Sample records for fluoromisonidazole pet predicts

  1. 18F-Fluoromisonidazole positron emission tomography (FMISO-PET) may reflect hypoxia and cell proliferation activity in oral squamous cell carcinoma.

    PubMed

    Sato, Jun; Kitagawa, Yoshimasa; Watanabe, Shiro; Asaka, Takuya; Ohga, Noritaka; Hirata, Kenji; Okamoto, Shozo; Shiga, Tohru; Shindoh, Masanobu; Kuge, Yuji; Tamaki, Nagara

    2017-09-01

    Hypoxia is a common feature and prognostic factor in cancer. 18 F-fluoromisonidazole (FMISO) positron emission tomography (PET) can detect tumor hypoxia noninvasively. The aim of this study was to assess the correlations between FMISO-PET and 18 F-fluorodexyglucose (FDG)-PET parameters with cell proliferation and hypoxia in patients with oral squamous cell carcinoma (OSCC). Twenty-three preoperative patients with OSCC were included. The tumor/muscle ratio (TMR) of FMISO-PET, the maximum standardized uptake values (SUV max ) of FDG-PET, metabolic tumor volume, and total lesion glycolysis were measured. Ki-67 and hypoxia-inducible factor-1α (HIF-1α) expression was immunohistochemically evaluated. FMISO TMR (P = .003) and FDG SUV max (P = .04) were significantly higher in patients with high expression of Ki-67 compared with those with low expression of Ki-67. FMISO TMR (P = .006) and FDG SUV max (P = .01) were also significantly higher in patients with HIF-1α expression than in those without HIF-1α expression. Metabolic tumor volume was not significantly related to either Ki-67 or HIF-1α expression. Multivariate analysis showed that FMISO TMR was independently predictive of Ki-67 (P = .002; odds ratio 31.1) and HIF-1α (P = .049; odds ratio 10.5) expression. FMISO-PET showed significant relationships with Ki-67 and HIF-1α expression, which are key features of cell proliferation and hypoxia in OSCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hypoxic volume evaluated by 18F-fluoromisonidazole positron emission tomography (FMISO-PET) may be a prognostic factor in patients with oral squamous cell carcinoma: preliminary analyses.

    PubMed

    Sato, J; Kitagawa, Y; Watanabe, S; Asaka, T; Ohga, N; Hirata, K; Shiga, T; Satoh, A; Tamaki, N

    2018-05-01

    Tumour hypoxia can be detected by 18 F-fluoromisonidazole positron emission tomography (FMISO-PET). Few studies have assessed the relationships of new PET parameters, including hypoxic volume (HV), metabolic tumour volume (MTV), and total lesion glycolysis (TLG), with 5-year survival of patients treated surgically for oral squamous cell carcinoma (OSCC). This study evaluated the relationships between these PET parameters and 5-year survival in OSCC patients. Twenty-three patients (age 42-84 years; 15 male, eight female) with OSCC underwent FMISO- and 18 F-fluoro-2-deoxyglucose (FDG)-PET computed tomography before surgery. All of them underwent radical surgery and were followed up for more than 5 years. The FDG-PET maximum standardized uptake value (SUV max ), HV, MTV, and TLG were measured. The ability of PET parameters to predict disease-free survival (DFS) and loco-regional recurrence (LR) was evaluated using receiver operating characteristic curve analysis. During the follow-up period, five of the 23 patients (22%) died and six (26%) experienced LR. Although FDG-PET SUV max was not significantly associated with DFS or LR, HV correlated significantly with both DFS and LR. TLG, but not MTV, was significantly associated with DFS; however neither MTV nor TLG was related significantly to LR. In conclusion, tumour HV may predict outcomes in patients with OSCC. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. (18)F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors.

    PubMed

    Toyonaga, Takuya; Hirata, Kenji; Yamaguchi, Shigeru; Hatanaka, Kanako C; Yuzawa, Sayaka; Manabe, Osamu; Kobayashi, Kentaro; Watanabe, Shiro; Shiga, Tohru; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Kuge, Yuji; Tamaki, Nagara

    2016-07-01

    Tumor necrosis is one of the indicators of tumor aggressiveness. (18)F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake. This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR). In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively. FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for

  4. Pharmacokinetic Analysis of Dynamic 18F-Fluoromisonidazole PET Data in Non-Small Cell Lung Cancer.

    PubMed

    Schwartz, Jazmin; Grkovski, Milan; Rimner, Andreas; Schöder, Heiko; Zanzonico, Pat B; Carlin, Sean D; Staton, Kevin D; Humm, John L; Nehmeh, Sadek A

    2017-06-01

    Hypoxic tumors exhibit increased resistance to radiation, chemical, and immune therapies. 18 F-fluoromisonidazole ( 18 F-FMISO) PET is a noninvasive, quantitative imaging technique used to evaluate the magnitude and spatial distribution of tumor hypoxia. In this study, pharmacokinetic analysis (PKA) of 18 F-FMISO dynamic PET extended to 3 h after injection is reported for the first time, to our knowledge, in stage III-IV non-small cell lung cancer (NSCLC) patients. Methods: Sixteen patients diagnosed with NSCLC underwent 2 PET/CT scans (1-3 d apart) before radiation therapy: a 3-min static 18 F-FDG and a dynamic 18 F-FMISO scan lasting 168 ± 15 min. The latter data were acquired in 3 serial PET/CT dynamic imaging sessions, registered with each other and analyzed using pharmacokinetic modeling software. PKA was performed using a 2-tissue, 3-compartment irreversible model, and kinetic parameters were estimated for the volumes of interest determined using coregistered 18 F-FDG images for both the volume of interest-averaged and the voxelwise time-activity curves for each patient's lesions, normal lung, and muscle. Results: We derived average values of 18 F-FMISO kinetic parameters for NSCLC lesions as well as for normal lung and muscle. We also investigated the correlation between the trapping rate ( k 3 ) and delivery rate ( K 1 ), influx rate ( K i ) constants, and tissue-to-blood activity concentration ratios (TBRs) for all tissues. Lesions had trapping rates 1.6 times larger, on average, than those of normal lung and 4.4 times larger than those in muscle. Additionally, for almost all cases, k 3 and K i had a significant strong correlation for all tissue types. The TBR- k 3 correlation was less straightforward, showing a moderate to strong correlation for only 41% of lesions. Finally, K 1 - k 3 voxelwise correlations for tumors were varied, but negative for 76% of lesions, globally exhibiting a weak inverse relationship (average R = -0.23 ± 0.39). However, both

  5. Modelling and simulation of [18F]fluoromisonidazole dynamics based on histology-derived microvessel maps

    NASA Astrophysics Data System (ADS)

    Mönnich, David; Troost, Esther G. C.; Kaanders, Johannes H. A. M.; Oyen, Wim J. G.; Alber, Markus; Thorwarth, Daniela

    2011-04-01

    Hypoxia can be assessed non-invasively by positron emission tomography (PET) using radiotracers such as [18F]fluoromisonidazole (Fmiso) accumulating in poorly oxygenated cells. Typical features of dynamic Fmiso PET data are high signal variability in the first hour after tracer administration and slow formation of a consistent contrast. The purpose of this study is to investigate whether these characteristics can be explained by the current conception of the underlying microscopic processes and to identify fundamental effects. This is achieved by modelling and simulating tissue oxygenation and tracer dynamics on the microscopic scale. In simulations, vessel structures on histology-derived maps act as sources and sinks for oxygen as well as tracer molecules. Molecular distributions in the extravascular space are determined by reaction-diffusion equations, which are solved numerically using a two-dimensional finite element method. Simulated Fmiso time activity curves (TACs), though not directly comparable to PET TACs, reproduce major characteristics of clinical curves, indicating that the microscopic model and the parameter values are adequate. Evidence for dependence of the early PET signal on the vascular fraction is found. Further, possible effects leading to late contrast formation and potential implications on the quantification of Fmiso PET data are discussed.

  6. Advantage of FMISO-PET over FDG-PET for predicting histological response to preoperative chemotherapy in patients with oral squamous cell carcinoma.

    PubMed

    Sato, Jun; Kitagawa, Yoshimasa; Yamazaki, Yutaka; Hata, Hironobu; Asaka, Takuya; Miyakoshi, Masaaki; Okamoto, Shozo; Shiga, Tohru; Shindoh, Masanobu; Kuge, Yuji; Tamaki, Nagara

    2014-11-01

    Hypoxia, a prognostic factor in many types of cancer, can be detected by (18)F-fluoromisonidazole (FMISO) positron emission tomography (PET). It is unclear whether hypoxia reflects the response to chemotherapy in patients with oral squamous cell carcinoma (OSCC). The correlations of FMISO-PET and FDG-PET with histological response to preoperative chemotherapy were therefore assessed in patients with OSCC. This study enrolled 22 patients with OSCC undergoing preoperative chemotherapy. The T-stages were T2 in 6 patients, T3 in 3, and T4a in 13, and the N-stages were N0 in 14 patients, N1 in 3, and N2 in 5. Each patient was evaluated by both FMISO-PET and FDG-PET before surgery, and the maximum standardized uptake value (SUVmax) of FDG- and FMISO-PET and tumor-muscle ratio (TMR) of FMISO-PET were measured. The threshold for the hypoxic volume based on TMR was set at 1.25. The histological response to preoperative chemotherapy was evaluated using operative materials. FMISO-PET and FDG-PET detected uptake by primary OSCCs in 15 (68%) and 21 (95%) patients, respectively, and median SUVmaxs of FMISO- and FDG-PET in the primary site were 2.0 (range, 1.3-3.5) and 16.0 (range, 1.0-32.2), respectively. The median of FMISO TMR was 1.5 (range, 0.99-2.96). There were five cases whose FMISO TMR was less than 1.25. Histological evaluation showed good response to preoperative chemotherapy in 7 patients (32%) and poor response in 15 (68%). Good response was significantly more prevalent in patients with negative than positive FMISO uptake (P < 0.001) and without the hypoxic area evaluated by FMISO-PET TMR (P = 0.04), whereas FDG uptake was not significantly correlated with response to chemotherapy response. Multivariate logistic regression analysis showed that FMISO uptake was an independent significant predictor of response to preoperative chemotherapy (P = 0.03, odds ratio = 0.06, 95% confidence interval = 0.004-0.759). An advantage of FMISO-PET over FDG-PET for

  7. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study

    PubMed Central

    Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829

  8. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study.

    PubMed

    Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.

  9. Fluorine-18-Labeled Fluoromisonidazole Positron Emission and Computed Tomography-Guided Intensity-Modulated Radiotherapy for Head and Neck Cancer: A Feasibility Study

    PubMed Central

    Lee, Nancy Y.; Mechalakos, James G.; Nehmeh, Sadek; Lin, Zhixiong; Squire, Olivia D.; Cai, Shangde; Chan, Kelvin; Zanzonico, Pasquale B.; Greco, Carlo; Ling, Clifton C.; Humm, John L.; Schöder, Heiko

    2010-01-01

    Purpose Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTVh) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTVh increases the tumor control probability. This study examined the feasibility of fluorine-18–labeled fluoromisonidazole positron emission tomography/computed tomography (18F-FMISO PET/CT)–guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. Methods and Materials 18F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and 18F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated 18F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate 18F-FMISO PET/CT-guided IMRT plans. Results The heterogeneous distribution of 18F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing 18F-FMISO PET/CT–guided IMRT for 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTVh for 2 patients and were successful in 1, with normal tissue sparing. Conclusion It was feasible to dose escalate the GTVh to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC

  10. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr; CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice; Kerrou, Khaldoun

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake valuemore » (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.« less

  11. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.

    PubMed

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang

    2015-09-01

    Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low

  12. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images

    PubMed Central

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced

  13. Semi-Supervised Tripled Dictionary Learning for Standard-dose PET Image Prediction using Low-dose PET and Multimodal MRI

    PubMed Central

    Wang, Yan; Ma, Guangkai; An, Le; Shi, Feng; Zhang, Pei; Lalush, David S.; Wu, Xi; Pu, Yifei; Zhou, Jiliu; Shen, Dinggang

    2017-01-01

    Objective To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion This work proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. PMID:27187939

  14. Fusion of multi-tracer PET images for dose painting.

    PubMed

    Lelandais, Benoît; Ruan, Su; Denœux, Thierry; Vera, Pierre; Gardin, Isabelle

    2014-10-01

    PET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used for the definition of Biological Target Volumes (BTVs) for radiotherapy. Recently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol (FMiso), have been proposed. They provide complementary information for the definition of BTVs. Our work is to fuse multi-tracer PET images to obtain a good BTV definition and to help the radiation oncologist in dose painting. Due to the noise and the partial volume effect leading, respectively, to the presence of uncertainty and imprecision in PET images, the segmentation and the fusion of PET images is difficult. In this paper, a framework based on Belief Function Theory (BFT) is proposed for the segmentation of BTV from multi-tracer PET images. The first step is based on an extension of the Evidential C-Means (ECM) algorithm, taking advantage of neighboring voxels for dealing with uncertainty and imprecision in each mono-tracer PET image. Then, imprecision and uncertainty are, respectively, reduced using prior knowledge related to defects in the acquisition system and neighborhood information. Finally, a multi-tracer PET image fusion is performed. The results are represented by a set of parametric maps that provide important information for dose painting. The performances are evaluated on PET phantoms and patient data with lung cancer. Quantitative results show good performance of our method compared with other methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu-ATSM or [18F]Fluoromisonidazole positron emission tomography.

    PubMed

    Matsumoto, Ken-Ichiro; Szajek, Lawrence; Krishna, Murali C; Cook, John A; Seidel, Jurgen; Grimes, Kelly; Carson, Joann; Sowers, Anastasia L; English, Sean; Green, Michael V; Bacharach, Stephen L; Eckelman, William C; Mitchell, James B

    2007-04-01

    [64Cu]Cu(II)-ATSM (64Cu-ATSM) and [18F]-Fluoromisonidazole (18F-FMiso) tumor binding as assessed by positron emisson topography (PET) was used to determine the responsiveness of each probe to modulation in tumor oxygenation levels in the SCCVII tumor model. Animals bearing the SCCVII tumor were injected with 64Cu-ATSM or 18F-FMiso followed by dynamic small animal PET imaging. Animals were imaged with both agents using different inspired oxygen mixtures (air, 10% oxygen, carbogen) which modulated tumor hypoxia as independently assessed by the hypoxia marker pimonidazole. The extent of hypoxia in the SCCVII tumor as monitored by the pimonidazole hypoxia marker was found to be in the following order: 10% oxygen>air>carbogen. Tumor uptake of 64Cu-ATSM could not be changed if the tumor was oxygenated using carbogen inhalation 90 min post-injection suggesting irreversible cellular uptake of the 64Cu-ATSM complex. A small but significant paradoxical increase in 64Cu-ATSM tumor uptake was observed for animals breathing air or carbogen compared to 10% oxygen. There was a positive trend toward 18F-FMiso tumor uptake as a function of changing hypoxia levels in agreement with the pimonidazole data. 64Cu-ATSM tumor uptake was unable to predictably detect changes in varying amounts of hypoxia when oxygenation levels in SCCVII tumors were modulated. 18F-FMiso tumor uptake was more responsive to changing levels of hypoxia. While the mechanism of nitroimidazole binding to hypoxic cells has been extensively studied, the avid binding of Cu-ATSM to tumors may involve other mechanisms independent of hypoxia that warrant further study.

  16. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F

  17. ¹⁸F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas.

    PubMed

    Hirata, Kenji; Terasaka, Shunsuke; Shiga, Tohru; Hattori, Naoya; Magota, Keiichi; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro; Tanaka, Shinya; Kuge, Yuji; Tamaki, Nagara

    2012-05-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that (18)F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and (18)F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71-3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09-1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM

  18. [18F]-Fluoromisonidazole Positron Emission Tomography/Computed Tomography Visualization of Tumor Hypoxia in Patients With Chordoma of the Mobile and Sacrococcygeal Spine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheney, Matthew D., E-mail: mcheney@lroc.harvard.edu; Chen, Yen-Lin; Lim, Ruth

    2014-12-01

    Purpose: To investigate [18F]-fluoromisonidazole positron emission tomography/computed tomography (FMISO-PET/CT) detection of targetable hypoxic subvolumes (HSVs) in chordoma of the mobile or sacrococcygeal spine. Methods and Materials: A prospective, pilot study of 20 patients with primary or locally recurrent chordoma of the mobile or sacrococcygeal spine treated with proton or combined proton/photon radiation therapy (RT) with or without surgery was completed. The FMISO-PET/CT was performed before RT and after 19.8-34.2 GyRBE (relative biologic effectiveness). Gross tumor volumes were delineated and HSVs defined including voxels with standardized uptake values ≥1.4 times the muscle mean. Clinical characteristics and treatments received were compared betweenmore » patients with and without HSVs. Results: The FMISO-PET/CT detected HSVs in 12 of 20 patients (60%). Baseline and interval HSV spatial concordance varied (0%-94%). Eight HSVs were sufficiently large (≥5 cm{sup 3}) to potentially allow an intensity modulated proton therapy boost. Patients with HSVs had significantly larger gross tumor volumes (median 410.0 cm{sup 3} vs 63.4 cm{sup 3}; P=.02) and were significantly more likely to have stage T2 tumors (5 of 12 vs 0 of 8; P=.04). After a median follow-up of 1.8 years (range, 0.2-4.4 years), a local recurrence has yet to be observed. Three patients developed metastatic disease, 2 with HSVs. Conclusions: Detection of targetable HSVs by FMISO-PET/CT within patients undergoing RT with or without surgery for treatment of chordoma of the mobile and sacrococcygeal spine is feasible. The study's inability to attribute interval HSV changes to treatment, rapidly changing hypoxic physiology, or imaging inconsistencies is a limitation. Further study of double-baseline FMISO-PET/CT and hypoxia-directed RT dose escalation, particularly in patients at high risk for local recurrence, is warranted.« less

  19. Baseline [(18)F]FMISO μPET as a Predictive Biomarker for Response to HIF-1α Inhibition Combined with 5-FU Chemotherapy in a Human Colorectal Cancer Xenograft Model.

    PubMed

    De Bruycker, Sven; Vangestel, Christel; Van den Wyngaert, Tim; Wyffels, Leonie; Wouters, An; Pauwels, Patrick; Staelens, Steven; Stroobants, Sigrid

    2016-08-01

    The purpose of this study was to characterize imaging biomarkers for the potential benefit of hypoxia-inducible factor-1 (HIF-1)α inhibition (by PX-12) during 5-fluorouracil (5-FU) chemotherapy in the treatment of colorectal cancer (CRC). Therapy response to 5-FU ± PX-12 was assessed with baseline [(18)F]fluoromisonidazole ([(18)F]FMISO) and longitudinal 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission computed tomography (μPET/CT) in CRC xenograft model (n = 36) during breathing of a hypoxic (10 % O2) or normoxic (21 % O2) atmosphere. Ex vivo, immunohistochemistry was performed. Baseline [(18)F]FMISO uptake and relative tumor volume (RTV) 2 days after 5-FU or 5-FU + PX-12 administration correlated significantly (p ≤ 0.01). Under hypoxic breathing conditions, [(18)F]FDG uptake (-53.1 ± 8.4 %) and Ki67 expression (-16 %) decreased and RTV stagnated in the 5-FU + PX-12 treatment group, but not in 5-FU alone-treated tumors. Under normoxic breathing, [(18)F]FDG uptake (-23.5 ± 15.2 % and -72.8 ± 7.1 %) and Ki67 expression (-5 % and -19 %) decreased and RTV stagnated in both the 5-FU and the combination treatment group, respectively. Baseline [(18)F]FMISO μPET may predict the beneficial effect of HIF-1α inhibition during 5-FU chemotherapy in CRC.

  20. Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using 18F-fluoromisonidazole PET/CT: a pilot study.

    PubMed

    Supiot, Stéphane; Rousseau, Caroline; Dore, Mélanie; Cheze-Le-Rest, Catherine; Kandel-Aznar, Christine; Potiron, Vincent; Guerif, Stéphane; Paris, François; Ferrer, Ludovic; Campion, Loïc; Meingan, Philippe; Delpon, Gregory; Hatt, Mathieu; Visvikis, Dimitris

    2018-02-09

    Hypoxia is a major factor in prostate cancer aggressiveness and radioresistance. Predicting which patients might be bad candidates for radiotherapy may help better personalize treatment decisions in intermediate-risk prostate cancer patients. We assessed spatial distribution of 18 F-Misonidazole (FMISO) PET/CT uptake in the prostate prior to radiotherapy treatment. Intermediate-risk prostate cancer patients about to receive high-dose (>74 Gy) radiotherapy to the prostate without hormonal treatment were prospectively recruited between 9/2012 and 10/2014. Prior to radiotherapy, all patients underwent a FMISO PET/CT as well as a MRI and 18 F-choline-PET. 18 F-choline and FMISO-positive volumes were semi-automatically determined using the fuzzy locally adaptive Bayesian (FLAB) method. In FMISO-positive patients, a dynamic analysis of early tumor uptake was performed. Group differences were assessed using the Wilcoxon signed rank test. Parameters were correlated using Spearman rank correlation. Of 27 patients (median age 76) recruited to the study, 7 and 9 patients were considered positive at 2.5h and 3.5h FMISO PET/CT respectively. Median SUV max and SUV max tumor to muscle (T/M) ratio were respectively 3.4 and 3.6 at 2.5h, and 3.2 and 4.4 at 3.5h. The median FMISO-positive volume was 1.1 ml. This is the first study regarding hypoxia imaging using FMISO in prostate cancer showing that a small FMISO-positive volume was detected in one third of intermediate-risk prostate cancer patients.

  1. A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET

    PubMed Central

    Rockne, Russell C.; Trister, Andrew D.; Jacobs, Joshua; Hawkins-Daarud, Andrea J.; Neal, Maxwell L.; Hendrickson, Kristi; Mrugala, Maciej M.; Rockhill, Jason K.; Kinahan, Paul; Krohn, Kenneth A.; Swanson, Kristin R.

    2015-01-01

    Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [18F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning. PMID:25540239

  2. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification.

    PubMed

    Wang, Shouyi; Bowen, Stephen R; Chaovalitwongse, W Art; Sandison, George A; Grabowski, Thomas J; Kinahan, Paul E

    2014-02-21

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV(peak)) over lesions of interest. Relative differences in SUV(peak) between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV(peak) values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion

  3. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification

    NASA Astrophysics Data System (ADS)

    Wang, Shouyi; Bowen, Stephen R.; Chaovalitwongse, W. Art; Sandison, George A.; Grabowski, Thomas J.; Kinahan, Paul E.

    2014-02-01

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUVpeak) over lesions of interest. Relative differences in SUVpeak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUVpeak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation

  4. Evaluation of hypoxic tissue dynamics with 18F-FMISO PET in a rat model of permanent cerebral ischemia.

    PubMed

    Rojas, Santiago; Herance, José Raul; Abad, Sergio; Jiménez, Xavier; Pareto, Deborah; Ruiz, Alba; Torrent, Èlia; Figueiras, Francisca P; Popota, Foteini; Fernández-Soriano, Francisco J; Planas, Anna M; Gispert, Juan D

    2011-06-01

    [¹⁸F]Fluoromisonidazole (¹⁸F-FMISO) is a nitroimidazole derivative that has been proposed as a positron emission tomography (PET) radiotracer to detect hypoxic tissue in vivo. This compound accumulates in hypoxic but viable tissue and may be a good candidate for evaluating the ischemic penumbra. We evaluated the time course of ¹⁸F-FMISO uptake using PET in a rat model of permanent cerebral ischemia and the correlation with histological changes. Rats (n = 14) were subjected to permanent ischemia by intraluminal occlusion of the middle cerebral artery in order to assess by PET the uptake of ¹⁸F-FMISO at various times over 24 h following ischemia. The PET results were compared to histological changes with Nissl and 2,3,5 triphenyltetrazolium chloride staining. Elevated uptake of ¹⁸F-FMISO was detected in the infarcted area up to 8 h after occlusion but was no longer detected at 24 h, a time point coincident with pan necrosis of the tissue. Our findings suggest that salvageable tissue persists for up to 8 h in this rat model of brain ischemia. We propose ¹⁸F-FMISO PET as a tool for evaluating the ischemic penumbra after cerebral ischemia.

  5. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks

    PubMed Central

    Ypsilantis, Petros-Pavlos; Siddique, Musib; Sohn, Hyon-Mok; Davies, Andrew; Cook, Gary; Goh, Vicky; Montana, Giovanni

    2015-01-01

    Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient’s response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a “radiomics” approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models. PMID:26355298

  6. Systematic review of FDG-PET prediction of complete pathological response and survival in rectal cancer.

    PubMed

    Memon, Sameer; Lynch, A Craig; Akhurst, Timothy; Ngan, Samuel Y; Warrier, Satish K; Michael, Michael; Heriot, Alexander G

    2014-10-01

    Advances in the management of rectal cancer have resulted in an increased application of multimodal therapy with the aim of tailoring therapy to individual patients. Complete pathological response (pCR) is associated with improved survival and may be potentially managed without radical surgical resection. Over the last decade, there has been increasing interest in the ability of functional imaging to predict complete response to treatment. The aim of this review was to assess the role of (18)F-flurordeoxyglucose positron emission tomography (FDG-PET) in prediction of pCR and prognosis in resectable locally advanced rectal cancer. A search of the MEDLINE and Embase databases was conducted, and a systematic review of the literature investigating positron emission tomography (PET) in the prediction of pCR and survival in rectal cancer was performed. Seventeen series assessing PET prediction of pCR were included in the review. Seven series assessed postchemoradiation SUVmax, which was significantly different between response groups in all six studies that assessed this. Nine series assessed the response index (RI) for SUVmax, which was significantly different between response groups in seven series. Thirteen studies investigated PET response for prediction of survival. Metabolic complete response assessed by SUV2max or visual response and RISUVmax showed strong associations with disease-free survival (DFS) and overall survival (OS). SUV2max and RISUVmax appear to be useful FDG-PET markers for prediction of pCR and these parameters also show strong associations with DFS and OS. FDG-PET may have a role in outcome prediction in patients with advanced rectal cancer.

  7. Predicting Regional Pattern of Longitudinal β-Amyloid Accumulation by Baseline PET.

    PubMed

    Guo, Tengfei; Brendel, Matthias; Grimmer, Timo; Rominger, Axel; Yakushev, Igor

    2017-04-01

    Knowledge about spatial and temporal patterns of β-amyloid (Aβ) accumulation is essential for understanding Alzheimer disease (AD) and for design of antiamyloid drug trials. Here, we tested whether the regional pattern of longitudinal Aβ accumulation can be predicted by baseline amyloid PET. Methods: Baseline and 2-y follow-up 18 F-florbetapir PET data from 58 patients with incipient and manifest dementia due to AD were analyzed. With the determination of how fast amyloid deposits in a given region relative to the whole-brain gray matter, a pseudotemporal accumulation rate for each region was calculated. The actual accumulation rate of 18 F-florbetapir was calculated from follow-up data. Results: Pseudotemporal measurements from baseline PET data explained 87% ( P < 0.001) of the variance in longitudinal accumulation rate across 62 regions. The method accurately predicted the top 10 fast and slow accumulating regions. Conclusion: Pseudotemporal analysis of baseline PET images is capable of predicting the regional pattern of longitudinal Aβ accumulation in AD at a group level. This approach may be useful in exploring spatial patterns of Aβ accumulation in other amyloid-associated disorders such as Lewy body disease and atypical forms of AD. In addition, the method allows identification of brain regions with a high accumulation rate of Aβ, which are of particular interest for antiamyloid clinical trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  8. FDG-PET Response Prediction in Pediatric Hodgkin's Lymphoma: Impact of Metabolically Defined Tumor Volumes and Individualized SUV Measurements on the Positive Predictive Value.

    PubMed

    Hussien, Amr Elsayed M; Furth, Christian; Schönberger, Stefan; Hundsdoerfer, Patrick; Steffen, Ingo G; Amthauer, Holger; Müller, Hans-Wilhelm; Hautzel, Hubertus

    2015-01-28

    In pediatric Hodgkin's lymphoma (pHL) early response-to-therapy prediction is metabolically assessed by (18)F-FDG PET carrying an excellent negative predictive value (NPV) but an impaired positive predictive value (PPV). Aim of this study was to improve the PPV while keeping the optimal NPV. A comparison of different PET data analyses was performed applying individualized standardized uptake values (SUV), PET-derived metabolic tumor volume (MTV) and the product of both parameters, termed total lesion glycolysis (TLG); One-hundred-eight PET datasets (PET1, n = 54; PET2, n = 54) of 54 children were analysed by visual and semi-quantitative means. SUVmax, SUVmean, MTV and TLG were obtained the results of both PETs and the relative change from PET1 to PET2 (Δ in %) were compared for their capability of identifying responders and non-responders using receiver operating characteristics (ROC)-curves. In consideration of individual variations in noise and contrasts levels all parameters were additionally obtained after threshold correction to lean body mass and background; All semi-quantitative SUV estimates obtained at PET2 were significantly superior to the visual PET2 analysis. However, ΔSUVmax revealed the best results (area under the curve, 0.92; p < 0.001; sensitivity 100%; specificity 85.4%; PPV 46.2%; NPV 100%; accuracy, 87.0%) but was not significantly superior to SUVmax-estimation at PET2 and ΔTLGmax. Likewise, the lean body mass and background individualization of the datasets did not impove the results of the ROC analyses; Sophisticated semi-quantitative PET measures in early response assessment of pHL patients do not perform significantly better than the previously proposed ΔSUVmax. All analytical strategies failed to improve the impaired PPV to a clinically acceptable level while preserving the excellent NPV.

  9. Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model.

    PubMed

    Hardiansyah, Deni; Attarwala, Ali Asgar; Kletting, Peter; Mottaghy, Felix M; Glatting, Gerhard

    2017-10-01

    To investigate the accuracy of predicted time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using simulated dynamic PET data and a physiologically based pharmacokinetic (PBPK) model. PBPK parameters were estimated using biokinetic data of 15 patients after injection of (152±15)MBq of 111 In-DTPAOC (total peptide amount (5.78±0.25)nmol). True mathematical phantoms of patients (MPPs) were the PBPK model with the estimated parameters. Dynamic PET measurements were simulated as being done after bolus injection of 150MBq 68 Ga-DOTATATE using the true MPPs. Dynamic PET scans around 35min p.i. (P 1 ), 4h p.i. (P 2 ) and the combination of P 1 and P 2 (P 3 ) were simulated. Each measurement was simulated with four frames of 5min each and 2 bed positions. PBPK parameters were fitted to the PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 5.1GBq of 90 Y-DOTATATE over 30min in both true and PET-predicted MPPs. TIACs of simulated therapy were calculated, true MPPs (true TIACs) and predicted MPPs (predicted TIACs) followed by the calculation of variabilities v. For P 1 and P 2 the population variabilities of kidneys, liver and spleen were acceptable (v<10%). For the tumours and the remainders, the values were large (up to 25%). For P 3 , population variabilities for all organs including the remainder further improved, except that of the tumour (v>10%). Treatment planning of PRRT based on dynamic PET data seems possible for the kidneys, liver and spleen using a PBPK model and patient specific information. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study

    NASA Astrophysics Data System (ADS)

    Warren, Daniel R.; Partridge, Mike

    2016-12-01

    Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ({{P}{{\\text{O}2}}} ) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 μm versus  ˜4 mm), and cyclic variations in tumour perfusion have been observed on timescales shorter than typical FMISO PET studies (˜20 min versus a few hours). Furthermore, tracer uptake may be decreased in voxels containing some degree of necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of {{P}{{\\text{O}2}}} and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local {{P}{{\\text{O}2}}} of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue {{P}{{\\text{O}2}}} : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ˜5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing

  11. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study.

    PubMed

    Warren, Daniel R; Partridge, Mike

    2016-12-21

    Positron emission tomography (PET) using 18 F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ([Formula: see text]) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 μm versus  ∼4 mm), and cyclic variations in tumour perfusion have been observed on timescales shorter than typical FMISO PET studies (∼20 min versus a few hours). Furthermore, tracer uptake may be decreased in voxels containing some degree of necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of [Formula: see text] and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local [Formula: see text] of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue [Formula: see text] : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ∼5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing

  12. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    PubMed

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no

  13. Predicting location of recurrence using FDG, FLT, and Cu-ATSM PET in canine sinonasal tumors treated with radiotherapy

    NASA Astrophysics Data System (ADS)

    Bradshaw, Tyler; Fu, Rau; Bowen, Stephen; Zhu, Jun; Forrest, Lisa; Jeraj, Robert

    2015-07-01

    Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM PET imaging to predict the locations of residual FDG PET in canine tumors following radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy. Therapy consisted of 10 fractions of 4.2 Gy to the sinonasal cavity with or without an integrated boost of 0.8 Gy to the GTV. Patients had an additional FLT PET/CT scan after fraction 2, a Cu-ATSM PET/CT scan after fraction 3, and follow-up FDG PET/CT scans after radiotherapy. Following image registration, simple and multiple linear and logistic voxel regressions were performed to assess how well pre- and mid-treatment PET imaging predicted post-treatment FDG uptake. R2 and pseudo R2 were used to assess the goodness of fits. For simple linear regression models, regression coefficients for all pre- and mid-treatment PET images were significantly positive across the population (P < 0.05). However, there was large variability among patients in goodness of fits: R2 ranged from 0.00 to 0.85, with a median of 0.12. Results for logistic regression models were similar. Multiple linear regression models resulted in better fits (median R2 = 0.31), but there was still large variability between patients in R2. The R2 from regression models for different predictor variables were highly correlated across patients (R ≈ 0.8), indicating tumors that were poorly predicted with one tracer were also poorly predicted by other tracers. In conclusion, the high inter-patient variability in goodness of fits indicates that PET was able to predict locations of residual tumor in some patients, but not others. This suggests not all patients would be good candidates for dose painting based on a single biological target.

  14. Predicting location of recurrence using FDG, FLT, and Cu-ATSM PET in canine sinonasal tumors treated with radiotherapy.

    PubMed

    Bradshaw, Tyler; Fu, Rau; Bowen, Stephen; Zhu, Jun; Forrest, Lisa; Jeraj, Robert

    2015-07-07

    Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM PET imaging to predict the locations of residual FDG PET in canine tumors following radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy. Therapy consisted of 10 fractions of 4.2 Gy to the sinonasal cavity with or without an integrated boost of 0.8 Gy to the GTV. Patients had an additional FLT PET/CT scan after fraction 2, a Cu-ATSM PET/CT scan after fraction 3, and follow-up FDG PET/CT scans after radiotherapy. Following image registration, simple and multiple linear and logistic voxel regressions were performed to assess how well pre- and mid-treatment PET imaging predicted post-treatment FDG uptake. R(2) and pseudo R(2) were used to assess the goodness of fits. For simple linear regression models, regression coefficients for all pre- and mid-treatment PET images were significantly positive across the population (P < 0.05). However, there was large variability among patients in goodness of fits: R(2) ranged from 0.00 to 0.85, with a median of 0.12. Results for logistic regression models were similar. Multiple linear regression models resulted in better fits (median R(2) = 0.31), but there was still large variability between patients in R(2). The R(2) from regression models for different predictor variables were highly correlated across patients (R ≈ 0.8), indicating tumors that were poorly predicted with one tracer were also poorly predicted by other tracers. In conclusion, the high inter-patient variability in goodness of fits indicates that PET was able to predict locations of residual tumor in some patients, but not others. This suggests not all patients would be good candidates for dose painting based on a single biological target.

  15. Relevance of PET for pretherapeutic prediction of doses in peptide receptor radionuclide therapy.

    PubMed

    Blaickner, Matthias; Baum, Richard P

    2014-01-01

    Personalized dosimetry in radionuclide therapy has gained much attention in recent years. This attention has also an impact on peptide receptor radionuclide therapy (PRRT). This article reviews the PET-based imaging techniques that can be used for pretherapeutic prediction of doses in PRRT. More specifically the usage of (86)Y, (90)Y, (68)Ga, and (44)Sc are discussed: their characteristics for PET acquisition, the available peptides for labeling, the specifics of the imaging protocols, and the experiences gained from phantom and clinical studies. These techniques are evaluated with regard to their usefulness for dosimetry predictions in PRRT, and future perspectives are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Predicting chemotherapy response to paclitaxel with 18F-Fluoropaclitaxel and PET.

    PubMed

    Hsueh, Wei-Ann; Kesner, Amanda L; Gangloff, Anne; Pegram, Mark D; Beryt, Malgorzata; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S

    2006-12-01

    Paclitaxel is used as a chemotherapy drug for the treatment of various malignancies, including breast, ovarian, and lung cancers. To evaluate the potential of a noninvasive prognostic tool for specifically predicting the resistance of tumors to paclitaxel therapy, we examined the tumoral uptake of (18)F-fluoropaclitaxel ((18)F-FPAC) in mice bearing human breast cancer xenografts by using small-animal-dedicated PET and compared (18)F-FPAC uptake with the tumor response to paclitaxel treatment. PET data were acquired after tail vein injection of approximately 9 MBq of (18)F-FPAC in anesthetized nude mice bearing breast cancer xenografts. Tracer uptake in reconstructed images was quantified by region-of-interest analyses and compared with the tumor response, as measured by changes in tumor volume, after treatment with paclitaxel. Mice with tumors that progressed demonstrated lower tumoral uptake of (18)F-FPAC than mice with tumors that did not progress or that regressed (r = 0.55, P < 0.02; n = 19), indicating that low (18)F-FPAC uptake was a significant predictor of chemoresistance. Conversely, high (18)F-FPAC uptake predicted tumor regression. This relationship was found for mice bearing xenografts from cell lines selected to be either sensitive or intrinsically resistant to paclitaxel in vitro. PET data acquired with (18)F-FPAC suggest that this tracer holds promise for the noninvasive quantification of its distribution in vivo in a straightforward manner. In combination with approaches for examining other aspects of resistance, such quantification could prove useful in helping to predict subsequent resistance to paclitaxel chemotherapy of breast cancer.

  17. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline.

    PubMed

    Torosyan, Nare; Mason, Kelsey; Dahlbom, Magnus; Silverman, Daniel H S

    2017-08-01

    The aim of this study was to examine the value of fluorodeoxyglucose (FDG) positron emission tomography (PET) in predicting subsequent rates of functional and cognitive decline among subjects considered cognitively normal (CN) or clinically diagnosed with mild cognitive impairment (MCI). Analyses of 276 subjects, 92 CN subjects and 184 with MCI, who were enrolled in the Alzheimer's Disease Neuroimaging Initiative, were conducted. Functional decline was assessed using scores on the Functional Activities Questionnaire (FAQ) obtained over a period of 36 months, while cognitive decline was determined using the Alzheimer's disease Assessment Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examination (MMSE) scores. PET images were analyzed using clinically routine brain quantification software. A dementia prognosis index (DPI), derived from a ratio of uptake values in regions of interest known to be hypometabolic in Alzheimer's disease to regions known to be stable, was generated for each baseline FDG-PET scan. The DPI was correlated with change in scores on the neuropsychological examinations to examine the predictive value of baseline FDG-PET. DPI powerfully predicted rate of functional decline among MCI patients (t = 5.75, p < 1.0E-8) and pooled N + MCI patient groups (t = 7.02, p < 1.0E-11). Rate of cognitive decline on MMSE was also predicted by the DPI among MCI (t = 6.96, p < 1.0E-10) and pooled N + MCI (t = 8.78, p < 5.0E-16). Rate of cognitive decline on ADAS-cog was powerfully predicted by the DPI alone among N (p < 0.001), MCI (t = 6.46, p < 1.0E-9) and for pooled N + MCI (t = 8.85, p = 1.1E-16). These findings suggest that an index, derivable from automated regional analysis of brain PET scans, can be used to help predict rates of functional and cognitive deterioration in the years following baseline PET.

  18. TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chen, J; Phillips, J

    2016-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume

  19. Localization and prediction of malignant potential in recurrent pheochromocytoma/paraganglioma (PCC/PGL) using 18F-FDG PET/CT.

    PubMed

    Fikri, Ahmad Saad Fathinul; Kroiss, A; Ahmad, A Z F; Zanariah, H; Lau, W F E; Uprimny, C; Donnemiller, E; Kendler, D; Nordin, A J; Virgolini, I J

    2014-06-01

    To our knowledge, data are lacking on the role of 18F-FDG PET/CT in the localization and prediction of neuroendocrine tumors, in particular the pheochromocytoma/paraganglioma (PCC/PGL) group. To evaluate the role of 18F-FDG PET/CT in localizing and predicting the malignant potential of PCC/PGL. Twenty-three consecutive patients with a history of PCC/PGL, presenting with symptoms related to catecholamine excess, underwent 18F-FDG PET/CT. Final confirmation of the diagnosis was made using the composite references. PET/CT findings were analyzed on a per-lesion basis and a per-patient basis. Tumor SUVmax was analyzed to predict the dichotomization of patient endpoints for the local disease and metastatic groups. We investigated 23 patients (10 men, 13 women) with a mean age of 46.43 ± 3.70 years. Serum catecholamine levels were elevated in 82.60% of these patients. There were 136 sites (mean SUVmax: 16.39 ± 3.47) of validated disease recurrence. The overall sensitivities for diagnostic CT, FDG PET, and FDG PET/CT were 86.02%, 87.50%, and 98.59%, respectively. Based on the composite references, 39.10% of patients had local disease. There were significant differences in the SUVmax distribution between the local disease and metastatic groups; a significant correlation was noted when a SUVmax cut-off was set at 9.2 (P<0.05). In recurrent PCC/PGL, diagnostic 18F-FDG PET/CT is a superior tool in the localization of recurrent tumors. Tumor SUVmax is a potentially useful predictor of malignant tumor potential. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. The role of interim 18F-FDG PET/CT in prediction of response to ipilimumab treatment in metastatic melanoma.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-07-01

    The aim of the present study was to assess the value of interim 18 F-FDG PET/CT performed after the first two cycles of ipilimumab treatment in the prediction of the final clinical response to this type of immunotherapy. The study group comprised 41 patients with unresectable metastatic melanoma scheduled for ipilimumab therapy. Whole-body 18 F-FDG PET/CT was performed before the start of ipilimumab treatment (baseline PET/CT) and after the initial two cycles of ipilimumab treatment (interim PET/CT). Evaluation of patient response to treatment was based on the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria for PET as well as the recently proposed PET Response Evaluation Criteria for Immunotherapy (PERCIMT). The patients' best clinical response, assessed at a median of 21.4 months (range 6.3-41.9 months) was used as reference. According to their best clinical response, the patients were divided into two groups: those showing clinical benefit (CB) including stable disease, partial response and complete response (31 patients), and those showing no clinical benefit (no-CB including progressive disease (10 patients). According to the EORTC criteria, interim PET/CT demonstrated progressive metabolic disease (PMD) in 20 patients, stable metabolic disease (SMD) in 11 patients, partial metabolic response (PMR) in 8 patients, and complete metabolic response (CMR) in 2 patients. According to the PERCIMT, interim PET/CT demonstrated PMD in 9 patients, SMD in 24 patients, PMR in 6 patients and CMR in 2 patients. On the basis of the interim PET, the patients were divided in a similar manner to the division according to clinical response into those showing metabolic benefit (MB) including SMD, PMR and CMR, and those showing no metabolic benefit (no-MB) including PMD. According to this dichotomization, the EORTC criteria showed a sensitivity (correctly predicting CB) of 64.5%, a specificity (correctly predicting no-CB) of 90.0%, a positive

  1. Arterial spin labeling-based Z-maps have high specificity and positive predictive value for neurodegenerative dementia compared to FDG-PET.

    PubMed

    Fällmar, David; Haller, Sven; Lilja, Johan; Danfors, Torsten; Kilander, Lena; Tolboom, Nelleke; Egger, Karl; Kellner, Elias; Croon, Philip M; Verfaillie, Sander C J; van Berckel, Bart N M; Ossenkoppele, Rik; Barkhof, Frederik; Larsson, Elna-Marie

    2017-10-01

    Cerebral perfusion analysis based on arterial spin labeling (ASL) MRI has been proposed as an alternative to FDG-PET in patients with neurodegenerative disease. Z-maps show normal distribution values relating an image to a database of controls. They are routinely used for FDG-PET to demonstrate disease-specific patterns of hypometabolism at the individual level. This study aimed to compare the performance of Z-maps based on ASL to FDG-PET. Data were combined from two separate sites, each cohort consisting of patients with Alzheimer's disease (n = 18 + 7), frontotemporal dementia (n = 12 + 8) and controls (n = 9 + 29). Subjects underwent pseudocontinuous ASL and FDG-PET. Z-maps were created for each subject and modality. Four experienced physicians visually assessed the 166 Z-maps in random order, blinded to modality and diagnosis. Discrimination of patients versus controls using ASL-based Z-maps yielded high specificity (84%) and positive predictive value (80%), but significantly lower sensitivity compared to FDG-PET-based Z-maps (53% vs. 96%, p < 0.001). Among true-positive cases, correct diagnoses were made in 76% (ASL) and 84% (FDG-PET) (p = 0.168). ASL-based Z-maps can be used for visual assessment of neurodegenerative dementia with high specificity and positive predictive value, but with inferior sensitivity compared to FDG-PET. • ASL-based Z-maps yielded high specificity and positive predictive value in neurodegenerative dementia. • ASL-based Z-maps had significantly lower sensitivity compared to FDG-PET-based Z-maps. • FDG-PET might be reserved for ASL-negative cases where clinical suspicion persists. • Findings were similar at two study sites.

  2. Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer.

    PubMed

    Peterson, Lanell M; O'Sullivan, Janet; Wu, Qian Vicky; Novakova-Jiresova, Alena; Jenkins, Isaac; Lee, Jean H; Shields, Andrew; Montgomery, Susan; Linden, Hannah M; Gralow, Julie R; Gadi, Vijayakrishna K; Muzi, Mark; Kinahan, Paul E; Mankoff, David A; Specht, Jennifer M

    2018-05-10

    Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18 F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18 F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18 F-FDG PET and 18 F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18 F-FDG PET and 18 F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUV max and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18 F-FDG PET and 18 F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE ( P = <0.001) and TTP ( P = 0.044). Higher FDG SUV max at scan2 predicted a shorter time to tSRE ( P = <0.001). A multivariable model using FDG SUV max of the index lesion at scan1 plus the difference in SUV max of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18 F-FDG PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) ( P = 0.007, 0.028 respectively), with a trend toward improved survival ( P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18 F-NaF PET was associated with longer OS ( P = 0.027). Conclusion: Changes in 18 F-FDG PET parameters

  3. Impact of experimental design on PET radiomics in predicting somatic mutation status.

    PubMed

    Yip, Stephen S F; Parmar, Chintan; Kim, John; Huynh, Elizabeth; Mak, Raymond H; Aerts, Hugo J W L

    2017-12-01

    PET-based radiomic features have demonstrated great promises in predicting genetic data. However, various experimental parameters can influence the feature extraction pipeline, and hence, Here, we investigated how experimental settings affect the performance of radiomic features in predicting somatic mutation status in non-small cell lung cancer (NSCLC) patients. 348 NSCLC patients with somatic mutation testing and diagnostic PET images were included in our analysis. Radiomic feature extractions were analyzed for varying voxel sizes, filters and bin widths. 66 radiomic features were evaluated. The performance of features in predicting mutations status was assessed using the area under the receiver-operating-characteristic curve (AUC). The influence of experimental parameters on feature predictability was quantified as the relative difference between the minimum and maximum AUC (δ). The large majority of features (n=56, 85%) were significantly predictive for EGFR mutation status (AUC≥0.61). 29 radiomic features significantly predicted EGFR mutations and were robust to experimental settings with δ Overall <5%. The overall influence (δ Overall ) of the voxel size, filter and bin width for all features ranged from 5% to 15%, respectively. For all features, none of the experimental designs was predictive of KRAS+ from KRAS- (AUC≤0.56). The predictability of 29 radiomic features was robust to the choice of experimental settings; however, these settings need to be carefully chosen for all other features. The combined effect of the investigated processing methods could be substantial and must be considered. Optimized settings that will maximize the predictive performance of individual radiomic features should be investigated in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Predicting tumor hypoxia in non-small cell lung cancer by combining CT, FDG PET and dynamic contrast-enhanced CT.

    PubMed

    Even, Aniek J G; Reymen, Bart; La Fontaine, Matthew D; Das, Marco; Jochems, Arthur; Mottaghy, Felix M; Belderbos, José S A; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-11-01

    Most solid tumors contain inadequately oxygenated (i.e., hypoxic) regions, which tend to be more aggressive and treatment resistant. Hypoxia PET allows visualization of hypoxia and may enable treatment adaptation. However, hypoxia PET imaging is expensive, time-consuming and not widely available. We aimed to predict hypoxia levels in non-small cell lung cancer (NSCLC) using more easily available imaging modalities: FDG-PET/CT and dynamic contrast-enhanced CT (DCE-CT). For 34 NSCLC patients, included in two clinical trials, hypoxia HX4-PET/CT, planning FDG-PET/CT and DCE-CT scans were acquired before radiotherapy. Scans were non-rigidly registered to the planning CT. Tumor blood flow (BF) and blood volume (BV) were calculated by kinetic analysis of DCE-CT images. Within the gross tumor volume, independent clusters, i.e., supervoxels, were created based on FDG-PET/CT. For each supervoxel, tumor-to-background ratios (TBR) were calculated (median SUV/aorta SUV mean ) for HX4-PET/CT and supervoxel features (median, SD, entropy) for the other modalities. Two random forest models (cross-validated: 10 folds, five repeats) were trained to predict the hypoxia TBR; one based on CT, FDG, BF and BV, and one with only CT and FDG features. Patients were split in a training (trial NCT01024829) and independent test set (trial NCT01210378). For each patient, predicted, and observed hypoxic volumes (HV) (TBR > 1.2) were compared. Fifteen patients (3291 supervoxels) were used for training and 19 patients (1502 supervoxels) for testing. The model with all features (RMSE training: 0.19 ± 0.01, test: 0.27) outperformed the model with only CT and FDG-PET features (RMSE training: 0.20 ± 0.01, test: 0.29). All tumors of the test set were correctly classified as normoxic or hypoxic (HV > 1 cm 3 ) by the best performing model. We created a data-driven methodology to predict hypoxia levels and hypoxia spatial patterns using CT, FDG-PET and DCE-CT features in NSCLC. The

  5. Joint PET-MR respiratory motion models for clinical PET motion correction

    NASA Astrophysics Data System (ADS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David

    2016-09-01

    Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.

  6. Distant failure prediction for early stage NSCLC by analyzing PET with sparse representation

    NASA Astrophysics Data System (ADS)

    Hao, Hongxia; Zhou, Zhiguo; Wang, Jing

    2017-03-01

    Positron emission tomography (PET) imaging has been widely explored for treatment outcome prediction. Radiomicsdriven methods provide a new insight to quantitatively explore underlying information from PET images. However, it is still a challenging problem to automatically extract clinically meaningful features for prognosis. In this work, we develop a PET-guided distant failure predictive model for early stage non-small cell lung cancer (NSCLC) patients after stereotactic ablative radiotherapy (SABR) by using sparse representation. The proposed method does not need precalculated features and can learn intrinsically distinctive features contributing to classification of patients with distant failure. The proposed framework includes two main parts: 1) intra-tumor heterogeneity description; and 2) dictionary pair learning based sparse representation. Tumor heterogeneity is initially captured through anisotropic kernel and represented as a set of concatenated vectors, which forms the sample gallery. Then, given a test tumor image, its identity (i.e., distant failure or not) is classified by applying the dictionary pair learning based sparse representation. We evaluate the proposed approach on 48 NSCLC patients treated by SABR at our institute. Experimental results show that the proposed approach can achieve an area under the characteristic curve (AUC) of 0.70 with a sensitivity of 69.87% and a specificity of 69.51% using a five-fold cross validation.

  7. Demonstrating the validity of three general scores of PET in predicting higher education achievement in Israel.

    PubMed

    Oren, Carmel; Kennet-Cohen, Tamar; Turvall, Elliot; Allalouf, Avi

    2014-01-01

    The Psychometric Entrance Test (PET), used for admission to higher education in Israel together with the Matriculation (Bagrut), had in the past one general (total) score in which the weights for its domains: Verbal, Quantitative and English, were 2:2:1, respectively. In 2011, two additional total scores were introduced, with different weights for the Verbal and the Quantitative domains. This study compares the predictive validity of the three general scores of PET, and demonstrates validity in terms of utility. 100,863 freshmen students of all Israeli universities over the classes of 2005-2009. Regression weights and correlations of the predictors with FYGPA were computed. Simulations based on these results supplied the utility estimates. On average, PET is slightly more predictive than the Bagrut; using them both yields a better tool than either of them alone. Assigning differential weights to the components in the respective schools further improves the validity. The introduction of the new general scores of PET is validated by gathering and analyzing evidence based on relations of test scores to other variables. The utility of using the test can be demonstrated in ways different from correlations.

  8. MO-AB-BRA-10: Cancer Therapy Outcome Prediction Based On Dempster-Shafer Theory and PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, C; University of Rouen, QuantIF - EA 4108 LITIS, 76000 Rouen; Li, H

    2015-06-15

    Purpose: In cancer therapy, utilizing FDG-18 PET image-based features for accurate outcome prediction is challenging because of 1) limited discriminative information within a small number of PET image sets, and 2) fluctuant feature characteristics caused by the inferior spatial resolution and system noise of PET imaging. In this study, we proposed a new Dempster-Shafer theory (DST) based approach, evidential low-dimensional transformation with feature selection (ELT-FS), to accurately predict cancer therapy outcome with both PET imaging features and clinical characteristics. Methods: First, a specific loss function with sparse penalty was developed to learn an adaptive low-rank distance metric for representing themore » dissimilarity between different patients’ feature vectors. By minimizing this loss function, a linear low-dimensional transformation of input features was achieved. Also, imprecise features were excluded simultaneously by applying a l2,1-norm regularization of the learnt dissimilarity metric in the loss function. Finally, the learnt dissimilarity metric was applied in an evidential K-nearest-neighbor (EK- NN) classifier to predict treatment outcome. Results: Twenty-five patients with stage II–III non-small-cell lung cancer and thirty-six patients with esophageal squamous cell carcinomas treated with chemo-radiotherapy were collected. For the two groups of patients, 52 and 29 features, respectively, were utilized. The leave-one-out cross-validation (LOOCV) protocol was used for evaluation. Compared to three existing linear transformation methods (PCA, LDA, NCA), the proposed ELT-FS leads to higher prediction accuracy for the training and testing sets both for lung-cancer patients (100+/−0.0, 88.0+/−33.17) and for esophageal-cancer patients (97.46+/−1.64, 83.33+/−37.8). The ELT-FS also provides superior class separation in both test data sets. Conclusion: A novel DST- based approach has been proposed to predict cancer treatment outcome

  9. Automated PET Radiotracer Manufacture on the BG75 System and Imaging Validation Studies of [18F]fluoromisonidazole ([18F]FMISO).

    PubMed

    Yuan, Hong; Frank, Jonathan E; Merrill, Joseph R; Hillesheim, Daniel A; Khachaturian, Mark H; Anzellotti, Atilio I

    2016-01-01

    The hypoxia PET tracer, 1-[18F]fluoro-3-(2-nitro-1Himidazol- 1-yl)-propan-2-ol ([18F]FMISO) is the first radiotracer developed for hypoxia PET imaging and has shown promising for cancer diagnosis and prognosis. However, access to [18F]FMISO radiotracer is limited due to the needed cyclotron and radiochemistry expertise. The study aimed to develop the automated production method on the [18F]FMISO radiotracer with the novel fully automated platform of the BG75 system and validate its usage on animal tumor models. [18F]FMISO was produced with the dose synthesis cartridge automatically on the BG75 system. Validation of [18F]FMISO hypoxia imaging functionality was conducted on two tumor mouse models (FaDu/U87 tumor). The distribution of [18F]FMISO within tumor was further validated by the standard hypoxia marker EF5. The average radiochemical purity was (99±1) % and the average pH was 5.5±0.2 with other quality attributes passing standard criteria (n=12). Overall biodistribution for [18F]FMISO in both tumor models was consistent with reported studies where bladder and large intestines presented highest activity at 90 min post injection. High spatial correlation was found between [18F]FMISO autoradiography and EF5 hypoxia staining, indicating high hypoxia specificity of [18MF]FMISO. This study shows that qualified [18F]FMISO can be efficiently produced on the BG75 system in an automated "dose-on-demand" mode using single dose disposable cards. The possibilities of having a low-cost, automated system manufacturing ([18F]Fluoride production + synthesis + QC) different radiotracers will greatly enhance the potential for PET technology to reach new geographical areas and underserved patient populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by recurrent medullary carcinoma of the thyroid.

    PubMed

    Caobelli, Federico; Chiaravalloti, Agostino; Evangelista, Laura; Saladini, Giorgio; Schillaci, Orazio; Vadrucci, Manuela; Scalorbi, Federica; Donner, Davide; Alongi, Pierpaolo

    2018-01-01

    Medullary thyroid carcinoma (MTC) is a malignancy accounting for about 5-8% of thyroid cancers. Serum calcitonin and carcinoembryonic antigen (CEA) levels are widely used to monitor disease progression. However, prognostic factors able to predict outcomes are highly desirable. We, therefore, aimed to assess the prognostic role of 18 F-DOPA PET/CT in patients with recurrent MTC. 60 patients (mean age 64 ± 13 years, range 44-82) with recurrent MTC were eligible from a multicenter database. All patients underwent a restaging 18 F-DOPA PET/CT, performed at least 6 months after surgery. CEA/calcitonin levels, local recurrences, nodal involvement and metastases at PET/CT were recorded. SUVmax, SUVmean (also normalized to mediastinal uptake) and metabolic tumor volume were automatically calculated for each lesion, by placing a volume of interest around the lesion with 40% of peak activity as threshold for the automatic contouring. The patients were clinically and radiologically followed up for 21 ± 11 months. Rate of progression-free survival (PFS), disease-specific survival (DSS) and incremental prognostic value of 18 F-DOPA PET/CT over conventional imaging modalities were assessed by Kaplan-Meier curves and Log-Rank test. Cox regression univariate and multivariate analyses were performed for assessing predictors of prognosis. 18 F-DOPA PET/CT showed abnormal findings in 27 patients (45%) and resulted unremarkable in 33 (55%). PFS was significantly longer in patients with an unremarkable PET/CT scan (p = 0.018). Similarly, an unremarkable PET/CT study was associated with a significantly longer DSS (p = 0.04). 18 F-DOPA PET/CT added prognostic value over other imaging modalities both for PFS and for DSS (p < 0.001 and p = 0.012, respectively). Neither semiquantitative PET parameters nor clinical or laboratory data were predictive of a worse PFS and DSS in patients with recurrent MTC. 18 F-DOPA PET/CT scan has an important prognostic value in

  11. Radiomic biomarkers from PET/CT multi-modality fusion images for the prediction of immunotherapy response in advanced non-small cell lung cancer patients

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Qi, Jin; Lu, Hong; Schabath, Matthew; Balagurunathan, Yoganand; Tunali, Ilke; Gillies, Robert James

    2018-02-01

    Purpose: Investigate the ability of using complementary information provided by the fusion of PET/CT images to predict immunotherapy response in non-small cell lung cancer (NSCLC) patients. Materials and methods: We collected 64 patients diagnosed with primary NSCLC treated with anti PD-1 checkpoint blockade. Using PET/CT images, fused images were created following multiple methodologies, resulting in up to 7 different images for the tumor region. Quantitative image features were extracted from the primary image (PET/CT) and the fused images, which included 195 from primary images and 1235 features from the fusion images. Three clinical characteristics were also analyzed. We then used support vector machine (SVM) classification models to identify discriminant features that predict immunotherapy response at baseline. Results: A SVM built with 87 fusion features and 13 primary PET/CT features on validation dataset had an accuracy and area under the ROC curve (AUROC) of 87.5% and 0.82, respectively, compared to a model built with 113 original PET/CT features on validation dataset 78.12% and 0.68. Conclusion: The fusion features shows better ability to predict immunotherapy response prediction compared to individual image features.

  12. Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast-enhanced MR imaging--prospective assessment.

    PubMed

    Tateishi, Ukihide; Miyake, Mototaka; Nagaoka, Tomoaki; Terauchi, Takashi; Kubota, Kazunori; Kinoshita, Takayuki; Daisaki, Hiromitsu; Macapinlac, Homer A

    2012-04-01

    To clarify whether fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging performed after two cycles of neoadjuvant chemotherapy (NAC) can be used to predict pathologic response in breast cancer. Institutional human research committee approval and written informed consent were obtained. Accuracy after two cycles of NAC for predicting pathologic complete response (pCR) was examined in 142 women (mean age, 57 years: range, 43-72 years) with histologically proved breast cancer between December 2005 and February 2009. Quantitative PET/CT and DCE MR imaging were performed at baseline and after two cycles of NAC. Parameters of PET/CT and of blood flow and microvascular permeability at DCE MR were compared with pathologic response. Patients were also evaluated after NAC by using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 based on DCE MR measurements and European Organization for Research and Treatment of Cancer (EORTC) criteria and PET Response Criteria in Solid Tumors (PERCIST) 1.0 based on PET/CT measurements. Multiple logistic regression analyses were performed to examine continuous variables at PET/CT and DCE MR to predict pCR, and diagnostic accuracies were compared with the McNemar test. Significant decrease from baseline of all parameters at PET/CT and DCE MR was observed after NAC. Therapeutic response was obtained in 24 patients (17%) with pCR and 118 (83%) without pCR. Sensitivity, specificity, and accuracy to predict pCR were 45.5%, 85.5%, and 82.4%, respectively, with RECIST and 70.4%, 95.7%, and 90.8%, respectively, with EORTC and PERCIST. Multiple logistic regression revealed three significant independent predictors of pCR: percentage maximum standardized uptake value (%SUV(max)) (odds ratio [OR], 1.22; 95% confidence interval [CI]: 1.11, 1.34; P < .0001), percentage rate constant (%k(ep)) (OR, 1.07; CI: 1.03, 1.12; P = .002

  13. Application of PET/CT in treatment response evaluation and recurrence prediction in patients with newly-diagnosed multiple myeloma

    PubMed Central

    Li, Ying; Liu, Junru; Huang, Beihui; Chen, Meilan; Diao, Xiangwen; Li, Juan

    2017-01-01

    Multiple myeloma (MM) causes osteolytic lesions which can be detected by 18F-fluorodeoxyglucose positron emission tomography/Computed tomography (18F-FDG PET/CT). We prospectively involve 96 Newly diagnosed MM to take PET/CT scan at scheduled treatment time (figure 1), and 18F-FDG uptake of lesion was measured by SUVmax and T/Mmax. All MM patients took bortezomib based chemotherapy as induction and received ASCT and maintenance. All clinical features were analyzed with the PET/CT image changes, and some relationships between treatment response and FDG uptakes changes were found: Osteolytic lesions of MM uptakes higher FDG than healthy volunteers, and this trend is more obvious in extramedullary lesions. Compared to X-ray, PET/CT was more sensitive both in discoering bone as well as extramedullary lesions. In newly diagnosed MM, several adverse clinical factors were related to high FDG uptakes of bone lesions. Bone lesion FDG uptakes of MM with P53 mutation or with hypodiploidy and complex karyotype were also higher than those without such changes. In treatment response, PET/CT showed higher sensitivity in detecting tumor residual disease than immunofixation electrophoresis. But in relapse prediction, it might show false positive disease recurrences and the imaging changes might be influenced by infections and hemoglobulin levels. Conclusion: PET/CT is sensitive in discovering meduallary and extrameduallary lesions of MM, and the 18F-FDG uptake of lesions are related with clinical indictors and biological features of plasma cells. In evaluating treatment response and survival, PET/CT showed its superiority. But in predicting relapse or refractory, it may show false positive results. PMID:27556189

  14. Outcome of temporal lobe epilepsy surgery predicted by statistical parametric PET imaging.

    PubMed

    Wong, C Y; Geller, E B; Chen, E Q; MacIntyre, W J; Morris, H H; Raja, S; Saha, G B; Lüders, H O; Cook, S A; Go, R T

    1996-07-01

    PET is useful in the presurgical evaluation of temporal lobe epilepsy. The purpose of this retrospective study is to assess the clinical use of statistical parametric imaging in predicting surgical outcome. Interictal 18FDG-PET scans in 17 patients with surgically-treated temporal lobe epilepsy (Group A-13 seizure-free, group B = 4 not seizure-free at 6 mo) were transformed into statistical parametric imaging, with each pixel representing a z-score value by using the mean and s.d. of count distribution in each individual patient, for both visual and quantitative analysis. Mean z-scores were significantly more negative in anterolateral (AL) and mesial (M) regions on the operated side than the nonoperated side in group A (AL: p < 0.00005, M: p = 0.0097), but not in group B (AL: p = 0.46, M: p = 0.08). Statistical parametric imaging correctly lateralized 16 out of 17 patients. Only the AL region, however, was significant in predicting surgical outcome (F = 29.03, p < 0.00005). Using a cut-off z-score value of -1.5, statistical parametric imaging correctly classified 92% of temporal lobes from group A and 88% of those from Group B. The preliminary results indicate that statistical parametric imaging provides both clinically useful information for lateralization in temporal lobe epilepsy and a reliable predictive indicator of clinical outcome following surgical treatment.

