25 cases). The whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) of these cases was retrospectively studied. The brain PET data of three groups were analyzed individually using statistical parametric maps (SPM) software, with 50 age-matched and gender-matched healthy controls for comparison. The brain resting glucose metabolism in all three lung cancer groups showed regional cerebral metabolic reduction. The hypo-metabolic cerebral regions were mainly distributed at the left superior and middle frontal, bilateral superior and middle temporal and inferior and middle temporal gyrus. Besides, the hypo-metabolic regions were also found in the right inferior parietal lobule and hippocampus in the small-cell carcinoma group. The area of the total hypo-metabolic cerebral regions in the small-cell carcinoma group (total voxel value 3255) was larger than those in the adenocarcinoma group (total voxel value 1217) and squamous cell carcinoma group (total voxel value 1292). The brain resting glucose metabolism in patients with lung cancer shows regional cerebral metabolic reduction and the brain hypo-metabolic changes are related to the histological types of lung cancer.

  18. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  19. 11C-Methionine Positron Emission Tomography/Computed Tomography Versus 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Evaluation of Residual or Recurrent World Health Organization Grades II and III Meningioma After Treatment.

    PubMed

    Tomura, Noriaki; Saginoya, Toshiyuki; Goto, Hiromi

    2018-04-02

    The aim of this study was to determine the assessment of positron emission tomography-computed tomography using C-methionine (MET PET/CT) for World Health Organization (WHO) grades II and III meningiomas; MET PET/CT was compared with PET/CT using F-fluorodeoxy glucose (FDG PET/CT). This study was performed in 17 cases with residual and/or recurrent WHO grades II and III meningiomas. Two neuroradiologists reviewed both PET/CT scans. For agreement, the κ coefficient was measured. Difference in tumor-to-normal brain uptake ratios (T/N ratios) between 2 PET/CT scans was analyzed. Correlation between the maximum tumor size and T/N ratio in PET/CT was studied. For agreement by both reviewers, the κ coefficient was 0.51 (P < 0.05). The T/N ratio was significantly higher for MET PET/CT (3.24 ± 1.36) than for FDG PET/CT (0.93 ± 0.44) (P < 0.01). C-methionine ratio significantly correlated with tumor size (y = 8.1x + 16.3, n = 22, P < 0.05), but FDG ratio did not CONCLUSIONS: C-methionine PET/CT has superior potential for imaging of WHO grades II and III meningiomas with residual or recurrent tumors compared with FDG PET/CT.

  20. 77 FR 9931 - Medicare and Medicaid Programs; Quarterly Listing of Program Issuances-October Through December 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Ashby (410) 786-6322 Coverage Provisions. XI National Oncologic Positron Emission Stuart Caplan, RN, MAS... Tillman, RN, MAS (410) 786-9252 Facilities. XV Fluorodeoxyglucose Positron Emission Stuart Caplan, RN, MAS...

  1. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

    PubMed

    Hanna, Gerard G; Carson, Kathryn J; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P; Eakin, Ruth L; Stewart, David P; Zatari, Ashraf; O'Sullivan, Joe M; Hounsell, Alan R

    2010-11-15

    (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV(CT)) and on fused PET/CT images (GTV(PETCT)). The mean percentage volume change (PVC) between GTV(CT) and GTV(PETCT) for the radiation oncologists and the PVC between GTV(CT) and GTV(PETCT) for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV(CT) and GTV(PETCT) in a single measurement. For all patients, a significant difference in PVC from GTV(CT) to GTV(PETCT) exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV(CT) and GTV(FUSED) for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Percentage volume changes from GTV(CT) to GTV(PETCT) were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Synthesis and Evaluation of Radioligands for Imaging Brain Nociceptin/Orphanin FQ Peptide (NOP) Receptors with Positron Emission Tomography

    PubMed Central

    Pike, Victor W.; Rash, Karen S.; Chen, Zhaogen; Pedregal, Concepción; Statnick, Michael A.; Kimura, Yasuyuki; Hong, Jinsoo; Zoghbi, Sami S.; Fujita, Masahiro; Toledo, Miguel A.; Diaz, Nuria; Gackenheimer, Susan L.; Tauscher, Johannes T.; Barth, Vanessa N.; Innis, Robert B.

    2011-01-01

    Positron emission tomography (PET) coupled to an effective radioligand could provide an important tool for understanding possible links between neuropsychiatric disorders and brain NOP (nociceptin/orphanin FQ peptide) receptors. We sought to develop such a PET radioligand. High-affinity NOP ligands were synthesized based on a 3-(2'-fluoro-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran]-1-yl)-2(2-halobenzyl)-N-alkylpropanamide scaffold and from experimental screens in rats, with ex vivo LC-MS/MS measures, three ligands were identified for labeling with carbon-11 and evaluation with PET in monkey. Each ligand was labeled by 11C-methylation of an N-desmethyl precursor and studied in monkey under baseline and NOP receptor-preblock conditions. The three radioligands, [11C](S)-10a–c, gave similar results. Baseline scans showed high entry of radioactivity into brain to give a distribution reflecting that expected for NOP receptors. Pre-block experiments showed high early peak levels of brain radioactivity which rapidly declined to a much lower level than seen in baseline scans, thereby indicating a high level of receptor-specific binding in baseline experiments. Overall, [11C](S)-10c showed the most favorable receptor-specific signal and kinetics and is now selected for evaluation in human subjects. PMID:21438532

  3. The role of positron emission tomography and positron emission tomography/computed tomography in thyroid tumours: an overview.

    PubMed

    Treglia, Giorgio; Muoio, Barbara; Giovanella, Luca; Salvatori, Massimo

    2013-05-01

    Positron emission tomography (PET) and PET/computed tomography (PET/CT) with different tracers have been increasingly used in patients with thyroid tumours. The aim of this article is to perform an overview based on literature data about the usefulness of PET imaging in this setting. The role of Fluorine-18-Fluorodeoxyglucose (FDG) PET and PET/CT in differentiated thyroid carcinoma (DTC) is well established, particularly in patients presenting with elevated serum thyroglobulin levels and negative radioiodine whole-body scan. Iodine-124 PET and PET/CT may serve a role in staging DTC and obtaining lesional dosimetry for a better and more rationale planning of treatment with Iodine-131. FDG-PET and PET/CT are useful in the post-thyroidectomy staging of high-risk patients with less differentiated histological subtypes. PET and PET/CT with different tracers seem to be useful methods in localizing the source of elevated calcitonin levels in patients with recurrent medullary thyroid carcinoma. Incorporation of FDG-PET or PET/CT into the initial workup of patients with indeterminate thyroid nodules at fine needle aspiration biopsy deserves further investigation. FDG-PET report should suggest further evaluation when focal thyroid incidentalomas are described because these findings are associated with a significant risk of cancer.

  4. Futility of fluorodeoxyglucose F 18 positron emission tomography in initial evaluation of patients with T2 to T4 melanoma.

    PubMed

    Clark, Paige B; Soo, Victoria; Kraas, Jonathan; Shen, Perry; Levine, Edward A

    2006-03-01

    Evaluation of newly diagnosed patients with melanoma for metastasis is requisite to treatment planning. The reported diagnostic yield of whole-body conventional radiological imaging in initial staging of patients with melanoma is low. However, the diagnostic yield of positron emission tomography (PET) for distant metastases is unclear. There is no utility of PET as part of a routine metastatic survey in patients with T2 to T4 melanoma. Retrospective review of a cohort study between December 1998 and July 2004. University hospital tertiary care center. There were 64 patients with T2 to T4 melanomas who underwent PET for detection of occult metastases at our institution. All patients underwent surgical excision of the primary lesion and sentinel lymph node dissection. Data included were pathologic findings of the primary lesion and sentinel lymph nodes, laboratory data, and radiological reports. None of the patients had clinically suspected regional or distant metastases prior to PET. The diagnostic yield of PET was evaluated through retrospective analysis. Positive scans were then correlated for accuracy with follow-up imaging, biopsy, and clinical information when available. Positron emission tomography did not reveal occult distant metastases in any of the patients. Positron emission tomographic scans showed no abnormalities in 94% of these patients. In 2 patients (3%), false-positive findings were reported on PET (muscular activity and intranodal melanocytic nevocellular inclusion). Further, PET was not useful in predicting regional lymph node metastases. Nineteen of 64 patients had positive sentinel lymph nodes, and only 2 (11%) were identified on PET. Overall, PET did not change clinical management in any of the patients. This study suggests no utility for PET in the detection of occult metastases in patients at initial diagnosis of melanoma. Omission of PET imaging from preoperative evaluations for patients with melanoma is recommended.

  5. Feasibility study for positron emission mammography.

    PubMed

    Thompson, C J; Murthy, K; Weinberg, I N; Mako, F

    1994-04-01

    A feasibility study is presented for a small, low-cost, dedicated device for positron emission mammography. Two detector arrays above and below the breast would be placed in a conventional mammography unit. These detectors are sensitive to positron annihilation radiation, and are connected to a coincidence circuit and a multiplane image memory. Images of the distribution of positron-emitting isotope are obtained in real time by incrementing the memory location at the intersection of each line of response. Monte Carlo simulations of a breast phantom are compared with actual scans of this phantom in a conventional PET scanner. The simulations and experimental data are used to predict the performance of the proposed system. Spatial resolution experiments using very narrow bismuth germanate BGO crystals suggest that spatial resolutions of about 2 mm should be possible. The efficiency of the proposed device is about ten times that of a conventional brain scanner. The scatter fraction is greater, but the scattered radiation has a very flat distribution. By designing the device to fit in an existing mammography unit, conventional mammograms can be taken after the injection of the radio-pharmaceutical allowing exact registration of the emission and conventional mammographic images.

  6. The Whole-Brain "Global" Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism.

    PubMed

    Thompson, Garth J; Riedl, Valentin; Grimmer, Timo; Drzezga, Alexander; Herman, Peter; Hyder, Fahmeed

    2016-07-01

    The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI "nuisance signals" were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a "nuisance signal," also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states.

  7. Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease: Methodology and Baseline Sample Characteristics.

    PubMed

    Byun, Min Soo; Yi, Dahyun; Lee, Jun Ho; Choe, Young Min; Sohn, Bo Kyung; Lee, Jun-Young; Choi, Hyo Jung; Baek, Hyewon; Kim, Yu Kyeong; Lee, Yun-Sang; Sohn, Chul-Ho; Mook-Jung, Inhee; Choi, Murim; Lee, Yu Jin; Lee, Dong Woo; Ryu, Seung-Ho; Kim, Shin Gyeom; Kim, Jee Wook; Woo, Jong Inn; Lee, Dong Young

    2017-11-01

    The Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) aimed to recruit 650 individuals, aged from 20 to 90 years, to search for new biomarkers of Alzheimer's disease (AD) and to investigate how multi-faceted lifetime experiences and bodily changes contribute to the brain changes or brain pathologies related to the AD process. All participants received comprehensive clinical and neuropsychological evaluations, multi-modal brain imaging, including magnetic resonance imaging, magnetic resonance angiography, [ 11 C]Pittsburgh compound B-positron emission tomography (PET), and [ 18 F]fluorodeoxyglucose-PET, blood and genetic marker analyses at baseline, and a subset of participants underwent actigraph monitoring and completed a sleep diary. Participants are to be followed annually with clinical and neuropsychological assessments, and biannually with the full KBASE assessment, including neuroimaging and laboratory tests. As of March 2017, in total, 758 individuals had volunteered for this study. Among them, in total, 591 participants-291 cognitively normal (CN) old-aged individuals, 74 CN young- and middle-aged individuals, 139 individuals with mild cognitive impairment (MCI), and 87 individuals with AD dementia (ADD)-were enrolled at baseline, after excluding 162 individuals. A subset of participants (n=275) underwent actigraph monitoring. The KBASE cohort is a prospective, longitudinal cohort study that recruited participants with a wide age range and a wide distribution of cognitive status (CN, MCI, and ADD) and it has several strengths in its design and methodologies. Details of the recruitment, study methodology, and baseline sample characteristics are described in this paper.

  8. Preoperative [18F]Fluorodeoxyglucose Positron Emission Tomography Standardized Uptake Value of Neck Lymph Nodes Predicts Neck Cancer Control and Survival Rates in Patients With Oral Cavity Squamous Cell Carcinoma and Pathologically Positive Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, C.-T.; Head and Neck Oncology Group, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Chang, J.T.-C.

    Purpose: Survival in oral cavity squamous cell carcinoma (OSCC) depends heavily on locoregional control. In this prospective study, we sought to investigate whether preoperative maximum standardized uptake value of the neck lymph nodes (SUVnodal-max) may predict prognosis in OSCC patients. Methods and Materials: A total of 120 OSCC patients with pathologically positive lymph nodes were investigated. All subjects underwent a [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan within 2 weeks before radical surgery and neck dissection. All patients were followed up for at least 24 months after surgery or until death. Postoperative adjuvant therapy was performed in the presence ofmore » pathologic risk factors. Optimal cutoff values of SUVnodal-max were chosen based on 5-year disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). Independent prognosticators were identified by Cox regression analysis. Results: The median follow-up for surviving patients was 41 months. The optimal cutoff value for SUVnodal-max was 5.7. Multivariate analyses identified the following independent predictors of poor outcome: SUVnodal-max {>=}5.7 for the 5-year neck cancer control rate, distant metastatic rate, DFS, DSS, and extracapsular spread (ECS) for the 5-year DSS and OS. Among ECS patients, the presence of a SUVnodal-max {>=}5.7 identified patients with the worst prognosis. Conclusion: A SUVnodal-max of 5.7, either alone or in combination with ECS, is an independent prognosticator for 5-year neck cancer control and survival rates in OSCC patients with pathologically positive lymph nodes.« less

  9. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography

    PubMed Central

    Weinstein, Edward A.; Ordonez, Alvaro A.; DeMarco, Vincent P.; Murawski, Allison M.; Pokkali, Supriya; MacDonald, Elizabeth M.; Klunk, Mariah; Mease, Ronnie C.; Pomper, Martin G.; Jain, Sanjay K.

    2015-01-01

    The Enterobacteriaceae are a family of rod-shaped Gram-negative bacteria that normally inhabit the gastrointestinal tract and are the most common cause of Gram-negative bacterial infections in humans. In addition to causing serious multidrug-resistant, hospital-acquired infections, a number of Enterobacteriaceae species are also recognized as biothreat pathogens. As a consequence, new tools are urgently needed to specifically identify and localize infections due to Enterobacteriaceae and to monitor antimicrobial efficacy. In this report, we used commercially available 2-[18F]-fluorodeoxyglucose (18F-FDG) to produce 2-[18F]-fluorodeoxysorbitol (18F-FDS), a radioactive probe for Enterobacteriaceae, in 30 min. 18F-FDS selectively accumulated in Enterobacteriaceae, but not in Gram-positive bacteria or healthy mammalian or cancer cells in vitro. In a murine myositis model, 18F-FDS positron emission tomography (PET) rapidly differentiated true infection from sterile inflammation with a limit of detection of 6.2 ± 0.2 log10 colony-forming units (CFU) for Escherichia coli. Our findings were extended to models of mixed Gram-positive and Gram-negative thigh co-infections, brain infection, Klebsiella pneumonia, and mice undergoing immunosuppressive chemotherapy. This technique rapidly and specifically localized infections due to Enterobacteriaceae, providing a three-dimensional holistic view within the animal. Last, 18F-FDS PET monitored the efficacy of antimicrobial treatment, demonstrating a PET signal proportionate to the bacterial burden. Therapeutic failures associated with multidrug-resistant, extended-spectrum β-lactamase (ESBL)–producing E. coli infections were detected in real time. Together, these data show that 18F-FDS is a candidate imaging probe for translation to human clinical cases of known or suspected infections owing to Enterobacteriaceae. PMID:25338757

  10. Functional integration changes in regional brain glucose metabolism from childhood to adulthood.

    PubMed

    Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier

    2016-08-01

    The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood.

    PubMed

    Branger, Pierre; Arenaza-Urquijo, Eider M; Tomadesso, Clémence; Mézenge, Florence; André, Claire; de Flores, Robin; Mutlu, Justine; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël; Rauchs, Géraldine

    2016-05-01

    Recent studies in mouse models of Alzheimer's disease (AD) and in humans suggest that sleep disruption and amyloid-beta (Aβ) accumulation are interrelated, and may, thus, exacerbate each other. We investigated the association between self-reported sleep variables and neuroimaging data in 51 healthy older adults. Participants completed a questionnaire assessing sleep quality and quantity and underwent positron emission tomography scans using [18F]florbetapir and [18F]fluorodeoxyglucose and an magnetic resonance imaging scan to measure Aβ burden, hypometabolism, and atrophy, respectively. Longer sleep latency was associated with greater Aβ burden in prefrontal areas. Moreover, the number of nocturnal awakenings was negatively correlated with gray matter volume in the insular region. In asymptomatic middle-aged and older adults, lower self-reported sleep quality was associated with greater Aβ burden and lower volume in brain areas relevant in aging and AD, but not with glucose metabolism. These results highlight the potential relevance of preserving sleep quality in older adults and suggest that sleep may be a factor to screen for in individuals at risk for AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Positron transport in solids and the interaction of positrons with surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Yuan.

    1991-01-01

    In studying positron transport in solids, a two-stream model is proposed to account for the epithermal positrons. Thus positron implantation, thermalization, and diffusion processes are completely modeled. Experimentally, positron mobility in thermally grown SiO[sub 2] is measured in a sandwiched structure by using the Doppler broadening technique. Positron drift motion and the electric field configuration in a Si surface buried under overlayers are measured with the positron annihilation [gamma]-ray centroid shift technique. These studies are not only important in measuring positron transport and other properties in complicated systems, they are also of practical significance for material characterizations. In studying positronmore » interactions with surfaces, a multiple-encounter picture is proposed of thermal positrons participating in the surface escape processes. Positron trapping into the surface image potential is also studied, considering the long-range nature of the image potential. Experimentally, the positron annihilation induced Auger electron spectroscopy (PAES) is used to study an ionic insulator surface KCl(100).« less

  13. Influence of the partial volume correction method on 18F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian

    2013-10-01

    Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose (18F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in most

  14. Influence of the partial volume correction method on (18)F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM.

    PubMed

    Bowen, Spencer L; Byars, Larry G; Michel, Christian J; Chonde, Daniel B; Catana, Ciprian

    2013-10-21

    Kinetic parameters estimated from dynamic (18)F-fluorodeoxyglucose ((18)F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting (18)F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in

  15. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury.

    PubMed

    Kim, Yong Wook; Kim, Hyoung Seop; An, Young-Sil; Im, Sang Hee

    2010-10-01

    Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury. We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scale. Statistical analysis was performed using statistical parametric mapping. Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (P(corrected) < 0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (P(corrected) < 0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (P(uncorrected) < 0.005). Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism in patients with permanent

  16. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults.

    PubMed

    Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C

    2014-06-01

    Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.

  17. Accuracy of fluorodeoxyglucose-positron emission tomography within the clinical practice of the American College of Surgeons Oncology Group Z4031 trial to diagnose clinical stage I non-small cell lung cancer.

    PubMed

    Grogan, Eric L; Deppen, Stephen A; Ballman, Karla V; Andrade, Gabriela M; Verdial, Francys C; Aldrich, Melinda C; Chen, Chiu L; Decker, Paul A; Harpole, David H; Cerfolio, Robert J; Keenan, Robert J; Jones, David R; D'Amico, Thomas A; Shrager, Joseph B; Meyers, Bryan F; Putnam, Joe B

    2014-04-01

    Fluorodeoxyglucose-positron emission tomography (FDG-PET) is recommended for diagnosis and staging of non-small cell lung cancer (NSCLC). Meta-analyses of FDG-PET diagnostic accuracy demonstrated sensitivity of 96% and specificity of 78% but were performed in select centers, introducing potential bias. This study evaluates the accuracy of FDG-PET to diagnose NSCLC and examines differences across enrolling sites in the national American College of Surgeons Oncology Group (ACOSOG) Z4031 trial. Between 2004 and 2006, 959 eligible patients with clinical stage I (cT1-2 N0 M0) known or suspected NSCLC were enrolled in the Z4031 trial, and with a baseline FDG-PET available for 682. Final diagnosis was determined by pathologic examination. FDG-PET avidity was categorized into avid or not avid by radiologist description or reported maximum standard uptake value. FDG-PET diagnostic accuracy was calculated for the entire cohort. Accuracy differences based on preoperative size and by enrolling site were examined. Preoperative FDG-PET results were available for 682 participants enrolled at 51 sites in 39 cities. Lung cancer prevalence was 83%. FDG-PET sensitivity was 82% (95% confidence interval, 79 to 85) and specificity was 31% (95% confidence interval, 23% to 40%). Positive and negative predictive values were 85% and 26%, respectively. Accuracy improved with lesion size. Of 80 false-positive scans, 69% were granulomas. False-negative scans occurred in 101 patients, with adenocarcinoma being the most frequent (64%), and 11 were 10 mm or less. The sensitivity varied from 68% to 91% (p=0.03), and the specificity ranged from 15% to 44% (p=0.72) across cities with more than 25 participants. In a national surgical population with clinical stage I NSCLC, FDG-PET to diagnose lung cancer performed poorly compared with published studies. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Downregulation of Brain Phosphodiesterase Type IV Measured with 11C-(R)-Rolipram Positron Emission Tomography in Major Depressive Disorder

    PubMed Central

    Fujita, Masahiro; Hines, Christina S.; Zoghbi, Sami S.; Mallinger, Alan G.; Dickstein, Leah P.; Liow, Jeih-San; Zhang, Yi; Pike, Victor W.; Drevets, Wayne C.; Innis, Robert B.; Zarate, Carlos A.

    2012-01-01

    Background Phosphodiesterase type IV (PDE4), an important component of the cyclic adenosine monophosphate (cAMP) cascade, selectively metabolizes cAMP in the brain to the inactive monophosphate. Basic studies suggest that PDE4 mediates the effects of several antidepressants. This study sought to quantify the binding of 11C-(R)-rolipram, a PDE4 inhibitor, as an indirect measure of this enzyme’s activity in the brain of individuals with major depressive disorder (MDD) compared with healthy control subjects. Methods 11C-(R)-Rolipram brain positron emission tomography scans were performed in 28 unmedicated MDD subjects and 25 age- and gender-matched healthy control subjects. Patients were moderately depressed and about one half were treatment-naive. 11C-(R)-Rolipram binding in the brain was measured using arterial 11C-(R)-rolipram levels to correct for the influence of cerebral blood flow. Results Major depressive disorder subjects showed a widespread, approximately 20% reduction in 11C-(R)-rolipram binding (p = .002), which was not caused by different volumes of gray matter. Decreased rolipram binding of similar magnitudes was observed in most brain areas. Rolipram binding did not correlate with the severity of depressive or anxiety symptoms. Conclusions This study is the first to demonstrate that brain levels of PDE4, a critical enzyme that regulates cAMP, are decreased in unmedicated individuals with MDD in vivo. These results are in line with human postmortem and rodent studies demonstrating downregulation of the cAMP cascade in MDD and support the hypothesis that agents such as PDE4 inhibitors, which increase activity within the cAMP cascade, may have antidepressant effects. PMID:22677471

  19. Role of Fluorine-18-Fluorodeoxyglucose in the Work-up of Febrile AIDS Patients. Experience with Dual Head Coincidence Imaging.

    PubMed

    Santiago, Jonas F.; Jana, Suman; Gilbert, Holly M.; Salem, Shahenda; Bellman, Paul Curtis; Hsu, Ricky K.S.; Naddaf, Sleiman; Abdel-Dayem, Hussein M.

    1999-11-01

    OBJECTIVE AND METHODS: This study was undertaken to find the role of fluorine-18-fluorodeoxyglucose (F18-FDG) in the diagnostic work-up of febrile Acquired Immune Deficiency Syndrome (AIDS) patients. Forty-seven (42 male and 5 female; mean age = 40.3 years) febrile patients with AIDS underwent imaging with F18-FDG by Dual Head Coincidence Imaging (DHCI). Findings were correlated with other imaging modalities.RESULTS: Our data show good sensitivity for scanning with F18-FDG by DHCI in determining the extent of Castleman's disease, lymphoma, Kaposi's sarcoma (KS), adenocarcinoma, and germ cell carcinoma. Various opportunistic infections also manifest with increased F18-FDG uptake.CONCLUSION: Total-body imaging can be done with F18-FDG with better resolution and a shorter procedure time compared to imaging with Gallium-67 (Ga-67). Furthermore, F18-FDG is more sensitive than Ga-67 for evaluating extent of involvement in various pathologies affecting AIDS patients. The new technology of DHCI is a good alternative for hospitals with no dedicated positron emission tomography (PET) scanner.

  20. [18F]fluorodeoxyglucose triple-head coincidence imaging as an adjunct to 131I scanning for follow-up of papillary thyroid carcinoma.

    PubMed

    Gonzalo, Irene T Gaw; Itti, Emmanuel; Mlikotic, Anton; Pham, Le H; Cesar, Romeo B; Meignan, Michel; Mishkin, Fred S

    2003-01-01

    To evaluate the feasibility of using [(18)F]fluorodeoxyglucose ((18)FDG) triple-head coincidence imaging as a potential cost-effective alternative to positron emission tomography in the setting of suspected recurrence of papillary thyroid carcinoma. We retrospectively studied 10 patients with suspected recurrence of papillary carcinoma of the thyroid, who underwent (18)FDG coincidence imaging,(131)I scanning, and a reference anatomic scan (computed tomography, magnetic resonance imaging, or both) within 1 year in most cases. The (131)I scan detected the recurrence in five patients (62.5%) and failed to reveal recurrent cancer in three patients (37.5%); in contrast,(18)FDG imaging detected the recurrence in eight patients (100%) and was true negative in two patients in whom the scans were performed more than 1 year after effective therapy for the recurrence. The sensitivity of detection was unrelated to lesion size. The (18)FDG imaging results led to additional radiotherapy in all (131)I-negative patients, two of whom had high thyroglobulin levels and one of whom had a low thyroglobulin concentration but the presence of antithy-roglobulin antibodies. We conclude that (18)FDG triple-head coincidence imaging is useful for routine management of patients with thyroid cancer who have no abnormalities detected on (131)I scans but have high serum thyroglobulin levels. This technique, however, may not be as sensitive as a dedicated positron emission tomographic device, particularly for the assessment of small tumors.

  1. Fluorodeoxyglucose positron emission tomography: emerging roles in the evaluation of putative Alzheimer's disease-modifying treatments.

    PubMed

    Reiman, Eric M

    2011-12-01

    Alzheimer's disease (AD) is associated with characteristic and progressive reductions in flourodeoxyglucose positron emission tomography (FDG PET) measurements of the regional cerebral metabolic rate for glucose. These reductions begin years before the onset of symptoms, are correlated with clinical severity, and may help predict an affected patient's clinical course and neuropathological diagnosis. Like several other AD biomarkers, FDG PET has the potential to accelerate the evaluation of AD-modifying treatments, particularly in the earliest clinical and preclinical stages. This article considers FDG PET's role in the detection and tracking of AD, its emerging roles in the evaluation of disease-slowing treatments, some of the issues involved in the acquisition, analysis, and interpretation of FDG PET data, and the evidence needed to help qualify FDG PET and other biomarkers for use in the accelerated approval of AD-slowing treatments. It recommends scientific strategies and public policies to further establish the role of FDG PET and other AD biomarkers in therapeutic trials and find demonstrably effective disease-modifying and presymptomatic AD treatments as quickly as possible. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeoh, Kheng-Wei; Mikhaeel, N. George, E-mail: George.Mikhaeel@gstt.nhs.uk

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CTmore » data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.« less

  3. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, R.F.; Lear, J.L.