  15. Combined use of (18)F-FDG and (18)F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: a dynamic PET/CT study.

    PubMed

    Sachpekidis, Christos; Thieke, Christian; Askoxylakis, Vasileios; Nicolay, Nils H; Huber, Peter E; Thomas, Michael; Dimitrakopoulou, Georgia; Debus, Juergen; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    Aim of this study was to evaluate and compare, by means of dynamic and static PET/CT, the distribution patterns and pharmacokinetics of fluorine-18 fluorodeoxyglucose ((18)F-FDG) and of fluorine-18-fluoromisonidazole ((18)F-FMISO) in non-small cell lung cancer (NSCLC) patients scheduled for intensity modulated radiation therapy (IMRT). Thirteen patients suffering from inoperable stage III NSCLC underwent PET/CTs with (18)F-FDG and (18)F-FMISO for tumor metabolism and hypoxia assessment accordingly. Evaluation of PET/CT studies was based on visual analysis, semi-quantitative (SUV) calculations and absolute quantitative estimations, after application of a two-tissue compartment model and a non-compartmental approach. (18)F-FDG PET/CT revealed all thirteen primary lung tumors as sites of increased (18)F-FDG uptake. Six patients demonstrated also in total 43 (18)F-FDG avid metastases; these patients were excluded from radiotherapy. (18)F-MISO PET/CT demonstrated 12/13 primary lung tumors with faint tracer uptake. Only one tumor was clearly (18)F-FMISO avid, (SUVaverage = 3.4, SUVmax = 5.0). Mean values for (18)F-FDG, as derived from dPET/CT data, were SUVaverage = 8.9, SUVmax = 15.1, K1 = 0.23, k2 = 0.53, k3 = 0.17, k4 = 0.02, influx = 0.05 and fractal dimension (FD) = 1.25 for the primary tumors. The respective values for (18)F-FMISO were SUVaverage = 1.4, SUVmax = 2.2, K1 = 0.26, k2 = 0.56, k3 = 0.06, k4 = 0.06, influx = 0.02 and FD = 1.14. No statistically significant correlation was observed between the two tracers. (18)F-FDG PET/CT changed therapy management in six patients, by excluding them from planned IMRT. (18)F-FMISO PET/CT revealed absence of significant tracer uptake in the majority of the (18)F-FDG avid NSCLCs. Lack of correlation between the two tracers' kinetics indicates that they reflect different molecular mechanisms and implies the discordance between increased glycolysis and hypoxia in the malignancy.

  16. Combined use of 18F-FDG and 18F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: a dynamic PET/CT study

    PubMed Central

    Sachpekidis, Christos; Thieke, Christian; Askoxylakis, Vasileios; Nicolay, Nils H; Huber, Peter E; Thomas, Michael; Dimitrakopoulou, Georgia; Debus, Juergen; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    Aim of this study was to evaluate and compare, by means of dynamic and static PET/CT, the distribution patterns and pharmacokinetics of fluorine-18 fluorodeoxyglucose (18F-FDG) and of fluorine-18-fluoromisonidazole (18F-FMISO) in non-small cell lung cancer (NSCLC) patients scheduled for intensity modulated radiation therapy (IMRT). Thirteen patients suffering from inoperable stage III NSCLC underwent PET/CTs with 18F-FDG and 18F-FMISO for tumor metabolism and hypoxia assessment accordingly. Evaluation of PET/CT studies was based on visual analysis, semi-quantitative (SUV) calculations and absolute quantitative estimations, after application of a two-tissue compartment model and a non-compartmental approach. 18F-FDG PET/CT revealed all thirteen primary lung tumors as sites of increased 18F-FDG uptake. Six patients demonstrated also in total 43 18F-FDG avid metastases; these patients were excluded from radiotherapy. 18F-MISO PET/CT demonstrated 12/13 primary lung tumors with faint tracer uptake. Only one tumor was clearly 18F-FMISO avid, (SUVaverage = 3.4, SUVmax = 5.0). Mean values for 18F-FDG, as derived from dPET/CT data, were SUVaverage = 8.9, SUVmax = 15.1, K1 = 0.23, k2 = 0.53, k3 = 0.17, k4 = 0.02, influx = 0.05 and fractal dimension (FD) = 1.25 for the primary tumors. The respective values for 18F-FMISO were SUVaverage = 1.4, SUVmax = 2.2, K1 = 0.26, k2 = 0.56, k3 = 0.06, k4 = 0.06, influx = 0.02 and FD = 1.14. No statistically significant correlation was observed between the two tracers. 18F-FDG PET/CT changed therapy management in six patients, by excluding them from planned IMRT. 18F-FMISO PET/CT revealed absence of significant tracer uptake in the majority of the 18F-FDG avid NSCLCs. Lack of correlation between the two tracers’ kinetics indicates that they reflect different molecular mechanisms and implies the discordance between increased glycolysis and hypoxia in the malignancy. PMID:25973334

  17. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners.

    PubMed

    Reuzé, Sylvain; Orlhac, Fanny; Chargari, Cyrus; Nioche, Christophe; Limkin, Elaine; Riet, François; Escande, Alexandre; Haie-Meder, Christine; Dercle, Laurent; Gouy, Sébastien; Buvat, Irène; Deutsch, Eric; Robert, Charlotte

    2017-06-27

    To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. 118 patients were included retrospectively. Two groups (G1, G2) were defined according to the PET scanner used for image acquisition. Eleven radiomic features were extracted from delineated cervical tumors to evaluate: (i) the predictive value of features for local recurrence of LACC, (ii) their reproducibility as a function of the scanner within a hepatic reference volume, (iii) the impact of voxel size on feature values. Eight features were statistically significant predictors of local recurrence in G1 (p < 0.05). The multivariate signature trained in G2 was validated in G1 (AUC=0.76, p<0.001) and identified local recurrence more accurately than SUVmax (p=0.022). Four features were significantly different between G1 and G2 in the liver. Spatial resampling was not sufficient to explain the stratification effect. This study showed that radiomic features could predict local recurrence of LACC better than SUVmax. Further investigation is needed before applying a model designed using data from one PET scanner to another.

  18. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment 18F-FDG PET/CT Imaging.

    PubMed

    Beukinga, Roelof J; Hulshoff, Jan B; van Dijk, Lisanne V; Muijs, Christina T; Burgerhof, Johannes G M; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Slump, Cornelis H; Mul, Véronique E M; Plukker, John Th M

    2017-05-01

    Adequate prediction of tumor response to neoadjuvant chemoradiotherapy (nCRT) in esophageal cancer (EC) patients is important in a more personalized treatment. The current best clinical method to predict pathologic complete response is SUV max in 18 F-FDG PET/CT imaging. To improve the prediction of response, we constructed a model to predict complete response to nCRT in EC based on pretreatment clinical parameters and 18 F-FDG PET/CT-derived textural features. Methods: From a prospectively maintained single-institution database, we reviewed 97 consecutive patients with locally advanced EC and a pretreatment 18 F-FDG PET/CT scan between 2009 and 2015. All patients were treated with nCRT (carboplatin/paclitaxel/41.4 Gy) followed by esophagectomy. We analyzed clinical, geometric, and pretreatment textural features extracted from both 18 F-FDG PET and CT. The current most accurate prediction model with SUV max as a predictor variable was compared with 6 different response prediction models constructed using least absolute shrinkage and selection operator regularized logistic regression. Internal validation was performed to estimate the model's performances. Pathologic response was defined as complete versus incomplete response (Mandard tumor regression grade system 1 vs. 2-5). Results: Pathologic examination revealed 19 (19.6%) complete and 78 (80.4%) incomplete responders. Least absolute shrinkage and selection operator regularization selected the clinical parameters: histologic type and clinical T stage, the 18 F-FDG PET-derived textural feature long run low gray level emphasis, and the CT-derived textural feature run percentage. Introducing these variables to a logistic regression analysis showed areas under the receiver-operating-characteristic curve (AUCs) of 0.78 compared with 0.58 in the SUV max model. The discrimination slopes were 0.17 compared with 0.01, respectively. After internal validation, the AUCs decreased to 0.74 and 0.54, respectively. Conclusion

  19. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort.

    PubMed

    Caminiti, Silvia Paola; Ballarini, Tommaso; Sala, Arianna; Cerami, Chiara; Presotto, Luca; Santangelo, Roberto; Fallanca, Federico; Vanoli, Emilia Giovanna; Gianolli, Luigi; Iannaccone, Sandro; Magnani, Giuseppe; Perani, Daniela

    2018-01-01

    In this multicentre study in clinical settings, we assessed the accuracy of optimized procedures for FDG-PET brain metabolism and CSF classifications in predicting or excluding the conversion to Alzheimer's disease (AD) dementia and non-AD dementias. We included 80 MCI subjects with neurological and neuropsychological assessments, FDG-PET scan and CSF measures at entry, all with clinical follow-up. FDG-PET data were analysed with a validated voxel-based SPM method. Resulting single-subject SPM maps were classified by five imaging experts according to the disease-specific patterns, as "typical-AD", "atypical-AD" (i.e. posterior cortical atrophy, asymmetric logopenic AD variant, frontal-AD variant), "non-AD" (i.e. behavioural variant FTD, corticobasal degeneration, semantic variant FTD; dementia with Lewy bodies) or "negative" patterns. To perform the statistical analyses, the individual patterns were grouped either as "AD dementia vs. non-AD dementia (all diseases)" or as "FTD vs. non-FTD (all diseases)". Aβ42, total and phosphorylated Tau CSF-levels were classified dichotomously, and using the Erlangen Score algorithm. Multivariate logistic models tested the prognostic accuracy of FDG-PET-SPM and CSF dichotomous classifications. Accuracy of Erlangen score and Erlangen Score aided by FDG-PET SPM classification was evaluated. The multivariate logistic model identified FDG-PET "AD" SPM classification (Expβ = 19.35, 95% C.I. 4.8-77.8, p < 0.001) and CSF Aβ42 (Expβ = 6.5, 95% C.I. 1.64-25.43, p < 0.05) as the best predictors of conversion from MCI to AD dementia. The "FTD" SPM pattern significantly predicted conversion to FTD dementias at follow-up (Expβ = 14, 95% C.I. 3.1-63, p < 0.001). Overall, FDG-PET-SPM classification was the most accurate biomarker, able to correctly differentiate either the MCI subjects who converted to AD or FTD dementias, and those who remained stable or reverted to normal cognition (Expβ = 17.9, 95% C.I. 4

  20. Explorative analyses on the value of interim PET for prediction of response in pediatric and adolescent non-Hodgkin lymphoma patients

    PubMed Central

    2013-01-01

    Background This study is to evaluate the predictive value of FDG-PET (PET) in pediatric and adolescent patients suffering from non-Hodgkin lymphoma (pNHL) in comparison to information provided by conventional imaging methods (CIM). Methods Imaging was performed at baseline and at interim (after 2 cycles of chemotherapy). The response assessment in PET was carried out visually and semi-quantitatively, the latter one by use of percentage decrease in SUVmax from baseline to interim (ΔSUVmax). The PET-based results were compared to the findings by CIM. Progression-free survival (PFS) was analyzed using Kaplan-Meier curves (KM) and log-rank test. Results The final study included 16 patients (mean follow-up time, 60.2 months (range, 4.0 to 85.7 months)). Relapse occurred in four patients. Visual PET compared to CIM revealed higher sensitivity (3/4 vs 1/4) and NPV (6/7 vs 10/13), and equal PPV (3/9 vs 1/3), but lower specificity (6/12 vs 10/12) and accuracy (9/16 vs 11/16). False-positive findings in PET at interim were predominantly observed in patients presenting bulky disease (5/6), whereas CIM was true-negative in all of these cases. KM analyses revealed no significant differences in 5-year PFS neither for CIM (76.9% vs 66.7%; p = 0.67) nor for visual PET (85.7% vs 66.7%; p = 0.34) nor for ΔSUVmax (88.9% vs 57.1%; p = 0.12). Conclusions The predictive value of iPET in pediatric patients suffering from NHL was limited due to considerably high amount of false-positive findings, especially in patients suffering from bulky disease. However, due to our limited sample size, final conclusions cannot be drawn and, thus, call for further evaluation of PET in pNHL in larger and more homogenous patient series. PMID:24139528

  1. Evaluation of PeneloPET Simulations of Biograph PET/CT Scanners

    NASA Astrophysics Data System (ADS)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; Cal-González, J.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udías, J. M.

    2016-06-01

    Monte Carlo (MC) simulations are widely used in positron emission tomography (PET) for optimizing detector design, acquisition protocols, and evaluating corrections and reconstruction methods. PeneloPET is a MC code based on PENELOPE, for PET simulations which considers detector geometry, acquisition electronics and materials, and source definitions. While PeneloPET has been successfully employed and validated with small animal PET scanners, it required a proper validation with clinical PET scanners including time-of-flight (TOF) information. For this purpose, we chose the family of Biograph PET/CT scanners: the Biograph True-Point (B-TP), Biograph True-Point with TrueV (B-TPTV) and the Biograph mCT. They have similar block detectors and electronics, but a different number of rings and configuration. Some effective parameters of the simulations, such as the dead-time and the size of the reflectors in the detectors, were adjusted to reproduce the sensitivity and noise equivalent count (NEC) rate of the B-TPTV scanner. These parameters were then used to make predictions of experimental results such as sensitivity, NEC rate, spatial resolution, and scatter fraction (SF), from all the Biograph scanners and some variations of them (energy windows and additional rings of detectors). Predictions agree with the measured values for the three scanners, within 7% (sensitivity and NEC rate) and 5% (SF). The resolution obtained for the B-TPTV is slightly better (10%) than the experimental values. In conclusion, we have shown that PeneloPET is suitable for simulating and investigating clinical systems with good accuracy and short computational time, though some effort tuning of a few parameters of the scanners modeled may be needed in case that the full details of the scanners studied are not available.

  2. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

    NASA Astrophysics Data System (ADS)

    Vallières, M.; Freeman, C. R.; Skamene, S. R.; El Naqa, I.

    2015-07-01

    This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping

  3. The Value of 18F-FDG PET/CT Mathematical Prediction Model in Diagnosis of Solitary Pulmonary Nodules

    PubMed Central

    Chen, Yao; Tang, Kun; Lin, Jie

    2018-01-01

    Purpose To establish an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) mathematical prediction model to improve the diagnosis of solitary pulmonary nodules (SPNs). Materials and Methods We retrospectively reviewed 177 consecutive patients who underwent 18F-FDG PET/CT for evaluation of SPNs. The mathematical model was established by logistic regression analysis. The diagnostic capabilities of the model were calculated, and the areas under the receiver operating characteristic curve (AUC) were compared with Mayo and VA model. Results The mathematical model was y = exp⁡(x)/[1 + exp⁡(x)], x = −7.363 + 0.079 × age + 1.900 × lobulation + 1.024 × vascular convergence + 1.530 × pleural retraction + 0.359 × the maximum of standardized uptake value (SUVmax). When the cut-off value was set at 0.56, the sensitivity, specificity, and accuracy of our model were 86.55%, 74.14%, and 81.4%, respectively. The area under the receiver operating characteristic curve (AUC) of our model was 0.903 (95% confidence interval (CI): 0.860 to 0.946). The AUC of our model was greater than that of the Mayo model, the VA model, and PET (P < 0.05) and has no difference with that of PET/CT (P > 0.05). Conclusion The mathematical predictive model has high accuracy in estimating the malignant probability of patients with SPNs. PMID:29789808

  4. 18F-FDG PET/CT Can Predict Development of Thyroiditis due to Immunotherapy for Lung Cancer.

    PubMed

    Eshghi, Naghmehossadat; Garland, Linda; Nia, Emily Saghar; Betancourt, Robert; Krupinski, Elizabeth; Kuo, Phillip H

    2018-03-29

    Objective: For patients undergoing immunotherapy with nivolumab for lung cancer, determine if increased 18 F-FDG uptake in the thyroid gland predicts development of thyroiditis with subsequent hypothyroidism. Secondarily, determine if 18 F-FDG uptake in the thyroid gland correlates with administered cycles of nivolumab. Materials and Methods: Retrospective chart review over 2 years found 18 lung cancer patients treated with nivolumab and with 18 F-FDG PET/CT scans pre- and during therapy. Standardized uptake value (SUV) mean and maximum and total lesion glycolysis (TLG) of the thyroid gland were measured. SUVs were also measured for the pituitary gland, liver and spleen. Patients obtained monthly thyroid testing. PET/CT parameters were analyzed by unpaired t-test for differences between two groups (patients who developed hypothyroidism and those who did not). Correlation between development of thyroiditis and number of cycles of nivolumab received was also tested. Results: Six of eighteen patients developed hypothyroidism. T-test comparing the two groups (patients who developed hypothyroidism and those who did not) demonstrated significant differences in SUVmean ( P = 0.04), SUV max ( P = 0.04) and TLG ( P = 0.02) of the thyroid gland. Two of four patients who developed thyroiditis and had increased 18 F-FDG uptake in the thyroid gland, had normal TSH at time of follow-up 18 F-FDG PET/CT. Patients who developed thyroiditis with subsequent hypothyroidism stayed longer on therapy (10.6 cycles) compared to patients without thyroiditis (7.6 cycles), but the trend was not statistically significant. No significant difference in PET/CT parameters was observed for pituitary gland, liver or spleen. Conclusion: 18 F-FDG PET/CT can predict the development of thyroiditis with subsequent hypothyroidism before laboratory testing. Further study is required to confirm the positive trend between thyroiditis and duration of therapy. Copyright © 2018 by the Society of Nuclear

  5. Longer-Term Investigation of the Value of 18F-FDG-PET and Magnetic Resonance Imaging for Predicting the Conversion of Mild Cognitive Impairment to Alzheimer's Disease: A Multicenter Study.

    PubMed

    Inui, Yoshitaka; Ito, Kengo; Kato, Takashi

    2017-01-01

    The value of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and magnetic resonance imaging (MRI) for predicting conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) in longer-term is unclear. To evaluate longer-term prediction of MCI to AD conversion using 18F-FDG-PET and MRI in a multicenter study. One-hundred and fourteen patients with MCI were followed for 5 years. They underwent clinical and neuropsychological examinations, 18F-FDG-PET, and MRI at baseline. PET images were visually classified into predefined dementia patterns. PET scores were calculated as a semi quantitative index. For structural MRI, z-scores in medial temporal area were calculated by automated volume-based morphometry (VBM). Overall, 72% patients with amnestic MCI progressed to AD during the 5-year follow-up. The diagnostic accuracy of PET scores over 5 years was 60% with 53% sensitivity and 84% specificity. Visual interpretation of PET images predicted conversion to AD with an overall 82% diagnostic accuracy, 94% sensitivity, and 53% specificity. The accuracy of VBM analysis presented little fluctuation through 5 years and it was highest (73%) at the 5-year follow-up, with 79% sensitivity and 63% specificity. The best performance (87.9% diagnostic accuracy, 89.8% sensitivity, and 82.4% specificity) was with a combination identified using multivariate logistic regression analysis that included PET visual interpretation, educational level, and neuropsychological tests as predictors. 18F-FDG-PET visual assessment showed high performance for predicting conversion to AD from MCI, particularly in combination with neuropsychological tests. PET scores showed high diagnostic specificity. Structural MRI focused on the medial temporal area showed stable predictive value throughout the 5-year course.

  6. 68Ga-PSMA-617 PET/CT: a promising new technique for predicting risk stratification and metastatic risk of prostate cancer patients.

    PubMed

    Liu, Chen; Liu, Teli; Zhang, Ning; Liu, Yiqiang; Li, Nan; Du, Peng; Yang, Yong; Liu, Ming; Gong, Kan; Yang, Xing; Zhu, Hua; Yan, Kun; Yang, Zhi

    2018-05-02

    The purpose of this study was to investigate the performance of 68 Ga-PSMA-617 PET/CT in predicting risk stratification and metastatic risk of prostate cancer. Fifty newly diagnosed patients with prostate cancer as confirmed by needle biopsy were continuously included, 40 in a train set and ten in a test set. 68 Ga-PSMA-617 PET/CT and clinical data of all patients were retrospectively analyzed. Semi-quantitative analysis of PET images provided maximum standardized uptake (SUVmax) of primary prostate cancer and volumetric parameters including intraprostatic PSMA-derived tumor volume (iPSMA-TV) and intraprostatic total lesion PSMA (iTL-PSMA). According to prostate cancer risk stratification criteria of the NCCN Guideline, all patients were simplified into a low-intermediate risk group or a high-risk group. The semi-quantitative parameters of 68 Ga-PSMA-617 PET/CT were used to establish a univariate logistic regression model for high-risk prostate cancer and its metastatic risk, and to evaluate the diagnostic efficacy of the predictive model. In the train set, 30/40 (75%) patients had high-risk prostate cancer and 10/40 (25%) patients had low-to-moderate-risk prostate cancer; in the test set, 8/10 (80%) patients had high-risk prostate cancer while 2/10 (20%) had low-intermediate risk prostate cancer. The univariate logistic regression model established with SUVmax, iPSMA-TV and iTL-PSMA could all effectively predict high-risk prostate cancer; the AUC of ROC were 0.843, 0.802 and 0.900, respectively. Based on the test set, the sensitivity and specificity of each model were 87.5% and 50% for SUVmax, 62.5% and 100% for iPSMA-TV, and 87.5% and 100% for iTL-PSMA, respectively. The iPSMA-TV and iTL-PSMA-based predictive model could predict the metastatic risk of prostate cancer, the AUC of ROC was 0.863 and 0.848, respectively, but the SUVmax-based prediction model could not predict metastatic risk. Semi-quantitative analysis indexes of 68 Ga-PSMA-617 PET/CT imaging can be

  7. Biodistribution, pharmacokinetics and PET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAc in a sarcoma- and inflammation-bearing mouse model.

    PubMed

    Liu, Ren-Shyan; Chou, Ta-Kai; Chang, Chih-Hsien; Wu, Chun-Yi; Chang, Chi-Wei; Chang, Tsui-Jung; Wang, Shih-Jen; Lin, Wuu-Jyh; Wang, Hsin-Ell

    2009-04-01

    2-Deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG), [(18)F]fluoroacetate ([(18)F]FAc) and [(18)F]fluoromisonidazole ([(18)F]FMISO) were all considered to be positron emission tomography (PET) probes for tumor diagnosis, though based on different rationale of tissue uptake. This study compared the biodistribution, pharmacokinetics and imaging of these three tracers in a sarcoma- and inflammation-bearing mouse model. C3H mice were inoculated with 2x10(5) KHT sarcoma cells in the right thigh on Day 0. Turpentine oil (0.1 ml) was injected in the left thigh on Day 11 to induce inflammatory lesion. Biodistribution, pharmacokinetics and microPET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAc were performed on Day 14 after tumor inoculation. The inflammatory lesions were clearly visualized by [(18)F]FDG/microPET and autoradiography at 3 days after turpentine oil injection. The tumor-to-muscle and inflammatory lesion-to-muscle ratios derived from microPET imaging were 6.79 and 1.48 for [(18)F]FMISO, 8.12 and 4.69 for [(18)F]FDG and 3.72 and 3.19 for [(18)F]FAc at 4 h post injection, respectively. Among these, the tumor-to-inflammation ratio was the highest (4.57) for [(18)F]FMISO compared with that of [(18)F]FDG (1.73) and [(18)F]FAc (1.17), whereas [(18)F]FAc has the highest bioavailability (area under concentration of radiotracer vs. time curve, 116.2 hxpercentage of injected dose per gram of tissue). MicroPET images and biodistribution studies showed that the accumulation of [(18)F]FMISO in the tumor is significantly higher than that in inflammatory lesion at 4 h post injection. [(18)F]FDG and [(18)F]FAc delineated both tumor and inflammatory lesions. Our results demonstrated the potential of [(18)F]FMISO/PET in distinguishing tumor from inflammatory lesion.

  8. Tumor Response and Survival Predicted by Post-Therapy FDG-PET/CT in Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Julie K.; Siegel, Barry A.; Dehdashti, Farrokh

    2008-05-01

    Purpose: To evaluate the response to therapy for anal carcinoma using post-therapy imaging with positron emission tomography (PET)/computed tomography and F-18 fluorodeoxyglucose (FDG) and to compare the metabolic response with patient outcome. Patients and Methods: This was a prospective cohort study of 53 consecutive patients with anal cancer. All patients underwent pre- and post-treatment whole-body FDG-PET/computed tomography. Patients had been treated with external beam radiotherapy and concurrent chemotherapy. Whole-body FDG-PET was performed 0.9-5.4 months (mean, 2.1) after therapy completion. Results: The post-therapy PET scan did not show any abnormal FDG uptake (complete metabolic response) in 44 patients. Persistent abnormal FDGmore » uptake (partial metabolic response) was found in the anal tumor in 9 patients. The 2-year cause-specific survival rate was 94% for patients with a complete vs. 39% for patients with a partial metabolic response in the anal tumor (p = 0.0008). The 2-year progression-free survival rate was 95% for patients with a complete vs. 22% for patients with a partial metabolic response in the anal tumor (p < 0.0001). A Cox proportional hazards model of survival outcome indicated that a complete metabolic response was the most significant predictor of progression-free survival in our patient population (p = 0.0003). Conclusions: A partial metabolic response in the anal tumor as determined by post-therapy FDG-PET is predictive of significantly decreased progression-free and cause-specific survival after chemoradiotherapy for anal cancer.« less

  9. Parametric mapping of [18F]fluoromisonidazole positron emission tomography using basis functions.

    PubMed

    Hong, Young T; Beech, John S; Smith, Rob; Baron, Jean-Claude; Fryer, Tim D

    2011-02-01

    In this study, we show a basis function method (BAFPIC) for voxelwise calculation of kinetic parameters (K(1), k(2), k(3), K(i)) and blood volume using an irreversible two-tissue compartment model. BAFPIC was applied to rat ischaemic stroke micro-positron emission tomography data acquired with the hypoxia tracer [(18)F]fluoromisonidazole because irreversible two-tissue compartmental modelling provided good fits to data from both hypoxic and normoxic tissues. Simulated data show that BAFPIC produces kinetic parameters with significantly lower variability and bias than nonlinear least squares (NLLS) modelling in hypoxic tissue. The advantage of BAFPIC over NLLS is less pronounced in normoxic tissue. K(i) determined from BAFPIC has lower variability than that from the Patlak-Gjedde graphical analysis (PGA) by up to 40% and lower bias, except for normoxic tissue at mid-high noise levels. Consistent with the simulation results, BAFPIC parametric maps of real data suffer less noise-induced variability than do NLLS and PGA. Delineation of hypoxia on BAFPIC k(3) maps is aided by low variability in normoxic tissue, which matches that in K(i) maps. BAFPIC produces K(i) values that correlate well with those from PGA (r(2)=0.93 to 0.97; slope 0.99 to 1.05, absolute intercept <0.00002 mL/g per min). BAFPIC is a computationally efficient method of determining parametric maps with low bias and variance.

  10. PET staging of amyloidosis using striatum.

    PubMed

    Hanseeuw, Bernard J; Betensky, Rebecca A; Mormino, Elizabeth C; Schultz, Aaron P; Sepulcre, Jorge; Becker, John A; Jacobs, Heidi I L; Buckley, Rachel F; LaPoint, Molly R; Vanini, Patrizia; Donovan, Nancy J; Chhatwal, Jasmeer P; Marshall, Gad A; Papp, Kathryn V; Amariglio, Rebecca E; Rentz, Dorene M; Sperling, Reisa A; Johnson, Keith A

    2018-05-21

    Amyloid PET data are commonly expressed as binary measures of cortical deposition. However, not all individuals with high cortical amyloid will experience rapid cognitive decline. Motivated by postmortem data, we evaluated a three-stage PET classification: low cortical; high cortical, low striatal; and high cortical, high striatal amyloid; hypothesizing this model could better reflect Alzheimer's dementia progression than a model based only on cortical measures. We classified PET data from 1433 participants (646 normal, 574 mild cognitive impairment, and 213 AD), explored the successive involvement of cortex and striatum using 3-year follow-up PET data, and evaluated the associations between PET stages, hippocampal volumes, and cognition. Follow-up data indicated that PET detects amyloid first in cortex and then in striatum. Our three-category staging including striatum better predicted hippocampal volumes and subsequent cognition than a three-category staging including only cortical amyloid. PET can evaluate amyloid expansion from cortex to subcortex. Using striatal signal as a marker of advanced amyloidosis may increase predictive power in Alzheimer's dementia research. Copyright © 2018. Published by Elsevier Inc.

  11. Modeling of FMISO [F18] nanoparticle PET tracer in normal-cancerous tissue based on real clinical image.

    PubMed

    Asgari, Hanie; Soltani, M; Sefidgar, Mostafa

    2018-07-01

    Hypoxia as one of the principal properties of tumor cells is a reaction to the deprivation of oxygen. The location of tumor cells could be identified by assessment of oxygen and nutrient level in human body. Positron emission tomography (PET) is a well-known non-invasive method that is able to measure hypoxia based on the FMISO (Fluoromisonidazole) tracer dynamic. This paper aims to study the PET tracer concentration through convection-diffusion-reaction equations in a real human capillary-like network. A non-uniform oxygen pressure along the capillary path and convection mechanism for FMISO transport are taken into account to accurately model the characteristics of the tracer. To this end, a multi-scale model consists of laminar blood flow through the capillary network, interstitial pressure, oxygen pressure, FMISO diffusion and FMISO convection transport in the extravascular region is developed. The present model considers both normal and tumor tissue regions in computational domain. The accuracy of numerical model is verified with the experimental results available in the literature. The convection and diffusion types of transport mechanism are employed in order to calculate the concentration of FMISO in the normal and tumor sub-domain. The influences of intravascular oxygen pressure, FMISO transport mechanisms, capillary density and different types of tissue on the FMISO concentration have been investigated. According to result (Table 4) the convection mechanism of FMISO molecules transportation is negligible, but it causes more accuracy of the proposed model. The approach of present study can be employed in order to investigate the effects of various parameters, such as tumor shape, on the dynamic behavior of different PET tracers, such as FDG, can be extended to different case study problems, such as drug delivery. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Pretherapeutic FDG-PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin's lymphoma.

    PubMed

    Rogasch, Julian M M; Hundsdoerfer, Patrick; Hofheinz, Frank; Wedel, Florian; Schatka, Imke; Amthauer, Holger; Furth, Christian

    2018-05-03

    Standardized treatment in pediatric patients with Hodgkin's lymphoma (HL) follows risk stratification by tumor stage, erythrocyte sedimentation rate and tumor bulk. We aimed to identify quantitative parameters from pretherapeutic FDG-PET to assist prediction of response to induction chemotherapy. Retrospective analysis in 50 children with HL (f:18; m:32; median age, 14.8 [4-18] a) consecutively treated according to EuroNet-PHL-C1 (n = 42) or -C2 treatment protocol (n = 8). Total metabolic tumor volume (MTV) in pretherapeutic FDG-PET was defined using a semi-automated, background-adapted threshold. Metabolic (SUVmax, SUVmean, SUVpeak, total lesion glycolysis [MTV*SUVmean]) and heterogeneity parameters (asphericity [ASP], entropy, contrast, local homogeneity, energy, and cumulative SUV-volume histograms) were derived. Early response assessment (ERA) was performed after 2 cycles of induction chemotherapy according to treatment protocol and verified by reference rating. Prediction of inadequate response (IR) in ERA was based on ROC analysis separated by stage I/II (1 and 26 patients) and stage III/IV disease (7 and 16 patients) or treatment group/level (TG/TL) 1 to 3. IR was seen in 28/50 patients (TG/TL 1, 6/12 patients; TG/TL 2, 10/17; TG/TL 3, 12/21). Among all PET parameters, MTV best predicted IR; ASP was the best heterogeneity parameter. AUC of MTV was 0.84 (95%-confidence interval, 0.69-0.99) in stage I/II and 0.86 (0.7-1.0) in stage III/IV. In patients of TG/TL 1, AUC of MTV was 0.92 (0.74-1.0); in TG/TL 2 0.71 (0.44-0.99), and in TG/TL 3 0.85 (0.69-1.0). Patients with high vs. low MTV had IR in 86 vs. 0% in TG/TL 1, 80 vs. 29% in TG/TL 2, and 90 vs. 27% in TG/TL 3 (cut-off, > 80 ml, > 160 ml, > 410 ml). In this explorative study, high total MTV best predicted inadequate response to induction therapy in pediatric HL of all pretherapeutic FDG-PET parameters - in both low and high stages as well as the 3 different TG/TL. Ethics committee number

  13. The Incremental Value of Subjective and Quantitative Assessment of 18F-FDG PET for the Prediction of Pathologic Complete Response to Preoperative Chemoradiotherapy in Esophageal Cancer.

    PubMed

    van Rossum, Peter S N; Fried, David V; Zhang, Lifei; Hofstetter, Wayne L; van Vulpen, Marco; Meijer, Gert J; Court, Laurence E; Lin, Steven H

    2016-05-01

    A reliable prediction of a pathologic complete response (pathCR) to chemoradiotherapy before surgery for esophageal cancer would enable investigators to study the feasibility and outcome of an organ-preserving strategy after chemoradiotherapy. So far no clinical parameters or diagnostic studies are able to accurately predict which patients will achieve a pathCR. The aim of this study was to determine whether subjective and quantitative assessment of baseline and postchemoradiation (18)F-FDG PET can improve the accuracy of predicting pathCR to preoperative chemoradiotherapy in esophageal cancer beyond clinical predictors. This retrospective study was approved by the institutional review board, and the need for written informed consent was waived. Clinical parameters along with subjective and quantitative parameters from baseline and postchemoradiation (18)F-FDG PET were derived from 217 esophageal adenocarcinoma patients who underwent chemoradiotherapy followed by surgery. The associations between these parameters and pathCR were studied in univariable and multivariable logistic regression analysis. Four prediction models were constructed and internally validated using bootstrapping to study the incremental predictive values of subjective assessment of (18)F-FDG PET, conventional quantitative metabolic features, and comprehensive (18)F-FDG PET texture/geometry features, respectively. The clinical benefit of (18)F-FDG PET was determined using decision-curve analysis. A pathCR was found in 59 (27%) patients. A clinical prediction model (corrected c-index, 0.67) was improved by adding (18)F-FDG PET-based subjective assessment of response (corrected c-index, 0.72). This latter model was slightly improved by the addition of 1 conventional quantitative metabolic feature only (i.e., postchemoradiation total lesion glycolysis; corrected c-index, 0.73), and even more by subsequently adding 4 comprehensive (18)F-FDG PET texture/geometry features (corrected c-index, 0

  14. Radiomics in Oncological PET/CT: Clinical Applications.

    PubMed

    Lee, Jeong Won; Lee, Sang Mi

    2018-06-01

    18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used for staging, evaluating treatment response, and predicting prognosis in malignant diseases. FDG uptake and volumetric PET parameters such as metabolic tumor volume have been used and are still used as conventional PET parameters to assess biological characteristics of tumors. However, in recent years, additional features derived from PET images by computational processing have been found to reflect intratumoral heterogeneity, which is related to biological tumor features, and to provide additional predictive and prognostic information, which leads to the concept of radiomics. In this review, we focus on recent clinical studies of malignant diseases that investigated intratumoral heterogeneity on PET/CT, and we discuss its clinical role in various cancers.

  15. FDG-PET Imaging in Hematological Malignancies

    PubMed Central

    Valls, L.; Badve, C.; Avril, S.; Herrmann, K.; Faulhaber, P.; O'Donnell, J.; Avril, N.

    2016-01-01

    The majority of aggressive lymphomas is characterized by an up regulated glycolytic activity, which enables the visualization by F-18 FDG-PET/CT. One-stop hybrid FDG-PET/CT combines the functional and morphologic information, outperforming both, CT and FDG-PET as separate imaging modalities. This has resulted in several recommendations using FDG-PET/CT for staging, restaging, monitoring during therapy, and assessment of treatment response as well as identification of malignant transformation. FDG-PET/CT may obviate the need for a bone marrow biopsy in patients with Hodgkin's lymphoma and diffuse large B-cell lymphoma. FDG-PET/CT response assessment is recommended for FDG-avid lymphomas, whereas CT-based response evaluation remains important in lymphomas with low or variable FDG avidity. The treatment induced change in metabolic activity allows for assessment of response after completion of therapy as well as prediction of outcome early during therapy. The five point scale Deauville Criteria allows the assessment of treatment response based on visual FDG-PET analysis. Although the use of FDG-PET/CT for prediction of therapeutic response is promising it should only be conducted in the context of clinical trials. Surveillance FDG-PET/CT after complete remission is discouraged due to the relative high number of false-positive findings, which in turn may result in further unnecessary investigations. Future directions include the use of new PET tracers such as F-18 fluorothymidine (FLT), a surrogate biomarker of cellular proliferation and Ga-68 CXCR4, a chemokine receptor imaging biomarker as well as innovative digital PET/CT and PET/MRI techniques. PMID:27090170

  16. Predictive and prognostic value of PET/CT imaging post-chemoradiotherapy and clinical decision-making consequences in locally advanced head & neck squamous cell carcinoma: a retrospective study.

    PubMed

    Kim, Ryul; Ock, Chan-Young; Keam, Bhumsuk; Kim, Tae Min; Kim, Jin Ho; Paeng, Jin Chul; Kwon, Seong Keun; Hah, J Hun; Kwon, Tack-Kyun; Kim, Dong-Wan; Wu, Hong-Gyun; Sung, Myung-Whun; Heo, Dae Seog

    2016-02-17

    The accuracy of (18)F-fluorodeoxygluocose positron emission tomography/computed tomography (PET/CT) in predicting immediate failure after radical chemoradiotherapy (CRT) for HNSCC is poorly characterized at present. The purpose of this study was to examine PET/CT as a predictive and prognostic gauge of immediate failure after CRT and determine the impact of these studies on clinical decision making in terms of salvage surgery. Medical records of 78 consecutive patients receiving radical CRT for locally advanced HNSCC were reviewed, analyzing PET/CTs done before and 3 months after CRT. Immediate failure was defined as residual disease or locoregional and/or systemic relapse within 6 months after CRT. Maximum standard uptake value (SUV) of post CRT PET/CT (postSUVmax) was found optimal for predicting immediate failure at a cutpoint of 4.4. Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) were 90.0%, 83.8%, 98.3%, and 45.0%, respectively. Of 78 patients studied, postSUVmax ≥ 4.4 prevailed in 20 (25.6%), with postSUVmax <4.4 in 58 (74.4%). At postSUVmax ≥ 4.4 (vs. postSUVmax <4.4) OS was poorer by comparison (3-year OS: 56.9 vs. 87.7%; P = 0.005), as was progression-free survival (3-year PFS: 42.9 vs. 81.1%; P < 0.001). At postSUVmax ≥ 4.4, OS with and without immediate salvage surgery did not differ significantly (3-year OS: 60.0 vs. 55.6%; Log-rank P = 0.913). Post CRT PET/CT imaging has prognostic value in terms of OS and PFS and is useful in predicting immediate therapeutic failure, given its high NPV. However, OS was not significantly altered by early salvage surgery done on the basis of post CRT PET/CT findings.

  17. WE-E-17A-02: Predictive Modeling of Outcome Following SABR for NSCLC Based On Radiomics of FDG-PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R; Aguilera, T; Shultz, D

    2014-06-15

    Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid

  18. Quantitative PET Imaging with Novel HER3 Targeted Peptides Selected by Phage Display to Predict Androgen Independent Prostate Cancer Progression

    DTIC Science & Technology

    2017-08-01

    9 4 1. Introduction The subject of this research is the design and testing of a PET imaging agent for the detection and...AWARD NUMBER: W81XWH-16-1-0447 TITLE: Quantitative PET Imaging with Novel HER3-Targeted Peptides Selected by Phage Display to Predict Androgen...MA 02114 REPORT DATE: August 2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

  19. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer.

    PubMed

    Tixier, Florent; Le Rest, Catherine Cheze; Hatt, Mathieu; Albarghach, Nidal; Pradier, Olivier; Metges, Jean-Philippe; Corcos, Laurent; Visvikis, Dimitris

    2011-03-01

    (18)F-FDG PET is often used in clinical routine for diagnosis, staging, and response to therapy assessment or prediction. The standardized uptake value (SUV) in the primary or regional area is the most common quantitative measurement derived from PET images used for those purposes. The aim of this study was to propose and evaluate new parameters obtained by textural analysis of baseline PET scans for the prediction of therapy response in esophageal cancer. Forty-one patients with newly diagnosed esophageal cancer treated with combined radiochemotherapy were included in this study. All patients underwent pretreatment whole-body (18)F-FDG PET. Patients were treated with radiotherapy and alkylatinlike agents (5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin). Patients were classified as nonresponders (progressive or stable disease), partial responders, or complete responders according to the Response Evaluation Criteria in Solid Tumors. Different image-derived indices obtained from the pretreatment PET tumor images were considered. These included usual indices such as maximum SUV, peak SUV, and mean SUV and a total of 38 features (such as entropy, size, and magnitude of local and global heterogeneous and homogeneous tumor regions) extracted from the 5 different textures considered. The capacity of each parameter to classify patients with respect to response to therapy was assessed using the Kruskal-Wallis test (P < 0.05). Specificity and sensitivity (including 95% confidence intervals) for each of the studied parameters were derived using receiver-operating-characteristic curves. Relationships between pairs of voxels, characterizing local tumor metabolic nonuniformities, were able to significantly differentiate all 3 patient groups (P < 0.0006). Regional measures of tumor characteristics, such as size of nonuniform metabolic regions and corresponding intensity nonuniformities within these regions, were also significant factors for prediction of response to

  20. Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data

    PubMed Central

    Haldimann, M.; Alt, A.; Blanc, A.; Brunner, K.; Sager, F.; Dudler, V.

    2013-01-01

    Migration experiments with small sheets cut out from ovenable PET trays were performed in two-sided contact with 3% acetic acid as food simulant at various temperatures. The fraction of diffusible antimony (Sb) was estimated to be 62% in the PET sample under study. Apparent diffusion coefficients of Sb in PET trays were determined experimentally. Measurement of migration between 20 and 150°C yielded a linear Arrhenius plot over a wide temperature range from which the activation energy (Ea) of 188 ± 36 kJ mol−1 and the pre-exponential factor (D0) of 3.6 × 1014 cm2s−1 were determined for diffusing Sb species. Ea was similar to previously reported values for PET bottles obtained with a different experimental approach. Ea and D0 were applied as model parameters in migration modelling software for predicting the Sb transfer in real food. Ready meals intended for preparation in a baking oven were heated in the PET trays under study and the actual Sb migration into the food phase was measured by isotope dilution ICP-MS. It was shown that the predictive modelling reproduces correctly experimental data. PMID:23286325

  1. Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data.

    PubMed

    Haldimann, M; Alt, A; Blanc, A; Brunner, K; Sager, F; Dudler, V

    2013-01-01

    Migration experiments with small sheets cut out from ovenable PET trays were performed in two-sided contact with 3% acetic acid as food simulant at various temperatures. The fraction of diffusible antimony (Sb) was estimated to be 62% in the PET sample under study. Apparent diffusion coefficients of Sb in PET trays were determined experimentally. Measurement of migration between 20 and 150°C yielded a linear Arrhenius plot over a wide temperature range from which the activation energy (E(a)) of 188 ± 36 kJ mol(-1) and the pre-exponential factor (D(0)) of 3.6 × 10(14) cm(2) s(-1) were determined for diffusing Sb species. E (a) was similar to previously reported values for PET bottles obtained with a different experimental approach. E (a) and D (0) were applied as model parameters in migration modelling software for predicting the Sb transfer in real food. Ready meals intended for preparation in a baking oven were heated in the PET trays under study and the actual Sb migration into the food phase was measured by isotope dilution ICP-MS. It was shown that the predictive modelling reproduces correctly experimental data.

  2. Childhood Attachment to Pets: Associations between Pet Attachment, Attitudes to Animals, Compassion, and Humane Behaviour

    PubMed Central

    Hawkins, Roxanne D.; Williams, Joanne M.

    2017-01-01

    Attachment to pets has an important role in children’s social, emotional, and cognitive development, mental health, well-being, and quality of life. This study examined associations between childhood attachment to pets and caring and friendship behaviour, compassion, and attitudes towards animals. This study also examined socio-demographic differences, particularly pet ownership and pet type. A self-report survey of over one thousand 7 to 12 year-olds in Scotland, UK, revealed that the majority of children are strongly attached to their pets, but attachment scores differ depending on pet type and child gender. Analysis revealed that attachment to pets is facilitated by compassion and caring and pet-directed friendship behaviours and that attachment to pets significantly predicts positive attitudes towards animals. The findings have implications for the promotion of prosocial and humane behaviour. Encouraging children to participate in pet care behaviour may promote attachment between children and their pet, which in turn may have a range of positive outcomes for both children (such as reduced aggression, better well-being, and quality of life) and pets (such as humane treatment). This study enhances our understanding of childhood pet attachment and has implications for humane education and promoting secure emotional attachments in childhood. PMID:28481256

  3. Childhood Attachment to Pets: Associations between Pet Attachment, Attitudes to Animals, Compassion, and Humane Behaviour.

    PubMed

    Hawkins, Roxanne D; Williams, Joanne M; Scottish Society For The Prevention Of Cruelty To Animals Scottish Spca

    2017-05-06

    Attachment to pets has an important role in children's social, emotional, and cognitive development, mental health, well-being, and quality of life. This study examined associations between childhood attachment to pets and caring and friendship behaviour, compassion, and attitudes towards animals. This study also examined socio-demographic differences, particularly pet ownership and pet type. A self-report survey of over one thousand 7 to 12 year-olds in Scotland, UK, revealed that the majority of children are strongly attached to their pets, but attachment scores differ depending on pet type and child gender. Analysis revealed that attachment to pets is facilitated by compassion and caring and pet-directed friendship behaviours and that attachment to pets significantly predicts positive attitudes towards animals. The findings have implications for the promotion of prosocial and humane behaviour. Encouraging children to participate in pet care behaviour may promote attachment between children and their pet, which in turn may have a range of positive outcomes for both children (such as reduced aggression, better well-being, and quality of life) and pets (such as humane treatment). This study enhances our understanding of childhood pet attachment and has implications for humane education and promoting secure emotional attachments in childhood.

  4. Proton Therapy Verification with PET Imaging

    PubMed Central

    Zhu, Xuping; Fakhri, Georges El

    2013-01-01

    Proton therapy is very sensitive to uncertainties introduced during treatment planning and dose delivery. PET imaging of proton induced positron emitter distributions is the only practical approach for in vivo, in situ verification of proton therapy. This article reviews the current status of proton therapy verification with PET imaging. The different data detecting systems (in-beam, in-room and off-line PET), calculation methods for the prediction of proton induced PET activity distributions, and approaches for data evaluation are discussed. PMID:24312147

  5. Initial FDG-PET/CT predicts survival in adults Ewing sarcoma family of tumors

    PubMed Central

    Jamet, Bastien; Carlier, Thomas; Campion, Loic; Bompas, Emmanuelle; Girault, Sylvie; Borrely, Fanny; Ferrer, Ludovic; Rousseau, Maxime; Venel, Yann; Kraeber-Bodéré, Françoise; Rousseau, Caroline

    2017-01-01

    Purpose The aim of this retrospective study was to determine, at baseline, the prognostic value of different FDG-PET/CT quantitative parameters in a homogenous Ewing Sarcoma Family of Tumors (ESFT) adult population, compared with clinically relevant prognostic factors. Methods Adult patients from 3 oncological centers, all with proved ESFT, were retrospectively included. Quantitative FDG-PET/CT parameters (SUV (maximum, peak and mean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of the primary lesion of each patient were recorded before treatment, as well as usual clinical prognostic factors (stage of disease, location, tumor size, gender and age). Then, their relation with progression free survival (PFS) and overall survival (OS) was evaluated. Results 32 patients were included. Median age was 21 years (range, 15 to 61). Nineteen patients (59%) were initially metastatic. On multivariate analysis, high SUVmax remained independent predictor of worst OS (p=0.02) and PFS (p=0.019), metastatic disease of worst PFS (p=0.01) and high SUVpeak of worst OS (p=0.01). Optimal prognostic cut-off of SUVpeak was found at 12.5 in multivariate analyses for PFS and OS (p=0.0001). Conclusions FDG-PET/CT, recommended at ESFT diagnosis for initial staging, can be a useful tool for predicting long-term adult patients outcome through semi-quantitative parameters. PMID:29100369

  6. Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology

    PubMed Central

    Pan, Jonathan A.; Salerno, Michael

    2016-01-01

    Over the past several years, there have been major advances in cardiovascular positron emission tomography (PET) in combination with either computed tomography (CT) or, more recently, cardiovascular magnetic resonance (CMR). These multi-modality approaches have significant potential to leverage the strengths of each modality to improve the characterization of a variety of cardiovascular diseases and to predict clinical outcomes. This review will discuss current developments and potential future uses of PET/CT and PET/CMR for cardiovascular applications, which promise to add significant incremental benefits to the data provided by each modality alone. PMID:27598207

  7. SU-D-207B-03: A PET-CT Radiomics Comparison to Predict Distant Metastasis in Lung Adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coroller, T; Yip, S; Lee, S

    2016-06-15

    Purpose: Early prediction of distant metastasis may provide crucial information for adaptive therapy, subsequently improving patient survival. Radiomic features that extracted from PET and CT images have been used for assessing tumor phenotype and predicting clinical outcomes. This study investigates the values of radiomic features in predicting distant metastasis (DM) in non-small cell lung cancer (NSCLC). Methods: A total of 108 patients with stage II–III lung adenocarcinoma were included in this retrospective study. Twenty radiomic features were selected (10 from CT and 10 from PET). Conventional features (metabolic tumor volume, SUV, volume and diameter) were included for comparison. Concordance indexmore » (CI) was used to evaluate features prognostic value. Noether test was used to compute p-value to consider CI significance from random (CI = 0.5) and were adjusted for multiple testing using false rate discovery (FDR). Results: A total of 70 patients had DM (64.8%) with a median time to event of 8.8 months. The median delivered dose was 60 Gy (range 33–68 Gy). None of the conventional features from PET (CI ranged from 0.51 to 0.56) or CT (CI ranged from 0.57 to 0.58) were significant from random. Five radiomics features were significantly prognostic from random for DM (p-values < 0.05). Four were extracted from CT (CI = 0.61 to 0.63, p-value <0.01) and one from PET which was also the most prognostic (CI = 0.64, p-value <0.001). Conclusion: This study demonstrated significant association between radiomic features and DM for patients with locally advanced lung adenocarcinoma. Moreover, conventional (clinically utilized) metrics were not significantly associated with DM. Radiomics can potentially help classify patients at higher risk of DM, allowing clinicians to individualize treatment, such as intensification of chemotherapy) to reduce the risk of DM and improve survival. R.M. has consulting interests with Amgen.« less

  8. Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT

    PubMed Central

    Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick

    2015-01-01

    Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical

  9. Early PET/CT scan is more effective than RECIST in predicting outcome of patients with liver metastases from colorectal cancer treated with preoperative chemotherapy plus bevacizumab.

    PubMed

    Lastoria, Secondo; Piccirillo, Maria Carmela; Caracò, Corradina; Nasti, Guglielmo; Aloj, Luigi; Arrichiello, Cecilia; de Lutio di Castelguidone, Elisabetta; Tatangelo, Fabiana; Ottaiano, Alessandro; Iaffaioli, Rosario Vincenzo; Izzo, Francesco; Romano, Giovanni; Giordano, Pasqualina; Signoriello, Simona; Gallo, Ciro; Perrone, Francesco

    2013-12-01

    Markers predictive of treatment effect might be useful to improve the treatment of patients with metastatic solid tumors. Particularly, early changes in tumor metabolism measured by PET/CT with (18)F-FDG could predict the efficacy of treatment better than standard dimensional Response Evaluation Criteria In Solid Tumors (RECIST) response. We performed PET/CT evaluation before and after 1 cycle of treatment in patients with resectable liver metastases from colorectal cancer, within a phase 2 trial of preoperative FOLFIRI plus bevacizumab. For each lesion, the maximum standardized uptake value (SUV) and the total lesion glycolysis (TLG) were determined. On the basis of previous studies, a ≤ -50% change from baseline was used as a threshold for significant metabolic response for maximum SUV and, exploratively, for TLG. Standard RECIST response was assessed with CT after 3 mo of treatment. Pathologic response was assessed in patients undergoing resection. The association between metabolic and CT/RECIST and pathologic response was tested with the McNemar test; the ability to predict progression-free survival (PFS) and overall survival (OS) was tested with the Log-rank test and a multivariable Cox model. Thirty-three patients were analyzed. After treatment, there was a notable decrease of all the parameters measured by PET/CT. Early metabolic PET/CT response (either SUV- or TLG-based) had a stronger, independent and statistically significant predictive value for PFS and OS than both CT/RECIST and pathologic response at multivariate analysis, although with different degrees of statistical significance. The predictive value of CT/RECIST response was not significant at multivariate analysis. PET/CT response was significantly predictive of long-term outcomes during preoperative treatment of patients with liver metastases from colorectal cancer, and its predictive ability was higher than that of CT/RECIST response after 3 mo of treatment. Such findings need to be confirmed

  10. [(18)F]FDG PET Neuroimaging Predicts Pentylenetetrazole (PTZ) Kindling Outcome in Rats.

    PubMed

    Bascuñana, Pablo; Javela, Julián; Delgado, Mercedes; Fernández de la Rosa, Rubén; Shiha, Ahmed Anis; García-García, Luis; Pozo, Miguel Ángel

    2016-10-01

    Epileptogenesis, i.e., development of epilepsy, involves a number of processes that alter the brain function in the way that triggers spontaneous seizures. Kindling is one of the most used animal models of temporal lobe epilepsy (TLE) and epileptogenesis, although chemical kindling suffers from high inter-assay success unpredictability. This study was aimed to analyze the eventual regional brain metabolic changes during epileptogenesis in the pentylenetetrazole (PTZ) kindling model in order to obtain a predictive kindling outcome parameter. In vivo longitudinal positron emission tomography (PET) scans with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) along the PTZ kindling protocol (35 mg/kg intraperitoneally (i.p.), 18 sessions) in adult male rats were performed in order to evaluate the regional brain metabolism. The half of the PTZ-injected rats reached the kindled state. In addition, a significant decrease of [(18)F]FDG uptake at the end of the protocol in most of the brain structures of kindled animals was found, reflecting the characteristic epilepsy-associated hypometabolism. However, PTZ-injected animals but not reaching the kindled state did not show this widespread brain hypometabolism. Retrospective analysis of the data revealed that hippocampal [(18)F]FDG uptake normalized to pons turned out to be a predictive index of the kindling outcome. Thus, a 19.06 % reduction (p = 0.008) of the above parameter was found in positively kindled rats compared to non-kindled ones just after the fifth PTZ session. Non-invasive PET neuroimaging was a useful tool for discerning epileptogenesis progression in this animal model. Particularly, the [(18)F]FDG uptake of the hippocampus proved to be an early predictive parameter to differentiate resistant and non-resistant animals to the PTZ kindling.

  11. FDG-PET/CT at the end of immuno-chemotherapy in follicular lymphoma: the prognostic role of the ratio between target lesion and liver SUVmax (rPET).

    PubMed

    Annunziata, Salvatore; Cuccaro, Annarosa; Tisi, Maria Chiara; Hohaus, Stefan; Rufini, Vittoria

    2018-06-01

    To retrospectively investigate the prognostic role of the ratio between target lesion and liver SUV max (rPET) in patients with follicular lymphoma (FL) submitted to FDG-PET/CT at the end of immuno-chemotherapy (PI-PET), and to compare rPET with International Harmonization Project criteria (IHP), Deauville Score (5p-DS) and FL International Prognostic Index at diagnosis (FLIPI). Eighty-nine patients with FL undergoing PI-PET were evaluated. The receiver operating characteristic (ROC) approach was applied to identify the optimal cut-point of rPET with respect to 5-years progression free survival (PFS). The prognostic significance of rPET was compared with IHP, DS and FLIPI. Positive predictive value (PPV) and negative predictive value (NPV) were calculated using the presence of adverse events as gold standard. The ROC analysis for rPET as predictor of progression showed an optimal rPET cut-point of 0.98. Patients with positive values of IHP, DS and rPET had a PFS of 50, 30 and 31%. PPV were of 56, 80 and 80%, NPV of 83, 86 and 88%, respectively. DS and rPET differed only in two patients. FLIPI was not predictive of progression and relapse. rPET is a prognostic factor in patients with FL submitted to PI-PET. Although it has a similar prognostic power as DS, it can have methodological advantages over visual analysis. PI-PET with different evaluation systems has a stronger prognostic power than FLIPI at diagnosis, so it could be useful to identify patients with FL at risk for early relapse after immuno-chemotherapy.

  12. Computerized method for automatic evaluation of lean body mass from PET/CT: comparison with predictive equations.

    PubMed

    Chan, Tao

    2012-01-01

    CT has become an established method for calculating body composition, but it requires data from the whole body, which are not typically obtained in routine PET/CT examinations. A computerized scheme that evaluates whole-body lean body mass (LBM) based on CT data from limited-whole-body coverage was developed. The LBM so obtained was compared with results from conventional predictive equations. LBM can be obtained automatically from limited-whole-body CT data by 3 means: quantification of body composition from CT images in the limited-whole-body scan, based on thresholding of CT attenuation; determination of the range of coverage based on a characteristic trend of changing composition across different levels and pattern recognition of specific features at strategic positions; and estimation of the LBM of the whole body on the basis of a predetermined relationship between proportion of fat mass and extent of coverage. This scheme was validated using 18 whole-body PET/CT examinations truncated at different lengths to emulate limited-whole-body data. LBM was also calculated using predictive equations that had been reported for use in SUV normalization. LBM derived from limited-whole-body data using the proposed method correlated strongly with LBM derived from whole-body CT data, with correlation coefficients ranging from 0.991 (shorter coverage) to 0.998 (longer coverage) and SEMs of LBM ranging from 0.14 to 0.33 kg. These were more accurate than results from different predictive equations, which ranged in correlation coefficient from 0.635 to 0.970 and in SEM from 0.64 to 2.40 kg. LBM of the whole body could be automatically estimated from CT data of limited-whole-body coverage typically acquired in PET/CT examinations. This estimation allows more accurate and consistent quantification of metabolic activity of tumors based on LBM-normalized standardized uptake value.

  13. Event-by-Event Continuous Respiratory Motion Correction for Dynamic PET Imaging.

    PubMed

    Yu, Yunhan; Chan, Chung; Ma, Tianyu; Liu, Yaqiang; Gallezot, Jean-Dominique; Naganawa, Mika; Kelada, Olivia J; Germino, Mary; Sinusas, Albert J; Carson, Richard E; Liu, Chi

    2016-07-01

    Existing respiratory motion-correction methods are applied only to static PET imaging. We have previously developed an event-by-event respiratory motion-correction method with correlations between internal organ motion and external respiratory signals (INTEX). This method is uniquely appropriate for dynamic imaging because it corrects motion for each time point. In this study, we applied INTEX to human dynamic PET studies with various tracers and investigated the impact on kinetic parameter estimation. The use of 3 tracers-a myocardial perfusion tracer, (82)Rb (n = 7); a pancreatic β-cell tracer, (18)F-FP(+)DTBZ (n = 4); and a tumor hypoxia tracer, (18)F-fluoromisonidazole ((18)F-FMISO) (n = 1)-was investigated in a study of 12 human subjects. Both rest and stress studies were performed for (82)Rb. The Anzai belt system was used to record respiratory motion. Three-dimensional internal organ motion in high temporal resolution was calculated by INTEX to guide event-by-event respiratory motion correction of target organs in each dynamic frame. Time-activity curves of regions of interest drawn based on end-expiration PET images were obtained. For (82)Rb studies, K1 was obtained with a 1-tissue model using a left-ventricle input function. Rest-stress myocardial blood flow (MBF) and coronary flow reserve (CFR) were determined. For (18)F-FP(+)DTBZ studies, the total volume of distribution was estimated with arterial input functions using the multilinear analysis 1 method. For the (18)F-FMISO study, the net uptake rate Ki was obtained with a 2-tissue irreversible model using a left-ventricle input function. All parameters were compared with the values derived without motion correction. With INTEX, K1 and MBF increased by 10% ± 12% and 15% ± 19%, respectively, for (82)Rb stress studies. CFR increased by 19% ± 21%. For studies with motion amplitudes greater than 8 mm (n = 3), K1, MBF, and CFR increased by 20% ± 12%, 30% ± 20%, and 34% ± 23%, respectively. For (82)Rb

  14. The predictive value of early behavioural assessments in pet dogs--a longitudinal study from neonates to adults.

    PubMed

    Riemer, Stefanie; Müller, Corsin; Virányi, Zsófia; Huber, Ludwig; Range, Friederike

    2014-01-01

    Studies on behavioural development in domestic dogs are of relevance for matching puppies with the right families, identifying predispositions for behavioural problems at an early stage, and predicting suitability for service dog work, police or military service. The literature is, however, inconsistent regarding the predictive value of tests performed during the socialisation period. Additionally, some practitioners use tests with neonates to complement later assessments for selecting puppies as working dogs, but these have not been validated. We here present longitudinal data on a cohort of Border collies, followed up from neonate age until adulthood. A neonate test was conducted with 99 Border collie puppies aged 2-10 days to assess activity, vocalisations when isolated and sucking force. At the age of 40-50 days, 134 puppies (including 93 tested as neonates) were tested in a puppy test at their breeders' homes. All dogs were adopted as pet dogs and 50 of them participated in a behavioural test at the age of 1.5 to 2 years with their owners. Linear mixed models found little correspondence between individuals' behaviour in the neonate, puppy and adult test. Exploratory activity was the only behaviour that was significantly correlated between the puppy and the adult test. We conclude that the predictive validity of early tests for predicting specific behavioural traits in adult pet dogs is limited.

  15. Respiration-Averaged CT for Attenuation Correction of PET Images – Impact on PET Texture Features in Non-Small Cell Lung Cancer Patients

    PubMed Central

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Tsan, Din-Li

    2016-01-01

    Purpose We compared attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal of investigating the impact of respiration-averaged CT on 18F FDG PET texture parameters. Materials and Methods A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images using the adaptive threshold. Twelve different texture parameters were computed: standard uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness, busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivariate Cox regression analyses were used to identify the parameters significantly associated with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45) was used for validation. Results SUV maximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. However, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of agreement. The lowest levels of variation between the two modalities were observed for SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical significance threshold. Conclusions Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the prediction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenuation correction methods. PMID:26930211

  16. SU-E-J-254: Evaluating the Role of Mid-Treatment and Post-Treatment FDG-PET/CT in Predicting Progression-Free Survival and Distant Metastasis of Anal Cancer Patients Treated with Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H; Wang, J; Chuong, M

    2015-06-15

    Purpose: To evaluate the role of mid-treatment and post-treatment FDG-PET/CT in predicting progression-free survival (PFS) and distant metastasis (DM) of anal cancer patients treated with chemoradiotherapy (CRT). Methods: 17 anal cancer patients treated with CRT were retrospectively studied. The median prescription dose was 56 Gy (range, 50–62.5 Gy). All patients underwent FDG-PET/CT scans before and after CRT. 16 of the 17 patients had an additional FDG-PET/CT image at 3–5 weeks into the treatment (denoted as mid-treatment FDG-PET/CT). 750 features were extracted from these three sets of scans, which included both traditional PET/CT measures (SUVmax, SUVpeak, tumor diameters, etc.) and spatialtemporalmore » PET/CT features (comprehensively quantify a tumor’s FDG uptake intensity and distribution, spatial variation (texture), geometric property and their temporal changes relative to baseline). 26 clinical parameters (age, gender, TNM stage, histology, GTV dose, etc.) were also analyzed. Advanced analytics including methods to select an optimal set of predictors and a model selection engine, which identifies the most accurate machine learning algorithm for predictive analysis was developed. Results: Comparing baseline + mid-treatment PET/CT set to baseline + posttreatment PET/CT set, 14 predictors were selected from each feature group. Same three clinical parameters (tumor size, T stage and whether 5-FU was held during any cycle of chemotherapy) and two traditional measures (pre- CRT SUVmin and SUVmedian) were selected by both predictor groups. Different mix of spatial-temporal PET/CT features was selected. Using the 14 predictors and Naive Bayes, mid-treatment PET/CT set achieved 87.5% accuracy (2 PFS patients misclassified, all local recurrence and DM patients correctly classified). Post-treatment PET/CT set achieved 94.0% accuracy (all PFS and DM patients correctly predicted, 1 local recurrence patient misclassified) with logistic regression, neural

  17. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation.

    PubMed

    Christiansen, Charlotte Dahl; Petersen, Henrik; Nielsen, Anne Lerberg; Detlefsen, Sönke; Brusgaard, Klaus; Rasmussen, Lars; Melikyan, Maria; Ekström, Klas; Globa, Evgenia; Rasmussen, Annett Helleskov; Hovendal, Claus; Christesen, Henrik Thybo

    2018-02-01

    Focal congenital hyperinsulinism (CHI) is curable by surgery, which is why identification of the focal lesion is crucial. We aimed to determine the use of 18F-fluoro-dihydroxyphenylalanine (18F-DOPA) PET/CT vs. 68Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic-acid-1-Nal3-octreotide (68Ga-DOTANOC) PET/CT as diagnostic tools in focal CHI. PET/CT scans of children with CHI admitted to Odense University Hospital between August 2005 and June 2016 were retrospectively evaluated visually and by their maximal standardized uptake values (SUV max ) by two independent examiners, blinded for clinical, surgical and pathological data. Pancreatic histology was used as the gold standard. For patients without surgery, the genetic profile served as the gold standard. Fifty-five CHI patients were examined by PET/CT (18F-DOPA n = 53, 68Ga-DOTANOC n = 18). Surgery was performed in 34 patients, no surgery in 21 patients. Fifty-one patients had a classifiable outcome, either by histology (n = 33, 22 focal lesions, 11 non-focal) or by genetics (n = 18, all non-focal). The predictive performance of 18F-DOPA PET/CT to identify focal CHI was identical by visual- and cut-off-based evaluation: sensitivity (95% CI) of 1 (0.85-1); specificity of 0.96 (0.82-0.99). The optimal 18F-DOPA PET SUV max ratio cut-off was 1.44 and the optimal 68Ga-DOTANOC PET SUV max cut-off was 6.77 g/ml. The area under the receiver operating curve was 0.98 (0.93-1) for 18F-DOPA PET vs. 0.71 (0.43-0.95) for 68Ga-DOTANOC PET (p < 0.03). In patients subjected to surgery, localization of the focal lesion was correct in 91%, and 100%, by 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT, respectively. 18F-DOPA PET/CT was excellent in predicting focal CHI and superior compared to 68Ga-DOTANOC PET/CT. Further use of 68GA-DOTANOC PET/CT in predicting focal CHI is discouraged.

  18. A novel metric for quantification of homogeneous and heterogeneous tumors in PET for enhanced clinical outcome prediction

    NASA Astrophysics Data System (ADS)

    Rahmim, Arman; Schmidtlein, C. Ross; Jackson, Andrew; Sheikhbahaei, Sara; Marcus, Charles; Ashrafinia, Saeed; Soltani, Madjid; Subramaniam, Rathan M.

    2016-01-01

    Oncologic PET images provide valuable information that can enable enhanced prognosis of disease. Nonetheless, such information is simplified significantly in routine clinical assessment to meet workflow constraints. Examples of typical FDG PET metrics include: (i) SUVmax, (2) total lesion glycolysis (TLG), and (3) metabolic tumor volume (MTV). We have derived and implemented a novel metric for tumor quantification, inspired in essence by a model of generalized equivalent uniform dose as used in radiation therapy. The proposed metric, denoted generalized effective total uptake (gETU), is attractive as it encompasses the abovementioned commonly invoked metrics, and generalizes them, for both homogeneous and heterogeneous tumors, using a single parameter a. We evaluated this new metric for improved overall survival (OS) prediction on two different baseline FDG PET/CT datasets: (a) 113 patients with squamous cell cancer of the oropharynx, and (b) 72 patients with locally advanced pancreatic adenocarcinoma. Kaplan-Meier survival analysis was performed, where the subjects were subdivided into two groups using the median threshold, from which the hazard ratios (HR) were computed in Cox proportional hazards regression. For the oropharyngeal cancer dataset, MTV, TLG, SUVmax, SUVmean and SUVpeak produced HR values of 1.86, 3.02, 1.34, 1.36 and 1.62, while the proposed gETU metric for a  = 0.25 (greater emphasis on volume information) enabled significantly enhanced OS prediction with HR  =  3.94. For the pancreatic cancer dataset, MTV, TLG, SUVmax, SUVmean and SUVpeak resulted in HR values of 1.05, 1.25, 1.42, 1.45 and 1.52, while gETU at a  = 3.2 (greater emphasis on SUV information) arrived at an improved HR value of 1.61. Overall, the proposed methodology allows placement of differing degrees of emphasis on tumor volume versus uptake for different types of tumors to enable enhanced clinical outcome prediction.

  19. Assessing the role of 18F-FDG PET and 18F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies – A systematic review and meta-analysis

    PubMed Central

    Etchebehere, Elba C.; Hobbs, Brian P.; R.Milton, Denái; Malawi, Osama; Patel, Shreyaskumar; Benjamin, Robert S.; Macapinlac, Homer A.

    2016-01-01

    Purpose Twelve years ago a meta-analysis evaluated the diagnostic performance of 18F-FDG PET in assessing musculoskeletal soft tissue lesions (MsSTL). Currently, PET/CT has substituted PET imaging however there has not been any published meta-analysis on the use of PET/CT or a comparison of PET/CT with PET in the diagnosis of MsSTL. Therefore, we conducted a meta-analysis to identify the current diagnostic performance of 18F-FDG PET/CT and determine if there is added value when compared to PET. Patients and Methods A systematic review of English articles using MEDLINE PubMed, the Cochrane Library and EMBASE were searched from 1996 to March 2015. Studies exploring the diagnostic accuracy of 18F-FDG PET/CT (or dedicated PET) compared to histopathology in patients with MsSTL undergoing investigation for malignancy were included. Results Our meta-analysis included 14 articles composed of 755 patients with 757 soft tissue lesions. There were 451 (60%) malignant tumors and 306 benign lesions. The 18F-FDG PET/CT (and dedicated PET) mean sensitivity, specificity, accuracy, positive and negative predictive values for diagnosing MsSTL was 0.96 (0.90, 1.00), 0.77 (0.67, 0.86), 0.88 (0.85, 0.91), 0.86 (0.78, 0.94) and 0.91 (0.83, 0.99), respectively. The posterior mean (95% HPD interval) for the AUC was 0.92 (0.88, 0.96). PET/CT had higher specificity, accuracy and positive predictive value when compared to a dedicated PET (0.85, 0.89 and 0.91 vs 0.71, 0.85 and 0.82, respectively). Conclusions 18F-FDG PET/CT and dedicated PET are both highly accurate in the diagnosis of MsSTL. PET/CT is more accurate, specific and has a higher positive predictive value than PET. PMID:26631240

  20. 18F-FDG PET/CT in Detecting Metastatic Infection in Children.

    PubMed

    Kouijzer, Ilse J E; Blokhuis, Gijsbert J; Draaisma, Jos M T; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Bleeker-Rovers, Chantal P

    2016-04-01

    Metastatic infection is a severe complication of bacteremia with high morbidity and mortality. The aim of this study was to investigate the diagnostic value of 18F-FDG PET combined with CT (FDG PET/CT) in children suspected of having metastatic infection. The results of FDG PET/CT scans performed in children because of suspected metastatic infection from September 2003 to June 2013 were analyzed retrospectively. The results were compared with the final clinical diagnosis. FDG PET/CT was performed in 13 children with suspected metastatic infection. Of the total number of FDG PET/CT scans, 38% were clinically helpful. Positive predictive value of FDG PET/CT was 71%, and negative predictive value was 100%. FDG PET/CT appears to be a valuable diagnostic technique in children with suspected metastatic infection. Prospective studies of FDG PET/CT as part of a structured diagnostic protocol are needed to assess the exact additional diagnostic value.

  1. Spatial-Temporal [{sup 18}F]FDG-PET Features for Predicting Pathologic Response of Esophageal Cancer to Neoadjuvant Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shan; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan; Kligerman, Seth

    2013-04-01

    Purpose: To extract and study comprehensive spatial-temporal {sup 18}F-labeled fluorodeoxyglucose ([{sup 18}F]FDG) positron emission tomography (PET) features for the prediction of pathologic tumor response to neoadjuvant chemoradiation therapy (CRT) in esophageal cancer. Methods and Materials: Twenty patients with esophageal cancer were treated with trimodal therapy (CRT plus surgery) and underwent [{sup 18}F]FDG-PET/CT scans both before (pre-CRT) and after (post-CRT) CRT. The 2 scans were rigidly registered. A tumor volume was semiautomatically delineated using a threshold standardized uptake value (SUV) of ≥2.5, followed by manual editing. Comprehensive features were extracted to characterize SUV intensity distribution, spatial patterns (texture), tumor geometry, andmore » associated changes resulting from CRT. The usefulness of each feature in predicting pathologic tumor response to CRT was evaluated using the area under the receiver operating characteristic curve (AUC) value. Results: The best traditional response measure was decline in maximum SUV (SUV{sub max}; AUC, 0.76). Two new intensity features, decline in mean SUV (SUV{sub mean}) and skewness, and 3 texture features (inertia, correlation, and cluster prominence) were found to be significant predictors with AUC values ≥0.76. According to these features, a tumor was more likely to be a responder when the SUV{sub mean} decline was larger, when there were relatively fewer voxels with higher SUV values pre-CRT, or when [{sup 18}F]FDG uptake post-CRT was relatively homogeneous. All of the most accurate predictive features were extracted from the entire tumor rather than from the most active part of the tumor. For SUV intensity features and tumor size features, changes were more predictive than pre- or post-CRT assessment alone. Conclusion: Spatial-temporal [{sup 18}F]FDG-PET features were found to be useful predictors of pathologic tumor response to neoadjuvant CRT in esophageal cancer.« less

  2. Absolute number of new lesions on 18F-FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab.

    PubMed

    Anwar, Hoda; Sachpekidis, Christos; Winkler, Julia; Kopp-Schneider, Annette; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-03-01

    Evaluation of response to immunotherapy is a matter of debate. The aim of the present study was to evaluate the response of metastatic melanoma to treatment with ipilimumab by means of 18 F-FDG PET/CT, using the patients' clinical response as reference. The final cohort included in the analyses consisted of 41 patients with metastatic melanoma who underwent 18 F-FDG PET/CT before and after administration of ipilimumab. After determination of the best clinical response, the PET/CT scans were reviewed and a separate independent analysis was performed, based on the number and functional size of newly emerged 18 F-FDG-avid lesions, as well as on the SUV changes after therapy. The median observation time of the patients after therapy was 21.4 months (range 6.3-41.9 months). Based on their clinical response, patients were dichotomized into those with clinical benefit (CB) and those without CB (No-CB). The CB group (31 patients) included those with stable disease, partial remission and complete remission, and the No-CB group (10 patients) included those with progressive disease. The application of a threshold of four newly emerged 18 F-FDG-avid lesions on the posttherapy PET/CT scan led to a sensitivity (correctly predicting CB) of 84% and a specificity (correctly predicting No-CB) of 100%. This cut-off was lower for lesions with larger functional diameters (three new lesions larger than 1.0 cm and two new lesions larger than 1.5 cm). SUV changes after therapy did not correlate with clinical response. Based on these findings, we developed criteria for predicting clinical response to immunotherapy by means of 18 F-FDG PET/CT (PET Response Evaluation Criteria for Immunotherapy, PERCIMT). Our results show that a cut-off of four newly emerged 18 F-FDG-avid lesions on posttherapy PET/CT gives a reliable indication of treatment failure in patients under ipilimumab treatment. Moreover, the functional size of the new lesions plays an important role in predicting the clinical

  3. The predictive value of FDG-PET with 3D-SSP for surgical outcomes in patients with temporal lobe epilepsy.

    PubMed

    Higo, Takuma; Sugano, Hidenori; Nakajima, Madoka; Karagiozov, Kostadin; Iimura, Yasushi; Suzuki, Masaru; Sato, Kiyoshi; Arai, Hajime

    2016-10-01

    We retrospectively evaluated the diagnostic value of (18)F-2-fluorodeoxy-d-glucose positron emission tomography (FDG-PET) with statistical analysis for the foci detection and predictive utility for postsurgical seizure outcome of patients with mesial temporal lobe epilepsy (mTLE). We evaluated 40 patients who were diagnosed mTLE and underwent selective amygdalohippocampectomy (SAH) or anterior temporal lobectomy (ATL) in our institute. Preoperative interictal FDG-PET with statistical analysis using three-dimensional stereotactic surface projection (3D-SSP) was detected with several clinical data including seizure semiology, MRI, scalp electroencephalography, surgical procedure with SAH or ATL and postsurgical outcome. The region of interest (ROI) was defined on 'Hippocampus & Amygdala', 'Parahippocampal gyrus & Uncus', 'T1 & T2', and 'T3 & Fusiform gyrus'. We obtained the ratio of hypometabolism difference (RHD) by 3D-SSP, and evaluated the relation among hypometabolic extent, surgical outcome and surgical procedure. The RHD in each ROIs ipsilateral to operative side was significantly higher than that of contralateral side in good outcome group. Hypometabolism of 'Hippocampus & Amygdala' was most reliable prognostic factor. Patients of discordant with presurgical examinations hardly showed obvious lateralized hypometabolism. Nevertheless, when they have significantly high RHD in mesial temporal lobe, good surgical outcome was expected. There was not significant difference of RHD distribution between SAH and ATL in good outcome group. Significant hypometabolism in mesial temporal lobe on FDG-PET with 3D-SSP is useful to predict good surgical outcome for patients with mTLE, particularly in discordant patients with hypometabolism in mesial temporal structure. However, FDG-PET is not indicative of surgical procedure. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. The Predictive Value of Early Behavioural Assessments in Pet Dogs – A Longitudinal Study from Neonates to Adults

    PubMed Central

    Riemer, Stefanie; Müller, Corsin; Virányi, Zsófia; Huber, Ludwig; Range, Friederike

    2014-01-01

    Studies on behavioural development in domestic dogs are of relevance for matching puppies with the right families, identifying predispositions for behavioural problems at an early stage, and predicting suitability for service dog work, police or military service. The literature is, however, inconsistent regarding the predictive value of tests performed during the socialisation period. Additionally, some practitioners use tests with neonates to complement later assessments for selecting puppies as working dogs, but these have not been validated. We here present longitudinal data on a cohort of Border collies, followed up from neonate age until adulthood. A neonate test was conducted with 99 Border collie puppies aged 2–10 days to assess activity, vocalisations when isolated and sucking force. At the age of 40–50 days, 134 puppies (including 93 tested as neonates) were tested in a puppy test at their breeders' homes. All dogs were adopted as pet dogs and 50 of them participated in a behavioural test at the age of 1.5 to 2 years with their owners. Linear mixed models found little correspondence between individuals' behaviour in the neonate, puppy and adult test. Exploratory activity was the only behaviour that was significantly correlated between the puppy and the adult test. We conclude that the predictive validity of early tests for predicting specific behavioural traits in adult pet dogs is limited. PMID:25003341

  5. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy.

    PubMed

    Lucia, François; Visvikis, Dimitris; Desseroit, Marie-Charlotte; Miranda, Omar; Malhaire, Jean-Pierre; Robin, Philippe; Pradier, Olivier; Hatt, Mathieu; Schick, Ulrike

    2018-05-01

    The aim of this study is to determine if radiomics features from 18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) images could contribute to prognoses in cervical cancer. One hundred and two patients (69 for training and 33 for testing) with locally advanced cervical cancer (LACC) receiving chemoradiotherapy (CRT) from 08/2010 to 12/2016 were enrolled in this study. 18 F-FDG PET/CT and MRI examination [T1, T2, T1C, diffusion-weighted imaging (DWI)] were performed for each patient before CRT. Primary tumor volumes were delineated with the fuzzy locally adaptive Bayesian algorithm in the PET images and with 3D Slicer™ in the MRI images. Radiomics features (intensity, shape, and texture) were extracted and their prognostic value was compared with clinical parameters for recurrence-free and locoregional control. In the training cohort, median follow-up was 3.0 years (range, 0.43-6.56 years) and relapse occurred in 36% of patients. In univariate analysis, FIGO stage (I-II vs. III-IV) and metabolic response (complete vs. non-complete) were probably associated with outcome without reaching statistical significance, contrary to several radiomics features from both PET and MRI sequences. Multivariate analysis in training test identified Grey Level Non Uniformity GLRLM in PET and Entropy GLCM in ADC maps from DWI MRI as independent prognostic factors. These had significantly higher prognostic power than clinical parameters, as evaluated in the testing cohort with accuracy of 94% for predicting recurrence and 100% for predicting lack of loco-regional control (versus ~50-60% for clinical parameters). In LACC treated with CRT, radiomics features such as EntropyGLCM and GLNUGLRLM from functional imaging DWI-MRI and PET, respectively, are independent predictors of recurrence and loco-regional control with significantly higher prognostic power than usual clinical parameters. Further research is warranted

  6. Childhood pet ownership, attachment to pets, and subsequent meat avoidance. The mediating role of empathy toward animals.

    PubMed

    Rothgerber, Hank; Mican, Frances

    2014-08-01

    Researchers studying childhood pet ownership outcomes do not typically focus on measures of adult diet, and those studying the psychology of meat consumption do not normally consider early experiences with companion animals. The present research sought to integrate these two areas by examining relationships between childhood pet ownership, pet attachment, empathy toward animals, belief in human-animal similarity, meat avoidance, and justifications for eating meat. Results from 273 individuals responding to a survey on an internet platform revealed that participants with greater childhood attachment to a pet reported greater meat avoidance as adults, an effect that disappeared when controlling for animal empathy. Greater childhood pet attachment was also related to the use of indirect, apologetic justifications for meat consumption, and this effect too, was mediated by empathy toward animals. Child pet ownership itself predicted views toward animals but not dietary behavior or meat-eating justifications. The authors propose a sequence of events by which greater childhood pet attachment leads to increased meat avoidance, focusing on the central role played by empathy toward animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer

    PubMed Central

    McKinley, Eliot T.; Bugaj, Joseph E.; Zhao, Ping; Guleryuz, Saffet; Mantis, Christine; Gokhale, Prafulla C.; Wild, Robert; Manning, H. Charles

    2011-01-01

    Purpose To evaluate 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging (18FDG-PET) as a predictive, non-invasive, pharmacodynamic (PD) biomarker of response following administration of a small-molecule IGF-1R/IR inhibitor, OSI-906. Experimental Design In vitro uptake studies of 3H-2-deoxy glucose following OSI-906 exposure were performed evaluating correlation of dose with inhibition of IGF-1R/IR as well as markers of downstream pathways and glucose metabolism. Similarly, in vivo PD effects were evaluated in human tumor cell line xenografts propagated in athymic nude mice by 18FDG-PET at 2, 4, and 24 hours following a single treatment of OSI-906 for the correlation of inhibition of receptor targets and downstream markers. Results Uptake of 3H-2-deoxy glucose and 18FDG was significantly diminished following OSI-906 exposure in sensitive tumor cells and subcutaneous xenografts (NCIH292) but not in an insensitive model lacking IGF-1R expression (NCI-H441). Diminished pharmacodynamic 18FDG-PET collected immediately following the initial treatment agreed with inhibition of pIGF-1R/pIR, reduced PI3K and MAPK pathway activity, and predicted tumor growth arrest as measured by high-resolution ultrasound imaging. Conclusion 18FDG-PET appears to serve as a rapid, non-invasive, PD marker of IGF-1R/IR inhibition following a single dose of OSI-906 and should be explored clinically as a predictive clinical biomarker in patients undergoing IGF-1R/IR-directed cancer therapy. PMID:21257723

  8. Monitoring early response to chemoradiotherapy with 18F-FMISO dynamic PET in head and neck cancer.

    PubMed

    Grkovski, Milan; Lee, Nancy Y; Schöder, Heiko; Carlin, Sean D; Beattie, Bradley J; Riaz, Nadeem; Leeman, Jonathan E; O'Donoghue, Joseph A; Humm, John L

    2017-09-01

    There is growing recognition that biologic features of the tumor microenvironment affect the response to cancer therapies and the outcome of cancer patients. In head and neck cancer (HNC) one such feature is hypoxia. We investigated the utility of 18 F-fluoromisonidazole (FMISO) dynamic positron emission tomography (dPET) for monitoring the early microenvironmental response to chemoradiotherapy in HNC. Seventy-two HNC patients underwent FMISO dPET scans in a customized immobilization mask (0-30 min dynamic acquisition, followed by 10 min static acquisitions starting at ∼95 min and ∼160 min post-injection) at baseline and early into treatment where patients have already received one cycle of chemotherapy and anywhere from five to ten fractions of 2 Gy per fraction radiation therapy. Voxelwise pharmacokinetic modeling was conducted using an irreversible one-plasma two-tissue compartment model to calculate surrogate biomarkers of tumor hypoxia (k 3 and Tumor-to-Blood Ratio (TBR)), perfusion (K 1 ) and FMISO distribution volume (DV). Additionally, Tumor-to-Muscle Ratios (TMR) were derived by visual inspection by an experienced nuclear medicine physician, with TMR > 1.2 defining hypoxia. One hundred and thirty-five lesions in total were analyzed. TBR, k 3 and DV decreased on early response scans, while no significant change was observed for K 1 . The k 3 -TBR correlation decreased substantially from baseline scans (Pearson's r = 0.72 and 0.76 for mean intratumor and pooled voxelwise values, respectively) to early response scans (Pearson's r = 0.39 and 0.40, respectively). Both concordant and discordant examples of changes in intratumor k 3 and TBR were identified; the latter partially mediated by the change in DV. In 13 normoxic patients according to visual analysis (all having lesions with TMR = 1.2), subvolumes were identified where k 3 indicated the presence of hypoxia. Pharmacokinetic modeling of FMISO dynamic PET reveals a more detailed

  9. Potential clinical value of PET/CT in predicting occult nodal metastasis in T1-T2N0M0 lung cancer patients staged by PET/CT

    PubMed Central

    Zhou, Xiang; Chen, Ruohua; Huang, Gang; Liu, Jianjun

    2017-01-01

    We assessed the clinical value of 2-fluoro-2-deoxyglucose (18F-FDG) PET/CT imaging for predicting occult nodal metastasis in non-small cell lung cancer (NSCLC) patients. This retrospective study included 54 patients with T1-2N0M0 NSCLC who had undergone 18F-FDG PET/CT before surgery. Occult nodal metastasis was detected in 25.9% (14/54) of the patients. Immunohistochemical analysis revealed that increased glucose transporter 1 expression was associated with occult nodal metastasis, but hexokinase 2 expression was not. Compared to the negative nodal metastasis group, the positive nodal metastasis group was associated with increased maximum standardized uptake value (SUVmax) and tumor size. Multivariate analysis indicated that SUVmax and tumor size were associated with nodal metastasis. Nodal metastasis could be predicted with a sensitivity of 92.9% and a specificity of 55.0% when the SUVmax cutoff was 4.35. When patients were divided into low-risk (tumor size ≤ 2.5 cm and SUVmax ≤ 4.35), moderate-risk (tumor size ≤ 2.5 cm and SUVmax > 4.35 or tumor size > 2.5 cm and SUVmax ≤ 4.35) and high-risk (tumor size > 2.5 cm and SUVmax > 4.35) groups, the lymph node metastasis rates were 4.3%, 22.7%, and 88.9%, respectively. These results indicate that the combination of SUVmax and tumor size has potential clinical value for predicting occult nodal metastasis in NSCLC patients. PMID:29137276

  10. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma.

    PubMed

    Pinilla, I; Gómez-León, N; Del Campo-Del Val, L; Hernandez-Maraver, D; Rodríguez-Vigil, B; Jover-Díaz, R; Coya, J

    2011-10-01

    The aim of this paper was to compare the accuracy of contrast-enhanced computed tomography (CT), positron emission tomography (PET), unenhanced low-dose PET/CT (LD-PET/CT) and full-dose enhanced PET/CT (FD-PET/CT) for the initial staging of lymphoma. One hundred and one lymphoma patients were examined by [18F]FDG-PET/CT including unenhanced low-dose CT and enhanced full-dose CT. Each modality of PET/CT was evaluated by a nuclear medicine physician and a radiologist unaware of the other modality, while the CT and PET images were interpreted separately by another independent radiologist and nuclear medicine physician respectively. The nodal and extranodal lesions detected by each technique were compared with a reference standard. For nodal assessment, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), and negative LR (LR-) of LD-PET/CT were 97%, 96%, 98%, 95%, 26 and 0.02 respectively, and those of FD-PET/CT were 97%, 97%, 98%, 95%, 36 and 0.02. These results were significantly better than those of PET (sensitivity 82%, specificity 81%, PPV 88%, NPV 72%, LR+ 4.3, LR- 0.21). Likewise, both PET/CT displayed a higher sensitivity, NPV and LR- than CT (91%, 84%, 0.1 respectively). For organ evaluation, both modalities of PET/CT also had significantly better sensitivity and NPV than that of PET (LD-PET/CT: sensitivity 92%, NPV 90%; FD-PET/CT sensitivity 94%, NPV 92%; PET: sensitivity 70%, NPV 69%). The sensitivity, specificity, PPV and NPV for bone marrow involvement were 29%, 84%, 45% and 72% respectively for PET, and 29%, 90%, 56%, and 74% for both, LD-PET/CT, and FD-PET/CT. No significant differences were found between LD-PET/CT and FD-PET/CT, but FD-PET/CT detected important incidental findings in 5.9% of patients. PET/CT is an accurate technique for the initial staging of lymphomas without significant differences between LD-PET/CT and FD-PET/CT. FD-PET/CT detects relevant incidental findings

  11. SU-D-201-02: Prediction of Delivered Dose Based On a Joint Histogram of CT and FDG PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Choi, Y; Cho, A

    2015-06-15

    Purpose: To investigate whether pre-treatment images can be used in predicting microsphere distribution in tumors. When intra-arterial radioembolization using Y90 microspheres was performed, the microspheres were often delivered non-uniformly within the tumor, which could lead to an inefficient therapy. Therefore, it is important to estimate the distribution of microspheres. Methods: Early arterial phase CT and FDG PET images were acquired for patients with primary liver cancer prior to radioembolization (RE) using Y90 microspheres. Tumor volume was delineated on CT images and fused with FDG PET images. From each voxel (3.9×3.9×3.3 mm3) in the tumor, the Hounsfield unit (HU) from themore » CT and SUV values from the FDG PET were harvested. We binned both HU and SUV into 11 bins and then calculated a normalized joint-histogram in an 11×11 array.Patients also underwent a post-treatment Y90 PET imaging. Radiation dose for the tumor was estimated using convolution of the Y90 distribution with a dose-point kernel. We also calculated a fraction of the tumor volume that received a radiation dose great than 100Gy. Results: Averaged over 40 patients, 55% of tumor volume received a dose greater than 100Gy (range : 1.1 – 100%). The width of the joint histogram was narrower for patients with a high dose. For patients with a low dose, the width was wider and a larger fraction of tumor volume had low HU. Conclusion: We have shown the pattern of joint histogram of the HU and SUV depends on delivered dose. The patterns can predict the efficacy of uniform intra-arterial delivery of Y90 microspheres.« less

  12. Enhancement of multimodality texture-based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept

    NASA Astrophysics Data System (ADS)

    Vallières, Martin; Laberge, Sébastien; Diamant, André; El Naqa, Issam

    2017-11-01

    Texture-based radiomic models constructed from medical images have the potential to support cancer treatment management via personalized assessment of tumour aggressiveness. While the identification of stable texture features under varying imaging settings is crucial for the translation of radiomics analysis into routine clinical practice, we hypothesize in this work that a complementary optimization of image acquisition parameters prior to texture feature extraction could enhance the predictive performance of texture-based radiomic models. As a proof of concept, we evaluated the possibility of enhancing a model constructed for the early prediction of lung metastases in soft-tissue sarcomas by optimizing PET and MR image acquisition protocols via computerized simulations of image acquisitions with varying parameters. Simulated PET images from 30 STS patients were acquired by varying the extent of axial data combined per slice (‘span’). Simulated T 1-weighted and T 2-weighted MR images were acquired by varying the repetition time and echo time in a spin-echo pulse sequence, respectively. We analyzed the impact of the variations of PET and MR image acquisition parameters on individual textures, and we investigated how these variations could enhance the global response and the predictive properties of a texture-based model. Our results suggest that it is feasible to identify an optimal set of image acquisition parameters to improve prediction performance. The model constructed with textures extracted from simulated images acquired with a standard clinical set of acquisition parameters reached an average AUC of 0.84 +/- 0.01 in bootstrap testing experiments. In comparison, the model performance significantly increased using an optimal set of image acquisition parameters (p = 0.04 ), with an average AUC of 0.89 +/- 0.01 . Ultimately, specific acquisition protocols optimized to generate superior radiomics measurements for a given clinical problem could be developed

  13. Diffuse Large B-Cell Lymphoma: Prospective Multicenter Comparison of Early Interim FLT PET/CT versus FDG PET/CT with IHP, EORTC, Deauville, and PERCIST Criteria for Early Therapeutic Monitoring

    PubMed Central

    Minamimoto, Ryogo; Fayad, Luis; Advani, Ranjana; Vose, Julie; Macapinlac, Homer; Meza, Jane; Hankins, Jordan; Mottaghy, Felix; Juweid, Malik

    2016-01-01

    Purpose To compare the performance characteristics of interim fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) (after two cycles of chemotherapy) by using the most prominent standardized interpretive criteria (including International Harmonization Project [IHP] criteria, European Organization for Research and Treatment of Cancer [EORTC] criteria, and PET Response Criteria in Solid Tumors (PERCIST) versus those of interim 18F fluorothymidine (FLT) PET/CT and simple visual interpretation. Materials and Methods This HIPAA-compliant prospective study was approved by the institutional review boards, and written informed consent was obtained. Patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) underwent both FLT and FDG PET/CT 18–24 days after two cycles of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone or rituximab, etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin. For FDG PET/CT interpretation, IHP criteria, EORTC criteria, PERCIST, Deauville criteria, standardized uptake value, total lesion glycolysis, and metabolic tumor volume were used. FLT PET/CT images were interpreted with visual assessment by two reviewers in consensus. The interim (after cycle 2) FDG and FLT PET/CT studies were then compared with the end-of-treatment FDG PET/CT studies to determine which interim examination and/or criteria best predicted the result after six cycles of chemotherapy. Results From November 2011 to May 2014, there were 60 potential patients for inclusion, of whom 46 patients (24 men [mean age, 60.9 years ± 13.7; range, 28–78 years] and 22 women [mean age, 57.2 years ± 13.4; range, 25–76 years]) fulfilled the criteria. Thirty-four patients had complete response, and 12 had residual disease at the end of treatment. FLT PET/CT had a significantly higher positive predictive value (PPV) (91%) in predicting residual disease than did any FDG PET/CT interpretation

  14. Role of attachment in response to pet loss.

    PubMed

    Field, Nigel P; Orsini, Lisa; Gavish, Roni; Packman, Wendy

    2009-04-01

    This study examined the impact of attachment on grief severity following the death of a pet. Seventy-one participants who had lost a dog or cat within the past year completed a set of measures that included an attachment measure assessing individual differences in attachment anxiety and avoidance, strength of the past attachment to the pet, the continuing bond with the deceased pet, social support, and complicated grief symptoms. Attachment anxiety and strength of the past attachment to the pet were each uniquely predictive of more severe grief. Furthermore, the continuing bond to the deceased pet partially mediated the impact of strength of the past attachment to the pet on grief severity. No significant mediators of the effect of attachment anxiety on grief were found, however. The results highlight the importance of distinguishing strength of attachment from attachment security in examining the effect of attachment on response to pet loss.

  15. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer.

    PubMed

    McKinley, Eliot T; Bugaj, Joseph E; Zhao, Ping; Guleryuz, Saffet; Mantis, Christine; Gokhale, Prafulla C; Wild, Robert; Manning, H Charles

    2011-05-15

    To evaluate 2-deoxy-2-[(18)F]fluoro-d-glucose positron emission tomography imaging ((18)FDG-PET) as a predictive, noninvasive, pharmacodynamic (PD) biomarker of response following administration of a small-molecule insulin-like growth factor-1 receptor and insulin receptor (IGF-1R/IR) inhibitor, OSI-906. In vitro uptake studies of (3)H-2-deoxy glucose following OSI-906 exposure were conducted evaluating correlation of dose with inhibition of IGF-1R/IR as well as markers of downstream pathways and glucose metabolism. Similarly, in vivo PD effects were evaluated in human tumor cell line xenografts propagated in athymic nude mice by (18)FDG-PET at 2, 4, and 24 hours following a single treatment of OSI-906 for the correlation of inhibition of receptor targets and downstream markers. Uptake of (3)H-2-deoxy glucose and (18)FDG was significantly diminished following OSI-906 exposure in sensitive tumor cells and subcutaneous xenografts (NCI-H292) but not in an insensitive model lacking IGF-1R expression (NCI-H441). Diminished PD (18)FDG-PET, collected immediately following the initial treatment agreed with inhibition of pIGF-1R/pIR, reduced PI3K (phosphoinositide 3-kinase) and MAPK (mitogen activated protein kinase) pathway activity, and predicted tumor growth arrest as measured by high-resolution ultrasound imaging. (18)FDG-PET seems to serve as a rapid, noninvasive PD marker of IGF-1R/IR inhibition following a single dose of OSI-906 and should be explored clinically as a predictive clinical biomarker in patients undergoing IGF-1R/IR-directed cancer therapy. ©2011 AACR.

  16. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    PubMed

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  17. FDG-PET metabolic response predicts outcomes in anal cancer managed with chemoradiotherapy.

    PubMed

    Day, F L; Link, E; Ngan, S; Leong, T; Moodie, K; Lynch, C; Michael, M; Winton, E de; Hogg, A; Hicks, R J; Heriot, A

    2011-08-09

    The aim was to investigate the correlation between (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) metabolic response to chemoradiotherapy and clinical outcomes in squamous cell carcinoma (SCC) of the anus. A total of 48 patients with biopsy-proven anal SCC underwent FDG-PET scans at baseline and post chemoradiotherapy (54 Gy, concurrent 5-FU/mitomycin). Kaplan-Meier analysis was used to determine survival outcomes according to FDG-PET metabolic response. In all, 79% patients (n=38) had a complete metabolic response (CMR) at all sites of disease, 15% (n=7) had a CMR in regional nodes but only partial response in the primary tumour (overall partial metabolic response (PMR)) and 6% (n=3) had progressive distant disease despite CMR locoregionally (overall no response (NR)). The 2-year progression-free survival (PFS) was 95% for patients with a CMR, 71% for PMR and 0% for NR (P<0.0001). The 5-year overall survival (OS) was 88% in CMR, 69% in PMR and 0% in NR (P<0.0001). Cox proportional hazards regression analyses for PFS and OS found significant associations for incomplete (PMR+NR) vs complete FDG-PET response to treatment only, (HR 4.1 (95% CI: 1.5-11.5, P=0.013) and 6.7 (95% CI: 2.1-21.6, P=0.002), respectively). FDG-PET metabolic response to chemoradiotherapy in anal cancer is significantly associated with PFS and OS, and in this cohort incomplete FDG-PET response was a stronger predictor than T or N stage.

  18. Fluorine-18-fluorocholine PET/CT parameters predictive for hematological toxicity to radium-223 therapy in castrate-resistant prostate cancer patients with bone metastases: a pilot study.

    PubMed

    Vija Racaru, Lavinia; Sinigaglia, Mathieu; Kanoun, Salim; Ben Bouallègue, Fayçal; Tal, Ilan; Brillouet, Sévérine; Bauriaud-Mallet, Mathilde; Zerdoud, Slimane; Dierickx, Lawrence; Vallot, Delphine; Caselles, Olivier; Gabiache, Erwan; Pascal, Pierre; Courbon, Frederic

    2018-05-21

    This study aims to predict hematological toxicity induced by Ra therapy. We investigated the value of metabolically active bone tumor volume (MBTV) and total bone lesion activity (TLA) calculated on pretreatment fluorine-18-fluorocholine (F-FCH) PET/CT in castrate-resistant prostate cancer (CRPC) patients with bone metastases treated with Ra radionuclide therapy. F-FCH PET/CT imaging was performed in 15 patients with CRPC before treatment with Ra. Bone metastatic disease was quantified on the basis of the maximum standardized uptake value (SUV), total lesion activity (TLA=MBTV×SUVmean), or MBTV/height (MBTV/H) and TLA/H. F-FCH PET/CT bone tumor burden and activity were analyzed to identify which parameters could predict hematological toxicity [on hemoglobin (Hb), platelets (PLTs), and lymphocytes] while on Ra therapy. Pearson's correlation was used to identify the correlations between age, prostate-specific antigen, and F-FCH PET parameters. MBTV ranged from 75 to 1259 cm (median: 392 cm). TLA ranged from 342 to 7198 cm (median: 1853 cm). Patients benefited from two to six cycles of Ra (n=56 cycles in total). At the end of Ra therapy, five of the 15 (33%) patients presented grade 2/3 toxicity on Hb and lymphocytes, whereas three of the 15 (20%) patients presented grade 2/3 PLT toxicity.Age was correlated negatively with both MBTV (r=-0.612, P=0.015) and TLA (r=-0.596, P=0.018). TLA, TLA/H, and MBTV/H predicted hematological toxicity on Hb, whereas TLA/H and MBTV/H predicted toxicity on PLTs at the end of Ra cycles. Receiver operating characteristic curve analysis allowed to define the cutoffs for MBTV (915 cm) and TLA (4198 cm) predictive for PLT toxicity, with an accuracy of 0.92 and 0.99. Tumor bone burden calculation is feasible with F-FCH PET/CT with freely available open-source software. In this pilot study, baseline F-FCH PET/CT markers (TLA, MBTV) have shown abilities to predict Hb and PLT toxicity after Ra therapy and could be explored for

  19. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    PubMed

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  20. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging.

    PubMed

    Yoon, Hai-Jeon; Kim, Yemi; Chung, Jin; Kim, Bom Sahn

    2018-03-30

    Predicting response to neo-adjuvant chemotherapy (NAC) and survival in locally advanced breast cancer (LABC) is important. This study investigated the prognostic value of tumor heterogeneity evaluated with textural analysis through F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and diffusion-weighted imaging (DWI). We enrolled 83 patients with LABC who had completed NAC and curative surgery. Tumor texture indices from pretreatment FDG PET and DWI were extracted from histogram analysis and 7 different parent matrices: co-occurrence matrix, the voxel-alignment matrix, neighborhood intensity difference matrix, intensity size-zone matrix (ISZM), normalized gray-level co-occurrence matrix (NGLCM), neighboring gray-level dependence matrix (NGLDM), and texture spectrum matrix. The predictive values of textural features were tested regarding both pathologic NAC response and progression-free survival. Among 83 patients, 46 were pathologic responders, while 37 were nonresponders. The PET texture indices from 7 parent matrices, DWI texture indices from histogram, and 1 parent matrix (NGLCM) showed significant differences according to NAC response. On multivariable analysis, number nonuniformity of PET extracted from the NGLDM was an independent predictor of pathologic response (P = .009). During a median follow-up period of 17.3 months, 14 patients experienced recurrence. High-intensity zone emphasis (HIZE) and high-intensity short-zone emphasis (HISZE) from PET extracted from ISZM were significant textural predictors (P = .011 and P = .033). On Cox regression analysis, only HIZE was a significant predictor of recurrence (P = .027), while HISZE showed borderline significance (P = .107). Tumor texture indices are useful for NAC response prediction in LABC. Moreover, PET texture indices can help to predict disease recurrence. © 2018 Wiley Periodicals, Inc.

  1. Enhancing 18F-FDG-PET/CT analysis in lung cancer patients. Is CT-CT image fusion helpful in predicting pleural involvement? A pilot study.

    PubMed

    Kapfhammer, A; Winkens, T; Lesser, T; Reissig, A; Steinert, M; Freesmeyer, M

    2015-01-01

    To retrospectively evaluate the feasibility and value of CT-CT image fusion to assess the shift of peripheral lung cancers with/-out chest wall infiltration, comparing computed tomography acquisitions in shallow-breathing (SB-CT) and deep-inspiration breath-hold (DIBH-CT) in patients undergoing FDG-PET/CT for lung cancer staging. Image fusion of SB-CT and DIBH-CT was performed with a multimodal workstation used for nuclear medicine fusion imaging. The distance of intrathoracic landmarks and the positional shift of tumours were measured using semi-transparent overlay of both CT series. Statistical analyses were adjusted for confounders of tumour infiltration. Cutoff levels were calculated for prediction of no-/infiltration. Lateral pleural recessus and diaphragm showed the largest respiratory excursions. Infiltrating lung cancers showed more limited respiratory shifts than non-infiltrating tumours. A large respiratory tumour-motility accurately predicted non-infiltration. However, the tumour shifts were limited and variable, limiting the accuracy of prediction. This pilot fusion study proved feasible and allowed a simple analysis of the respiratory shifts of peripheral lung tumours using CT-CT image fusion in a PET/CT setting. The calculated cutoffs were useful in predicting the exclusion of chest wall infiltration but did not accurately predict tumour infiltration. This method can provide additional qualitative information in patients with lung cancers with contact to the chest wall but unclear CT evidence of infiltration undergoing PET/CT without the need of additional investigations. Considering the small sample size investigated, further studies are necessary to verify the obtained results.

  2. Early Recognition of Chronic Traumatic Encephalopathy through FDDNP PET Imaging

    DTIC Science & Technology

    2014-10-01

    Encephalopathy through FDDNP PET Imaging PRINCIPAL INVESTIGATOR: Charles Bernick, MD, MPH...Traumatic Encephalopathy through FDDNP PET Imaging 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0486 5c. PROGRAM ELEMENT NUMBER 6... Encephalopathy . This project will examine whether FDDNP PET imaging correlates with, and/or can predict, decline in cognitive function in those exposed to

  3. Metabolic Activity in the Insular Cortex and Hypothalamus Predicts Hot Flashes: An FDG-PET Study

    PubMed Central

    Deckersbach, Thilo; Lin, Nancy U.; Makris, Nikos; Skaar, Todd C.; Rauch, Scott L.; Dougherty, Darin D.; Hall, Janet E.

    2012-01-01

    Context: Hot flashes are a common side effect of adjuvant endocrine therapies (AET; leuprolide, tamoxifen, aromatase inhibitors) that reduce quality of life and treatment adherence in breast cancer patients. Because hot flashes affect only some women, preexisting neurobiological traits might predispose to their development. Previous studies have implicated the insula during the perception of hot flashes and the hypothalamus in thermoregulatory dysfunction. Objective: The aim of the study was to understand whether neurobiological factors predict hot flashes. Design: [18F]-Fluorodeoxyglucose (FDG) positron emission tomography (PET) brain scans coregistered with structural magnetic resonance imaging were used to determine whether metabolic activity in the insula and hypothalamic thermoregulatory and estrogen-feedback regions measured before and in response to AET predict hot flashes. Findings were correlated with CYP2D6 genotype because of CYP2D6 polymorphism associations with tamoxifen-induced hot flashes. Outcome Measures: We measured regional cerebral metabolic rate of glucose uptake (rCMRglu) in the insula and hypothalamus on FDG-PET. Results: Of 18 women without hot flashes who began AET, new-onset hot flashes were reported by 10 (55.6%) and were detected objectively in nine (50%) participants. Prior to the use of all AET, rCMRglu in the insula (P ≤ 0.01) and hypothalamic thermoregulatory (P = 0.045) and estrogen-feedback (P = 0.007) regions was lower in women who reported developing hot flashes. In response to AET, rCMRglu was further reduced in the insula in women developing hot flashes (P ≤ 0.02). Insular and hypothalamic rCMRglu levels were lower in intermediate than extensive CYP2D6 metabolizers. Conclusions: Trait neurobiological characteristics predict hot flashes. Genetic variability in CYP2D6 may underlie the neurobiological predisposition to hot flashes induced by AET. PMID:22723326

  4. Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images

    PubMed Central

    Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements

  5. Interim 18F-FGD PET/CT may not predict the outcome in primary central nervous system lymphoma patients treated with sequential treatment with methotrexate and cytarabine.

    PubMed

    Jo, Jae-Cheol; Yoon, Dok Hyun; Kim, Shin; Lee, Kyoungmin; Kang, Eun Hee; Park, Jung Sun; Ryu, Jin-Sook; Huh, Jooryung; Park, Chan-Sik; Kim, Jong Hoon; Lee, Sang Wook; Suh, Cheolwon

    2017-09-01

    18 F-fluoro-2-dexoy-D-glucose-positron emission tomography (PET)/computed tomography (CT) is a useful imaging technique for monitoring the treatment response in lymphoma cases. We investigated the value of interim brain PET/CT (I-PET/CT) for monitoring the response to intensive methotrexate-based chemotherapy in primary central nervous system lymphoma (PCNSL) patients with diffuse large B cell lymphoma (DLBCL). Of the 76 PCNSL patients treated with intensive methotrexate and cytarabine chemotherapy between September 2006 and December 2012, 66 patients with DLBCL were included in this study. The patient cohort of 66 individuals comprised 43 men and 23 women with a median age of 59 years (range, 17-75 years). During chemotherapy, 36 patients (54.5%) showed a negative metabolism on I-PET/CT, and 47 (71.2%) were negative on final (F) PET/CT. The baseline characteristics were similar between I-PET/CT-negative (n = 36) and I-PET/CT-positive patients (n = 30) except ECOG performance status. After a median follow-up of 27.5 months, there was no difference in the progression-free survival (PFS; P = 0.701) or overall survival (OS; P = 0.620) between the I-PET/CT-negative and I-PET/CT-positive groups. However, PFS in the F-PET/CT-negative group was significantly longer than that in the F-PET/CT-positive group (P < 0.001) without a significant difference in OS (P = 0.892). I-PET/CT may not predict the survival outcome of PCNSL patients with DLBCL treated with intensive methotrexate and cytarabine chemotherapy. Prospective trials are required to fully evaluate the role of I-PET/CT.

  6. Glioma survival prediction with the combined analysis of in vivo 11C-MET-PET, ex vivo and patient features by supervised machine learning.

    PubMed

    Papp, Laszlo; Poetsch, Nina; Grahovac, Marko; Schmidbauer, Victor; Woehrer, Adelheid; Preusser, Matthias; Mitterhauser, Markus; Kiesel, Barbara; Wadsak, Wolfgang; Beyer, Thomas; Hacker, Marcus; Traub-Weidinger, Tatjana

    2017-11-24

    Gliomas are the most common types of tumors in the brain. While the definite diagnosis is routinely made ex vivo by histopathologic and molecular examination, diagnostic work-up of patients with suspected glioma is mainly done by using magnetic resonance imaging (MRI). Nevertheless, L-S-methyl- 11 C-methionine ( 11 C-MET) Positron Emission Tomography (PET) holds a great potential in characterization of gliomas. The aim of this study was to establish machine learning (ML) driven survival models for glioma built on 11 C-MET-PET, ex vivo and patient characteristics. Methods: 70 patients with a treatment naïve glioma, who had a positive 11 C-MET-PET and histopathology-derived ex vivo feature extraction, such as World Health Organization (WHO) 2007 tumor grade, histology and isocitrate dehydrogenase (IDH1-R132H) mutation status were included. The 11 C-MET-positive primary tumors were delineated semi-automatically on PET images followed by the feature extraction of tumor-to-background ratio based general and higher-order textural features by applying five different binning approaches. In vivo and ex vivo features, as well as patient characteristics (age, weight, height, body-mass-index, Karnofsky-score) were merged to characterize the tumors. Machine learning approaches were utilized to identify relevant in vivo, ex vivo and patient features and their relative weights for 36 months survival prediction. The resulting feature weights were used to establish three predictive models per binning configuration based on a combination of: in vivo/ex vivo and clinical patient information (M36IEP), in vivo and patient-only information (M36IP), and in vivo only (M36I). In addition a binning-independent ex vivo and patient-only (M36EP) model was created. The established models were validated in a Monte Carlo (MC) cross-validation scheme. Results: Most prominent ML-selected and -weighted features were patient and ex vivo based followed by in vivo features. The highest area under the

  7. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer.

    PubMed

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Lee, Li-yu; Chang, Joseph Tung-Chieh; Tsan, Din-Li; Ng, Shu-Hang; Wang, Hung-Ming; Liao, Chun-Ta; Yang, Lan-Yan; Hsu, Ching-Han; Yen, Tzu-Chen

    2015-03-01

    The question as to whether the regional textural features extracted from PET images predict prognosis in oropharyngeal squamous cell carcinoma (OPSCC) remains open. In this study, we investigated the prognostic impact of regional heterogeneity in patients with T3/T4 OPSCC. We retrospectively reviewed the records of 88 patients with T3 or T4 OPSCC who had completed primary therapy. Progression-free survival (PFS) and disease-specific survival (DSS) were the main outcome measures. In an exploratory analysis, a standardized uptake value of 2.5 (SUV 2.5) was taken as the cut-off value for the detection of tumour boundaries. A fixed threshold at 42 % of the maximum SUV (SUVmax 42 %) and an adaptive threshold method were then used for validation. Regional textural features were extracted from pretreatment (18)F-FDG PET/CT images using the grey-level run length encoding method and grey-level size zone matrix. The prognostic significance of PET textural features was examined using receiver operating characteristic (ROC) curves and Cox regression analysis. Zone-size nonuniformity (ZSNU) was identified as an independent predictor of PFS and DSS. Its prognostic impact was confirmed using both the SUVmax 42 % and the adaptive threshold segmentation methods. Based on (1) total lesion glycolysis, (2) uniformity (a local scale texture parameter), and (3) ZSNU, we devised a prognostic stratification system that allowed the identification of four distinct risk groups. The model combining the three prognostic parameters showed a higher predictive value than each variable alone. ZSNU is an independent predictor of outcome in patients with advanced T-stage OPSCC, and may improve their prognostic stratification.

  8. SU-F-R-14: PET Based Radiomics to Predict Outcomes in Patients with Hodgkin Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Aristophanous, M; Akhtari, M

    Purpose: To identify PET-based radiomics features associated with high refractory/relapsed disease risk for Hodgkin lymphoma patients. Methods: A total of 251 Hodgkin lymphoma patients including 19 primary refractory and 9 relapsed patients were investigated. All patients underwent an initial pre-treatment diagnostic FDG PET/CT scan. All cancerous lymph node regions (ROIs) were delineated by an experienced physician based on thresholding each volume of disease in the anatomical regions to SUV>2.5. We extracted 122 image features and evaluated the effect of ROI selection (the largest ROI, the ROI with highest mean SUV, merged ROI, and a single anatomic region [e.g. mediastinum]) onmore » classification accuracy. Random forest was used as a classifier and ROC analysis was used to assess the relationship between selected features and patient’s outcome status. Results: Each patient had between 1 and 9 separate ROIs, with much intra-patient variability in PET features. The best model, which used features from a single anatomic region (the mediastinal ROI, only volumes>5cc: 169 patients with 12 primary refractory) had a classification accuracy of 80.5% for primary refractory disease. The top five features, based on Gini index, consist of shape features (max 3D-diameter and volume) and texture features (correlation and information measure of correlation1&2). In the ROC analysis, sensitivity and specificity of the best model were 0.92 and 0.80, respectively. The area under the ROC (AUC) and the accuracy were 0.86 and 0.86, respectively. The classification accuracy was less than 60% for other ROI models or when ROIs less than 5cc were included. Conclusion: This study showed that PET-based radiomics features from the mediastinal lymph region are associated with primary refractory disease and therefore may play an important role in predicting outcomes in Hodgkin lymphoma patients. These features could be additive beyond baseline tumor and clinical characteristics, and may

  9. PET/MRI: Where Might It Replace PET/CT?

    PubMed Central

    Ehman, Eric C.; Johnson, Geoffrey B.; Villanueva-Meyer, Javier E.; Cha, Soonmee; Leynes, Andrew Palmera; Larson, Peder Eric Zufall; Hope, Thomas A.

    2017-01-01

    Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/ CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. PMID:28370695

  10. Visual Versus Fully Automated Analyses of 18F-FDG and Amyloid PET for Prediction of Dementia Due to Alzheimer Disease in Mild Cognitive Impairment.

    PubMed

    Grimmer, Timo; Wutz, Carolin; Alexopoulos, Panagiotis; Drzezga, Alexander; Förster, Stefan; Förstl, Hans; Goldhardt, Oliver; Ortner, Marion; Sorg, Christian; Kurz, Alexander

    2016-02-01

    Biomarkers of Alzheimer disease (AD) can be imaged in vivo and can be used for diagnostic and prognostic purposes in people with cognitive decline and dementia. Indicators of amyloid deposition such as (11)C-Pittsburgh compound B ((11)C-PiB) PET are primarily used to identify or rule out brain diseases that are associated with amyloid pathology but have also been deployed to forecast the clinical course. Indicators of neuronal metabolism including (18)F-FDG PET demonstrate the localization and severity of neuronal dysfunction and are valuable for differential diagnosis and for predicting the progression from mild cognitive impairment (MCI) to dementia. It is a matter of debate whether to analyze these images visually or using automated techniques. Therefore, we compared the usefulness of both imaging methods and both analyzing strategies to predict dementia due to AD. In MCI participants, a baseline examination, including clinical and imaging assessments, and a clinical follow-up examination after a planned interval of 24 mo were performed. Of 28 MCI patients, 9 developed dementia due to AD, 2 developed frontotemporal dementia, and 1 developed moderate dementia of unknown etiology. The positive and negative predictive values and the accuracy of visual and fully automated analyses of (11)C-PiB for the prediction of progression to dementia due to AD were 0.50, 1.00, and 0.68, respectively, for the visual and 0.53, 1.00, and 0.71, respectively, for the automated analyses. Positive predictive value, negative predictive value, and accuracy of fully automated analyses of (18)F-FDG PET were 0.37, 0.78, and 0.50, respectively. Results of visual analyses were highly variable between raters but were superior to automated analyses. Both (18)F-FDG and (11)C-PiB imaging appear to be of limited use for predicting the progression from MCI to dementia due to AD in short-term follow-up, irrespective of the strategy of analysis. On the other hand, amyloid PET is extremely useful to

  11. 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres.

    PubMed

    Haug, Alexander R; Heinemann, Volker; Bruns, Christiane J; Hoffmann, Ralf; Jakobs, Tobias; Bartenstein, Peter; Hacker, Marcus

    2011-06-01

    (90)Y radioembolization has emerged as a valuable therapy for intrahepatic cholangiocellular carcinomas (ICC). We aimed to evaluate the prognostic power of FDG PET/CT and that of pretherapeutic scintigraphy with (99m)Tc-labelled macroagglutinated albumin (MAA), an index of tumour vascularization. The study group comprised 26 consecutive patients suffering from nonresectable ICC. Before treatment with radioembolization, all patients underwent MRI of the liver, as well as MAA scintigraphy, which was followed immediately by SPECT(/CT) to quantify the liver-lung shunt fraction. Using image fusion, regions of interest were drawn around the tumours and the entire liver, and the tumour-to-liver quotient was calculated. In addition, FDG PET/CT was performed at baseline and 3 months after radioembolization, and the percentage changes in peak (ΔSUV(max)) and mean (ΔSUV(mean)) FDG uptake and in metabolic tumour volume (ΔVol(2SD)) relative to baseline were calculated. Treatment response at 3 months was also assessed using contrast-enhanced MRI and CT on the basis of standard criteria. Of 23 patients in whom follow-up MRI was available, 5 (22%) showed a partial response, 15 (65%) stable disease and 3 (13%) progressive disease. The change in all FDG values significantly predicted survival by Kaplan-Meier analysis after radioembolization; ΔVol(2SD) responders had a median survival of 97 weeks versus 30 weeks in nonresponders (P = 0.02), whereas ΔSUV(max) and ΔSUV(mean) responders had a median survival of 114 weeks (responder) versus 19 weeks (nonresponder) and 69 weeks in patients with stable disease (P < 0.05). Pretherapeutic MAA scintigraphy or MRI did not predict survival, nor did the presence of extrahepatic metastases, or prior therapies. Only ΔVol(2SD) was significantly associated with survival by univariate analysis (hazard ratio 0.25; P = 0.04) and multivariate analysis (hazard ratio 0.20, P = 0.04). FDG PET/CT was able to predict patient outcome after

  12. Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.

    PubMed

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori

    2018-05-01

    The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Pet Problems at Home: Pet Problems in the Community.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  14. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary?

    PubMed

    Naswa, Niraj; Sharma, Punit; Gupta, Santosh Kumar; Karunanithi, Sellam; Reddy, Rama Mohan; Patnecha, Manish; Lata, Sneh; Kumar, Rakesh; Malhotra, Arun; Bal, Chandrasekhar

    2014-01-01

    This study aimed to compare the diagnostic performance of Ga-DOTANOC PET/CT with F-FDG PET/CT in the patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Data of 51 patients with definite histological diagnosis of GEP-NET who underwent both Ga-DOTA-NOC PET-CT and F-FDG PET-CT within a span of 15 days were selected for this retrospective analysis. Sensitivity, specificity, and predictive values were calculated for Ga-DOTA-NOC PET-CT and F-FDG PET-CT, and results were compared both on patientwise and regionwise analysis. Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT on patientwise analysis (P < 0.0001). On regionwise analysis, Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT only for lymph node metastases (P < 0.003). Although Ga-DOTA-NOC PET-CT detected more liver and skeletal lesions compared with F-FDG PET-CT, the difference was not statistically significant. In addition, the results of combined imaging helped in selecting candidates who would undergo the appropriate mode of treatment, whether octreotide therapy or conventional chemotherapy Ga-DOTA-NOC PET-CT seems to be superior to F-FDG PET-CT for imaging GEP-NETs. However, their role seems to be complementary because combination of Ga-DOTA-NOC PET-CT and F-FDG PET-CT in such patients helps demonstrate the total disease burden and segregate them to proper therapeutic groups.

  15. NEOadjuvant therapy monitoring with PET and CT in Esophageal Cancer (NEOPEC-trial)

    PubMed Central

    2008-01-01

    Background Surgical resection is the preferred treatment of potentially curable esophageal cancer. To improve long term patient outcome, many institutes apply neoadjuvant chemoradiotherapy. In a large proportion of patients no response to chemoradiotherapy is achieved. These patients suffer from toxic and ineffective neoadjuvant treatment, while appropriate surgical therapy is delayed. For this reason a diagnostic test that allows for accurate prediction of tumor response early during chemoradiotherapy is of crucial importance. CT-scan and endoscopic ultrasound have limited accuracy in predicting histopathologic tumor response. Data suggest that metabolic changes in tumor tissue as measured by FDG-PET predict response better. This study aims to compare FDG-PET and CT-scan for the early prediction of non-response to preoperative chemoradiotherapy in patients with potentially curable esophageal cancer. Methods/design Prognostic accuracy study, embedded in a randomized multicenter Dutch trial comparing neoadjuvant chemoradiotherapy for 5 weeks followed by surgery versus surgery alone for esophageal cancer. This prognostic accuracy study is performed only in the neoadjuvant arm of the randomized trial. In 6 centers, 150 consecutive patients will be included over a 3 year period. FDG-PET and CT-scan will be performed before and 2 weeks after the start of the chemoradiotherapy. All patients complete the 5 weeks regimen of neoadjuvant chemoradiotherapy, regardless the test results. Pathological examination of the surgical resection specimen will be used as reference standard. Responders are defined as patients with < 10% viable residual tumor cells (Mandard-score). Difference in accuracy (area under ROC curve) and negative predictive value between FDG-PET and CT-scan are primary endpoints. Furthermore, an economic evaluation will be performed, comparing survival and costs associated with the use of FDG-PET (or CT-scan) to predict tumor response with survival and costs of

  16. Sequential PET/CT with [18F]-FDG Predicts Pathological Tumor Response to Preoperative Short Course Radiotherapy with Delayed Surgery in Patients with Locally Advanced Rectal Cancer Using Logistic Regression Analysis

    PubMed Central

    Pecori, Biagio; Lastoria, Secondo; Caracò, Corradina; Celentani, Marco; Tatangelo, Fabiana; Avallone, Antonio; Rega, Daniela; De Palma, Giampaolo; Mormile, Maria; Budillon, Alfredo; Muto, Paolo; Bianco, Francesco; Aloj, Luigi; Petrillo, Antonella; Delrio, Paolo

    2017-01-01

    Previous studies indicate that FDG PET/CT may predict pathological response in patients undergoing neoadjuvant chemo-radiotherapy for locally advanced rectal cancer (LARC). Aim of the current study is evaluate if pathological response can be similarly predicted in LARC patients after short course radiation therapy alone. Methods: Thirty-three patients with cT2-3, N0-2, M0 rectal adenocarcinoma treated with hypo fractionated short course neoadjuvant RT (5x5 Gy) with delayed surgery (SCRTDS) were prospectively studied. All patients underwent 3 PET/CT studies at baseline, 10 days from RT end (early), and 53 days from RT end (delayed). Maximal standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) of the primary tumor were measured and recorded at each PET/CT study. We use logistic regression analysis to aggregate different measures of metabolic response to predict the pathological response in the course of SCRTDS. Results: We provide straightforward formulas to classify response and estimate the probability of being a major responder (TRG1-2) or a complete responder (TRG1) for each individual. The formulas are based on the level of TLG at the early PET and on the overall proportional reduction of TLG between baseline and delayed PET studies. Conclusions: This study demonstrates that in the course of SCRTDS it is possible to estimate the probabilities of pathological tumor responses on the basis of PET/CT with FDG. Our formulas make it possible to assess the risks associated to LARC borne by a patient in the course of SCRTDS. These risk assessments can be balanced against other health risks associated with further treatments and can therefore be used to make informed therapy adjustments during SCRTDS. PMID:28060889

  17. Sequential PET/CT with [18F]-FDG Predicts Pathological Tumor Response to Preoperative Short Course Radiotherapy with Delayed Surgery in Patients with Locally Advanced Rectal Cancer Using Logistic Regression Analysis.