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost frommore » the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.« less

  4. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    PubMed

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P < 0.001), anterior vermis (40%, P < 0.001) and fusiform gyrus (20%, P < 0.001) compared with controls or siblings, and lower metabolism in hippocampus (12%, P = 0.05) compared with controls, and showed significant intersubject variability (decreases in vermis ranged from 18% to 60%). Participants with ataxia-telangiectasia also had higher metabolism in globus pallidus (16%, P = 0.05), which correlated negatively with motor performance. Asymptomatic relatives had lower metabolism in anterior vermis (12%; P = 0.01) and hippocampus (19%; P = 0.002) than controls. Our results indicate that, in addition to the expected decrease in cerebellar metabolism, participants with ataxia-telangiectasia had widespread changes in metabolic

  5. Individual identity and affective valence in marmoset calls: in vivo brain imaging with vocal sound playback.

    PubMed

    Kato, Masaki; Yokoyama, Chihiro; Kawasaki, Akihiro; Takeda, Chiho; Koike, Taku; Onoe, Hirotaka; Iriki, Atsushi

    2018-05-01

    As with humans, vocal communication is an important social tool for nonhuman primates. Common marmosets (Callithrix jacchus) often produce whistle-like 'phee' calls when they are visually separated from conspecifics. The neural processes specific to phee call perception, however, are largely unknown, despite the possibility that these processes involve social information. Here, we examined behavioral and whole-brain mapping evidence regarding the detection of individual conspecific phee calls using an audio playback procedure. Phee calls evoked sound exploratory responses when the caller changed, indicating that marmosets can discriminate between caller identities. Positron emission tomography with [ 18 F] fluorodeoxyglucose revealed that perception of phee calls from a single subject was associated with activity in the dorsolateral prefrontal, medial prefrontal, orbitofrontal cortices, and the amygdala. These findings suggest that these regions are implicated in cognitive and affective processing of salient social information. However, phee calls from multiple subjects induced brain activation in only some of these regions, such as the dorsolateral prefrontal cortex. We also found distinctive brain deactivation and functional connectivity associated with phee call perception depending on the caller change. According to changes in pupillary size, phee calls from a single subject induced a higher arousal level compared with those from multiple subjects. These results suggest that marmoset phee calls convey information about individual identity and affective valence depending on the consistency or variability of the caller. Based on the flexible perception of the call based on individual recognition, humans and marmosets may share some neural mechanisms underlying conspecific vocal perception.

  6. Usefulness of CA125 and their kinetic parameters and positron emission tomography/computed tomography (PET/CT) with fluorodeoxyglucose ([18F] FDG) in the detection of recurrent ovarian cancer levels.

    PubMed

    Palomar Muñoz, Azahara; Cordero García, José Manuel; Talavera Rubio, Prado; García Vicente, Ana M; González García, Beatriz; Bellón Guardia, María Emiliana; Soriano Castrejón, Ángel; Aranda Aguilar, Enrique

    2017-12-21

    To assess the usefulness of cancer antigen 125 (CA125) serum levels and kinetic values, velocity (CA125vel) and doubling time (CA125dt), as well as fluorodeoxyglucose ([ 18 F]FDG) positron emission tomography/computed tomography (PET/CT), in the detection of ovarian cancer recurrence. To assess the optimal cut-off for CA125, CA125vel and CA125dt to detect relapse with [ 18 F]FDG-PET/CT. A retrospective analysis was performed of 59 [ 18 F]FDG-PET/CT (48 patients) for suspected recurrence of ovarian cancer. Receiver operating characteristic (ROC) curves were plotted and area-under-the curve (AUC) statistics were computed for CA125, CA125vel and CA125dt. The results obtained in the group with normal and high (>35U/ml) CA125 levels were compared. Forty-four cases of recurrence were diagnosed (7 had CA125 ≤35U/ml), whereas 15 showed no disease. All of them were correctly catalogued by PET/CT. In ROC analysis, the discriminatory power of CA125 was relatively high (AUC 0.835) and the optimal cut-off point to reflect active disease was 23.9U/ml. The ROC analyses for the CA125vel and CA125dt showed an AUC of 0.849 and 0.728, respectively, with an optimal cut-off point of 1.96U/ml/month and 0.76 months, respectively. In patients with normal CA125 and recurrence of ovarian cancer, the CA125vel was significantly higher than in patients without recurrence (p=0.029). [ 18 F]FDG-PET/CT is more accurate than CA125 parameters in the detection of ovarian cancer recurrence. CA125 serum levels are essential; nevertheless, CA125 kinetic values must be considered to detect relapse. Particularly in patients with CA125 within normal values, in which a higher CA125vel is indicative of recurrence. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  7. [Possibilities of modern imaging technologies in early diagnosis of Alzheimer disease].

    PubMed

    Unschuld, Paul G

    2015-04-01

    Recent advances in neuroimaging technology and image analysis algorithms have significantly contributed to a better understanding of spatial and temporal aspects of brain change associated with Alzheimer Disease. The current review will demonstrate how functional (fMRI) and structural magnetic resonance imaging (MRI) techniques may be used to identify distinct patterns of brain change associated with disease progression and also increased risk for Alzheimer Disease. Moreover, Positron Emission Tomography (PET) based measures of glucosemetabolism (Fluorodeoxyglucose, FDG) and Amyloid-beta plaque density (11-C-Pittsburgh Compound B, PiB and 18-F) will be reviewed regarding their diagnostic value for assessing the individual degree of Alzheimer -pathology and thus complement the information provided by MRI and other clinical measures.

  8. Brain-Based Learning. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2005-01-01

    What does brain-based research say about how adolescents learn? The 1990s was declared as the Decade of the Brain by President Bush and Congress. With the advancement of MRIs (Magnetic Resonance Imagining) and PET (positron emission tomography) scans, it has become much easier to study live healthy brains. As a result, the concept of…

  9. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood

  10. Positron lifetime spectrometer using a DC positron beam

    DOEpatents

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  11. A 31-channel MR brain array coil compatible with positron emission tomography.

    PubMed

    Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L

    2015-06-01

    Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.

  12. Single photon emission computed tomography and positron emission tomography imaging of multi-drug resistant P-glycoprotein--monitoring a transport activity important in cancer, blood-brain barrier function and Alzheimer's disease.

    PubMed

    Piwnica-Worms, David; Kesarwala, Aparna H; Pichler, Andrea; Prior, Julie L; Sharma, Vijay

    2006-11-01

    Overexpression of multi-drug resistant P-glycoprotein (Pgp) remains an important barrier to successful chemotherapy in cancer patients and impacts the pharmacokinetics of many important drugs. Pgp is also expressed on the luminal surface of brain capillary endothelial cells wherein Pgp functionally comprises a major component of the blood-brain barrier by limiting central nervous system penetration of various therapeutic agents. In addition, Pgp in brain capillary endothelial cells removes amyloid-beta from the brain. Several single photon emission computed tomography and positron emission tomography radiopharmaceutical have been shown to be transported by Pgp, thereby enabling the noninvasive interrogation of Pgp-mediated transport activity in vivo. Therefore, molecular imaging of Pgp activity may enable noninvasive dynamic monitoring of multi-drug resistance in cancer, guide therapeutic choices in cancer chemotherapy, and identify transporter deficiencies of the blood-brain barrier in Alzheimer's disease.

  13. Positron emission tomography as an aid in the diagnosis and follow-up of Riedel's thyroiditis.

    PubMed

    Kotilainen, Pirkko; Airas, Laura; Kojo, Tiina; Kurki, Timo; Kataja, Kaisa; Minn, Heikki; Nuutila, Pirjo

    2004-06-01

    We describe the usage of positron emission tomography (PET) as an aid in the initial diagnosis and follow-up of Riedel's thyroiditis. A 41-year-old patient was admitted for an enlarged and tender thyroid gland in association with severe systemic symptoms of inflammation. Imaging with fluorine-18 fluorodeoxyglucose (FDG) and PET demonstrated an intensive uptake of FDG in both lobes of the thyroid gland as an indication of severe inflammation. The diagnosis of Riedel's thyroiditis was confirmed by the histological findings of biopsy specimens taken during a palliative thyroid resection. The inflammatory symptoms and local pain dramatically disappeared after commencement of high-dose corticosteroid therapy. A follow-up PET scan after 2 weeks of corticosteroid treatment showed a 60% decrease in the uptake of FDG in the thyroid. This indicates that FDG metabolic activity can also be used to assess a patient's response to therapy in Riedel's thyroiditis.

  14. Advances in evaluation of primary brain tumors.

    PubMed

    Chen, Wei; Silverman, Daniel H S

    2008-07-01

    The evaluation of primary brain tumor is challenging. Neuroimaging plays a significant role. At diagnosis, imaging is needed to establish a differential diagnosis, provide prognostic information, as well as direct biopsy. After the initial treatment, imaging is needed to distinguish recurrent disease from treatment-related changes such as radiation necrosis. In low-grade gliomas, this also includes monitoring anaplastic transformation into high-grade tumors. Recently, targeted treatments have been an extremely active area of research. Evaluation in clinical trials of such targeted treatments demands advanced roles of imaging such as treatment planning, monitoring response, and predicting treatment outcomes. Current clinical gold standard magnetic resonance imaging provides superior structural detail but poor specificity in identifying viable tumors in treated brain with surgery/radiation/chemotherapy. (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is capable of identifying anaplastic transformation and has prognostic value. The sensitivity and specificity of FDG in evaluating recurrent tumor and treatment-induced changes can be significantly improved by coregistration with magnetic resonance imaging and potentially by delayed imaging 3 to 8 hours after injection. Amino acid PET tracers can be more sensitive than FDG in imaging some recurrent tumors, in particular recurrent low-grade tumors. They are also promising for differentiating between recurrent tumors and treatment-induced changes. Newer PET tracers to image important aspects of tumor biology have been actively studied. Tracers for imaging membrane transport such as (18)F-choline have shown promise in differential diagnosis. (18)F-labeled nucleotide analogs such as 3'-deoxy-3'-[(18)F]-fluorothymidine (FLT) and (18)F-FMAU have been developed to image proliferation. The use of FLT has demonstrated prognostic power in predicting treatment response in patients treated with an antiangiogenic

  15. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  16. Positron Emission Tomography in Cochlear Implant and Auditory Brainstem Implant Recipients.

    ERIC Educational Resources Information Center

    Miyamoto, Richard T.; Wong, Donald

    2001-01-01

    Positron emission tomography imaging was used to evaluate the brain's response to auditory stimulation, including speech, in deaf adults (five with cochlear implants and one with an auditory brainstem implant). Functional speech processing was associated with activation in areas classically associated with speech processing. (Contains five…

  17. Importance of positron emission tomography for assessing the response of primary and metastatic lesions to induction treatments in T4 esophageal cancer.

    PubMed

    Makino, Tomoki; Yamasaki, Makoto; Tanaka, Koji; Tatsumi, Mitsuaki; Takiguchi, Shuji; Hatazawa, Jun; Mori, Masaki; Doki, Yuichiro

    2017-10-01

    There is no consensus strategy for treatment of T4 esophageal cancer, and because of this, a better evaluation of treatment response is crucial to establish personalized therapies. This study aimed to establish a useful system for evaluating treatment response in T4 esophageal cancer. This study included 130 patients with cT4 esophageal cancer without distant metastasis who underwent 18 F-fluorodeoxyglucose-positron emission tomography before and after a series of induction treatments comprising chemoradiation or chemotherapy. We evaluated the maximal standardized uptake value and treatment response. The mean ± standard deviation of standardized uptake value in the primary tumor before and after induction treatments were 13.8 ± 4.4 and 5.4 ± 4.1, respectively, and the mean standardized uptake value decrease was 58.4%. The most significant difference in survival between positron emission tomography-primary tumor responders and nonresponders was at a decrease of 60% standardized uptake value, based on every 10% stepwise cutoff analysis (2-year cause-specific survival: 60.2 vs 23.5%; hazard ratio = 2.705; P < .0001). With this cutoff value, the resectability (P = .0307), pathologic response (P = .0004), and pT stage (P < .0001) were associated with positron emission tomography-primary tumor response. Univariate analysis of 2-year cause-specific survival indicated a correlation between cause-specific survival and clinical stages according to TNM classification, esophageal perforation, positron emission tomography-primary tumor response, lymph node status evaluated by positron emission tomography before and after induction treatments, and operative resection. Multivariate analysis further identified positron emission tomography-primary tumor response (hazard ratio = 2.354; P = .0107), lymph node status evaluated by positron emission tomography after induction treatments (hazard ratio = 1.966; P = .0089), and operative resection (hazard ratio

  18. The Whole-Brain “Global” Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism

    PubMed Central

    Thompson, Garth J.; Grimmer, Timo; Drzezga, Alexander; Herman, Peter

    2016-01-01

    Abstract The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI “nuisance signals” were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a “nuisance signal,” also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states. PMID:27029438

  19. Neural correlates of the severity of cocaine, heroin, alcohol, MDMA and cannabis use in polysubstance abusers: a resting-PET brain metabolism study.

    PubMed

    Moreno-López, Laura; Stamatakis, Emmanuel A; Fernández-Serrano, Maria José; Gómez-Río, Manuel; Rodríguez-Fernández, Antonio; Pérez-García, Miguel; Verdejo-García, Antonio

    2012-01-01

    Functional imaging studies of addiction following protracted abstinence have not been systematically conducted to look at the associations between severity of use of different drugs and brain dysfunction. Findings from such studies may be relevant to implement specific interventions for treatment. The aim of this study was to examine the association between resting-state regional brain metabolism (measured with 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and the severity of use of cocaine, heroin, alcohol, MDMA and cannabis in a sample of polysubstance users with prolonged abstinence from all drugs used. Our sample consisted of 49 polysubstance users enrolled in residential treatment. We conducted correlation analyses between estimates of use of cocaine, heroin, alcohol, MDMA and cannabis and brain metabolism (BM) (using Statistical Parametric Mapping voxel-based (VB) whole-brain analyses). In all correlation analyses conducted for each of the drugs we controlled for the co-abuse of the other drugs used. The analysis showed significant negative correlations between severity of heroin, alcohol, MDMA and cannabis use and BM in the dorsolateral prefrontal cortex (DLPFC) and temporal cortex. Alcohol use was further associated with lower metabolism in frontal premotor cortex and putamen, and stimulants use with parietal cortex. Duration of use of different drugs negatively correlated with overlapping regions in the DLPFC, whereas severity of cocaine, heroin and alcohol use selectively impact parietal, temporal, and frontal-premotor/basal ganglia regions respectively. The knowledge of these associations could be useful in the clinical practice since different brain alterations have been associated with different patterns of execution that may affect the rehabilitation of these patients.

  20. Memory deficits due to brain injury: unique PET findings and dream alterations

    PubMed Central

    Nishida, Masaki; Nariai, Tadashi; Hiura, Mikio; Ishii, Kenji; Nishikawa, Toru

    2011-01-01

    The authors herein report the case of a young male with memory deficits due to a traumatic head injury, who presented with sleep-related symptoms such as hypersomnia and dream alterations. Although MRI and polysomnography showed no abnormalities, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and 11C flumazenil (FMZ)-PET revealed findings consistent with cerebral damage to the affected temporal region. The memory deficit of the patient gradually improved in parallel with the relief of the sleep-related symptoms. FDG-PET showed considerable improvement in glucose metabolism when he had recovered, however, evidence of neural loss remained in the FMZ-PET findings. PMID:22674950

  1. Differences in Regional Brain Responses to Food Ingestion After Roux-en-Y Gastric Bypass and the Role of Gut Peptides: A Neuroimaging Study.

    PubMed

    Hunt, Katharine F; Dunn, Joel T; le Roux, Carel W; Reed, Laurence J; Marsden, Paul K; Patel, Ameet G; Amiel, Stephanie A

    2016-10-01

    Improved appetite control, possibly mediated by exaggerated gut peptide responses to eating, may contribute to weight loss after Roux-en-Y gastric bypass (RYGB). This study compared brain responses to food ingestion between post-RYGB (RYGB), normal weight (NW), and obese (Ob) unoperated subjects and explored the role of gut peptide responses in RYGB. Neuroimaging with [(18)F]-fluorodeoxyglucose (FDG) positron emission tomography was performed in 12 NW, 21 Ob, and 9 RYGB (18 ± 13 months postsurgery) subjects after an overnight fast, once FED (400 kcal mixed meal), and once FASTED, in random order. RYGB subjects repeated the studies with somatostatin infusion and basal insulin replacement. Fullness, sickness, and postscan ad libitum meal consumption were measured. Regional brain FDG uptake was compared using statistical parametric mapping. RYGB subjects had higher overall fullness and food-induced sickness and lower ad libitum consumption. Brain responses to eating differed in the hypothalamus and pituitary (exaggerated activation in RYGB), left medial orbital cortex (OC) (activation in RYGB, deactivation in NW), right dorsolateral frontal cortex (deactivation in RYGB and NW, absent in Ob), and regions mapping to the default mode network (exaggerated deactivation in RYGB). Somatostatin in RYGB reduced postprandial gut peptide responses, sickness, and medial OC activation. RYGB induces weight loss by augmenting normal brain responses to eating in energy balance regions, restoring lost inhibitory control, and altering hedonic responses. Altered postprandial gut peptide responses primarily mediate changes in food-induced sickness and OC responses, likely to associate with food avoidance. © 2016 by the American Diabetes Association.

  2. Prognostic Role of Pre–Radiation Therapy {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography for Primary Mediastinal B-Cell Lymphomas Treated with R-CHOP or R-CHOP-Like Chemotherapy Plus Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it; Piva, Cristina; Levis, Mario

    Purpose: To validate, in a monoinstitutional cohort with extended follow-up, that post–rituximab chemotherapy (R-CT) {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}FDG-PET) is a prognostic factor allowing discrimination of primary mediastinal B-cell lymphoma (PMBCL) patients at higher risk for progression after radiation therapy. Methods and Materials: We analyzed 51 patients, and {sup 18}FDG-PET scans were re-examined evaluating both the Deauville 5-point scale (D5PS) score and the standardized uptake value (SUV) of residual activity, if present. These parameters were then tested by univariate analysis for a potential correlation with progression-free survival (PFS) as the primary study endpoint. Results: Median follow-up time was 51 monthsmore » (range, 9-153 months). After R-CT, D5PS score was 1 in 10 (19.6%), 2 in 11 (21.6%), 3 in 7 (13.8%), 4 in 17 (33.3%), and 5 in 6 patients (11.7%). Forty-three out of 51 patients (84.3%) had an SUV{sub max} ≤5, and 8 out of 51 (15.7%) had an SUV{sub max} ≥5. Overall, 6 patients experienced progression or relapse: 1 had a D5PS score 2 (with SUV{sub max} ≤5), and 5 had a D5PS score 5 (and SUV{sub max} ≥5). Patients with a D5PS score 5 showed significantly lower PFS rates versus all other scores (log-rank P<.001), as did patients with SUV{sub max} ≥5 when compared with those with SUV{sub max} ≤5 (log-rank P<.001). Conclusions: The present study confirmed the prognostic role of {sup 18}FDG-PET after R-CT, with patients with a D5PS score of 5 and/or an SUV{sub max} ≥5 being at high risk of progression/relapse after RT.« less

  3. Functional-Lesion Investigation of Developmental Stuttering with Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Ingham, Roger J.; And Others

    1996-01-01

    Analysis of use of positron emission tomographic measurements of resting-state regional cerebral blood flow in 29 men, 10 of whom stuttered, did not support the idea that developmental stuttering is associated with abnormalities of blood flow at rest. Findings did suggest an essentially normal functional brain terrain with a small number of minor…

  4. Focal fluorine-18 fluorodeoxyglucose-avid lesions without computed tomography correlate at whole-body positron emission tomography-computed tomography in oncology patients: how often are they malignant?

    PubMed

    Kumar, Rahi; Hawkins, Randall A; Yeh, Benjamin M; Wang, Zhen Jane

    2011-09-01

    To retrospectively evaluate the rate of malignancy of focal fluorine-18 fluorodeoxyglucose (18F-FDG)-avid lesions without computed tomography (CT) correlate at whole-body positron emission tomography (PET)-CT in oncology patients, because better defining these abnormalities could potentially lead to improved patient management algorithms that rely on PET-CT for detection, staging, and treatment monitoring of malignancies. We performed a computer search of all PET-CT studies performed at our institution from 2006 to 2009, and identified 87 studies with findings of focal 18F-FDG-avid lesions without correlate at CT. The rate of malignancy of such lesions was determined by reviewing findings at follow-up imaging or by clinical or histopathological follow-up. Rates of malignancy were categorized and compared by lesion location and by the type of primary malignancy. The most common locations for focal 18F-FDG-avid lesions without CT correlate were: lymph node location (without visible lymph nodes; 27/87), bone (21/87), soft tissue (17/87), liver (9/87), and gastrointestinal tract (8/87). Forty-one percent (36/87) of the focal FDG-avid lesions without CT correlate were malignant (either metastatic disease or a second malignancy) at follow-up (mean follow-up: 5 months, range: 1-25 months). Focal FDG-avid lesions in lymph node location and in bone without CT correlate had higher rates of malignancy (56%, 15/27 and 52%, 11/21, respectively) than lesions in all other locations (26%, 10/39, P=0.028). In 15 of 87 cases, the only significant finding at PET-CT was an FDG-avid lesion without CT correlate. Of those, 53% (8/15) was positive for malignancy. There were no significant differences in the rates of malignancy for the focal FDG-avid lesions without CT correlate when stratified by the type of primary malignancy in this series. Focal FDG avid lesions without CT correlate were malignant in 41% of cases in our series of oncology patients. Lesions in lymph node location and in

  5. Fluorodeoxyglucose Positron Emission Tomography: Emerging Roles in the Evaluation of Putative Alzheimer’s Disease-Modifying Treatments

    PubMed Central

    Reiman, Eric M.

    2012-01-01

    Alzheimer’s disease (AD) is associated with characteristic and progressive reductions in flourodeoxyglucose positron emission tomography (FDG PET) measurements of the regional cerebral metabolic rate for glucose. These reductions begin years before the onset of symptoms, are correlated with clinical severity, and may help predict an affected patient’s clinical course and neuropathological diagnosis. Like several other AD biomarkers, FDG PET has the potential to accelerate the evaluation of these treatments, particularly in the earliest clinical and preclinical stages. This article considers FDG PET’s role in the detection and tracking of AD, its emerging roles in the evaluation of disease-slowing treatments, some of the issues involved in the acquisition, analysis, and interpretation of FDG PET data, and the evidence needed to help qualify FDG PET and other biomarkers for use in the accelerated approval of AD-slowing treatments. It recommends scientific strategies and public policies to further establish the role of FDG PET and other AD biomarkers in therapeutic trials and find demonstrably effective disease-modifying and presymptomatic AD treatments as quickly as possible. PMID:21983241

  6. Costal chondrosarcoma requiring differential diagnosis from metastatic tumor.

    PubMed

    Matsuoka, Katsunari; Ueda, Mitsuhiro; Miyamoto, Yoshihiro

    2017-02-01

    Although chondrosarcoma is a common malignant bone tumor, cases arising in the rib are relatively rare. We experienced a case of chondrosarcoma arising in the right 10th rib during follow-up after lung cancer surgery. Although the finding of an osteolytic mass suggested a metastatic bone tumor, 18F-fluorodeoxyglucose positron-emission tomography demonstrated low fluorodeoxyglucose uptake, and a primary bone tumor was suspected. The bone tumor was resected and diagnosed as chondrosarcoma. Four years after resection, there has been no recurrence or metastasis. Positron-emission tomography was useful for differential diagnosis between a chondrosarcoma and a metastatic bone tumor.

  7. Positron astrophysics and areas of relation to low-energy positron physics

    NASA Astrophysics Data System (ADS)

    Guessoum, Nidhal

    2014-05-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  8. Anti-Ma2-associated encephalitis with normal FDG-PET: a case of pseudo-Whipple's disease.

    PubMed

    Castle, James; Sakonju, Ai; Dalmau, Josep; Newman-Toker, David E

    2006-10-01

    A 39-year-old man presented with a history of several months of progressive personality changes, social withdrawal, bradykinesia, mutism, dysphagia, worsening gait, and difficulty with daily living activities. Examination revealed an atypical parkinsonian appearance with incomplete supranuclear ophthalmoplegia and an unusual oculomotor disorder characterized by both low-amplitude, intermittent opsoclonus, and slow, nystagmoid intrusions. Routine laboratory testing, autoimmune and infectious serologies, brain MRI, lumbar puncture, electroencephalogram, whole-body CT scan, paraneoplastic serologies, small bowel biopsy, 18F-fluorodeoxyglucose positron emission tomography CT scan, brain biopsy, and testicular ultrasound. Anti-Ma2 paraneoplastic encephalitis in association with metastatic testicular cancer; initially misdiagnosed as CNS Whipple's disease. Corticosteroids, intravenous immunoglobulins, orchiectomy, muscle relaxants, mycophenolate mofetil, plasmapheresis, and bleomycin, etoposide and platinum chemotherapy.

  9. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    NASA Technical Reports Server (NTRS)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  10. [Human positron emission tomography with oral 11C-vinpocetine].

    PubMed

    Vas, Adám; Christer, Halldin; Sóvágó, Judit; Johan, Sandell; Cselényi, Zsolt; Kiss, Béla; Kárpáti, Egon; Lars, Farde; Gulyás, Balázs

    2003-11-16

    Positron emission tomography (PET) is a useful tool for the investigation of certain physiological changes and for the evaluation of the distribution, and receptor binding of drugs labelled with positron emitting isotopes. Vinpocetine (ethyl-apovincaminate) is a neuroprotective drug widely used in the prevention and treatment of cerebrovascular diseases. In the clinical practice vinpocetine is usually administered to the patients in intravenous infusion followed by long-term oral treatment. Until presently human data describing vinpocetine's kinetics and brain distribution came from ex vivo (blood, plasma, liquor) and post mortem (brain autoradiography) measurements. The authors wished to investigate the kinetics and distribution of vinpocetine in the brain and body after oral administration with PET in order to prove, that PET is useful in the non-invasive in vivo determination of these parameters. Vinpocetine was labelled with carbon-11 and the radioactivity was measured by PET in the stomach, liver, brain, colon and kidneys in healthy male volunteers. The radioactivity in the blood and urine was also determined. After oral administration, [11C]vinpocetine appeared immediately in the stomach and within minutes in the liver and the blood. In the blood the level of radioactivity continuously increased until the end of the measurement period, whereas the fraction of the unchanged mother compound decreased. Radioactivity uptake and distribution in the brain were demonstrable from the tenth minute after the oral administration of the labelled drug (average maximum uptake: 0.7% of the administered total dose). Brain distribution was heterogeneous (with preferences in the thalamus, basal ganglia and occipital cortex), similar to the distribution previously reported by the authors after intravenous administration. Vinpocetine, administered orally to human volunteers, readily entered the bloodstream from the stomach and the gastrointestinal tract and thereafter passed the

  11. FDG-PET imaging in mild traumatic brain injury: a critical review

    PubMed Central

    Byrnes, Kimberly R.; Wilson, Colin M.; Brabazon, Fiona; von Leden, Ramona; Jurgens, Jennifer S.; Oakes, Terrence R.; Selwyn, Reed G.