    PubMed

    Pecori, Biagio; Lastoria, Secondo; Caracò, Corradina; Celentani, Marco; Tatangelo, Fabiana; Avallone, Antonio; Rega, Daniela; De Palma, Giampaolo; Mormile, Maria; Budillon, Alfredo; Muto, Paolo; Bianco, Francesco; Aloj, Luigi; Petrillo, Antonella; Delrio, Paolo

    2017-01-01

    Previous studies indicate that FDG PET/CT may predict pathological response in patients undergoing neoadjuvant chemo-radiotherapy for locally advanced rectal cancer (LARC). Aim of the current study is evaluate if pathological response can be similarly predicted in LARC patients after short course radiation therapy alone. Thirty-three patients with cT2-3, N0-2, M0 rectal adenocarcinoma treated with hypo fractionated short course neoadjuvant RT (5x5 Gy) with delayed surgery (SCRTDS) were prospectively studied. All patients underwent 3 PET/CT studies at baseline, 10 days from RT end (early), and 53 days from RT end (delayed). Maximal standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) of the primary tumor were measured and recorded at each PET/CT study. We use logistic regression analysis to aggregate different measures of metabolic response to predict the pathological response in the course of SCRTDS. We provide straightforward formulas to classify response and estimate the probability of being a major responder (TRG1-2) or a complete responder (TRG1) for each individual. The formulas are based on the level of TLG at the early PET and on the overall proportional reduction of TLG between baseline and delayed PET studies. This study demonstrates that in the course of SCRTDS it is possible to estimate the probabilities of pathological tumor responses on the basis of PET/CT with FDG. Our formulas make it possible to assess the risks associated to LARC borne by a patient in the course of SCRTDS. These risk assessments can be balanced against other health risks associated with further treatments and can therefore be used to make informed therapy adjustments during SCRTDS.

  18. Can integrated 18F-FDG PET/MR replace sentinel lymph node resection in malignant melanoma?

    PubMed

    Schaarschmidt, Benedikt Michael; Grueneisen, Johannes; Stebner, Vanessa; Klode, Joachim; Stoffels, Ingo; Umutlu, Lale; Schadendorf, Dirk; Heusch, Philipp; Antoch, Gerald; Pöppel, Thorsten Dirk

    2018-06-06

    To compare the sensitivity and specificity of 18F-fluordesoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), 18F-FDG PET/magnetic resonance (18F-FDG PET/MR) and 18F-FDG PET/MR including diffusion weighted imaging (DWI) in the detection of sentinel lymph node metastases in patients suffering from malignant melanoma. Fifty-two patients with malignant melanoma (female: n = 30, male: n = 22, mean age 50.5 ± 16.0 years, mean tumor thickness 2.28 ± 1.97 mm) who underwent 18F-FDG PET/CT and subsequent PET/MR & DWI for distant metastasis staging were included in this retrospective study. After hybrid imaging, lymphoscintigraphy including single photon emission computed tomography/CT (SPECT/CT) was performed to identify the sentinel lymph node prior to sentinel lymph node biopsy (SLNB). In a total of 87 sentinel lymph nodes in 64 lymph node basins visible on SPECT/CT, 17 lymph node metastases were detected by histopathology. In separate sessions PET/CT, PET/MR, and PET/MR & DWI were assessed for sentinel lymph node metastases by two independent readers. Discrepant results were resolved in a consensus reading. Sensitivities, specificities, positive predictive values and negative predictive values were calculated with histopathology following SPECT/CT guided SLNB as a reference standard. Compared with histopathology, lymph nodes were true positive in three cases, true negative in 65 cases, false positive in three cases and false negative in 14 cases in PET/CT. PET/MR was true positive in four cases, true negative in 63 cases, false positive in two cases and false negative in 13 cases. Hence, we observed a sensitivity, specificity, positive predictive value and negative predictive value of 17.7, 95.6, 50.0 and 82.3% for PET/CT and 23.5, 96.9, 66.7 and 82.3% for PET/MR. In DWI, 56 sentinel lymph node basins could be analyzed. Here, the additional analysis of DWI led to two additional false positive findings, while the number of true

  19. PET Index of Bone Glucose Metabolism (PIBGM) Classification of PET/CT Data for Fever of Unknown Origin Diagnosis

    PubMed Central

    Yang, Jian; Liu, Xinxin; Ai, Danni; Fan, Jingfan; Zheng, Youjing; Li, Fang; Huo, Li; Wang, Yongtian

    2015-01-01

    Objectives Fever of unknown origin (FUO) remains a challenge in clinical practice. Fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is helpful in diagnosing the etiology of FUO. This paper aims to develop a completely automatic classification method based on PET/CT data for the computer-assisted diagnosis of FUO. Methods We retrospectively analyzed the FDG PET/CT scan of 175 FUO patients, 79 males and 96 females. The final diagnosis of all FUO patients was achieved through pathology or clinical evaluation, including 108 normal patients and 67 FUO patients. CT anatomic information was used to acquire bone functional information from PET images. The skeletal system of FUO patients was classified by analyzing the standardized uptake value (SUV) and the PET index of bone glucose metabolism (PIBGM). The SUV distributions in the bone marrow and the bone cortex were also studied in detail. Results The SUV and PIBGM of the bone marrow only slightly differed between the FUO patients and normal people, whereas the SUV of whole bone structures and the PIBGM of the bone cortex significantly differed between the normal people and FUO patients. The method detected 43 patients from 67 FUO patients, with sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 64.18%, 95%, 93.48%, 72.73%, and 83.33%, respectively. Conclusion The experimental results demonstrate that the study can achieve automatic classification of FUO patients by the proposed novel biomarker of PIBGM, which has the potential to be utilized in clinical practice. PMID:26076139

  20. Low-count PET image restoration using sparse representation

    NASA Astrophysics Data System (ADS)

    Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli

    2018-04-01

    In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.

  1. Prognostic Value of Quantitative Metabolic Metrics on Baseline Pre-Sunitinib FDG PET/CT in Advanced Renal Cell Carcinoma

    PubMed Central

    Minamimoto, Ryogo; Barkhodari, Amir; Harshman, Lauren; Srinivas, Sandy; Quon, Andrew

    2016-01-01

    Purpose The objective of this study was to prospectively evaluate various quantitative metrics on FDG PET/CT for monitoring sunitinib therapy and predicting prognosis in patients with metastatic renal cell cancer (mRCC). Methods Seventeen patients (mean age: 59.0 ± 11.6) prospectively underwent a baseline FDG PET/CT and interim PET/CT after 2 cycles (12 weeks) of sunitinib therapy. We measured the highest maximum standardized uptake value (SUVmax) of all identified lesions (highest SUVmax), sum of SUVmax with maximum six lesions (sum of SUVmax), total lesion glycolysis (TLG) and metabolic tumor volume (MTV) from baseline PET/CT and interim PET/CT, and the % decrease in highest SUVmax of lesion (%Δ highest SUVmax), the % decrease in sum of SUVmax, the % decrease in TLG (%ΔTLG) and the % decrease in MTV (%ΔMTV) between baseline and interim PET/CT, and the imaging results were validated by clinical follow-up at 12 months after completion of therapy for progression free survival (PFS). Results At 12 month follow-up, 6/17 (35.3%) patients achieved PFS, while 11/17 (64.7%) patients were deemed to have progression of disease or recurrence within the previous 12 months. At baseline, PET/CT demonstrated metabolically active cancer in all cases. Using baseline PET/CT alone, all of the quantitative imaging metrics were predictive of PFS. Using interim PET/CT, the %Δ highest SUVmax, %Δ sum of SUVmax, and %ΔTLG were also predictive of PFS. Otherwise, interim PET/CT showed no significant difference between the two survival groups regardless of the quantitative metric utilized including MTV and TLG. Conclusions Quantitative metabolic measurements on baseline PET/CT appears to be predictive of PFS at 12 months post-therapy in patients scheduled to undergo sunitinib therapy for mRCC. Change between baseline and interim PET/CT also appeared to have prognostic value but otherwise interim PET/CT after 12 weeks of sunitinib did not appear to be predictive of PFS. PMID:27123976

  2. Predictive value of PET-CT for pathological response in stages II and III breast cancer patients following neoadjuvant chemotherapy with docetaxel.

    PubMed

    García García-Esquinas, Marta A; Arrazola García, Juan; García-Sáenz, José A; Furió-Bacete, V; Fuentes Ferrer, Manuel E; Ortega Candil, Aída; Cabrera Martín, María N; Carreras Delgado, José L

    2014-01-01

    To prospectively study the value of PET-CT with fluorine-18 fluorodeoxyglucose (FDG) to predict neoadjuvant chemotherapy (NAC) response of locoregional disease of stages II and III breast cancer patients. A written informed consent and approval were obtained from the Ethics Committee. PET-CT accuracy in the prediction of pathologic complete response (pCR) after NAC was studied in primary tumors and lymph node metastasis in 43 women (mean age: 50 years: range: 27-71 years) with histologically proven breast cancer between December 2009 and January 2011. PET-CT was performed at baseline and after NAC. SUV(max) percentage changes (ΔSUV(max)) were compared with pathology findings at surgery. Receiver-operator characteristic (ROC) analysis was used to discriminate between locoregional pCR and non-pCR. In patients not achieving pCR, it was investigated if ΔSUV(max) could accurately identify the residual cancer burden (RCB) classes: RCB-I (minimal residual disease (MRD)), RCB-II (moderate RD), and RCB-III (extensive RD). pCR was obtained in 11 patients (25.6%). Residual disease was found in 32 patients (74.4%): 16 (37.2%) RCB-I, 15 (35.6%) RCB-II and 2 (4.7%) RCB-III. Sensitivity, specificity, and accuracy to predict pCR were 90.9%, 90.6%, and 90.7%, respectively. Specificity was 94.1% in the identification of a subset of patients who had either pCR or MRD. Accuracy of ΔSUV(max) in the locoregional disease of stages II and III breast cancer patients after NAC is high for the identification of pCR cases. Its specificity is potentially sufficient to identify a subgroup of patients who could be managed with conservative surgery. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  3. Different predictive values of interim 18F-FDG PET/CT in germinal center like and non-germinal center like diffuse large B-cell lymphoma.

    PubMed

    Kim, Jihyun; Lee, Jeong-Ok; Paik, Jin Ho; Lee, Won Woo; Kim, Sang Eun; Song, Yoo Sung

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a pathologically heterogeneous disease with different prognoses according to its molecular profiles. Despite the broad usage of 18 F-fluoro-2-dexoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT), previous studies that have investigated the value of interim 18 F-FDG PET/CT in DLBCL have given the controversial results. The purpose of this study was to evaluate the prognostic value of interim 18 F-FDG PET/CT in DLBCL according to germinal center B cell-like (GCB) and non-GCB molecular profiling. We enrolled 118 newly diagnosed DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). Interim 18 F-FDG PET/CT scans performed after 2 or 3 cycles of R-CHOP treatment were evaluated based on the Lugano response criteria. Patients were grouped as GCB or non-GCB molecular subtypes according to immunohistochemistry results of CD10, BCL6, and MUM1, based on Hans' algorithm. In total 118 DLBCL patients, 35 % were classified as GCB, and 65 % were classified as non-GCB. Interim PET/CT was negative in 70 %, and positive in 30 %. During the median follow-up period of 23 months, the positive interim 18 F-FDG PET/CT group showed significantly inferior progression free survival (PFS) compared to the negative interim 18 F-FDG PET/CT group (P = 0.0004) in entire patients. A subgroup analysis according to molecular profiling demonstrated significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in GCB subtype of DLBCL (P = 0.0001), but there was no significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in non-GCB subtype of DLBCL. Interim 18 F-FDG PET/CT scanning had a significant predictive value for disease progression in patients with the GCB subtype of DLBCL treated with R-CHOP, but not in those with the non-GCB subtype. Therefore, molecular profiles of DLBCL should be considered for

  4. Prediction of tumor differentiation using sequential PET/CT and MRI in patients with breast cancer.

    PubMed

    Choi, Joon Ho; Lim, Ilhan; Noh, Woo Chul; Kim, Hyun-Ah; Seong, Min-Ki; Jang, Seonah; Seol, Hyesil; Moon, Hansol; Byun, Byung Hyun; Kim, Byung Il; Choi, Chang Woon; Lim, Sang Moo

    2018-05-23

    The aim of this study is to assess tumor differentiation using parameters from sequential positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) in patients with breast cancer. This retrospective study included 78 patients with breast cancer. All patients underwent sequential PET/CT and MRI. For fluorodeoxyglucose (FDG)-PET image analysis, the maximum standardized uptake value (SUV max ) of FDG was assessed at both 1 and 2 h and metabolic tumor volume (MTV) and total lesion glycolysis (TLG). The kinetic analysis of dynamic contrast-enhanced MRI parameters was performed using dynamic enhancement curves. We assessed diffusion-weighted imaging (DWI)-MRI parameters regarding apparent diffusion coefficient (ADC) values. Histologic grades 1 and 2 were classified as low-grade, and grade 3 as high-grade tumor. Forty-five lesions of 78 patients were classified as histologic grade 3, while 26 and 7 lesions were grade 2 and grade 1, respectively. Patients with high-grade tumors showed significantly lower ADC-mean values than patients with low-grade tumors (0.99 ± 0.19 vs.1.12 ± 0.32, p = 0.007). With respect to SUV max 1, MTV2.5, and TLG2.5, patients with high-grade tumors showed higher values than patients with low-grade tumors: SUV max 1 (7.92 ± 4.5 vs.6.19 ± 3.05, p = 0.099), MTV2.5 (7.90 ± 9.32 vs.4.38 ± 5.10, p = 0.095), and TLG2.5 (40.83 ± 59.17 vs.19.66 ± 26.08, p = 0.082). However, other parameters did not reveal significant differences between low-grade and high-grade malignancies. In receiver-operating characteristic (ROC) curve analysis, ADC-mean values showed the highest area under the curve of 0.681 (95%CI 0.566-0.782) for assessing high-grade malignancy. Lower ADC-mean values may predict the poor differentiation of breast cancer among diverse PET-MRI functional parameters.

  5. Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions

    NASA Astrophysics Data System (ADS)

    Muraro, S.; Battistoni, G.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Del Guerra, A.; Ferrari, A.; Fracchiolla, F.; Morrocchi, M.; Righetto, R.; Sala, P.; Schwarz, M.; Sportelli, G.; Topi, A.; Rosso, V.

    2017-12-01

    Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two planar heads, and designed to be installed along the beam line to acquire data also during the irradiation. Different acquisitions are analyzed and compared with the MC predictions, with a special focus on validating the PET detectors response for activity range verification.

  6. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT.

    PubMed

    Wiesmüller, Marco; Quick, Harald H; Navalpakkam, Bharath; Lell, Michael M; Uder, Michael; Ritt, Philipp; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; von Gall, Carl C

    2013-01-01

    PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were (18)F-deoxyglucose (FDG), (18)F-ethylcholine (FEC) and (68)Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET(CT)) and from PET/MR (PET(MR)) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV(max) and SUV(avg), respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET(CT) were identified by PET(MR) (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET(CT) and by PET(MR). In four patients, more lesions were identified by PET(MR) than by PET(CT), in one patient PET(CT) revealed an additional focus compared to PET(MR). The mean SUV(max) and SUV(avg) of all lesions determined by PET(MR) were by 21 % and 11 % lower, respectively, than the values determined by PET(CT) (p < 0.05), and a strong correlation between these variables was identified (Spearman rho 0.835; p < 0.01). PET/MR showed equivalent performance in terms of qualitative lesion detection to PET/CT. The differences demonstrated in quantitation of tracer uptake between PET(CT) and PET(MR) were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET(MR) and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations.

  7. Lung PET scan

    MedlinePlus

    ... PET - chest; PET - lung; PET - tumor imaging; PET/CT - lung; Solitary pulmonary nodule - PET ... minutes. PET scans are performed along with a CT scan. This is because the combined information from ...

  8. Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease.

    PubMed

    Deppen, Stephen; Putnam, Joe B; Andrade, Gabriela; Speroff, Theodore; Nesbitt, Jonathan C; Lambright, Eric S; Massion, Pierre P; Walker, Ron; Grogan, Eric L

    2011-08-01

    The 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET) is used to evaluate suspicious pulmonary lesions due to its diagnostic accuracy. The southeastern United States has a high prevalence of infectious granulomatous lung disease, and the accuracy of FDG-PET may be reduced in this population. We examined the diagnostic accuracy of FDG-PET in patients with known or suspected non-small cell lung cancer treated at our institution. A total of 279 patients, identified through our prospective database, underwent an operation for known or suspected lung cancer. Preoperative FDG-PET in 211 eligible patients was defined by standardized uptake value greater than 2.5 or by description ("moderate" or "intense") as avid. Sensitivity, specificity, positive and negative predictive values, likelihood ratios, and decision diagrams were calculated for FDG-PET in all patients and in patients with indeterminate nodules. In all eligible patients (n=211), sensitivity and specificity of FDG-PET were 92% and 40%, respectively. Positive and negative predictive values were 86% and 55%. Overall FDG-PET accuracy to diagnose lung cancer was 81%. Preoperative positive likelihood ratio for FDG-PET diagnosis of lung cancer in this population was 1.5 compared with previously published values of 7.1. In 113 indeterminate lesions, 65% had lung cancer and the sensitivity and specificity were 89% and 40%, respectively. Twenty-four benign nodules (60%) had false positive FDG-PET scans. Twenty-two of 43 benign nodules (51%) were granulomas. In a region with endemic granulomatous diseases, the specificity of FDG-PET for diagnosis of lung cancer was 40%. Clinical decisions and future clinical predictive models for lung cancer must accommodate regional variation of FDG-PET scan results. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. PET Performance Evaluation of an MR-Compatible PET Insert

    PubMed Central

    Wu, Yibao; Catana, Ciprian; Farrell, Richard; Dokhale, Purushottam A.; Shah, Kanai S.; Qi, Jinyi; Cherry, Simon R.

    2010-01-01

    A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350–650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 μs that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 μCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance. PMID:21072320

  10. PET imaging predicts future body weight and cocaine preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelides M.; Wang G.; Michaelides M.

    Deficits in dopamine D2/D3 receptor (D2R/D3R) binding availability using PET imaging have been reported in obese humans and rodents. Similar deficits have been reported in cocaine-addicts and cocaine-exposed primates. We found that D2R/D3R binding availability negatively correlated with measures of body weight at the time of scan (ventral striatum), at 1 (ventral striatum) and 2 months (dorsal and ventral striatum) post scan in rats. Cocaine preference was negatively correlated with D2R/D3R binding availability 2 months (ventral striatum) post scan. Our findings suggest that inherent deficits in striatal D2R/D3R signaling are related to obesity and drug addiction susceptibility and that ventralmore » and dorsal striatum serve dissociable roles in maintaining weight gain and cocaine preference. Measuring D2R/D3R binding availability provides a way for assessing susceptibility to weight gain and cocaine abuse in rodents and given the translational nature of PET imaging, potentially primates and humans.« less

  11. Cardiac hypoxia imaging: second-generation analogues of 64Cu-ATSM.

    PubMed

    Handley, Maxwell G; Medina, Rodolfo A; Mariotti, Erika; Kenny, Gavin D; Shaw, Karen P; Yan, Ran; Eykyn, Thomas R; Blower, Philip J; Southworth, Richard

    2014-03-01

    Myocardial hypoxia is an attractive target for diagnostic and prognostic imaging, but current approaches are insufficiently sensitive for clinical use. The PET tracer copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) has promise, but its selectivity and sensitivity could be improved by structural modification. We have therefore evaluated a range of (64)Cu-ATSM analogs for imaging hypoxic myocardium. Isolated rat hearts (n = 5/group) were perfused with normoxic buffer for 30 min and then hypoxic buffer for 45 min within a custom-built triple-γ-detector system to quantify radiotracer infusion, hypoxia-dependent cardiac uptake, and washout. A 1-MBq bolus of each candidate tracer (and (18)F-fluoromisonidazole for comparative purposes) was injected into the arterial line during normoxia, and during early and late hypoxia, and their hypoxia selectivity and pharmacokinetics were evaluated. The in vivo pharmacokinetics of promising candidates in healthy rats were then assessed by PET imaging and biodistribution. All tested analogs exhibited hypoxia sensitivity within 5 min. Complexes less lipophilic than (64)Cu-ATSM provided significant gains in hypoxic-to-normoxic contrast (14:1 for (64)Cu-2,3-butanedione bis(thiosemicarbazone) (ATS), 17:1 for (64)Cu-2,3-pentanedione bis(thiosemicarbazone) (CTS), 8:1 for (64)Cu-ATSM, P < 0.05). Hypoxic first-pass uptake was 78.2% ± 7.2% for (64)Cu-ATS and 70.7% ± 14.5% for (64)Cu-CTS, compared with 63.9% ± 11.7% for (64)Cu-ATSM. Cardiac retention of (18)F-fluoromisonidazole increased from 0.44% ± 0.17% during normoxia to 2.24% ± 0.08% during hypoxia. In vivo, normoxic cardiac retention of (64)Cu-CTS was significantly lower than that of (64)Cu-ATSM and (64)Cu-ATS (0.13% ± 0.02% vs. 0.25% ± 0.04% and 0.24% ± 0.03% injected dose, P < 0.05), with retention of all 3 tracers falling to less than 0.7% injected dose within 6 min. (64)Cu-CTS also exhibited lower uptake in liver and lung. (64)Cu-ATS and (64)Cu-CTS exhibit

  12. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy.

    PubMed

    Charnley, Natalie; West, Catharine M; Barnett, Carolyn M; Brock, Catherine; Bydder, Graeme M; Glaser, Mark; Newlands, Ed S; Swindell, Ric; Matthews, Julian; Price, Pat

    2006-10-01

    To compare the ability of positron emission tomography (PET) to predict response to temozolomide vs. temozolomide plus radiotherapy. Nineteen patients with high-grade glioma (HGG) were studied. Patients with recurrent glioma received temozolomide 75 mg/m2 daily for 7 weeks (n=8). Newly diagnosed patients received temozolomide 75 mg/m2 daily plus radiotherapy 60 Gy/30 fractions over 6 weeks, followed by six cycles of adjuvant temozolomide 200 mg/m2/day (Days 1-5 q28) starting 1 month after radiotherapy (n=11). [18F]Fluorodeoxyglucose ([18F]FDG) PET scan and magnetic resonance imaging (MRI) were performed at baseline, and 7 and 19 weeks after initiation of temozolomide administration. Changes in glucose metabolic rate (MRGlu) and MRI response were correlated with patient survival. In the temozolomide-alone group, patients who survived>26 vs. PET responders, defined as a reduction in MRGlu>or=25%, survived longer than nonresponders with mean survival times of 75 weeks (95% CI, 34-115 vs. 20 weeks (95% CI, 14-26) (p=0.0067). In the small group of patients studied, there was no relationship between MRI response and survival (p=0.52). For patients receiving temozolomide plus radiotherapy, there was no difference in survival between PET responders and nonresponders (p=0.32). Early changes in MRGlu predict response to temozolomide, but not temozolomide plus radiotherapy.

  13. The role of FDG-PET in Hodgkin lymphoma

    PubMed Central

    Hałka, Janusz; Dziuk, Mirosław

    2017-01-01

    18-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) is currently the most valuable imaging technique in Hodgkin lymphoma. Since its first use in lymphomas in the 1990s, it has become the gold standard in the staging and end-of-treatment remission assessment in patients with Hodgkin lymphoma. The possibility of using early (interim) PET during first-line therapy to evaluate chemosensitivity and thus personalize treatment at this stage holds great promise, and much attention is now being directed toward this goal. With high probability, it is believed that in the near future, the result of interim PET-CT would serve as a compass to optimize treatment. Also the role of PET in pre-transplant assessment is currently evolving. Much controversy surrounds the possibility of detecting relapse after completed treatment with the use of PET in surveillance in the absence of symptoms suggestive of recurrence and the results of published studies are rather discouraging because of low positive predictive value. This review presents current knowledge about the role of 18-FDG-PET/CT imaging at each point of management of patients with Hodgkin lymphoma. PMID:28947879

  14. Predictive value of initial FDG-PET features for treatment response and survival in esophageal cancer patients treated with chemo-radiation therapy using a random forest classifier.

    PubMed

    Desbordes, Paul; Ruan, Su; Modzelewski, Romain; Pineau, Pascal; Vauclin, Sébastien; Gouel, Pierrick; Michel, Pierre; Di Fiore, Frédéric; Vera, Pierre; Gardin, Isabelle

    2017-01-01

    In oncology, texture features extracted from positron emission tomography with 18-fluorodeoxyglucose images (FDG-PET) are of increasing interest for predictive and prognostic studies, leading to several tens of features per tumor. To select the best features, the use of a random forest (RF) classifier was investigated. Sixty-five patients with an esophageal cancer treated with a combined chemo-radiation therapy were retrospectively included. All patients underwent a pretreatment whole-body FDG-PET. The patients were followed for 3 years after the end of the treatment. The response assessment was performed 1 month after the end of the therapy. Patients were classified as complete responders and non-complete responders. Sixty-one features were extracted from medical records and PET images. First, Spearman's analysis was performed to eliminate correlated features. Then, the best predictive and prognostic subsets of features were selected using a RF algorithm. These results were compared to those obtained by a Mann-Whitney U test (predictive study) and a univariate Kaplan-Meier analysis (prognostic study). Among the 61 initial features, 28 were not correlated. From these 28 features, the best subset of complementary features found using the RF classifier to predict response was composed of 2 features: metabolic tumor volume (MTV) and homogeneity from the co-occurrence matrix. The corresponding predictive value (AUC = 0.836 ± 0.105, Se = 82 ± 9%, Sp = 91 ± 12%) was higher than the best predictive results found using the Mann-Whitney test: busyness from the gray level difference matrix (P < 0.0001, AUC = 0.810, Se = 66%, Sp = 88%). The best prognostic subset found using RF was composed of 3 features: MTV and 2 clinical features (WHO status and nutritional risk index) (AUC = 0.822 ± 0.059, Se = 79 ± 9%, Sp = 95 ± 6%), while no feature was significantly prognostic according to the Kaplan-Meier analysis. The RF classifier can improve predictive and prognostic values

  15. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.

    PubMed

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-01

    The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of

  16. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. Themore » PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  17. Prediction of Response to Neoadjuvant Chemotherapy and Radiation Therapy with Baseline and Restaging 18F-FDG PET Imaging Biomarkers in Patients with Esophageal Cancer.

    PubMed

    Beukinga, Roelof J; Hulshoff, Jan Binne; Mul, Véronique E M; Noordzij, Walter; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Plukker, John T M

    2018-06-01

    Purpose To assess the value of baseline and restaging fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET) radiomics in predicting pathologic complete response to neoadjuvant chemotherapy and radiation therapy (NCRT) in patients with locally advanced esophageal cancer. Materials and Methods In this retrospective study, 73 patients with histologic analysis-confirmed T1/N1-3/M0 or T2-4a/N0-3/M0 esophageal cancer were treated with NCRT followed by surgery (Chemoradiotherapy for Esophageal Cancer followed by Surgery Study regimen) between October 2014 and August 2017. Clinical variables and radiomic features from baseline and restaging 18 F-FDG PET were selected by univariable logistic regression and least absolute shrinkage and selection operator. The selected variables were used to fit a multivariable logistic regression model, which was internally validated by using bootstrap resampling with 20 000 replicates. The performance of this model was compared with reference prediction models composed of maximum standardized uptake value metrics, clinical variables, and maximum standardized uptake value at baseline NCRT radiomic features. Outcome was defined as complete versus incomplete pathologic response (tumor regression grade 1 vs 2-5 according to the Mandard classification). Results Pathologic response was complete in 16 patients (21.9%) and incomplete in 57 patients (78.1%). A prediction model combining clinical T-stage and restaging NCRT (post-NCRT) joint maximum (quantifying image orderliness) yielded an optimism-corrected area under the receiver operating characteristics curve of 0.81. Post-NCRT joint maximum was replaceable with five other redundant post-NCRT radiomic features that provided equal model performance. All reference prediction models exhibited substantially lower discriminatory accuracy. Conclusion The combination of clinical T-staging and quantitative assessment of post-NCRT 18 F-FDG PET orderliness (joint maximum

  18. Prospective international cohort study demonstrates inability of interim PET to predict treatment failure in diffuse large B-cell lymphoma.

    PubMed

    Carr, Robert; Fanti, Stefano; Paez, Diana; Cerci, Juliano; Györke, Tamás; Redondo, Francisca; Morris, Tim P; Meneghetti, Claudio; Auewarakul, Chirayu; Nair, Reena; Gorospe, Charity; Chung, June-Key; Kuzu, Isinsu; Celli, Monica; Gujral, Sumeet; Padua, Rose Ann; Dondi, Maurizio

    2014-12-01

    The International Atomic Energy Agency sponsored a large, multinational, prospective study to further define PET for risk stratification of diffuse large B-cell lymphoma and to test the hypothesis that international biological diversity or diversity of healthcare systems may influence the kinetics of treatment response as assessed by interim PET (I-PET). Cancer centers in Brazil, Chile, Hungary, India, Italy, the Philippines, South Korea, and Thailand followed a common protocol based on treatment with R-CHOP (cyclophosphamide, hydroxyadriamycin, vincristine, prednisolone with rituximab), with I-PET after 2-3 cycles of chemotherapy and at the end of chemotherapy scored visually. Two-year survivals for all 327 patients (median follow-up, 35 mo) were 79% (95% confidence interval [CI], 74%-83%) for event-free survival (EFS) and 86% (95% CI, 81%-89%) for overall survival (OS). Two hundred ten patients (64%) were I-PET-negative, and 117 (36%) were I-PET-positive. Two-year EFS was 90% (95% CI, 85%-93%) for I-PET-negative and 58% (95% CI, 48%-66%) for I-PET-positive, with a hazard ratio of 5.31 (95% CI, 3.29-8.56). Two-year OS was 93% (95% CI, 88%-96%) for I-PET-negative and 72% (95% CI, 63%-80%) for I-PET-positive, with a hazard ratio of 3.86 (95% CI, 2.12-7.03). On sequential monitoring, 192 of 312 (62%) patients had complete response at both I-PET and end-of-chemotherapy PET, with an EFS of 97% (95% CI, 92%-98%); 110 of these with favorable clinical indicators had an EFS of 98% (95% CI, 92%-100%). In contrast, the 107 I-PET-positive cases segregated into 2 groups: 58 (54%) achieved PET-negative complete remission at the end of chemotherapy (EFS, 86%; 95% CI, 73%-93%); 46% remained PET-positive (EFS, 35%; 95% CI, 22%-48%). Heterogeneity analysis found no significant difference between countries for outcomes stratified by I-PET. This large international cohort delivers 3 novel findings: treatment response assessed by I-PET is comparable across disparate healthcare systems

  19. Predictive modeling of outcomes following definitive chemoradiotherapy for oropharyngeal cancer based on FDG-PET image characteristics

    NASA Astrophysics Data System (ADS)

    Folkert, Michael R.; Setton, Jeremy; Apte, Aditya P.; Grkovski, Milan; Young, Robert J.; Schöder, Heiko; Thorstad, Wade L.; Lee, Nancy Y.; Deasy, Joseph O.; Oh, Jung Hun

    2017-07-01

    In this study, we investigate the use of imaging feature-based outcomes research (‘radiomics’) combined with machine learning techniques to develop robust predictive models for the risk of all-cause mortality (ACM), local failure (LF), and distant metastasis (DM) following definitive chemoradiation therapy (CRT). One hundred seventy four patients with stage III-IV oropharyngeal cancer (OC) treated at our institution with CRT with retrievable pre- and post-treatment 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans were identified. From pre-treatment PET scans, 24 representative imaging features of FDG-avid disease regions were extracted. Using machine learning-based feature selection methods, multiparameter logistic regression models were built incorporating clinical factors and imaging features. All model building methods were tested by cross validation to avoid overfitting, and final outcome models were validated on an independent dataset from a collaborating institution. Multiparameter models were statistically significant on 5 fold cross validation with the area under the receiver operating characteristic curve (AUC)  =  0.65 (p  =  0.004), 0.73 (p  =  0.026), and 0.66 (p  =  0.015) for ACM, LF, and DM, respectively. The model for LF retained significance on the independent validation cohort with AUC  =  0.68 (p  =  0.029) whereas the models for ACM and DM did not reach statistical significance, but resulted in comparable predictive power to the 5 fold cross validation with AUC  =  0.60 (p  =  0.092) and 0.65 (p  =  0.062), respectively. In the largest study of its kind to date, predictive features including increasing metabolic tumor volume, increasing image heterogeneity, and increasing tumor surface irregularity significantly correlated to mortality, LF, and DM on 5 fold cross validation in a relatively uniform single-institution cohort. The LF model also retained

  20. Cross-modality PET/CT and contrast-enhanced CT imaging for pancreatic cancer

    PubMed Central

    Zhang, Jian; Zuo, Chang-Jing; Jia, Ning-Yang; Wang, Jian-Hua; Hu, Sheng-Ping; Yu, Zhong-Fei; Zheng, Yuan; Zhang, An-Yu; Feng, Xiao-Yuan

    2015-01-01

    AIM: To explore the diagnostic value of the cross-modality fusion images provided by positron emission tomography/computed tomography (PET/CT) and contrast-enhanced CT (CECT) for pancreatic cancer (PC). METHODS: Data from 70 patients with pancreatic lesions who underwent CECT and PET/CT examinations at our hospital from August 2010 to October 2012 were analyzed. PET/CECT for the cross-modality image fusion was obtained using TureD software. The diagnostic efficiencies of PET/CT, CECT and PET/CECT were calculated and compared with each other using a χ2 test. P < 0.05 was considered to indicate statistical significance. RESULTS: Of the total 70 patients, 50 had PC and 20 had benign lesions. The differences in the sensitivity, negative predictive value (NPV), and accuracy between CECT and PET/CECT in detecting PC were statistically significant (P < 0.05 for each). In 15 of the 31 patients with PC who underwent a surgical operation, peripancreatic vessel invasion was verified. The differences in the sensitivity, positive predictive value, NPV, and accuracy of CECT vs PET/CT and PET/CECT vs PET/CT in diagnosing peripancreatic vessel invasion were statistically significant (P < 0.05 for each). In 19 of the 31 patients with PC who underwent a surgical operation, regional lymph node metastasis was verified by postsurgical histology. There was no statistically significant difference among the three methods in detecting regional lymph node metastasis (P > 0.05 for each). In 17 of the 50 patients with PC confirmed by histology or clinical follow-up, distant metastasis was confirmed. The differences in the sensitivity and NPV between CECT and PET/CECT in detecting distant metastasis were statistically significant (P < 0.05 for each). CONCLUSION: Cross-modality image fusion of PET/CT and CECT is a convenient and effective method that can be used to diagnose and stage PC, compensating for the defects of PET/CT and CECT when they are conducted individually. PMID:25780297

  1. Response Assessment and Prediction in Esophageal Cancer Patients via F-18 FDG PET/CT Scans

    NASA Astrophysics Data System (ADS)

    Higgins, Kyle J.

    Purpose: The purpose of this study is to utilize F-18 FDG PET/CT scans to determine an indicator for the response of esophageal cancer patients during radiation therapy. There is a need for such an indicator since local failures are quite common in esophageal cancer patients despite modern treatment techniques. If an indicator is found, a patient's treatment strategy may be altered to possibly improve the outcome. This is investigated with various standard uptake volume (SUV) metrics along with image texture features. The metrics and features showing the most promise and indicating response are used in logistic regression analysis to find an equation for the prediction of response. Materials and Methods: 28 patients underwent F-18 FDG PET/CT scans prior to the start of radiation therapy (RT). A second PET/CT scan was administered following the delivery of ~32 Gray (Gy) of dose. A physician contoured gross tumor volume (GTV) was used to delineate a PET based GTV (GTV-pre-PET) based on a threshold of >40% and >20% of the maximum SUV value in the GTV. Deformable registration was used in VelocityAI software to register the pre-treatment and intra-treatment CT scans so that the GTV-pre-PET contours could be transferred from the pre to intra scans (GTV-intra-PET). The fractional decrease in the maximum, mean, volume to the highest intensity 10%-90%, and combination SUV metrics of the significant previous SUV metrics were compared to post-treatment pathologic response for an indication of response. Next for the >40% threshold, texture features based on a neighborhood gray-tone dimension matrix (NGTDM) were analyzed. The fractional decrease in coarseness, contrast, busyness, complexity, and texture strength were compared to the pathologic response of the patients. From these previous two types of analysis, SUV and texture features, the two most significant results were used in logistic regression analysis to find an equation to predict the probability of a non

  2. Dynamic-compliance and viscosity of PET and PEN

    NASA Astrophysics Data System (ADS)

    Weick, Brian L.

    2016-05-01

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  3. Dynamic-compliance and viscosity of PET and PEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weick, Brian L.

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  4. Predicting Radiation Esophagitis Using 18F-FDG PET During Chemoradiotherapy for Locally Advanced Non-Small Cell Lung Cancer.

    PubMed

    Mehmood, Qurrat; Sun, Alexander; Becker, Nathan; Higgins, Jane; Marshall, Andrea; Le, Lisa W; Vines, Douglass C; McCloskey, Paula; Ford, Victoria; Clarke, Katy; Yap, Mei; Bezjak, Andrea; Bissonnette, Jean-Pierre

    2016-02-01

    Treatment of locally advanced non-small cell lung cancer with chemoradiotherapy (CRT) is limited by development of toxicity in normal tissue, including radiation esophagitis (RE). Increasingly, (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is being used for adaptive planning. Our aim was to assess changes in esophageal FDG uptake during CRT and relate the changes to the onset and severity of RE. This prospective study in patients with stage II-III non-small cell lung cancer involved serial four-dimensional computed tomography and PET scans during CRT (60-74Gy). RE was recorded weekly using the Common Terminology Criteria for Adverse Events (v4.0), and imaging was performed at weeks 0, 2, 4, and 7. Changes in the esophagus's peak standard uptake value (SUVpeak) were analyzed for each time point and correlated with grade of RE using the Wilcoxon rank-sum test. The volume of esophagus receiving 50 Gy (V50) and volume of esophagus receiving 60 Gy (V60) were correlated with the development of RE, and the C-statistic (area under the curve [AUC]) was calculated to measure predictivity of grade 3 RE. RE developed in 20 of 27 patients (74%), with grade 3 reached in 6 (22%). A significant percentage increase in SUVpeak in the patients with RE was noted at week 4 (p = 0.01) and week 7 (p = 0.03). For grade 3 RE, a significant percentage increase in SUVpeak was noted at week 2 (p = 0.01) and week 7 (p = 0.03) compared with that for less than grade 3 RE. Median V50 (46.3%) and V60 (33.4%) were significantly higher in patients with RE (p = 0.04). The AUC measurements suggested that the percentage change in SUVpeak at week 2 (AUC = 0.69) and V50 (AUC = 0.67) and V60 (AUC = 0.66) were similarly predictive of grade 3 RE. Serial FDG-PET images during CRT show significant increases in SUVpeak for patients in whom RE develops. The changes at week 2 may predict those at risk for the development of grade 3 RE and may be informative for adaptive planning and

  5. Comparison Between 64Cu-PSMA-617 PET/CT and 18F-Choline PET/CT Imaging in Early Diagnosis of Prostate Cancer Biochemical Recurrence.

    PubMed

    Cantiello, Francesco; Crocerossa, Fabio; Russo, Giorgio Ivan; Gangemi, Vincenzo; Ferro, Matteo; Vartolomei, Mihai Dorin; Lucarelli, Giuseppe; Mirabelli, Maria; Scafuro, Chiara; Ucciero, Giuseppe; De Cobelli, Ottavio; Morgia, Giuseppe; Damiano, Rocco; Cascini, Giuseppe Lucio

    2018-06-04

    To evaluate the diagnostic performance of 64 Cu-PSMA-617 positron emission tomography (PET) with computed tomography (CT) for restaging prostate cancer after biochemical recurrence (BCR) and to compare it with 18 F-choline PET/CT in a per-patient analysis. An observational study was performed of 43 patients with BCR after laparoscopic radical prostatectomy who underwent 64 Cu-PSMA-617 PET/CT and subsequently 18 F-choline PET/CT for restaging. The detection rates (DR) of 64 Cu-PSMA-617 PET/CT and of 18 F-choline PET/CT were calculated by standardized maximum uptake value (SUV max ) at 4 hours and SUV max at 1 hour as reference, respectively. Furthermore, univariate logistic regression analysis was carried out to identify independent predictive factors of positivity with 64 Cu-PSMA-617 PET/CT. An overall positivity with 64 Cu-PSMA-617 PET/CT was found in 32 patients (74.4%) versus 19 (44.2%) with 18 F-choline PET/CT. Specifically, after stratifying for prostate-specific antigen (PSA) values, we found a good performance of 64 Cu-PSMA-617 PET/CT at low PSA levels compared to 18 F-choline PET/CT, with a DR of 57.1% versus 14.3% for PSA 0.2-0.5 ng/mL (P = .031), and of 60% versus 30% with PSA 0.5-1 ng/mL. At univariate binary logistic regression analysis, PSA level was the only independent predictor of 64 Cu-PSMA-617 PET/CT positivity. No significant difference in terms of DR for both 64 Cu-PSMA-617 PET/CT and 18 F-choline PET/CT was found according to different Gleason score subgroups. In our study cohort, a better performance was observed for 64 Cu-PSMA-617 PET/CT compared to 18 F-choline PET/CT in restaging after BCR, especially in patients with low PSA values. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. NEMA NU 4-2008 Performance Measurements of Two Commercial Small-Animal PET Scanners: ClearPET and rPET-1

    NASA Astrophysics Data System (ADS)

    Canadas, Mario; Embid, Miguel; Lage, Eduardo; Desco, Manuel; Vaquero, Juan José; Perez, José Manuel

    2011-02-01

    In this work, we compare two commercial positron emission tomography (PET) scanners installed at CIEMAT (Madrid, Spain): the ClearPET and the rPET-1. These systems have significant geometrical differences, such as the axial field of view (110 mm on ClearPET versus 45.6 mm on rPET-1), the configuration of the detectors (whole ring on ClearPET versus one pair of planar blocks on rPET-1) and the use of an axial shift between ClearPET detector modules. We used an assessment procedure that fulfilled the recommendations of the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard. The methodology includes studies of spatial resolution, sensitivity, scatter fraction, count losses and image quality. Our experiments showed a central spatial resolution of 1.5 mm (transaxial), 3.2 mm (axial) for the ClearPET and 1.5 mm (transaxial), 1.6 mm (axial) for the rPET-1, with a small variation across the transverse axis on both scanners ( 1 mm). The absolute sensitivity at the centre of the field of view was 4.7% for the ClearPET and 1.0% for the rPET-1. The peak noise equivalent counting rate for the mouse-sized phantom was 73.4 kcps reached at 0.51 MBq/mL on the ClearPET and 29.2 kcps at 1.35 MBq/mL on the rPET-1. The recovery coefficients measured using the image quality phantom ranged from 0.11 to 0.89 on the ClearPET and from 0.14 to 0.81 on the rPET-1. The overall performance shows that both the ClearPET and the rPET-1 systems are very suitable for preclinical research and imaging of small animals.

  7. [Principles of PET].

    PubMed

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  8. Can technical characteristics predict clinical performance in PET/CT imaging? A correlation study for thyroid cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Kallergi, Maria; Menychtas, Dimitrios; Georgakopoulos, Alexandros; Pianou, Nikoletta; Metaxas, Marinos; Chatziioannou, Sofia

    2013-03-01

    The purpose of this study was to determine whether image characteristics could be used to predict the outcome of ROC studies in PET/CT imaging. Patients suspected for recurrent thyroid cancer underwent a standard whole body (WB) examination and an additional high-resolution head-and-neck (HN) F18-FDG PET/CT scan. The value of the latter was determined with an ROC study, the results of which showed that the WB+HN combination was better than WB alone for thyroid cancer detection and diagnosis. Following the ROC experiment, the WB and HN images of confirmed benign or malignant thyroid disease were analyzed and first and second order textural features were determined. Features included minimum, mean, and maximum intensity, as well as contrast in regions of interest encircling the thyroid lesions. Lesion size and standard uptake values (SUV) were also determined. Bivariate analysis was applied to determine relationships between WB and HN features and between observer ROC responses and the various feature values. The two sets showed significant associations in the values of SUV, contrast, and lesion size. They were completely different when the intensities were considered; no relationship was found between the WB minimum, maximum, and mean ROI values and their HN counterparts. SUV and contrast were the strongest predictors of ROC performance on PET/CT examinations of thyroid cancer. The high resolution HN images seem to enhance these relationships but without a single dramatic effect as was projected from the ROC results. A combination of features from both WB and HN datasets may possibly be a more robust predictor of ROC performance.

  9. Professor Pet.

    ERIC Educational Resources Information Center

    Pet Information Bureau, New York, NY.

    This manual outlines ways in which observation and care of classroom pet animals may be used to enrich the education of elementary school children. Part one deals with the benefits of having pets in the classroom. Part two illustrates ways in which pets can serve as valuable teaching tools and gives examples of lessons in which the use of pets can…

  10. Gleason score at diagnosis predicts the rate of detection of 18F-choline PET/CT performed when biochemical evidence indicates recurrence of prostate cancer: experience with 1,000 patients.

    PubMed

    Cimitan, Marino; Evangelista, Laura; Hodolič, Marina; Mariani, Giuliano; Baseric, Tanja; Bodanza, Valentina; Saladini, Giorgio; Volterrani, Duccio; Cervino, Anna Rita; Gregianin, Michele; Puccini, Giulia; Guidoccio, Federica; Fettich, Jure; Borsatti, Eugenio

    2015-02-01

    The objective of this study was to explore the ability of the initial Gleason score (GS) to predict the rate of detection of recurrent prostate cancer (PCa) with (18)F-choline PET/CT in a large cohort of patients. Data from 1,000 patients who had undergone (18)F-choline PET/CT because of biochemical evidence of relapse of PCa between 2004 and 2013 were retrieved from databases at 4 centers. Continuous data were compared by the Student t test or ANOVA, and categoric variables were compared by the χ(2) test. Univariable and multivariable analyses were performed by logistic regression. The GS at diagnosis was less than or equal to 6 in 257 patients, 7 in 347 patients, and greater than 7 in 396 patients. The results of 645 PET/CT scans were positive for PCa recurrence. Eighty-one percent of the positive PET/CT results were found in patients with a PSA level of greater than or equal to 2 ng/mL, 43% were found in patients with a PSA level of 1-2 ng/mL, and 31% were found in patients with a PSA level of less than or equal to 1 ng/mL; 78.8% of patients with positive PET/CT results had a GS of greater than 7. The results of (18)F-choline PET/CT scans were negative in 300 patients; 44% had a GS of less than or equal to 6, 35% had a GS of 7, and 17% had a GS of greater than 7. PET/CT results were rated as doubtful in only 5.5% of patients (median PSA, 1.8 ng/mL). When the GS was greater than 7, the rates of detection of (18)F-choline PET/CT were 51%, 65%, and 91% for a PSA level of less than 1 ng/mL, 1-2 ng/mL, and greater than 2 ng/mL, respectively. In univariable and multivariable analyses, both a GS of 7 and a GS of greater than 7 were independent predictors for positive (18)F-choline PET/CT results (odds ratios, 0.226 and 0.330, respectively; P values for both, <0.001). A high GS at diagnosis is a strong predictive factor for positive (18)F-choline PET/CT scan results for recurrent PCa, even when the PSA level is low (i.e., ≤1 ng/mL). © 2015 by the Society of Nuclear

  11. Crohn Disease: FDG PET/CT Before and After Initial Dose of Anti-Tumor Necrosis Factor Therapy to Predict Long-term Response.

    PubMed

    Epelboym, Yan; Shyn, Paul B; Chick, Jeffrey Forris Beecham; Hamilton, Matthew J; OʼConnor, Stacy D; Silverman, Stuart G; Kim, Chun K

    2017-11-01

    Clinical assessments of Crohn disease activity are limited in their capacity to assess treatment response to biologic therapy. The purpose of this study was to determine if changes in FDG activity between baseline PET and repeat PET performed prior to the second dose of induction anti-tumor necrosis factor (TNF) therapy correlate with clinical response. In this prospective, institutional review board-approved, Health Insurance Portability and Accountability Act-compliant pilot study of 8 adult patients with active Crohn disease, FDG activity before and 2 weeks after initiation of anti-TNF therapy was assessed using low-dose PET/CT. FDG activity was measured in the most inflamed bowel loop using an SUVratio (SUVmax/liver SUVmean). Changes in SUVratio were compared with a blinded gastroenterologist assessment of clinical response and steroid-free remission, as well as C-reactive protein (CRP), during a 12-month follow-up period. Of 8 patients, 7 showed FDG activity decline at 2 weeks, 5 of whom achieved a clinical response and steroid-free remission at 8, 26, and 52 weeks. The remaining 2 patients with FDG activity decline did not achieve a clinical response or steroid-free remission at these time points, but there were reductions in CRP. The 1 patient without FDG activity decline was a clinical nonresponder, had no reduction in CRP, and did not achieve steroid-free remission. A change in FDG activity at FDG PET/CT performed prior to the second induction dose of anti-TNF therapy has the potential to predict clinical response and steroid-free remission in patients with Crohn disease.

  12. [Importance of PET/CT in lymphoma diagnostics].

    PubMed

    Afshar-Oromieh, A; Kratochwil, C; Haberkorn, U; Giesel, F L

    2012-04-01

    Staging or re-staging of lymphomas using conventional imaging modalities is based on morphological changes, usually on the diameter of lesions. However, vitality of tumors cannot be evaluated. In this context computed tomography (CT) has been used as a standard modality. Since the introduction of positron emission tomography (PET), evaluation of tumor vitality has become possible. Moreover PET/CT hybrid scanners were brought onto the market one decade ago. The fluorodeoxyglucose (FDG) PET/CT technique is now accepted as one of the most accurate modalities in the diagnosis of aggressive lymphomas due to a high FDG uptake (overall accuracy > 90%, sensitivity >90%). However, indolent lymphomas suffer from lower FDG uptake due to a moderate metabolic activity. After the introduction of PET/CT hybrid imaging the specificity of this diagnostic technique increased significantly compared to PET alone (from > 80% to > 90%). With the utilization of PET approximately 20% more lesions are detected when comparing to CT alone and in up to 15% of the patients this also results in a change of the therapeutic regime. As post-chemotherapy scar tissue usually persists for months, evaluation of vitality within residual bulks using FDG-PET can predict therapy response much earlier than CT, enabling therapy stratification. Other PET tracers apart from FDG have low impact in imaging of lymphomas and only the thymidine analogue fluorothymidine (FLT) is used in some cases for non-invasive measurement of proliferation. Despite the capability of FDG-PET/CT there is no evidence that the improvement in diagnostics is translated into a better patient outcome and therefore warrants the high costs. False positive findings in PET can result in unnecessary treatment escalation with subsequent higher therapy-associated toxicity and costs. Some pitfalls can be avoided by scheduling PET scans carefully. As treatment-induced inflammation early after therapy can be misinterpreted as vital

  13. The role of FDG-PET/CT in gynaecological cancers

    PubMed Central

    Cross, Susan; Flanagan, Sean; Moore, Elizabeth; Avril, Norbert

    2012-01-01

    Abstract There is now a growing body of evidence supporting the use of fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in gynaecological malignancies. Although this molecular imaging technique is becoming increasingly available, PET/CT remains an expensive imaging tool. It is essential to be familiar with the circumstances in which FDG-PET/CT can add value and contribute to patient management and indeed to know when it is unlikely to be of benefit. It is also important to understand and recognize the potential pitfalls. FDG-PET/CT has been most widely adopted for staging patients with suspected advanced disease or in suspected recurrence, offering a whole-body imaging approach. However, there is great potential for this technique to act as a predictive biomarker of response to treatment, as well as a prognostic biomarker. In addition, FDG-PET images may now be incorporated into radiotherapy planning in order to refine the delineation of dose according to metabolically active sites of disease. This article reviews the literature that provides the evidence for the use of FDG-PET in gynaecological malignancies, identifies areas of real benefit and future potential, and highlights circumstances where there is limited value. PMID:22391444

  14. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  15. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  16. Neuroendocrine tumor recurrence: diagnosis with 68Ga-DOTATATE PET/CT.

    PubMed

    Haug, Alexander R; Cindea-Drimus, Ramona; Auernhammer, Christoph J; Reincke, Martin; Beuschlein, Felix; Wängler, Björn; Uebleis, Christopher; Schmidt, Gerwin P; Spitzweg, Christine; Bartenstein, Peter; Hacker, Marcus

    2014-02-01

    To evaluate diagnostic performance of gallium 68-tetraazacyclododecane tetraacetic acid-octreotate ((68)Ga-DOTATATE) in detection of recurrent neuroendocrine tumors (NETs). Approval was waived by the local ethics committee for this retrospective study. Between 2007 and 2011, 63 patients (mean age, 58 years) were examined with (68)Ga-DOTATATE positron emission tomography (PET)/computed tomography (CT) after primary NET curative resection. Reasons for PET/CT were regular follow-up examinations (n = 30), increased plasma levels of tumor markers (n = 27), or clinical suspicion of recurrence (n = 6). Final diagnosis was determined with histopathologic verification (n = 25) or clinical follow-up (n = 38). PET/CT scans were evaluated in consensus by two readers without blinding to clinical information and independently by two readers with blinding. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Final diagnosis of NET recurrence was determined in 29 patients. In three other patients, tumors of nonneuroendocrine origin were diagnosed. (68)Ga-DOTATATE PET/CT helped identify NET recurrence in 26 of 29 patients (sensitivity, 90%) and exclude presence of recurrent NET in 28 of 34 patients (specificity, 82% ). PET/CT provided false-positive and false-negative results in six and three patients (PPV, 81% [26 of 32]; NPV, 90% [28 of 31]; accuracy, 86% [54 of 63]). In gastroenteropancreatic NET (n = 45), sensitivity was 94% (17 of 18); specificity was 89% (24 of 27); PPV was 85% (17 of 20); NPV was 96% (24 of 25); and accuracy was 91% (41 of 45). Two blinded readers achieved sensitivity of 79% (23 of 29) and 76% (22 of 29); specificity of 85% (29 of 34) and 94% (32 of 34) (κ = 0.80); and accuracy of 83% and 86%. (68)Ga-DOTATATE PET/CT is accurate in detection of recurrent NET. Blinded PET/CT review markedly decreased sensitivity, underlining importance of considering clinical parameters in NET recurrence. Present

  17. Monitoring proton radiation therapy with in-room PET imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R.; El Fakhri, Georges

    2011-07-01

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of 15O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  18. Prospective evaluation of 18F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial).

    PubMed

    Jambor, Ivan; Kuisma, Anna; Kähkönen, Esa; Kemppainen, Jukka; Merisaari, Harri; Eskola, Olli; Teuho, Jarmo; Perez, Ileana Montoya; Pesola, Marko; Aronen, Hannu J; Boström, Peter J; Taimen, Pekka; Minn, Heikki

    2018-03-01

    The purpose of this study was to evaluate 18 F-FACBC PET/CT, PET/MRI, and multiparametric MRI (mpMRI) in detection of primary prostate cancer (PCa). Twenty-six men with histologically confirmed PCa underwent PET/CT immediately after injection of 369 ± 10 MBq 18 F-FACBC (fluciclovine) followed by PET/MRI started 55 ± 7 min from injection. Maximum standardized uptake values (SUV max ) were measured for both hybrid PET acquisitions. A separate mpMRI was acquired within a week of the PET scans. Logan plots were used to calculate volume of distribution (V T ). The presence of PCa was estimated in 12 regions with radical prostatectomy findings as ground truth. For each imaging modality, area under the curve (AUC) for detection of PCa was determined to predict diagnostic performance. The clinical trial registration number is NCT02002455. In the visual analysis, 164/312 (53%) regions contained PCa, and 41 tumor foci were identified. PET/CT demonstrated the highest sensitivity at 87% while its specificity was low at 56%. The AUC of both PET/MRI and mpMRI significantly (p < 0.01) outperformed that of PET/CT while no differences were detected between PET/MRI and mpMRI. SUV max and V T of Gleason score (GS) >3 + 4 tumors were significantly (p < 0.05) higher than those for GS 3 + 3 and benign hyperplasia. A total of 442 lymph nodes were evaluable for staging, and PET/CT and PET/MRI demonstrated true-positive findings in only 1/7 patients with metastatic lymph nodes. Quantitative 18 F-FACBC imaging significantly correlated with GS but failed to outperform MRI in lesion detection. 18 F-FACBC may assist in targeted biopsies in the setting of hybrid imaging with MRI.

  19. Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma.

    PubMed

    Fonti, Rosa; Larobina, Michele; Del Vecchio, Silvana; De Luca, Serena; Fabbricini, Rossella; Catalano, Lucio; Pane, Fabrizio; Salvatore, Marco; Pace, Leonardo

    2012-12-01

    (18)F-FDG PET/CT allows the direct measurement of metabolic tumor burden in a variety of different malignancies. The aim of this study was to assess whether metabolic tumor volume (MTV) determined by (18)F-FDG PET/CT could be used in the prediction of progression-free and overall survival in multiple myeloma patients. Forty-seven patients (18 women, 29 men; mean age ± SD, 63 ± 11 y) with stage IIIA disease who had undergone whole-body (18)F-FDG PET/CT were retrospectively evaluated. Images underwent a 3-dimensional region-of-interest analysis including all focal lesions with a maximum standardized uptake value > 2.5. The MTV of each lesion was calculated using an automated contouring program based on the standardized uptake value and developed with a threshold of 40% of the maximum standardized uptake value. The total MTV of each patient was defined as the sum of metabolic volume of all focal lesions. Patients were treated and then subjected to a mean follow-up period of 24 mo. In the 47 patients studied, MTV range was 1.3-316.3 mL, with a median of 23.7 mL. A direct, significant correlation was found between MTV and the percentage of diffuse infiltration of bone marrow by plasma cells (r = 0.46, P = 0.006), whereas hemoglobin levels were inversely correlated with MTV (r = -0.56, P = 0.0001). At follow-up, patients who developed progressive disease (n = 18) showed a significantly higher MTV (74.7 ± 19.3 vs. 29.8 ± 5.1 mL, P = 0.009) than patients without progressive disease (n = 29). Furthermore, patients who died of myeloma (n = 9) had a significantly higher MTV (123.2 ± 30.6 vs. 28.9 ± 4.2 mL, P = 0.0001) than survivors (n = 38). No differences in age, plasma cell infiltration, M protein, albumin, β2-microglobulin, performance status, International Staging System score, and presence or absence of a bone marrow transplant were found between groups. The MTV cutoff level was determined by receiver-operating-characteristic curve analysis, and the best

  20. Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR.

    PubMed

    Catalano, Onofrio A; Coutinho, Artur M; Sahani, Dushyant V; Vangel, Mark G; Gee, Michael S; Hahn, Peter F; Witzel, Thomas; Soricelli, Andrea; Salvatore, Marco; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce R; Gervais, Debra

    2017-04-01

    Correct staging is imperative for colorectal cancer (CRC) since it influences both prognosis and management. Several imaging methods are used for this purpose, with variable performance. Positron emission tomography-magnetic resonance (PET/MR) is an innovative imaging technique recently employed for clinical application. The present study was undertaken to compare the staging accuracy of whole-body positron emission tomography-computed tomography (PET/CT) with whole-body PET/MR in patients with both newly diagnosed and treated colorectal cancer. Twenty-six patients, who underwent same day whole-body (WB) PET/CT and WB-PET/MR, were evaluated. PET/CT and PET/MR studies were interpreted by consensus by a radiologist and a nuclear medicine physician. Correlations with prior imaging and follow-up studies were used as the reference standard. Correct staging was compared between methods using McNemar's Chi square test. The two methods were in agreement and correct for 18/26 (69%) patients, and in agreement and incorrect for one patient (3.8%). PET/MR and PET/CT stages for the remaining 7/26 patients (27%) were discordant, with PET/MR staging being correct in all seven cases. PET/MR significantly outperformed PET/CT overall for accurate staging (P = 0.02). PET/MR outperformed PET/CT in CRC staging. PET/MR might allow accurate local and distant staging of CRC patients during both at the time of diagnosis and during follow-up.

  1. Clinical significance of FDG-PET/CT at the postoperative surveillance in the breast cancer patients.

    PubMed

    Jung, Na Young; Yoo, Ie Ryung; Kang, Bong Joo; Kim, Sung Hun; Chae, Byung Joo; Seo, Ye Young

    2016-01-01

    We evaluated the clinical role of [(18)F]-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) compared with conventional imaging (CI) to detect locoregional recurrence or distant metastasis during postoperative surveillance of patients with breast cancer. We included 1,819 examinations of 1,161 patients, who underwent FDG-PET/CT and CI, including mammography, breast ultrasound, whole-body bone scintigraphy, and chest radiography for postoperative surveillance. All patients had a history of surgery with or without adjuvant treatment due to more than stage II breast cancer between November 2003 and November 2009. We evaluated the diagnostic performance of CI, FDG-PET/CT, and combined CI and FDG-PET/CT for detecting locoregional recurrence, distant metastasis, and incidental cancer. We also analyzed false-positive and false-negative results in both FDG-PET/CT and CI. Sensitivity, specificity, positive predictive value, and negative predictive value of CI were 75.4, 98.7, 93.4, and 94.3 %. Those of FDG-PET/CT were 97.5, 98.8, 95.4, and 99.4 %. Those of the combined results were 98.6, 98.2, 96.7, and 99.7 %. Sensitivity of FDG-PET/CT was significantly higher than that of CI (P < 0.05). Sensitivity of combined CI and FDG-PET/CT results improved, but they were not significantly different from those of FDG-PET/CT alone (P = 0.43). Seventeen false-positive and nine false-negative cases were detected with FDG-PET/CT, and 19 false-positive and 88 false-negative cases were detected with CI. FDG-PET/CT is considered as an acceptable diagnostic imaging modality for postoperative surveillance of patients with breast cancer.

  2. Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert

    PubMed Central

    Grant, Alexander M.; Lee, Brian J.; Chang, Chen-Ming; Levin, Craig S.

    2017-01-01

    Purpose A brain sized radio-frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission, and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ non-magnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. Methods The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. Results The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: the maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0±7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. Conclusions These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. PMID:28102949

  3. 18F-Fluoride PET/CT tumor burden quantification predicts survival in breast cancer.

    PubMed

    Brito, Ana E; Santos, Allan; Sasse, André Deeke; Cabello, Cesar; Oliveira, Paulo; Mosci, Camila; Souza, Tiago; Amorim, Barbara; Lima, Mariana; Ramos, Celso D; Etchebehere, Elba

    2017-05-30

    In bone-metastatic breast cancer patients, there are no current imaging biomarkers to identify which patients have worst prognosis. The purpose of our study was to investigate if skeletal tumor burden determined by 18F-Fluoride PET/CT correlates with clinical outcomes and may help define prognosis throughout the course of the disease. Bone metastases were present in 49 patients. On multivariable analysis, skeletal tumor burden was significantly and independently associated with overall survival (p < 0.0001) and progression free-survival (p < 0.0001). The simple presence of bone metastases was associated with time to bone event (p = 0.0448). We quantified the skeletal tumor burden on 18F-Fluoride PET/CT images of 107 female breast cancer patients (40 for primary staging and the remainder for restaging after therapy). Clinical parameters, primary tumor characteristics and skeletal tumor burden were correlated to overall survival, progression free-survival and time to bone event. The median follow-up time was 19.5 months. 18F-Fluoride PET/CT skeletal tumor burden is a strong independent prognostic imaging biomarker in breast cancer patients.

  4. The value of FDG PET/CT for follow-up of patients with melanoma: a retrospective analysis.

    PubMed

    Vensby, Philip H; Schmidt, Grethe; Kjær, Andreas; Fischer, Barbara M

    2017-01-01

    The incidence of melanoma (MM) is among the fastest rising cancers in the western countries. Positron Emission Tomography with Computed Tomography (PET/CT) is a valuable non-invasive tool for the diagnosis and staging of patients with MM. However, research on the value of PET/CT in follow-up of melanoma patients is limited. This study assesses the diagnostic value of PET/CT for follow-up after melanoma surgery. This retrospective study includes patients with MM who performed at least one PET/CT scan after initial surgery and staging. PET/CT findings were compared to histology, MRI or fine needle aspiration (FNA) to estimate the diagnostic accuracy. The diagnostic performance of PET/CT performed in patients with and without a clinical suspicion of relapse was compared. 238 patients (526 scans) were included. Of the 526 scans 130 (25%) scans were PET-positive, 365 (69%) PET-negative, and 28 (5%) had equivocal findings. Sensitivity was 89% [0.82-0.94], specificity 92% [0.89-0.95], positive and negative predictive values of 78% [0.70-0.84] and 97% [0.94-0.98] respectively. When stratified for reason of referral there was no statistical significant difference in the diagnostic accuracy of PET/CT between patients referred with or without a clinical suspicion of relapse. This study demonstrates that PET/CT despite a moderate sensitivity has a high negative predictive value in the follow-up of melanoma patients. Thus, a negative PET/CT-scan essentially rules out relapse. However, the frequency of false positive findings is relatively high, especially among patients undergoing a "routine" PET/CT with no clinical suspicion of relapse, potentially causing anxiety and leading to further diagnostic procedures.

  5. PET/CT versus body coil PET/MRI: how low can you go?

    PubMed

    Appenzeller, P; Mader, C; Huellner, M W; Schmidt, D; Schmid, D; Boss, A; von Schulthess, G; Veit-Haibach, P

    2013-08-01

    The purpose of this study was to evaluate if positron emission tomography (PET)/magnetic resonance imaging (MRI) with just one gradient echo sequence using the body coil is diagnostically sufficient compared with a standard, low-dose non-contrast-enhanced PET/computed tomography (CT) concerning overall diagnostic accuracy, lesion detectability, size and conspicuity evaluation. Sixty-three patients (mean age 58 years, range 19-86 years; 23 women, 40 men) referred for either staging or restaging/follow-up of various malignant tumours (malignant melanoma, lung cancer, breast cancer, Hodgkin's lymphoma, non-Hodgkin's lymphoma, CUP, gynaecology tumours, pleural mesothelioma, oesophageal cancer, colorectal cancer, stomach cancer) were prospectively included. Imaging was conducted using a tri-modality PET/CT-MR set-up (full ring, time-of-flight Discovery PET/CT 690, 3 T Discovery MR 750, both GE Healthcare, Waukesha, WI). All patients were positioned on a dedicated PET/CT- and MR-compatible examination table, allowing for patient transport from the MR system to the PET/CT without patient movement. In accordance with RECIST 1.1 criteria, measurements of the maximum lesion diameters on CT and MR images were obtained. In lymph nodes, the short axis was measured. A four-point scale was used for assessment of lesion conspicuity: 1 (>25 % of lesion borders definable), 2 (25-50 %), 3 (50-75 %) and 4 (>75 %). For each lesion the corresponding anatomical structure was noted based on anatomical information of the spatially co-registered PET/CT and PET/MRI image sections. Additionally, lesions were divided into three categories: "tumour mass", "lymph nodes" and "lesions". Differences in overall lesion detectability and conspicuity in PET/CT and PET/MRI, as well as differences in detectability based on the localisation and lesion type, were analysed by Wilcoxon signed rank test. A total of 126 PET-positive lesions were evaluated. Overall, no statistically significant

  6. 18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT.

    PubMed

    Tatsumi, Mitsuaki; Isohashi, Kayako; Onishi, Hiromitsu; Hori, Masatoshi; Kim, Tonsok; Higuchi, Ichiro; Inoue, Atsuo; Shimosegawa, Eku; Takeda, Yutaka; Hatazawa, Jun

    2011-08-01

    To demonstrate that positron emission tomography (PET)/magnetic resonance imaging (MRI) fusion was feasible in characterizing pancreatic tumors (PTs), comparing MRI and computed tomography (CT) as mapping images for fusion with PET as well as fused PET/MRI and PET/CT. We retrospectively reviewed 47 sets of (18)F-fluorodeoxyglucose ((18)F -FDG) PET/CT and MRI examinations to evaluate suspected or known pancreatic cancer. To assess the ability of mapping images for fusion with PET, CT (of PET/CT), T1- and T2-weighted (w) MR images (all non-contrast) were graded regarding the visibility of PT (5-point confidence scale). Fused PET/CT, PET/T1-w or T2-w MR images of the upper abdomen were evaluated to determine whether mapping images provided additional diagnostic information to PET alone (3-point scale). The overall quality of PET/CT or PET/MRI sets in diagnosis was also assessed (3-point scale). These PET/MRI-related scores were compared to PET/CT-related scores and the accuracy in characterizing PTs was compared. Forty-three PTs were visualized on CT or MRI, including 30 with abnormal FDG uptake and 13 without. The confidence score for the visibility of PT was significantly higher on T1-w MRI than CT. The scores for additional diagnostic information to PET and overall quality of each image set in diagnosis were significantly higher on the PET/T1-w MRI set than the PET/CT set. The diagnostic accuracy was higher on PET/T1-w or PET/T2-w MRI (93.0 and 90.7%, respectively) than PET/CT (88.4%), but statistical significance was not obtained. PET/MRI fusion, especially PET with T1-w MRI, was demonstrated to be superior to PET/CT in characterizing PTs, offering better mapping and fusion image quality.

  7. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  8. An Analysis of the Utility of Handheld PET Probes for the Intraoperative Localization of Malignant Tissue

    PubMed Central

    González, Segundo Jaime; González, Lorena; Wong, Joyce; Brader, Peter; Zakowski, Maureen; Gönen, Mithat; Daghighian, Farhad; Fong, Yuman

    2012-01-01

    Introduction The intraoperative localization of suspicious lesions detected by positron emission tomography (PET) scan remains a challenge. To solve this, two novel probes have been created to accurately detect the 18F-FDG radiotracer intraoperatively. Methods Nude rats were inoculated with mesothelioma. When PET scans detected 10-mm tumors, animals were dissected and the PET probes analyzed the intraoperative radiotracer uptake of these lesions as tumor to background ratio (TBR). Results The 17 suspicious lesions seen on PET scan were localized intraoperatively (by their high TBR) using the PET probes and found malignant on pathology. Interestingly, smaller tumors not visualized on PET scan were detected intraoperatively by their high TBR and found malignant on pathology. Furthermore, using a TBR threshold as low as 2.0, both gamma (sensitivity, 100%; specificity, 80%; positive predictive value (PPV), 96%; and negative predictive value (NPV), 100%) and beta (sensitivity, 100%; specificity, 60%; PPV, 93%; and NPV, 100%) probes reliably detected suspicious lesions on PET scan imaging. They also showed an excellent area under the curve of 0.9 and 0.97 (95% CI of 0.81–0.99 and 0.93–1.0) for gamma and beta probes, respectively, in the receiver operating characteristic analysis for detecting malignancy. Conclusion This novel tool could be used synergistically with a PET scan imaging to maximize tissue selection intraoperatively. PMID:21108016

  9. Intratumoral heterogeneity characterized by pretreatment PET in non-small cell lung cancer patients predicts progression-free survival on EGFR tyrosine kinase inhibitor

    PubMed Central

    Paeng, Jin Chul; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Heo, Dae Seog

    2018-01-01

    Intratumoral heterogeneity has been suggested to be an important resistance mechanism leading to treatment failure. We hypothesized that radiologic images could be an alternative method for identification of tumor heterogeneity. We tested heterogeneity textural parameters on pretreatment FDG-PET/CT in order to assess the predictive value of target therapy. Recurred or metastatic non-small cell lung cancer (NSCLC) subjects with an activating EGFR mutation treated with either gefitinib or erlotinib were reviewed. An exploratory data set (n = 161) and a validation data set (n = 21) were evaluated, and eight parameters were selected for survival analysis. The optimal cutoff value was determined by the recursive partitioning method, and the predictive value was calculated using Harrell’s C-index. Univariate analysis revealed that all eight parameters showed an increased hazard ratio (HR) for progression-free survival (PFS). The highest HR was 6.41 (P<0.01) with co-occurrence (Co) entropy. Increased risk remained present after adjusting for initial stage, performance status (PS), and metabolic volume (MV) (aHR: 4.86, P<0.01). Textural parameters were found to have an incremental predictive value of early EGFR tyrosine kinase inhibitor (TKI) failure compared to that of the base model of the stage and PS (C-index 0.596 vs. 0.662, P = 0.02, by Co entropy). Heterogeneity textural parameters acquired from pretreatment FDG-PET/CT are highly predictive factors for PFS of EGFR TKI in EGFR-mutated NSCLC patients. These parameters are easily applicable to the identification of a subpopulation at increased risk of early EGFR TKI failure. Correlation to genomic alteration should be determined in future studies. PMID:29385152

  10. Diagnostic value of 18F-FDG-PET/CT for the follow-up and restaging of soft tissue sarcomas in adults.

    PubMed

    Kassem, T W; Abdelaziz, O; Emad-Eldin, S

    2017-10-01

    The purpose of this study was to evaluate the clinical utility of 2-[ 18 F] fluoro-2-deoxy-D-glucose ( 18 FDG) positron emission tomography (PET)/computed tomography (CT) ( 18 F-FDG-PET/CT) in the follow-up of adult patients with soft tissue sarcomas. We prospectively evaluated 37 consecutive patients with known soft tissue sarcoma with 18 F-FDG-PET/CT examination for suspected recurrence of disease. They were 21 men and 16 women with a mean age of 49.6±10.6 (SD) years (range, 34-75years). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of 18 F-FDG-PET/CT examination were calculated on a per patient basis. 18 F-FDG-PET/CT showed an overall diagnostic accuracy of 91.8%, sensitivity of 90% and a specificity of 100%. The positive predictive value and negative predictive value were 100 and 70%, respectively. The 18 F-FDG-PET/CT interpretations were correct in 34/37 patients (91.8%). Incorrect interpretations occurred in three patients (8.1%). Reasons for false negative findings were low 18 F-FDG uptake of local recurrence in one patient and low 18 F-FDG uptake of subcentimetric inguinal lymph node metastases. 18 F-FDG-PET/CT has a high diagnostic value in the follow-up of patients with soft tissue sarcoma. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  11. The value of FDG PET/CT for follow-up of patients with melanoma: a retrospective analysis

    PubMed Central

    Vensby, Philip H; Schmidt, Grethe; Kjær, Andreas; Fischer, Barbara M

    2017-01-01

    The incidence of melanoma (MM) is among the fastest rising cancers in the western countries. Positron Emission Tomography with Computed Tomography (PET/CT) is a valuable non-invasive tool for the diagnosis and staging of patients with MM. However, research on the value of PET/CT in follow-up of melanoma patients is limited. This study assesses the diagnostic value of PET/CT for follow-up after melanoma surgery. This retrospective study includes patients with MM who performed at least one PET/CT scan after initial surgery and staging. PET/CT findings were compared to histology, MRI or fine needle aspiration (FNA) to estimate the diagnostic accuracy. The diagnostic performance of PET/CT performed in patients with and without a clinical suspicion of relapse was compared. 238 patients (526 scans) were included. Of the 526 scans 130 (25%) scans were PET-positive, 365 (69%) PET-negative, and 28 (5%) had equivocal findings. Sensitivity was 89% [0.82-0.94], specificity 92% [0.89-0.95], positive and negative predictive values of 78% [0.70-0.84] and 97% [0.94-0.98] respectively. When stratified for reason of referral there was no statistical significant difference in the diagnostic accuracy of PET/CT between patients referred with or without a clinical suspicion of relapse. This study demonstrates that PET/CT despite a moderate sensitivity has a high negative predictive value in the follow-up of melanoma patients. Thus, a negative PET/CT-scan essentially rules out relapse. However, the frequency of false positive findings is relatively high, especially among patients undergoing a “routine” PET/CT with no clinical suspicion of relapse, potentially causing anxiety and leading to further diagnostic procedures. PMID:29348980

  12. A novel approach for quantitative harmonization in PET.

    PubMed

    Namías, M; Bradshaw, T; Menezes, V O; Machado, M A D; Jeraj, R

    2018-05-04

    Positron emission tomography (PET) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. The quantitative capabilities of PET imaging are particularly important in the context of monitoring response to treatment, where quantitative changes in tracer uptake could be used as a biomarker of treatment response. Reconstruction algorithms and settings have a significant impact on PET quantification. In this work we introduce a novel harmonization methodology requiring only a simple cylindrical phantom and show that it can match the performance of more complex harmonization approaches based on phantoms with spherical inserts. Resolution and noise measurements from cylindrical phantoms are used to simulate the spherical inserts from NEMA image quality phantoms. An optimization algorithm was used to find the optimal smoothing filters for the simulated NEMA phantom images to identify those that best harmonized the PET scanners. Our methodology was tested on seven different PET models from two manufacturers installed at five institutions. Our methodology is able to predict contrast recovery coefficients (CRCs) from NEMA phantoms with errors within  ±5.2% for CRCmax and  ±3.7% for CRCmean (limits of agreement  =  95%). After applying the proposed harmonization protocol, all the CRC values were within the tolerances from EANM. Quantitative harmonization in compliance with the EARL FDG-PET/CT accreditation program is achieved in a simpler way, without the need of NEMA phantoms. This may lead to simplified scanner harmonization workflows more accessible to smaller institutions.

  13. Pet-Related Infections.

    PubMed

    Day, Michael J

    2016-11-15

    Physicians and veterinarians have many opportunities to partner in promoting the well-being of people and their pets, especially by addressing zoonotic diseases that may be transmitted between a pet and a human family member. Common cutaneous pet-acquired zoonoses are dermatophytosis (ringworm) and sarcoptic mange (scabies), which are both readily treated. Toxoplasmosis can be acquired from exposure to cat feces, but appropriate hygienic measures can minimize the risk to pregnant women. Persons who work with animals are at increased risk of acquiring bartonellosis (e.g., cat-scratch disease); control of cat fleas is essential to minimize the risk of these infections. People and their pets share a range of tick-borne diseases, and exposure risk can be minimized with use of tick repellent, prompt tick removal, and appropriate tick control measures for pets. Pets such as reptiles, amphibians, and backyard poultry pose a risk of transmitting Salmonella species and are becoming more popular. Personal hygiene after interacting with these pets is crucial to prevent Salmonella infections. Leptospirosis is more often acquired from wildlife than infected dogs, but at-risk dogs can be protected with vaccination. The clinical history in the primary care office should routinely include questions about pets and occupational or other exposure to pet animals. Control and prevention of zoonoses are best achieved by enhancing communication between physicians and veterinarians to ensure patients know the risks of and how to prevent zoonoses in themselves, their pets, and other people.

  14. Stereotactic body radiation therapy for liver oligometastases: predictive factors of local response by 18F-FDG-PET/CT.

    PubMed

    Mazzola, Rosario; Fersino, Sergio; Alongi, Pierpaolo; Di Paola, Gioacchino; Gregucci, Fabiana; Aiello, Dario; Tebano, Umberto; Pasetto, Stefano; Ruggieri, Ruggero; Salgarello, Matteo; Alongi, Filippo

    2018-05-23

    To investigate metabolic parameters as predictive of local response after stereotactic body radiation therapy (SBRT) for liver-oligometastases. Inclusion criteria of the present retrospective study were: (a) liver oligometastases with controlled primary tumor; (b) absence of progressive disease ≥6 months; (c) metastases ≤ 3; (d) evaluation of SBRT-response by means of 18-fludeoxyglucose-PET/CT for at least two subsequent evaluations; (e) Karnofsky performance status >80; (f) life-expectancy >6 months. The following metabolic parameters were defined semi-quantitatively for each metastases: (1) standardized uptake value (SUVmax; (2) SUV-mean; (3) metabolic tumor volume (MTV), tumor volume with a SUV ≥3, threshold 40%; (4) total lesion glycolysis (TLG), i.e. the product of SUV-mean and MTV. Local control was defined as absence of recurrence in the field of irradiation. 41 liver metastases were analyzed. Pre-SBRT, median SUV-max was 8.7 (range, 4.5-23.59), median SUV-mean was 4.6 (range, 3-7.5), median MTV was 5.7 cc (range, 0.9-80.6) and median total lesion glycolysis was 24.1 (range, 3.6-601.5). At statistical analysis, metastases with SUV-mean >5 (p 0.04; odds ratio 4.75, sensitivity = 50%, specificity = 82.6%, area under the curve 0.66) and SUV-max >12 (p 0.02; odds ratio 5.03, sensitivity = 69%, specificity = 70%, area under the curve = 0.69) showed higher rates of infield-failure compared to the remaining lesions. According to current findings, pre-SBRT SUV-max and SUV-mean could be predictable of local response in liver oligometastases. Advances in knowledge: Present findings could support the hypothesis that fludeoxyglucose-PET/CT may be a powerful tool to predict tumor control. Specifically, current results might be helpful for clinicians in the decision-making process regarding liver oligometastatic patient selection as well as the individual therapy stratification distinguishing between slowly local progressing patients and rapidly

  15. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer.

    PubMed

    Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin

    2018-02-01

    We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.

  16. Benefit of 18F-fluorocholine PET imaging in parathyroid surgery.

    PubMed

    Huber, G F; Hüllner, M; Schmid, C; Brunner, A; Sah, B; Vetter, D; Kaufmann, P A; von Schulthess, G K

    2018-06-01

    To assess the additional diagnostic value of 18 F-fluorocholine PET imaging in preoperative localization of pathologic parathyroid glands in clinically manifest hyperparathyroidism in case of negative or conflicting ultrasound and scintigraphy results. A retrospective, single-institution study of 26 patients diagnosed with hyperparathyroidism. In cases where ultrasound and scintigraphy failed to detect the location of an adenoma in order to allow a focused surgical approach, an additional 18 F-fluorocholine PET scan was performed and its results were compared with the intraoperative findings. A total of 26 patients underwent 18 F-fluorocholine PET/CT (n = 11) or PET/MRI (n = 15). Adenomas were detected in 25 patients (96.2%). All patients underwent surgery, and the location predicted by PET hybrid imaging was confirmed intraoperatively by frozen section and adequate parathyroid hormone drop after removal. None of the patients needed revision surgery during follow-up. These results demonstrate that 18 F-fluorocholine PET imaging is a highly accurate method to detect parathyroid adenomas even in case of previous localization failure by other imaging examinations. • With 18 F-fluorocholine PET imaging, parathyroid adenomas could be detected in 96.2%. • 18 F-fluorocholine imaging is a highly accurate method to detect parathyroid adenomas. • We encourage its use, where ultrasound fails to detect an adenoma.

  17. J-PET: A New Technology for the Whole-body PET Imaging

    NASA Astrophysics Data System (ADS)

    Niedźwiecki, S.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kapłon, Ł.; Kisielewska-Kamińska, D.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krawczyk, N.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Shopa, R. Y.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built from plastic scintillators. J-PET prototype consists of 192 detection modules arranged axially in three layers forming a cylindrical diagnostic chamber with the inner diameter of 85 cm and the axial field-of-view of 50 cm. An axial arrangement of long strips of plastic scintillators, their small light attenuation, superior timing properties, and relative ease of the increase of the axial field-of-view opens promising perspectives for the cost effective construction of the whole-body PET scanner, as well as construction of MR and CT compatible PET inserts. Present status of the development of the J-PET tomograph will be presented and discussed.

  18. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma

    PubMed Central

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component of PET/CT and PET/MRI in MM patients. The study includes 30 MM patients. All patients initially underwent 18F-FDG PET/CT (60 min p.i.), followed by PET/MRI (120 min p.i.). PET/CT and PET/MRI data were assessed and compared based on qualitative (lesion detection) and quantitative (SUV) evaluation. The hybrid PET/MRI system provided good image quality in all cases without artefacts. PET/MRI identified 65 of the 69 lesions, which were detectable with PET/CT (94.2%). Quantitative PET evaluations showed the following mean values in MM lesions: SUVaverage=5.5 and SUVmax=7.9 for PET/CT; SUVaverage=3.9 and SUVmax=5.8 for PET/MRI. Both SUVaverage and SUVmax were significantly higher on PET/CT than on PET/MRI. Spearman correlation analysis demonstrated a strong correlation between both lesional SUVaverage (r=0.744) and lesional SUVmax (r=0.855) values derived from PET/CT and PET/MRI. Regarding detection of myeloma skeletal lesions, PET/MRI exhibited equivalent performance to PET/CT. In terms of tracer uptake quantitation, a significant correlation between the two techniques was demonstrated, despite the statistically significant differences in lesional SUVs between PET/CT and PET/MRI. PMID:26550538

  19. Cancer screening with whole-body PET/CT for healthy asymptomatic people in Japan: re-evaluation of its test validity and radiation exposure.

    PubMed

    Ghotbi, Nader; Iwanaga, Masako; Ohtsuru, Akira; Ogawa, Yoji; Yamashita, Shunichi

    2007-01-01

    The use of Positron Emission Tomography (PET) or PET/CT for voluntary cancer screening of asymptomatic individuals is becoming common in Japan, though the utility of such screening is still controversial. This study estimated the general test validity and effective radiation dose for PET/CT cancer screening of healthy Japanese people by evaluating four standard indices (sensitivity, specificity, positive/negative predictive values), and predictive values with including prevalence for published literature and simulation-based Japanese data. CT and FDG-related dosage data were gathered from the literature and then extrapolated to the scan parameters at a model PET center. We estimated that the positive predictive value was only 3.3% in the use of PET/CT for voluntary cancer screening of asymptomatic Japanese individuals aged 50-59 years old, whose average cancer prevalence was 0.5%. The total effective radiation dose of a single whole-body PET/CT scan was estimated to be 6.34 to 9.48 mSv for the average Japanese individual, at 60 kg body weight. With PET/CT cancer screening in Japan, many healthy volunteers screened as false positive are exposed to at least 6.34 mSv without getting any real benefit. More evaluation concerning the justification of applying PET/CT for healthy people is necessary.

  20. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas.

    PubMed

    Hojjati, Mojgan; Badve, Chaitra; Garg, Vasant; Tatsuoka, Curtis; Rogers, Lisa; Sloan, Andrew; Faulhaber, Peter; Ros, Pablo R; Wolansky, Leo J

    2018-01-01

    To compare the utility of quantitative PET/MRI, dynamic susceptibility contrast (DSC) perfusion MRI (pMRI), and PET/CT in differentiating radiation necrosis (RN) from tumor recurrence (TR) in patients with treated glioblastoma multiforme (GBM). The study included 24 patients with GBM treated with surgery, radiotherapy, and temozolomide who presented with progression on imaging follow-up. All patients underwent PET/MRI and pMRI during a single examination. Additionally, 19 of 24 patients underwent PET/CT on the same day. Diagnosis was established by pathology in 17 of 24 and by clinical/radiologic consensus in 7 of 24. For the quantitative PET/MRI and PET/CT analysis, a region of interest (ROI) was drawn around each lesion and within the contralateral white matter. Lesion to contralateral white matter ratios for relative maximum, mean, and median were calculated. For pMRI, lesion ROI was drawn on the cerebral blood volume (CBV) maps and histogram metrics were calculated. Diagnostic performance for each metric was assessed using receiver operating characteristic curve analysis and area under curve (AUC) was calculated. In 24 patients, 28 lesions were identified. For PET/MRI, relative mean ≥ 1.31 resulted in AUC of .94 with both sensitivity and negative predictive values (NPVs) of 100%. For pMRI, CBV max ≥3.32 yielded an AUC of .94 with both sensitivity and NPV measuring 100%. The joint model utilizing r-mean (PET/MRI) and CBV mode (pMRI) resulted in AUC of 1.0. Our study demonstrates that quantitative PET/MRI parameters in combination with DSC pMRI provide the best diagnostic utility in distinguishing RN from TR in treated GBMs. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  1. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    PubMed Central

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  2. Feasibility of FDG-PET in myocarditis: Comparison to CMR using integrated PET/MRI.

    PubMed

    Nensa, Felix; Kloth, Julia; Tezgah, Ercan; Poeppel, Thorsten D; Heusch, Philipp; Goebel, Juliane; Nassenstein, Kai; Schlosser, Thomas

    2018-06-01

    Besides cardiac sarcoidosis, FDG-PET is rarely used in the diagnosis of myocardial inflammation, while cardiac MRI (CMR) is the actual imaging reference for the workup of myocarditis. Using integrated PET/MRI in patients with suspected myocarditis, we prospectively compared FDG-PET to CMR and the feasibility of integrated FDG-PET/MRI in myocarditis. A total of 65 consecutive patients with suspected myocarditis were prospectively assessed using integrated cardiac FDG-PET/MRI. Studies comprised T2-weighted imaging, late gadolinium enhancement (LGE), and simultaneous PET acquisition. Physiological glucose uptake in the myocardium was suppressed using dietary preparation. FDG-PET/MRI was successful in 55 of 65 enrolled patients: two patients were excluded due to claustrophobia and eight patients due to failed inhibition of myocardial glucose uptake. Compared with CMR (LGE and/or T2), sensitivity and specificity of PET was 74% and 97%. Overall spatial agreement between PET and CMR was κ = 0.73. Spatial agreement between PET and T2 (κ = 0.75) was higher than agreement between PET and LGE (κ = 0.64) as well as between LGE and T2 (κ = 0.56). In patients with suspected myocarditis, FDG-PET is in good agreement with CMR findings.

  3. Role of (18)F-FDG PET-CT in head and neck squamous cell carcinoma.

    PubMed

    Castaldi, P; Leccisotti, L; Bussu, F; Miccichè, F; Rufini, V

    2013-02-01

    The role of PET-CT imaging in head and neck squamous cell carcinoma during pre-treatment staging, radiotherapy planning, treatment response assessment and post-therapy follow-up is reviewed with focus on current evidence, controversial issues and future clinical applications. In staging, the role of (18)F-FDG PET-CT is well recognized for detecting cervical nodal involvement as well as for exclusion of distant metastases and synchronous primary tumours. In the evaluation of treatment response, the high negative predictive value of (18)F-FDG PET-CT performed at least 8 weeks from the end of radio-chemotherapy allows prevention of unnecessary diagnostic invasive procedures and neck dissection in many patients, with a significant impact on clinical outcome. On the other hand, in this setting, the low positive predictive value due to possible post-radiation inflammation findings requires special care before making a clinical decision. Controversial data are currently available on the role of PET imaging during the course of radio-chemotherapy. The prognostic role of (18)F-FDG PET-CT imaging in head and neck squamous cell carcinoma is recently emerging, in addition to the utility of this technique in evaluation of the tumour volume for planning radiation therapy. Additionally, new PET radiopharmaceuticals could provide considerable information on specific tumour characteristics, thus overcoming the limitations of (18)F-FDG.

  4. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis

    PubMed Central

    Li, Guipeng; Chen, Yang; Snyder, Michael P.; Zhang, Michael Q.

    2017-01-01

    ChIA-PET2 is a versatile and flexible pipeline for analyzing different types of ChIA-PET data from raw sequencing reads to chromatin loops. ChIA-PET2 integrates all steps required for ChIA-PET data analysis, including linker trimming, read alignment, duplicate removal, peak calling and chromatin loop calling. It supports different kinds of ChIA-PET data generated from different ChIA-PET protocols and also provides quality controls for different steps of ChIA-PET analysis. In addition, ChIA-PET2 can use phased genotype data to call allele-specific chromatin interactions. We applied ChIA-PET2 to different ChIA-PET datasets, demonstrating its significantly improved performance as well as its ability to easily process ChIA-PET raw data. ChIA-PET2 is available at https://github.com/GuipengLi/ChIA-PET2. PMID:27625391

  5. Improving the modelling of irradiation-induced brain activation for in vivo PET verification of proton therapy.

    PubMed

    Bauer, Julia; Chen, Wenjing; Nischwitz, Sebastian; Liebl, Jakob; Rieken, Stefan; Welzel, Thomas; Debus, Juergen; Parodi, Katia

    2018-04-24

    A reliable Monte Carlo prediction of proton-induced brain tissue activation used for comparison to particle therapy positron-emission-tomography (PT-PET) measurements is crucial for in vivo treatment verification. Major limitations of current approaches to overcome include the CT-based patient model and the description of activity washout due to tissue perfusion. Two approaches were studied to improve the activity prediction for brain irradiation: (i) a refined patient model using tissue classification based on MR information and (ii) a PT-PET data-driven refinement of washout model parameters. Improvements of the activity predictions compared to post-treatment PT-PET measurements were assessed in terms of activity profile similarity for six patients treated with a single or two almost parallel fields delivered by active proton beam scanning. The refined patient model yields a generally higher similarity for most of the patients, except in highly pathological areas leading to tissue misclassification. Using washout model parameters deduced from clinical patient data could considerably improve the activity profile similarity for all patients. Current methods used to predict proton-induced brain tissue activation can be improved with MR-based tissue classification and data-driven washout parameters, thus providing a more reliable basis for PT-PET verification. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The pet connection: pets as a conduit for social capital?

    PubMed

    Wood, Lisa; Giles-Corti, Billie; Bulsara, Max

    2005-09-01

    There is growing interest across a range of disciplines in the relationship between pets and health, with a range of therapeutic, physiological, psychological and psychosocial benefits now documented. While much of the literature has focused on the individual benefits of pet ownership, this study considered the potential health benefits that might accrue to the broader community, as encapsulated in the construct of social capital. A random survey of 339 adult residents from Perth, Western Australia were selected from three suburbs and interviewed by telephone. Pet ownership was found to be positively associated with some forms of social contact and interaction, and with perceptions of neighbourhood friendliness. After adjustment for demographic variables, pet owners scored higher on social capital and civic engagement scales. The results suggest that pet ownership provides potential opportunities for interactions between neighbours and that further research in this area is warranted. Social capital is another potential mechanism by which pets exert an influence on human health.

  7. Sustainable Engineering and Improved Recycling of PET for High-Value Applications: Transforming Linear PET to Lightly Branched PET with a Novel, Scalable Process

    NASA Astrophysics Data System (ADS)

    Pierre, Cynthia; Torkelson, John

    2009-03-01

    A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).

  8. Veterinarians' role for pet owners facing pet loss

    PubMed Central

    Fernandez-Mehler, P.; Gloor, P.; Sager, E.; Lewis, F. I.; Glaus, T. M

    2013-01-01

    Owners' satisfaction with, and expectations from, their veterinarians around euthanasia, including questions on disposal of pet remains subject to animal species, clients' gender, age, family conditions, area of living and type of veterinary clinic visited were evaluated by questionnaire. Questionnaires were to be filled out by clients consecutively visiting the individual practices and hospitals for any kind of consultations. Of 2350 questionnaires distributed, 2008 were returned and available for analysis. Owner satisfaction concerning the procedure of euthanasia was high (92 per cent, 1173/1272). After the event of euthanasia, 14 per cent (170/1250) had changed their veterinarian, even though 75 per cent of these 170 had been satisfied with the procedure. Most owners (88 per cent) expected veterinarians to talk about their pet's final destination, and 38 per cent expected this to happen early in the pet's life. For 81 per cent clients, the veterinarian was the primary informant about the possibilities concerning the disposal of pet remains, and 33 per cent indicated their veterinarian as the contact person to talk about pet loss. Area of living, or veterinary specialisation, only marginally influenced the answers. Veterinarians play an important role to inform their clients concerning questions around euthanasia and the care of pet remains, and to support them during the process of mourning. PMID:23492929

  9. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    PubMed

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. FDG-PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection.

    PubMed

    Pijl, Jordy Pieter; Glaudemans, Andor W J M; Slart, Riemer H J A; Kwee, Thomas Christian

    2018-04-13

    Purpose: To determine the value of 18 F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) for diagnosing renal or hepatic cyst infection in patients with autosomal dominant polycystic kidney disease (ADPKD). Methods: This retrospective single-center study included all patients with ADPKD who underwent FDG-PET/CT because of suspected cyst infection between 2010 and 2017. Results: Thirty FDG-PET/CT scans of thirty individual patients were included, of which 19 were positive for cyst infection. According to a previously established clinical and biochemical reference standard, FDG-PET/CT achieved sensitivity of 88.9%, specificity of 75.0%, positive predictive value of 84.2%, and negative predictive value of 81.8% for the diagnosis of cyst infection. In 5 cases, FDG-PET/CT suggested a different pathologic process that explained the symptoms, including pneumonia ( n = 1), generalized peritonitis ( n = 1), pancreatitis ( n = 1), colitis ( n = 1), and cholangitis ( n = 1). Total duration of hospital stay and duration between FDG-PET/CT scan and hospital discharge of patients with an FDG-PET/CT scan positive for cyst infection were significantly longer than those with a negative scan ( P = 0.005 and P = 0.009, respectively). Creatinine levels were significantly higher in patients with an FDG-PET/CT scan positive for cyst infection than in patients with a negative scan ( P = 0.015). Other comparisons of clinical parameters (age, gender, presence of fever (>38.5°C) for more than 3 days, abdominal pain, history of solid organ transplantation and nephrectomy, immune status), laboratory values (C-reactive protein level (CRP), leukocyte count, estimated glomerular filtration rate), and microbiologic results (blood and urine cultures) were not significantly different ( P = 0.13-1.00) between FDG-PET/CT-positive and -negative patients. Conclusion: FDG-PET/CT is a useful and recommendable (upfront) imaging modality for the evaluation of

  11. Sensory analysis of pet foods.

    PubMed

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.

  12. The Petit Rat (pet/pet), a New Semilethal Mutant Dwarf Rat with Thymic and Testicular Anomalies

    PubMed Central

    Chiba, Junko; Suzuki, Katsushi; Suzuki, Hiroetsu

    2008-01-01

    The petit rat (pet/pet) is a recently discovered semilethal mutant dwarf. The neonatal pet/pet rats had a low body weight and small thymus and testis. During the first 3 d after birth, 50% of the male and 80% of the female pet/pet pups were lost or found dead. Surviving pet/pet rats showed marked retardation of postnatal growth, and their body weights were 41% (female rats) and 32% (male rats) of those of normal rats at the adult stage. The pet/pet rats exhibited proportional dwarfism, and their longitudinal bones were shorter than those of controls without skeletal malformations. Most organs of male pet/pet rats, especially the thymus, testis, adipose tissue surrounding the kidney, and accessory sex organs, weighed markedly less at 140 d of age than did those of their normal counterparts. The thymus of pet/pet rats was small with abnormal thymic follicles. Testes from pet/pet rats exhibited 2 patterns of abnormal histology. Spermatogenesis was present in testes that were only slightly anomalous, but the seminiferous tubules were reduced in diameter. In severely affected testes, most of the seminiferous tubules showed degeneration, and interstitial tissue was increased. Plasma growth hormone concentrations did not differ between pet/pet and normal male rats. The dwarf phenotype of pet/pet rats was inherited as an autosomal recessive trait. These results indicate that the pet/pet rat has a semilethal growth-hormone-independent dwarf phenotype that is accompanied by thymic and testicular anomalies and low birth weight. PMID:19149412

  13. The petit rat (pet/pet), a new semilethal mutant dwarf rat with thymic and testicular anomalies.

    PubMed

    Chiba, Junko; Suzuki, Katsushi; Suzuki, Hiroetsu

    2008-12-01

    The petit rat (pet/pet) is a recently discovered semilethal mutant dwarf. The neonatal pet/pet rats had a low body weight and small thymus and testis. During the first 3 d after birth, 50% of the male and 80% of the female pet/pet pups were lost or found dead. Surviving pet/pet rats showed marked retardation of postnatal growth, and their body weights were 41% (female rats) and 32% (male rats) of those of normal rats at the adult stage. The pet/pet rats exhibited proportional dwarfism, and their longitudinal bones were shorter than those of controls without skeletal malformations. Most organs of male pet/pet rats, especially the thymus, testis, adipose tissue surrounding the kidney, and accessory sex organs, weighed markedly less at 140 d of age than did those of their normal counterparts. The thymus of pet/pet rats was small with abnormal thymic follicles. Testes from pet/pet rats exhibited 2 patterns of abnormal histology. Spermatogenesis was present in testes that were only slightly anomalous, but the seminiferous tubules were reduced in diameter. In severely affected testes, most of the seminiferous tubules showed degeneration, and interstitial tissue was increased. Plasma growth hormone concentrations did not differ between pet/pet and normal male rats. The dwarf phenotype of pet/pet rats was inherited as an autosomal recessive trait. These results indicate that the pet/pet rat has a semilethal growth-hormone-independent dwarf phenotype that is accompanied by thymic and testicular anomalies and low birth weight.

  14. PET response assessment in apatinib-treated radioactive iodine-refractory thyroid cancer.

    PubMed

    Wang, Chen; Zhang, Xin; Yang, Xue; Li, Hui; Cui, Ruixue; Guan, Wenmin; Li, Xin; Zhu, Zhaohui; Lin, Yansong

    2018-06-01

    This work evaluated the use of the positron emission tomography (PET)/computed tomography (CT) technique to assess the early therapeutic response and predict the prognosis of patients with radioactive iodine-refractory differentiated thyroid cancer (RAIR-DTC) who underwent apatinib therapy. Standardised uptake value (SUV), metabolic tumour volume (MTV) and total lesion glycolysis (TLG), derived from 18 F-FDG PET/CT and SUV from 68 Ga-NOTA-PRGD2 PET/CT were evaluated. Tumour response was evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. Sixteen of 20 patients achieved partial response (PR) and four of 20 had stable disease (SD) after apatinib therapy. Six progression-free survival (PFS) events occurred. A strong correlation was observed between the best change in the sum of the longest diameters of target lesions (ΔCT%) and 18 F-FDG PET/CT indices after the completion of the first treatment cycle (ΔMTV% ( P  = 0.0019), ΔTLG% ( P  = 0.0021) and ΔSUVmax% ( P  = 0.0443)). A significant difference in PFS was observed between patients with ΔMTV% <-45% and ≥-45% ( P  = 0.0019) and between patients with ΔTLG% <-80% and ≥-80% ( P  = 0.0065). Ten of 11 patients presented a decrease in SUVmax on 68 Ga-NOTA-PRGD2 PET/CT after two cycles of apatinib therapy and showed PR, whereas one patient presenting an increase in SUVmax only showed SD as the best response. When a cut-off value of the target/background ratio at -20% was used, two PFS curves showed a significant difference ( P  = 0.0016). Hence, early assessment by 18 F-FDG and 68 Ga-NOTA-PRGD2 PET/CT was effective in the prediction and evaluation of RAIR-DTC treated with apatinib. © 2018 Society for Endocrinology.

  15. Skeletal Muscle Metrics on Clinical 18F-FDG PET/CT Predict Health Outcomes in Patients with Sarcoma

    PubMed Central

    Foster, Brent; Boutin, Robert D.; Lenchik, Leon; Gedeon, David; Liu, Yu; Nittur, Vinay; Badawi, Ramsey D.; Li, Chin-Shang; Canter, Robert J.; Chaudhari, Abhijit J.

    2018-01-01

    The aim of this study was to determine the association of measures of skeletal muscle determined from 18F-FDG PET/CT with health outcomes in patients with soft-tissue sarcoma. 14 patients (8 women and 6 men; mean age 66.5 years) with sarcoma had PET/CT examinations. On CTs of the abdomen and pelvis, skeletal muscle was segmented, and cross-sectional muscle area, muscle volume, and muscle attenuation were determined. Within the segmented muscle, intramuscular fat area, volume, and density were derived. On PET images, the standardized uptake value (SUV) of muscle was determined. Regression analyses were conducted to determine the association between the imaging measures and health outcomes including overall survival (OS), local recurrence-free survival (LRFS), distant cancer recurrence (DCR), and major surgical complications (MSC). The association between imaging metrics and pre-therapy levels of serum C-reactive protein (CRP), creatinine, hemoglobin, and albumin was determined. Decreased volumetric muscle CT attenuation was associated with increased DCR. Increased PET SUV of muscle was associated with decreased OS and LRFS. Lower muscle SUV was associated with lower serum hemoglobin and albumin. Muscle measurements obtained on routine 18F-FDG PET/CT are associated with outcomes and serum hemoglobin and albumin in patients with sarcoma. PMID:29756042

  16. Skeletal Muscle Metrics on Clinical 18F-FDG PET/CT Predict Health Outcomes in Patients with Sarcoma.

    PubMed

    Foster, Brent; Boutin, Robert D; Lenchik, Leon; Gedeon, David; Liu, Yu; Nittur, Vinay; Badawi, Ramsey D; Li, Chin-Shang; Canter, Robert J; Chaudhari, Abhijit J

    2018-01-01

    The aim of this study was to determine the association of measures of skeletal muscle determined from 18 F-FDG PET/CT with health outcomes in patients with soft-tissue sarcoma. 14 patients (8 women and 6 men; mean age 66.5 years) with sarcoma had PET/CT examinations. On CTs of the abdomen and pelvis, skeletal muscle was segmented, and cross-sectional muscle area, muscle volume, and muscle attenuation were determined. Within the segmented muscle, intramuscular fat area, volume, and density were derived. On PET images, the standardized uptake value (SUV) of muscle was determined. Regression analyses were conducted to determine the association between the imaging measures and health outcomes including overall survival (OS), local recurrence-free survival (LRFS), distant cancer recurrence (DCR), and major surgical complications (MSC). The association between imaging metrics and pre-therapy levels of serum C-reactive protein (CRP), creatinine, hemoglobin, and albumin was determined. Decreased volumetric muscle CT attenuation was associated with increased DCR. Increased PET SUV of muscle was associated with decreased OS and LRFS. Lower muscle SUV was associated with lower serum hemoglobin and albumin. Muscle measurements obtained on routine 18 F-FDG PET/CT are associated with outcomes and serum hemoglobin and albumin in patients with sarcoma.

  17. Prognostic implications of 62Cu-diacetyl-bis (N4-methylthiosemicarbazone) PET/CT in patients with glioma.

    PubMed

    Toriihara, Akira; Ohtake, Makoto; Tateishi, Kensuke; Hino-Shishikura, Ayako; Yoneyama, Tomohiro; Kitazume, Yoshio; Inoue, Tomio; Kawahara, Nobutaka; Tateishi, Ukihide

    2018-05-01

    The potential of positron emission tomography/computed tomography using 62 Cu-diacetyl-bis (N 4 -methylthiosemicarbazone) ( 62 Cu-ATSM PET/CT), which was originally developed as a hypoxic tracer, to predict therapeutic resistance and prognosis has been reported in various cancers. Our purpose was to investigate prognostic value of 62 Cu-ATSM PET/CT in patients with glioma, compared to PET/CT using 2-deoxy-2-[ 18 F]fluoro-D-glucose ( 18 F-FDG). 56 patients with glioma of World Health Organization grade 2-4 were enrolled. All participants had undergone both 62 Cu-ATSM PET/CT and 18 F-FDG PET/CT within mean 33.5 days prior to treatment. Maximum standardized uptake value and tumor/background ratio were calculated within areas of increased radiotracer uptake. The prognostic significance for progression-free survival and overall survival were assessed by log-rank test and Cox's proportional hazards model. Disease progression and death were confirmed in 37 and 27 patients in follow-up periods, respectively. In univariate analysis, there was significant difference of both progression-free survival and overall survival in age, tumor grade, history of chemoradiotherapy, maximum standardized uptake value and tumor/background ratio calculated using 62 Cu-ATSM PET/CT. Multivariate analysis revealed that maximum standardized uptake value calculated using 62 Cu-ATSM PET/CT was an independent predictor of both progression-free survival and overall survival (p < 0.05). In a subgroup analysis including patients of grade 4 glioma, only the maximum standardized uptake values calculated using 62 Cu-ATSM PET/CT showed significant difference of progression-free survival (p < 0.05). 62 Cu-ATSM PET/CT is a more promising imaging method to predict prognosis of patients with glioma compared to 18 F-FDG PET/CT.

  18. Pets for Handicapped Children.

    ERIC Educational Resources Information Center

    Frith, Greg H.

    1982-01-01

    Pets can provide valuable learning for handicapped children, but selection of a type of pet should consider cost, availability and care, parents' attitudes, locality, the animal's susceptibility to training, pet's life expectancy, and the child's handicap and emotional maturity. Suggested pet-related activities are listed. (CL)

  19. Comparison of DWI and PET/CT in evaluation of lymph node metastasis in uterine cancer

    PubMed Central

    Kitajima, Kazuhiro; Yamasaki, Erena; Kaji, Yasushi; Murakami, Koji; Sugimura, Kazuro

    2012-01-01

    AIM: To investigate diffusion-weighted imaging (DWI) and positron emission tomography and computed tomography (PET/CT) with IV contrast for the preoperative evaluation of pelvic lymph node (LN) metastasis in uterine cancer. METHODS: Twenty-five patients with endometrial or cervical cancer who underwent both DWI and PET/CT before pelvic lymphadenectomy were included in this study. For area specific analysis, LNs were divided into eight regions: both common iliac, external iliac, internal iliac areas, and obturator areas. The classification for malignancy on DWI was a focally abnormal signal intensity in a location that corresponded to the LN chains on the T1WI and T2WI. The criterion for malignancy on PET/CT images was increased tracer uptake by the LN. RESULTS: A total of 36 pathologically positive LN areas were found in 9 patients. With DWI, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy for detecting metastatic LNs on an LN area-by-area analysis were 83.3%, 51.2%, 27.3%, 93.3% and 57.0%, respectively, while the corresponding values for PET/CT were 38.9%, 96.3%, 70.0%, 87.8% and 86.0%. Differences in sensitivity, specificity and accuracy were significant (P < 0.0005). CONCLUSION: DWI showed higher sensitivity and lower specificity than PET/CT. Neither DWI nor PET/CT were sufficiently accurate to replace lymphadenectomy. PMID:22761980

  20. Basic study of entire whole-body PET scanners based on the OpenPET geometry

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Yamaya, Taiga; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo

    2010-09-01

    A conventional PET scanner has a 15-25 cm axial field-of-view (FOV) and images a whole body using about six bed positions. An OpenPET geometry can extend the axial FOV with a limited number of detectors. The entire whole-body PET scanner must be able to process a large amount of data effectively. In this work, we study feasibility of the fully 3D entire whole-body PET scanner using the GATE simulation. The OpenPET has 12 block detector rings with the ring diameter of 840 mm and each block detector ring consists of 48 depth-of-interaction (DOI) detectors. The OpenPET has the axial length of 895.95 mm with five parts of 58.95 mm open gaps. The OpenPET has higher single data loss than a conventional PET scanner at grouping circuits. NECR of the OpenPET decreases by single data loss. But single data loss is mitigated by separating the axially arranged detector into two parts. Also, multiple coincidences are found to be important for the entire whole-body PET scanner. The entire whole-body PET scanner with the OpenPET geometry promises to provide a large axial FOV with the open space and to have sufficient performance values. But single data loss at the grouping circuits and multiple coincidences are limited to the peak noise equivalent count rate (NECR) for the entire whole-body PET scanner.

  1. Value of 18F-FDG PET/CT Combined With Tumor Markers in the Evaluation of Ascites.

    PubMed

    Han, Na; Sun, Xun; Qin, Chunxia; Hassan Bakari, Khamis; Wu, Zhijian; Zhang, Yongxue; Lan, Xiaoli

    2018-05-01

    The purpose of this study is to investigate the value of 18 F-FDG PET/CT combined with assessment of tumor markers in serum or ascites for the diagnosing and determining the prognosis of benign and malignant ascites. Patients with ascites of unknown cause who underwent evaluation with FDG PET/CT were included in this retrospective study. The maximum standardized uptake value (SUV max ) and levels of the tumor markers carbohydrate antigen-125 (CA-125) and carcinoembryonic antigen (CEA) in serum and ascites were recorded. The diagnostic values of FDG PET/CT, CEA and CA-125 levels in serum or ascites, and the combination of imaging plus tumor marker assessment were evaluated. Factors that were predictive of survival were also analyzed. A total of 177 patients were included. Malignant ascites was eventually diagnosed in 104 patients, and benign ascites was diagnosed in the remaining 73 patients. With the use of FDG PET/CT, 44 patients (42.3%) were found to have primary tumors. The sensitivity, specificity, and accuracy of FDG PET/CT were 92.3%, 83.6%, and 88.7%, respectively. CA-125 levels in serum and ascites showed much better sensitivity than did CEA levels, but they showed significantly lower specificity. If the combination of tumor markers and FDG PET/CT was analyzed, the sensitivity, specificity, and accuracy of tumor markers in serum were 96.6%, 78.1%, and 88.7%, and those of tumor markers in ascites were 97.7%, 80.0%, and 90.4%, respectively. Sex may be an important factor affecting survival time (hazard ratio, 0.471; p = 0.004), but age, CEA level, and FDG PET/CT findings could not predict survival. FDG PET/CT combined with assessment of tumor markers, especially CEA, increased the efficacy of diagnosis of ascites of unknown causes. Male sex conferred a poorer prognosis, whereas age, CEA level, and FDG uptake had no predictive significance in patients with malignant ascites.

  2. TU-F-12A-03: Using 18F-FDG-PET-CT and Deformable Registration During Head-And-Neck Cancer (HNC) Intensity Modulated Radiotherapy (IMRT) to Predict Treatment Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergalasova, I; Mowery, Y; Yoo, D

    2014-06-15

    implies that neither registration should be solely relied upon for nodal GTVs. Of the four SUV parameters found to be predictive of CR vs. ICR, SUV-MEAN was the strongest. Preliminary results show promise for using intra-treatment 18F-FDG-PET-CT with deformable registration to predict treatment response.« less

  3. Motion correction options in PET/MRI.

    PubMed

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Pet Health

    MedlinePlus

    ... Before getting a pet, think carefully about which animal is best for your family. What is each ... Does anyone have pet allergies? What type of animal suits your lifestyle and budget? Once you own ...

  5. Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI.

    PubMed

    Behr, Spencer C; Bahroos, Emma; Hawkins, Randall A; Nardo, Lorenzo; Ravanfar, Vahid; Capbarat, Emily V; Seo, Youngho

    2018-06-01

    Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. Whole-body 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUV max and SUV mean ) of normal tissues and lesions detected were measured and compared. Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUV mean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of - 18 ± 28 % (p < 0.001), - 16 ± 29 % (p = 0.001), - 16 ± 31 % (p = 0.002), - 14 ± 35 % (p < 0.001), and - 13 ± 34 % (p = 0.002), respectively. SUV max and SUV peak values of all lesions were

  6. Diagnostic performance of FDG PET or PET/CT in prosthetic infection after arthroplasty: a meta-analysis.

    PubMed

    Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J

    2014-03-01

    The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.

  7. A Prospective Study Comparing 99mTc-Hydroxyethylene-Diphosphonate Planar Bone Scintigraphy and Whole-Body SPECT/CT with 18F-Fluoride PET/CT and 18F-Fluoride PET/MRI for Diagnosing Bone Metastases.

    PubMed

    Löfgren, Johan; Mortensen, Jann; Rasmussen, Sine H; Madsen, Claus; Loft, Annika; Hansen, Adam E; Oturai, Peter; Jensen, Karl Erik; Mørk, Mette Louise; Reichkendler, Michala; Højgaard, Liselotte; Fischer, Barbara M

    2017-11-01

    We prospectively evaluated and compared the diagnostic performance of 99m Tc-hydroxyethylene-diphosphonate ( 99m Tc-HDP) planar bone scintigraphy (pBS), 99m Tc-HDP SPECT/CT, 18 F-NaF PET/CT, and 18 F-NaF PET/MRI for the detection of bone metastases. Methods: One hundred seventeen patients with histologically proven malignancy referred for clinical pBS were prospectively enrolled. pBS and whole-body SPECT/CT were performed followed by 18 F-NaF PET/CT within 9 d. 18 F-NaF PET/MRI was also performed in 46 patients. Results: Bone metastases were confirmed in 16 patients and excluded in 101, which was lower than expected. The number of equivocal scans was significantly higher for pBS than for SPECT/CT and PET/CT (18 vs. 5 and 6, respectively; P = 0.004 and 0.01, respectively). When equivocal readings were excluded, no statistically significant difference in sensitivity, specificity, positive predictive value, negative predictive value, or overall accuracy were found when comparing the different imaging techniques. In the per-patient analysis, equivocal scans were either assumed positive for metastases ("pessimistic analysis") or assumed negative for metastases ("optimistic analysis"). The percentages of misdiagnosed patients for the pessimistic analysis were 21%, 15%, 9%, and 7% for pBS, SPECT/CT, PET/CT, and PET/MRI, respectively. Corresponding figures for the optimistic analysis were 9%, 12%, 5%, and 7%. In those patients identified as having bone metastases according to the reference standard, SPECT/CT, 18 F-NaF PET/CT, and PET/MRI detected additional lesions compared with pBS in 31%, 63%, and 71%, respectively. Conclusion: 18 F-NaF PET/CT and whole-body SPECT/CT resulted in a significant reduction of equivocal readings compared with pBS, which implies an improved diagnostic confidence. However, the clinical benefit of using, for example, 18 F-NaF PET/CT or PET/MRI as compared with SPECT/CT and pBS in this patient population with a relatively low prevalence of bone

  8. Is non-attenuation-corrected PET inferior to body attenuation-corrected PET or PET/CT in lung cancer?

    NASA Astrophysics Data System (ADS)

    Maintas, Dimitris; Houzard, Claire; Ksyar, Rachid; Mognetti, Thomas; Maintas, Catherine; Scheiber, Christian; Itti, Roland

    2006-12-01

    It is considered that one of the great strengths of PET imaging is the ability to correct for body attenuation. This enables better lesion uptake quantification and quality of PET images. The aim of this work is to compare the sensitivity of non-attenuation-corrected (NAC) PET images, the gamma photons (GPAC) and CT attenuation-corrected (CTAC) images in detecting and staging of lung cancer. We have studied 66 patients undergoing PET/CT examinations for detecting and staging NSC lung cancer. The patients were injected with 18-FDG; 5 MBq/kg under fasting conditions and examination was started 60 min later. Transmission data were acquired by a spiral CT X-ray tube and by gamma photons emitting Cs-137l source and were used for the patient body attenuation correction without correction for respiratory motion. In 55 of 66 patients we performed both attenuation correction procedures and in 11 patients only CT attenuation correction. In seven patients with solitary nodules PET was negative and in 59 patients with lung cancer PET/CT was positive for pulmonary or other localization. In the group of 55 patients we found 165 areas of focal increased 18-FDG uptake in NAC, 165 in CTAC and 164 in GPAC PET images.In the patients with only CTAC we found 58 areas of increased 18-FDG uptake on NAC and 58 areas lesions on CTAC. In the patients with positive PET we found 223 areas of focal increased uptake in NAC and 223 areas in CTAC images. The sensitivity of NAC was equal to the sensitivity of CTAC and GPAC images. The visualization of peripheral lesions was better in NAC images and the lesions were better localized in attenuation-corrected images. In three lesions of the thorax the localization was better in GPAC and fused images than in CTAC images.

  9. Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas.

    PubMed

    Ben Bouallègue, Fayçal; Tabaa, Yassine Al; Kafrouni, Marilyne; Cartron, Guillaume; Vauchot, Fabien; Mariano-Goulart, Denis

    2017-09-01

    We investigated whether metabolic, textural, and morphological tumoral indices evaluated on baseline PET-CT were predictive of early metabolic response on interim PET-CT in a cohort of patients with bulky Hodgkin and non-Hodgkin malignant lymphomas. This retrospective study included 57 patients referred for initial PET-CT examination. In-house dedicated software was used to delineate tumor contours using a fixed 30% threshold of SUV max and then to compute tumoral metabolic parameters (SUV max, mean, peak, standard deviation, skewness and kurtosis, metabolic tumoral volume (MTV), total lesion glycolysis, and area under the curve of the cumulative histogram), textural parameters (Moran's and Geary's indices, energy, entropy, contrast, correlation derived from the gray-level co-occurrence matrix, area under the curve of the power spectral density, auto-correlation distance, and granularity), and shape parameters (surface, asphericity, convexity, surfacic extension, and 2D and 3D fractal dimensions). Early metabolic response was assessed on interim PET-CT using the Deauville 5-point scale and patients were ranked according to the Lugano classification as complete or not complete metabolic responders. The impact of the segmentation method (alternate threshold at 41%) and image resolution (Gaussian postsmoothing of 3, 5, and 7 mm) was investigated. The association of the proposed parameters with early response was assessed in univariate and multivariate analyses. Their added predictive value was explored using supervised classification by support vector machines (SVM). We evaluated in leave-one-out cross-validation three SVMs admitting as input features (a) MTV, (b) MTV + histological type, and (c) MTV + histology + relevant texture/shape indices. Features associated with complete metabolic response were low MTV (P = 0.01), low TLG (P = 0.003), high power spectral density AUC (P = 0.007), high surfacic extension (P = 0.006), low 2D fractal dimension (P

  10. Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients.

    PubMed

    Atkinson, Wendy; Catana, Ciprian; Abramson, Jeremy S; Arabasz, Grae; McDermott, Shanaugh; Catalano, Onofrio; Muse, Victorine; Blake, Michael A; Barnes, Jeffrey; Shelly, Martin; Hochberg, Ephraim; Rosen, Bruce R; Guimaraes, Alexander R

    2016-07-01

    The goal of this study is to evaluate the diagnostic performance of simultaneous FDG-PET/MR including diffusion compared to FDG-PET/CT in patients with lymphoma. Eighteen patients with a confirmed diagnosis of non-Hodgkin's (NHL) or Hodgkin's lymphoma (HL) underwent an IRB-approved, single-injection/dual-imaging protocol consisting of a clinical FDG-PET/CT and subsequent FDG-PET/MR scan. PET images from both modalities were reconstructed iteratively. Attenuation correction was performed using low-dose CT data for PET/CT and Dixon-MR sequences for PET/MR. Diffusion-weighted imaging was performed. SUVmax was measured and compared between modalities and the apparent diffusion coefficient (ADC) using ROI analysis by an experienced radiologist using OsiriX. Strength of correlation between variables was measured using the Pearson correlation coefficient (r p). Of the 18 patients included in this study, 5 had HL and 13 had NHL. The median age was 51 ± 14.8 years. Sixty-five FDG-avid lesions were identified. All FDG-avid lesions were visible with comparable contrast, and therefore initial and follow-up staging was identical between both examinations. SUVmax from FDG-PET/MR [(mean ± sem) (21.3 ± 2.07)] vs. FDG-PET/CT (mean 23.2 ± 2.8) demonstrated a strongly positive correlation [r s = 0.95 (0.94, 0.99); p < 0.0001]. There was no correlation found between ADCmin and SUVmax from FDG-PET/MR [r = 0.17(-0.07, 0.66); p = 0.09]. FDG-PET/MR offers an equivalent whole-body staging examination as compared with PET/CT with an improved radiation safety profile in lymphoma patients. Correlation of ADC to SUVmax was weak, understating their lack of equivalence, but not undermining their potential synergy and differing importance.

  11. Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection.

    PubMed

    Yang, Li; Wang, Guobao; Qi, Jinyi

    2016-04-01

    Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.

  12. Competitive Advantage of PET/MRI

    PubMed Central

    Jadvar, Hossein; Colletti, Patrick M.

    2013-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  13. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase.

    PubMed

    Fecker, Tobias; Galaz-Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto P; Ramírez-Sarmiento, César A

    2018-03-27

    Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic

  15. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    PubMed Central

    Lassen, Martin L.; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin

    2017-01-01

    The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (VT). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05) for the K1 parameter and −19 ± 9% (p < 0.05) for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05) for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19 PMID:28769742

  16. Predictive factors of 18F-choline PET/CT positivity in patients with prostate cancer recurrence after radiation therapy: is the impact of PSA nadir underestimated?

    PubMed

    Johnson, Alison C; Dugué, Audrey Emmanuelle; Silva, Marlon; Moise, Laura; Tillou, Xavier; Joly, Florence; Aide, Nicolas

    2016-12-01

    The objective of this study is to explore the impact of PSA nadirs on detection rates of prostate cancer (PCa) recurrence with 18 F-choline (CH) PET/CT after external beam radiation therapy (EBRT). In this retrospective study, data were collected from 54 patients with suspicion of PCa biochemical recurrence after EBRT (28 patients treated initially with EBRT and 26 as salvage therapy in the absence of PSA decrease after initial treatment), who underwent 18 F-CH PET/CT between 2010 and 2015. PSA nadir and trigger PSA were collected from patient files. Relative PSA was calculated by subtracting the nadir from the trigger PSA. Median PSA nadir was 0.31 (0.01-13.31) ng/mL, trigger PSA was 7.85 (0.47-111.60) ng/mL, and relative PSA was 6.05 (0.24-104.59) ng/mL. Overall, 40 (74%) PET/CT scans were positive: recurrence was local and/or regional in 29 patients, distant in 15 and combined both in four, with no association between PSA values and sites of recurrence. In univariate analysis, trigger (p = 0.015) and relative (p = 0.0005) PSA values and PSA velocity (p = 0.01) were significantly linked to positive PET/CT, but PSA nadir was not. In subgroup analysis, these significant differences were only found in the salvage EBRT group. Akaike Information Criterion multivariate model comparison found that relative PSA was a better predictor of positive PET/CT than trigger PSA (PSAt). 18 F-CH PET/CT detection rates increased with trigger and relative PSA: 0% (0/4 patients), 71% (5/7 patients), and 81% (35/43 patients) for PSAt <2 ng/mL, 2≤ PSAt ≤4 ng/mL, and PSAt >4 ng/mL, respectively, and 14% (1/7 patients), 50% (5/10 patients), and 92% (34/37 patients) when relative PSA was taken into account instead of trigger PSA, with seven (13%) patients changing subgroups. We found a high overall detection rate and an increase in detection rates proportional to trigger and relative PSAs. Although relative PSA, taking into account PSA nadir, was a better predictive

  17. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    NASA Astrophysics Data System (ADS)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  18. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Natwa, M; Hall, NC

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%).more » In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.« less

  19. The spatial distribution of pet dogs and pet cats on the island of Ireland

    PubMed Central

    2011-01-01

    Background There is considerable international research regarding the link between human demographics and pet ownership. In several international studies, pet ownership was associated with household demographics including: the presence of children in the household, urban/rural location, level of education and age/family structure. What is lacking across all these studies, however, is an understanding of how these pets are spatially distributed throughout the regions under study. This paper describes the spatial distribution of pet dog and pet cat owning households on the island of Ireland. Results In 2006, there were an estimated 640,620 pet dog owning households and 215,542 pet cat owning households in Ireland. These estimates are derived from logistic regression modelling, based on household composition to determine pet dog ownership and the type of house to determine pet cat ownership. Results are presented using chloropleth maps. There is a higher density of pet dog owning households in the east of Ireland and in the cities than the west of Ireland and rural areas. However, in urban districts there are a lower proportion of households owning pet dogs than in rural districts. There are more households with cats in the urban areas, but the proportion of households with cats is greater in rural areas. Conclusions The difference in spatial distribution of dog ownership is a reflection of a generally higher density of households in the east of Ireland and in major cities. The higher proportion of ownership in the west is understandable given the higher proportion of farmers and rural dwellings in this area. Spatial representation allows us to visualise the impact of human household distribution on the density of both pet dogs and pet cats on the island of Ireland. This information can be used when analysing risk of disease spread, for market research and for instigating veterinary care. PMID:21663606

  20. The spatial distribution of pet dogs and pet cats on the island of Ireland.

    PubMed

    Downes, Martin J; Clegg, Tracy A; Collins, Daniel M; McGrath, Guy; More, Simon J

    2011-06-10

    There is considerable international research regarding the link between human demographics and pet ownership. In several international studies, pet ownership was associated with household demographics including: the presence of children in the household, urban/rural location, level of education and age/family structure. What is lacking across all these studies, however, is an understanding of how these pets are spatially distributed throughout the regions under study. This paper describes the spatial distribution of pet dog and pet cat owning households on the island of Ireland. In 2006, there were an estimated 640,620 pet dog owning households and 215,542 pet cat owning households in Ireland. These estimates are derived from logistic regression modelling, based on household composition to determine pet dog ownership and the type of house to determine pet cat ownership. Results are presented using chloropleth maps. There is a higher density of pet dog owning households in the east of Ireland and in the cities than the west of Ireland and rural areas. However, in urban districts there are a lower proportion of households owning pet dogs than in rural districts. There are more households with cats in the urban areas, but the proportion of households with cats is greater in rural areas. The difference in spatial distribution of dog ownership is a reflection of a generally higher density of households in the east of Ireland and in major cities. The higher proportion of ownership in the west is understandable given the higher proportion of farmers and rural dwellings in this area. Spatial representation allows us to visualise the impact of human household distribution on the density of both pet dogs and pet cats on the island of Ireland. This information can be used when analysing risk of disease spread, for market research and for instigating veterinary care.