    2013-01-01

    Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs (mTBI) and patients not seeking medical attention is unknown. Currently, classification of mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR) or computed tomography (CT) imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [18F]fluorodeoxyglucose and positron emission tomography (FDG-PET), have the ability to detect changes after mTBI. Recent technological improvements in the resolution of PET systems, the integration of PET with magnetic resonance imaging (MRI), and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mTBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mTBI research and clinical practice. PMID:24409143

  12. Cognitive Reserve–Mediated Modulation of Positron Emission Tomographic Activations During Memory Tasks in Alzheimer Disease

    PubMed Central

    Scarmeas, Nikolaos; Zarahn, Eric; Anderson, Karen E.; Honig, Lawrence S.; Park, Aileen; Hilton, John; Flynn, Joseph; Sackeim, Harold A.; Stern, Yaakov

    2011-01-01

    Background Cognitive reserve (CR) is the ability of an individual to cope with advancing brain pathological abnormalities so that he or she remains free of symptoms. Epidemiological data and evidence from positron emission tomography suggest that it may be mediated through education or IQ. Objective To investigate CR-mediated differential brain activation in Alzheimer disease (AD) subjects compared with healthy elderly persons. Participants Using radioactive water positron emission tomography, we scanned 12 AD patients and 17 healthy elderly persons while performing a serial recognition memory task for nonverbalizable shapes under 2 conditions: low demand, in which one shape was presented in each study trial, and titrated demand, in which the study list length was adjusted so that each subject recognized shapes at approximately 75% accuracy. Positron emission tomographic scan acquisition included the encoding and recognition phases. A CR factor score that summarized years of education, National Adult Reading Test estimated IQ, and Wechsler Adult Intelligence Scale–Revised vocabulary subtest score (explaining 71% of the total variance) was used as an index of CR. Voxel-wise, multiple regression analyses were performed with the “activation” difference (titrated demand–low demand) as the dependent variables and the CR factor score as the independent one. Brain regions where regression slopes differed between the 2 groups were identified. Results The slopes were significantly more positive for the AD patients in the left precentral gyrus and in the left hippocampus and significantly more negative in the right fusiform, right middle occipital, left superior occipital, and left middle temporal gyri. Conclusion Brain regions where systematic relationships (slopes) between subjects’ education-IQ and brain activation differ as a function of disease status may mediate the differential ability to cope with (ie, delay or modify) clinical manifestations of AD. PMID

  13. Which Brain Research Can Educators Trust?

    ERIC Educational Resources Information Center

    Willis, Judy

    2007-01-01

    Neurological research has discovered much about how the brain works, Dr. Willis writes, but educators need to be cautious when applying this research to teaching. Following a brief explanation of the three most important technological advances in brain research (Positron Emission Tomography, Functional Magnetic Resonance Imaging, and Quantitative…

  14. ViRPET--combination of virtual reality and PET brain imaging

    DOEpatents

    Majewski, Stanislaw; Brefczynski-Lewis, Julie

    2017-05-23

    Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.

  15. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2007-01-01

    positron source for positron annihilation lifetime spectroscopy Final Report Report Title...Development of an Electron- Positron Source for Position Annihilation Lifetime Spectroscopy DAAD19-03-1-0287 Final Report 2/17/2007... annihilation lifetime spectroscopy REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE UNCLASSIFIED 2. REPORT DATE: 12b. DISTRIBUTION

  16. Dipole configuration for confinement of positrons and electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Saitoh, H.; Horn-Stanja, J.; Hergenhahn, U.; Paschkowski, N.; Sunn Pedersen, T.; Stoneking, M. R.; Dickmann, M.; Singer, M.; Vohburger, S.; Hugenschmidt, C.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2016-10-01

    Laboratory creation and confinement of electron-positron plasmas, which are expected to exhibit atypical plasma physics characteristics, would enable tests of many theory and simulation predictions (e.g., the stabilization of anomalous transport mechanisms). This is the goal of APEX/PAX (A Positron-Electron eXperiment/Positron Accumulation eXperiment). Following demonstration of efficient (38%) E ×B injection and subsequent confinement (τ = 3-5 ms) of cold positrons in a dipole magnetic field, the system is undergoing upgrades from a supported permanent magnet to a supported HTSC (high-temperature superconductor) coil, then to a levitated HTSC coil suitable for the simultaneous confinement of electrons and positrons. This contribution will report on the design and testing of the new systems and subsystems (e.g., for cooling, excitation, and levitation) and, if available, on results of upcoming experiments using a ``rotating wall'' to generate inward particle flux deeper into the confinement region. on behalf of the APEX/PAX team and collaborators.

  17. Positron emission tomographic evaluation of the putative dopamine-D3 receptor ligand, [11C]RGH-1756 in the monkey brain.

    PubMed

    Sóvágó, Judit; Farde, Lars; Halldin, Christer; Langer, Oliver; Laszlovszky, István; Kiss, Béla; Gulyás, Balázs

    2004-10-01

    The dopamine-D3 receptor is of special interest due to its postulated role in the pathophysiology and treatment of schizophrenia and Parkinson's Disease. Increasing evidences support the assumption that the D3 receptors are occupied to a high degree by dopamine at physiological conditions. Research on the functional role of the D3 receptors in brain has however been hampered by the lack of D3 selective ligands. In the present Positron Emission Tomography (PET) study the binding of the novel, putative dopamine-D3 receptor ligand, [11C]RGH-1756 was characterized in the cynomolgus monkey brain. [11C]RGH-1756 was rather homogenously distributed in brain and the regional binding potential (BP) values ranged between 0.17 and 0.48. Pretreatment with unlabelled RGH-1756 decreased radioligand binding to the level of the cerebellum in most brain areas. The regional BP values were lower after intravenous injection of a higher mass of RGH-1756, indicating saturable binding of [11C]RGH-1756. The D2/D3 antagonist raclopride partly inhibited the binding of [11C]RGH-1756 in several brain areas, including the striatum, mesencephalon and neocortex, whereas the 5HT(1A) antagonist WAY-100635 had no evident effect on [11C]RGH-1756 binding. Despite the promising binding characteristics of RGH-1756 in vitro the present PET-study indicates that [11C]RGH-1756 provides a low signal for specific binding to the D3 receptor in vivo. One explanation is that the favorable binding characteristics of RGH-1756 in vitro are not manifested in vivo. Alternatively, the results may support the hypothesis that the dopamine-D3 receptors are indeed occupied to a high extent by dopamine in vivo and thus not available for radioligand binding.

  18. Positron-Induced Luminescence.

    PubMed

    Stenson, E V; Hergenhahn, U; Stoneking, M R; Pedersen, T Sunn

    2018-04-06

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  19. Positron-Induced Luminescence

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  20. Fluorodeoxyglucose Uptake on Positron Emission Tomography Is a Useful Predictor of Long-Term Pain Control After Palliative Radiation Therapy in Patients With Painful Bone Metastases: Results of a Single-Institute Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahara, Takatoshi, E-mail: taka.t-may7@med.Tottori-u.ac.jp; Fujii, Shinya; Ogawa, Toshihide

    Purpose: To determine whether fluorodeoxyglucose positron emission tomography (FDG-PET) before and after palliative radiation therapy (RT) can predict long-term pain control in patients with painful bone metastases. Methods and Materials: Thirty-one patients with bone metastases who received RT were prospectively included. Forty painful metastatic treatment fields were evaluated. All patients had undergone pre-RT and post-RT PET/CT scanning. We evaluated the relationships between the pre-RT, post-RT, and changes in maximum standardized uptake value (SUV{sub max}) and the pain response, and between SUV{sub max} and pain relapse of the bone metastases in the treatment field. In addition, we compared the SUV{sub max}more » according to the length of time from the completion of RT to pain relapse of the bone metastases. Results: Regarding the pain response at 4 weeks after the completion of RT, there were 36 lesions of 27 patients in the responder group and 4 lesions of 4 patients in the nonresponder group. Changes in the SUV{sub max} differed significantly between the responder and nonresponder groups in both the early and delayed phases (P=.0292 and P=.0139, respectively), but no relationship was observed between the pre-RT and post-RT SUV{sub max} relative to the pain response. The responder group was evaluated for the rate of relapse. Thirty-five lesions of 26 patients in the responder group were evaluated, because 1 patient died of acute renal failure at 2 months after RT. Twelve lesions (34%) showed pain relapse, and 23 lesions (66%) did not. There were significant differences between the relapse and nonrelapse patients in terms of the pre-RT (early/delayed phases: P<.0001/P<.0001), post-RT (P=.0199/P=.0261), and changes in SUV{sub max} (P=.0004/P=.004). Conclusions: FDG-PET may help predict the outcome of pain control in the treatment field after palliative RT for painful bone metastases.« less

  1. Early-Dynamic Positron Emission Tomography (PET)/Computed Tomography and PET Angiography for Endoleak Detection After Endovascular Aneurysm Repair.

    PubMed

    Drescher, Robert; Gühne, Falk; Freesmeyer, Martin

    2017-06-01

    To propose a positron emission tomography (PET)/computed tomography (CT) protocol including early-dynamic and late-phase acquisitions to evaluate graft patency and aneurysm diameter, detect endoleaks, and rule out graft or vessel wall inflammation after endovascular aneurysm repair (EVAR) in one examination without intravenous contrast medium. Early-dynamic PET/CT of the endovascular prosthesis is performed for 180 seconds immediately after intravenous injection of F-18-fluorodeoxyglucose. Data are reconstructed in variable time frames (time periods after tracer injection) to visualize the arterial anatomy and are displayed as PET angiography or fused with CT images. Images are evaluated in view of vascular abnormalities, graft configuration, and tracer accumulation in the aneurysm sac. Whole-body PET/CT is performed 90 to 120 minutes after tracer injection. This protocol for early-dynamic PET/CT and PET angiography has the potential to evaluate vascular diseases, including the diagnosis of complications after endovascular procedures.

  2. Positron emission particle tracking using a modular positron camera

    NASA Astrophysics Data System (ADS)

    Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.

    2009-06-01

    The technique of positron emission particle tracking (PEPT), developed at Birmingham in the early 1990s, enables a radioactively labelled tracer particle to be accurately tracked as it moves between the detectors of a "positron camera". In 1999 the original Birmingham positron camera, which consisted of a pair of MWPCs, was replaced by a system comprising two NaI(Tl) gamma camera heads operating in coincidence. This system has been successfully used for PEPT studies of a wide range of granular and fluid flow processes. More recently a modular positron camera has been developed using a number of the bismuth germanate (BGO) block detectors from standard PET scanners (CTI ECAT 930 and 950 series). This camera has flexible geometry, is transportable, and is capable of delivering high data rates. This paper presents simple models of its performance, and initial experience of its use in a range of geometries and applications.

  3. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  4. Social Status in Monkeys: Effects of Social Confrontation on Brain Function and Cocaine Self-Administration.

    PubMed

    Gould, Robert W; Czoty, Paul W; Porrino, Linda J; Nader, Michael A

    2017-04-01

    Individual differences in response to social stress and environmental enrichment may contribute to variability in response to behavioral and pharmacological treatments for drug addiction. In monkeys, social status influences the reinforcing effects of cocaine and the effects of some drugs on cocaine self-administration. In this study, we used male cynomolgus macaques (n=15) living in established social groups to examine the effects of social confrontation on the reinforcing effects of cocaine using a food-drug choice procedure. On the test day, a dominant or subordinate monkey was removed from his homecage and placed into another social pen; 30 min later he was studied in a cocaine-food choice paradigm. For the group, following social confrontation, sensitivity to cocaine reinforcement was significantly greater in subordinate monkeys compared with dominant animals. Examining individual-subject data revealed that for the majority of monkeys (9/15), serving as an intruder in another social group affected cocaine self-administration and these effects were dependent on the social rank of the monkey. For subordinate monkeys, sensitivity to the reinforcing effects of cocaine increased while sensitivity decreased in dominant monkeys. To investigate potential mechanisms mediating these effects, brain glucose metabolism was studied in a subset of monkeys (n=8) using [ 18 F]fluorodeoxyglucose ([ 18 F]FDG) with positron emission tomography. Dominant and subordinate monkeys displayed distinctly different patterns of brain glucose metabolism in their homecage, including areas associated with vigilance and stress/anxiety, respectively, and during social confrontation. These data demonstrate that, depending on an individual's social status, the same social experience can have divergent effects on brain function and cocaine self-administration. These phenotypic differences in response to social conditions support a personalized treatment approach to cocaine addiction.

  5. Social Status in Monkeys: Effects of Social Confrontation on Brain Function and Cocaine Self-Administration

    PubMed Central

    Gould, Robert W; Czoty, Paul W; Porrino, Linda J; Nader, Michael A

    2017-01-01

    Individual differences in response to social stress and environmental enrichment may contribute to variability in response to behavioral and pharmacological treatments for drug addiction. In monkeys, social status influences the reinforcing effects of cocaine and the effects of some drugs on cocaine self-administration. In this study, we used male cynomolgus macaques (n=15) living in established social groups to examine the effects of social confrontation on the reinforcing effects of cocaine using a food-drug choice procedure. On the test day, a dominant or subordinate monkey was removed from his homecage and placed into another social pen; 30 min later he was studied in a cocaine-food choice paradigm. For the group, following social confrontation, sensitivity to cocaine reinforcement was significantly greater in subordinate monkeys compared with dominant animals. Examining individual-subject data revealed that for the majority of monkeys (9/15), serving as an intruder in another social group affected cocaine self-administration and these effects were dependent on the social rank of the monkey. For subordinate monkeys, sensitivity to the reinforcing effects of cocaine increased while sensitivity decreased in dominant monkeys. To investigate potential mechanisms mediating these effects, brain glucose metabolism was studied in a subset of monkeys (n=8) using [18F]fluorodeoxyglucose ([18F]FDG) with positron emission tomography. Dominant and subordinate monkeys displayed distinctly different patterns of brain glucose metabolism in their homecage, including areas associated with vigilance and stress/anxiety, respectively, and during social confrontation. These data demonstrate that, depending on an individual’s social status, the same social experience can have divergent effects on brain function and cocaine self-administration. These phenotypic differences in response to social conditions support a personalized treatment approach to cocaine addiction. PMID

  6. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study.

    PubMed

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick MacDonald; Hansen, Nanna; Hjordt, Liv Vadskjær; Frokjaer, Vibe Gedsoe

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.

  7. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study

    PubMed Central

    Fisher, Patrick MacDonald; Hansen, Nanna; Hjordt, Liv Vadskjær; Frokjaer, Vibe Gedsoe

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits. PMID:28880910

  8. Positron-rubidium scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.

    1990-01-01

    A 5-state close-coupling calculation (5s-5p-4d-6s-6p) was carried out for positron-Rb scattering in the energy range 3.7 to 28.0 eV. In contrast to the results of similar close-coupling calculations for positron-Na and positron-K scattering the (effective) total integrated cross section has an energy dependence which is contrary to recent experimental measurements.

  9. Mapping the Brain.

    ERIC Educational Resources Information Center

    Begley, Sharon; And Others

    1992-01-01

    Describes powerful new devices that "peer" through skull and "see" brain at work allowing neuroscientists to pursue the well springs of thought and emotion in their search for the origins of intelligence and language. Discusses the following scanning technologies: Magnetic Resonance Imaging (MRI), Positron Emission Tomography…

  10. HIGHER SERUM TOTAL CHOLESTEROL LEVELS IN LATE MIDDLE AGE ARE ASSOCIATED WITH GLUCOSE HYPOMETABOLISM IN BRAIN REGIONS AFFECTED BY ALZHEIMER’S DISEASE AND NORMAL AGING

    PubMed Central

    Reiman, Eric M.; Chen, Kewei; Langbaum, Jessica B.S.; Lee, Wendy; Reschke, Cole; Bandy, Daniel; Alexander, Gene E.; Caselli, Richard J.

    2010-01-01

    Epidemiological studies suggest that higher midlife serum total cholesterol levels are associated with an increased risk of Alzheimer’s disease (AD). Using fluorodeoxyglucose positron emission tomography (PET) in the study of cognitively normal late-middle-aged people, we demonstrated an association between apolipoprotein E (APOE) ε4 gene dose, the major genetic risk factor for late-onset AD, and lower measurements of the cerebral metabolic rate for glucose (CMRgl) in AD-affected brain regions, we proposed using PET as a presymptomatic endophenotype to evaluate other putative AD risk modifiers, and we then used it to support an aggregate cholesterol-related genetic risk score in the risk of AD. In the present study, we used PET to investigate the association between serum total cholesterol levels and cerebral metabolic rate for glucose metabolism (CMRgl) in 117 cognitively normal late middle-aged APOE ε4 homozygotes, heterozygotes and noncarriers. Higher serum total cholesterol levels were associated with lower CMRgl bilaterally in precuneus, parietotemporal and prefrontal regions previously found to be preferentially affected by AD, and in additional frontal regions previously found to be preferentially affected by normal aging. The associations were greater in APOE ε4 carriers than non-carriers in some of the AD-affected brain regions. We postulate the higher midlife serum total cholesterol levels accelerate brain processes associated with normal aging and conspire with other risk factors in the predisposition to AD. We propose using PET in proof-of-concept randomized controlled trials to rapidly evaluate the effects of midlife cholesterol-lowering treatments on the brain changes associated with normal aging and AD. PMID:19631758

  11. Positron studies in catalysis research

    NASA Astrophysics Data System (ADS)

    During the past eight months, the authors have made progress in several areas relevant to the eventual use of positron techniques in catalysis research. They have come closer to the completion of their positron microscope, and at the same time have performed several studies in their non-microscopic positron spectrometer which should ultimately be applicable to catalysis. The current status of the efforts in each of these areas is summarized in the following sections: Construction of the positron microscope (optical element construction, data collection software, and electronic sub-assemblies); Doppler broadening spectroscopy of metal silicide; Positron lifetime spectroscopy of glassy polymers; and Positron lifetime measurements of pore-sizes in zeolites.

  12. Early prosthetic aortic valve infection identified with the use of positron emission tomography in a patient with lead endocarditis.

    PubMed

    Amraoui, Sana; Tlili, Ghoufrane; Sohal, Manav; Bordenave, Laurence; Bordachar, Pierre

    2016-12-01

    18-Fluorodeoxyglucose positron emission tomography/computerized tomography (FDG PET/CT) scanning has recently been proposed as a diagnostic tool for lead endocarditis (LE). FDG PET/CT might be also useful to localize associated septic emboli in patients with LE. We report an interesting case of a LE patient with a prosthetic aortic valve in whom a trans-esophageal echocardiogram did not show associated aortic endocarditis. FDG PET/CT revealed prosthetic aortic valve infection. A second TEE performed 2 weeks after identified aortic vegetation. A longer duration of antimicrobial therapy with serial follow-up echocardiography was initiated. There was also increased uptake in the sigmoid colon, corresponding to focal polyps resected during a colonoscopy. FDG PET/CT scanning seems to be highly sensitive for prosthetic aortic valve endocarditis diagnosis. This promising diagnostic tool may be beneficial in LE patients, by identifying septic emboli and potential sites of pathogen entry.

  13. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  14. Three-Dimensional Image Fusion of 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography and Contrast-Enhanced Computed Tomography for Computer-Assisted Planning of Maxillectomy of Recurrent Maxillary Squamous Cell Carcinoma and Defect Reconstruction.

    PubMed

    Yu, Yao; Zhang, Wen-Bo; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin

    2017-06-01

    The purpose of this study was to describe new technology assisted by 3-dimensional (3D) image fusion of 18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) for computer planning of a maxillectomy of recurrent maxillary squamous cell carcinoma and defect reconstruction. Treatment of recurrent maxillary squamous cell carcinoma usually includes tumor resection and free flap reconstruction. FDG-PET/CT provided images of regions of abnormal glucose uptake and thus showed metabolic tumor volume to guide tumor resection. CECT data were used to create 3D reconstructed images of vessels to show the vascular diameters and locations, so that the most suitable vein and artery could be selected during anastomosis of the free flap. The data from preoperative maxillofacial CECT scans and FDG-PET/CT imaging were imported into the navigation system (iPlan 3.0; Brainlab, Feldkirchen, Germany). Three-dimensional image fusion between FDG-PET/CT and CECT was accomplished using Brainlab software according to the position of the 2 skulls simulated in the CECT image and PET/CT image, respectively. After verification of the image fusion accuracy, the 3D reconstruction images of the metabolic tumor, vessels, and other critical structures could be visualized within the same coordinate system. These sagittal, coronal, axial, and 3D reconstruction images were used to determine the virtual osteotomy sites and reconstruction plan, which was provided to the surgeon and used for surgical navigation. The average shift of the 3D image fusion between FDG-PET/CT and CECT was less than 1 mm. This technique, by clearly showing the metabolic tumor volume and the most suitable vessels for anastomosis, facilitated resection and reconstruction of recurrent maxillary squamous cell carcinoma. We used 3D image fusion of FDG-PET/CT and CECT to successfully accomplish resection and reconstruction of recurrent maxillary squamous cell carcinoma

  15. Effects of Aerobic Training on Cognition and Brain Glucose Metabolism in Subjects with Mild Cognitive Impairment.

    PubMed

    Porto, Fábio Henrique de Gobbi; Coutinho, Artur Martins Novaes; Pinto, Ana Lucia de Sá; Gualano, Bruno; Duran, Fabio Luís de Souza; Prando, Silvana; Ono, Carla Rachel; Spíndola, Lívia; de Oliveira, Maira Okada; do Vale, Patrícia Helena Figuerêdo; Nitrini, Ricardo; Buchpiguel, Carlos Alberto; Brucki, Sonia Maria Dozzi

    2015-01-01

    Aerobic training (AT) is a promising intervention for mild cognitive impairment (MCI). To evaluate the effects of AT on cognition and regional brain glucose metabolism (rBGM) in MCI patients. Subjects performed a twice-a-week, moderate intensity, AT program for 24 weeks. Assessment with ADAS-cog, a comprehensive neuropsychological battery, and evaluation of rBGM with positron emission tomography with 18F-fluorodeoxyglucose ([18F]FDG-PET) were performed before and after the intervention. Aerobic capacity was compared using the maximal oxygen consumption VO2max (mL/Kg/min). [18F]FDG-PET data were analyzed on a voxel-by-voxel basis with SPM8 software. Forty subjects were included, with a mean (M) age of 70.3 (5.4) years and an initial Mini-Mental State Exam score of 27.4 (1.7). Comparisons using paired t-tests revealed improvements in the ADAS-cog (M difference: -2.7 (3.7), p <  0.001) and VO2max scores (M difference: 1.8 (2.0) mL/kg/min, p <  0.001). Brain metabolic analysis revealed a bilateral decrease in the rBGM of the dorsal anterior cingulate cortex, pFWE = 0.04. This rBGM decrease was negatively correlated with improvement in a visuospatial function/attentional test (rho =-0.31, p = 0.04). Several other brain areas also showed increases or decreases in rBGM. Of note, there was an increase in the retrosplenial cortex, an important node of the default mode network, that was negatively correlated with the metabolic decrease in the dorsal anterior cingulate cortex (r =-0.51, p = 0.001). AT improved cognition and changed rBGM in areas related to cognition in subjects with MCI.

  16. Disseminated Skeletal Muscle and Cardiac Metastasis from Squamous Cell Carcinoma of the Lung Detected with FDG and FLT PET/CT.

    PubMed

    Jain, Tarun Kumar; Rayamajhi, Sampanna Jung; Basher, Rajender Kumar; Gupta, Dheeraj; Maturu, Venkata Nagarjuna; Mittal, Bhagwant Rai

    2016-09-01

    Lung cancer is one of the leading cancers all over the world. Positron emission tomography (PET) using 18F fluorodeoxyglucose (18F FDG) is useful for staging of the disease and decide the appropriate management. 3'-deoxy-3'-18 F-fluorothymidine (18F FLT) is a tracer being extensively evaluated currently and is said to represent tumor proliferation. Common sites of metastases from lung cancer include adrenal glands, bone, and brain. Muscle metastasis and cardiac metastasis are uncommon findings. We report a case of squamous cell carcinoma of the lung with metastases to multiple skeletal muscles and myocardium detected with both FDG and FLT PET/computed tomography (CT).

  17. Unlocking the Secrets of the Brain, Part II: A Continuing Look at Techniques for Exploring the Brain.

    ERIC Educational Resources Information Center

    Powledge, Tabitha M.

    1997-01-01

    Describes techniques for delving into the brain including positron emission tomography (PET), single photon emission computed tomography (SPECT), electroencephalogram (EEG), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and low-tech indirect studies. (JRH)

  18. Fluorine-18-Labeled Fluoromisonidazole Positron Emission and Computed Tomography-Guided Intensity-Modulated Radiotherapy for Head and Neck Cancer: A Feasibility Study

    PubMed Central

    Lee, Nancy Y.; Mechalakos, James G.; Nehmeh, Sadek; Lin, Zhixiong; Squire, Olivia D.; Cai, Shangde; Chan, Kelvin; Zanzonico, Pasquale B.; Greco, Carlo; Ling, Clifton C.; Humm, John L.; Schöder, Heiko

    2010-01-01

    Purpose Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTVh) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTVh increases the tumor control probability. This study examined the feasibility of fluorine-18–labeled fluoromisonidazole positron emission tomography/computed tomography (18F-FMISO PET/CT)–guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. Methods and Materials 18F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and 18F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated 18F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate 18F-FMISO PET/CT-guided IMRT plans. Results The heterogeneous distribution of 18F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing 18F-FMISO PET/CT–guided IMRT for 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTVh for 2 patients and were successful in 1, with normal tissue sparing. Conclusion It was feasible to dose escalate the GTVh to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC

  19. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  20. A positron remoderator for the high intensity positron source NEPOMUC

    NASA Astrophysics Data System (ADS)

    Piochacz, Christian; Kögel, Gottfried; Egger, Werner; Hugenschmidt, Christoph; Mayer, Jakob; Schreckenbach, Klaus; Sperr, Peter; Stadlbauer, Martin; Dollinger, Günther

    2008-10-01

    A remoderator for the high intensity positron source NEPOMUC was developed and installed at the beam facility. A beam of remoderated positrons could be produced with different energies and a diameter of less than 2 mm was obtained. The efficiency of the remoderation setup was determined to be 5%. Due to the brilliance of the remoderated beam, the measurements at the coincidence Doppler broadening spectrometer (CDBS) and at the positron annihilation induced Auger electron spectrometer (PAES) could be improved. The setup and functionality of the remoderation device is presented as well as the first measurements at the remoderator, CDBS and PAES.

  1. Overview of positron emission tomography chemistry: clinical and technical considerations and combination with computed tomography.

    PubMed

    Koukourakis, G; Maravelis, G; Koukouraki, S; Padelakos, P; Kouloulias, V

    2009-01-01

    The concept of emission and transmission tomography was introduced by David Kuhl and Roy Edwards in the late 1950s. Their work later led to the design and construction of several tomographic instruments at the University of Pennsylvania. Tomographic imaging techniques were further developed by Michel Ter-Pogossian, Michael E. Phelps and others at the Washington University School of Medicine. Positron emission tomography (PET) is a nuclear medicine imaging technique which produces a 3-dimensional image or map of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Images of tracer concentration in 3-dimensional space within the body are then reconstructed by computer analysis. In modern scanners, this reconstruction is often accomplished with the aid of a CT X-ray scan performed on the patient during the same session, in the same machine. If the biologically active molecule chosen for PET is 18F-fluorodeoxyglucose (FDG), an analogue of glucose, the concentrations of tracer imaged give tissue metabolic activity in terms of regional glucose uptake. Although use of this tracer results in the most common type of PET scan, other tracer molecules are used in PET to image the tissue concentration of many other types of molecules of interest. The main role of this article was to analyse the available types of radiopharmaceuticals used in PET-CT along with the principles of its clinical and technical considerations.

  2. Clinical and Radiographic Response of Extramedullary Leukemia in Patients Treated With Gemtuzumab Ozogamicin.

    PubMed

    McNeil, Michael J; Parisi, Marguerite T; Hijiya, Nobuko; Meshinchi, Soheil; Cooper, Todd; Tarlock, Katherine

    2018-05-04

    Extramedullary leukemia (EML) is common in pediatric acute leukemia and can present at diagnosis or relapse. CD33 is detected on the surface of myeloid blasts in many patients with acute myelogenous leukemia and is the target of the antibody drug conjugate gemtuzumab ozogamicin (GO). Here we present 2 patients with CD33 EML treated with GO. They achieved significant response, with reduction of EML on both clinical and radiographic exams, specifically fluorine fluorodeoxyglucose positron emission tomography/computed tomography, demonstrating potential for targeted therapy with GO as a means of treating EML in patients with CD33 leukemia and the utility of fluorine fluorodeoxyglucose positron emission tomography/computed tomography monitoring in EML.