  1. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters.

    PubMed

    Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L

    2014-12-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.

  2. Chemotherapy Response Assessment by FDG-PET-CT in Early-stage Classical Hodgkin Lymphoma: Moving Beyond the Five-Point Deauville Score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milgrom, Sarah A., E-mail: samilgrom@mdanderson.org; Dong, Wenli; Akhtari, Mani

    Purpose: In early-stage classical Hodgkin lymphoma, fluorodeoxyglucose positron emission tomography (PET)-computed tomography (CT) scans are performed routinely after chemotherapy, and the 5-point Deauville score is used to report the disease response. We hypothesized that other PET-CT parameters, considered in combination with Deauville score, would improve risk stratification. Methods and Materials: Patients treated for stage I to II Hodgkin lymphoma from 2003 to 2013, who were aged ≥18 years and had analyzable PET-CT scans performed before and after chemotherapy, were eligible. The soft tissue volume (STV), maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis were recorded from the PET-CTmore » scans before and after chemotherapy. Reductions were defined as 1 − (final PET-CT value)/(corresponding initial PET-CT value). The primary endpoint was freedom from progression (FFP). Results: For 202 patients treated with chemotherapy with or without radiation therapy, the 5-year FFP was 89% (95% confidence interval 85%-93%). All PET-CT parameters were strongly associated with the Deauville score (P<.001) and FFP (P<.0001) on univariate analysis. The Deauville score was highly predictive of FFP (C-index 0.89) but was less discriminating in the Deauville 1 to 4 subset (C-index 0.67). Therefore, we aimed to identify PET-CT parameters that would improve risk stratification for this subgroup (n=187). STV reduction was predictive of outcome (C-index 0.71) and was dichotomized with an optimal cutoff of 0.65 (65% reduction in STV). A model incorporating the Deauville score and STV reduction predicted FFP more accurately than either measurement alone in the Deauville 1 to 4 subset (C-index 0.83). The improvement in predictive accuracy of this composite measure compared with the Deauville score alone met statistical significance (P=.045). Conclusions: The relative reduction in tumor size is an independent predictor of outcome. Combined

  3. Evacuating People and Their Pets: Older Floridians' Need for and Proximity to Pet-Friendly Shelters.

    PubMed

    Douglas, Rachel; Kocatepe, Ayberk; Barrett, Anne E; Ozguven, Eren Erman; Gumber, Clayton

    2017-10-04

    Pets influence evacuation decisions, but little is known about pet-friendly emergency shelters' availability or older adults' need for them. Our study addresses this issue, focusing on the most densely populated area of Florida (Miami-Dade)-the state with the oldest population and greatest hurricane susceptibility. We use Geographic Information Systems (GIS)-based methodology to identify the shortest paths to pet-friendly shelters, based on distance and congested and uncongested travel times-taking into account the older population's spatial distribution. Logistic regression models using the 2013 American Housing Survey's Disaster Planning Module examine anticipated shelter use as a function of pet ownership and requiring pet evacuation assistance. Thirty-four percent of older adults in the Miami-Dade area have pets-35% of whom report needing pet evacuation assistance. However, GIS accessibility measures show that travel time factors are likely to impede older adults' use of the area's few pet-friendly shelters. Logistic regression results reveal that pet owners are less likely to report anticipating shelter use; however, the opposite holds for pet owners reporting they would need help evacuating their pets-they anticipate using shelters. High pet shelter need coupled with low availability exacerbates older adults' heightened vulnerability during Florida's hurricane season. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. F-18 Choline PET angiography of the pelvic arteries: evaluation of image quality and comparison with contrast-enhanced CT.

    PubMed

    Freesmeyer, Martin; Drescher, Robert

    2015-01-01

    The purpose was to show the feasibility of F-18 choline positron emission tomography (PET) angiography for the evaluation of abdominal and iliac arteries. Thirty-five patients were examined and image quality was scored. Findings were correlated with contrast-enhanced computed tomography. Image quality was best in the aorta and common iliac arteries (100% and 93% of vessels). Negative predictive values of PET angiography were excellent (100%), and positive predictive values were impaired by disease overestimation. PET angiography is technically feasible and of good image quality in large arteries. In selected cases, it may become an alternative to established angiographic methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in 68Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI.

    PubMed

    Freitag, Martin T; Radtke, Jan P; Afshar-Oromieh, Ali; Roethke, Matthias C; Hadaschik, Boris A; Gleave, Martin; Bonekamp, David; Kopka, Klaus; Eder, Matthias; Heusser, Thorsten; Kachelriess, Marc; Wieczorek, Kathrin; Sachpekidis, Christos; Flechsig, Paul; Giesel, Frederik; Hohenfellner, Markus; Haberkorn, Uwe; Schlemmer, Heinz-Peter; Dimitrakopoulou-Strauss, A

    2017-05-01

    The positron emission tomography (PET) tracer 68 Ga-PSMA-11, targeting the prostate-specific membrane antigen (PSMA), is rapidly excreted into the urinary tract. This leads to significant radioactivity in the bladder, which may limit the PET-detection of local recurrence (LR) of prostate cancer (PC) after radical prostatectomy (RP), developing in close proximity to the bladder. Here, we analyze if there is additional value of multi-parametric magnetic resonance imaging (mpMRI) compared to the 68 Ga-PSMA-11-PET-component of PET/CT or PET/MRI to detect LR. One hundred and nineteen patients with biochemical recurrence after prior RP underwent both hybrid 68 Ga-PSMA-11-PET/CT low-dose (1 h p.i.) and -PET/MRI (2-3 h p.i.) including a mpMRI protocol of the prostatic bed. The comparison of both methods was restricted to the abdomen with focus on LR (McNemar). Bladder-LR distance and recurrence size were measured in axial T2w-TSE. A logistic regression was performed to determine the influence of these variables on detectability in 68 Ga-PSMA-11-PET. Standardized-uptake-value (SUV mean ) quantification of LR was performed. There were 93/119 patients that had at least one pathologic finding. In addition, 18/119 Patients (15.1%) were diagnosed with a LR in mpMRI of PET/MRI but only nine were PET-positive in PET/CT and PET/MRI. This mismatch was statistically significant (p = 0.004). Detection of LR using the PET-component was significantly influenced by proximity to the bladder (p = 0.028). The PET-pattern of LR-uptake was classified into three types (1): separated from bladder; (2): fuses with bladder, and (3): obliterated by bladder). The size of LRs did not affect PET-detectability (p = 0.84), mean size was 1.7 ± 0.69 cm long axis, 1.2 ± 0.46 cm short-axis. SUV mean in nine men was 8.7 ± 3.7 (PET/CT) and 7.0 ± 4.2 (PET/MRI) but could not be quantified in the remaining nine cases (obliterated by bladder). The present study demonstrates

  6. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients.

    PubMed

    Soffer, Nitzan; Abuladze, Tamar; Woolston, Joelle; Li, Manrong; Hanna, Leigh Farris; Heyse, Serena; Charbonneau, Duane; Sulakvelidze, Alexander

    2016-01-01

    Contamination of pet food with Salmonella is a serious public health concern, and several disease outbreaks have recently occurred due to human exposure to Salmonella tainted pet food. The problem is especially challenging for raw pet foods (which include raw meats, seafood, fruits, and vegetables). These foods are becoming increasingly popular because of their nutritional qualities, but they are also more difficult to maintain Salmonella -free because they lack heat-treatment. Among various methods examined to improve the safety of pet foods (including raw pet food), one intriguing approach is to use bacteriophages to specifically kill Salmonella serotypes. At least 2 phage preparations (SalmoFresh® and Salmonelex™) targeting Salmonella are already FDA cleared for commercial applications to improve the safety of human foods. However, similar preparations are not yet available for pet food applications. Here, we report the results of evaluating one such preparation (SalmoLyse®) in reducing Salmonella levels in various raw pet food ingredients (chicken, tuna, turkey, cantaloupe, and lettuce). Application of SalmoLyse® in low (ca. 2-4×10 6 PFU/g) and standard (ca. 9×10 6 PFU/g) concentrations significantly ( P < 0.01) reduced (by 60-92%) Salmonella contamination in all raw foods examined compared to control treatments. When SalmoLyse®-treated (ca. 2×10 7 PFU/g) dry pet food was fed to cats and dogs, it did not trigger any deleterious side effects in the pets. Our data suggest that the bacteriophage cocktail lytic for Salmonella can significantly and safely reduce Salmonella contamination in various raw pet food ingredients.

  7. The MiniPET: a didactic PET system

    NASA Astrophysics Data System (ADS)

    Pedro, R.; Silva, J.; Gurriana, L.; Silva, J. M.; Maio, A.; Soares Augusto, J.

    2013-03-01

    The MiniPET project aims to design and build a small PET system. It consists of two 4 × 4 matrices of 16 LYSO scintillator crystals and two PMTs with 16 channels resulting in a low cost system with the essential functionality of a clinical PET instrument. It is designed to illustrate the physics of the PET technique and to provide a didactic platform for the training of students and nuclear imaging professionals as well as for scientific outreach. The PET modules can be configured to test for the coincidence of 511 keV gamma rays. The model has a flexible mechanical setup [1] and can simulate 14 diferent ring geometries, from a configuration with as few as 18 detectors per ring (ring radius phi=51 mm), up to a geometry with 70 detectors per ring (phi=200 mm). A second version of the electronic system [2] allowed measurement and recording of the energy deposited in 4 detector channels by photons from a 137Cs radioactive source and by photons resulting of the annihilation of positrons from a 22Na radioactive source. These energy spectra are used for detector performance studies, as well as angular dependency studies. In this paper, the mechanical setup, the front-end high-speed analog electronics, the digital acquisition and control electronics implemented in a FPGA, as well as the data-transfer interface between the FPGA board and a host PC are described. Recent preliminary results obtained with the 4 active channels in the prototype are also presented.

  8. Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid.

    PubMed

    Lococo, Filippo; Perotti, Germano; Cardillo, Giuseppe; De Waure, Chiara; Filice, Angelina; Graziano, Paolo; Rossi, Giulio; Sgarbi, Giorgio; Stefanelli, Antonella; Giordano, Alessandro; Granone, Pierluigi; Rindi, Guido; Versari, Annibale; Rufini, Vittoria

    2015-03-01

    The aims of this study were to retrospectively evaluate and compare the detection rate (DR) of 68Ga-DOTA-peptide and 18F-FDG PET/CT in the preoperative workup of patients with pulmonary carcinoid (PC) and to assess the utility of various functional indices obtained with the 2 tracers in predicting the histological characterization of PC, that is, typical versus atypical. Thirty-three consecutive patients with confirmed PC referred for 18F-FDG and 68Ga-DOTA-peptide PET/CT in 2 centers between January 2009 and April 2013 were included. The semiquantitative evaluation included the SUV max, the SUV of the tumor relative to the maximal liver uptake for 18F-FDG (SUV T/L) or the maximal spleen uptake for 68Ga-DOTA-peptides (SUV T/S), the ratio between SUV max of 68Ga-DOTA-peptides PET/CT, and the SUV max of 18F-FDG PET/CT (SUV max ratio). Histology was used as reference standard. Definitive diagnosis consisted of 23 typical carcinoids (TCs) and 10 atypical carcinoids. 18F-FDG PET/CT was positive in 18 cases and negative in 15 (55% DR). 68Ga-DOTA-peptide PET/CT was positive in 26 cases and negative in 7 (79% DR). In the subgroup analysis, 68Ga-DOTA-peptide PET/CT was superior in detecting TC (91% DR; P < 0.001), whereas 18F-FDG PET/CT was superior in detecting atypical carcinoid (100% DR; P = 0.04). The SUV max ratio was the most accurate semiquantitative index in identifying TC. Overall diagnostic performance of PET/CT in detecting PC is optimal when integrating 18F-FDG and 68Ga-DOTA-peptide PET/CT findings. In the subgroup analysis, the SUV max ratio seems to be the most accurate index in predicting TC. Both methods should be performed when PC is suspected or when the histological subtype is undefined.

  9. Selected PET radiomic features remain the same.

    PubMed

    Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko

    2018-04-17

    We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.

  10. The diagnostic performance and added value of (18)F-FDG PET/CT in the detection of liver metastases in recurrent colorectal carcinoma patients.

    PubMed

    Odalovic, Strahinja; Artiko, Vera; Sobic-Saranovic, Dragana; Stojiljkovic, Milica; Petrovic, Milorad; Petrovic, Nebojsa; Kozarevic, Nebojsa; Grozdic-Milojevic, Isidora; Obradovic, Vladimir

    2015-01-01

    The aim of this study was to assess the value of (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT in detection of liver metastases in patients with suspected recurrent colorectal carcinoma, as well as to compare diagnostic performance of (18)F-FDG PET/CT with conventional imaging methods (MDCT). This study included 73 patients with resected primary colorectal adenocarcinoma referred for (18)F-FDG PET/CT to the National PET Center, at the Clinical Center of Serbia, Belgrade, from January 2010 to May 2013, with suspicion of recurrence. The patients underwent (18)F-FDG PET/CT examination on a 64-slice hybrid PET/CT scanner (Biograph, TruePoint64, Siemens Medical Solutions, Inc. USA). Prior to (18)F-FDG PET/CT all patients underwent contrast-enhanced MDCT. Findings of (18)F-FDG PET/CT and MDCT were compared to findings of subsequent histopathological examinations or with results of clinical and imaging follow-up over at least six months. Final diagnosis of liver metastases of colorectal cancer was made either by histopathological examination of specimen after biopsy or surgery, or based on clinical, laboratory and imaging evaluation during first six months after PET/CT scan. In detection of liver metastases (18)F-FDG PET/CT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 83.3%, 95.3%, 92.6%, 89.1% and 90.4%, respectively. In addition, MDCT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy in detection of liver metastases of 60%, 88.4%, 78.3%, 76% and 76.7%, respectively. There was significant difference in sensitivity (83.3% vs 60%; P=0.045) between these two methods. In addition, significant difference was observed in accuracy between PET/CT and MDCT (90.4% vs 76.7%; P=0.016). The higher specificity in visualization of liver metastases was also achieved by (18)F-FDG PET/CT compared to MDCT (95.3% vs 88.4%), but this difference was not significant (P=0.37). (18)F-FDG PET

  11. Correlation between PET/CT parameters and KRAS expression in colorectal cancer.

    PubMed

    Chen, Shang-Wen; Chiang, Hua-Che; Chen, William Tzu-Liang; Hsieh, Te-Chun; Yen, Kuo-Yang; Chiang, Shu-Fen; Kao, Chia-Hung

    2014-08-01

    The objective of this study was to correlate the association between mutated KRAS and wild-type colorectal cancer (CRC) by using various F-FDG PET-related parameters. One hundred twenty-one CRC patients who had undergone preoperative PET/CT were included in this study. Several PET/CT-related parameters, including SUVmax and various thresholds of metabolic tumor volume, total lesion glycolysis, and PET/CT-based tumor width, were measured. Tumor- and PET/CT-related parameters were correlated with genomic expression between KRAS mutant and wild-type groups, using a Mann-Whitney U test and logistic regression analysis. Colorectal cancer tumors with a mutated KRAS exhibited higher SUVmax and an increased accumulation of FDG among several threshold methods. Multivariate analysis showed that SUVmax and using a 40% threshold level for maximal uptake of TW (TW40%) were the 2 predictors of KRAS mutations. The odds ratio was 1.23 for SUVmax (P = 0.02; 95% confidence interval, 1.01-1.52) and 1.15 for TW40% (P = 0.02; 95% confidence interval, 1.02-1.30). The accuracy of SUVmax for predicting mutated KRAS was higher in patients with colon or sigmoid colon cancers, whereas it was TW40% in those with rectal cancers. SUVmax and TW40% were associated in CRC with KRAS mutations. PET/CT parameters can supplement genomic analysis to determine KRAS expression in CRC.

  12. Enhancement of PET Images

    NASA Astrophysics Data System (ADS)

    Davis, Paul B.; Abidi, Mongi A.

    1989-05-01

    PET is the only imaging modality that provides doctors with early analytic and quantitative biochemical assessment and precise localization of pathology. In PET images, boundary information as well as local pixel intensity are both crucial for manual and/or automated feature tracing, extraction, and identification. Unfortunately, the present PET technology does not provide the necessary image quality from which such precise analytic and quantitative measurements can be made. PET images suffer from significantly high levels of radial noise present in the form of streaks caused by the inexactness of the models used in image reconstruction. In this paper, our objective is to model PET noise and remove it without altering dominant features in the image. The ultimate goal here is to enhance these dominant features to allow for automatic computer interpretation and classification of PET images by developing techniques that take into consideration PET signal characteristics, data collection, and data reconstruction. We have modeled the noise steaks in PET images in both rectangular and polar representations and have shown both analytically and through computer simulation that it exhibits consistent mapping patterns. A class of filters was designed and applied successfully. Visual inspection of the filtered images show clear enhancement over the original images.

  13. Response assessment of bevacizumab therapy in GBM with integrated 11C-MET-PET/MRI: a feasibility study.

    PubMed

    Deuschl, Cornelius; Moenninghoff, Christoph; Goericke, Sophia; Kirchner, Julian; Köppen, Susanne; Binse, Ina; Poeppel, Thorsten D; Quick, Harald H; Forsting, Michael; Umutlu, Lale; Herrmann, Ken; Hense, Joerg; Schlamann, Marc

    2017-08-01

    The objective of this study was to evaluate the potential of integrated 11C-MET PET/MR for response assessment of relapsed glioblastoma (GBM) receiving bevacizumab treatment. Eleven consecutive patients with relapsed GBM were enrolled for an integrated 11C-MET PET/MRI at baseline and at follow-up. Treatment response for MRI was evaluated according to Response Assessment in Neuro-oncology (RANO) criteria and integrated 11C-MET PET was assessed by the T/N ratio. MRI showed no patient with complete response (CR), six of 11 patients with PR, four of 11 patients with SD, and one of 11 patients with progressive disease (PD). PET revealed metabolic response in five of the six patients with partial response (PR) and in two of the four patients with stable disease (SD), whereas metabolic non-response was detected in one of the six patients with PR, in two of the four patients with SD, and in the one patient with PD. Morphological imaging was predictive for PFS and OS when response was defined as CR, PR, SD, and non-response as PD. Metabolic imaging was predictive when using T/N ratio reduction of >25 as discriminator. Based on the morphologic and metabolic findings of this study a proposal for applying integrated PET/MRI for treatment response in relapsed GBM was developed, which was significantly predictive for PFS and OS (P = 0.010 respectively 0,029, log). This study demonstrates the potential of integrated 11C-MET-PET/MRI for response assessment of GBM and the utility of combined assessment of morphologic and metabolic information with the proposal for assessing relapsed GBM.

  14. Principles of PET/MR Imaging.

    PubMed

    Disselhorst, Jonathan A; Bezrukov, Ilja; Kolb, Armin; Parl, Christoph; Pichler, Bernd J

    2014-06-01

    Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Clinical utility of FDG-PET in amyotrophic lateral sclerosis and Huntington's disease.

    PubMed

    Agosta, Federica; Altomare, Daniele; Festari, Cristina; Orini, Stefania; Gandolfo, Federica; Boccardi, Marina; Arbizu, Javier; Bouwman, Femke; Drzezga, Alexander; Nestor, Peter; Nobili, Flavio; Walker, Zuzana; Pagani, Marco

    2018-05-01

    To evaluate the incremental value of FDG-PET over clinical tests in: (i) diagnosis of amyotrophic lateral sclerosis (ALS); (ii) picking early signs of neurodegeneration in patients with a genetic risk of Huntington's disease (HD); and detecting metabolic changes related to cognitive impairment in (iii) ALS and (iv) HD patients. Four comprehensive literature searches were conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted using the Delphi method on these four diagnostic scenarios. The availability of evidence was good for FDG-PET utility to support the diagnosis of ALS, poor for identifying presymptomatic subjects carrying HD mutation who will convert to HD, and lacking for identifying cognitive-related metabolic changes in both ALS and HD. After the Delphi consensual procedure, the panel did not support the clinical use of FDG-PET for any of the four scenarios. Relative to other neurodegenerative diseases, the clinical use of FDG-PET in ALS and HD is still in its infancy. Once validated by disease-control studies, FDG-PET might represent a potentially useful biomarker for ALS diagnosis. FDG-PET is presently not justified as a routine investigation to predict conversion to HD, nor to detect evidence of brain dysfunction justifying cognitive decline in ALS and HD.

  16. Qualitative interpretation of PET scans using a Likert scale to assess neck node response to radiotherapy in head and neck cancer.

    PubMed

    Sjövall, Johanna; Bitzén, Ulrika; Kjellén, Elisabeth; Nilsson, Per; Wahlberg, Peter; Brun, Eva

    2016-04-01

    The aim of this study was to determine whether PET scans after radiotherapy (RT), visually interpreted as equivocal regarding metabolic neck node response can be used to accurately categorize patients as responders or nonresponders using a Likert scale and/or maximum standardized uptake value (SUVmax). Other aims were to determine the performance of different methods for assessing post-RT PET scans (visual inspection, a Likert scale and SUVmax) and to establish whether any method is superior in predicting regional control (RC) and overall survival (OS). In 105 patients with neck node-positive head and neck cancer, the neck node response was evaluated by FDG PET/CT 6 weeks after RT. The scans were clinically assessed by visual inspection and, for the purposes of this analysis, re-evaluated using the Deauville criteria, a five-point Likert scale previously used in lymphoma studies. In addition, SUVmax was determined. All assessment methods were able to significantly predict RC but not OS. The methods were also able to significantly predict remission of tumour after completion of RT. Of the 105 PET scans, 19 were judged as equivocal on visual inspection. The Likert scale was preferable to SUVmax for grouping patients as responders or nonresponders. All methods (visual inspection, SUVmax and the Likert scale) identified responders and nonresponders and predicted RC. A Likert scale is a promising tool to reduce to a minimum the problem of PET scans judged as equivocal. Consensus regarding qualitative assessment would facilitate PET reporting in clinical practice.

  17. Evaluation of [¹⁸F]PFH PET renography to predict future disease progression in a rat model of autosomal dominant polycystic kidney disease.

    PubMed

    Pathuri, Gopal; Hedrick, Andria F; Awasthi, Vibhudutta; Cowley, Benjamin D; Gali, Hariprasad

    2016-01-01

    Prognostic markers for progression of polycystic kidney disease (PKD) are limited. We evaluated the potential of early para-[(18)F]fluorohippurate ([(18)F]PFH) positron emission tomography (PET) renography to predict future progression of PKD in Han:SPRD rats with slowly progressive autosomal dominant PKD. Male and female heterozygous (Cy/+) and normal littermate (+/+) Han:SPRD rats underwent [(18)F]PFH PET renography and blood sampling to measure serum creatinine (S-Cr) and serum urea nitrogen (SUN) concentrations at 6 and 26 wk of age. T2 and T20 values, which represent the percent of the injected dose of [(18)F]PFH in kidneys at 2 and 20 min after injection, were determined from imaging data. T20/T2 ratio was assessed as a prognostic marker. Rats were euthanized after renography at 26 wk of age, and kidney weight/body weight ratios (KW/BW%) were determined as a measure of PKD progression. Male and female Cy/+ rats are known to manifest PKD of different severity, male Cy/+ rats display much more severe PKD than female rats. S-Cr and SUN concentrations did not differ between +/+ and Cy/+ rats and between female and male Cy/+ rats at 6 wk of age, but they were higher at 26 wk of age and male rats displayed higher values than female rats, which indicates inability of S-Cr and SUN to measure disease severity at an early stage. T20/T2 ratios were higher for Cy/+ than +/+ rats at 6 wk of age. Importantly, male Cy/+ rats displayed higher T20/T2 ratios than female Cy/+ rats. T20/T2 ratios obtained at 6 wk of age correlated well with S-Cr, SUN, and KW/BW% values obtained at 26 wk of age. This study indicates that T20/T2 ratio derived from [(18)F]PFH PET renography at an early age could be useful as a novel prognostic marker to predict future disease severity in a rat model of ADPKD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Clinical Nononcologic Applications of PET/CT and PET/MRI in Musculoskeletal, Orthopedic, and Rheumatologic Imaging.

    PubMed

    Gholamrezanezhad, Ali; Basques, Kyle; Batouli, Ali; Matcuk, George; Alavi, Abass; Jadvar, Hossein

    2018-06-01

    With improvements in PET/CT and PET/MRI over the last decade, as well as increased understanding of the pathophysiology of musculoskeletal diseases, there is an emerging potential for PET as a primary or complementary modality in the management of rheumatologic and orthopedic conditions. We discuss the role of PET/CT and PET/MRI in nononcologic musculoskeletal disorders, including inflammatory and infectious conditions and postoperative complications. There is great potential for an increased role for PET to serve as a primary or complementary modality in the management of orthopedic and rheumatologic disorders.

  19. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.

    2006-11-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  20. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    PubMed Central

    Mhlanga, Joyce C.; Carrino, John A.; Lodge, Martin; Wang, Hao

    2015-01-01

    Purpose The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18F-FDG. Methods Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Results Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73±7.7 years). Six patients served as the control group (53.7±9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r=0.86. p =0.007; r=0.94, p=0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7±6.6 vs. 32.2±0.4, p=0.02; 37.5±5.4 vs. 32.2±0.4, p=0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8±4.2 vs. 18±1.8, p= 0.13; 22.8±5.38 vs. 20.1±1.54, p=0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9±31.3 vs. 0, p=0.03). Conclusion Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. PMID:25134669

  1. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients

    PubMed Central

    Soffer, Nitzan; Abuladze, Tamar; Woolston, Joelle; Li, Manrong; Hanna, Leigh Farris; Heyse, Serena; Charbonneau, Duane; Sulakvelidze, Alexander

    2016-01-01

    ABSTRACT Contamination of pet food with Salmonella is a serious public health concern, and several disease outbreaks have recently occurred due to human exposure to Salmonella tainted pet food. The problem is especially challenging for raw pet foods (which include raw meats, seafood, fruits, and vegetables). These foods are becoming increasingly popular because of their nutritional qualities, but they are also more difficult to maintain Salmonella-free because they lack heat-treatment. Among various methods examined to improve the safety of pet foods (including raw pet food), one intriguing approach is to use bacteriophages to specifically kill Salmonella serotypes. At least 2 phage preparations (SalmoFresh® and Salmonelex™) targeting Salmonella are already FDA cleared for commercial applications to improve the safety of human foods. However, similar preparations are not yet available for pet food applications. Here, we report the results of evaluating one such preparation (SalmoLyse®) in reducing Salmonella levels in various raw pet food ingredients (chicken, tuna, turkey, cantaloupe, and lettuce). Application of SalmoLyse® in low (ca. 2–4×106 PFU/g) and standard (ca. 9×106 PFU/g) concentrations significantly (P < 0.01) reduced (by 60–92%) Salmonella contamination in all raw foods examined compared to control treatments. When SalmoLyse®-treated (ca. 2×107 PFU/g) dry pet food was fed to cats and dogs, it did not trigger any deleterious side effects in the pets. Our data suggest that the bacteriophage cocktail lytic for Salmonella can significantly and safely reduce Salmonella contamination in various raw pet food ingredients. PMID:27738557

  2. Artefacts of PET/CT images

    PubMed Central

    Pettinato, C; Nanni, C; Farsad, M; Castellucci, P; Sarnelli, A; Civollani, S; Franchi, R; Fanti, S; Marengo, M; Bergamini, C

    2006-01-01

    Positron emission tomography (PET) is a non-invasive imaging modality, which is clinically widely used both for diagnosis and accessing therapy response in oncology, cardiology and neurology. Fusing PET and CT images in a single dataset would be useful for physicians who could read the functional and the anatomical aspects of a disease in a single shot. The use of fusion software has been replaced in the last few years by integrated PET/CT systems, which combine a PET and a CT scanner in the same gantry. CT images have the double function to correct PET images for attenuation and can fuse with PET for a better visualization and localization of lesions. The use of CT for attenuation correction yields several advantages in terms of accuracy and patient comfort, but can also introduce several artefacts on PET-corrected images. PET/CT image artefacts are due primarily to metallic implants, respiratory motion, use of contrast media and image truncation. This paper reviews different types artefacts and their correction methods. PET/CT improves image quality and image accuracy. However, to avoid possible pitfalls the simultaneous display of both Computed Tomography Attenuation Corrected (CTAC) and non corrected PET images, side by side with CT images is strongly recommended. PMID:21614340

  3. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  4. PET studies in epilepsy

    PubMed Central

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex

  5. The ADNI PET Core: 2015

    PubMed Central

    Jagust, William J.; Landau, Susan M.; Koeppe, Robert A.; Reiman, Eric M.; Chen, Kewei; Mathis, Chester A.; Price, Julie C.; Foster, Norman L.; Wang, Angela Y.

    2015-01-01

    INTRODUCTION This paper reviews the work done in the ADNI PET core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI. METHODS The PET Core has utilized [18F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of FDG-PET in clinical trials, and relationships between different biomarkers and cognition. RESULTS Converging evidence from the PET Core has indicated that cross-sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale. CONCLUSION The PET Core has demonstrated a variety of methods for standardization of biomarkers such as florbetapir PET in a multicenter setting. PMID:26194311

  6. The Place of FDG PET/CT in Renal Cell Carcinoma: Value and Limitations

    PubMed Central

    Liu, Yiyan

    2016-01-01

    Unlike for most other malignancies, application of FDG PET/CT is limited for renal cell carcinoma (RCC), mainly due to physiological excretion of 18F-fluoro-2-deoxy-2-d-glucose (FDG) from the kidneys, which decreases contrast between renal lesions and normal tissue, and may obscure or mask the lesions of the kidneys. Published clinical observations were discordant regarding the role of FDG PET/CT in diagnosing and staging RCC, and FDG PET/CT is not recommended for this purpose based on current national and international guidelines. However, quantitative FDG PET/CT imaging may facilitate the prediction of the degree of tumor differentiation and allows for prognosis of the disease. FDG PET/CT has potency as an imaging biomarker to provide useful information about patient’s survival. FDG PET/CT can be effectively used for postoperative surveillance and restaging with high sensitivity, specificity, and accuracy, as early diagnosis of recurrent/metastatic disease can drastically affect therapeutic decision and alter outcome of patients. FDG uptake is helpful for differentiating benign or bland emboli from tumor thrombosis in RCC patients. FDG PET/CT also has higher sensitivity and accuracy when compared with bone scan to detect RCC metastasis to the bone. FDG PET/CT can play a strong clinical role in the management of recurrent and metastatic RCC. In monitoring the efficacy of new target therapy such as tyrosine kinase inhibitors (TKIs) treatment for advanced RCC, FDG PET/CT has been increasingly used to assess the therapeutic efficacy, and change in FDG uptake is a strong indicator of biological response to TKI. PMID:27656421

  7. PET-Tool: a software suite for comprehensive processing and managing of Paired-End diTag (PET) sequence data.

    PubMed

    Chiu, Kuo Ping; Wong, Chee-Hong; Chen, Qiongyu; Ariyaratne, Pramila; Ooi, Hong Sain; Wei, Chia-Lin; Sung, Wing-Kin Ken; Ruan, Yijun

    2006-08-25

    We recently developed the Paired End diTag (PET) strategy for efficient characterization of mammalian transcriptomes and genomes. The paired end nature of short PET sequences derived from long DNA fragments raised a new set of bioinformatics challenges, including how to extract PETs from raw sequence reads, and correctly yet efficiently map PETs to reference genome sequences. To accommodate and streamline data analysis of the large volume PET sequences generated from each PET experiment, an automated PET data process pipeline is desirable. We designed an integrated computation program package, PET-Tool, to automatically process PET sequences and map them to the genome sequences. The Tool was implemented as a web-based application composed of four modules: the Extractor module for PET extraction; the Examiner module for analytic evaluation of PET sequence quality; the Mapper module for locating PET sequences in the genome sequences; and the Project Manager module for data organization. The performance of PET-Tool was evaluated through the analyses of 2.7 million PET sequences. It was demonstrated that PET-Tool is accurate and efficient in extracting PET sequences and removing artifacts from large volume dataset. Using optimized mapping criteria, over 70% of quality PET sequences were mapped specifically to the genome sequences. With a 2.4 GHz LINUX machine, it takes approximately six hours to process one million PETs from extraction to mapping. The speed, accuracy, and comprehensiveness have proved that PET-Tool is an important and useful component in PET experiments, and can be extended to accommodate other related analyses of paired-end sequences. The Tool also provides user-friendly functions for data quality check and system for multi-layer data management.

  8. PET of serotonin 1A receptors and cerebral glucose metabolism for temporal lobectomy.

    PubMed

    Theodore, William H; Martinez, Ashley R; Khan, Omar I; Liew, Clarissa J; Auh, Sungyoung; Dustin, Irene M; Heiss, John; Sato, Susumu

    2012-09-01

    The objective of this study was to compare 5-hydroxytryptamine receptor 1A (5-HT(1A)) PET with cerebral metabolic rate of glucose (CMRglc) PET for temporal lobectomy planning. We estimated 5-HT(1A) receptor binding preoperatively with (18)F-trans-4-fluoro-N-2-[4-(2-methoxyphenyl) piperazin-1-yl]ethyl-N-(2-pyridyl) cyclohexane carboxamide ((18)F-FCWAY) PET and CMRglc measurement with (18)F-FDG in regions drawn on coregistered MRI after partial-volume correction in 41 patients who had anterior temporal lobectomy with at least a 1-y follow-up. Surgery was tailored to individual preresection evaluations and intraoperative electrocorticography. Mean regional asymmetry values and the number of regions with asymmetry exceeding 2 SDs in 16 healthy volunteers were compared between seizure-free and non-seizure-free patients. (18)F-FCWAY but not (18)F-FDG and MRI data were masked for surgical decisions and outcome assessment. Twenty-six of 41 (63%) patients seizure-free since surgery had significantly different mesial temporal asymmetries, compared with 15 non-seizure-free patients for both (18)F-FCWAY (F(1,39) = 5.87; P = 0.02) and (18)F-FDG PET (F(1,38) = 5.79; P = 0.021). The probability of being seizure-free was explained by both (18)F-FDG and (18)F-FCWAY PET, but not MRI, with a significant additional (18)F-FCWAY effect (chi(2)(2) = 9.8796; P = 0.0072) after the probability of being seizure-free was explained by (18)F-FDG. Although MRI alone was not predictive, any combination of 2 lateralizing imaging studies was highly predictive of seizure freedom. Our study provides class III evidence that both 5-HT(1A) receptor PET and CMRglc PET can contribute to temporal lobectomy planning. Additional studies should explore the potential for temporal lobectomy based on interictal electroencephalography and minimally invasive imaging studies.

  9. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    NASA Astrophysics Data System (ADS)

    España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M

    2009-03-01

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  10. PET Imaging of Tau Deposition in the Aging Human Brain

    PubMed Central

    Schonhaut, Daniel R.; O’Neil, James P.; Janabi, Mustafa; Ossenkoppele, Rik; Baker, Suzanne L.; Vogel, Jacob W.; Faria, Jamie; Schwimmer, Henry D.; Rabinovici, Gil D.; Jagust, William J.

    2016-01-01

    SUMMARY Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. Using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid, and was associated with decline in global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. The present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition. PMID:26938442

  11. PET Imaging of Tau Deposition in the Aging Human Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schöll, Michael; Lockhart, Samuel N.; Schonhaut, Daniel R.

    Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. In this study, using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline inmore » global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. In conclusion, the present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition.« less

  12. PET Imaging of Tau Deposition in the Aging Human Brain

    DOE PAGES

    Schöll, Michael; Lockhart, Samuel N.; Schonhaut, Daniel R.; ...

    2016-03-02

    Tau pathology is a hallmark of Alzheimer’s disease (AD) but also occurs in normal cognitive aging. In this study, using the tau PET agent 18F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline inmore » global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. In conclusion, the present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition.« less

  13. Evaluating pet foods: how confident are you when you recommend a commercial pet food?

    PubMed

    Zicker, Steven C

    2008-08-01

    The safety, adequacy, and efficacy of pet foods are important considerations for veterinarians and consumers. Manufacturers of pet foods in the United States are required to comply with multiple regulations from a variety of governmental and state agencies to market foods in the public sector. However, consumers and veterinarians may not be aware of the multiple systems in place that help ensure the safety and adequacy of foods for their pets. Since the veterinarian occupies a key role to make recommendations to consumers regarding pet foods, it is the purpose of this article to review the processes of pet food manufacturing, as well as the processes that have been developed to help ensure safety and adequacy of pet foods in the United States.

  14. Transmission of Bacterial Zoonotic Pathogens between Pets and Humans: The Role of Pet Food.

    PubMed

    Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Pradhan, Abani K

    2016-01-01

    Recent Salmonella outbreaks associated with dry pet food and treats raised the level of concern for these products as vehicle of pathogen exposure for both pets and their owners. The need to characterize the microbiological and risk profiles of this class of products is currently not supported by sufficient specific data. This systematic review summarizes existing data on the main variables needed to support an ingredients-to-consumer quantitative risk model to (1) describe the microbial ecology of bacterial pathogens in the dry pet food production chain, (2) estimate pet exposure to pathogens through dry food consumption, and (3) assess human exposure and illness incidence due to contact with pet food and pets in the household. Risk models populated with the data here summarized will provide a tool to quantitatively address the emerging public health concerns associated with pet food and the effectiveness of mitigation measures. Results of such models can provide a basis for improvements in production processes, risk communication to consumers, and regulatory action.

  15. Early Recognition of Chronic Traumatic Encephalopathy Through FDDNP PET Imaging

    DTIC Science & Technology

    2017-10-01

    imaging correlates with, and/or can predict, decline in cognitive function in those exposed to cumulative head trauma. 15. SUBJECT TERMS Traumatic...sheet-containing brain amyloid neuroaggregates. This project will examine whether FDDNP PET imaging correlates with, and/or can predict, decline in...with age. Table 1 - Regional uptake in ROIs with Age, Years of Pro Fighting, and Number of Pro Fights (Pearson’s correlations ; ns – non significant

  16. Qualification test of a MPPC-based PET module for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.

    2014-11-01

    We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.

  17. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  18. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  19. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually impaired...

  20. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually impaired...

  1. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually impaired...

  2. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  3. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  4. 7 CFR 502.11 - Pets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...

  5. The Impact of Pet Loss on the Perceived Social Support and Psychological Distress of Hurricane Survivors

    PubMed Central

    Lowe, Sarah R.; Rhodes, Jean E.; Zwiebach, Liza; Chan, Christian S.

    2013-01-01

    Associations between pet loss and posthurricane perceived social support and psychological distress were explored. Participants (N = 365) were primarily low-income African American single mothers who were initially part of an educational intervention study. All participants were exposed to Hurricane Katrina, and 47% experienced Hurricane Rita. Three waves of survey data, two from before the hurricanes, were included. Sixty-three participants (17.3%) reported losing a pet due to the hurricanes and their aftermath. Pet loss significantly predicted postdisaster distress, above and beyond demographic variables, pre- and postdisaster perceived social support, predisaster distress, hurricane-related stressors, and human bereavement, an association that was stronger for younger participants. Pet loss was not a significant predictor of postdisaster perceived social support, but the impact of pet loss on perceived social support was significantly greater for participants with low levels of predisaster support. PMID:19462438

  6. The impact of pet loss on the perceived social support and psychological distress of hurricane survivors.

    PubMed

    Lowe, Sarah R; Rhodes, Jean E; Zwiebach, Liza; Chan, Christian S

    2009-06-01

    Associations between pet loss and posthurricane perceived social support and psychological distress were explored. Participants (N = 365) were primarily low-income African American single mothers who were initially part of an educational intervention study. All participants were exposed to Hurricane Katrina, and 47% experienced Hurricane Rita. Three waves of survey data, two from before the hurricanes, were included. Sixty-three participants (17.3%) reported losing a pet due to the hurricanes and their aftermath. Pet loss significantly predicted postdisaster distress, above and beyond demographic variables, pre- and postdisaster perceived social support, predisaster distress, hurricane-related stressors, and human bereavement, an association that was stronger for younger participants. Pet loss was not a significant predictor of postdisaster perceived social support, but the impact of pet loss on perceived social support was significantly greater for participants with low levels of predisaster support.

  7. Adenocarcinoma Prostate With Neuroendocrine Differentiation: Potential Utility of 18F-FDG PET/CT and 68Ga-DOTANOC PET/CT Over 68Ga-PSMA PET/CT.

    PubMed

    Parida, Girish Kumar; Tripathy, Sarthak; Datta Gupta, Shreya; Singhal, Abhinav; Kumar, Rakesh; Bal, Chandrasekhar; Shamim, Shamim Ahmed

    2018-04-01

    Ga-PSMA PET/CT is the upcoming imaging modality for staging, restaging and response assessment of prostate cancer. However, due to neuroendocrine differentiation in some of patients with prostate cancer, they express somatostatin receptors instead of prostate specific membrane antigen. This can be exploited and other modalities like Ga-DOTANOC PET/CT and F-FDG PET/CT should be used in such cases for guiding management. We hereby discuss a similar case of 67-year-old man of adenocarcinoma prostate with neuroendocrine differentiation, which shows the potential pitfall of Ga-PSMA PET/CT imaging and benefit of Ga-DOTANOC PET/CT and F-FDG PET/CT in such cases.

  8. Radioembolization with 90Y glass microspheres for hepatocellular carcinoma: significance of pretreatment 11C-acetate and 18F-FDG PET/CT and posttreatment 90Y PET/CT in individualized dose prescription.

    PubMed

    Ho, Chi Lai; Chen, Sirong; Cheung, Shing Kee; Leung, Yim Lung; Cheng, Kam Chau; Wong, Ka Nin; Wong, Yuet Hung; Leung, Thomas Wai Tong

    2018-06-11

    The aim of this study was to establish an algorithm for the prescription of 90 Y glass microsphere radioembolization ( 90 Y-GMRE) of HCC in individual patients based on the relationship between tumour dose (TD) and response validated by 90 Y PET/CT dosimetry and dual-tracer PET/CT metabolic parameters. The study group comprised 62 HCC patients prospectively recruited for 90 Y-GMRE who underwent pretreatment dual-tracer ( 11 C-acetate and 18 F-FDG) PET/CT as surrogate markers of HCC cellular differentiation. Pretreatment tumour-to-nontumour ratio on 99m Tc-MAA SPECT/CT (T/NT MAA ) was correlated with posttreatment 90 Y PET/CT T/NT 90Y after quantification validation. The TD-response relationship for HCC of different tracer groups was assessed on follow-up PET/CT 2 months after treatment. 90 Y PET/CT was accurate in the measurement of recovery of injected 90 Y activity (81.9-99.9%, median 94.8%). Pretreatment SPECT/CT T/NT MAA was strongly correlated with posttreatment 90 Y PET/CT T/NT 90Y (5.6 ± 3.2 versus 5.9 ± 3.5, T/NT 90Y 1.01 × T/NT MAA  + 0.161, r = 0.918, P < 0.05). The response rates were 72.4% (21/29), 70.6% (12/17) and 25% (4/16) for well, moderately and poorly differentiated HCC, respectively. The cut-off TD for a good response was significantly different between poorly differentiated and well/moderately differentiated HCC (262 Gy versus 152/174 Gy) with 89.2% sensitivity and 88% specificity. At a limiting tolerated liver dose of 70 Gy, the T/NT MAA thresholds for predicting a good response in poorly differentiated and well/moderately differentiated HCC were 3.5 and 2.0/2.3. Disregarding HCC cellular differentiation, the cut-off TD became 170 Gy, with lower sensitivity (70.3%) and specificity (76%). 90 Y PET/CT can provide accurate dosimetry for 90 Y-GMRE. Pretreatment T/NT MAA predicts posttreatment T/NT 90Y . The TD thresholds for a good response are tracer-dependent, with a strong correlation between HCC radiosensitivity

  9. Assessment of early response to imatinib 800 mg after 400 mg progression by ¹⁸F-fluorodeoxyglucose PET in patients with metastatic gastrointestinal stromal tumors.

    PubMed

    Chacón, Matías; Eleta, Martín; Espindola, Adriel Rodríguez; Roca, Enrique; Méndez, Guillermo; Rojo, Sandra; Pupareli, Carmen

    2015-01-01

    Imatinib is the standard first-line therapy for advanced gastrointestinal stromal tumor. (18)F-fluorodeoxyglucose PET computed tomography (FDG PET/CT) shows a faster response than computed tomography in nonpretreated patients. After disease progression on imatinib 400 mg, 16 patients were exposed to 800 mg. Tumor response was evaluated by FDG PET/CT on days 7 and 37. Primary objective was to correlate early metabolic response (EMR) with progression-free survival (PFS). EMR by FDG PET/CT scan was not predictive of PFS. Median PFS in these patients was 3 months. Overall survival was influenced by gastric primary site (p = 0.05). The assessment of EMR by FDG PET/CT in patients with advanced gastrointestinal stromal tumor exposed to imatinib 800 mg was not predictive of PFS or overall survival.

  10. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...

  11. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...

  12. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...

  13. 36 CFR 2.15 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...

  14. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.

    PubMed

    Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian

    2018-03-08

    Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs

  15. 24 CFR 960.707 - Pet ownership.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in the...

  16. 24 CFR 960.707 - Pet ownership.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in the...

  17. 24 CFR 960.707 - Pet ownership.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in the...

  18. 24 CFR 960.707 - Pet ownership.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in the...

  19. Textural features of 18F-FDG PET after two cycles of neoadjuvant chemotherapy can predict pCR in patients with locally advanced breast cancer.

    PubMed

    Cheng, Lin; Zhang, Jianping; Wang, Yujie; Xu, Xiaoli; Zhang, Yongping; Zhang, Yingjian; Liu, Guangyu; Cheng, Jingyi

    2017-08-01

    This study was designed to evaluate the utility of textural features for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). Sixty-one consecutive patients with locally advanced breast cancer underwent 18 F-FDG PET/CT scanning at baseline and after the second course of NAC. Changes to imaging parameters [maximum standardized uptake value (SUV max ), metabolic tumor volume (MTV), total lesion glycolysis (TLG)] and textural features (entropy, coarseness, skewness) between the 2 scans were measured by two independent radiologists. Pathological responses were reviewed by one pathologist, and the significance of the predictive value of each parameter was analyzed using a Chi-squared test. Receiver operating characteristic curve analysis was used to compare the area under the curve (AUC) for each parameter. pCR was observed more often in patients with HER2-positive tumors (22 patients) than in patients with HER2-negative tumors (5 patients) (71.0 vs. 16.7%, p < 0.001). ∆ %SUV max , ∆ %entropy and ∆ %coarseness were significantly useful for differentiating pCR from non-pCR in the HER2-negative group, and the AUCs for these parameters were 0.928, 0.808 and 0.800, respectively (p = 0.003, 0.032 and 0.037). In the HER2-positive group, ∆ %SUV max and ∆ %skewness were moderately useful for predicting pCR, and the respective AUCs were 0.747 and 0.758 (p = 0.033 and 0.026). Although there was no significant difference in the AUCs between groups for these parameters, an additional 3/22 patients in the HER2-positive group with pCR were identified when ∆ %skewness and ∆ %SUV max were considered together (p = 0.031). The absolute values for each parameter before NAC and after 2 cycles cannot predict pCR in our patients. Neither ∆ %MTV nor ∆ %TLG was efficiently predictive of pCR in any group. The early changes in the textural features of 18 F-FDG PET images after two cycles of NAC are predictive of pCR in both HER2

  20. Myocardial perfusion imaging with PET

    PubMed Central

    Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr

    2013-01-01

    PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459

  1. Pet ownership and physical health.

    PubMed

    Matchock, Robert L

    2015-09-01

    Pet ownership and brief human-animal interactions can serve as a form of social support and convey a host of beneficial psychological and physiological health benefits. This article critically examines recent relevant literature on the pet-health connection. Cross-sectional studies indicate correlations between pet ownership and numerous aspects of positive health outcomes, including improvements on cardiovascular measures and decreases in loneliness. Quasi-experimental studies and better controlled experimental studies corroborate these associations and suggest that owning and/or interacting with a pet may be causally related to some positive health outcomes. The value of pet ownership and animal-assisted therapy (AAT), as a nonpharmacological treatment modality, augmentation to traditional treatment, and healthy preventive behavior (in the case of pet ownership), is starting to be realized. However, more investigations that employ randomized controlled trials with larger sample sizes and investigations that more closely examine the underlying mechanism of the pet-health effect, such as oxytocin, are needed.

  2. Older Latinos, pets, and health.

    PubMed

    Johnson, Rebecca A; Meadows, Richard L

    2002-10-01

    The majority of thefindings regarding pet ownership, interaction, and the human-animal bond have involved only Caucasians or have included other ethnic group members only incidentally. The extent to which older adultsfrom other ethnic groups may benefitfrom pet ownership and interaction is unclear. If the benefits of human-animal interaction are to be used effectively in promoting health and preventing illness, it is necessary to identify the "boundaries" of effectiveness for this interaction across various populations. The present study is an initial effort at describing one ethnic minority group, Latino pet owners, the extent of their relationships with their pet, and the extent to which these relationships may be beneficial in facilitating health. Twenty-four Latinos over age 50 were studied and are described in terms of their demographic characteristics, relationships with their pets, health, and exercise practices. The findings suggest that the participants were very devoted to their pets, had been involved with pets since childhood, and viewed themselves as healthy.

  3. Understanding the context for pet cat and dog feeding and exercising behaviour among pet owners in Ireland: a qualitative study.

    PubMed

    Downes, Martin J; Devitt, Catherine; Downes, Marie T; More, Simon J

    2017-01-01

    Pet cat and dog obesity contributes to increased risk of several diseases, including cancer and diabetes mellitus as well as a worsening of orthopaedic problems, and a reduction in survival rate. This study aims to develop a better understanding of cat and dog owners' self-reported beliefs and factors that influence owner behaviour around feeding and exercising their pet cat or dog, as there is a lack of in-depth understanding in this area. Seven focus group discussions, with 43 pet owners in total, were conducted. Pet owners often reported a perceived a low level of control over feeding; often undermined by other people feeding of their pet, their pets begging for food, and their pets attitude towards food. Treats were used in the absence of owner control over pet begging and emotional attachment, and to influence pet behaviour. The majority of participants had positive attitudes to pet exercise, which could be related to pet specific requirements, especially differences in cats and dogs. There were some negative experiences of stress associated with dog walking and fears over aggressive confrontations with other dogs. Feeding one's pet is influenced by beliefs about pet specific needs, pet food and pet health, pet owners' perceived control over feeding, and the implications for the pet owner. Pet exercise is influenced by beliefs about pet specific exercise needs, and the implications of exercising one's pet for the pet owner. Understanding owner behaviours on feeding and exercise allows for a more targeted approach to preventing and treating pet obesity.

  4. Prognostic significance of SUV on PET/CT in patients with localised oesophagogastric junction cancer receiving neoadjuvant chemotherapy/chemoradiation:a systematic review and meta-analysis.

    PubMed

    Zhu, W; Xing, L; Yue, J; Sun, X; Sun, X; Zhao, H; Yu, J

    2012-09-01

    The objective of this study was to comprehensively review the evidence for use of pre-treatment, post-treatment and changes in tumour glucose uptake that were assessed by 18-fludeoxyglucose ((18)F-FDG) positron emission tomography (PET) early, during or immediately after neoadjuvant chemotherapy/chemoradiation to predict prognosis of localised oesophagogastric junction (AEG) cancer. We searched for articles published in English; limited to AEG; (18)F-FDG uptake on PET performed on a dedicated device; dealt with the impact of standard uptake value (SUV) on survival. We extracted an estimate of the log hazard ratios (HRs) and their variances and performed meta-analysis. 798 patients with AEG were included. And the scan time for (18)F-FDG-PET was as follows: prior to therapy (PET1, n=646), exactly 2 weeks after initiation of neoadjuvant therapy (PET2, n=245), and pre-operatively (PET3, n=278). In the two meta-analyses for overall survival, including the studies that dealt with reduction of tumour maximum SUV (SUV(max)) (from PET1 to PET2/PET3 and from PET1 to PET2), the results were similar, with the overall HR for non-responders being 1.83 [95% confidence interval (CI), 1.41-2.36] and 2.62 (95% CI, 1.61-4.26), respectively; as for disease-free survival, the combined HR was 2.92 (95% CI, 2.08-4.10) and 2.39 (95% CI, 1.57-3.64), respectively. The meta-analyses did not attribute significant prognostic values to SUV(max) before and during therapy in localised AEG. Relative changes in FDG-uptake of AEG are better prognosticators. Early metabolic changes from PET1 to PET2 may provide the same accuracy for prediction of treatment outcome as late changes from PET1 to PET3.

  5. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT

    PubMed Central

    Ripa, Rasmus S; Knudsen, Andreas; Hag, Anne Mette F; Lebech, Anne-Mette; Loft, Annika; Keller, Sune H; Hansen, Adam E; von Benzon, Eric; Højgaard, Liselotte; Kjær, Andreas

    2013-01-01

    The study aimed at comparing PET/MR to PET/CT for imaging the carotid arteries in patients with known increased risk of atherosclerosis. Six HIV-positive men underwent sequential PET/MR and PET/CT of the carotid arteries after injection of 400 MBq of 18F-FDG. PET/MR was performed a median of 131 min after injection. Subsequently,PET/CT was performed. Regions of interest (ROI) were drawn slice by slice to include the carotid arteries and standardized uptake values (SUV) were calculated from both datasets independently. Quantitative comparison of 18F-FDG uptake revealed a high congruence between PET data acquired using the PET/MR system compared to the PET/CT system. The mean difference for SUVmean was -0.18 (p < 0.001) and -0.14 for SUVmax (p < 0.001) indicating a small but significant bias towards lower values using the PET/MR system. The 95% limits of agreement were -0.55 to 0.20 for SUVmean and -0.93 to 0.65 for SUVmax. The image quality of the PET/MR allowed for delineation of the carotid vessel wall. The correlations between 18F-FDG uptake from ROI including both vessel wall and vessel lumen to ROI including only the wall were strong (r = 0.98 for SUVmean and r = 1.00 for SUVmax) indicating that the luminal 18F-FDG content had minimal influence on the values. The study shows for the first time that simultaneous PET/MR of the carotid arteries is feasible in patients with increased risk of atherosclerosis. Quantification of 18F-FDG uptake correlated well between PET/MR and PET/CT despite difference in method of PET attenuation correction, reconstruction algorithm, and detector technology. PMID:23900769

  6. Advances in time-of-flight PET

    PubMed Central

    Surti, Suleman; Karp, Joel S.

    2016-01-01

    This paper provides a review and an update on time-of-flight PET imaging with a focus on PET instrumentation, ranging from hardware design to software algorithms. We first present a short introduction to PET, followed by a description of TOF PET imaging and its history from the early days. Next, we introduce the current state-of-art in TOF PET technology and briefly summarize the benefits of TOF PET imaging. This is followed by a discussion of the various technological advancements in hardware (scintillators, photo-sensors, electronics) and software (image reconstruction) that have led to the current widespread use of TOF PET technology, and future developments that have the potential for further improvements in the TOF imaging performance. We conclude with a discussion of some new research areas that have opened up in PET imaging as a result of having good system timing resolution, ranging from new algorithms for attenuation correction, through efficient system calibration techniques, to potential for new PET system designs. PMID:26778577

  7. UK pet owners' use of the internet for online pet health information.

    PubMed

    Kogan, Lori; Oxley, James A; Hellyer, Peter; Schoenfeld, Regina; Rishniw, Mark

    2018-05-26

    The internet has been found to be a popular source for human health information. However, there is a lack of information on pet owners' use of the internet to source pet health information and implications for the owner-veterinarian relationship. Therefore, the aim of this study was to address this gap in knowledge by focusing on UK pet owners' general use of the internet to find online pet health information and the impact of this behaviour on the owner-veterinarian relationship. An online survey targeting UK pet owners resulted in 571 respondents. Respondents reported the most frequently used source for pet health information was the internet (78.6 per cent), followed by their veterinarian (72 per cent). Veterinarians and other pet owners, however, were rated as the most trustworthy sources. The topics searched for most often online were specific medical problems (61.3 per cent) and diet/nutrition (58.5 per cent). Regarding the owner-veterinarian relationship, 42.1 per cent of participants reported discussing information they found online 'sometimes' with their veterinarian. When asked if their veterinarian recommended specific websites, nearly half (49.6 per cent) stated that their veterinarian 'never' made such recommendations, yet over 90 per cent said they would visit veterinarian-recommended websites. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Radioembolization and the Dynamic Role of 90Y PET/CT

    PubMed Central

    Pasciak, Alexander S.; Bourgeois, Austin C.; McKinney, J. Mark; Chang, Ted T.; Osborne, Dustin R.; Acuff, Shelley N.; Bradley, Yong C.

    2014-01-01

    Before the advent of tomographic imaging, it was postulated that decay of 90 Y to the 0+ excited state of 90Zr may result in emission of a positron–electron pair. While the branching ratio for pair-production is small (~32 × 10−6), PET has been successfully used to image 90 Y in numerous recent patients and phantom studies. 90 Y PET imaging has been performed on a variety of PET/CT systems, with and without time-of-flight (TOF) and/or resolution recovery capabilities as well as on both bismuth-germanate and lutetium yttrium orthosilicate (LYSO)-based scanners. On all systems, resolution and contrast superior to bremsstrahlung SPECT has been reported. The intrinsic radioactivity present in LYSO-based PET scanners is a potential limitation associated with accurate quantification of 90 Y. However, intrinsic radioactivity has been shown to have a negligible effect at the high activity concentrations common in 90 Y radioembolization. Accurate quantification is possible on a variety of PET scanner models, with or without TOF, although TOF improves accuracy at lower activity concentrations. Quantitative 90 Y PET images can be transformed into 3-dimensional (3D) maps of absorbed dose based on the premise that the 90 Y activity distribution does not change after infusion. This transformation has been accomplished in several ways, although the most common is with the use of 3D dose-point-kernel convolution. From a clinical standpoint, 90 Y PET provides a superior post-infusion evaluation of treatment technical success owing to its improved resolution. Absorbed dose maps generated from quantitative PET data can be used to predict treatment efficacy and manage patient follow-up. For patients who receive multiple treatments, this information can also be used to provide patient-specific treatment-planning for successive therapies, potentially improving response. The broad utilization of 90 Y PET has the potential to provide a wealth of dose

  9. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    PubMed

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  10. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast.

    PubMed

    Catalano, Onofrio Antonio; Daye, Dania; Signore, Alberto; Iannace, Carlo; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Filomena, Mazzeo; Mansi, Luigi; Soricelli, Andrea; Salvatore, Marco; Fuin, Niccolo; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-07-01

    The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.

  11. Evaluation of Prostate Cancer with 11C-Choline PET/CT for Treatment Planning, Response Assessment, and Prognosis.

    PubMed

    Ceci, Francesco; Castellucci, Paolo; Mapelli, Paola; Incerti, Elena; Picchio, Maria; Fanti, Stefano

    2016-10-01

    The aim of this review is to report on the value of 11 C-choline PET imaging as a diagnostic procedure for metastasis-directed therapies. Furthermore, the role of 11 C-choline PET/CT as a diagnostic tool for monitoring castration-resistant prostate cancer patients treated with systematic therapy is assessed. Finally, the role of 11 C-choline PET/CT in the prediction of survival in both castration-resistant prostate cancer patients and hormone-naïve patients is investigated. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Differentiation and diagnosis of benign and malignant testicular lesions using 18F-FDG PET/CT.

    PubMed

    Shao, Dan; Gao, Qiang; Tian, Xu-Wei; Wang, Si-Yun; Liang, Chang-Hong; Wang, Shu-Xia

    2017-08-01

    The purpose of this study was to evaluate the differential diagnostic value of 18 F-fluorodeoxy glucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) for benign and malignant testicular lesions. The PET/CT scans of 53 patients with testicular lesions confirmed by biopsy or surgical pathology were retrospectively analyzed. There were 32 cases of malignant tumors and 21 cases of benign lesions. Differences in the maximum standardized uptake value (SUVmax) measurements and the SUVmax lesion/background ratios between benign and malignant lesions were analyzed. The diagnostic value of this PET/CT modality for the differential diagnosis of benign versus malignant testicular lesions was calculated. The differences in the SUVmax measurements and the SUVmax lesion/background ratios between benign and malignant lesions were statistically significant (SUVmax: Z=-4.295, p=0.000; SUVmax lesion/background ratio: Z=-5.219, p=0.000); specifically, both of these indicators were higher in malignant lesions compared to benign lesions. An SUVmax of 3.75 was the optimal cutoff value to differentiate between benign and malignant testicular lesions. The diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of this PET/CT modality in the differential diagnosis of benign versus malignant testicular lesions were 90.6%, 80.9%, 86.8%, 87.9%, and 85.0%, respectively. 18 F-FDG PET/CT can accurately identify benign and malignant testicular lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Do allergic families avoid keeping furry pets?

    PubMed

    Bertelsen, R J; Carlsen, K C L; Granum, B; Carlsen, K-H; Håland, G; Devulapalli, C S; Munthe-Kaas, M C; Mowinckel, P; Løvik, M

    2010-06-01

    Studies addressing the relationship between pet keeping and development of asthma and allergies may be influenced by pet avoidance in families with a history of allergic disease. Following a cohort of 1019 children in Oslo till 10 years of age, we studied the association of pet keeping with socio-economic factors and allergic disease in the family. A family history of asthma and rhinoconjunctivitis was not significantly associated with pet ownership at birth or with pet removal by 10 years. Acquiring cats and dogs was less likely if the child had allergic rhinoconjunctivitis, whereas no association was seen with asthma (in any family member). Single parenthood increased the likelihood of acquiring a cat, smoking parents more often had cats or dogs, and having older siblings was associated with keeping dogs and other furry pets. Among 319 families reporting pet avoidance, 70% never had pets, 8% had given up pets, and 22% avoided a particular type of pet only. Twenty-four per cent of the parents failed to retrospectively report pet keeping during the child's first year of life. Overall, allergic rhinitis, but not asthma was associated with actual pet avoidance, whereas the strongest predictors for keeping pets were found to be socio-economic factors. Allergic disease in a child most often does not lead to the removal of the family's furry pet. Pet avoidance is associated with allergic symptoms, but not asthma. Socio-economic factors like parental education, single parenthood and smoking affects the families' decisions on pet keeping, including the type of pets the families will avoid or acquire. The large recall error demonstrated points to the need for prospective data regarding pet keeping.