  3. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  4. Positron emission tomography response at the time of autologous stem cell transplantation predicts outcome of patients with relapsed and/or refractory Hodgkin’s lymphoma responding to prior salvage therapy

    PubMed Central

    Devillier, Raynier; Coso, Diane; Castagna, Luca; Brenot Rossi, Isabelle; Anastasia, Antonella; Chiti, Arturo; Ivanov, Vadim; Schiano, Jean Marc; Santoro, Armando; Chabannon, Christian; Balzarotti, Monica; Blaise, Didier; Bouabdallah, Reda

    2012-01-01

    Background High-dose chemotherapy followed by autologous stem cell transplantation is the standard treatment for relapsed and/or refractory Hodgkin’s lymphoma although half of patients relapse after transplantation. Predictive factors, such as relapse within 12 months, Ann-Arbor stage at relapse, and relapse in previously irradiated fields are classically used to identify patients with poor outcome. Recently, 18-fluorodeoxyglucose positron emission tomography has emerged as a new method for providing information to predict outcome. The aim of this study was to confirm the predictive value of positron emission tomography status after salvage therapy and to compare single versus tandem autologous stem cell transplantation in patients with relapsed and/or refractory Hodgkin’s lymphoma. Design and Methods We report a series of 111 consecutive patients with treatment-sensitive relapsed and/or treatment-refractory Hodgkin’s lymphoma who achieved complete (positron emission tomography-negative group) or partial remission (positron emission tomography-positive group) at positron emission tomography evaluation after salvage chemotherapy and who underwent single or tandem autologous stem cell transplantation. Results Five-year overall and progression-free survival rates were 81% and 64%, respectively. There were significant differences in 5-year progression-free survival (79% versus 23%; P<0.001) and 5-year overall survival (90% versus 55%, P=0.001) between the positron emission tomography-negative and -positive groups, respectively. A complete response, as determined by positron emission tomography evaluation, after salvage therapy predicted significantly better 5-year overall survival rates in both intermediate (91% versus 50%; P=0.029) and unfavorable (89% versus 58%; P=0.026) risk subgroup analyses. In the positron emission tomography-positive subgroup, tandem transplantation improved 5-year progression-free survival from 0% (in the single transplantation group) to

  5. Positron Beam Characteristics at NEPOMUC Upgrade

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.

    2014-04-01

    In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.

  6. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Li, Ying; Liu, Gaung; Chen, Hongmin; Zhang, Junjie; Gadzia, Joseph E.

    2006-02-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  7. Polarization observables using positron beams

    NASA Astrophysics Data System (ADS)

    Schmidt, Axel

    2018-05-01

    The discrepancy between polarized and unpolarized measurements of the proton's electromagnetic form factors is striking, and suggests that two-photon exchange (TPE) may be playing a larger role in elastic electron-proton scattering than is estimated in standard radiative corrections formulae. While TPE is difficult to calculate in a model-independent way, it can be determined experimentally from asymmetries between electron-proton and positron-proton scattering. The possibility of a polarized positron beam at Jefferson Lab would open the door to measurements of TPE using polarization observables. In these proceedings, I examine the feasibility of measuring three such observables with positron scattering. Polarization-transfer, specifically the ɛ-dependence for fixed Q2, is an excellent test of TPE, and the ability to compare electrons and positrons would lead to a drastic reduction of systematics. However, such a measurement would be severely statistically limited. Normal single-spin asymmetries (SSAs) probe the imaginary part of the TPE amplitude and can be improved by simultaneous measurements with electron and positron beams. Beam-normal SSAs are too small to be measured with the proposed polarized positron beam, but target-normal SSAs could be feasibly measured with unpolarized positrons in the spectrometer halls. This technique should be included in the physics case for developing a positron source for Jefferson Lab.

  8. Positron Annihilation in Insulating Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asoka-Kumar, P; Sterne, PA

    2002-10-18

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO{sub 2}. Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, whichmore » predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO{sub 2} samples.« less

  9. Identification of brain regions predicting epileptogenesis by serial [18F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy.

    PubMed

    Russmann, Vera; Brendel, Matthias; Mille, Erik; Helm-Vicidomini, Angela; Beck, Roswitha; Günther, Lisa; Lindner, Simon; Rominger, Axel; Keck, Michael; Salvamoser, Josephine D; Albert, Nathalie L; Bartenstein, Peter; Potschka, Heidrun

    2017-01-01

    Excessive activation of inflammatory signaling pathways seems to be a hallmark of epileptogenesis. Positron emission tomography (PET) allows in vivo detection of brain inflammation with spatial information and opportunities for longitudinal follow-up scanning protocols. Here, we assessed whether molecular imaging of the 18 kDa translocator protein (TSPO) can serve as a biomarker for the development of epilepsy. Therefore, brain uptake of [ 18 F]GE-180, a highly selective radioligand of TSPO, was investigated in a longitudinal PET study in a chronic rat model of temporal lobe epilepsy. Analyses revealed that the influence of the epileptogenic insult on [ 18 F]GE-180 brain uptake was most pronounced in the earlier phase of epileptogenesis. Differences were evident in various brain regions during earlier phases of epileptogenesis with [ 18 F]GE-180 standardized uptake value enhanced by 2.1 to 2.7fold. In contrast, brain regions exhibiting differences seemed to be more restricted with less pronounced increases of tracer uptake by 1.8-2.5fold four weeks following status epilepticus and by 1.5-1.8fold in the chronic phase. Based on correlation analysis, we were able to identify regions with a predictive value showing a correlation with seizure development. These regions include the amygdala as well as a cluster of brain areas. This cluster comprises parts of different brain regions, e.g. the hippocampus, parietal cortex, thalamus, and somatosensory cortex. In conclusion, the data provide evidence that [ 18 F]GE-180 PET brain imaging can serve as a biomarker of epileptogenesis. The identification of brain regions with predictive value might facilitate the development of preventive concepts as well as the early assessment of the interventional success. Future studies are necessary to further confirm the predictivity of the approach.

  10. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  11. 76 FR 68467 - Medicare and Medicaid Programs; Quarterly Listing of Program Issuances-April Through June 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...-Approved Lung JoAnna Baldwin, (410) 786-7205 Volume Reduction Surgery MS. Facilities. XIV Medicare-Approved Kate Tillman, RN, (410) 786-9252 Bariatric Surgery Facilities. MAS. XV Fluorodeoxyglucose Positron...

  12. Verbal fluency in research conducted with PET technique under conditions of extended cognitive activation with the use of 18F-fluorodeoxyglucose (FDG) tracer.

    PubMed

    Zając-Lamparska, Ludmiła; Wiłkość, Monika; Markowska, Anita; Laskowska-Levy, Ilona Paulina; Wróbel, Marek; Małkowski, Bogdan

    2017-08-29

    Functional neuroimaging of the brain is a widely used method to study cognitive functions. The aim of this study was to compare the activity of the brain during performance of the tasks of phonemic and semantic fluency with the paced-overt technique in terms of prolonged activation of the brain. The study included 17 patients aged 20-40 years who were treated in the past for Hodgkin'slymphoma, now in remission. Due to the type of task, the subjectswere divided into two groups. Nine people performed the phonemic fluency task, and eight semantic. Due to the disease, all subjects were subject to neuropsychological diagnosis. The diagnosis of any cognitive impairment was an exclusion criterion. Neuroimaging was performed using PET technique with 18F-fluorodeoxyglucose (FDG) tracer. Performance of a verbal fluency test, regardless of the version of the task, was associated with greater activity of the left hemisphere of the brain. The most involved areas compared with other areas of key importance for the performance of verbal fluency tasks were frontal lobes. An increased activity of parietal structures was also shown. The study did not reveal differences in brain activity depending on the type of task. Performing the test in both phonemic and semantic form for a long time, in terms of increased cognitive control resulting from the test procedure, could result in significant advantage of prefrontal lobe activityin both types of tasks and made it impossible to observe the processes specific to each of them.

  13. Clinical applications of PET in oncology.

    PubMed

    Rohren, Eric M; Turkington, Timothy G; Coleman, R Edward

    2004-05-01

    Positron emission tomography (PET) provides metabolic information that has been documented to be useful in patient care. The properties of positron decay permit accurate imaging of the distribution of positron-emitting radiopharmaceuticals. The wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. PET is used for characterizing brain disorders such as Alzheimer disease and epilepsy and cardiac disorders such as coronary artery disease and myocardial viability. The neurologic and cardiac applications of PET are not covered in this review. The major utilization of PET clinically is in oncology and consists of imaging the distribution of fluorine 18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. FDG PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. In this review, the physics and instrumentation aspects of PET are described. Many of the clinical applications in oncology are mature and readily covered by third-party payers. Other applications are being used clinically but have not been as carefully evaluated in the literature, and these applications may not be covered by third-party payers. The developing applications of PET are included in this review.

  14. Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography

    NASA Astrophysics Data System (ADS)

    Sheth, Rahul A.; Josephson, Lee; Mahmood, Umar

    2009-11-01

    A fluorescent analog to 2-deoxy-2 [18F] fluoro-D-glucose position emission tomography (FDG-PET) would allow for the introduction of metabolic imaging into intraoperative and minimally invasive settings. We present through in vitro and in vivo experimentation an evaluation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescently labeled glucose molecule, as a molecular beacon of glucose utilization. The competitive inhibition of 2-NBDG uptake by excess free glucose is directly compared against FDG uptake inhibition in cultured cells. 2-NBDG uptake in the brain of a mouse experiencing a generalized seizure is measured, as well as in subcutaneously implanted tumors in mice during fed and fasting states. Localization of 2-NBDG into malignant tissues is studied by laser scanning microscopy. The clinical relevance of 2-NBDG imaging is examined by performing fluorescence colonoscopy, and by correlating preoperative FDG-PET with intraoperative fluorescence imaging. 2-NBDG exhibits a similar uptake inhibition to FDG by excess glucose in the growth media. Uptake is significantly increased in the brain of an animal experiencing seizures versus control, and in subcutaneous tumors after the animals are kept nil per os (NPO) for 24 h versus ad libidum feeding. The clinical utility of 2-NBDG is confirmed by the demonstration of very high target-to-background ratios in minimally invasive and intraoperative imaging of malignant lesions. We present an optical analog of FDG-PET to extend the applicability of metabolic imaging to minimally invasive and intraoperative settings.

  15. A next generation positron microscope and a survey of candidate samples for future positron studies

    NASA Astrophysics Data System (ADS)

    Dull, Terry Lou

    A positron microscope has been constructed and is nearing the conclusion of its assembly and testing. The instrument is designed to perform positron and electron microscopy in both scanning and magnifying modes. In scanning mode, a small beam of particles is rastered across the target and the amplitude of a positron or electron related signal is recorded as a function of position. For positrons this signal may come from Doppler Broadening Spectroscopy, Reemitted Positron Spectroscopy or Positron Annihilation Lifetime Spectroscopy. For electrons this signal may come from the number of secondary electrons or Auger Electron Spectroscopy. In magnifying mode an incident beam of particles is directed onto the target and emitted particles, either secondary electrons or reemitted positrons, are magnified to form an image. As a positron microscope the instrument will primarily operate in magnifying mode, as a positron reemission microscope. As an electron microscope the instrument will be able to operate in both magnifying and scanning modes. Depth-profiled Doppler Broadening Spectroscopy studies using a non-microscopic low-energy positron beam have also been performed on a series of samples to ascertain the applicability of positron spectroscopies and/or microscopy to their study. All samples have sub-micron film and/or feature size and thus are only susceptible to positron study with low-energy beams. Several stoichiometries and crystallinities of chalcogenide thin films (which can be optically reversibly switched between crystalline states) were studied and a correlation was found to exist between the amorphous/FCC S-parameter difference and the amorphous/FCC switching time. Amorphous silicon films were studied in an attempt to observe the well-established Staebler-Wronski effect as well as the more controversial photodilatation effect. However, DBS was not able to detect either effect. The passive oxide films on titanium and aluminum were studied in an attempt to verify

  16. (18)F-Fluorodeoxyglucose PET/MR Imaging in Head and Neck Cancer.

    PubMed

    Platzek, Ivan

    2016-10-01

    (18)F-fluorodeoxyglucose (FDG) PET/MR imaging does not offer significant additional information in initial staging of squamous cell carcinoma of the head and neck when compared with standalone MR imaging. In patients with suspected tumor recurrence, FDG PET/MR imaging has higher sensitivity than MR imaging, although its accuracy is equivalent to the accuracy of FDG PET/CT. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  18. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  19. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly.

    PubMed

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-12-02

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60-85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [(18)F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults.

  20. Temperament, character and serotonin activity in the human brain: a positron emission tomography study based on a general population cohort.

    PubMed

    Tuominen, L; Salo, J; Hirvonen, J; Någren, K; Laine, P; Melartin, T; Isometsä, E; Viikari, J; Cloninger, C R; Raitakari, O; Hietala, J; Keltikangas-Järvinen, L

    2013-04-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT) density in vivo with positron emission tomography (PET) in healthy individuals with high or low HA scores using an 'oversampling' study design. Method Subjects consistently in either upper or lower quartiles for the HA trait were selected from a population-based cohort in Finland (n = 2075) with pre-existing Temperament and Character Inventory (TCI) scores. A total of 22 subjects free of psychiatric and somatic disorders were included in the matched high- and low-HA groups. The main outcome measure was regional 5-HTT binding potential (BPND) in high- and low-HA groups estimated with PET and [11C]N,N-dimethyl-2-(2-amino-4-methylphenylthio)benzylamine ([11C]MADAM). In secondary analyses, 5-HTT BPND was correlated with other TCI dimensions. 5-HTT BPND did not differ between high- and low-HA groups in the midbrain or any other brain region. This result remained the same even after adjusting for other relevant TCI dimensions. Higher 5-HTT BPND in the raphe nucleus predicted higher scores in 'self-directedness'. This study does not support an association between the temperament dimension HA and serotonin transporter density in healthy subjects. However, we found a link between high serotonin transporter density and high 'self-directedness' (ability to adapt and control one's behaviour to fit situations in accord with chosen goals and values). We suggest that biological factors are more important in explaining variability in character than previously thought.

  1. Positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Olenga, Antoine; Weiss, A. H.

    2013-03-01

    The process by which oxide layers are formed on metal surfaces is still not well understood. In this work we present the results of theoretical studies of positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Cu(110) has been performed on the basis of density functional theory and using DMOl3 code. The changes in the positron work function and the surface dipole moment when oxygen atoms occupy on-surface and sub-surface sites have been attributed to charge redistribution within the first two layers, buckling effects within each layer and interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidized transition metal surfaces using positron annihilation induced Auger electron spectroscopy. This work was supported in part by the National Science Foundation Grant DMR-0907679.

  2. Functional neuroanatomical associations of working memory in early-onset Alzheimer's disease.

    PubMed

    Kobylecki, Christopher; Haense, Cathleen; Harris, Jennifer M; Stopford, Cheryl L; Segobin, Shailendra H; Jones, Matthew; Richardson, Anna M T; Gerhard, Alexander; Anton-Rodriguez, José; Thompson, Jennifer C; Herholz, Karl; Snowden, Julie S

    2018-01-01

    To characterize metabolic correlates of working memory impairment in clinically defined subtypes of early-onset Alzheimer's disease. Established models of working memory suggest a key role for frontal lobe function, yet the association in Alzheimer's disease between working memory impairment and visuospatial and language symptoms suggests that temporoparietal neocortical dysfunction may be responsible. Twenty-four patients with predominantly early-onset Alzheimer's disease were clinically classified into groups with predominantly amnestic, multidomain or visual deficits. Patients underwent neuropsychological evaluation focused on the domains of episodic and working memory, T1-weighted magnetic resonance imaging and brain fluorodeoxyglucose positron emission tomography. Fluorodeoxyglucose positron emission tomography data were analysed by using a region-of-interest approach. Patients with multidomain and visual presentations performed more poorly on tests of working memory compared with amnestic Alzheimer's disease. Working memory performance correlated with glucose metabolism in left-sided temporoparietal, but not frontal neocortex. Carriers of the apolipoprotein E4 gene showed poorer episodic memory and better working memory performance compared with noncarriers. Our findings support the hypothesis that working memory changes in early-onset Alzheimer's disease are related to temporoparietal rather than frontal hypometabolism and show dissociation from episodic memory performance. They further support the concept of subtypes of Alzheimer's disease with distinct cognitive profiles due to prominent neocortical dysfunction early in the disease course. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Intense positron beam as a source for production of electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.; Horn-Stanja, J.; Stenson, E. V.; Pedersen, T. Sunn; Saitoh, H.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Hugenschmidt, C.; Piochacz, C.

    2016-10-01

    We aim to produce magnetically confined, short Debye length electron-positron plasma and test predicted properties for such systems. A first challenge is obtaining large numbers of positrons; a table-top experiment (system size 5 cm) with a temperature less than 5 eV requires about 1010 positrons to have more than 10 Debye lengths in the system. The NEPOMUC facility at the FRM II research reactor in Germany is one of the world's most intense positron sources. We report on characterization (using a retarding field energy analyzer with magnetic field gradient) of the NEPOMUC beam as delivered to the open beam port at various beam energies and in both the re-moderated and primary beam configurations in order to design optimal trapping (and accumulation) schemes for production of electron-positron plasma. The intensity of the re-moderated (primary) beam is in the range 2 -3 x 107 /s (1 - 5 x 108 /s). The re-moderated beam is currently the most promising for direct injection and confinement experiments; it has a parallel energy spread of 15 - 35% and the transverse energy spread is 6 - 15% of the parallel energy. We report on the implications for injection and trapping in a dipole magnetic field as well as plans for beam development, in situ re-moderation, and accumulation. We also report results demonstrating a difference in phosphor luminescent response to low energy positrons versus electrons.

  4. Monte Carlo investigation of positron annihilation in medical positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chin, P. W.; Spyrou, N. M.

    2007-09-01

    A number of Monte Carlo codes are available for simulating positron emission tomography (PET), however, physics approximations differ. A number of radiation processes are deemed negligible, some without rigorous investigation. Some PET literature quantify approximations to be valid, without citing the data source. The radiation source is the first step in Monte Carlo simulations, for some codes this is 511 keV photons 180° apart, not polyenergetic positrons with radiation histories of their own. Without prior assumptions, we investigated electron-positron annihilation under clinical PET conditions. Just before annihilation, we tallied the positron energy and position. Right after annihilation, we tallied the energy and separation angle of photon pairs. When comparing PET textbooks with theory, PENELOPE and EGSnrc, only the latter three agreed. From 10 6 radiation histories, a positron source of 15O in a chest phantom annihilated at as high as 1.58 MeV, producing photons with energies 0.30-2.20 MeV, 79-180° apart. From 10 6 radiation histories, an 18F positron source in a head phantom annihilated at energies as high as 0.56 MeV, producing 0.33-1.18 MeV photons 109-180° apart. 2.5% and 0.8% annihilation events occurred inflight in the chest and the head phantoms, respectively. PET textbooks typically either do not mention any deviation from 180°, or state a deviation of 0.25° or 0.5°. Our findings are founded on the well-established Heitler cross-sections and relativistic kinematics, both adopted unanimously by PENELOPE, EGSnrc and GEANT4. Our results highlight the effects of annihilation in-flight, a process sometimes forgotten within the PET community.

  5. Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis.

    PubMed

    Nakayama, N; Okumura, A; Shinoda, J; Nakashima, T; Iwama, T

    2006-07-01

    The cerebral metabolism of patients in the chronic stage of traumatic diffuse brain injury (TDBI) has not been fully investigated. To study the relationship between regional cerebral metabolism (rCM) and consciousness disturbance in patients with TDBI. 52 patients with TDBI in the chronic stage without large focal lesions were enrolled, and rCM was evaluated by fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) with statistical parametric mapping (SPM). All the patients were found to have disturbed consciousness or cognitive function and were divided into the following three groups: group A (n = 22), patients in a state with higher brain dysfunction; group B (n = 13), patients in a minimally conscious state; and group C (n = 17), patients in a vegetative state. rCM patterns on FDG-PET among these groups were evaluated and compared with those of normal control subjects on statistical parametric maps. Hypometabolism was consistently indicated bilaterally in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus. Hypometabolism in these regions was the most widespread and prominent in group C, and that in group B was more widespread and prominent than that in group A. Bilateral hypometabolism in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus may reflect the clinical deterioration of TDBI, which is due to functional and structural disconnections of neural networks rather than due to direct cerebral focal contusion.

  6. Caffeine and human cerebral blood flow: A positron emission tomography study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, O.G.; Modell, J.G.; Hariharan, M.

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety weremore » also observed.« less

  7. Impact of physiological hormonal fluctuations on 18F-fluorodeoxyglucose uptake in breast cancer.

    PubMed

    Miyake, Kanae K; Nakamoto, Yuji; Saji, Shigehira; Sugie, Tomoharu; Kurihara, Kensuke; Kanao, Shotaro; Ikeda, Debra M; Toi, Masakazu; Togashi, Kaori

    2018-06-01

    Premenopausal physiologic steroid levels change cyclically, in contrast to steady state low levels seen in postmenopausal patients. The purpose of this study was to evaluate whether 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in breast cancer is influenced by physiological hormonal fluctuations. A total of 160 primary invasive breast cancers from 155 females (54 premenopausal, 101 postmenopausal) who underwent 18 F-FDG positron emission tomography/computed tomography before therapy were retrospectively analyzed. The maximal standardized uptake values (SUVmax) of tumors were compared with menstrual phases and menopausal status according to the following subgroups: 'luminal A-like,' 'luminal B-like,' and 'non-luminal.' Additionally, the effect of estradiol (E2) on 18 F-FDG uptake in breast cancer cells was evaluated in vitro. Among premenopausal patients, SUVmax during the periovulatory-luteal phase was significantly higher than that during the follicular phase in luminal A-like tumors (n = 25, p = 0.004), while it did not differ between the follicular phase and the periovulatory-luteal phase in luminal B-like (n = 24) and non-luminal tumors (n = 7). Multiple regression analysis showed menstrual phase, tumor size, and Ki-67 index are independent predictors for SUVmax in premenopausal luminal A-like tumors. There were no significant differences in SUVmax between pre- and postmenopausal patients in any of the subgroups. In in vitro studies, uptake in estrogen receptor-positive cells was significantly augmented when E2 concentration was increased from 0.01 to ≥ 1 nM. Our data suggest that 18 F-FDG uptake may be impacted by physiological hormonal fluctuations during menstrual cycle in luminal A-like cancers, and that E2 could be partly responsible for these events.

  8. Positron emission tomography in renal cell carcinoma: an imaging biomarker in development.

    PubMed

    Khandani, Amir H; Rathmell, W Kimryn

    2012-07-01

    Positron emission tomography (PET) has revolutionized cancer imaging. The current workhorse of molecular imaging, fluorodeoxyglucose (FDG) PET is used in the majority of malignant tumors with a few exceptions. Renal cell carcinoma (RCC) is one of those exceptions because of its variable uptake of FDG, although this variable uptake may actually be an asset in predicting response to some targeted agents, as will be discussed later. Beyond FDG, there is only scattered information in the literature on the use of PET in RCC. The purpose of this review is to summarize the current status of PET usage in RCC and point out its potentials and future directions. We will start with a brief overview of the demographics, molecular pathogenesis, and evolving treatment strategies in RCC because this information is essential for better understanding of uptake of various PET radiotracers in this cancer and their indications. This will be followed by discussing the role of PET in characterization of indeterminate renal masses, in staging and restaging of RCC, and, finally, in predicting and monitoring therapy response. Each of these 3 areas of PET usage will include the relevant radiotracers currently in use or in development. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The use of positron emission tomography in pion radiotherapy.

    PubMed

    Goodman, G B; Lam, G K; Harrison, R W; Bergstrom, M; Martin, W R; Pate, B D

    1986-10-01

    The radioactive debris produced by pion radiotherapy can be imaged by the technique of Positron Emission Tomography (PET) as a method of non-invasive in situ verification of the pion treatment. This paper presents the first visualization of the pion stopping distribution within a tumor in a human brain using PET. Together with the tissue functional information provided by the standard PET scans using radiopharmaceuticals, the combination of pion with PET technique can provide a much better form of radiotherapy than the use of conventional radiation in both treatment planning and verification.

  10. ¹⁸F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas.

    PubMed

    Hirata, Kenji; Terasaka, Shunsuke; Shiga, Tohru; Hattori, Naoya; Magota, Keiichi; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro; Tanaka, Shinya; Kuge, Yuji; Tamaki, Nagara

    2012-05-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that (18)F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and (18)F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71-3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09-1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM

  11. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  12. Disseminated Skeletal Muscle and Cardiac Metastasis from Squamous Cell Carcinoma of the Lung Detected with FDG and FLT PET/CT

    PubMed Central

    Jain, Tarun Kumar; Rayamajhi, Sampanna Jung; Basher, Rajender Kumar; Gupta, Dheeraj; Maturu, Venkata Nagarjuna; Mittal, Bhagwant Rai

    2016-01-01

    Lung cancer is one of the leading cancers all over the world. Positron emission tomography (PET) using 18F fluorodeoxyglucose (18F FDG) is useful for staging of the disease and decide the appropriate management. 3’-deoxy-3’-18 F-fluorothymidine (18F FLT) is a tracer being extensively evaluated currently and is said to represent tumor proliferation. Common sites of metastases from lung cancer include adrenal glands, bone, and brain. Muscle metastasis and cardiac metastasis are uncommon findings. We report a case of squamous cell carcinoma of the lung with metastases to multiple skeletal muscles and myocardium detected with both FDG and FLT PET/computed tomography (CT). PMID:27651747

  13. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    PubMed

    Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming

    2014-01-01

    To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  14. Measurement of positron annihilation lifetimes for positron burst by multi-detector array

    NASA Astrophysics Data System (ADS)

    Wang, B. Y.; Kuang, P.; Liu, F. Y.; Han, Z. J.; Cao, X. Z.; Zhang, P.

    2018-03-01

    It is currently impossible to exploit the timing information in a gamma-ray pulse generated within nanoseconds when a high-intensity positron burst annihilation event occurs in a target using conventional single-detector methods. A state-of-the-art solution to the problem is proposed in this paper. In this approach, a multi-detector array composed of many independent detection cells mounted spherically around the target is designed to detect the time distribution of the annihilated gamma rays generated following, in particular, a positron burst emitting huge amounts of positrons in a short pulse duration, even less than a few nano- or picoseconds.

  15. Simplifications in analyzing positron emission tomography data: effects on outcome measures.

    PubMed

    Logan, Jean; Alexoff, David; Kriplani, Aarti

    2007-10-01

    Initial validation studies of new radiotracers generally involve kinetic models that require a measured arterial input function. This allows for the separation of tissue binding from delivery and blood flow effects. However, when using a tracer in a clinical setting, it is necessary to eliminate arterial blood sampling due to its invasiveness and the extra burden of counting and analyzing the blood samples for metabolites. In some cases, it may also be necessary to replace dynamic scanning with a shortened scanning period some time after tracer injection, as is done with FDG (F-18 fluorodeoxyglucose). These approximations represent loss of information. In this work, we considered several questions related to this: (1) Do differences in experimental conditions (drug treatments) or populations affect the input function, and what effect, if any, does this have on the final outcome measure? (2) How do errors in metabolite measurements enter into results? (3) What errors are incurred if the uptake ratio is used in place of the distribution volume ratio? (4) Is one- or two-point blood sampling any better for FDG data than the standardized uptake value? and (5) If blood sampling is necessary, what alternatives are there to arterial blood sampling? The first three questions were considered in terms of data from human dynamic positron emission tomography (PET) studies under conditions of baseline and drug pretreatment. Data from [11C]raclopride studies and those from the norepinephrine transporter tracer (S,S)-[11C]O-methyl reboxetine were used. Calculation of a metabolic rate for FDG using the operational equation requires a measured input function. We tested a procedure based on two blood samples to estimate the plasma integral and convolution that occur in the operational equation. There are some tracers for which blood sampling is necessary. Strategies for brain studies involve using the internal carotids in estimating the radioactivity after correcting for partial

  16. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

    PubMed

    Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B

    2017-11-01

    Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

  17. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  18. Effects of hyperglycemia on fluorine-18-fluorodeoxyglucose biodistribution in a large oncology clinical practice.