  14. Pet ownership, dog types and attachment to pets in 9-10 year old children in Liverpool, UK.

    PubMed

    Westgarth, Carri; Boddy, Lynne M; Stratton, Gareth; German, Alexander J; Gaskell, Rosalind M; Coyne, Karen P; Bundred, Peter; McCune, Sandra; Dawson, Susan

    2013-05-13

    Little is known about ethnic, cultural and socioeconomic differences in childhood ownership and attitudes to pets. The objective of this study was to describe the factors associated with living with different pet types, as well as factors that may influence the intensity of relationship or 'attachment' that children have to their pet. Data were collected using a survey of 1021 9-10 year old primary school children in a deprived area of the city of Liverpool, UK. Dogs were the most common pet owned, most common 'favourite' pet, and species most attached to. Twenty-seven percent of dog-owning children (10% of all children surveyed) reported living with a 'Bull Breed' dog (which includes Pit Bulls and Staffordshire Bull Terriers), and the most popular dog breed owned was the Staffordshire Bull Terrier. Multivariable regression modelling identified a number of variables associated with ownership of different pets and the strength of attachment to the child's favourite pet. Girls were more likely to own most pet types, but were no more or less attached to their favourite pet than boys. Children of white ethnicity were more likely to own dogs, rodents and 'other' pets but were no more or less attached to their pets than children of non-white ethnicity. Single and youngest children were no more or less likely to own pets than those with younger brothers and sisters, but they showed greater attachment to their pets. Children that owned dogs lived in more deprived areas than those without dogs, and deprivation increased with number of dogs owned. 'Pit Bull or cross' and 'Bull Breed' dogs were more likely to be found in more deprived areas than other dog types. Non-whites were also more likely to report owning a 'Pit Bull or cross' than Whites. Gender, ethnicity and socioeconomic status were associated with pet ownership, and sibling status with level of attachment to the pet. These are important to consider when conducting research into the health benefits and risks of the

  15. [Pet ownership and health status of pets from immunocompromised children, with emphasis in zoonotic diseases].

    PubMed

    Abarca V, Katia; López Del P, Javier; Peña D, Anamaría; López G, J Carlos

    2011-06-01

    To characterize pet ownership and pet health status in families of immunocompromised (IS) children, with emphasis in zoonotic diseases. Families of IS children from two hospitals in Santiago, Chile, were interviewed and their pets were evaluated by veterinary examination, coproparasitologic and skin dermatophytes test. In specific cases, other laboratory tests were performed in IS children or their relatives. 47 out of 70 contacted families had pets, 42 participated in the study. Several risk factors for IS children were observed, as having a turtle as a pet and to clean cat or turtle faeces. Lack of adequate veterinary control, immunizations and deparasitation of pets were observed. Some animals showed zoonotic diseases or agents, as Brucella canis, Cryptosporidium sp, Giardia intestinalis, Toxocara canis and scabies. 44% of dogs had ticks and 37% had fleas, both potential vectors of infections. Our results suggest that policies to provide safer pet contact in IS children are needed.

  16. FDG-PET/CT can rule out malignancy in patients with vocal cord palsy.

    PubMed

    Thomassen, Anders; Nielsen, Anne Lerberg; Lauridsen, Jeppe Kiilerich; Blomberg, Björn Alexander; Hess, Søren; Petersen, Henrik; Johansen, Allan; Asmussen, Jon Thor; Sørensen, Jesper Roed; Johansen, Jørgen; Godballe, Christian; Høilund-Carlsen, Poul Flemming

    2014-01-01

    The aim was to investigate the performance of (18)F-fluorodeoxyglucose PET/CT to rule out malignancy in patients with confirmed vocal cord palsy (VCP). Between January 2011 and June 2013, we retrospectively included consecutive patients referred to PET/CT with paresis or paralysis of one or both vocal cords. PET/CT results were compared to clinical workup and histopathology. The study comprised 65 patients (32 females) with a mean age of 66±12 years (range 37-89). Eleven patients (17%) had antecedent cancer. Twenty-seven (42%) were diagnosed with cancer during follow-up. The palsy was right-sided in 24 patients, left-sided in 37, and bilateral in 4. Median follow-up was 7 months (interquartile range 4-11 months). Patients without cancer were followed for at least three months. PET/CT suggested a malignancy in 35 patients (27 true positives, 8 false positives) and showed none in 30 (30 true negatives, 0 false negatives). Thus, the sensitivity, specificity, positive and negative predictive values, and accuracy were (95% confidence intervals in parenthesis): 100% (88%-100%), 79% (64%-89%), 77% (61%-88%), 100% (89%-100%), and 88% (78%-94%), respectively. Sixteen patients had palliative treatment, while 11 were treated with curative intent, emphasising the severity of VCP and the need for a rapid and accurate diagnostic work-up. In this retrospective survey, biopsy proven malignancy (whether newly diagnosed or relapsed) was the cause of VCP in almost half of patients (42%). PET/CT had a high sensitivity (100%) with a relatively high false positive rate, but was excellent in ruling out malignancy (negative predictive value 100%).

  17. Prognostic value of interim FDG-PET in R-CHOP-treated diffuse large B-cell lymphoma: Systematic review and meta-analysis.

    PubMed

    Adams, Hugo J A; Kwee, Thomas C

    2016-10-01

    This study aimed to systematically review and meta-analyze the prognostic value of interim (18)F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in diffuse large B-cell lymphoma (DLBCL) patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). MEDLINE and EMBASE were systematically searched for suitable studies. Included studies were methodologically appraised, and results were summarized both descriptively and meta-analytically. Nine studies, comprising a total of 996 R-CHOP-treated DLBCL patients, were included. Overall, studies were of moderate methodological quality. The area under the summary receiver operating curve (AUC) of interim FDG-PET in predicting treatment failure and death were 0.651 and 0.817, respectively. There was no heterogeneity in diagnostic odds ratios across available studies (I(2)=0.0%). At multivariable analysis, 2 studies reported interim FDG-PET to have independent prognostic value in addition to the International Prognostic Index (IPI) in predicting treatment failure, whereas 3 studies reported that this was not the case. One study reported interim FDG-PET to have independent prognostic value in addition to the IPI in predicting death, whereas 2 studies reported that this was not the case. In conclusion, interim FDG-PET in R-CHOP-treated DLBCL has some correlation with outcome, but its prognostic value is homogeneously suboptimal across studies and it has not consistently proven to surpass the prognostic potential of the IPI. Moreover, there is a lack of studies that compared interim FDG-PET to the recently developed and superior National Comprehensive Cancer Network-IPI. Therefore, at present there is no scientific base to support the clinical use of interim FDG-PET in R-CHOP-treated DLBCL. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    PubMed

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  19. PET/MR Imaging in Gynecologic Oncology.

    PubMed

    Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina

    2017-08-01

    MR imaging and PET using 2-Deoxy-2-[ 18 F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging.

    PubMed

    Izquierdo-Garcia, David; Catana, Ciprian

    2016-04-01

    Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Quantitative assessment of atherosclerotic plaques on (18)F-FDG PET/MRI: comparison with a PET/CT hybrid system.

    PubMed

    Li, Xiang; Heber, Daniel; Rausch, Ivo; Beitzke, Dietrich; Mayerhoefer, Marius E; Rasul, Sazan; Kreissl, Michael; Mitthauser, Markus; Wadsak, Wolfgang; Hartenbach, Markus; Haug, Alexander; Zhang, Xiaoli; Loewe, Christian; Beyer, Thomas; Hacker, Marcus

    2016-07-01

    PET with (18)F-FDG has the potential to assess vascular macrophage metabolism. (18)F-FDG is most often used in combination with contrast-enhanced CT to localize increased metabolism to specific arterial lesions. Novel (18)F-FDG PET/MRI hybrid imaging shows high potential for the combined evaluation of atherosclerotic plaques, due to the superior morphological conspicuity of plaque lesions. The purpose of this study was to evaluate the reliability and accuracy of (18)F-FDG PET/MRI uptake quantification compared to PET/CT as a reference standard in patients with carotid atherosclerotic plaques. The study group comprised 34 consecutive oncological patients with carotid plaques who underwent both PET/CT and PET/MRI with (18)F-FDG on the same day. The presence of atherosclerotic plaques was confirmed by 3 T MRI scans. Maximum standardized uptake values (SUVmax) for carotid plaque lesions and the average SUV of the blood pool within the adjacent internal jugular vein were determined and target-to-blood ratios (TBRs, plaque to blood pool) were calculated. Atherosclerotic lesions with maximum colocalized focal FDG uptake were assessed in each patient. SUVmax values of carotid plaque lesions were significantly lower on PET/MRI than on PET/CT (2.3 ± 0.6 vs. 3.1 ± 0.6; P < 0.01), but were significantly correlated between PET/CT and PET/MRI (Spearman's r = 0.67, P < 0.01). In contrast, TBRmax values of plaque lesions were similar on PET/MRI and on PET/CT (2.2 ± 0.3 vs. 2.2 ± 0.3; P = 0.4), and again were significantly correlated between PET/MRI and PET/CT (Spearman's r = 0.73, P < 0.01). Considering the increasing trend in SUVmax and TBRmax values from early to delayed imaging time-points on PET/CT and PET/MRI, respectively, with continuous clearance of radioactivity from the blood, a slight underestimation of TBRmax values may also be expected with PET/MRI compared with PET/CT. SUVmax and TBRmax values are widely accepted reference

  2. Detection of Atherosclerotic Inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET Imaging.

    PubMed

    Tarkin, Jason M; Joshi, Francis R; Evans, Nicholas R; Chowdhury, Mohammed M; Figg, Nichola L; Shah, Aarti V; Starks, Lakshi T; Martin-Garrido, Abel; Manavaki, Roido; Yu, Emma; Kuc, Rhoda E; Grassi, Luigi; Kreuzhuber, Roman; Kostadima, Myrto A; Frontini, Mattia; Kirkpatrick, Peter J; Coughlin, Patrick A; Gopalan, Deepa; Fryer, Tim D; Buscombe, John R; Groves, Ashley M; Ouwehand, Willem H; Bennett, Martin R; Warburton, Elizabeth A; Davenport, Anthony P; Rudd, James H F

    2017-04-11

    Inflammation drives atherosclerotic plaque rupture. Although inflammation can be measured using fluorine-18-labeled fluorodeoxyglucose positron emission tomography ([ 18 F]FDG PET), [ 18 F]FDG lacks cell specificity, and coronary imaging is unreliable because of myocardial spillover. This study tested the efficacy of gallium-68-labeled DOTATATE ( 68 Ga-DOTATATE), a somatostatin receptor subtype-2 (SST 2 )-binding PET tracer, for imaging atherosclerotic inflammation. We confirmed 68 Ga-DOTATATE binding in macrophages and excised carotid plaques. 68 Ga-DOTATATE PET imaging was compared to [ 18 F]FDG PET imaging in 42 patients with atherosclerosis. Target SSTR2 gene expression occurred exclusively in "proinflammatory" M1 macrophages, specific 68 Ga-DOTATATE ligand binding to SST 2 receptors occurred in CD68-positive macrophage-rich carotid plaque regions, and carotid SSTR2 mRNA was highly correlated with in vivo 68 Ga-DOTATATE PET signals (r = 0.89; 95% confidence interval [CI]: 0.28 to 0.99; p = 0.02). 68 Ga-DOTATATE mean of maximum tissue-to-blood ratios (mTBR max ) correctly identified culprit versus nonculprit arteries in patients with acute coronary syndrome (median difference: 0.69; interquartile range [IQR]: 0.22 to 1.15; p = 0.008) and transient ischemic attack/stroke (median difference: 0.13; IQR: 0.07 to 0.32; p = 0.003). 68 Ga-DOTATATE mTBR max predicted high-risk coronary computed tomography features (receiver operating characteristics area under the curve [ROC AUC]: 0.86; 95% CI: 0.80 to 0.92; p < 0.0001), and correlated with Framingham risk score (r = 0.53; 95% CI: 0.32 to 0.69; p <0.0001) and [ 18 F]FDG uptake (r = 0.73; 95% CI: 0.64 to 0.81; p < 0.0001). [ 18 F]FDG mTBR max differentiated culprit from nonculprit carotid lesions (median difference: 0.12; IQR: 0.0 to 0.23; p = 0.008) and high-risk from lower-risk coronary arteries (ROC AUC: 0.76; 95% CI: 0.62 to 0.91; p = 0.002); however, myocardial [ 18 F]FDG spillover rendered coronary

  3. Simultaneous trimodal PET-MR-EEG imaging: Do EEG caps generate artefacts in PET images?

    PubMed

    Rajkumar, Ravichandran; Rota Kops, Elena; Mauler, Jörg; Tellmann, Lutz; Lerche, Christoph; Herzog, Hans; Shah, N Jon; Neuner, Irene

    2017-01-01

    Trimodal simultaneous acquisition of positron emission tomography (PET), magnetic resonance imaging (MRI), and electroencephalography (EEG) has become feasible due to the development of hybrid PET-MR scanners. To capture the temporal dynamics of neuronal activation on a millisecond-by-millisecond basis, an EEG system is appended to the quantitative high resolution PET-MR imaging modality already established in our institute. One of the major difficulties associated with the development of simultaneous trimodal acquisition is that the components traditionally used in each modality can cause interferences in its counterpart. The mutual interferences of MRI components and PET components on PET and MR images, and the influence of EEG electrodes on functional MRI images have been studied and reported on. Building on this, this study aims to investigate the influence of the EEG cap on the quality and quantification of PET images acquired during simultaneous PET-MR measurements. A preliminary transmission scan study on the ECAT HR+ scanner, using an Iida phantom, showed visible attenuation effect due to the EEG cap. The BrainPET-MR emission images of the Iida phantom with [18F]Fluordeoxyglucose, as well as of human subjects with the EEG cap, did not show significant effects of the EEG cap, even though the applied attenuation correction did not take into account the attenuation of the EEG cap itself.

  4. Annotating MYC Status in Treatment-Resistant Metastatic Castration-Resistant Prostate Cancer With Gallium-68 Citrate PET

    DTIC Science & Technology

    2017-09-01

    ongoing and interim analysis is planned within the next 6 months. Planned analyses include: 1) correlation of gallium citrate uptake on PET with MYC...utility of Gallium citrate PET as a pharmacodynamic and predictive biomarker of MYC pathway inhibition in mCRPC. Correlative pre- and post-treatment...completed Milestone Achieved: Last patient completes study follow up scan 36 Not yet completed Assess correlation between SUVmax on gallium

  5. Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: Its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT.

    PubMed

    Ohno, Yoshiharu; Fujisawa, Yasuko; Koyama, Hisanobu; Kishida, Yuji; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2017-01-01

    To directly compare the capability of dynamic first-pass contrast-enhanced (CE-) perfusion area-detector CT (ADCT) and PET/CT for early prediction of treatment response, disease progression and overall survival of non-small cell carcinoma (NSCLC) patients treated with chemoradiotherapy. Fifty-three consecutive Stage IIIB NSCLC patients who had undergone PET/CT, dynamic first-pass CE-perfusion ADCT, chemoradiotherapy, and follow-up examination were enrolled in this study. They were divided into two groups: 1) complete or partial response (CR+PR) and 2) stable or progressive disease (SD+PD). Pulmonary arterial and systemic arterial perfusions and total perfusion were assessed at targeted lesions with the dual-input maximum slope method, permeability surface and distribution volume with the Patlak plot method, tumor perfusion with the single-input maximum slope method, and SUV max , and results were averaged to determine final values for each patient. Next, step-wise regression analysis was used to determine which indices were the most useful for predicting therapeutic effect. Finally, overall survival of responders and non-responders assessed by using the indices that had a significant effect on prediction of therapeutic outcome was statistically compared. The step-wise regression test showed that therapeutic effect (r 2 =0.63, p=0.01) was significantly affected by the following three factors in order of magnitude of impact: systemic arterial perfusion, total perfusion, and SUV max . Mean overall survival showed a significant difference for total perfusion (p=0.003) and systemic arterial perfusion (p=0.04). Dynamic first-pass CE-perfusion ADCT as well as PET/CT are useful for treatment response prediction in NSCLC patients treated with chemoradiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Diagnostic Performance of 11C-choline PET/CT and FDG PET/CT in Prostate Cancer.

    PubMed

    Kitajima, Kazuhiro; Yamamoto, Shingo; Odawara, Soichi; Kobayashi, Kaoru; Fujiwara, Masayuki; Kamikonya, Norihiko; Fukushima, Kazuhito; Nakanishi, Yukako; Hashimoto, Takahiko; Yamada, Yusuke; Suzuki, Toru; Kanematsu, Akihiro; Nojima, Michio; Yamakado, Koichiro

    2018-06-01

    We compared 11C-choline and FDG PET/CT scan findings for the staging and restaging of prostate cancer. Twenty Japanese prostate cancer patients underwent 11C-choline and FDG PET/CT before (n=5) or after (n=15) treatment. Using a five-point scale, we compared these scanning modalities regarding patient- and lesion-based diagnostic performance for local recurrence, untreated primary tumor, and lymph node and bony metastases. Of the 20 patients, documented local lesions, and node and bony metastases were present in 11 (55.0%), 9 (45.0%), and 13 (65.0%), respectively. The patient-based sensitivity/specificity/accuracy/area under the receiver-operating-characteristic curve (AUC) values for 11C-choline-PET/CT for diagnosing local lesions were 90.9% /100%/ 95.0% / 1.0, whereas those for FDG-PET/CT were 45.5% /100%/ 75.0% / 0.773. Those for 11C-choline-PET/CT for node metastasis were 88.9% /100%/ 95.0% / 0.944, and those for FDG-PET/CT were 44.4%/100%/75.0%/0.722. Those for 11C-choline-PET/CT for bone metastasis were 84.6%/100%/90.0%/0.951, and those for FDG-PET/CT were 76.9% /100%/ 85.0% / 0.962. The AUCs for local lesion and node metastasis differed significantly (p=0.0039, p=0.011, respectively). The lesion-based detection rates of 11C-choline compared to FDG PET/CT for local lesion, and node and bone metastases were 91.7% vs. 41.7%, 92.0% vs. 32.0%, and 94.8% vs. 83.0% (p=0.041, p=0.0030, p<0.0001), respectively. 11C-choline-PET/CT is more useful for the staging and restaging of prostate cancer than FDG-PET/CT in Japanese men.

  7. The combination of preoperative PET/CT and sentinel lymph node biopsy in the surgical management of early-stage cervical cancer.

    PubMed

    Papadia, Andrea; Gasparri, Maria Luisa; Genoud, Sophie; Bernd, Klaeser; Mueller, Michael D

    2017-11-01

    The aim of the study was to evaluate the use of PET/CT and/or SLN mapping alone or in combination in cervical cancer patients. Data on stage IA1-IIA cervical cancer patients undergoing PET/CT and SLN mapping were retrospectively collected. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of PET/CT and SLN mapping, alone or in combination, in identifying cervical cancer patients with lymph node metastases were calculated. Sixty patients met the inclusion criteria. PET/CT showed a sensitivity of 68%, a specificity of 84%, a PPV of 61% and a NPV of 88% in detecting lymph nodal metastases. SLN mapping showed a sensitivity of 93%, a specificity of 100%, a PPV of 100% and a NPV of 97%. The combination of PET/CT and SLN mapping showed a sensitivity of 100%, a specificity of 86%, a PPV of 72% and a NPV of 100%. For patients with tumors of >2 cm in diameter, the PET/CT showed a sensitivity of 68%, a specificity of 72%, a PPV of 61% and a NPV of 86%. SLN mapping showed a sensitivity of 93%, a specificity of 100%, a PPV of 100% and a NPV of 95%. The combination of PET/CT and SLN mapping showed a sensitivity of 100%, a specificity of 76%, a PPV of 72% and a NPV of 100%. PET/CT represents a "safety net" that helps the surgeon in identifying metastatic lymph nodes, especially in patients with larger tumors.

  8. Pets and Parasites

    MedlinePlus

    ... in Children and TeensRead MoreBMI Calculator Cat and Dog BitesCat-Scratch DiseaseAvoiding SnakebitesDog Bites: How to Teach ... and Parasites Pets and Parasites Share Print A dog may be man’s best friend. However, household pets ...

  9. Recent Developments in PET Instrumentation

    PubMed Central

    Peng, Hao; Levin, Craig S.

    2013-01-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  10. SU-E-J-270: Repeated 18F-FDG PET/CTs Based Feature Analysis for the Predication of Anal Cancer Recurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Chuong, M; Choi, W

    Purpose: To identify PET/CT based imaging predictors of anal cancer recurrence and evaluate baseline vs. mid-treatment vs. post-treatment PET/CT scans in the tumor recurrence prediction. Methods: FDG-PET/CT scans were obtained at baseline, during chemoradiotherapy (CRT, midtreatment), and after CRT (post-treatment) in 17 patients of anal cancer. Four patients had tumor recurrence. For each patient, the mid-treatment and post-treatment scans were respectively aligned to the baseline scan by a rigid registration followed by a deformable registration. PET/CT image features were computed within the manually delineated tumor volume of each scan to characterize the intensity histogram, spatial patterns (texture), and shape ofmore » the tumors, as well as the changes of these features resulting from CRT. A total of 335 image features were extracted. An Exact Logistic Regression model was employed to analyze these PET/CT image features in order to identify potential predictors for tumor recurrence. Results: Eleven potential predictors of cancer recurrence were identified with p < 0.10, including five shape features, five statistical texture features, and one CT intensity histogram feature. Six features were indentified from posttreatment scans, 3 from mid-treatment scans, and 2 from baseline scans. These features indicated that there were differences in shape, intensity, and spatial pattern between tumors with and without recurrence. Recurrent tumors tended to have more compact shape (higher roundness and lower elongation) and larger intensity difference between baseline and follow-up scans, compared to non-recurrent tumors. Conclusion: PET/CT based anal cancer recurrence predictors were identified. The post-CRT PET/CT is the most important scan for the prediction of cancer recurrence. The baseline and mid-CRT PET/CT also showed value in the prediction and would be more useful for the predication of tumor recurrence in early stage of CRT. This work was supported in part

  11. Extended suicide with a pet.

    PubMed

    Cooke, Brian K

    2013-01-01

    The combination of the killing of a pet and a suicide is a perplexing scenario that is largely unexplored in the literature. Many forensic psychiatrists and psychologists may be unaccustomed to considering the significance of the killing of a pet. The subject is important, however, because many people regard their pets as members of their family. A case is presented of a woman who killed her pet dog and herself by carbon monoxide poisoning. The purpose of this article is to provide an initial exploration of the topic of extended suicide with a pet. Forensic mental health evaluations may have a role in understanding the etiology of this event and in opining as to the culpability of individuals who attempt to or successfully kill a pet and then commit suicide. Because the scientific literature is lacking, there is a need to understand this act from a variety of perspectives. First, a social and anthropological perspective will be presented that summarizes the history of the practice of killing of one's pet, with a focus on the ancient Egyptians. A clinical context will examine what relationship animals have to mental illness. A vast body of existing scientific data showing the relevance of human attachment to pets suggests that conclusions from the phenomena of homicide-suicide and filicide-suicide are applicable to extended suicide with a pet. Finally, recommendations will be proposed for both clinical and forensic psychiatrists faced with similar cases.

  12. Selecting Safe Pets (For Parents)

    MedlinePlus

    ... kids to wash their hands with soap and water after handling pets. Don't keep undomesticated animals as house pets. Pet ownership has many benefits, and doing a little research before taking the plunge will help make your ...

  13. Technical aspects of cardiac PET/MRI.

    PubMed

    Masuda, Atsuro; Nemoto, Ayaka; Takeishi, Yasuchika

    2018-06-01

    PET/MRI is a novel modality that enables to combine PET and MR images, and has significant potential to evaluate various cardiac diseases through the combination of PET molecular imaging and MRI functional imaging. Precise management of technical issues, however, is necessary for cardiac PET/MRI. This article describes several technical points, including patient preparation, MR attenuation correction, parallel acquisition of PET with MRI, clinical aspects, and image quality control.

  14. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.

    PubMed

    Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R

    2006-12-01

    PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.

  15. Understanding regulations affecting pet foods.

    PubMed

    Dzanis, David A

    2008-08-01

    In the United States, pet foods are subject to regulation at both the federal and the state levels. The US Food and Drug Administration has jurisdiction over all animal feeds (including pet foods, treats, chews, supplements, and ingredients) in interstate commerce, which includes imported products. Many states adopt and enforce at least in part the Association of American Feed Control Officials Model Bill and Model Regulations for Pet Food and Specialty Pet Food. Thus, all pet foods in multi-state distribution are subject to a host of labeling requirements covering aspects such as product names, ingredient lists, nutrient content guarantees, and nutritional adequacy statements. Ingredients must be GRAS (generally recognized as safe) substances, approved food additives, or defined by Association of American Feed Control Officials for their intended use. Pet food labels may not bear claims that are false or misleading or that state or imply use for the treatment or prevention of disease. Pet foods that are found to be adulterated or misbranded may be subject to seizure or other enforcement actions.

  16. Coregistered whole body magnetic resonance imaging-positron emission tomography (MRI-PET) versus PET-computed tomography plus brain MRI in staging resectable lung cancer: comparisons of clinical effectiveness in a randomized trial.

    PubMed

    Yi, Chin A; Lee, Kyung Soo; Lee, Ho Yun; Kim, Seonwoo; Kwon, O Jung; Kim, Hojoong; Choi, Joon Young; Kim, Byung-Tae; Hwang, Hye Sun; Shim, Young Mog

    2013-05-15

    The objective of this study was to assess whether coregistered whole brain (WB) magnetic resonance imaging-positron emission tomography (MRI-PET) would increase the number of correctly upstaged patients compared with WB PET-computed tomography (PET-CT) plus dedicated brain MRI in patients with nonsmall cell lung cancer (NSCLC). From January 2010 through November 2011, patients with NSCLC who had resectable disease based on conventional staging were assigned randomly either to coregistered MRI-PET or WB PET-CT plus brain MRI (ClinicalTrials.gov trial NCT01065415). The primary endpoint was correct upstaging (the identification of lesions with higher tumor, lymph node, or metastasis classification, verified with biopsy or other diagnostic test) to have the advantage of avoiding unnecessary thoracotomy, to determine appropriate treatment, and to accurately predict patient prognosis. The secondary endpoints were over staging and under staging compared with pathologic staging. Lung cancer was correctly upstaged in 37 of 143 patients (25.9%) in the MRI-PET group and in 26 of 120 patients (21.7%) in the PET-CT plus brain MRI group (4.2% difference; 95% confidence interval, -6.1% to 14.5%; P = .426). Lung cancer was over staged in 26 of 143 patients (18.2%) in the MRI-PET group and in 7 of 120 patients (5.8%) in the PET-CT plus brain MRI group (12.4% difference; 95% confidence interval, 4.8%-20%; P = .003), whereas lung cancer was under staged in 18 of 143 patients (12.6%) and in 28 of 120 patients (23.3%), respectively (-10.7% difference; 95% confidence interval, -20.1% to -1.4%; P = .022). Although both staging tools allowed greater than 20% correct upstaging compared with conventional staging methods, coregistered MRI-PET did not appear to help identify significantly more correctly upstaged patients than PET-CT plus brain MRI in patients with NSCLC. Copyright © 2013 American Cancer Society.

  17. Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdella M.; Tashima, Hideaki; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga

    2017-06-01

    There is a growing interest in developing brain PET scanners with high sensitivity and high spatial resolution for early diagnosis of neurodegenerative diseases and studies of brain functions. Sensitivity of the PET scanner can be improved by increasing the solid angle. However, conventional PET scanners are designed based on a cylindrical geometry, which may not be the most efficient design for brain imaging in terms of the balance between sensitivity and cost. We proposed a dedicated brain PET scanner based on a hemispheric shape detector and a chin detector (referred to as the helmet-chin PET), which is designed to maximize the solid angle by increasing the number of lines-of-response in the hemisphere. The parallax error, which PET scanners with a large solid angle tend to have, can be suppressed by the use of depth-of-interaction detectors. In this study, we carry out a realistic evaluation of the helmet-chin PET using Monte Carlo simulation based on the 4-layer GSO detector which consists of a 16  ×  16  ×  4 array of crystals with dimensions of 2.8  ×  2.8  ×  7.5 mm3. The purpose of this simulation is to show the gain in imaging performance of the helmet-chin PET compared with the cylindrical PET using the same number of detectors in each configuration. The sensitivity of the helmet-chin PET evaluated with a cylindrical phantom has a significant increase, especially at the top of the (field-of-view) FOV. The peak-NECR of the helmet-chin PET is 1.4 times higher compared to the cylindrical PET. The helmet-chin PET provides relatively low noise images throughout the FOV compared to the cylindrical PET which exhibits enhanced noise at the peripheral regions. The results show the helmet-chin PET can significantly improve the sensitivity and reduce the noise in the reconstructed images.

  18. Comparative characteristics of quantitative indexes for 18F-FDG uptake and metabolic volume in sequentially obtained PET/MRI and PET/CT.

    PubMed

    Lee, Soo Jin; Paeng, Jin Chul; Goo, Jin Mo; Lee, Jeong Min; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook

    2017-04-01

    The purpose of this study was to compare quantitative indexes for fluorine-18 fluorodeoxyglucose uptake and metabolic volume between PET/MRI and PET/CT. Sixty-six patients with solid tumors (32 with lung cancer and 34 with pancreatic cancer) who underwent sequential fluorine-18 fluorodeoxyglucose PET/MRI and PET/CT were retrospectively enrolled. On PET images, maximum and peak standardized uptake values (SUVmax and SUVpeak, respectively), and maximum tumor-to-liver ratio (TLRmax) were measured. Metabolic tumor volume (MTV) and total-lesion glycolysis (TLG) with margin thresholds of 50% SUVmax and SUV 2.5 (MTV50%, MTV2.5; TLG50%, TLG2.5, respectively) were compared between PET/MRI and PET/CT, with patients classified into two groups using imaging protocol (the PET/MRI-first and PET/CT-first groups). There were significant correlations of all tested indexes between PET/MRI and PET/CT (r=0.867-0.987, P<0.001). SUVmax and SUVpeak were lower on PET/MRI regardless of imaging protocol (P<0.001 in the PET/MRI-first group). In contrast, TLRmax exhibited reverse results between the PET/MRI-first and PET/CT-first groups. MTV50% and TLG values varied between PET/MRI and PET/CT, as well as between the PET/MRI-first and PET/CT-first groups. However, MTV2.5 was relatively robust against imaging protocol and modality. There are significant correlations of the quantitative indexes between PET/MRI and PET/CT. However, uptake indexes of SUVmax and SUVpeak are lower on PET/MRI than on PET/CT, and volumetric indexes of MTV50% and TLG values also exhibited significant differences. It may be suggested that TLRmax and MTV2.5 are relatively more appropriate indexes than others when PET/MRI and PET/CT are used interchangeably.

  19. Derivation of the scan time requirement for maintaining a consistent PET image quality

    NASA Astrophysics Data System (ADS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-05-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (FTS) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ṡ body weight0.3 and NECR = 421.36 (body weight)-0.84. The equation derived for FTS was 0.01ṡ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics.

  20. PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System.

    PubMed

    Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H

    2018-01-01

    The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count

  1. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  2. Metabolic tumour volume and total lesion glycolysis, measured using preoperative 18F-FDG PET/CT, predict the recurrence of endometrial cancer.

    PubMed

    Shim, S-H; Kim, D-Y; Lee, D-Y; Lee, S-W; Park, J-Y; Lee, J J; Kim, J-H; Kim, Y-M; Kim, Y-T; Nam, J-H

    2014-08-01

    To investigate the prognostic value of metabolic tumour volume (MTV) and total lesion glycolysis (TLG), measured by preoperative positron emission tomography and computerised tomography (PET/CT), in women with endometrial cancer. Retrospective cohort study. A tertiary referral centre. Women with endometrial cancer who underwent preoperative (18)F-FDG PET/CT in the period 2004-2009. Clinicopathological data for 84 women with endometrial cancer were reviewed from medical records. Cox proportional hazards modelling identified recurrence predictors. The receiver operating characteristic (ROC) curve was used to determine the cut-off value for predicting recurrence. Disease-free survival (DFS). The number of patients with International Federation of Gynecology and Obstetrics (FIGO) stages were: I (58); II (11); III (13); and IV (2). The median DFS was 48 (1-85) months. By univariate analysis, DFS was significantly associated with FIGO stage, histology, peritoneal cytology, myometrial invasion, nodal metastasis, serum CA-125, MTV, and TLG. Using multivariate analysis, the MTV (P = 0.010; hazard ratio, HR = 1.010; 95% confidence interval, 95% CI = 1.002-1.018) and TLG (P = 0.024; HR = 1.001; 95% CI = 1.000-1.002) were associated with DFS. The area under the ROC curve was 0.679 (95% CI = 0.505-0.836) after discriminating for recurrence using an MTV cut-off value of 17.15 ml. Regarding TLG, the cut-off value was 56.43 g and the area under the ROC plot was 0.661 (95% CI = 0.501-0.827). Kaplan-Meier survival graphs demonstrated a significant difference in DFS between groups categorised using the cut-off values for MTV and TLG (P < 0.022 for MTV and P < 0.047 for TLG, by log-rank test). Preoperative MTV and TLG could be independent prognostic factors predicting the recurrence of endometrial cancer. © 2014 Royal College of Obstetricians and Gynaecologists.

  3. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    PubMed Central

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC

  4. Prognostic Value of 18F-FLT PET in Patients with Neuroendocrine Neoplasms: A Prospective Head-to-Head Comparison with 18F-FDG PET and Ki-67 in 100 Patients.

    PubMed

    Johnbeck, Camilla B; Knigge, Ulrich; Langer, Seppo W; Loft, Annika; Berthelsen, Anne Kiil; Federspiel, Birgitte; Binderup, Tina; Kjaer, Andreas

    2016-12-01

    Neuroendocrine neoplasms (NENs) constitute a heterogeneous group of tumors arising in various organs and with a large span of aggressiveness and survival rates. The Ki-67 proliferation index is presently used as the key marker of prognosis, and treatment guidelines are largely based on this index. 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT) is a proliferation tracer for PET imaging valuable in the monitoring of disease progression and treatment response in various types of cancer. However, until now only data from 10 patients with NEN were available in the literature. The aim of the present study was to investigate 18 F-FLT PET as a prognostic marker for NENs in comparison with 18 F-FDG PET and Ki-67 index. One hundred patients were PET-scanned with both 18 F-FLT and 18 F-FDG within the same week, and the prognostic value of a positive scan was examined in terms of progression-free survival (PFS) and overall survival (OS). The correlation between the Ki-67 index and 18 F-FLT uptake was also investigated. Thirty-seven percent of patients had a positive 18 F-FLT PET scan, and 49% had 18 F-FDG PET-positive foci. Patients with a high 18 F-FLT uptake had a significantly shorter OS and PFS than patients with low or no 18 F-FLT uptake. No correlation was found between Ki-67 index and 18 F-FLT uptake. In a multivariate analysis 18 F-FLT, 18 F-FDG, and Ki-67 all were significant prognostic markers of PFS. For OS, only 18 F-FDG and Ki-67 remained significant. 18 F-FLT PET has prognostic value in NEN patients but when 18 F-FDG PET and Ki-67 index are also available, a multivariate model revealed that 18 F-FLT PET only adds information regarding PFS but not OS, whereas 18 F-FDG PET remains predictive of both PFS and OS. However, a clinically robust algorithm including 18 F-FLT in addition to 18 F-FDG and Ki-67 could not be found. Accordingly, the exact role, if any, of 18 F-FLT PET in NENs remains to be established. © 2016 by the Society of Nuclear Medicine and Molecular

  5. 18F-FDG PET/CT in Diagnostic and Prognostic Evaluation of Patients With Suspected Recurrence of Chondrosarcoma.

    PubMed

    Vadi, Shelvin Kumar; Mittal, Bhagwant Rai; Gorla, Arun Kumar Reddy; Sood, Ashwani; Basher, Rajender Kumar; Sood, Apurva; Kakkar, Nandita; Sen, Ramesh K

    2018-02-01

    The aim of the study was to analyze the diagnostic and prognostic utility of F-FDG PET/CT to predict the disease-specific survival (DSS) with FDG uptake and tumor grade in recurrent chondrosarcoma. Retrospective analysis of FDG PET/CT findings in 31 previously treated patients (46 studies) with mean follow-up period of 40.7 ± 23.9 months (range, 3-77 months) from the date of first PET/CT study was done. Kaplan-Meier DSS analysis was made with respect to tumor grade, FDG uptake at the recurrent primary sites, and a combination of grade and FDG uptake as parameters. Recurrence (local and distant) was shown in 28 (60.8%) of 46 FDG PET/CT studies with sensitivity and specificity of 88.9% and 78.9%, respectively. The median SUVmax at the recurrent primary sites differed significantly (P = 0.008) among 3 tumor grade groups, with higher median SUVmax in higher grades. There was significant difference in median SUVmax among different grade groups except between grade II and grade III. Recurrent primary site SUVmax cutoff at 6.15 derived from the receiver operating characteristic curve yielded significant difference (P < 0.001) in mean DSS time. Significant difference in survival was noted between 3 different tumor grade groups (P = 0.016). The combination of SUVmax and grade improved the survival prediction than with grade alone. In recurrent chondrosarcoma, the recurrent primary site FDG uptake and grade were found to be reliable prognostic factors with respect to DSS. PET/CT in recurrence setting has the potential to predict tumor grade and survival and may assist in clinical management.

  6. Diagnosis of non-osseous spinal metastatic disease: the role of PET/CT and PET/MRI.

    PubMed

    Batouli, Ali; Braun, John; Singh, Kamal; Gholamrezanezhad, Ali; Casagranda, Bethany U; Alavi, Abass

    2018-06-01

    The spine is the third most common site for distant metastasis in cancer patients with approximately 70% of patients with metastatic cancer having spinal involvement. Positron emission tomography (PET), combined with computed tomography (CT) or magnetic resonance imaging (MRI), has been deeply integrated in modern clinical oncology as a pivotal component of the diagnostic work-up of patients with cancer. PET is able to diagnose several neoplastic processes before any detectable morphological changes can be identified by anatomic imaging modalities alone. In this review, we discuss the role of PET/CT and PET/MRI in the diagnostic management of non-osseous metastatic disease of the spinal canal. While sometimes subtle, recognizing such disease on FDG PET/CT and PET/MRI imaging done routinely in cancer patients can guide treatment strategies to potentially prevent irreversible neurological damage.

  7. Hybrid registration of PET/CT in thoracic region with pre-filtering PET sinogram

    NASA Astrophysics Data System (ADS)

    Mokri, S. S.; Saripan, M. I.; Marhaban, M. H.; Nordin, A. J.; Hashim, S.

    2015-11-01

    The integration of physiological (PET) and anatomical (CT) images in cancer delineation requires an accurate spatial registration technique. Although hybrid PET/CT scanner is used to co-register these images, significant misregistrations exist due to patient and respiratory/cardiac motions. This paper proposes a hybrid feature-intensity based registration technique for hybrid PET/CT scanner. First, simulated PET sinogram was filtered with a 3D hybrid mean-median before reconstructing the image. The features were then derived from the segmented structures (lung, heart and tumor) from both images. The registration was performed based on modified multi-modality demon registration with multiresolution scheme. Apart from visual observations improvements, the proposed registration technique increased the normalized mutual information index (NMI) between the PET/CT images after registration. All nine tested datasets show marked improvements in mutual information (MI) index than free form deformation (FFD) registration technique with the highest MI increase is 25%.

  8. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas

    2018-02-01

    Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.

  9. Monitoring of anti-cancer treatment with 18F-FDG and 18F-FLT PET: a comprehensive review of pre-clinical studies

    PubMed Central

    Jensen, Mette Munk; Kjaer, Andreas

    2015-01-01

    Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) and 3’-deoxy-3’-[18F]fluorothymidine(18F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can be visualized and quantified non-invasively by PET. With 18F-FDG and 18F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to the applied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether 18F-FDG and/or 18F-FLT PET can be used for prediction of treatment response has been analyzed in many studies both following treatment with conventional chemotherapeutic agents but also following treatment with different targeted therapies, e.g. monoclonal antibodies and small molecules inhibitors. The results from these studies have been most variable; in some studies early changes in 18F-FDG and 18F-FLT uptake predicted later tumor regression whereas in other studies no change in tracer uptake was observed despite the treatment being effective. The present review gives an overview of pre-clinical studies that have used 18F-FDG and/or 18F-FLT PET for response monitoring of cancer therapeutics. PMID:26550536

  10. PET/MRI – Technical Review

    PubMed Central

    Muzic, Raymond F.; DiFilippo, Frank P.

    2015-01-01

    PET/MR is a hybrid imaging technology with the potential to combine the molecular and functional information of PET with the soft-tissue contrast of MR. Herein we review the technical features and challenges of putting these different technologies together. We emphasize the conceptual to make the material accessible to a wide audience. We begin by reviewing PET/CT, a more mature multi-modality imaging technology, to provide a basis for comparison to the history of PET/MR development. We discuss the motivation and challenges of PET/MR and different approaches that have been used to meet the challenges. We conclude with a speculation about the future of this exciting imaging method. PMID:25497909

  11. Clinical utility of FDG PET in Parkinson's disease and atypical parkinsonism associated with dementia.

    PubMed

    Walker, Zuzana; Gandolfo, Federica; Orini, Stefania; Garibotto, Valentina; Agosta, Federica; Arbizu, Javier; Bouwman, Femke; Drzezga, Alexander; Nestor, Peter; Boccardi, Marina; Altomare, Daniele; Festari, Cristina; Nobili, Flavio

    2018-05-19

    There are no comprehensive guidelines for the use of FDG PET in the following three clinical scenarios: (1) diagnostic work-up of patients with idiopathic Parkinson's disease (PD) at risk of future cognitive decline, (2) discriminating idiopathic PD from progressive supranuclear palsy, and (3) identifying the underlying neuropathology in corticobasal syndrome. We therefore performed three literature searches and evaluated the selected studies for quality of design, risk of bias, inconsistency, imprecision, indirectness and effect size. Critical outcomes were the sensitivity, specificity, accuracy, positive/negative predictive value, area under the receiving operating characteristic curve, and positive/negative likelihood ratio of FDG PET in detecting the target condition. Using the Delphi method, a panel of seven experts voted for or against the use of FDG PET based on published evidence and expert opinion. Of 91 studies selected from the three literature searches, only four included an adequate quantitative assessment of the performance of FDG PET. The majority of studies lacked robust methodology due to lack of critical outcomes, inadequate gold standard and no head-to-head comparison with an appropriate reference standard. The panel recommended the use of FDG PET for all three clinical scenarios based on nonquantitative evidence of clinical utility. Despite widespread use of FDG PET in clinical practice and extensive research, there is still very limited good quality evidence for the use of FDG PET. However, in the opinion of the majority of the panellists, FDG PET is a clinically useful imaging biomarker for idiopathic PD and atypical parkinsonism associated with dementia.

  12. Postoperative PET/CT and target delineation before adjuvant radiotherapy in patients with oral cavity squamous cell carcinoma.

    PubMed

    Dutta, Pinaki R; Riaz, Nadeem; McBride, Sean; Morris, Luc G; Patel, Snehal; Ganly, Ian; Wong, Richard J; Palmer, Frank; Schöder, Heiko; Lee, Nancy

    2016-04-01

    The purpose of this study was for us to present our evaluation of the effectiveness of positron emission tomography (PET)/CT imaging in postoperative patients with oral cavity squamous cell carcinoma (SCC) before initiating adjuvant radiation therapy. Treatment planning PET/CT scans were obtained in 44 patients with oral cavity SCC receiving adjuvant radiation. We identified target areas harboring macroscopic disease requiring higher radiation doses or additional surgery. Fourteen PET/CT scans were abnormal. Thirteen patients underwent surgery and/or biopsy, increased radiation dose, and/or addition of chemotherapy. Eleven patients received higher radiation doses. Patients undergoing imaging >8 weeks were more likely to have abnormal results (p = .01). One-year distant metastases-free survival was significantly worse in patients with positive PET/CT scans (61.5% vs 92.7%; p = .01). The estimated positive predictive value (PPV) was 38% for postoperative PET/CT scanning. We demonstrated that 32% of patients have abnormal PET/CT scans resulting in management changes. Patients may benefit from postoperative PET/CT imaging to optimize adjuvant radiation treatment planning. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1285-E1293, 2016. © 2015 Wiley Periodicals, Inc.

  13. Talking with Children about Furry Classroom Pets.

    ERIC Educational Resources Information Center

    Texas Child Care, 1994

    1994-01-01

    Notes that rodents and rabbits share many characteristics that make them suitable classroom pets and gives background information on rabbits, guinea pigs, hamsters, and gerbils. Offers advice on buying a classroom pet, the pet's home, feeding, helping the children handle the pet, and pet health and family planning. (TJQ)

  14. Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy Using Spatial-Temporal {sup 18}F-FDG PET Features, Clinical Parameters, and Demographics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Tan, Shan; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan

    2014-01-01

    Purpose: To construct predictive models using comprehensive tumor features for the evaluation of tumor response to neoadjuvant chemoradiation therapy (CRT) in patients with esophageal cancer. Methods and Materials: This study included 20 patients who underwent trimodality therapy (CRT + surgery) and underwent {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) both before and after CRT. Four groups of tumor features were examined: (1) conventional PET/CT response measures (eg, standardized uptake value [SUV]{sub max}, tumor diameter); (2) clinical parameters (eg, TNM stage, histology) and demographics; (3) spatial-temporal PET features, which characterize tumor SUV intensity distribution, spatial patterns, geometry, and associated changesmore » resulting from CRT; and (4) all features combined. An optimal feature set was identified with recursive feature selection and cross-validations. Support vector machine (SVM) and logistic regression (LR) models were constructed for prediction of pathologic tumor response to CRT, cross-validations being used to avoid model overfitting. Prediction accuracy was assessed by area under the receiver operating characteristic curve (AUC), and precision was evaluated by confidence intervals (CIs) of AUC. Results: When applied to the 4 groups of tumor features, the LR model achieved AUCs (95% CI) of 0.57 (0.10), 0.73 (0.07), 0.90 (0.06), and 0.90 (0.06). The SVM model achieved AUCs (95% CI) of 0.56 (0.07), 0.60 (0.06), 0.94 (0.02), and 1.00 (no misclassifications). With the use of spatial-temporal PET features combined with conventional PET/CT measures and clinical parameters, the SVM model achieved very high accuracy (AUC 1.00) and precision (no misclassifications)—results that were significantly better than when conventional PET/CT measures or clinical parameters and demographics alone were used. For groups with many tumor features (groups 3 and 4), the SVM model achieved significantly

  15. SU-D-201-05: Phantom Study to Determine Optimal PET Reconstruction Parameters for PET/MR Imaging of Y-90 Microspheres Following Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maughan, N; Conti, M; Parikh, P

    2015-06-15

    Purpose: Imaging Y-90 microspheres with PET/MRI following hepatic radioembolization has the potential for predicting treatment outcome and, in turn, improving patient care. The positron decay branching ratio, however, is very small (32 ppm), yielding images with poor statistics even when therapy doses are used. Our purpose is to find PET reconstruction parameters that maximize the PET recovery coefficients and minimize noise. Methods: An initial 7.5 GBq of Y-90 chloride solution was used to fill an ACR phantom for measurements with a PET/MRI scanner (Siemens Biograph mMR). Four hot cylinders and a warm background activity volume of the phantom were filledmore » with a 10:1 ratio. Phantom attenuation maps were derived from scaled CT images of the phantom and included the MR phased array coil. The phantom was imaged at six time points between 7.5–1.0 GBq total activity over a period of eight days. PET images were reconstructed via OP-OSEM with 21 subsets and varying iteration number (1–5), post-reconstruction filter size (5–10 mm), and either absolute or relative scatter correction. Recovery coefficients, SNR, and noise were measured as well as total activity in the phantom. Results: For the 120 different reconstructions, recovery coefficients ranged from 0.1–0.6 and improved with increasing iteration number and reduced post-reconstruction filter size. SNR, however, improved substantially with lower iteration numbers and larger post-reconstruction filters. From the phantom data, we found that performing 2 iterations, 21 subsets, and applying a 5 mm Gaussian post-reconstruction filter provided optimal recovery coefficients at a moderate noise level for a wide range of activity levels. Conclusion: The choice of reconstruction parameters for Y-90 PET images greatly influences both the accuracy of measurements and image quality. We have found reconstruction parameters that provide optimal recovery coefficients with minimized noise. Future work will include the

  16. 7 CFR 500.10 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Pets. 500.10 Section 500.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.10 Pets. Pets brought upon USNA...

  17. 7 CFR 500.10 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Pets. 500.10 Section 500.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.10 Pets. Pets brought upon USNA...

  18. 36 CFR 13.1234 - Pets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Pets. 13.1234 Section 13.1234 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... § 13.1234 Pets. Possessing a pet in the BCDA is prohibited. ...

  19. 36 CFR 13.1234 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Pets. 13.1234 Section 13.1234 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... § 13.1234 Pets. Possessing a pet in the BCDA is prohibited. ...

  20. 36 CFR 13.1234 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 13.1234 Section 13.1234 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... § 13.1234 Pets. Possessing a pet in the BCDA is prohibited. ...

  1. 36 CFR 13.1234 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pets. 13.1234 Section 13.1234 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... § 13.1234 Pets. Possessing a pet in the BCDA is prohibited. ...

  2. 7 CFR 500.10 - Pets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Pets. 500.10 Section 500.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.10 Pets. Pets brought upon USNA...

  3. 7 CFR 500.10 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Pets. 500.10 Section 500.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.10 Pets. Pets brought upon USNA...

  4. 7 CFR 500.10 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Pets. 500.10 Section 500.10 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL ARBORETUM Conduct on U.S. National Arboreturm Property § 500.10 Pets. Pets brought upon USNA...

  5. Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems?

    PubMed

    Cecchin, Diego; Palombit, Alessandro; Castellaro, Marco; Silvestri, Erica; Bui, Franco; Barthel, Henryk; Sabri, Osama; Corbetta, Maurizio; Bertoldo, Alessandra

    2017-12-01

    In the last 20 years growing attention has been devoted to multimodal imaging. The recent literature is rich of clinical and research studies that have been performed using different imaging modalities on both separate and integrated positron emission tomography (PET) and magnetic resonance (MR) scanners. However, today, hybrid PET/MR systems measure signals related to brain structure, metabolism, neurochemistry, perfusion, and neuronal activity simultaneously, i.e. in the same physiological conditions. A frequently raised question at meeting and symposia is: "Do we really need a hybrid PET/MR system? Are there any advantages over acquiring sequential and separate PET and MR scans?" The present paper is an attempt to answer these questions specifically in relation to PET combined with functional magnetic resonance imaging (fMRI) and arterial spin labeling. We searched (last update: June 2017) the databases PubMed, PMC, Google Scholar and Medline. We also included additional studies if they were cited in the selected articles. No language restriction was applied to the search, but the reviewed articles were all in English. Among all the retrieved articles, we selected only those performed using a hybrid PET/MR system. We found a total of 17 papers that were selected and discussed in three main groups according to the main radiopharmaceutical used: 18F-fluorodeoxyglucose (18F-FDG) (N.=8), 15O-water (15O-H2O) (N.=3) and neuroreceptors (N.=6). Concerning studies using 18F-FDG, simultaneous PET/fMRI revealed that global aspects of functional organization (e.g. graph properties of functional connections) are partially associated with energy consumption. There are remarkable spatial and functional similarities across modalities, but also discrepant findings. More work is needed on this point. There are only a handful of papers comparing blood flow measurements with PET 15O-H2O and MR arterial spin label (ASL) measures, and they show significant regional CBF differences

  6. Are Pets in the Bedroom a Problem?

    PubMed

    Krahn, Lois E; Tovar, M Diane; Miller, Bernie

    2015-12-01

    The presence of pets in the bedroom can alter the sleep environment in ways that could affect sleep. Data were collected by questionnaire and interview from 150 consecutive patients seen at the Center for Sleep Medicine, Mayo Clinic in Arizona. Seventy-four people (49%) reported having pets, with 31 (41% of pet owners) having multiple pets. More than half of pet owners (56%) allowed their pets to sleep in the bedroom. Fifteen pet owners (20%) described their pets as disruptive, whereas 31 (41%) perceived their pets as unobtrusive or even beneficial to sleep. Health care professionals working with patients with sleep concerns should inquire about the presence of companion animals in the sleep environment to help them find solutions and optimize their sleep. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  7. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT.

    PubMed

    Heusch, Philipp; Buchbender, Christian; Köhler, Jens; Nensa, Felix; Gauler, Thomas; Gomez, Benedikt; Reis, Henning; Stamatis, Georgios; Kühl, Hilmar; Hartung, Verena; Heusner, Till A

    2014-03-01

    Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference. Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging. PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET

  8. Genetic Alterations in Colorectal Cancer Have Different Patterns on 18F-FDG PET/CT.

    PubMed

    Chen, Shang-Wen; Lin, Chien-Yu; Ho, Cheng-Man; Chang, Ya-Sian; Yang, Shu-Fen; Kao, Chia-Hung; Chang, Jan-Gowth

    2015-08-01

    The aim of this study was to understand the association between various genetic mutation and (18)F-FDG PET-related parameters in patients with colorectal cancer (CRC). One hundred three CRC patients who had undergone preoperative PET/CTs were included in this study. Several PET/CT-related parameters, including SUV(max), and various thresholds of metabolic tumor volume, total lesion glycolysis, and PET/CT-based tumor width (TW) were measured. Using high-resolution melting methods for genetic mutation analysis, tumor- and PET/CT-related parameters were correlated with various genetic alterations including TP53, KRAS, APC, BRAF, and PIK3CA. Mann-Whitney U test and logistic regression analysis were carried out for this analysis. Genetic alterations in TP53, KRAS, and APC were found in 41 (40%), 34 (33%), and 27 (26%) of tumors, respectively. PIK3CA and BRAF were exhibited by 5 and 4 of the patients with CRC. TP53 mutants exhibited higher SUV(max). The odds ratio was 1.28 (P = 0.04; 95% confidence interval, 1.01-1.61). Tumors with a mutated KRAS had an increased accumulation of FDG using a 40% threshold level for maximal uptake of TW (TW(40%)), whereas the odds ratio was 1.15 (P = 0.001; 95% confidence interval, 1.06-1.24). The accuracy of SUV(max) greater than 10 in predicting TP53 mutation was 60%, whereas that for TW(40%) for KRAS was 61%. Increased SUV(max) and TW(40%) were associated in CRC tumors with TP53 and KRAS mutations, respectively. Further studies are required because of the low predictive accuracy.

  9. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-01

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra

  10. Partition Model-Based 99mTc-MAA SPECT/CT Predictive Dosimetry Compared with 90Y TOF PET/CT Posttreatment Dosimetry in Radioembolization of Hepatocellular Carcinoma: A Quantitative Agreement Comparison.

    PubMed

    Gnesin, Silvano; Canetti, Laurent; Adib, Salim; Cherbuin, Nicolas; Silva Monteiro, Marina; Bize, Pierre; Denys, Alban; Prior, John O; Baechler, Sebastien; Boubaker, Ariane

    2016-11-01

    90 Y-microsphere selective internal radiation therapy (SIRT) is a valuable treatment in unresectable hepatocellular carcinoma (HCC). Partition-model predictive dosimetry relies on differential tumor-to-nontumor perfusion evaluated on pretreatment 99m Tc-macroaggregated albumin (MAA) SPECT/CT. The aim of this study was to evaluate agreement between the predictive dosimetry of 99m Tc-MAA SPECT/CT and posttreatment dosimetry based on 90 Y time-of-flight (TOF) PET/CT. We compared the 99m Tc-MAA SPECT/CT results for 27 treatment sessions (25 HCC patients, 41 tumors) with 90 Y SIRT (7 glass spheres, 20 resin spheres) and the posttreatment 90 Y TOF PET/CT results. Three-dimensional voxelized dose maps were computed from the 99m Tc-MAA SPECT/CT and 90 Y TOF PET/CT data. Mean absorbed dose ([Formula: see text]) was evaluated to compute the predicted-to-actual dose ratio ([Formula: see text]) in tumor volumes (TVs) and nontumor volumes (NTVs) for glass and resin spheres. The Lin concordance ([Formula: see text]) was used to measure accuracy ([Formula: see text]) and precision (ρ). Administered activity ranged from 0.8 to 1.9 GBq for glass spheres and from 0.6 to 3.4 GBq for resin spheres, and the respective TVs ranged from 2 to 125 mL and from 6 to 1,828 mL. The mean dose [Formula: see text] was 240 Gy for glass and 122 Gy for resin in TVs and 72 Gy for glass and 47 Gy for resin in NTVs. [Formula: see text] was 1.46 ± 0.58 (0.65-2.53) for glass and 1.16 ± 0.41 (0.54-2.54) for resin, and the respective values for [Formula: see text] were 0.88 ± 0.15 (0.56-1.00) and 0.86 ± 0.2 (0.58-1.35). DR variability was substantially lower in NTVs than in TVs. The Lin concordance between [Formula: see text] and [Formula: see text] (resin) was significantly better for tumors larger than 150 mL than for tumors 150 mL or smaller ([Formula: see text] = 0.93 and [Formula: see text] = 0.95 vs. [Formula: see text] = 0.57 and [Formula: see text] = 0.93; P < 0.05). In 90 Y radioembolization

  11. 36 CFR § 1002.15 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Pets. § 1002.15 Section Â... RECREATION § 1002.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building... closed to the possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying...

  12. Spatiotemporal distribution modeling of PET tracer uptake in solid tumors.

    PubMed

    Soltani, Madjid; Sefidgar, Mostafa; Bazmara, Hossein; Casey, Michael E; Subramaniam, Rathan M; Wahl, Richard L; Rahmim, Arman

    2017-02-01

    Distribution of PET tracer uptake is elaborately modeled via a general equation used for solute transport modeling. This model can be used to incorporate various transport parameters of a solid tumor such as hydraulic conductivity of the microvessel wall, transvascular permeability as well as interstitial space parameters. This is especially significant because tracer delivery and drug delivery to solid tumors are determined by similar underlying tumor transport phenomena, and quantifying the former can enable enhanced prediction of the latter. We focused on the commonly utilized FDG PET tracer. First, based on a mathematical model of angiogenesis, the capillary network of a solid tumor and normal tissues around it were generated. The coupling mathematical method, which simultaneously solves for blood flow in the capillary network as well as fluid flow in the interstitium, is used to calculate pressure and velocity distributions. Subsequently, a comprehensive spatiotemporal distribution model (SDM) is applied to accurately model distribution of PET tracer uptake, specifically FDG in this work, within solid tumors. The different transport mechanisms, namely convention and diffusion from vessel to tissue and in tissue, are elaborately calculated across the domain of interest and effect of each parameter on tracer distribution is investigated. The results show the convection terms to have negligible effect on tracer transport and the SDM can be solved after eliminating these terms. The proposed framework of spatiotemporal modeling for PET tracers can be utilized to comprehensively assess the impact of various parameters on the spatiotemporal distribution of PET tracers.

  13. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold?

    PubMed

    de Galiza Barbosa, F; Delso, G; Ter Voert, E E G W; Huellner, M W; Herrmann, K; Veit-Haibach, P

    2016-07-01

    Integrated positron-emission tomography and computed tomography (PET/CT) is one of the most important imaging techniques to have emerged in oncological practice in the last decade. Hybrid imaging, in general, remains a rapidly growing field, not only in developing countries, but also in western industrialised healthcare systems. A great deal of technological development and research is focused on improving hybrid imaging technology further and introducing new techniques, e.g., integrated PET and magnetic resonance imaging (PET/MRI). Additionally, there are several new PET tracers on the horizon, which have the potential to broaden clinical applications in hybrid imaging for diagnosis as well as therapy. This article aims to highlight some of the major technical and clinical advances that are currently taking place in PET/CT and PET/MRI that will potentially maintain the position of hybrid techniques at the forefront of medical imaging technologies. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. 36 CFR 1002.15 - Pets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Pets. 1002.15 Section 1002.15 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public...

  15. 7 CFR 503.11 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Pets. 503.11 Section 503.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.11 Pets. No pets or animals of any kind may be brought...

  16. 7 CFR 503.11 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Pets. 503.11 Section 503.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.11 Pets. No pets or animals of any kind may be brought...

  17. 7 CFR 503.11 - Pets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Pets. 503.11 Section 503.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.11 Pets. No pets or animals of any kind may be brought...

  18. 7 CFR 503.11 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Pets. 503.11 Section 503.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.11 Pets. No pets or animals of any kind may be brought...

  19. 7 CFR 503.11 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Pets. 503.11 Section 503.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.11 Pets. No pets or animals of any kind may be brought...

  20. Exploring the differences between pet and non-pet owners: Implications for human-animal interaction research and policy

    PubMed Central

    Saunders, Jessica; Parast, Layla; Babey, Susan H.; Miles, Jeremy V.

    2017-01-01

    There is conflicting evidence about whether living with pets results in better mental and physical health outcomes, with the majority of the empirical research evidence being inconclusive due to methodological limitations. We briefly review the research evidence, including the hypothesized mechanisms through which pet ownership may influence health outcomes. This study examines how pet and non-pet owners differ across a variety of socio-demographic and health measures, which has implications for the proper interpretation of a large number of correlational studies that attempt to draw causal attributions. We use a large, population-based survey from California administered in 2003 (n = 42,044) and find that pet owners and non-pet owners differ across many traits, including gender, age, race/ethnicity, living arrangements, and income. We include a discussion about how the factors associated with the selection into the pet ownership group are related to a range of mental and physical health outcomes. Finally, we provide guidance on how to properly model the effects of pet ownership on health to accurately estimate this relationship in the general population. PMID:28644848

  1. Reproducibility of MR-Based Attenuation Maps in PET/MRI and the Impact on PET Quantification in Lung Cancer.

    PubMed

    Olin, Anders; Ladefoged, Claes N; Langer, Natasha H; Keller, Sune H; Löfgren, Johan; Hansen, Adam E; Kjær, Andreas; Langer, Seppo W; Fischer, Barbara M; Andersen, Flemming L

    2018-06-01

    Quantitative PET/MRI is dependent on reliable and reproducible MR-based attenuation correction (MR-AC). In this study, we evaluated the quality of current vendor-provided thoracic MR-AC maps and further investigated the reproducibility of their impact on 18 F-FDG PET quantification in patients with non-small cell lung cancer. Methods: Eleven patients with inoperable non-small cell lung cancer underwent 2-5 thoracic PET/MRI scan-rescan examinations within 22 d. 18 F-FDG PET data were acquired along with 2 Dixon MR-AC maps for each examination. Two PET images (PET A and PET B ) were reconstructed using identical PET emission data but with MR-AC from these intrasubject repeated attenuation maps. In total, 90 MR-AC maps were evaluated visually for quality and the occurrence of categorized artifacts by 2 PET/MRI-experienced physicians. Each tumor was outlined by a volume of interest (40% isocontour of maximum) on PET A , which was then projected onto the corresponding PET B SUV mean and SUV max were assessed from the PET images. Within-examination coefficients of variation and Bland-Altman analyses were conducted for the assessment of SUV variations between PET A and PET B Results: Image artifacts were observed in 86% of the MR-AC maps, and 30% of the MR-AC maps were subjectively expected to affect the tumor SUV. SUV mean and SUV max resulted in coefficients of variation of 5.6% and 6.6%, respectively, and scan-rescan SUV variations were within ±20% in 95% of the cases. Substantial SUV variations were seen mainly for scan-rescan examinations affected by respiratory motion. Conclusion: Artifacts occur frequently in standard thoracic MR-AC maps, affecting the reproducibility of PET/MRI. These, in combination with other well-known sources of error associated with PET/MRI examinations, lead to inconsistent SUV measurements in serial studies, which may affect the reliability of therapy response assessment. A thorough visual inspection of the thoracic MR-AC map and Dixon

  2. Pet ownership, dog types and attachment to pets in 9–10 year old children in Liverpool, UK

    PubMed Central

    2013-01-01

    Background Little is known about ethnic, cultural and socioeconomic differences in childhood ownership and attitudes to pets. The objective of this study was to describe the factors associated with living with different pet types, as well as factors that may influence the intensity of relationship or ‘attachment’ that children have to their pet. Data were collected using a survey of 1021 9–10 year old primary school children in a deprived area of the city of Liverpool, UK. Results Dogs were the most common pet owned, most common ‘favourite’ pet, and species most attached to. Twenty-seven percent of dog-owning children (10% of all children surveyed) reported living with a ‘Bull Breed’ dog (which includes Pit Bulls and Staffordshire Bull Terriers), and the most popular dog breed owned was the Staffordshire Bull Terrier. Multivariable regression modelling identified a number of variables associated with ownership of different pets and the strength of attachment to the child’s favourite pet. Girls were more likely to own most pet types, but were no more or less attached to their favourite pet than boys. Children of white ethnicity were more likely to own dogs, rodents and ‘other’ pets but were no more or less attached to their pets than children of non-white ethnicity. Single and youngest children were no more or less likely to own pets than those with younger brothers and sisters, but they showed greater attachment to their pets. Children that owned dogs lived in more deprived areas than those without dogs, and deprivation increased with number of dogs owned. ‘Pit Bull or cross’ and ‘Bull Breed’ dogs were more likely to be found in more deprived areas than other dog types. Non-whites were also more likely to report owning a ‘Pit Bull or cross’ than Whites. Conclusions Gender, ethnicity and socioeconomic status were associated with pet ownership, and sibling status with level of attachment to the pet. These are important to consider when

  3. Imaging Prostate Cancer With Prostate-Specific Membrane Antigen PET/CT and PET/MRI: Current and Future Applications.

    PubMed

    Hope, Thomas A; Afshar-Oromieh, Ali; Eiber, Matthias; Emmett, Louise; Fendler, Wolfgang P; Lawhn-Heath, Courtney; Rowe, Steven P

    2018-06-27

    The purpose of this article is to describe the large number of radiotracers being evaluated for prostate-specific membrane antigen (PSMA) PET, which is becoming a central tool in the staging of prostate cancer. PSMA PET is a highly promising modality for the staging of prostate cancer because of its higher detection rate compared with that of conventional imaging. Both PET/CT and PET/MRI offer benefits with PSMA radiotracers, and PSMA PET findings frequently lead to changes in management. It is imperative that subsequent treatment changes be evaluated to show improved outcomes. PSMA PET also has potential applications, including patient selection for PSMA-based radioligand therapy and evaluation of treatment response.