    PubMed

    Rosica, Dillenia; Cheng, Su-Chun; Hudson, Margo; Sakellis, Christopher; Van den Abbeele, Annick D; Kim, Chun K; Jacene, Heather A

    2018-05-01

    Suggested cutoff points of blood glucose levels (BGL) before F-FDG PET/CT scanning vary between 120 and 200 mg/dl in current guidelines. This study's purpose was to compare the frequency of abnormal fluorine-18-fluorodeoxyglucose (F-FDG) biodistribution on PET/CT scans of patients with various ranges of abnormal BGL and to determine the effect of BGL greater than 200 mg/dl on F-FDG uptake in various organs. F-FDG PET/CT scans were retrospectively reviewed for 325 patients with BGL greater than 120 mg/dl at the time of scan and 112 with BGL less than or equal to 120 mg/dl. F-FDG biodistribution was categorized as normal, mildly abnormal, or abnormal by visual analysis of brain, background soft tissue, and muscle. Mean standardized uptake values (SUVmean) in brain, liver, fat (flank), gluteal muscle, and blood pool (aorta) were recorded. F-FDG biodistribution frequencies were assessed using a nonparametric χ-test for trend. Normal organ SUVs were compared using Kruskal-Wallis tests using the following BGL groupings: ≤120, 121-150, 151-200, and ≥201 mg/dl. Although higher BGL were significantly associated with an increased proportion of abnormal biodistribution (P<0.001), most patients with BGL less than or equal to 200 mg/dl had normal or mildly abnormal biodistribution. Average brain SUVmean significantly decreased with higher BGL groupings (P<0.001). Average aorta, gluteal muscle, and liver SUVmean did not significantly differ among groups with BGL greater than 120 mg/dl (P=0.66, 0.84, and 0.39, respectively), but were significantly lower in those with BGL less than or equal to 120 mg/dl (P≤0.001). Flank fat SUVmean was not significantly different among BGL groups (P=0.67). Abnormal F-FDG biodistribution is associated with higher BGL at the time of scan, but the effects are negligible or mild in most patients with BGL less than 200 mg/dl. Although mildly increased soft tissue uptake is seen with BGL greater than 120 mg/dl, decline in

  19. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  20. Nonlinear excitations for the positron acoustic shock waves in dissipative nonextensive electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Saha, Asit

    2017-03-01

    Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.

  1. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    NASA Astrophysics Data System (ADS)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  2. Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer's disease.

    PubMed

    Xu, Cunlu; Wang, Zhenhua; Fan, Ming; Liu, Bing; Song, Ming; Zhen, Xiantong; Jiang, Tianzi

    2010-08-23

    Earlier studies showed that the Val66Met polymorphisms of the brain-derived neurotrophic factor differentially affect gray matter volume and brain region activities. This study used resting positron emission tomography to investigate the relationship between the polymorphisms of Val66Met and the regional cerebral metabolic rate in the brain. We analyzed the positron emission tomography images of 215 patients from the Alzheimer's Disease Neuroimaging Initiative and found significant differences in the parahippocampal gyrus, superior temporal gyrus, prefrontal cortex, and inferior parietal lobule when comparing Met carriers with noncarriers among both the normal controls and those with mild cognitive impairment. For those with Alzheimer's disease, we also found additional differences in the bilateral insula between the carriers and noncarriers.

  3. Modifiable Risk Factors and Brain Positron Emission Tomography Measures of Amyloid and Tau in Nondemented Adults with Memory Complaints.

    PubMed

    Merrill, David A; Siddarth, Prabha; Raji, Cyrus A; Emerson, Natacha D; Rueda, Florangel; Ercoli, Linda M; Miller, Karen J; Lavretsky, Helen; Harris, Laurel M; Burggren, Alison C; Bookheimer, Susan Y; Barrio, Jorge R; Small, Gary W

    2016-09-01

    Exercise and diet impact body composition, but their age-related brain effects are unclear at the molecular imaging level. To address these issues, the authors determined whether body mass index (BMI), physical activity, and diet relate to brain positron emission tomography (PET) of amyloid plaques and tau tangles using 2-(1-(6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl)ethylidene)malononitrile (FDDNP). Volunteers (N = 44; mean age: 62.6 ± 10.7 years) with subjective memory impairment (N = 24) or mild cognitive impairment (MCI; N = 20) were recruited by soliciting for memory complaints. Levels of physical activity and extent of following a Mediterranean-type diet were self-reported. FDDNP-PET scans assessed plaque/tangle binding in Alzheimer disease-associated regions (frontal, parietal, medial and lateral temporal, posterior cingulate). Mixed models controlling for known covariates examined BMI, physical activity, and diet in relation to FDDNP-PET. MCI subjects with above normal BMI (>25) had higher FDDNP-PET binding compared with those with normal BMI (1.11(0.03) versus 1.08(0.03), ES = 1.04, t(35) = 3.3, p = 0.002). Greater physical activity was associated with lower FDDNP-PET binding in MCI subjects (1.07(0.03) versus 1.11(0.03), ES = 1.13, t(35) = -3.1, p = 0.004) but not in subjects with subjective memory impairment (1.07(0.03) versus 1.07(0.03), ES = 0.02, t(35) = -0.1, p = 0.9). Healthier diet related to lower FDDNP-PET binding, regardless of cognitive status (1.07(0.03) versus 1.09(0.02), ES = 0.72, t(35) = -2.1, p = 0.04). These preliminary findings are consistent with a relationship between risk modifiersand brain plaque/tangle deposition in nondemented individuals and supports maintenance of normal body weight, regular physical activity, and healthy diet to protect the brain during aging. (clinicaltrials.gov; NCT00355498). Copyright © 2016 American Association for Geriatric

  4. In vivo 13C MRS in the mouse brain at 14.1 Tesla and metabolic flux quantification under infusion of [1,6-13C2]glucose.

    PubMed

    Lai, Marta; Lanz, Bernard; Poitry-Yamate, Carole; Romero, Jackeline F; Berset, Corina M; Cudalbu, Cristina; Gruetter, Rolf

    2017-01-01

    In vivo 13 C magnetic resonance spectroscopy (MRS) enables the investigation of cerebral metabolic compartmentation while, e.g. infusing 13 C-labeled glucose. Metabolic flux analysis of 13 C turnover previously yielded quantitative information of glutamate and glutamine metabolism in humans and rats, while the application to in vivo mouse brain remains exceedingly challenging. In the present study, 13 C direct detection at 14.1 T provided highly resolved in vivo spectra of the mouse brain while infusing [1,6- 13 C 2 ]glucose for up to 5 h. 13 C incorporation to glutamate and glutamine C4, C3, and C2 and aspartate C3 were detected dynamically and fitted to a two-compartment model: flux estimation of neuron-glial metabolism included tricarboxylic acid cycle (TCA) flux in astrocytes (V g  = 0.16 ± 0.03 µmol/g/min) and neurons (V TCA n  = 0.56 ± 0.03 µmol/g/min), pyruvate carboxylase activity (V PC  = 0.041 ± 0.003 µmol/g/min) and neurotransmission rate (V NT  = 0.084 ± 0.008 µmol/g/min), resulting in a cerebral metabolic rate of glucose (CMR glc ) of 0.38 ± 0.02 µmol/g/min, in excellent agreement with that determined with concomitant 18 F-fluorodeoxyglucose positron emission tomography ( 18 FDG PET).We conclude that modeling of neuron-glial metabolism in vivo is accessible in the mouse brain from 13 C direct detection with an unprecedented spatial resolution under [1,6- 13 C 2 ]glucose infusion.

  5. Depth-dependent positron annihilation in different polymers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, P.; Cheng, G. D.; Li, D. X.; Wu, H. B.; Li, Z. X.; Cao, X. Z.; Jia, Q. J.; Yu, R. S.; Wang, B. Y.

    2013-09-01

    Depth-dependent positron annihilation Doppler broadening measurements were conducted for polymers with different chemical compositions. Variations of the S parameter with respect to incident positron energy were observed. For pure hydrocarbons PP, HDPE and oxygen-containing polymer PC, S parameter rises with increasing positron implantation depth. While for PI and fluoropolymers like PTFE, ETFE and PVF, S parameter decreases with higher positron energy. For chlorine-containing polymer PVDC, S parameter remains nearly constant at all incident positron energies. It is suggested that these three variation trends are resulted from a competitive effect between the depth-dependent positronium formation and the influence of highly electronegative atoms on positron annihilation characteristics.

  6. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  7. Positron probes of the Ge(1 0 0) surface: The effects of surface reconstructions and electron positron correlations on positron trapping and annihilation characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2007-08-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(1 0 0) surface. The high-resolution PAES spectrum from the Ge(1 0 0) surface displays several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the non-reconstructed and reconstructed Ge(1 0 0)-p(2 × 1), Ge(1 0 0)-p(2 × 2) and Ge(1 0 0)-c(4 × 2) surfaces. It is found that the positron surface state wave function extends into the Ge lattice in the regions where atoms are displaced from their ideal terminated positions due to reconstructions. Estimates of the positron binding energy and the positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Ge(1 0 0). A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  8. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    NASA Technical Reports Server (NTRS)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  9. Epidural premotor cortical stimulation in primary focal dystonia: clinical and 18F-fluoro deoxyglucose positron emission tomography open study.

    PubMed

    Lalli, Stefania; Piacentini, Sylvie; Franzini, Angelo; Panzacchi, Andrea; Cerami, Chiara; Messina, Giuseppe; Ferré, Francesca; Perani, Daniela; Albanese, Alberto

    2012-04-01

    The aim of this study was to evaluate the efficacy and safety of epidural premotor stimulation in patients with primary focal dystonia. Seven patients were selected: 6 had cervical dystonia and 1 had right upper limb dystonia. In 2 patients, sustained muscle contractions led to a prevalently fixed head posture. Patients with cervical dystonia received a bilateral implant, whereas the patient with hand dystonia received a unilateral implant. Neurological and neuropsychological evaluations were performed before surgery (baseline), and 1, 3, 6, and 12 months afterward. The Burke-Fahn-Marsden scale (BFMS) and the Toronto Western spasmodic torticollis rating scale (TWSTRS) were administered at the same time points. Patients underwent resting (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scans, before and 12 months after surgery. No adverse events occurred. An overall improvement was observed on the BFMS and TWSTRS after surgery. Patients with prevalently fixed cervical dystonia had a reduced benefit. Presurgical neuroimaging revealed a significant bilateral metabolic increase in the sensorimotor areas, which was reduced after surgery. Copyright © 2012 Movement Disorder Society.

  10. High-yield positron systems for linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less

  11. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  12. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly

    PubMed Central

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-01-01

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60–85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [18F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults. PMID:25463973

  13. Evaluation of treatment response and resistance in metastatic renal cell cancer (mRCC) using integrated 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI); The REMAP study.

    PubMed

    Kelly-Morland, Christian; Rudman, Sarah; Nathan, Paul; Mallett, Susan; Montana, Giovanni; Cook, Gary; Goh, Vicky

    2017-06-02

    Tyrosine kinase inhibitors are the first line standard of care for treatment of metastatic renal cell carcinoma (RCC). Accurate response assessment in the setting of antiangiogenic therapies remains suboptimal as standard size-related response criteria do not necessarily accurately reflect clinical benefit, as they may be less pronounced or occur later in therapy than devascularisation. The challenge for imaging is providing timely assessment of disease status allowing therapies to be tailored to ensure ongoing clinical benefit. We propose that combined assessment of morphological, physiological and metabolic imaging parameters using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ( 18 F-FDG PET/MRI) will better reflect disease behaviour, improving assessment of response/non-response/relapse. The REMAP study is a single-centre prospective observational study. Eligible patients with metastatic renal cell carcinoma, planned for systemic therapy, with at least 2 lesions will undergo an integrated 18 F-FDG PET and MRI whole body imaging with diffusion weighted and contrast-enhanced multiphasic as well as standard anatomical MRI sequences at baseline, 12 weeks and 24 weeks of systemic therapy allowing 18 F-FDG standardised uptake value (SUV), apparent diffusion co-efficient (ADC) and normalised signal intensity (SI) parameters to be obtained. Standard of care contrast-enhanced computed tomography CT scans will be performed at equivalent time-points. CT response categorisation will be performed using RECIST 1.1 and alternative (modified)Choi and MASS criteria. The reference standard for disease status will be by consensus panel taking into account clinical, biochemical and conventional imaging parameters. Intra- and inter-tumoural heterogeneity in vascular, diffusion and metabolic response/non-response will be assessed by image texture analysis. Imaging will also inform the development of computational methods for automated disease status

  14. A General Quantum Mechanical Method to Predict Positron Spectroscopy

    DTIC Science & Technology

    2007-06-01

    7 2.1 Positron Annihilation Spectroscopy . . . . . . . . . . . . . 7 2.1.1 Positron Transport and Annihilation in Condensed Matter...8 2.1.2 Traditional Positron Annihilation Spectroscopy . . 10 2.1.3 Vibrational Feshbach Resonances of Positrons with... positron annihilation lifetime spectroscopy system . . . 63 11. Tungsten positron lifetime spectrum . . . . . . . . . . . . . . . . . . 66 12. K2B12H12

  15. Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy?

    PubMed

    Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U

    2016-11-01

    Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar

  16. The Effect of Glycolytic Modulation on Prostate Cancer

    DTIC Science & Technology

    2010-07-01

    this paradigm in the clinic, we completed a phase I study of 2-deoxyglucose (2DG), and assessed 2DG uptake with fluorodeoxyglucose (FDG) positron ...efficacy. In vitro studies with 2DG have demonstrated activity in osteosarcoma cells that were defective in oxidative phosphorylation implying that cells...diagnostic studies developing positron emission tomography (PET), which uses a trapped glucose analogue, 2-deoxy-D-glucose (2DG), for detec- tion of

  17. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  18. Positron deep level transient spectroscopy — a new application of positron annihilation to semiconductor physics

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Fung, S.; Au, H. L.; Ling, C. C.; Reddy, C. V.; Deng, A. H.; Panda, B. K.

    1997-05-01

    Recent positron mobility and lifetime measurements made on ac-biased metal on semi-insulating GaAs junctions, which have identified the native EL2 defect through a determination of the characteristic ionization energy of the donor level, are reviewed. It is shown that these measurements point towards a new spectroscopy, tentatively named positron-DLTS (deep level transient spectroscopy), that is the direct complement to conventional DLTS in that it monitors transients in the electric field of the depletion region rather than the inversely related depletion width, as deep levels undergo ionization. In this new spectroscopy, which may be applied to doped material by use of a suitable positron beam, electric field transients are monitored through the Doppler shift of the annihilation radiation resulting from the drift velocity of the positron in the depletion region. Two useful extensions of the new spectroscopy beyond conventional capacitance-DLTS are suggested. The first is that in some instances information on the microstructure of the defect causing the deep level may be inferred from the sensitivity of the positron to vacancy defects of negative and neutral charge states. The second is that the positron annihilation technique is intrinsically much faster than conventional DLTS with the capability of observing transients some 10 6 times faster, thus allowing deep levels (and even shallow levels) to be investigated without problems associated with carrier freeze-out.

  19. The Japanese Positron Factory

    NASA Astrophysics Data System (ADS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.

    1999-06-01

    The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.

  20. Synthesis and biological studies of positron-emitting radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dischino, D.D.

    The development and clinical evaluation of two-positron emitting radiopharmaceuticals designed to image myelin in humans is reported. Carbon-11-labeled benzyl methyl ether was synthesized by the reaction of carbon-11-labeled methanol and benzyl chloride in dimethyl sulfoxide containing powdered potassium hydroxide in a radiochemical yield of 43% and a synthesis and purification time of 40 minutes. Carbon-11-labeled diphenylmethanol was synthesized by the reaction of carbon-11-labeled carbon dioxide and phenyllithium followed by the reduction of the carbon-11-labeled intermediate to diphenylmethanol via lithium aluminum hydride in a radiochemical yield of 71% and a synthesis and purification time of 38 minutes. Carbon-11-labeled benzyl methyl ethermore » and diphenylmethanol were each evaluated as myelin imaging agents in three patients with multiple sclerosis via positron-emission tomography. In two out of three patients studied with carbon-11-labeled benzyl methyl ether, the distribution of activity in the brain was not consistent with local lipid content. A new synthesis of carbon-11-labeled-DL-phenylalanine labeled in the benzylic position and the synthesis of fluorine-18-labeled 1-(2-nitro-1-imidazolyl)-3-fluoro-2-propanol, a potential in vivo marker of hypoxic tissue, are reported.« less

  1. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    PubMed

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  2. Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades

    DTIC Science & Technology

    2012-05-13

    Research Triangle Park, NC 27709-2211 Augmented brain–computer interface (ABCI);biosensor; cognitive-state monitoring; electroencephalogram( EEG ); human...biosensor; cognitive-state monitoring; electroencephalogram ( EEG ); human brain imaging Manuscript received November 28, 2011; accepted December 20...magnetic reso- nance imaging (fMRI) [1], positron emission tomography (PET) [2], electroencephalograms ( EEGs ) and optical brain imaging techniques (i.e

  3. Positron Emission Mammography with Multiple Angle Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activitymore » concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.« less

  4. Positron Emission Tomography Molecular Imaging in Late-Life Depression

    PubMed Central

    Hirao, Kentaro; Smith, Gwenn S.

    2017-01-01

    Molecular imaging represents a bridge between basic and clinical neuroscience observations and provides many opportunities for translation and identifying mechanisms that may inform prevention and intervention strategies in late-life depression (LLD). Substantial advances in instrumentation and radiotracer chemistry have resulted in improved sensitivity and spatial resolution and the ability to study in vivo an increasing number of neurotransmitters, neuromodulators, and, importantly, neuropathological processes. Molecular brain imaging studies in LLD will be reviewed, with a primary focus on positron emission tomography. Future directions for the field of molecular imaging in LLD will be discussed, including integrating molecular imaging with genetic, neuropsychiatric, and cognitive outcomes and multimodality neuroimaging. PMID:24394152

  5. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  6. Positron Emission Tomography studies with [11C]PBR28 in the Healthy Rodent Brain: Validating SUV as an Outcome Measure of Neuroinflammation.

    PubMed

    Tóth, Miklós; Doorduin, Janine; Häggkvist, Jenny; Varrone, Andrea; Amini, Nahid; Halldin, Christer; Gulyás, Balázs

    2015-01-01

    Molecular imaging of the 18 kD Translocator protein (TSPO) with positron emission tomography (PET) is of great value for studying neuroinflammation in rodents longitudinally. Quantification of the TSPO in rodents is, however, quite challenging. There is no suitable reference region and the use of plasma-derived input is not an option for longitudinal studies. The aim of this study was therefore to evaluate the use of the standardized uptake value (SUV) as an outcome measure for TSPO imaging in rodent brain PET studies, using [11C]PBR28. In the first part of the study, healthy male Wistar rats (n = 4) were used to determine the correlation between the distribution volume (VT, calculated with Logan graphical analysis) and the SUV. In the second part, healthy male Wistar rats (n = 4) and healthy male C57BL/6J mice (n = 4), were used to determine the test-retest variability of the SUV, with a 7-day interval between measurements. Dynamic PET scans of 63 minutes were acquired with a nanoScan PET/MRI and nanoScan PET/CT. An MRI scan was made for anatomical reference with each measurement. The whole brain VT of [11C]PBR28 in rats was 42.9 ± 1.7. A statistically significant correlation (r2 = 0.96; p < 0.01) was found between the VT and the SUV. The test-retest variability in 8 brain region ranged from 8 to 20% in rats and from 7 to 23% in mice. The interclass correlation coefficient (ICC) was acceptable to excellent for rats, but poor to acceptable for mice. The SUV of [11C]PBR28 showed a high correlation with VT as well as good test-retest variability. For future longitudinal small animal PET studies the SUV can thus be used to describe [11C]PBR28 uptake in healthy brain tissue. Based on the present observations, further studies are needed to explore the applicability of this approach in small animal disease models, with special regard to neuroinflammatory models.

  7. Four-dimensional positron age-momentum correlation

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  8. Pareidolia in Parkinson's disease without dementia: A positron emission tomography study.

    PubMed

    Uchiyama, Makoto; Nishio, Yoshiyuki; Yokoi, Kayoko; Hosokai, Yoshiyuki; Takeda, Atsushi; Mori, Etsuro

    2015-06-01

    Pareidolia, which is a particular type of complex visual illusion, has been reported to be a phenomenon analogous to visual hallucinations in patients with dementia with Lewy bodies. However, whether pareidolia is observed in Parkinson's disease (PD) or whether there are common underlying mechanisms of these two types of visual misperceptions remains to be elucidated. A test to evoke pareidolia, the Pareidolia test, was administered to 53 patients with PD without dementia and 24 healthy controls. The regional cerebral metabolic rate of glucose was measured using 18F-fluorodeoxyglucose positron emission tomography in the PD patients. PD patients without dementia produced a greater number of pareidolic illusions compared with the controls. Pareidolia was observed in all of the patients having visual hallucinations as well as a subset of those without visual hallucinations. The number of pareidolic illusions was correlated with hypometabolism in the bilateral temporal, parietal and occipital cortices. The index of visual hallucinations was correlated with hypometabolism in the left parietal cortex. A region associated with both pareidolia and visual hallucinations was found in the left parietal lobe. Our study suggests that PD patients without dementia experience pareidolia more frequently than healthy controls and that posterior cortical dysfunction could be a common neural mechanism of pareidolia and visual hallucinations. Pareidolia could represent subclinical hallucinations or a predisposition to visual hallucinations in Lewy body disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com; Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235; Pal, Nikhil

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, usingmore » the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.« less

  10. The multi-scattering model for calculations of positron spatial distribution in the multilayer stacks, useful for conventional positron measurements

    NASA Astrophysics Data System (ADS)

    Dryzek, Jerzy; Siemek, Krzysztof

    2013-08-01

    The spatial distribution of positrons emitted from radioactive isotopes into stacks or layered samples is a subject of the presented report. It was found that Monte Carlo (MC) simulations using GEANT4 code are not able to describe correctly the experimental data of the positron fractions in stacks. The mathematical model was proposed for calculations of the implantation profile or positron fractions in separated layers or foils being components of a stack. The model takes into account only two processes, i.e., the positron absorption and backscattering at interfaces. The mathematical formulas were applied in the computer program called LYS-1 (layers profile analysis). The theoretical predictions of the model were in the good agreement with the results of the MC simulations for the semi infinite sample. The experimental verifications of the model were performed on the symmetrical and non-symmetrical stacks of different foils. The good agreement between the experimental and calculated fractions of positrons in components of a stack was achieved. Also the experimental implantation profile obtained using the depth scanning of positron implantation technique is very well described by the theoretical profile obtained within the proposed model. The LYS-1 program allows us also to calculate the fraction of positrons which annihilate in the source, which can be useful in the positron spectroscopy.

  11. THE GALACTIC POSITRON ANNIHILATION RADIATION AND THE PROPAGATION OF POSITRONS IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higdon, J. C.; Lingenfelter, R. E.; Rothschild, R. E.

    2009-06-10

    The ratio of the luminosity of diffuse 511 keV positron annihilation radiation, measured by INTEGRAL in its four years, from a Galactic 'positron bulge' (<1.5 kpc) compared to that of the disk is {approx}1.4. This ratio is roughly 4 times larger than that expected simply from the stellar bulge-to-disk ratio of {approx}0.33 of the Galactic supernovae (SNe), which are thought to be the principal source of the annihilating positrons through the decay of radionuclei made by explosive nucleosynthesis in the SNe. This large discrepancy has prompted a search for new sources. Here, however, we show that the measured 511 keVmore » luminosity ratio can be fully understood in the context of a Galactic SN origin when the differential propagation of these {approx} MeV positrons in the various phases of the interstellar medium is taken into consideration, since these relativistic positrons must first slow down to energies {<=}10 eV before they can annihilate. Moreover, without propagation, none of the proposed positron sources, new or old, can explain the two basic properties on the Galactic annihilation radiation: the fraction of the annihilation that occurs through positronium formation and the ratio of the broad/narrow components of the 511 keV line. In particular, we show that in the neutral phases of the interstellar medium, which fill most of the disk (>3.5 kpc), the cascade of the magnetic turbulence, which scatters the positrons, is damped by ion-neutral friction, allowing positrons to stream along magnetic flux tubes. We find that nearly 1/2 of the positrons produced in the disk escape from it into the halo. On the other hand, we show that within the extended, or interstellar, bulge (<3.5 kpc), essentially all of the positrons are born in the hot plasmas which fill that volume. We find that the diffusion mean free path is long enough that only a negligible fraction annihilate there and {approx}80% of them escape down into the H II and H I envelopes of molecular clouds

  12. Cosmic Ray Positrons from Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  13. The electronics system for the LBNL positron emission mammography (PEM) camera

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Young, J. W.; Baker, K.; Jones, W.; Lenox, M.; Ho, M. H.; Weng, M.

    2001-06-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, allowing many different functions (or design modifications) to be realized without hardware changes. Incorporation of extensive onboard diagnostics, implemented in the FPGAs, is required by the very high level of integration and density achieved by this system.

  14. Electron acoustic solitons in magneto-rotating electron-positron-ion plasma with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Jilani, K.; Mirza, Arshad M.; Iqbal, J.

    2015-02-01

    The propagation of electron acoustic solitary waves (EASWs) in a magneto-rotating electron-positron-ion (epi) plasma containing cold dynamical electrons, nonthermal electrons and positrons obeying Cairns' distribution have been explored in the stationary background of massive positive ions. Through the linear dispersion relation (LDR) the effects of nonthermal components, magnetic field and rotation have been analyzed, wherein, various limiting cases have been deduced from the LDR. For nonlinear analysis, Korteweg-de Vries (KdV) equation is obtained using the reductive perturbation technique. It is found that in the presence of nonthermal positrons both hump and dip type solitons appear to excite, the structural properties of these solitary waves change drastically with magneto-rotating effects. The present work may be employed to explore and to understand the formation of electron acoustic solitary structures in the space and laboratory plasmas with nonthermal electrons and positrons under magneto-rotating effects.

  15. Positron scattering from pyridine

    NASA Astrophysics Data System (ADS)

    Stevens, D.; Babij, T. J.; Machacek, J. R.; Buckman, S. J.; Brunger, M. J.; White, R. D.; García, G.; Blanco, F.; Ellis-Gibbings, L.; Sullivan, J. P.

    2018-04-01

    We present a range of cross section measurements for the low-energy scattering of positrons from pyridine, for incident positron energies of less than 20 eV, as well as the independent atom model with the screening corrected additivity rule including interference effects calculation, of positron scattering from pyridine, with dipole rotational excitations accounted for using the Born approximation. Comparisons are made between the experimental measurements and theoretical calculations. For the positronium formation cross section, we also compare with results from a recent empirical model. In general, quite good agreement is seen between the calculations and measurements although some discrepancies remain which may require further investigation. It is hoped that the present study will stimulate development of ab initio level theoretical methods to be applied to this important scattering system.

  16. 18F-fluorodeoxyglucose uptake on positron emission tomography as a prognostic predictor in locally advanced hepatocellular carcinoma.

    PubMed

    Kim, Beom Kyung; Kang, Won Jun; Kim, Ja Kyung; Seong, Jinsil; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Lee, Do Youn; Lee, Kwang Hoon; Lee, Jong Doo; Han, Kwang-Hyub

    2011-10-15

    Metabolic activity assessed by (18)F-fluorodeoxyglocuse-positron emission tomography ((18)F-FDG-PET) reflects biological aggressiveness and prognoses in various tumors. The authors present a correlation between tumor metabolic activity and clinical outcomes in patients with hepatocellular carcinoma (HCC). Over a 3-year period (2005-2008), 135 locally advanced HCC patients were treated with localized concurrent chemoradiotherapy (CCRT; external beam radiotherapy at 45 grays for 5 weeks plus concurrent hepatic arterial infusion of 5-fluorouracil during the first and fifth week) followed by repetitive hepatic arterial infusional chemotherapy with 5-fluorouracil and cisplatin. Among them, the authors studied 107 who received (18)F-FDG-PET before CCRT. Maximal standardized uptake values (SUVs) of tumors were calculated. The median maximal tumor SUV was 6.1 (range, 2.4-∼19.2). Patients with low maximal tumor SUVs (<6.1) had a higher disease control rate than those with high maximal tumor SUVs (≥6.1) (86.8% vs 68.5%, respectively, P = .023). Both median progression-free survival (PFS; 8.4 vs 5.2 months; P = .003) and overall survival (OS; 17.9 vs 11.3 months; P = .013) were significantly longer in the low maximal tumor SUV group than in the high maximal tumor SUV group, respectively. In multivariate analysis, low maximal tumor SUV and objective responses to CCRT remained significant for PFS and OS. The high maximal tumor SUV group was more likely to have extrahepatic metastasis within 6 months than the low maximal tumor SUV group (58.1% vs 26.8%, respectively; P < .001). Similar results were obtained for the maximal tumor SUV/normal liver maximal SUV ratio (<2 vs ≥2) concerning progression, death, and extrahepatic metastasis. Metabolic activity may be useful not only in predicting prognosis and treatment responses, but also in establishing optimal treatment plans in locally advanced HCC. Copyright © 2011 American Cancer Society.

  17. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    NASA Astrophysics Data System (ADS)

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  18. Positron studies of metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Au, H. L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-03-01

    Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.

  19. High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503.

    PubMed

    Ishikawa, Masatomo; Ishiwata, Kiichi; Ishii, Kenji; Kimura, Yuichi; Sakata, Muneyuki; Naganawa, Mika; Oda, Keiichi; Miyatake, Ryousuke; Fujisaki, Mihisa; Shimizu, Eiji; Shirayama, Yukihiko; Iyo, Masaomi; Hashimoto, Kenji

    2007-10-15

    Sigma-1 receptors might be implicated in the pathophysiology of psychiatric diseases, as well as in the mechanisms of action of some selective serotonin reuptake inhibitors (SSRIs). Among the several SSRIs, fluvoxamine has the highest affinity for sigma-1 receptors (Ki = 36 nM), whereas paroxetine shows low affinity (Ki = 1893 nM). The present study was undertaken to examine whether fluvoxamine binds to sigma-1 receptors in living human brain. A dynamic positron emission tomography (PET) data acquisition using the selective sigma-1 receptor ligand [(11)C]SA4503 was performed with arterial blood sampling to evaluate quantitatively the binding of [(11)C]SA4503 to sigma-1 receptors in 15 healthy male volunteers. Each subject had two PET scans before and after randomly receiving a single dose of either fluvoxamine (50, 100, 150, or 200 mg) or paroxetine (20 mg). The binding potential of [(11)C]SA4503 in 9 regions of the brain was calculated by a 2-tissue 3-compartment model. In addition, we examined the effects of functional polymorphisms of the sigma-1 receptor (SIGMAR1) gene on the binding potential of [(11)C]SA4503. Fluvoxamine bound to sigma-1 receptors in all brain regions in a dose-dependent manner, whereas paroxetine did not bind to sigma-1 receptors. However, there was no association between the SIGMAR1 gene polymorphism GC-241-240TT and binding potential. The study demonstrated that fluvoxamine bound to sigma-1 receptors in living human brain at therapeutic doses. These findings suggest that sigma-1 receptors may play an important role in the mechanism of action of fluvoxamine.

  20. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet

    PubMed Central

    Lee, Linda L.; Puchowicz, Michelle; Golub, Mari S.; Befroy, Douglas E.; Wilson, Dennis W.; Anderson, Steven; Cline, Gary; Bini, Jason; Borkowski, Kamil; Knotts, Trina A.; Rutledge, John C.

    2018-01-01

    Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways. PMID:29444171

  1. Particle physics. Positrons ride the wave

    DOE PAGES

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  2. Intense source of slow positrons

    NASA Astrophysics Data System (ADS)

    Perez, P.; Rosowsky, A.

    2004-10-01

    We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.

  3. Cyclotrons and positron emitting radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  4. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.

    PubMed

    Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul

    2013-09-01

    Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.

  5. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  6. Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers.

    PubMed

    Alkire, M T

    1998-08-01

    To help elucidate the relationship between anesthetic-induced changes in the electroencephalogram (EEG) and the concurrent cerebral metabolic changes caused by anesthesia, positron emission tomography data of cerebral metabolism obtained in volunteers during anesthesia were correlated retrospectively with various concurrently measured EEG descriptors. Volunteers underwent functional brain imaging using the 18fluorodeoxyglucose technique; one scan always assessed awake-baseline cerebral metabolism (n = 7), and the other scans assessed metabolism during propofol sedation (n = 4), propofol anesthesia (n = 4), or isoflurane anesthesia (n = 5). The EEG was recorded continuously during metabolism assessment using a frontal-mastoid montage. Power spectrum variables, median frequency, 95% spectral edge, and bispectral index (BIS) values subsequently were correlated with the percentage of absolute cerebral metabolic reduction (PACMR) of glucose utilization caused by anesthesia. The percentage of absolute cerebral metabolic reduction, evident during anesthesia, trended median frequency (r = -0.46, P = 0.11), and the spectral edge (r = -0.52, P = 0.07), and correlated with anesthetic type (r = -0.70, P < 0.05), relative beta power (r = -0.60, P < 0.05), total power (r = 0.71,P < 0.01), and bispectral index (r = -0.81,P < 0.001). After controlling for anesthetic type, only bispectral index (r = 0.40, P = 0.08) and alpha power (r = 0.37, P = 0.10) approached significance for explaining residual percentage of absolute cerebral metabolic reduction prediction error. Some EEG descriptors correlated linearly with the magnitude of the cerebral metabolic reduction caused by propofol and isoflurane anesthesia. These data suggest that a physiologic link exists between the EEG and cerebral metabolism during anesthesia that is mathematically quantifiable.

  7. Iodine-122-labeled amphetamine derivative with potential for PET brain blood-flow studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, C.A.; Sargent, T. 3d.; Shulgin, A.T.

    1985-11-01

    The positron emitter SSI (t1/2 3.6 min) was collected from a xenon- SS/iodine- SS ( SSXe/ SSI) generator and incorporated into an amphetamine analog, 2,4-dimethoxy-N,N-dimethyl-5-( SSI)iodophenylisopropylamine (5-( SSI)-2,4-DNNA). The remote synthesis was achieved in 3 min with a 50% radioincorporation yield and a product radiopurity of greater than 98%. 5-( SSI)-2,4-DNNA was injected into a beagle dog and a brain section imaged with positron emission tomography (PET). The uptake and retention of 5-( SSI)-2,4-DNNA was compared to that of YSRb in the same animal. Dynamic PET activity data were obtained 0-20 min postinjection of 5-( SSI)-2,4-DNNA and showed rapid uptakemore » by brain and good cerebral/extracerebral tissue distinction. A whole-body scan of a dog was also obtained with 5-123I-2,4-DNNA showing uptake in brain, lung, and other body organs. The feasibility of incorporating SSI into an extracted brain perfusion agent for use with PET is demonstrated.« less

  8. Scattering of positrons and electrons by alkali atoms

    NASA Technical Reports Server (NTRS)

    Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.

    1990-01-01

    Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.

  9. Development of slow positron beam lines and applications

    NASA Astrophysics Data System (ADS)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  10. The status of the positron beam facility at NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.

    2011-01-01

    The NEutron induced POsitron source MUniCh NEPOMUC provides a high intensity positron beam with 9·108 moderated positrons per second with a primary beam energy of 1keV. After remoderation, the positron beam is magnetically guided to five experimental setups: a coincident Doppler-broadening spectrometer (CDBS), a positron annihilation induced Auger-electron spectrometer (PAES), a pulsed low-energy positron system (PLEPS) as well as an interface for providing a pulsed beam with further improved brightness. An apparatus for the production of the negatively charged positronium ion Ps- is currently in operation at the open multi-purpose beam port, where additional experiments can be realized. Within this contribution, an overview of the positron beam facility NEPOMUC with its instrumentation at the research reactor FRMII is given.

  11. FDG-PET reproducibility in tumor-bearing mice: comparing a traditional SUV approach with a tumor-to-brain tissue ratio approach.

    PubMed

    Busk, Morten; Munk, Ole L; Jakobsen, Steen; Frøkiær, Jørgen; Overgaard, Jens; Horsman, Michael R

    2017-05-01

    Current [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) procedures in tumor-bearing mice typically includes fasting, anesthesia, and standardized uptake value (SUV)-based quantification. Such procedures may be inappropriate for prolonged multiscan experiments. We hypothesize that normalization of tumor FDG retention relative to a suitable reference tissue may improve accuracy as this method may be less susceptible to uncontrollable day-to-day changes in blood glucose levels, physical activity, or unnoticed imperfect tail vein injections. Fed non-anesthetized tumor-bearing mice were administered FDG intravenously (i.v.) or intraperitoneally (i.p.) and PET scanned on consecutive days using a Mediso nanoScan PET/magnetic resonance imaging (MRI). Reproducibility of various PET-deduced measures of tumor FDG retention, including normalization to FDG signal in reference organs and a conventional SUV approach, was evaluated. Day-to-day variability in i.v. injected mice was lower when tumor FDG retention was normalized to brain signal (T/B), compared to normalization to other tissues or when using SUV-based normalization. Assessment of tissue radioactivity in dissected tissues confirmed the validity of PET-derived T/B ratios. Mean T/B and SUV values were similar in i.v. and i.p. administered animals, but SUV normalization was more robust in the i.p. group than in the i.v. group. Multimodality scanners allow tissue delineation and normalization of tumor FDG uptake relative to reference tissues. Normalization to brain, but not liver or kidney, improved scan reproducibility considerably and was superior to traditional SUV quantification in i.v. tracer-injected animals. Day-to-day variability in SUV's was lower in i.p. than in i.v. injected animals, and i.p. injections may therefore be a valuable alternative in prolonged rodent studies, where repeated vein injections are undesirable.

  12. Tomographic Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Butterling, M.; Fiedler, F.; Fritz, F.; Kempe, M.; Cowan, T. E.

    2014-04-01

    Positron annihilation lifetime spectroscopy serves as a perfect tool for studies of open-volume defects in solid materials such as vacancies, vacancy agglomerates, and dislocations. Moreover, structures in porous media can be investigated ranging from 0.3 nm to 30 nm employing the variation of the Positronium lifetime with the pore size. While lifetime measurements close to the material's surface can be performed at positron-beam installations bulk materials, fluids, bio-materials or composite structures cannot or only destructively accessed by positron beams. Targeting those problems, a new method of non-destructive positron annihilation lifetime spectroscopy has been developed which features even a 3-dimensional tomographic reconstruction of the spatial lifetime distribution. A beam of intense bremsstrahlung is provided by the superconducting electron linear accelerator ELBE (Electron Linear Accelerator with high Brilliance and low Emittance) at Helmholtz-Zentrum Dresden-Rossendorf. Since the generation of bremsstrahlung and the transport to the sample preserves the sharp timing of the electron beam, positrons generated inside the entire sample volume by pair production feature a sharp start time stamp for lifetime studies. In addition to the existing technique of in-situ production of positrons inside large (cm3) bulk samples using high-energy photons up to 16 MeV from bremsstrahlung production, granular position-sensitive photon detectors have been employed. The detector system will be described and results for experiments using samples with increasing complexity will be presented. The Lu2SiO5:Ce scintillation crystals allow resolving the total energy to 5.1 % (root-mean-square, RMS) and the annihilation lifetime to 225 ps (RMS). 3-dimensional annihilation lifetime maps have been created in an offline-analysis employing well-known techniques from PET.

  13. Studies of the Processing of Single Words Using Positron Tomographic Measures of Cerebral Blood Flow Change.

    DTIC Science & Technology

    1987-01-01

    BLOOD FLOW CHANGE Steven E. Petersen, Peter T. Fox, Michael I. Posner, Marcus Raichle McDonnell Center for Studies of Higher Brain Function...Single Words Using Positron Emission Tomographic Measurements of Cerebral Blood Flow Change *= ’I PERSONAL AUTHOR(S) * Petersen, Steven E. 13a. TYPE OF...CHANGE Steven E. Petersen, Peter T. Fox, Michael I. Posner, Marcus E. Raichle INTRODUCTION Language is an essential characteristic of the human

  14. Clinical impact of 18 F-FDG positron emission tomography/CT on adenoid cystic carcinoma of the head and neck.

    PubMed

    Jung, Ji-Hoon; Lee, Sang-Woo; Son, Seung Hyun; Kim, Choon-Young; Lee, Chang-Hee; Jeong, Ju Hye; Jeong, Shin Young; Ahn, Byeong-Cheol; Lee, Jaetae

    2017-03-01

    The purpose of this retrospective study was to assess the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT and the prognostic value of metabolic PET parameters in patients with adenoid cystic carcinoma of the head and neck (ACCHN). Forty patients with newly diagnosed ACCHN were enrolled in this study. We investigated the diagnostic value of 18 F-FDG PET/CT for detecting and staging compared to conventional CT. Kaplan-Meier survival analysis for progression-free survival (PFS) was performed with clinicopathological factors and metabolic PET parameters. The 18 F-FDG PET/CT showed comparable sensitivity (92.3%) to conventional CT for lesion detection, and changed staging and management plan in 6 patients (15.0%). Lower PFS rates were associated with advanced T classification, advanced TNM classification, high maximum standardized uptake value (SUVmax; >5.1), and high total lesion glycolysis (>40.1) of the primary tumor. The 18 F-FDG PET/CT can provide additional information for initial staging, and metabolic PET parameters may serve as prognostic factors of ACCHN. © 2016 Wiley Periodicals, Inc. Head Neck 39: 447-455, 2017. © 2016 Wiley Periodicals, Inc.

  15. Portable Positron Measurement System (PPMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akers, Doug

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  16. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2017-12-09

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  17. Anatomic Distribution of Fluorodeoxyglucose-Avid Para-aortic Lymph Nodes in Patients With Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takiar, Vinita; Fontanilla, Hiral P.; Eifel, Patricia J.

    Purpose: Conformal treatment of para-aortic lymph nodes (PAN) in cervical cancer allows dose escalation and reduces normal tissue toxicity. Currently, data documenting the precise location of involved PAN are lacking. We define the spatial distribution of this high-risk nodal volume by analyzing fluorodeoxyglucose (FDG)-avid lymph nodes (LNs) on positron emission tomography/computed tomography (PET/CT) scans in patients with cervical cancer. Methods and Materials: We identified 72 PANs on pretreatment PET/CT of 30 patients with newly diagnosed stage IB-IVA cervical cancer treated with definitive chemoradiation. LNs were classified as left-lateral para-aortic (LPA), aortocaval (AC), or right paracaval (RPC). Distances from the LNmore » center to the closest vessel and adjacent vertebral body were calculated. Using deformable image registration, nodes were mapped to a template computed tomogram to provide a visual impression of nodal frequencies and anatomic distribution. Results: We identified 72 PET-positive para-aortic lymph nodes (37 LPA, 32 AC, 3 RPC). All RPC lymph nodes were in the inferior third of the para-aortic region. The mean distance from aorta for all lymph nodes was 8.3 mm (range, 3-17 mm), and from the inferior vena cava was 5.6 mm (range, 2-10 mm). Of the 72 lymph nodes, 60% were in the inferior third, 36% were in the middle third, and 4% were in the upper third of the para-aortic region. In all, 29 of 30 patients also had FDG-avid pelvic lymph nodes. Conclusions: A total of 96% of PET positive nodes were adjacent to the aorta; PET positive nodes to the right of the IVC were rare and were all located distally, within 3 cm of the aortic bifurcation. Our findings suggest that circumferential margins around the vessels do not accurately define the nodal region at risk. Instead, the anatomical extent of the nodal basin should be contoured on each axial image to provide optimal coverage of the para-aortic nodal compartment.« less

  18. New Possibilities of Positron-Emission Tomography

    NASA Astrophysics Data System (ADS)

    Volobuev, A. N.

    2018-01-01

    The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.

  19. Attention Performance in Autism and Regional Brain Metabolic Rate Assessed by Positron Emission Tomography. Brief Report.

    ERIC Educational Resources Information Center

    Buchsbaum, M. S.; And Others

    1992-01-01

    This evaluation of seven high functioning adults with autism utilized positron emission tomography on a visual vigilance task. Although the subjects, as a group, did as well as normal controls on the task, there was a lack of normal hemispheric asymmetry in glucose metabolic rate. A heterogeneous etiology for autism is suggested to explain…

  20. Probing the defects in nano-semiconductors using positrons

    NASA Astrophysics Data System (ADS)

    Nambissan, P. M. G.

    2011-01-01

    Positron annihilation spectroscopy (PAS) is a very useful tool to study the defect properties of nanoscale materials. The ability of thermalized positrons to diffuse over to the surfaces of nanocrystallites prior to annihilation helps to explore the disordered atomic arrangement over there and is very useful in understanding the structure and properties of nanomaterials. As examples, the results of studies on FeS2 nanorods and ZnS nanoparticles are presented. In semiconductor nanoparticles, there are positron trapping sites within the grains also and these are characterised by using appropriate models on the measured positron lifetimes. We have observed vivid changes in the measured positron lifetimes and Doppler broadened gamma ray spectral lineshapes during structural transformations prompted by substitutional effects in Mn2+-doped ZnS nanorods. Interestingly, the nanoparticles did not exhibit the transformation, implying the morphologies of the nanosystems playing a decisive role. Quantum confinement effect in CdS nanoparticles was another phenomenon that could be seen through positron annihilation experiments. Coincidence Doppler broadening measurements have been useful to identify the elemental environment around the vacancy clusters that trap positrons. Recent studies on nanocrystalline oxide and sulphide semiconductors are also discussed.

  1. Kinetic modeling of the monoamine oxidase B radioligand [¹¹C]SL25.1188 in human brain with high-resolution positron emission tomography.

    PubMed

    Rusjan, Pablo M; Wilson, Alan A; Miler, Laura; Fan, Ian; Mizrahi, Romina; Houle, Sylvain; Vasdev, Neil; Meyer, Jeffrey H

    2014-05-01

    This article describes the kinetic modeling of [(11)C]SL25.1188 ([(S)-5-methoxymethyl-3-[6-(4,4,4-trifluorobutoxy)-benzo[d]isoxazol-3-yl]-oxazolidin-2-[(11)C]one]) binding to monoamine oxidase B (MAO-B) in the human brain using high-resolution positron emission tomography (PET). Seven healthy subjects underwent two separate 90- minute PET scans after an intravenous injection of [(11)C]SL25.1188. Complementary arterial blood sampling was acquired. Radioactivity was quickly eliminated from plasma with 80% of parent compound remaining at 90 minutes. Metabolites were more polar than the parent compound. Time-activity curves showed high brain uptake, early peak and washout rate consistent with known regional MAO-B concentration. A two-tissue compartment model (2-TCM) provided better fits to the data than a 1-TCM. Measurement of total distribution volume (VT) showed very good identifiability (based on coefficient of variation (COV)) for all regions of interest (ROIs) (COV(VT)<8%), low between-subject variability (∼20%), and quick temporal convergence (within 5% of final value at 45 minutes). Logan graphical method produces very good estimation of VT. Regional VT highly correlated with previous postmortem report of MAO-B level (r(2)= ≥ 0.9). Specific binding would account from 70% to 90% of VT. Hence, VT measurement of [(11)C]SL25.1(1)88 PET is an excellent estimation of MAO-B concentration.

  2. The norepinephrine transporter in attention-deficit/hyperactivity disorder investigated with positron emission tomography.

    PubMed

    Vanicek, Thomas; Spies, Marie; Rami-Mark, Christina; Savli, Markus; Höflich, Anna; Kranz, Georg S; Hahn, Andreas; Kutzelnigg, Alexandra; Traub-Weidinger, Tatjana; Mitterhauser, Markus; Wadsak, Wolfgang; Hacker, Marcus; Volkow, Nora D; Kasper, Siegfried; Lanzenberger, Rupert

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) research has long focused on the dopaminergic system's contribution to pathogenesis, although the results have been inconclusive. However, a case has been made for the involvement of the noradrenergic system, which modulates cognitive processes, such as arousal, working memory, and response inhibition, all of which are typically affected in ADHD. Furthermore, the norepinephrine transporter (NET) is an important target for frequently prescribed medication in ADHD. Therefore, the NET is suggested to play a critical role in ADHD. To explore the differences in NET nondisplaceable binding potential (NET BPND) using positron emission tomography and the highly selective radioligand (S,S)-[18F]FMeNER-D2 [(S,S)-2-(α-(2-[18F]fluoro[2H2]methoxyphenoxy)benzyl)morpholine] between adults with ADHD and healthy volunteers serving as controls. Twenty-two medication-free patients with ADHD (mean [SD] age, 30.7 [10.4] years; 15 [68%] men) without psychiatric comorbidities and 22 age- and sex-matched healthy controls (30.9 [10.6] years; 15 [68%] men) underwent positron emission tomography once. A linear mixed model was used to compare NET BPND between groups. The NET BPND in selected regions of interest relevant for ADHD, including the hippocampus, putamen, pallidum, thalamus, midbrain with pons (comprising a region of interest that includes the locus coeruleus), and cerebellum. In addition, the NET BPND was evaluated in thalamic subnuclei (13 atlas-based regions of interest). We found no significant differences in NET availability or regional distribution between patients with ADHD and healthy controls in all investigated brain regions (F1,41<0.01; P=.96). Furthermore, we identified no significant association between ADHD symptom severity and regional NET availability. Neither sex nor smoking status influenced NET availability. We determined a significant negative correlation between age and NET availability in the thalamus (R2=0.29; P

  3. Positron beam studies of solids and surfaces: A summary

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  4. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    NASA Astrophysics Data System (ADS)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  5. Binding matter with antimatter: the covalent positron bond.

    PubMed

    Charry, Jorge Alfonso; Varella, Marcio T Do N; Reyes, Andrés

    2018-05-16

    We report sufficient theoretical evidence of the energy stability of the e⁺H₂²⁻ molecule, formed by two H⁻ anions and one positron. Analysis of the electronic and positronic densities of the latter compound undoubtedly points out the formation of a positronic covalent bond between the otherwise repelling hydride anions. The lower limit for the bonding energy of the e⁺H₂²⁻ molecule is 74 kJ/mol (0.77 eV), accounting for the zero-point vibrational correction. The formation of a non electronic covalent bond is fundamentally distinct from positron attachment to stable molecules, as the latter process is characterized by a positron affinity, analogous to the electron affinity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  7. Usefulness of Positron Emission Tomography in Patients with Syphilis: A Systematic Review of Observational Studies.

    PubMed

    Chen, Jian-Hua; Zheng, Xin; Liu, Xiu-Qin

    2017-05-05

    Diagnosis of syphilis is difficult. Follow-up and therapy evaluation of syphilitic patients are poor. Little is known about positron emission tomography (PET) in syphilis. This review was to systematically review usefulness of PET for diagnosis, disease extent evaluation, follow-up, and treatment response assessment in patients with syphilis. We searched PubMed, EMBASE, SCOPUS, Cochrane Library, Web of Science, ClinicalTrials.gov, and three Chinese databases (SinoMed, Wanfang, and CNKI) for English and Chinese language articles from inception to September 2016. We also collected potentially relevant studies and reviews using a manual search. The search keywords included the combined text and MeSH terms "syphilis" and "positron emission tomography". We included studies that reporting syphilis with a PET scan before and/or after antibiotic treatment. The diagnosis of syphilis was based on serological criteria or dark field microscopy. Outcomes include pre- and post-treatment PET scan, pre- and post-treatment computed tomography, and pre- and post-treatment magnetic resonance imaging. We excluded the articles not published in English or Chinese or not involving humans. Of 258 identified articles, 34 observational studies were included. Thirty-three studies were single-patient case reports and one study was a small case series. All patients were adults. The mean age of patients was 48.3 ± 12.1 years. In primary syphilis, increased fluorodeoxyglucose (FDG) accumulation could be seen at the site of inoculation or in the regional lymph nodes. In secondary syphilis with lung, bone, gastrointestinal involvement, or generalized lymphadenopathy, increased FDG uptake was the most commonly detected changes. In tertiary syphilis, increased glucose metabolic activity, hypometabolic lesions, or normal glucose uptake might be seen on PET. There were five types of PET scans in neurosyphilis. A repeated PET scan after treatment revealed apparent or complete resolution of the

  8. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    DTIC Science & Technology

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  9. Texas Intense Positron Source (TIPS)

    NASA Astrophysics Data System (ADS)

    O'Kelly, D.

    2003-03-01

    The Texas Intense Positron Source (TIPS) is a state of the art variable energy positron beam under construction at the Nuclear Engineering Teaching Laboratory (NETL). Projected intensities on the order of the order of 10^7 e+/second using ^64Cu as the positron source are expected. Owing to is short half-life (t1/2 12.8 hrs), plans are to produce the ^64Cu isotope on-site using beam port 1 of NETL TRIGA Mark II reactor. Following tungsten moderation, the positrons will be electrostatically focused and accelerated from few 10's of eV up to 30 keV. This intensity and energy range should allow routine performance of several analytical techniques of interest to surface scientists (PALS, PADB and perhaps PAES and LEPD.) The TIPS project is being developed in parallel phases. Phase I of the project entails construction of the vacuum system, source chamber, main beam line, electrostatic/magnetic focusing and transport system as well as moderator design. Initial construction, testing and characterization of moderator and beam transport elements are underway and will use a commercially available 10 mCi ^22Na radioisotope as a source of positrons. Phase II of the project is concerned primarily with the Cu source geometry and thermal properties as well as production and physical handling of the radioisotope. Additional instrument optimizing based upon experience gained during Phase I will be incorporated in the final design. Current progress of both phases will be presented along with motivations and future directions.

  10. Methods and apparatus for producing and storing positrons and protons

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2010-07-06

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  11. Emittance of positron beams produced in intense laser plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Hui; Hazi, A.; Link, A.

    2013-01-15

    The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be usefulmore » as an alternative positron source for future accelerators.« less

  12. [Positron emission tomographic evaluations on hemodynamics and glucose metabolism of brain tumors and perifocal edematous tissues].

    PubMed

    Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H

    1989-03-01

    Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Advanced characterization of lithium battery materials with positrons

    NASA Astrophysics Data System (ADS)

    Barbiellini, Bernardo; Kuriplach, Jan

    2017-01-01

    Cathode materials are crucial to improved battery performance, in part because there are not yet materials that can maintain high power and stable cycling with a capacity comparable to that of anode materials. Our parameter-free, gradient-corrected model for electron-positron correlations predicts that spectroscopies based on positron annihilation can be deployed to study the effect of lithium intercalation in the oxide matrix of the cathode. The positron characteristics in oxides can be reliably computed using methods based on first-principles. Thus, we can enable a fundamental characterization of lithium battery materials involving positron annihilation spectroscopy and first-principles calculations. The detailed information one can extract from positron experiments could be useful for understanding and optimizing both battery materials and bi-functional catalysts for oxygen reduction and evolution.

  14. Effects of exercise on brain activity during walking in older adults: a randomized controlled trial.

    PubMed

    Shimada, Hiroyuki; Ishii, Kenji; Makizako, Hyuma; Ishiwata, Kiichi; Oda, Keiichi; Suzukawa, Megumi

    2017-05-30

    Physical activity may preserve neuronal plasticity, increase synapse formation, and cause the release of hormonal factors that promote neurogenesis and neuronal function. Previous studies have reported enhanced neurocognitive function following exercise training. However, the specific cortical regions activated during exercise training remain largely undefined. In this study, we quantitatively and objectively evaluated the effects of exercise on brain activity during walking in healthy older adults. A total of 24 elderly women (75-83 years old) were randomly allocated to either an intervention group or a control group. Those in the intervention group attended 3 months of biweekly 90-min sessions focused on aerobic exercise, strength training, and physical therapy. We monitored changes in regional cerebral glucose metabolism during walking in both groups using positron emission tomography (PET) and [ 18 F]fluorodeoxyglucose (FDG). All subjects completed the 3-month experiment and the adherence to the exercise program was 100%. Compared with the control group, the intervention group showed a significantly greater step length in the right foot after 3 months of physical activity. The FDG-PET assessment revealed a significant post-intervention increase in regional glucose metabolism in the left posterior entorhinal cortex, left superior temporal gyrus, and right superior temporopolar area in the intervention group. Interestingly, the control group showed a relative increase in regional glucose metabolism in the left premotor and supplemental motor areas, left and right somatosensory association cortex, and right primary visual cortex after the 3-month period. We found no significant differences in FDG uptake between the intervention and control groups before vs. after the intervention. Exercise training increased activity in specific brain regions, such as the precuneus and entorhinal cortices, which play an important role in episodic and spatial memory. Further

  15. Lumbosacral Radiculoplexopathy as the Initial Presentation of Lymphoma: A Report of 4 Cases.

    PubMed

    Marquardt, Robert J; Li, Yuebing

    2018-06-01

    To evaluate the clinical, laboratory, and radiological features of 4 cases of biopsy-proven lymphomatous lumbosacral radiculoplexopathy. Retrospective chart review. All patients suffered from diffuse large B-cell lymphoma. A mean diagnostic delay of 10 months was encountered. Presenting symptoms in all 4 patients included back pain, radicular leg pain, and leg weakness, similar to spondylotic radiculopathy. Electrodiagnostic study showed axon loss radiculoplexopathy and magnetic resonance imaging of the lumbar spine or pelvis demonstrated nerve or nerve root enhancement. Increased uptake by lumbosacral roots/plexus on fluorodeoxyglucose-positron emission tomography aided diagnosis in 3 cases. Cytology was positive in 1 of 10 cerebrospinal fluid samples. Combined chemotherapy and radiation treatment led to clinicoradiological improvement, with residual neurological symptoms in all patients. Lymphomatous lumbosacral radiculoplexopathy should be considered in patients with progressive lumbosacral radicular symptoms. Magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography, but not cerebrospinal fluid, are helpful in achieving early diagnosis. Treatment responses seem favorable.

  16. Development of a Simple Positron Age-Momentum Setup

    NASA Astrophysics Data System (ADS)

    Sheffield, Thomas; Quarles, C. A.

    2009-04-01

    A positron age-momentum setup that uses NIM Bin electronic modules and a conventional multichannel analyzer (MCA) is described. The essential idea is to accumulate a Doppler broadened spectrum (sensitive to the annihilation electron momentum) using a high purity Germanium detector in coincidence with a BaF2 scintillation counter, which also serves as the stop signal in a conventional positron lifetime setup. The MCA that collects the Doppler spectrum is gated by a selected region of the lifetime spectrum. Thus we can obtain Doppler broadening spectra as a function of positron lifetime: an age-momentum spectrum. The apparatus has been used so far to investigate a ZnO sample where the size of different vacancy trapping sites may affect the positron lifetime and the Doppler broadening spectrum. We are also looking at polymer and rubber carbon-black composite samples where differences in the Doppler spectrum may arise from positron trapping or positronium formation in the samples. Correction for background and contribution from the positron source itself to the Doppler spectrum will be discussed.

  17. Dopaminergic Neurotransmission in the Human Brain: New Lessons from Perturbation and Imaging

    PubMed Central

    Ko, Ji Hyun; Strafella, Antonio P.

    2012-01-01

    Dopamine plays an important role in several brain functions and is involved in the pathogenesis of several psychiatric and neurological disorders. Neuroimaging techniques such as positron emission tomography allow us to quantify dopaminergic activity in the living human brain. Combining these with brain stimulation techniques offers us the unique opportunity to tackle questions regarding region-specific neurochemical activity. Such studies may aid clinicians and scientists to disentangle neural circuitries within the human brain and thereby help them to understand the underlying mechanisms of a given function in relation to brain diseases. Furthermore, it may also aid the development of alternative treatment approaches for various neurological and psychiatric conditions. PMID:21536838

  18. High-intensity positron microprobe at Jefferson Lab

    DOE PAGES

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 10 10 e +/s. Reaching this intensity in our design relies on the transport of positrons (T + below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system,more » transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  19. Early Cardiac Involvement Affects Left Ventricular Longitudinal Function in Females Carrying α-Galactosidase A Mutation: Role of Hybrid Positron Emission Tomography and Magnetic Resonance Imaging and Speckle-Tracking Echocardiography.

    PubMed

    Spinelli, Letizia; Imbriaco, Massimo; Nappi, Carmela; Nicolai, Emanuele; Giugliano, Giuseppe; Ponsiglione, Andrea; Diomiaiuti, Tommaso Claudio; Riccio, Eleonora; Duro, Giovanni; Pisani, Antonio; Trimarco, Bruno; Cuocolo, Alberto

    2018-04-01

    Hybrid 18 F-fluorodeoxyglucose (FDG) positron emission tomography and magnetic resonance imaging may differentiate mature fibrosis or scar from fibrosis associated to active inflammation in patients with Anderson-Fabry disease, even in nonhypertrophic stage. This study was designed to compare the results of positron emission tomography and magnetic resonance cardiac imaging with those of speckle-tracking echocardiography in heterozygous Anderson-Fabry disease females. Twenty-four heterozygous females carrying α-galactosidase A mutation and without left ventricular hypertrophy underwent cardiac positron emission tomography and magnetic resonance using 18 F-FDG for glucose uptake and 2-dimensional strain echocardiography. 18 F-FDG myocardial uptake was quantified by measuring the coefficient of variation (COV) of the standardized uptake value using a 17-segment model. Focal 18 F-FDG uptake with COV >0.17 was detected in 13 patients, including 2 patients with late gadolinium enhancement at magnetic resonance. COV was 0.30±0.14 in patients with focal 18 F-FDG uptake and 0.12±0.03 in those without ( P <0.001). Strain echocardiography revealed worse global longitudinal systolic strain in patients with COV >0.17 compared with those with COV ≤0.17 (-18.5±2.7% versus -22.2±1.8%; P =0.024). For predicting COV >0.17, a global longitudinal strain >-19.8% had 77% sensitivity and 91% specificity and a value >2 dysfunctional segments 92% sensitivity and 100% specificity. In females carrying α-galactosidase A mutation, focal 18 F-FDG uptake represents an early sign of disease-related myocardial damage and is associated with impaired left ventricular longitudinal function. These findings support the hypothesis that inflammation plays an important role in glycosphingolipids storage disorders. © 2018 American Heart Association, Inc.

  20. PREFACE: The International Workshop on Positron Studies of Defects 2014

    NASA Astrophysics Data System (ADS)

    Sugita, Kazuki; Shirai, Yasuharu

    2016-01-01

    The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14-19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: • Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials

  1. 'What' and 'where' in the human brain.

    PubMed

    Ungerleider, L G; Haxby, J V

    1994-04-01

    Multiple visual areas in the cortex of nonhuman primates are organized into two hierarchically organized and functionally specialized processing pathways, a 'ventral stream' for object vision and a 'dorsal stream' for spatial vision. Recent findings from positron emission tomography activation studies have localized these pathways within the human brain, yielding insights into cortical hierarchies, specialization of function, and attentional mechanisms.

  2. Correlation Between Infection Status of Epstein-Barr Virus and 18F-Fluorodeoxyglucose Uptake in Patients with Advanced Gastric Cancer.

    PubMed

    Na, Sae Jung; Park, Hye Lim; O, Joo Hyun; Lee, Sung Yong; Song, Kyo Young; Kim, Sung Hoon

    2017-01-01

    Epstein-Barr virus-associated gastric cancer (EBVaGC) is one of the four molecular subtypes of gastric cancer, as defined by the classification recently proposed by The Cancer Genome Atlas. We evaluated the correlation between EBV positivity and 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake by positron emission tomography/computed tomography (PET/CT) in patients with gastric cancer. We retrospectively enrolled patients with gastric cancer who underwent pretreatment 18 F-FDG PET/CT and subsequent surgical resection, and then were diagnosed with advanced gastric cancer (pathologic stage ≥T2 with any N stage). Maximum standardized uptake values (SUV max ) of gastric cancer were measured by pretreatment 18 F-FDG PET/CT. EBV sequences were detected by in situ hybridization (ISH) techniques. We analyzed the correlation between EBV positivity, clinicopathologic features and metabolic activity of the primary tumor. A total of 205 patients were included and 15 (7.3%) patients were identified as having EBV-positive gastric cancer. Age, gender, tumor location, and histological type showed no significant differences between EBV-positive and negative groups. EBV-positive cancer is significantly more frequent in the higher-metabolic-tumor group than in the lower one (p=0.032). The mean SUV max of gastric cancers showed significant differences between EBV-positive and negative groups (9.9±4.2 vs. 7.0±4.8, p=0.026). The infection status of EBV was significantly related to the 18 F-FDG uptake of primary tumors in patients with advanced gastric cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  4. The impact of positrons beam on the propagation of super freak waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali Shan, S.; National Centre for Physics; Pakistan Institute of Engineering and Applied Sciences

    2016-07-15

    In this work, we examine the nonlinear propagation of planar ion-acoustic freak waves in an unmagnetized plasma consisting of cold positive ions and superthermal electrons subjected to cold positrons beam. For this purpose, the reductive perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the evolution of electrostatic potential wave. We determine the domain of the plasma parameters where the rogue waves exist. The effect of the positron beam on the modulational instability of the ion-acoustic rogue waves is discussed. It is found that the region of the modulational stability is enhanced with the increase of positronmore » beam speed and positron population. Second as positrons beam increases the nonlinearities of the plasma system, large amplitude ion acoustic rogue waves are pointed out. The present results will be helpful in providing a good fit between the theoretical analysis and real applications in future laboratory plasma experiments.« less

  5. The PEPPo method for polarized positrons and PEPPo II

    DOE PAGES

    Cardman, Lawrence S.

    2018-05-01

    The Polarized Electrons for Polarized Positrons (PEPPo) experiment at the injector of the Continuous Electron Beam Accelerator Facility demonstrated for the first time the efficient transfer of polarization from electrons to positrons via a two-step process: polarized bremsstrahlung radiation is induced by a polarized electron beam in a high-Z target; then the polarized bremsstrahlung produces polarized positrons via the pair-production process in the same target. Positron polarization up to 82% was measured for an initial electron beam momentum of 8.19 MeV/c, limited only by the electron beam polarization of 85%. This technique extends polarized positron capabilities from GeV to MeVmore » electron beams, and opens access to polarized positron beam physics to a wide community. We present the results of the PEPPo experiment and outline tentative plans for a follow-up experiment that would investigate key aspects of an approach based on PEPPo as a polarized positron source for the 12 GeV Upgrade of CEBAF.« less

  6. The neural basis of functional neuroimaging signal with positron and single-photon emission tomography.

    PubMed

    Sestini, S

    2007-07-01

    Functional imaging techniques such as positron and single-photon emission tomography exploit the relationship between neural activity, energy demand and cerebral blood flow to functionally map the brain. Despite the fact that neurobiological processes are not completely understood, several results have revealed the signals that trigger the metabolic and vascular changes accompanying variations in neural activity. Advances in this field have demonstrated that release of the major excitatory neurotransmitter glutamate initiates diverse signaling processes between neurons, astrocytes and blood perfusion, and that this signaling is crucial for the occurrence of brain imaging signals. Better understanding of the neural sites of energy consumption and the temporal correlation between energy demand, energy consumption and associated cerebrovascular hemodynamics gives novel insight into the potential of these imaging tools in the study of metabolic neurodegenerative disorders.

  7. Elastic and inelastic scattering of positrons in gases and solids

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. W.

    1972-01-01

    Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.

  8. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease.

    PubMed

    Chittiboina, Prashant; Montgomery, Blake K; Millo, Corina; Herscovitch, Peter; Lonser, Russell R

    2015-04-01

    OBJECT High-resolution PET (hrPET) performed using a high-resolution research tomograph is reported as having a resolution of 2 mm and could be used to detect corticotroph adenomas through uptake of(18)F-fluorodeoxyglucose ((18)F-FDG). To determine the sensitivity of this imaging modality, the authors compared(18)F-FDG hrPET and MRI detection of pituitary adenomas in Cushing disease (CD). METHODS Consecutive patients with CD who underwent preoperative(18)F-FDG hrPET and MRI (spin echo [SE] and spoiled gradient recalled [SPGR] sequences) were prospectively analyzed. Standardized uptake values (SUVs) were calculated from hrPET and were compared with MRI findings. Imaging findings were correlated to operative and histological findings. RESULTS Ten patients (7 females and 3 males) were included (mean age 30.8 ± 19.3 years; range 11-59 years). MRI revealed a pituitary adenoma in 4 patients (40% of patients) on SE and 7 patients (70%) on SPGR sequences.(18)F-FDG hrPET demonstrated increased(18)F-FDG uptake consistent with an adenoma in 4 patients (40%; adenoma size range 3-14 mm). Maximum SUV was significantly higher for(18)F-FDG hrPET-positive tumors (difference = 5.1, 95% CI 2.1-8.1; p = 0.004) than for(18)F-FDG hrPET-negative tumors.(18)F-FDG hrPET positivity was not associated with tumor volume (p = 0.2) or dural invasion (p = 0.5). Midnight and morning ACTH levels were associated with(18)F-FDG hrPET positivity (p = 0.01 and 0.04, respectively) and correlated with the maximum SUV (R = 0.9; p = 0.001) and average SUV (R = 0.8; p = 0.01). All(18)F-FDG hrPET-positive adenomas had a less than a 180% ACTH increase and(18)F-FDG hrPET-negative adenomas had a greater than 180% ACTH increase after CRH stimulation (p = 0.03). Three adenomas were detected on SPGR MRI sequences that were not detected by(18)F-FDG hrPET imaging. Two adenomas not detected on SE (but no adenomas not detected on SPGR) were detected on(18)F-FDG hrPET. CONCLUSIONS While(18)F-FDG hrPET imaging can

  9. Positron radiography of ignition-relevant ICF capsules

    DOE PAGES

    Williams, G. J.; Chen, Hui; Field, J. E.; ...

    2017-12-11

    Laser-generated positrons are evaluated as a probe source to radiograph in-flight ignition-relevant inertial confinement fusion capsules. Current ultraintense laser facilities are capable of producing 2 ×10 12 relativistic positrons in a narrow energy bandwidth and short time duration. Monte Carlo simulations suggest that the unique characteristics of such positrons allow for the reconstruction of both capsule shell radius and areal density between 0.002 and 2g/cm 2. The energy-downshifted positron spectrum and angular scattering of the source particles are sufficient to constrain the conditions of the capsule between preshot and stagnation. Here, we evaluate the effects of magnetic fields near themore » capsule surface using analytic estimates where it is shown that this diagnostic can tolerate line integrated field strengths of 100 T mm.« less

  10. Positron radiography of ignition-relevant ICF capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, G. J.; Chen, Hui; Field, J. E.

    Laser-generated positrons are evaluated as a probe source to radiograph in-flight ignition-relevant inertial confinement fusion capsules. Current ultraintense laser facilities are capable of producing 2 ×10 12 relativistic positrons in a narrow energy bandwidth and short time duration. Monte Carlo simulations suggest that the unique characteristics of such positrons allow for the reconstruction of both capsule shell radius and areal density between 0.002 and 2g/cm 2. The energy-downshifted positron spectrum and angular scattering of the source particles are sufficient to constrain the conditions of the capsule between preshot and stagnation. Here, we evaluate the effects of magnetic fields near themore » capsule surface using analytic estimates where it is shown that this diagnostic can tolerate line integrated field strengths of 100 T mm.« less

  11. Positron radiography of ignition-relevant ICF capsules

    NASA Astrophysics Data System (ADS)

    Williams, G. J.; Chen, Hui; Field, J. E.; Landen, O. L.; Strozzi, D. J.

    2017-12-01

    Laser-generated positrons are evaluated as a probe source to radiograph in-flight ignition-relevant inertial confinement fusion capsules. Current ultraintense laser facilities are capable of producing 2 × 1012 relativistic positrons in a narrow energy bandwidth and short time duration. Monte Carlo simulations suggest that the unique characteristics of such positrons allow for the reconstruction of both capsule shell radius and areal density between 0.002 and 2 g/cm2. The energy-downshifted positron spectrum and angular scattering of the source particles are sufficient to constrain the conditions of the capsule between preshot and stagnation. We evaluate the effects of magnetic fields near the capsule surface using analytic estimates where it is shown that this diagnostic can tolerate line integrated field strengths of 100 T mm.

  12. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-03-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2×1), (2×2), and (4×2) reconstructions, and for Ge(111) surface with c(2×8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2×1) and Si(111)-(7×7) surfaces.

  13. Age and disease related changes in the translocator protein (TSPO) system in the human brain: positron emission tomography measurements with [11C]vinpocetine.

    PubMed

    Gulyás, Balázs; Vas, Adám; Tóth, Miklós; Takano, Akihiro; Varrone, Andrea; Cselényi, Zsolt; Schain, Martin; Mattsson, Patrik; Halldin, Christer

    2011-06-01

    The main objectives of the present study were (i) to measure density changes of activated microglia and the peripheral benzodiazepine receptor/translocator protein (TSPO) system during normal ageing in the human brain with positron emission tomography (PET) using the TSPO molecular imaging biomarker [(11)C]vinpocetine and (ii) to compare the level and pattern of TSPO in Alzheimer (AD) patients with age matched healthy subjects, in order to assess the biomarker's usefulness as a diagnostic imaging marker in normal (ageing) and pathological (AD) up-regulation of microglia. PET measurements were made in healthy volunteers, aged between 25 and 78 years, and AD patients, aged between 67 and 82 years, using [(11)C]vinpocetine as the tracer. Global and regional quantitative parameters of tracer uptake and binding, including time activity curves (TAC) of standard uptake values (%SUV), binding affinity parameters, intensity spectrum and homogeneity of the uptake distribution were measured and analysed. Both %SUV and binding values increased with age linearly in the whole brain and in all brain regions. There were no significant differences between the %SUV values of the AD patients and age matched control subjects. There were, however, significant differences in %SUV values in a large number of brain regions between young subjects and old subjects, as well as young subjects and AD patients. The intensity spectrum analysis and homogeneity analysis of the voxel data show that the homogeneity of the %SUV values decreases with ageing and during the disease, whereas the centre of the intensity spectrum is shifted to higher %SUV values. These data indicate an inhomogeneous up-regulation of the TSPO system during ageing and AD. These changes were significant between the group of young subjects and old subjects, as well as young subjects and AD patients, but not between old subjects and AD patients. The present data indicate that [(11)C]vinpocetine may serve as a molecular imaging

  14. Positron emitter labeled enzyme inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline andmore » L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.« less

  15. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  16. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  17. Nuclear emission-based imaging in the study of brain function

    NASA Astrophysics Data System (ADS)

    Sossi, Vesna

    2016-09-01

    Nuclear emission - based imaging has been used in medicine for decades either in the form of Single Photon Emission Computerized Tomography (SPECT) or Positron Emission Tomography (PET). Both techniques are based on radiolabelling molecules of biological interest (radiotracers) with either a gamma (SPECT) or a positron (PET) emitting radionuclide. By detecting radiation from the radiolabels and reconstructing the acquired data it is possible to form an image of the radiotracer distribution in the body and thus obtain information on the biological process that the radiotracer is tagging. While most of the clinical applications of PET are in oncology, where the glucose analogue 18F-flurodeoxyglocose (FDG) is the most commonly used radiotracer, the importance of PET imaging for brain applications is rapidly increasing. Numerous radiotracers exist that can tag different neurotransmitter systems as well as abnormal protein aggregations that are known to underlie several brain diseases: amyloid deposition, a characteristic of Alzheimer's, and, more recently, tau deposition, which is deemed abnormal not only in dementia, but also in Parkinson's syndrome and traumatic brain injury. Imaging has shown that may brain diseases start decades before clinical symptoms, in part explaining the difficulty of developing adequate treatments. This talk will briefly summarize the role of PET imaging in the study of neurodegeneration and discuss the upcoming hybrid PET/MRI imaging instrumentation. NSERC, CIHR, MJFF.

  18. Plasma Wakefield Acceleration of an Intense Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the

  19. A slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.

    1989-01-01

    A slow positron beam generator using well-annealed polycrystalline tungsten moderators and a Na-22 positron source was developed. A 250 micro c source, deposited on a 2.54 micron thick aluminized mylar, is sandwiched between two (2.54 cm x 2.54 cm x 0.0127 cm) tungsten pieces. Two (2.54 cm x 2.54 cm x t cm) test polymer films insulate the two tungsten moderator pieces from the aluminized mylar source holder (t=0.00127 to 0.0127). A potential difference of 10 to 100 volts--depending on the test polymer film thickness (t)--is applied between the tungsten pieces and the source foil. Thermalized positrons diffusing out of the moderator pieces are attracted to the source foil held at an appropriate potential below the moderator pieces. These positrons have to pass through the test polymer films before they can reach the source foil. The potential difference between the moderator pieces and the aluminized mylar is so adjusted as to force the positrons to stop in the test polymer films. Thus the new generator becomes an effective source of positrons for assaying thin polymer films for their molecular morphology.

  20. Origin of the positron excess in cosmic rays.

    PubMed

    Blasi, Pasquale

    2009-07-31

    We show that the positron excess measured by the PAMELA experiment in the region between 10 and 100 GeV may well be a natural consequence of the standard scenario for the origin of Galactic cosmic rays. The "excess" arises because of positrons created as secondary products of hadronic interactions inside the sources, but the crucial physical ingredient which leads to a natural explanation of the positron flux is the fact that the secondary production takes place in the same region where cosmic rays are being accelerated. Therefore secondary positrons (and electrons) participate in the acceleration process and turn out to have a very flat spectrum, which is responsible, after propagation in the Galaxy, for the observed positron excess. This effect cannot be avoided though its strength depends on the values of the environmental parameters during the late stages of evolution of supernova remnants.

  1. Detection of histological anaplasia in gliomas with oligodendroglial components using positron emission tomography with (18)F-FDG and (11)C-methionine: report of two cases.

    PubMed

    Yamaguchi, Shigeru; Kobayashi, Hiroyuki; Hirata, Kenji; Shiga, Tohru; Tanaka, Shinya; Murata, Junichi; Terasaka, Shunsuke

    2011-01-01

    Gliomas are regionally heterogeneous tumors. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) and (11)C-methionine (MET) evaluates the heterogeneity of histological malignancy within the tumor. We present two patients with oligodendrocytic tumors that showed discrepancies in the highest uptake areas with these two tracers. PET studies with MET and FDG were performed on the same day, 2 weeks before surgery. In both cases, biopsy specimens were separately obtained from the highest MET and FDG uptake areas guided by intraoperative neuronavigation. Histological examinations demonstrated that the specimens from the highest MET uptake area revealed low-grade oligoastrocytoma or oligodendroglioma, whereas histological anaplasias were contained in the specimens from the highest FDG uptake area. With gliomas with oligodendroglial components, the MET uptake ratio does not always correspond to histological anaplasia, which can be detected only by FDG PET. Sole application of MET PET for preoperative evaluation may lead to misunderstanding of histological heterogeneity in gliomas, especially those with oligodendroglial components. FDG and MET tracers play complementary roles in preoperative evaluation of gliomas.

  2. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model.

    PubMed

    Iguchi, Yoshiya; Michiue, Hiroyuki; Kitamatsu, Mizuki; Hayashi, Yuri; Takenaka, Fumiaki; Nishiki, Tei-Ichi; Matsui, Hideki

    2015-07-01

    Glioblastoma, a malignant brain tumor with poor disease outcomes, is managed in modern medicine by multimodality therapy. Boron neutron capture therapy (BNCT) is an encouraging treatment under clinical investigation. In malignant cells, BNCT consists of two major factors: neutron radiation and boron uptake. To increase boron uptake in cells, we created a mercapto-closo-undecahydrododecaborate ([B12HnSH](2-)2Na(+), BSH) fused with a short arginine peptide (1R, 2R, 3R) and checked cellular uptake in vitro and in vivo. In a mouse brain tumor model, only BSH with at least three arginine domains could penetrate cell membranes of glioma cells in vitro and in vivo. Furthermore, to monitor the pharmacokinetic properties of these agents in vivo, we fused BSH and BSH-3R with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA); DOTA is a metal chelating agent for labeling positron emission tomography (PET) probe with (64)Cu. We administered BSH-DOTA-(64)Cu and BSH-3R-DOTA-(64)Cu to the tumor model through a mouse tail vein and determined the drugs' pharmacokinetics by PET imaging. BSH-3R showed a high uptake in the tumor area on PET imaging. We concluded that BSH-3R is the ideal boron compound for clinical use during BNCT and that in developing this compound for clinical use, the BSH-3R PET probe is essential for pharmacokinetic imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Upgrade of the Neutron Induced Positron Source NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Pikart, P.; Reiner, M.; Weber, J.; Zimnik, S.

    2013-06-01

    In summer 2012, the new NEutron induced POsitron Source MUniCh (NEPOMUC) was installed and put into operation at the research reactor FRM II. At NEPOMUC upgrade 80% 113Cd enriched Cd is used as neutron-gamma converter in order to ensure an operation time of 25 years. A structure of Pt foils inside the beam tube generates positrons by pair production. Moderated positrons leaving the Pt front foil are electrically extracted and magnetically guided to the outside of the reactor pool. The whole design, including Pt-foils, the electric lenses and the magnetic fields, has been improved in order to enhance both the intensity and the brightness of the positron beam. After adjusting the potentials and the magnetic guide and compensation fields an intensity of about 3·109 moderated positrons per second is expected. During the first start-up, the measured temperatures of about 90°C ensure a reliable operation of the positron source. Within this contribution the features and the status of NEPOMUC upgrade are elucidated. In addition, an overview of recent positron beam experiments and current developments at the spectrometers is given.

  4. Low-energy positron scattering upon endohedrals

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernysheva, L. V.

    2017-07-01

    We investigate positron scattering upon endohedrals and compare it with electron-endohedral scattering. We show that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects both the positron and electron elastic scattering phases as well as corresponding cross sections. Of great importance is also the interaction between the incoming positron and the target electrons that leads to formation of the virtual positronium P˜s. We illustrate the general trend by concrete examples of positron and electron scattering upon endohedrals He@C60 and Ar@C60, and compare it to scattering upon fullerene C60. To obtain the presented results, we have employed new simplified approaches that permit to incorporate the effect of fullerenes polarizability into the He@C60 and Ar@C60 polarization potential and to take into account the virtual positronium formation. Using these approaches, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross sections due to effect of endohedral polarization and P˜s formation.

  5. Positrons observed to originate from thunderstorms

    NASA Astrophysics Data System (ADS)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  6. Advantages in functional imaging of the brain.

    PubMed

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  7. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Jung, E.

    2009-03-10

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M{sub 4,5}N{sub 1}N{sub 2,3}, M{sub 2,3}M{sub 4,5}M{sub 4,5}, M{sub 2,3}M{sub 4,5}V, and M{sub 1}M{sub 4,5}M{sub 4,5} Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculationsmore » of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.« less

  8. Positron trapping at defects in copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    McMullen, T.; Jena, P.; Khanna, S. N.; Li, Yi; Jensen, Kjeld O.

    1991-05-01

    Positron states and lifetimes at defects in the copper oxide superconductors La2-xSrxCuO4, YBa2Cu3O7-x, and Bi2Sr2CaCu2O8+x are calculated with use of the superposed-atom model. In the Bi2Sr2CaCu2O8+x compound, we find that the smaller metal-ion vacancies appear to only bind positrons weakly, while missing oxygens do not trap positrons. In contrast, metal-ion vacancies in La2-xSrxCuO4 and YBa2Cu3O7-x bind positrons by ~1 eV, and oxygen-related defects appear to be the weak-binding sites in these materials. The sites that bind positrons only weakly, by energies ~kBT, are of particular interest in view of the complex temperature dependences of the annihilation characteristics that are observed in these materials.

  9. ANTICOOL: Simulating positron cooling and annihilation in atomic gases

    NASA Astrophysics Data System (ADS)

    Green, D. G.

    2018-03-01

    The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.

  10. Positron emitter labeled enzyme inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgylinemore » and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.« less

  11. Decreased cerebral cortical serotonin transporter binding in ecstasy users: a positron emission tomography/[11C]DASB and structural brain imaging study

    PubMed Central

    Lerch, Jason; Furukawa, Yoshiaki; Tong, Junchao; McCluskey, Tina; Wilkins, Diana; Houle, Sylvain; Meyer, Jeffrey; Mundo, Emanuela; Wilson, Alan A.; Rusjan, Pablo M.; Saint-Cyr, Jean A.; Guttman, Mark; Collins, D. Louis; Shapiro, Colin; Warsh, Jerry J.; Boileau, Isabelle

    2010-01-01

    Animal data indicate that the recreational drug ecstasy (3,4-methylenedioxymethamphetamine) can damage brain serotonin neurons. However, human neuroimaging measurements of serotonin transporter binding, a serotonin neuron marker, remain contradictory, especially regarding brain areas affected; and the possibility that structural brain differences might account for serotonin transporter binding changes has not been explored. We measured brain serotonin transporter binding using [11C] N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine in 50 control subjects and in 49 chronic (mean 4 years) ecstasy users (typically one to two tablets bi-monthly) withdrawn from the drug (mean 45 days). A magnetic resonance image for positron emission tomography image co-registration and structural analyses was acquired. Hair toxicology confirmed group allocation but also indicated use of other psychoactive drugs in most users. Serotonin transporter binding in ecstasy users was significantly decreased throughout all cerebral cortices (range –19 to –46%) and hippocampus (–21%) and related to the extent of drug use (years, maximum dose), but was normal in basal ganglia and midbrain. Substantial overlap was observed between control and user values except for insular cortex, in which 51% of ecstasy user values fell below the lower limit of the control range. Voxel-based analyses confirmed a caudorostral gradient of cortical serotonin transporter binding loss with occipital cortex most severely affected. Magnetic resonance image measurement revealed no overall regional volume differences between groups; however, a slight left-hemispheric biased cortical thinning was detected in methamphetamine-using ecstasy users. The serotonin transporter binding loss was not related to structural changes or partial volume effect, use of other stimulant drugs, blood testosterone or oestradiol levels, major serotonin transporter gene promoter polymorphisms, gender, psychiatric status, or self

  12. Decreased cerebral cortical serotonin transporter binding in ecstasy users: a positron emission tomography/[(11)C]DASB and structural brain imaging study.

    PubMed

    Kish, Stephen J; Lerch, Jason; Furukawa, Yoshiaki; Tong, Junchao; McCluskey, Tina; Wilkins, Diana; Houle, Sylvain; Meyer, Jeffrey; Mundo, Emanuela; Wilson, Alan A; Rusjan, Pablo M; Saint-Cyr, Jean A; Guttman, Mark; Collins, D Louis; Shapiro, Colin; Warsh, Jerry J; Boileau, Isabelle

    2010-06-01

    Animal data indicate that the recreational drug ecstasy (3,4-methylenedioxymethamphetamine) can damage brain serotonin neurons. However, human neuroimaging measurements of serotonin transporter binding, a serotonin neuron marker, remain contradictory, especially regarding brain areas affected; and the possibility that structural brain differences might account for serotonin transporter binding changes has not been explored. We measured brain serotonin transporter binding using [(11)C] N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine in 50 control subjects and in 49 chronic (mean 4 years) ecstasy users (typically one to two tablets bi-monthly) withdrawn from the drug (mean 45 days). A magnetic resonance image for positron emission tomography image co-registration and structural analyses was acquired. Hair toxicology confirmed group allocation but also indicated use of other psychoactive drugs in most users. Serotonin transporter binding in ecstasy users was significantly decreased throughout all cerebral cortices (range -19 to -46%) and hippocampus (-21%) and related to the extent of drug use (years, maximum dose), but was normal in basal ganglia and midbrain. Substantial overlap was observed between control and user values except for insular cortex, in which 51% of ecstasy user values fell below the lower limit of the control range. Voxel-based analyses confirmed a caudorostral gradient of cortical serotonin transporter binding loss with occipital cortex most severely affected. Magnetic resonance image measurement revealed no overall regional volume differences between groups; however, a slight left-hemispheric biased cortical thinning was detected in methamphetamine-using ecstasy users. The serotonin transporter binding loss was not related to structural changes or partial volume effect, use of other stimulant drugs, blood testosterone or oestradiol levels, major serotonin transporter gene promoter polymorphisms, gender, psychiatric status, or self

  13. Elevated Brain Cannabinoid CB1 Receptor Availability in Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    PubMed Central

    Neumeister, Alexander; Normandin, Marc D.; Pietrzak, Robert H.; Piomelli, Daniele; Zheng, Ming-Qiang; Gujarro-Anton, Ana; Potenza, Marc N.; Bailey, Christopher R.; Lin, Shu-fei; Najafzadeh, Soheila; Ropchan, Jim; Henry, Shannan; Corsi-Travali, Stefani; Carson, Richard E.; Huang, Yiyun

    2013-01-01

    Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such histories (healthy controls [HC]). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance (MR) imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [11C]OMAR, which measures volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol (2-AG), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [11C]OMAR VT values (F(2,53)=7.96, p=.001; 19.5% and 14.5% higher, respectively) which were most pronounced in women (F(1,53)=5.52, p=.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively—OMAR VT, anandamide, and cortisol—correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder. PMID:23670490

  14. Conceptual design of an intense positron source based on an LIA

    NASA Astrophysics Data System (ADS)

    Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui

    2012-04-01

    Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.

  15. Pilot study utilizing Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography for glycolytic phenotyping of canine mast cell tumors.

    PubMed

    Griffin, Lynn R; Thamm, Doug H; Selmic, Laura E; Ehrhart, E J; Randall, Elissa

    2018-03-23

    The goal of this prospective pilot study was to use naturally occurring canine mast cell tumors of various grades and stages as a model for attempting to determine how glucose uptake and markers of biologic behavior are correlated. It was hypothesized that enhanced glucose uptake, as measured by 2-[fluorine-18]fluoro-d-glucose-positron emission tomography/computed tomography (F18 FDG PET-CT), would correlate with histologic grade. Dogs were recruited for this study from a population referred for treatment of cytologically or histologically confirmed mast cell tumors. Patients were staged utilizing standard of care methods (abdominal ultrasound and three view thoracic radiographs), followed by a whole body F18 FDG PET-CT. Results of the F18 FDG PET-CT were analyzed for possible metastasis and standard uptake value maximum (SUV max ) of identified lesions. Incisional or excisional biopsies of the accessible mast cell tumors were obtained and histology performed. Results were then analyzed to look for a possible correlation between the grade of mast cell tumors and SUV max . A total of nine animals were included in the sample. Findings indicated that there was a correlation between grade of mast cell tumors and SUV max as determined by F18 FDG PET-CT (p-value = 0.073, significance ≤ 0.1). Based on the limited power of this study, it is felt that further research to examine the relationship between glucose utilization and biologic aggressiveness in canine mast cell tumors is warranted. This study was unable to show that F18 FDG PET-CT was a better staging tool than standard of care methods. © 2018 American College of Veterinary Radiology.

  16. A high resolution prototype small-animal PET scanner dedicated to mouse brain imaging

    PubMed Central

    Yang, Yongfeng; Bec, Julien; Zhou, Jian; Zhang, Mengxi; Judenhofer, Martin S; Bai, Xiaowei; Di, Kun; Wu, Yibao; Rodriguez, Mercedes; Dokhale, Purushottam; Shah, Kanai S.; Farrell, Richard; Qi, Jinyi; Cherry, Simon R.

    2017-01-01

    A prototype small-animal PET scanner was developed based on depth-encoding detectors using dual-ended readout of very small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. Methods The scanner consists of 16 tapered dual-ended readout detectors arranged in a ring of diameter 61 mm. The axial field of view is 7 mm and the transaxial field of view is 30 mm. The scintillator arrays consist of 14×14 lutetium oxyorthosilicate (LSO) elements, with a crystal size of 0.43×0.43 mm2 at the front end and 0.80×0.43 mm2 at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8×8 mm2 and a 13×8 mm2 position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear instrumentation module (NIM) electronics and a custom designed multiplexer are used for signal processing. Results The detector performance was measured and all except the very edge crystals could be clearly resolved. The average detector intrinsic spatial resolution in the axial direction was 0.61 mm. A depth of interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at center of the field of view was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a field of view that can accommodate the entire mouse brain was ~0.6 mm using a 3D Maximum Likelihood-Expectation Maximization (ML-EM) reconstruction algorithm. Images of a micro hot-rod phantom showed that rods with diameter down to 0.5 mm could be resolved. First in vivo studies were obtained using 18F-fluoride and confirmed that 0.6 mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with 18F-fluorodeoxyglucose were also acquired. Conclusion A prototype PET scanner achieving a spatial resolution approaching the physical limits for a small-bore PET scanner set by positron range and acolinearity was developed. Future

  17. Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Zaidi, Habib

    2013-01-01

    In addition to being a powerful clinical tool, Positron emission tomography (PET) is also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. However, dosimetric characteristics in small animal PET imaging are usually overlooked, though the radiation dose may not be negligible. In this work, we constructed 17 mouse models of different body mass and size based on the realistic four-dimensional MOBY mouse model. Particle (photons, electrons and positrons) transport using the Monte Carlo method was performed to calculate the absorbed fractions and S-values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86 and I-124). Among these radionuclides, O-15 emits positrons with high energy and frequency and produces the highest self-absorbed S-values in each organ, while Y-86 emits γ-rays with high energy and frequency which results in the highest cross-absorbed S-values for non-neighbouring organs. Differences between S-values for self-irradiated organs were between 2% and 3%/g difference in body weight for most organs. For organs irradiating other organs outside the splanchnocoele (i.e. brain, testis and bladder), differences between S-values were lower than 1%/g. These appealing results can be used to assess variations in small animal dosimetry as a function of total-body mass. The generated database of S-values for various radionuclides can be used in the assessment of radiation dose to mice from different radiotracers in small animal PET experiments, thus offering quantitative figures for comparative dosimetry research in small animal models.

  18. Ionisation of atomic hydrogen by positron impact

    NASA Technical Reports Server (NTRS)

    Spicher, Gottfried; Olsson, Bjorn; Raith, Wilhelm; Sinapius, Guenther; Sperber, Wolfgang

    1990-01-01

    With the crossed beam apparatus the relative impact-ionization cross section of atomic hydrogen by positron impact was measured. A layout of the scattering region is given. The first measurements on the ionization of atomic hydrogen by positron impact are also given.

  19. The Norepinephrine Transporter in Attention-Deficit/Hyperactivity Disorder Investigated With Positron Emission Tomography

    PubMed Central

    Rami-Mark, Christina; Savli, Markus; Höflich, Anna; Kranz, Georg S.; Hahn, Andreas; Kutzelnigg, Alexandra; Traub-Weidinger, Tatjana; Mitterhauser, Markus; Wadsak, Wolfgang; Hacker, Marcus; Volkow, Nora D.; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    IMPORTANCE Attention-deficit/hyperactivity disorder (ADHD) research has long focused on the dopaminergic system’s contribution to pathogenesis, although the results have been inconclusive. However, a case has been made for the involvement of the noradrenergic system, which modulates cognitive processes, such as arousal, working memory, and response inhibition, all of which are typically affected in ADHD. Furthermore, the norepinephrine transporter (NET) is an important target for frequently prescribed medication in ADHD. Therefore, the NET is suggested to play a critical role in ADHD. OBJECTIVE To explore the differences in NET nondisplaceable binding potential (NET BPND) using positron emission tomography and the highly selective radioligand (S,S)-[18F]FMeNER-D2 [(S,S)-2-(α-(2-[18F]fluoro[2H2]methoxyphenoxy)benzyl)morpholine] between adults with ADHD and healthy volunteers serving as controls. DESIGN, SETTING, AND PARTICIPANTS Twenty-two medication-free patients with ADHD (mean [SD] age, 30.7 [10.4] years; 15 [68%] men) without psychiatric comorbidities and 22 age- and sex-matched healthy controls (30.9 [10.6] years; 15 [68%] men) underwent positron emission tomography once. A linear mixed model was used to compare NET BPND between groups. MAIN OUTCOMES AND MEASURES The NET BPND in selected regions of interest relevant for ADHD, including the hippocampus, putamen, pallidum, thalamus, midbrain with pons (comprising a region of interest that includes the locus coeruleus), and cerebellum. In addition, the NET BPND was evaluated in thalamic subnuclei (13 atlas-based regions of interest). RESULTS We found no significant differences in NET availability or regional distribution between patients with ADHD and healthy controls in all investigated brain regions (F1,41 < 0.01; P = .96). Furthermore, we identified no significant association between ADHD symptom severity and regional NET availability. Neither sex nor smoking status influenced NET availability. We determined

  20. What is the fate of runaway positrons in tokamaks?

    DOE PAGES

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; ...

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  1. What is the fate of runaway positrons in tokamaks?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian; Qin, Hong, E-mail: hongqin@ustc.edu.cn; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

    2014-06-15

    Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  2. Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility

    NASA Astrophysics Data System (ADS)

    Wagner, Andreas; Butterling, Maik; Liedke, Maciej O.; Potzger, Kay; Krause-Rehberg, Reinhard

    2018-05-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA with bunch charges up to 120 pC. The electron beam is employed to produce several secondary beams including X-rays from bremsstrahlung production, coherent IR light in a Free Electron Laser, superradiant THz radiation, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films. Bulk materials, fluids, gases, and even radioactive samples can be studied at the unique Gamma-induced Positron Source (GiPS) where an intense bremsstrahlung source generates positrons directly inside the material under study. A 22Na-based monoenergetic positron beam serves for offline experiments and additional depth-resolved Doppler-broadening studies complementing both accelerator-based sources.

  3. Positron kinetics in an idealized PET environment

    PubMed Central

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-01-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations. PMID:26246002

  4. Positron annihilation in the nuclear outflows of the Milky Way

    NASA Astrophysics Data System (ADS)

    Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2018-02-01

    Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.

  5. High energy polarimetry of positron beams

    DOE PAGES

    Gaskell, D.

    2018-05-01

    Møller and Compton polarimetry are the primary techniques used for high energy electron polarimetry at Jefferson Lab. Both techniques can also be used for positron polarimetry, in principle. However, some modifications to the configuration and/or operating mode of the existing devices will likely be required for use with the types of positron beams currently under consideration at Jefferson Lab.

  6. High energy polarimetry of positron beams

    NASA Astrophysics Data System (ADS)

    Gaskell, D.

    2018-05-01

    Møller and Compton polarimetry are the primary techniques used for high energy electron polarimetry at Jefferson Lab. In principle, both techniques can also be used for positron polarimetry. However, some modifications to the configuration and/or operating mode of the existing devices will likely be required for use with the types of positron beams currently under consideration at Jefferson Lab.

  7. The annihilation of galactic positrons

    NASA Technical Reports Server (NTRS)

    Bussard, R.; Rematy, R.

    1978-01-01

    The probabilities of various channels of galactic positron annihilation were evaluated and the spectrum of the resulting radiation was calculated. The narrow width (FWHM less than 3.2 keV) of the 0.511 MeV line observed from the galactic center implies that a large fraction of positrons should annihilate in a medium of temperature less than 100,000 K and ionization fraction greater than 0.05. HII regions at the galactic center could be possible sites of annihilation.

  8. Positron accumulation effect in particles embedded in a low-density matrix

    NASA Astrophysics Data System (ADS)

    Dryzek, Jerzy; Siemek, Krzysztof

    2015-02-01

    Systematic studies of the so-called positron accumulation effect for samples with particles embedded in a matrix are reported. This effect is related to energetic positrons which penetrate inhomogeneous medium. Due to differences in the linear absorption coefficient, different amounts of positrons are accumulated and annihilate in the identical volume of both materials. Positron lifetime spectroscopy and Doppler broadening of the annihilation line using Na-22 positrons were applied to the studies of the epoxy resin samples with embedded micro-sized particles of transition metals, i.e., Ni, Sn, Mo, W, and nonmetal particles, i.e., Si and NaF. The significant difference between the determined fraction of positrons annihilating in the particles and the particle volume fraction indicates the positron accumulation effect. The simple phenomenological model and Monte Carlo simulations are able to describe the main features of the obtained dependencies. The aluminum alloy with embedded Sn nanoparticles is also considered for demonstration differences between the accumulation and another related effect, i.e., the positron affinity.

  9. Positrons as interface-sensitive probes of polar semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Makkonen, I.; Snicker, A.; Puska, M. J.; Mäki, J.-M.; Tuomisto, F.

    2010-07-01

    Group-III nitrides in their wurtzite crystal structure are characterized by large spontaneous polarization and significant piezoelectric contributions in heterostructures formed of these materials. Polarization discontinuities in polar heterostructures grown along the (0001) direction result in huge built-in electric fields on the order of megavolt per centimeter. We choose the III-nitride heterostructures as archetypal representatives of polar heterostructures formed of semiconducting or insulating materials and study the behavior of positrons in these structures using first-principles electronic-structure theory supported by positron annihilation experiments for bulk systems. The strong electric fields drive positrons close to interfaces, which is clearly seen in the predicted momentum distributions of annihilating electron-positron pairs as changes relative to the constituent bulk materials. Implications of the effect to positron defect studies of polar heterostructures are addressed.

  10. [Radiotherapy volume delineation based on (18F)-fluorodeoxyglucose positron emission tomography for locally advanced or inoperable oesophageal cancer].

    PubMed

    Encaoua, J; Abgral, R; Leleu, C; El Kabbaj, O; Caradec, P; Bourhis, D; Pradier, O; Schick, U

    2017-06-01

    To study the impact on radiotherapy planning of an automatically segmented target volume delineation based on ( 18 F)-fluorodeoxy-D-glucose (FDG)-hybrid positron emission tomography-computed tomography (PET-CT) compared to a manually delineation based on computed tomography (CT) in oesophageal carcinoma patients. Fifty-eight patients diagnosed with oesophageal cancer between September 2009 and November 2014 were included. The majority had squamous cell carcinoma (84.5 %), and advanced stage (37.9 % were stade IIIA) and 44.8 % had middle oesophageal lesion. Gross tumour volumes were retrospectively defined based either manually on CT or automatically on coregistered PET/CT images using three different threshold methods: standard-uptake value (SUV) of 2.5, 40 % of maximum intensity and signal-to-background ratio. Target volumes were compared in length, volume and using the index of conformality. Radiotherapy plans to the dose of 50Gy and 66Gy using intensity-modulated radiotherapy were generated and compared for both data sets. Planification target volume coverage and doses delivered to organs at risk (heart, lung and spinal cord) were compared. The gross tumour volume based manually on CT was significantly longer than that automatically based on signal-to-background ratio (6.4cm versus 5.3cm; P<0.008). Doses to the lungs (V20, D mean ), heart (V40), and spinal cord (D max ) were significantly lower on plans using the PTV SBR . The PTV SBR coverage was statistically better than the PTV CT coverage on both plans. (50Gy: P<0.0004 and 66Gy: P<0.0006). The automatic PET segmentation algorithm based on the signal-to-background ratio method for the delineation of oesophageal tumours is interesting, and results in better target volume coverage and decreased dose to organs at risk. This may allow dose escalation up to 66Gy to the gross tumour volume. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights

  11. Threshold law for positron-atom impact ionisation

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1982-01-01

    The threshold law for ionisation of atoms by positron impact is adduced in analogy with our approach to the electron-atom ionization. It is concluded the Coulomb-dipole region of the potential gives the essential part of the interaction in both cases and leads to the same kind of result: a modulated linear law. An additional process which enters positron ionization is positronium formation in the continuum, but that will not dominate the threshold yield. The result is in sharp contrast to the positron threshold law as recently derived by Klar on the basis of a Wannier-type analysis.

  12. Alcohol ADME in primates studied with positron emission tomography.

    PubMed

    Li, Zizhong; Xu, Youwen; Warner, Don; Volkow, Nora D

    2012-01-01

    The sensitivity to the intoxicating effects of alcohol as well as its adverse medical consequences differ markedly among individuals, which reflects in part differences in alcohol's absorption, distribution, metabolism, and elimination (ADME) properties. The ADME of alcohol in the body and its relationship with alcohol's brain bioavailability, however, is not well understood. The ADME of C-11 labeled alcohol, CH(3) (11)CH(2)OH, 1 and C-11 and deuterium dual labeled alcohol, CH(3) (11)CD(2)OH, 2 in baboons was compared based on the principle that C-D bond is stronger than C-H bond, thus the reaction is slower if C-D bond breaking occurs in a rate-determining metabolic step. The following ADME parameters in peripheral organs and brain were derived from time activity curve (TAC) of positron emission tomography (PET) scans: peak uptake (C(max)); peak uptake time (T(max)), half-life of peak uptake (T(1/2)), the area under the curve (AUC(60 min)), and the residue uptake (C(60 min)). For 1 the highest uptake occurred in the kidney whereas for 2 it occurred in the liver. A deuterium isotope effect was observed in the kidneys in both animals studied and in the liver of one animal but not the other. The highest uptake for 1 and 2 in the brain was in striatum and cerebellum but 2 had higher uptake than 1 in all brain regions most evidently in thalamus and cingulate. Alcohol's brain uptake was significantly higher when given intravenously than when given orally and also when the animal was pretreated with a pharmacological dose of alcohol. The study shows that alcohol metabolism in peripheral organs had a large effect on alcohol's brain bioavailability. This study sets the stage for clinical investigation on how genetics, gender and alcohol abuse affect alcohol's ADME and its relationship to intoxication and medical consequences.

  13. Chapter 18: the origins of functional brain imaging in humans.

    PubMed

    Raichle, Marcus E

    2010-01-01

    Functional brain imaging in humans as we presently know it began when the experimental strategies of cognitive psychology were combined with modern brain imaging techniques, first positron emission tomography (PET) and then functional magnetic resonance imaging (fMRI), to examine how brain function supports mental activities. This marriage of disciplines and techniques galvanized the field of cognitive neuroscience, which has rapidly expanded to include a broad range of the social sciences as well as basic scientists interested in the neurophysiology, cell biology and genetics of the imaging signals. While much of this work has transpired over the past couple of decades, its roots can be traced back more than a century.

  14. Proposal for a slow positron facility at Jefferson National Laboratory

    NASA Astrophysics Data System (ADS)

    Mills, Allen P.

    2018-05-01

    One goal of the JPos-17 International Workshop on Physics with Positrons was to ascertain whether it would be a good idea to expand the mission of the Thomas Jefferson National Accelerator Facility (JLab) to include science with low energy (i.e. "slow") spin polarized positrons. It is probably true that experimentation with slow positrons would potentially have wide-ranging benefits comparable to those obtained with neutron and x-ray scattering, but it is certain that the full range of these benefits will never be fully available without an infrastructure comparable to that of existing neutron and x-ray facilities. The role for Jefferson Laboratory would therefore be to provide and maintain (1) a dedicated set of machines for making and manipulating high intensity, high brightness beams of polarized slow positrons; (2) a suite of unique and easily used instruments of wide utility that will make efficient use of the positrons; and (3) a group of on-site positron scientists to provide scientific leadership, instrument development, and user support. In this note some examples will be given of the science that might make a serious investment in a positron facility worthwhile. At the same time, the lessons learned from various proposed and successful positron facilities will be presented for consideration.

  15. Brain activation during human male ejaculation revisited.

    PubMed

    Georgiadis, Janniko R; Reinders, A A T Simone; Van der Graaf, Ferdinand H C E; Paans, Anne M J; Kortekaas, Rudie

    2007-04-16

    In a prior [O]-H2O positron emission tomographic study we reported brain regions involved in human male ejaculation. Here, we used another, more recently acquired data set to evaluate the methodological approach of this previous study, and discovered that part of the reported activation pattern was not related to ejaculation. With a new analysis of these ejaculation data, we now demonstrate ejaculation-related activations in the deep cerebellar nuclei (dentate nucleus), anterior vermis, pons, and ventrolateral thalamus, and, most importantly, ejaculation-related deactivations throughout the prefrontal cortex. This revision offers a new and more accurate insight into the brain regions involved in human male ejaculation.

  16. Theoretical survey on positronium formation and ionisation in positron atom scattering

    NASA Technical Reports Server (NTRS)

    Basu, Madhumita; Ghosh, A. S.

    1990-01-01

    The recent theoretical studies are surveyed and reported on the formation of exotic atoms in positron-hydrogen, positron-helium and positron-lithium scattering specially at intermediate energy region. The ionizations of these targets by positron impact was also considered. Theoretical predictions for both the processes are compared with existing measured values.

  17. Investigation of Positron Sticking to the Surfaces of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Joglekar, P. V.; Olenga, A. Y.; Fazleev, N. G.; Weiss, A. H.; Barniellini, B.

    2013-03-01

    We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators. In these experiments, a magnetically beam will be used to deposit positrons at the surface of Bi2Te2Se. The energy spectra and intensities of electrons emitted as a result of Positron Annihilation induced Auger electron Spectroscopy (PAES) provides a distinct element specific signal which can be used to determine if positrons can be trapped efficiently into a surface localized bound state. The experiments are aimed at determining the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system. Welch Y1100, NSF DMR 0907679

  18. Simulation and Modeling of Positrons and Electrons in advanced Time-of-Flight Positron Annihilation Induced Auger Electron Spectroscopy Systems

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Satyal, Suman; Weiss, Alexander

    2011-10-01

    Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (T-O-F PAES) is a highly surface selective analytical technique in which elemental identification is accomplished through a measurement of the flight time distributions of Auger electrons resulting from the annihilation of core electron by positrons. SIMION charged particle optics simulation software was used to model the trajectories both the incident positrons and outgoing electrons in our existing T-O-F PAES system as well as in a new system currently under construction in our laboratory. The implication of these simulation regarding the instrument design and performance are discussed.

  19. A disease-specific metabolic brain network associated with corticobasal degeneration.

    PubMed

    Niethammer, Martin; Tang, Chris C; Feigin, Andrew; Allen, Patricia J; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L; Meyer, Philipp T; Leenders, Klaus L; Eidelberg, David

    2014-11-01

    Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with (18)F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from

  20. Positron annihilation induced Auger electron emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, A.; Jibaly, M.; Lei, Chun

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.