  4. Motion compensation for fully 4D PET reconstruction using PET superset data

    NASA Astrophysics Data System (ADS)

    Verhaeghe, J.; Gravel, P.; Mio, R.; Fukasawa, R.; Rosa-Neto, P.; Soucy, J.-P.; Thompson, C. J.; Reader, A. J.

    2010-07-01

    Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for 18F-FDG obtained from Patlak analysis.

  5. Motion compensation for fully 4D PET reconstruction using PET superset data.

    PubMed

    Verhaeghe, J; Gravel, P; Mio, R; Fukasawa, R; Rosa-Neto, P; Soucy, J-P; Thompson, C J; Reader, A J

    2010-07-21

    Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for (18)F-FDG obtained from Patlak analysis.

  6. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  7. RPC PET: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Couceiro, M.; Blanco, A.; Ferreira, Nuno C.; Ferreira Marques, R.; Fonte, P.; Lopes, L.

    2007-10-01

    The status of the resistive plate chamber (RPC)-PET technology for small animals is briefly reviewed and its sensitivity performance for human PET studied through Monte-Carlo simulations. The cost-effectiveness of these detectors and their very good timing characteristics open the possibility to build affordable Time of Flight (TOF)-PET systems with very large fields of view. Simulations suggest that the sensitivity of such systems for human whole-body screening, under reasonable assumptions, may exceed the present crystal-based PET technology by a factor up to 20.

  8. 18F-EF5 PET-based Imageable Hypoxia Predicts Local Recurrence in Tumors Treated With Highly Conformal Radiation Therapy.

    PubMed

    Qian, Yushen; Von Eyben, Rie; Liu, Yufei; Chin, Frederick T; Miao, Zheng; Apte, Sandeep; Carter, Justin N; Binkley, Michael S; Pollom, Erqi L; Harris, Jeremy P; Prionas, Nicolas D; Kissel, Madelyn; Simmons, Amanda; Diehn, Maximilian; Shultz, David B; Brown, J Martin; Maxim, Peter G; Koong, Albert C; Graves, Edward E; Loo, Billy W

    2018-04-18

    Tumor hypoxia contributes to radiation resistance. A noninvasive assessment of tumor hypoxia would be valuable for prognostication and possibly selection for hypoxia-targeted therapies. 18 F-pentafluorinated etanidazole ( 18 F-EF5) is a nitroimidazole derivative that has demonstrated promise as a positron emission tomography (PET) hypoxia imaging agent in preclinical and clinical studies. However, correlation of imageable hypoxia by 18 F-EF5 PET with clinical outcomes after radiation therapy remains limited. Our study prospectively enrolled 28 patients undergoing radiation therapy for localized lung or other tumors to receive pretreatment 18 F-EF5 PET imaging. Depending on the level of 18 F-EF5 tumor uptake, patients underwent functional manipulation of tumor oxygenation with either carbogen breathing or oral dichloroacetate followed by repeated 18 F-EF5 PET. The hypoxic subvolume of tumor was defined as the proportion of tumor voxels exhibiting higher 18 F-EF5 uptake than the 95th percentile of 18 F-EF5 uptake in the blood pool. Tumors with a hypoxic subvolume ≥ 10% on baseline 18 F-EF5 PET imaging were classified as hypoxic by imaging. A Cox model was used to assess the correlation between imageable hypoxia and clinical outcomes after treatment. At baseline, imageable hypoxia was demonstrated in 43% of all patients (12 of 28), including 6 of 16 patients with early-stage non-small cell lung cancer treated with stereotactic ablative radiation therapy and 6 of 12 patients with other cancers. Carbogen breathing was significantly associated with decreased imageable hypoxia, while dichloroacetate did not result in a significant change under our protocol conditions. Tumors with imageable hypoxia had a higher incidence of local recurrence at 12 months (30%) than those without (0%) (P < .01). Noninvasive hypoxia imaging by 18 F-EF5 PET identified imageable hypoxia in about 40% of tumors in our study population. Local tumor recurrence after highly conformal radiation

  9. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  10. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG.

    PubMed

    Chen, Wei; Cloughesy, Timothy; Kamdar, Nirav; Satyamurthy, Nagichettiar; Bergsneider, Marvin; Liau, Linda; Mischel, Paul; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S

    2005-06-01

    3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a recently developed PET tracer to image tumor cell proliferation. We characterized (18)F-FLT PET of brain gliomas and compared (18)F-FLT with (18)F-FDG PET in side-by-side studies of the same patients. Twenty-five patients with newly diagnosed or previously treated glioma underwent PET with (18)F-FLT and (18)F-FDG on consecutive days. Three stable patients in long-term remission were included as negative control subjects. Tracer kinetics in normal brain and tumor were measured. Uptake of (18)F-FLT and (18)F-FDG was quantified by the standardized uptake value (SUV) and the tumor-to-normal tissue (T/N) ratio. The accuracy of (18)F-FLT and (18)F-FDG PET in evaluating newly diagnosed and recurrent gliomas was compared. More than half of the patients underwent resection after the PET study and correlations between PET uptake and the Ki-67 proliferation index were examined. Patients were monitored for a mean of 15.4 mo (range, 12-20 mo). The predictive power of PET for tumor progression and survival was analyzed using Kaplan-Meier statistics. (18)F-FLT uptake in tumors was rapid, peaking at 5-10 min after injection and remaining stable up to 75 min. Hence, a 30-min scan beginning at 5 min after injection was sufficient for imaging. (18)F-FLT visualized all high-grade (grade III or IV) tumors. Grade II tumor did not show appreciable (18)F-FLT uptake and neither did the stable lesions. The absolute uptake of (18)F-FLT was low (maximum-pixel SUV [SUV(max)], 1.33) but image contrast was better than with (18)F-FDG (T/N ratio, 3.85 vs. 1.49). (18)F-FDG PET studies were negative in 5 patients with recurrent high-grade glioma who subsequently suffered tumor progression within 1-3 mo. (18)F-FLT SUV(max) correlated more strongly with Ki-67 index (r = 0.84; P < 0.0001) than (18)F-FDG SUV(max) (r = 0.51; P = 0.07). (18)F-FLT uptake also had more significant predictive power with respect to tumor progression and survival (P = 0

  11. PET/MRI for neurologic applications.

    PubMed

    Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R

    2012-12-01

    PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MRI data acquisition allows the spatial and temporal correlation of the measured signals, creating opportunities impossible to realize using stand-alone instruments. This paper reviews the methodologic improvements and potential neurologic and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MRI data to improve the PET data quantification. On the MRI side, we present how improved PET quantification can be used to validate several MRI techniques. Finally, we describe promising research, translational, and clinical applications that can benefit from these advanced tools.

  12. PET/MRI for Neurological Applications

    PubMed Central

    Catana, Ciprian; Drzezga, Alexander; Heiss, Wolf-Dieter; Rosen, Bruce R.

    2013-01-01

    PET and MRI provide complementary information in the study of the human brain. Simultaneous PET/MR data acquisition allows the spatial and temporal correlation of the measured signals, opening up opportunities impossible to realize using stand-alone instruments. This paper reviews the methodological improvements and potential neurological and psychiatric applications of this novel technology. We first present methods for improving the performance and information content of each modality by using the information provided by the other technique. On the PET side, we discuss methods that use the simultaneously acquired MR data to improve the PET data quantification. On the MR side, we present how improved PET quantification could be used to validate a number of MR techniques. Finally, we describe promising research, translational and clinical applications that could benefit from these advanced tools. PMID:23143086

  13. 18F-FDG PET and PET/CT in the Localization and Characterization of Lesions in Patients with Ovarian Cancer.

    PubMed

    Caprio, M G; Capacchione, D; Mainolfi, C; Spera, A M; Salvatore, B; Cella, L; Salvatore, M; Pace, L

    2012-01-01

    The aim was to compare the imaging findings of (18)F-fluorodeoxyglucose ((18)F-FDG) PET and integrated PET/CT in patients with primary, recurrent or metastatic ovarian cancer. 21 women with ovarian cancer were evaluated. All patients had a integrated PET/CT scan. Localization, infiltration and uptake intensity of [(18)F]FDG were evaluated on PET and PET/CT. The certainty of localisation and characterisation was scored on a 3 point scale (L1 definite localisation; L2 probable localisation; L3 uncertain localisation; C1 benign; C2 equivocal; C3 malignant). PET scored as L1 54 lesions (44%), as L2 51 (42%), and as L3 17 (14%). On the other hand, PET/CT scored as L1 120 lesions (98%), as L2 2 (2%), and none as L3. Thus PET/CT allowed a better localization in 54% of lesions. Moreover, PET scored as C1 25 lesions (20%), as C2 62 (51%), and as C3 35 (29%). On the other hand, PET/CT scored as C1 57 lesions (47%), as C2 13 (11%), and as C3 52 (42%). Thus PET/CT allowed a sensible reduction in the number of equivocal lesions (40%). Even when patients were subgrouped on the basis of clinical stage of the disease, PET/CT was capable of better definition of the lesions either for localization and for characterization. In patients with ovarian cancer, PET/CT allows better anatomical localisation of pathologic uptake providing high accuracy for staging and restaging of ovarian cancer when compared with PET alone.

  14. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Christopher, E-mail: christopher.kurz@physik.uni-muenchen.de; Bauer, Julia; Unholtz, Daniel

    2016-02-15

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolvedmore » (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the

  15. Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging

    PubMed Central

    Lee, Tzu C.; Alessio, Adam M.; Miyaoka, Robert M.; Kinahan, Paul E.

    2017-01-01

    Both SPECT, and in particular PET, are unique in medical imaging for their high sensitivity and direct link to a physical quantity, i.e. radiotracer concentration. This gives PET and SPECT imaging unique capabilities for accurately monitoring disease activity for the purposes of clinical management or therapy development. However, to achieve a direct quantitative connection between the underlying radiotracer concentration and the reconstructed image values several confounding physical effects have to be estimated, notably photon attenuation and scatter. With the advent of dual-modality SPECT/CT, PET/CT, and PET/MR scanners, the complementary CT or MR image data can enable these corrections, although there are unique challenges for each combination. This review covers the basic physics underlying photon attenuation and scatter and summarizes technical considerations for multimodal imaging with regard to PET and SPECT quantification and methods to address the challenges for each multimodal combination. PMID:26576737

  16. Respiratory-gated CT as a tool for the simulation of breathing artifacts in PET and PET/CT.

    PubMed

    Hamill, J J; Bosmans, G; Dekker, A

    2008-02-01

    Respiratory motion in PET and PET/CT blurs the images and can cause attenuation-related errors in quantitative parameters such as standard uptake values. In rare instances, this problem even causes localization errors and the disappearance of tumors that should be detectable. Attenuation errors are severe near the diaphragm and can be enhanced when the attenuation correction is based on a CT series acquired during a breath-hold. To quantify the errors and identify the parameters associated with them, the authors performed a simulated PET scan based on respiratory-gated CT studies of five lung cancer patients. Diaphragmatic motion ranged from 8 to 25 mm in the five patients. The CT series were converted to 511-keV attenuation maps which were forward-projected and exponentiated to form sinograms of PET attenuation factors at each phase of respiration. The CT images were also segmented to form a PET object, moving with the same motion as the CT series. In the moving PET object, spherical 20 mm mobile tumors were created in the vicinity of the dome of the liver and immobile 20 mm tumors in the midchest region. The moving PET objects were forward-projected and attenuated, then reconstructed in several ways: phase-matched PET and CT, gated PET with ungated CT, ungated PET with gated CT, and conventional PET. Spatial resolution and statistical noise were not modeled. In each case, tumor uptake recovery factor was defined by comparing the maximum reconstructed pixel value with the known correct value. Mobile 10 and 30 mm tumors were also simulated in the case of a patient with 11 mm of breathing motion. Phase-matched gated PET and CT gave essentially perfect PET reconstructions in the simulation. Gated PET with ungated CT gave tumors of the correct shape, but recovery was too large by an amount that depended on the extent of the motion, as much as 90% for mobile tumors and 60% for immobile tumors. Gated CT with ungated PET resulted in blurred tumors and caused recovery

  17. 36 CFR 13.1310 - Pets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...

  18. 36 CFR 13.978 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Pets. 13.978 Section 13.978 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... (fda) § 13.978 Pets. Possessing a pet is prohibited— (a) In the FDA, except in public parking areas, on...

  19. 36 CFR 13.978 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 13.978 Section 13.978 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... (fda) § 13.978 Pets. Possessing a pet is prohibited— (a) In the FDA, except in public parking areas, on...

  20. 36 CFR 13.1310 - Pets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...

  1. 36 CFR 13.1106 - Pets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Pets. 13.1106 Section 13.1106 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... Provisions § 13.1106 Pets. Pets are prohibited except— (a) On the Bartlett Cove Public Use Dock; (b) On the...

  2. 36 CFR 13.1106 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 13.1106 Section 13.1106 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK... Provisions § 13.1106 Pets. Pets are prohibited except— (a) On the Bartlett Cove Public Use Dock; (b) On the...

  3. 36 CFR 13.1310 - Pets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 13.1310 Section 13.1310... SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions § 13.1310 Pets. (a) Pets are prohibited— (1) In the Exit Glacier Developed Area except in the parking lot, on the...

  4. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-04-15

    In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on

  5. Support for bereaved owners of pets.

    PubMed

    Clements, Paul T; Benasutti, Kathleen M; Carmone, Andy

    2003-01-01

    The bond that exists between people and their pets and its impact on physical and mental health. To review the current literature and explore the clinical implications of bereavement related to pets. A comprehensive review of the bereavement, veterinarian, and agricultural literature related to attitudes and response patterns to pet and animal death. The death or loss of a beloved pet can be a life-changing event.

  6. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  7. Extension and validation of an analytical model for in vivo PET verification of proton therapy—a phantom and clinical study

    NASA Astrophysics Data System (ADS)

    Attanasi, F.; Knopf, A.; Parodi, K.; Paganetti, H.; Bortfeld, T.; Rosso, V.; Del Guerra, A.

    2011-08-01

    The interest in positron emission tomography (PET) as a tool for treatment verification in proton therapy has become widespread in recent years, and several research groups worldwide are currently investigating the clinical implementation. After the first off-line investigation with a PET/CT scanner at MGH (Boston, USA), attention is now focused on an in-room PET application immediately after treatment in order to also detect shorter-lived isotopes, such as O15 and N13, minimizing isotope washout and avoiding patient repositioning errors. Clinical trials are being conducted by means of commercially available PET systems, and other tests are planned using application-dedicated tomographs. Parallel to the experimental investigation and new hardware development, great interest has been shown in the development of fast procedures to provide feedback regarding the delivered dose from reconstructed PET images. Since the thresholds of inelastic nuclear reactions leading to tissue β+-activation fall within the energy range of 15-20 MeV, the distal activity fall-off is correlated, but not directly matched, to the distal fall-off of the dose distribution. Moreover, the physical interactions leading to β+-activation and energy deposition are of a different nature. All these facts make it essential to further develop accurate and fast methodologies capable of predicting, on the basis of the planned dose distribution, expected PET images to be compared with actual PET measurements, thus providing clinical feedback on the correctness of the dose delivery and of the irradiation field position. The aim of this study has been to validate an analytical model and to implement and evaluate it in a fast and flexible framework able to locally predict such activity distributions directly taking the reference planning CT and planned dose as inputs. The results achieved in this study for phantoms and clinical cases highlighted the potential of the implemented method to predict expected

  8. PET imaging: implications for the future of therapy monitoring with PET/CT in oncology.

    PubMed

    Tomasi, Giampaolo; Rosso, Lula

    2012-10-01

    Among the methods based on molecular imaging, the measure of the tracer uptake variation between a baseline and follow-up scan with the SUV and [(18)F]FDG-PET/CT is a very powerful tool for assessing response to treatment in oncology. However, the development of new targeted therapeutics and tissue pharmacokinetic evaluation of existing ones are increasingly requiring therapy monitoring with alternative tracers and indicators. In parallel, the potential predictive and prognostic value of other image-derived parameters, such as tumour volume and textural features, relating to tumoral heterogeneity, has recently emerged from several works. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Indeterminate lung nodules in cancer patients: pretest probability of malignancy and the role of 18F-FDG PET/CT.

    PubMed

    Evangelista, Laura; Panunzio, Annalori; Polverosi, Roberta; Pomerri, Fabio; Rubello, Domenico

    2014-03-01

    The purpose of this study was to determine likelihood of malignancy for indeterminate lung nodules identified on CT comparing two standardized models with (18)F-FDG PET/CT. Fifty-nine cancer patients with indeterminate lung nodules (solid tumors; diameter, ≥5 mm) on CT had FDG PET/CT for lesion characterization. Mayo Clinic and Veterans Affairs Cooperative Study models of likelihood of malignancy were applied to solitary pulmonary nodules. High probability of malignancy was assigned a priori for multiple nodules. Low (<5%), intermediate (5-60%), and high (>60%) pretest malignancy probabilities were analyzed separately. Patients were reclassified with PET/CT. Histopathology or 2-year imaging follow-up established diagnosis. Outcome-based reclassification differences were defined as net reclassification improvement. A null hypothesis of asymptotic test was applied. Thirty-one patients had histology-proven malignancy. PET/CT was true-positive in 24 and true-negative in 25 cases. Negative predictive value was 78% and positive predictive value was 89%. On the basis of the Mayo Clinic model (n=31), 18 patients had low, 12 had intermediate, and one had high pretest likelihood; on the basis of the Veterans Affairs model (n=26), 5 patients had low, 20 had intermediate, and one had high pretest likelihood. Because of multiple lung nodules, 28 patients were classified as having high malignancy risk. PET/CT showed 32 negative and 27 positive scans. Net reclassification improvements respectively were 0.95 and 1.6 for Mayo Clinic and Veterans Affairs models (both p<0.0001). Fourteen of 31 (45.2%) and 12 of 26 (46.2%) patients with low and intermediate pretest likelihood, respectively, had positive findings on PET/CT for the Mayo Clinic and Veterans Affairs models, respectively. Of 15 patients with high pretest likelihood and negative findings on PET/CT, 13 (86.7%) did not have lung malignancy. PET/CT improves stratification of cancer patients with indeterminate pulmonary

  10. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, Mootaz

    2016-08-15

    Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study. Methods: The ACR phantom was filled with an initial concentration of 8 GBq of Y-90 solution resulting in a contrast of 10:1 between the hot cylinders and the background.more » Y-90 PET motion correction through motion estimates from MR navigators was evaluated by using a custom-built motion stage that simulated realistic amplitudes of respiration-induced liver motion. Finally, the feasibility of an MR-based partial volume correction method was evaluated using a wavelet decomposition approach. Results: Motion resulted in a large (∼40%) loss of contrast recovery for the 8 mm cylinder in the phantom, but was corrected for after MR-based motion correction was applied. Partial volume correction improved contrast recovery by 13% for the 8 mm cylinder. Conclusions: MR-based data correction improves Y-90 PET imaging on simultaneous PET/MR systems. Assessment of these methods must be studied further in the clinical setting.« less

  11. Value of 18F-FDG PET/CT in diagnosing chronic Q fever in patients with central vascular disease.

    PubMed

    Hagenaars, J C J P; Wever, P C; Vlake, A W; Renders, N H M; van Petersen, A S; Hilbink, M; de Jager-Leclercq, M G L; Moll, F L; Koning, O H J; Hoekstra, C J

    2016-08-01

    The aim of this study is to describe the value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in diagnosing chronic Q fever in patients with central vascular disease and the added value of 18F-FDG PET/CT in the diagnostic combination strategy as described in the Dutch consensus guideline for diagnosing chronic Q fever. 18F-FDG PET/CT was performed in patients with an abdominal aortic aneurysm or aorto-iliac reconstruction and chronic Q fever, diagnosed by serology and positive PCR for Coxiella burnetii DNA in blood and/or tissue (PCR-positive study group). Patients with an abdominal aortic aneurysm or aorto-iliac reconstruction without clinical and serological findings indicating Q fever infection served as a control group. Patients with a serological profile of chronic Q fever and a negative PCR in blood were included in additional analyses (PCR-negative study group). Thirteen patients were evaluated in the PCR-positive study group and 22 patients in the control group. 18F-FDG PET/CT indicated vascular infection in 6/13 patients in the PCR-positive study group and 2/22 patients in the control group. 18F-FDG PET/CT demonstrated a sensitivity of 46% (95% CI: 23-71%), specificity of 91% (95% CI: 71-99%), positive predictive value of 75% (95% CI:41-93%) and negative predictive value of 74% (95% CI: 55-87%). In the PCR-negative study group, 18F-FDG PET/CT was positive in 10/20 patients (50%). The combination of 18F-FDG PET/CT, as an imaging tool for identifying a focus of infection, and Q fever serology is a valid diagnostic strategy for diagnosing chronic Q fever in patients with central vascular disease.

  12. PSA levels as a predictor of 68Ga PSMA PET/CT positivity in patients with prostate cancer?

    PubMed

    Soydal, Cigdem; Urun, Yuksel; Suer, Evren; Nak, Demet; Ozkan, Elgin; Kucuk, Ozlem N

    2018-05-10

    The aim of this study is to evaluate predictive factors of 68Gallium (68Ga) Prostate-Specific Membrane Antigen (PSMA) Positron Emission Tomography (PET)/Computed Tomography (CT) positivity. Relationships between serum Prostate Specific Antigen (PSA), Lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels, Gleason Score (GS) and positivity of 68Ga PSMA PET in patients who underwent 68Ga PSMA PET/CT for restaging for PCa were evaluated retrospectively. One hundred and four (median age: 67; range: 51-88) patients were included in this study. Of these patients, PSMA PET was positive in 75 (72%) patients. Mean serum PSA levels for PET negative and positive groups were 0.76±1.00 and 180.85±324.93 ng/ml (p<0.001). The sensitivity and specificity of 68Ga PSMA PET/CT for detection of disease recurrence were calculated as 92% and 80%, respectively, for the 1.4 ng/ml PSA cut-off and 92% and 90%, respectively, for the 2 ng/ml PSA cut-off values. The positivity rates for patients with PSA levels <1.4 ng/ml and ≥1.4 ng/ml were 21% and 90%, respectively (p<0.001). 68Ga PSMA PET/CT seems to be a highly sensitive in patients with early PSA recurrence. Patients with higher GS and early PSA recurrence could benefit from 68Ga PSMA PET/CT.

  13. Molecular imaging of malignant tumor metabolism: whole-body image fusion of DWI/CT vs. PET/CT.

    PubMed

    Reiner, Caecilia S; Fischer, Michael A; Hany, Thomas; Stolzmann, Paul; Nanz, Daniel; Donati, Olivio F; Weishaupt, Dominik; von Schulthess, Gustav K; Scheffel, Hans

    2011-08-01

    To prospectively investigate the technical feasibility and performance of image fusion for whole-body diffusion-weighted imaging (wbDWI) and computed tomography (CT) to detect metastases using hybrid positron emission tomography/computed tomography (PET/CT) as reference standard. Fifty-two patients (60 ± 14 years; 18 women) with different malignant tumor disease examined by PET/CT for clinical reasons consented to undergo additional wbDWI at 1.5 Tesla. WbDWI was performed using a diffusion-weighted single-shot echo-planar imaging during free breathing. Images at b = 0 s/mm(2) and b = 700 s/mm(2) were acquired and apparent diffusion coefficient (ADC) maps were generated. Image fusion of wbDWI and CT (from PET/CT scan) was performed yielding for wbDWI/CT fused image data. One radiologist rated the success of image fusion and diagnostic image quality. The presence or absence of metastases on wbDWI/CT fused images was evaluated together with the separate wbDWI and CT images by two different, independent radiologists blinded to results from PET/CT. Detection rate and positive predictive values for diagnosing metastases was calculated. PET/CT examinations were used as reference standard. PET/CT identified 305 malignant lesions in 39 of 52 (75%) patients. WbDWI/CT image fusion was technically successful and yielded diagnostic image quality in 73% and 92% of patients, respectively. Interobserver agreement for the evaluation of wbDWI/CT images was κ = 0.78. WbDWI/CT identified 270 metastases in 43 of 52 (83%) patients. Overall detection rate and positive predictive value of wbDWI/CT was 89% (95% CI, 0.85-0.92) and 94% (95% CI, 0.92-0.97), respectively. WbDWI/CT image fusion is technically feasible in a clinical setting and allows the diagnostic assessment of metastatic tumor disease detecting nine of 10 lesions as compared with PET/CT. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  14. Melt rheological properties of nucleated PET/MWCNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.

    2018-05-01

    This work investigates the effect of precipitated Polyethylene Terephthalate (p-PET) and loading of Multiwalled carbon nanotubes (MWCNT) on morphology and rheology of Polyethylene Terephthalate (PET)/MWCNT nanocomposites. As received PET and Self-Nucleated PET (Nuc-PET) nanocomposites with different loadings of multi-walled carbon nanotubes (MWCNT) were prepared by melt mixing technique. Synthesized reorganized PET crystallizes rapidly from the melt and it is used in small quantities as a self-nucleating agent to make Nuc-PET. In the present study, Rheological properties of nanocomposites are obtained and results show with increase in MWCNT loading complex viscosity of nanocomposites increases. Nonterminal solid like rheological behavior of PET nanocomposites were observed at low frequencies, which indicates the formation of the network like structures of MWCNT in nanocomposites. Morphological and rheological properties of self-nucleated PET nanocomposites improved significantly may be due to self-nucleating agent p-PET. Morphological properties were studied by Scanning Electron Microscopy (SEM). SEM shows better dispersion of MWCNT in Nuc-PET nanocomposites.

  15. 68Ga-PSMA-PET/CT in Patients With Biochemical Prostate Cancer Recurrence and Negative 18F-Choline-PET/CT.

    PubMed

    Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K; Herrmann, Ken

    2016-07-01

    Investigating the value of Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative F-choline-PET/CT. One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an F-choline-PET/CT. If negative, an additional Ga-PSMA-PET/CT was offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on F-choline-PET/CT and those who declined the additional Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for F-choline-PET/CT alone. Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of Ga-PSMA-PET/CT in F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. The sequential imaging approach designed to limit Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative F-choline PET/CT scans.

  16. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    NASA Astrophysics Data System (ADS)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Kim, Byung-Tae

    2011-08-01

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  17. MO-DE-207B-01: JACK FOWLER JUNIOR INVESTIGATOR COMPETITION WINNER: Between Somatic Mutations and PET-Based Radiomic Features in Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, S; Coroller, T; Rios Velazquez, E

    Purpose: Although PET-based radiomic features have been proposed to quantify tumor heterogeneity and shown promise in outcome prediction, little is known about their relationship with tumor genetics. This study assessed the association of [{sup 18}F]fluorodeoxyglucose (FDG)-PET-based radiomic features with non-small cell lung cancer (NSCLC) mutations. Methods: 348 NSCLC patients underwent FDG-PET/CT scans before treatment and were tested for genetic mutations. 13% (44/348) and 28% (96/348) patients were found to harbor EGFR (EGFR+) and KRAS (KRAS+) mutations, respectively. We evaluated nineteen PET-based radiomic features quantifying phenotypic traits, and compared them with conventional PET features (metabolic tumor volume (MTV) and maximum-SUV). Themore » association between the feature values and mutation status was evaluated using the Wilcoxcon-rank-sum-test. The ability of each measure to predict mutations was assessed by the area under the receiver operating curve (AUC). Noether’s test was used to determine if the AUCs were significantly from random (AUC=0.50). All p-values were corrected for multiple testing by controlling the false discovery rate (FDR{sub Wilcoxon} and FDR{sub Noether}) of 10%. Results: Eight radiomic features, MTV, and maximum-SUV, were significantly associated with the EGFR mutation (FDR{sub Wilcoxon}=0.01–0.10). However, KRAS+ demonstrated no significantly distinctive imaging features compared to KRAS− (FDR{sub Wilcoxon}≥0.92). EGFR+ and EGFR− were significantly discriminated by conventional PET features (AUC=0.61, FDR{sub Noether}=0.04 for MTV and AUC=0.64, FDR{sub Noether}=0.01 for maximum-SUV). Eight radiomic features were significantly predictive for EGFR+ compared to EGFR− (AUC=0.59–0.67, FDR{sub Noether}=0.0032–0.09). Normalized-inverse-difference-moment outperformed all features in predicting EGFR mutation (AUC=0.67, FDR{sub Noether}=0.0032). Moreover, only the radiomic feature normalized

  18. 64Cu-CTS: A Promising Radiopharmaceutical for the Identification of Low-Grade Cardiac Hypoxia by PET.

    PubMed

    Medina, Rodolfo A; Mariotti, Erika; Pavlovic, Davor; Shaw, Karen P; Eykyn, Thomas R; Blower, Philip J; Southworth, Richard

    2015-06-01

    The subtle hypoxia underlying chronic cardiovascular disease is an attractive target for PET imaging, but the lead hypoxia imaging agents (64)Cu-2,3-butanedione bis(N4-methylthiosemicarbazone) (ATSM) and (18)F-fluoromisonidazole are trapped only at extreme levels of hypoxia and hence are insufficiently sensitive for this purpose. We have therefore sought an analog of (64)Cu-ATSM better suited to identify compromised but salvageable myocardium, and we validated it using parallel biomarkers of cardiac energetics comparable to those observed in chronic cardiac ischemic syndromes. Rat hearts were perfused with aerobic buffer for 20 min, followed by a range of hypoxic buffers (using a computer-controlled gas mixer) for 45 min. Contractility was monitored by intraventricular balloon, energetics by (31)P nuclear MR spectroscopy, lactate and creatine kinase release spectrophotometrically, and hypoxia-inducible factor 1-α by Western blotting. We identified a key hypoxia threshold at a 30% buffer O2 saturation that induces a stable and potentially survivable functional and energetic compromise: left ventricular developed pressure was depressed by 20%, and cardiac phosphocreatine was depleted by 65.5% ± 14% (P < 0.05 vs. control), but adenosine triphosphate levels were maintained. Lactate release was elevated (0.21 ± 0.067 mmol/L/min vs. 0.056 ± 0.01 mmol/L/min, P < 0.05) but not maximal (0.46 ± 0.117 mmol/L/min), indicating residual oxidative metabolic capacity. Hypoxia-inducible factor 1-α was elevated but not maximal. At this key threshold, (64)Cu-2,3-pentanedione bis(thiosemicarbazone) (CTS) selectively deposited significantly more (64)Cu than any other tracer we examined (61.8% ± 9.6% injected dose vs. 29.4% ± 9.5% for (64)Cu-ATSM, P < 0.05). The hypoxic threshold that induced survivable metabolic and functional compromise was 30% O2. At this threshold, only (64)Cu-CTS delivered a hypoxic-to-normoxic contrast of 3:1, and it therefore warrants in vivo evaluation

  19. Standardized Uptake Values from PET/MRI in Metastatic Breast Cancer: An Organ-based Comparison With PET/CT

    PubMed Central

    Pujara, Akshat C.; Raad, Roy A.; Ponzo, Fabio; Wassong, Carolyn; Babb, James S.; Moy, Linda; Melsaether, Amy N.

    2016-01-01

    Quantitative standardized uptake values (SUVs) from fluorine-18 (18F) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) are commonly used to evaluate the extent of disease and response to treatment in breast cancer patients. Recently, PET/magnetic resonance imaging (MRI) has been shown to qualitatively detect metastases from various primary cancers with similar sensitivity to PET/CT. However, quantitative validation of PET/ MRI requires assessing the reliability of SUVs from MR attenuation correction (MRAC) relative to CT attenuation correction (CTAC). The purpose of this retrospective study was to assess the utility of PET/MRI-derived SUVs in breast cancer patients by testing the hypothesis that SUVs derived from MRAC correlate well with those from CTAC. Between August 2012 and May 2013, 35 breast cancer patients (age 37–78 years, 1 man) underwent clinical 18F-FDG PET/CT followed by PET/MRI. One hundred seventy metastases were seen in 21 of 35 patients; metastases to bone in 16 patients, to liver in seven patients, and to nonaxillary lymph nodes in eight patients were sufficient for statistical analysis on an organ-specific per patient basis. SUVs in the most FDG-avid metastasis per organ per patient from PET/CT and PET/MRI were measured and compared using Pearson’s correlations. Correlations between CTAC- and MRAC-derived SUVmax and SUVmean in 31 metastases to bone, liver, and nonaxillary lymph nodes were strong overall (ρ= 0.80, 0.81). SUVmax and SUVmean correlations were also strong on an organ-specific basis in 16 bone metastases (ρ= 0.76, 0.74), seven liver metastases (ρ= 0.85, 0.83), and eight nonaxillary lymph node metastases (ρ= 0.95, 0.91). These strong organ-specific correlations between SUVs from PET/CT and PET/MRI in breast cancer metastases support the use of SUVs from PET/MRI for quantitation of 18F-FDG activity. PMID:26843433

  20. Pet ownership and older women: the relationships among loneliness, pet attachment support, human social support, and depressed mood.

    PubMed

    Krause-Parello, Cheryl A

    2012-01-01

    Pets can play a positive role in the both the physical and psychological health of older adults. This cross sectional study investigated the relationships among loneliness, pet attachment support, human social support, and depressed mood in a convenience sample of 159 pet-owning older women residing in the community. Participants completed loneliness, pet attachment support, human social support, and depressed mood scales. The results supported significant relationships between loneliness, pet attachment support, human social support, and depressed mood. No relationship was found between human social support and depressed mood. Pet attachment support, but not human social support, influenced the relationship between loneliness and depressed mood indicating the importance of pet attachment as a greater form of support in this sample. Clinical and social implications for nurses working with the geriatric population were identified and discussed. Copyright © 2012 Mosby, Inc. All rights reserved.

  1. Metabolic Tumor Volume on 18F-FDG PET/CT Improves Preoperative Identification of High-Risk Endometrial Carcinoma Patients.

    PubMed

    Husby, Jenny A; Reitan, Bernt C; Biermann, Martin; Trovik, Jone; Bjørge, Line; Magnussen, Inger J; Salvesen, Øyvind O; Salvesen, Helga B; Haldorsen, Ingfrid S

    2015-08-01

    Our objective was to prospectively explore the diagnostic value of (18)F-FDG PET/CT for preoperative staging in endometrial carcinomas and to investigate whether (18)F-FDG PET-specific quantitative tumor parameters reflect clinical and histologic characteristics. Preoperative (18)F-FDG PET/CT was prospectively performed on 129 consecutive endometrial carcinoma patients. Two physicians who did not know the clinical findings or staging results independently reviewed the images, assessing primary tumor, cervical stroma involvement and metastatic spread, and determining maximum and mean standardized uptake value (SUVmax and SUVmean, respectively) for tumor, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). All parameters were analyzed in relation to histomorphologic and clinical tumor characteristics. Receiver-operating-characteristic curves for identification of deep myometrial invasion and lymph node metastases were generated, and MTV cutoffs for predicting deep myometrial invasion and lymph node metastases were calculated. The sensitivity, specificity, and accuracy of (18)F-FDG PET/CT for the detection of lymph node metastases were 77%-85%, 91%-96%, and 89%-93%, respectively. SUVmax, SUVmean, MTV, and TLG were significantly related to deep myometrial invasion, presence of lymph node metastases, and high histologic grade (P < 0.015 for all) and independently predicted deep myometrial invasion (P < 0.015) and lymph node metastases (P < 0.025) after adjustment for preoperative histologic risk (based on subtype and grade) in endometrial biopsies. Optimal cutoffs for MTV in predicting deep myometrial invasion (20 mL) and the presence of lymph node metastases (30 mL) yielded odds ratios of 7.8 (P < 0.001) and 16.5 (P = 0.001), respectively. (18)F-FDG PET/CT represents a clinically valuable tool for preoperatively evaluating the presence of lymph node metastases in endometrial carcinoma patients. Applying MTV cutoffs for the prediction of deep myometrial

  2. TH-E-202-00: PET for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand

  3. The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques.

    PubMed

    Aukema, T S; Rutgers, E J Th; Vogel, W V; Teertstra, H J; Oldenburg, H S; Vrancken Peeters, M T F D; Wesseling, J; Russell, N S; Valdés Olmos, R A

    2010-04-01

    The aim of this study was to evaluate the impact of (18)F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) on clinical management in patients with locoregional breast cancer recurrence amenable for locoregional treatment and to compare the PET/CT results with the conventional imaging data. From January 2006 to August 2008, all patients with locoregional breast cancer recurrence underwent whole-body PET/CT. PET/CT findings were compared with results of the conventional imaging techniques and final pathology. The impact of PET/CT results on clinical management was evaluated based on clinical decisions obtained from patient files. 56 patients were included. In 32 patients (57%) PET/CT revealed additional tumour localisations. Distant metastases were detected in 11 patients on conventional imaging and in 23 patients on PET/CT images (p < 0.01). In 25 patients (45%), PET/CT detected additional lesions not visible on conventional imaging. PET/CT had an impact on clinical management in 27 patients (48%) by detecting more extensive locoregional disease or distant metastases. In 20 patients (36%) extensive surgery was prevented and treatment was changed to palliative treatment. The sensitivity, specificity, accuracy, positive and negative predictive values of FDG PET/CT were respectively 97%, 92%, 95%, 94% and 96%. PET/CT, in addition to conventional imaging techniques, plays an important role in staging patients with locoregional breast cancer recurrence since its result changed the clinical management in almost half of the patients. PET/CT could potentially replace conventional staging imaging in patients with a locoregional breast cancer recurrence. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Risk stratification and staging in prostate cancer with prostatic specific membrane antigen PET/CTObjective: A one-stop-shop.

    PubMed

    Gupta, Manoj; Choudhury, Partha Sarathi; Rawal, Sudhir; Goel, Harish Chandra; Singh, Amitabh; Talwar, Vineet; Sahoo, Saroj Kumar

    2017-01-01

    Current imaging modalities for prostate cancer (PC) had limitations for risk stratification and staging. Magnetic resonance imaging (MRI) frequently underestimated lymphatic metastasis while bone scintigraphy often had diagnostic dilemmas. Prostatic specific membrane antigen (PSMA) positron emission tomography-computed tomography (PET/CT) has been remarkable in diagnosing PC recurrence and staging. We hypothesized it can become one-stop-shop for initial risk stratification and staging. Ninety seven PSMA PET-CT studies were re analysed for tumor node metastases (TNM) staging and risk stratification of lymphatic and distant metastases proportion. The histopathology of 23/97 patients was available as gold standard. Chi-square test was used for proportion comparison. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), over-estimation, under-estimation and correct-estimation of T and N stages were calculated. Cohen's kappa coefficient (k) was derived for inter-rater agreement. Lymphic or distant metastases detection on PSMA PET/CT increased significantly with increase in risk category. PSMA PET/CT sensitivity, specificity, PPV and NPV for extra prostatic extension (EPE), seminal vesicle invasion (SVI) and lymphatic metastases were 63.16%, 100%, 100%, 36.36% & 55%, 100%, 100%, 25% and 65.62%, 99.31%, 87.50%, 97.53%, respectively. Cohen's kappa coefficient showed substantial agreement between PSMA PET/CT and histopathological lymphic metastases (κ 0.734) however, it was just in fair agreement (κ 0.277) with T stage. PSMA PET/CT over-estimated, under-estimated and correct-estimated T and N stages in 8.71%, 39.13%, 52.17% and 8.71%, 4.35%, 86.96% cases, respectively. We found that PSMA PET/CT has potential for initial risk stratifications with reasonable correct estimation for N stage. However, it can underestimate T stage. Hence, we suggest that PSMA PET/CT should be used for staging and initial risk stratification of PC as one

  5. [18F]DOPA PET/ceCT in diagnosis and staging of primary medullary thyroid carcinoma prior to surgery.

    PubMed

    Rasul, Sazan; Hartenbach, Sabrina; Rebhan, Katharina; Göllner, Adelina; Karanikas, Georgios; Mayerhoefer, Marius; Mazal, Peter; Hacker, Marcus; Hartenbach, Markus

    2018-05-15

    Medullary thyroid carcinoma (MTC) is characterized by a high rate of metastasis. In this study we evaluated the ability of [ 18 F]DOPA PET/ceCT to stage MTC in patients with suspicious thyroid nodules and pathologically elevated serum calcitonin (Ctn) levels prior to total thyroidectomy and lymph node (LN) dissection. A group of 32 patients with sonographically suspicious thyroid nodules and pathologically elevated basal Ctn (bCtn) and stimulated Ctn (sCtn) levels underwent DOPA PET/ceCT prior to surgery. Postoperative histology served as the standard of reference for ultrasonography and DOPA PET/ceCT region-based LN staging. Univariate and multivariate regression analyses as well as receiver operating characteristic analysis were used to evaluate the correlations between preoperative and histological parameters and postoperative tumour persistence or relapse. Primary MTC was histologically verified in all patients. Of the 32 patients, 28 showed increased DOPA decarboxylase activity in the primary tumour (sensitivity 88%, mean SUVmax 10.5). Undetected tumours were exclusively staged pT1a. The sensitivities of DOPA PET in the detection of central and lateral metastatic neck LN were 53% and 73%, in contrast to 20% and 39%, respectively, for neck ultrasonography. Preoperative bCtn and carcinoembryonic antigen levels as well as cN1b status and the number of involved neck regions on DOPA PET/ceCT were predictive of postoperative tumour persistence/relapse in the univariate regression analysis (P < 0.05). Only DOPA PET/ceCT cN1b status remained significant in the multivariate analysis (P = 0.016, relative risk 4.02). This study revealed that DOPA PET/ceCT has high sensitivity in the detection of primary MTC and superior sensitivity in the detection of LN metastases compared to ultrasonography. DOPA PET/ceCT identification of N1b status predicts postoperative tumour persistence. Thus, implementation of a DOPA-guided LN dissection might improve surgical success.

  6. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions.

    PubMed

    Eiber, Matthias; Martinez-Möller, Axel; Souvatzoglou, Michael; Holzapfel, Konstantin; Pickhard, Anja; Löffelbein, Dennys; Santi, Ivan; Rummeny, Ernst J; Ziegler, Sibylle; Schwaiger, Markus; Nekolla, Stephan G; Beer, Ambros J

    2011-09-01

    In this study, the potential contribution of Dixon-based MR imaging with a rapid low-resolution breath-hold sequence, which is a technique used for MR-based attenuation correction (AC) for MR/positron emission tomography (PET), was evaluated for anatomical correlation of PET-positive lesions on a 3T clinical scanner compared to low-dose CT. This technique is also used in a recently installed fully integrated whole-body MR/PET system. Thirty-five patients routinely scheduled for oncological staging underwent (18)F-fluorodeoxyglucose (FDG) PET/CT and a 2-point Dixon 3-D volumetric interpolated breath-hold examination (VIBE) T1-weighted MR sequence on the same day. Two PET data sets reconstructed using attenuation maps from low-dose CT (PET(AC_CT)) or simulated MR-based segmentation (PET(AC_MR)) were evaluated for focal PET-positive lesions. The certainty for the correlation with anatomical structures was judged in the low-dose CT and Dixon-based MRI on a 4-point scale (0-3). In addition, the standardized uptake values (SUVs) for PET(AC_CT) and PET(AC_MR) were compared. Statistically, no significant difference could be found concerning anatomical localization for all 81 PET-positive lesions in low-dose CT compared to Dixon-based MR (mean 2.51 ± 0.85 and 2.37 ± 0.87, respectively; p = 0.1909). CT tended to be superior for small lymph nodes, bone metastases and pulmonary nodules, while Dixon-based MR proved advantageous for soft tissue pathologies like head/neck tumours and liver metastases. For the PET(AC_CT)- and PET(AC_MR)-based SUVs (mean 6.36 ± 4.47 and 6.31 ± 4.52, respectively) a nearly complete concordance with a highly significant correlation was found (r = 0.9975, p < 0.0001). Dixon-based MR imaging for MR AC allows for anatomical allocation of PET-positive lesions similar to low-dose CT in conventional PET/CT. Thus, this approach appears to be useful for future MR/PET for body regions not fully covered by diagnostic MRI due to potential time constraints.

  7. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System.

    PubMed

    Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho

    2017-07-01

    Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATAC patientBone (air and tissue from the atlas with patient bone), and PET with ATAC boneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P < .001). The results were patient dependent (range, -9.3% to 0.57%) and VOI dependent (range, -5.9 to -2.2). In addition, when bone was not included for AC, the overall difference of PET with ATAC boneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P < .001). Finally, when patient bone was used for AC instead of atlas bone, the overall difference of PET with ATAC patientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P < .001). Conclusion ATAC in PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA

  8. Application of whole-body FDG-PET for cancer screening in a cohort of hospital employees.

    PubMed

    Hu, Chin; Liu, Chun-Peng; Cheng, Jin-Shiung; Chiu, Yu-Li; Chan, Hung-Pin; Peng, Nan-Jing

    2016-11-01

    Whole-body positron emission tomography/computed tomography with the glucose analog 2-[F]fluoro-2-deoxy-D-glucose (FDG-PET/CT) has been extensively used to screen for underlying malignancies in asymptomatic individuals. We were able to survey a cohort of hospital employees using FDG-PET/CT and to report the results herein.A total of 116 hospital employees older than 55 years old were offered whole-body FDG-PET in our hospital. Ninety-seven employees (83.6%) completed the assessment from February 2014 to August 2014 in our PET center. The final confirmation of cancer was based on pathologic examination and follow-up after more than 1 year.Among the 97 participants, 92 were asymptomatic and 5 presented with previously diagnosed cancers. Six of the 92 asymptomatic participants (6.6%) with significant nodular lesions were referred for histological or cytological evaluation of the possibility of malignancy, and 1 case was considered clinically important and required surgical resection. The cancer discovery rate was 3.3% (3/92) with positive predictive value of 50% (3/6). In the 5 participants with previously identified cancers, no recurrence or metastasis was detected.The offer of whole-body FDG-PET for cancer screening was welcomed with enthusiasm by most of the hospital employees. PET/CT combines the merits of PET and CT and can be administered to and provide benefits to a select group of hospital employees.

  9. Anthropogenic and Naturally Produced Brominated Phenols in Pet Blood and Pet Food in Japan.

    PubMed

    Mizukawa, Hazuki; Nomiyama, Kei; Nakatsu, Susumu; Yamamoto, Miyuki; Ishizuka, Mayumi; Ikenaka, Yoshinori; Nakayama, Shouta M M; Tanabe, Shinsuke

    2017-10-03

    Present study determined concentrations and residue patterns of bromophenols (BPhs) in whole blood samples of pet cats and pet dogs collected from veterinary hospitals in Japan. BPhs concentrations were higher in cat blood than in dog blood, with statistically insignificant differences (p = 0.07). Among the congeners, 2,4,6-tribromophenol (TBPh) constituted the majority of BPhs (>90%) detected in both species. Analysis of commercial pet food to estimate exposure routes showed that the most abundant congener in all pet food samples was 2,4,6-TBPh, accounting for >99% of total BPhs. This profile is quite similar to the blood samples of the pets, suggesting that diet might be an important exposure route for BPhs in pets. After incubation in polybrominated diphenyl ether (PBDE) mixtures (BDE-47, BDE-99 and BDE-209), 2,4,5-TBPh was found in dog liver microsomes but not in cat liver microsomes, implying species-specific metabolic capacities for PBDEs. Formation of 2,4,5-TBPh occurred by hydroxylation at the 1' carbon atom of the ether bond of BDE-99 is similar to human study reported previously. Hydroxylated PBDEs were not detected in cats or dogs; therefore, diphenyl ether bond cleavage of PBDEs can also be an important metabolic pathway for BPhs formation in cats and dogs.

  10. Diagnostic performance of 68Gallium-PSMA-11 PET/CT to detect significant prostate cancer and comparison with 18FEC PET/CT.

    PubMed

    Hoffmann, Manuela A; Miederer, Matthias; Wieler, Helmut J; Ruf, Christian; Jakobs, Frank M; Schreckenberger, Mathias

    2017-12-19

    Radiolabeled prostate-specific membrane antigen (PSMA) has proven to be a highly accurate method to detect recurrence and metastases of prostate cancer, but only sparse data is available about its performance in the diagnosis of clinically significant primary prostate cancer. We compared 68 Ga-PSMA-11 PET/CT in 25 patients with 18 FEC PET/CT in 40 patients with suspected prostate carcinoma based on an increased PSA level.The PET/CT results were compared with the histopathologic Gleason Score (GS) of biopsies. The 68 Ga-PSMA-11 PET/CT revealed highly suspect prostatic lesions (maximum standardized uptake value/SUV max >2.5) in 21/25 patients (84%), associated with GS≥6 (low-grade/high-grade carcinoma). Two histopathologic non-malignancy-relevant cases (GS<6) had PSMA-SUV max ≤2.5; all histopathologic high-grade cases (GS≥7b) showed PSMA-SUV max >12.0 which further increased with rising GS. There were 2 false positives and no false negative findings for high-grade prostate cancer using a cut off-level for SUV max of 2.5.In contrast, the 18 FEC PET/CT showed suspected malignant lesions in 38/40 patients (95%), which included 3 lesions with GS<6. The mean SUV max values did not differ with different GS. There were 11 false positives and 1 false negative for detection of high-grade prostate cancer (cut off 2.5).By means of ROC analysis a SUV max of 5.4 was found to be an optimal cut off-level to distinguish between low- and high-grade carcinoma in 68 Ga-PSMA-11 PET/CT (AUC=0.9692; 95% CI 0.9086;1.0000;SD(AUC)=0.0309)). Choosing a cut off-level of SUV max 5.4, 68 Ga-PSMA-11 PET/CT was able to distinguish between GS ≤7a/≥7b with a sensitivity of 84%, a specificity of 100%, a negative predictive value (NPV) of 67%, and an efficiency of 88% ( p <0.001).The ROC analysis revealed a SUV max 6.5 as an optimal cut off-level to distinguish between low- and high-grade carcinoma in 18 FEC PET/CT (AUC=0.7470; 95% CI 0.5919;0.9020;SD(AUC)=0.0791) with a sensitivity of 61

  11. Application of machine learning methodology for pet-based definition of lung cancer

    PubMed Central

    Kerhet, A.; Small, C.; Quon, H.; Riauka, T.; Schrader, L.; Greiner, R.; Yee, D.; McEwan, A.; Roa, W.

    2010-01-01

    We applied a learning methodology framework to assist in the threshold-based segmentation of non-small-cell lung cancer (nsclc) tumours in positron-emission tomography–computed tomography (pet–ct) imaging for use in radiotherapy planning. Gated and standard free-breathing studies of two patients were independently analysed (four studies in total). Each study had a pet–ct and a treatment-planning ct image. The reference gross tumour volume (gtv) was identified by two experienced radiation oncologists who also determined reference standardized uptake value (suv) thresholds that most closely approximated the gtv contour on each slice. A set of uptake distribution-related attributes was calculated for each pet slice. A machine learning algorithm was trained on a subset of the pet slices to cope with slice-to-slice variation in the optimal suv threshold: that is, to predict the most appropriate suv threshold from the calculated attributes for each slice. The algorithm’s performance was evaluated using the remainder of the pet slices. A high degree of geometric similarity was achieved between the areas outlined by the predicted and the reference suv thresholds (Jaccard index exceeding 0.82). No significant difference was found between the gated and the free-breathing results in the same patient. In this preliminary work, we demonstrated the potential applicability of a machine learning methodology as an auxiliary tool for radiation treatment planning in nsclc. PMID:20179802

  12. Diagnostic accuracy of sequential co-registered PET+MR in comparison to PET/CT in local thoracic staging of malignant pleural mesothelioma.

    PubMed

    Martini, Katharina; Meier, Andreas; Opitz, Isabelle; Weder, Walter; Veit-Haibach, Patrick; Stahel, Rolf A; Frauenfelder, Thomas

    2016-04-01

    To investigate the diagnostic accuracy of sequential co-registered PET+MR (PET+MR) for local staging of malignant pleural mesothelioma (MPM) compared to PET/CT. In a prospective clinical trial 34 consecutive patients (median age 66 years; range 40-79 years; 1 female, 33 male) with known MPM, who underwent PET/CT and PET+MR exams for either staging or re-staging/follow-up were evaluated. Imaging was conducted using a tri-modality PET/CT-MR set-up (Discovery PET/CT 690, 3T Discovery MR 750w, both GE Healthcare, Waukesha, WI, USA). In 26 cases histopathology served as standard of reference. Two independent readers evaluated images for T and N stage, confidence level (sure to unsure; 1-3) and subjective overall image quality (very good to non-diagnostic; 1-4). Inter-observer agreement of T and N stages (Cohen's kappa) and interclass correlation coefficient (ICC) between PET/CT vs. PET+MR was calculated. Inter observer agreement for evaluation of T and N Stage in PET/CT images was excellent (k=0.844 and k=0.824, respectively), whereas PET+MR imaging showed substantial agreement in T and N stage (k=0.729 and k=0.691, respectively). The ICC of PET/CT vs. PET+MR for evaluation of both, T and N Stage, was excellent (ICC=0.951 and ICC=0.93, respectively). Diagnostic confidence was scored significantly higher in PET+MR compared to PET/CT (mean score=1.66 and 1.93, respectively; p=0.004). Image quality was diagnostic for all image series. Comparing pT and pN stage vs cT and cN stage (n=26 cases), both imaging modalities showed excellent agreement for T stage (ICCPET+MR=0.888 vs. ICCPET/CT=0.853, respectively) and substantial to moderate agreement for N stage (ICCPET+MR=0.683 vs. ICC=0.595PET/CT, respectively). Our findings suggest that diagnostic accuracy of PET+MR is comparable to PET/CT for local staging of MPM, whereas radiologists felt significantly more confident staging PET+MR compared to PET/CT images (p=0003), using dedicated sequences. Copyright © 2016 Elsevier

  13. PET imaging in ischemic cerebrovascular disease: current status and future directions.

    PubMed

    Heiss, Wolf-Dieter

    2014-10-01

    Cerebrovascular diseases are caused by interruption or significant impairment of the blood supply to the brain, which leads to a cascade of metabolic and molecular alterations resulting in functional disturbance and morphological damage. These pathophysiological changes can be assessed by positron emission tomography (PET), which permits the regional measurement of physiological parameters and imaging of the distribution of molecular markers. PET has broadened our understanding of the flow and metabolic thresholds critical for the maintenance of brain function and morphology: in this application, PET has been essential in the transfer of the concept of the penumbra (tissue with perfusion below the functional threshold but above the threshold for the preservation of morphology) to clinical stroke and thereby has had great impact on developing treatment strategies. Radioligands for receptors can be used as early markers of irreversible neuronal damage and thereby can predict the size of the final infarcts; this is also important for decisions concerning invasive therapy in large ("malignant") infarctions. With PET investigations, the reserve capacity of blood supply to the brain can be tested in obstructive arteriosclerosis of the supplying arteries, and this again is essential for planning interventions. The effect of a stroke on the surrounding and contralateral primarily unaffected tissue can be investigated, and these results help to understand the symptoms caused by disturbances in functional networks. Chronic cerebrovascular disease causes vascular cognitive disorders, including vascular dementia. PET permits the detection of the metabolic disturbances responsible for cognitive impairment and dementia, and can differentiate vascular dementia from degenerative diseases. It may also help to understand the importance of neuroinflammation after stroke and its interaction with amyloid deposition in the development of dementia. Although the clinical application of

  14. PKU-PET-II: A novel SiPM-based PET imaging system for small animals

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoheng; Li, Suying; Zhou, Kun; Vuletic, Ivan; Meng, Xiangxi; Zhu, Sihao; Xu, Huan; Yang, Kun; Xu, Baixuan; Zhang, Jinming; Ren, Qiushi

    2018-01-01

    The objective of this study was to introduce, describe, and validate the performance of a novel preclinical silicon photomultiplier (SiPM)-based PET system (PKU-PET-II). Briefly, the detector assembly consisted of cerium-doped lutetium-yttrium oxyorthosilicate (LYSO) crystals, with dimensions of 2 ×2 ×15 mm3, that offered a 60 mm transaxial field of view (FOV) and 32 mm axial FOV, respectively. The compact front-end electronics readout and digital controller implemented architecture in the FPGA were noteworthy improvements in PKU-PET-II over its predecessor (PKU-PET-I). Based on the National Electrical Manufacturers Association (NEMA) NU 04-2008 standards, the design of the PKU-PET-II system was validated by a phantom experiment. The results presented spatial resolution (evaluated as full width at half maximum) with a system range from 1.68 ±0.07 to 2.31 ±0.03 mm at the FOV center and from 1.43 ±0.02 to 2.10 ±0.10 mm at the 1/4th axial FOV, respectively. The system's absolute sensitivity at the center position was 1.35% with the coincidence window of 6 ns and energy window of 300-700 keV. In addition, the NEMA image quality phantom and an animal study results validated the system imaging performance in preclinical imaging application. In conclusion, this SiPM-based, small-animal PET system (PKU-PET-II) provided higher-resolution, adequate sensitivity, and excellent image quality and has potential as a useful tool for real-time imaging of disease progression and development in vivo.

  15. Pets, Purity and Pollution: Why Conventional Models of Disease Transmission Do Not Work for Pet Rat Owners.

    PubMed

    Robin, Charlotte; Perkins, Elizabeth; Watkins, Francine; Christley, Robert

    2017-12-07

    In the United Kingdom, following the emergence of Seoul hantavirus in pet rat owners in 2012, public health authorities tried to communicate the risk of this zoonotic disease, but had limited success. To explore this lack of engagement with health advice, we conducted in-depth, semi-structured interviews with pet rat owners and analysed them using a grounded theory approach. The findings from these interviews suggest that rat owners construct their pets as different from wild rats, and by elevating the rat to the status of a pet, the powerful associations that rats have with dirt and disease are removed. Removing the rat from the contaminated outside world moves their pet rat from being 'out of place' to 'in place'. A concept of 'bounded purity' keeps the rat protected within the home, allowing owners to interact with their pet, safe in the knowledge that it is clean and disease-free. Additionally, owners constructed a 'hierarchy of purity' for their pets, and it is on this structure of disease and risk that owners base their behaviour, not conventional biomedical models of disease.

  16. Mobile PET Center Project

    NASA Astrophysics Data System (ADS)

    Ryzhikova, O.; Naumov, N.; Sergienko, V.; Kostylev, V.

    2017-01-01

    Positron emission tomography is the most promising technology to monitor cancer and heart disease treatment. Stationary PET center requires substantial financial resources and time for construction and equipping. The developed mobile solution will allow introducing PET technology quickly without major investments.

  17. TU-H-CAMPUS-IeP3-01: Simultaneous PET Restoration and PET/CT Co-Segmentation Using a Variational Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L; Tan, S; Lu, W

    Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint termmore » over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.« less

  18. The Utility of FDG-PET/CT in Clinically Suspected Paraneoplastic Neurological Syndrome: A Literature Review and Retrospective Case Series.

    PubMed

    Maskery, Mark P; Hill, Jonathan; Cain, John R; Emsley, Hedley C A

    2017-01-01

    Paraneoplastic neurological syndrome (PNS) describes a spectrum of rare, heterogeneous neurological conditions associated with an underlying malignancy. Diagnosis of PNS is inherently difficult, with frequent misdiagnosis and delay. The literature suggests an underlying immune-mediated pathophysiology, and patients are usually tested for the presence of onconeural antibodies. With direct tumor therapy being the most effective method of stabilizing patients, there is a strong emphasis on detecting underlying tumors. The sensitivity of conventional CT imaging is often inadequate in such patients. While FDG-PET imaging has already been shown to be effective at detecting these tumors, FDG-PET/CT, combining both structural and functional imaging in a single study, is a more recent technique. To study the utility of FDG-PET/CT, we conducted a systematic literature review and a retrospective study. We identified 41 patients who underwent imaging for clinically suspected PNS at the regional PET-CT and neurosciences center based at the Royal Preston Hospital between 2007 and 2014 and compared the results to conventional investigations. Five patients had FDG-PET/CT tracer avidity suspicious of malignant disease, and four of these were subsequently diagnosed with cancer. Sensitivity and specificity were calculated to be 100 and 97.3%, respectively, with positive predictive value 80% and negative predictive value 100%. This compares to a sensitivity and specificity of 50 and 100%, respectively, for CT and 50 and 89%, respectively, for onconeural antibodies. These findings are in line with previous studies and support the diagnostic accuracy of FDG-PET/CT for the detection of underlying malignancy.

  19. Ratio between maximum standardized uptake value of N1 lymph nodes and tumor predicts N2 disease in patients with non-small cell lung cancer in 18F-FDG PET-CT scan.

    PubMed

    Honguero Martínez, A F; García Jiménez, M D; García Vicente, A; López-Torres Hidalgo, J; Colon, M J; van Gómez López, O; Soriano Castrejón, Á M; León Atance, P

    2016-01-01

    F-18 fluorodeoxyglucose integrated PET-CT scan is commonly used in the work-up of lung cancer to improve preoperative disease stage. The aim of the study was to analyze the ratio between SUVmax of N1 lymph nodes and primary lung cancer to establish prediction of mediastinal disease (N2) in patients operated on non-small cell lung cancer. This is a retrospective study of a prospective database. Patients operated on non-small cell lung cancer (NSCLC) with N1 disease by PET-CT scan were included. None of them had previous induction treatment, but they underwent standard surgical resection plus systematic lymphadenectomy. There were 51 patients with FDG-PET-CT scan N1 disease. 44 (86.3%) patients were male with a mean age of 64.1±10.8 years. Type of resection: pneumonectomy=4 (7.9%), lobectomy/bilobectomy=44 (86.2%), segmentectomy=3 (5.9%). adenocarcinoma=26 (51.0%), squamous=23 (45.1%), adenosquamous=2 (3.9%). Lymph nodes after surgical resection: N0=21 (41.2%), N1=12 (23.5%), N2=18 (35.3%). Mean ratio of the SUVmax of N1 lymph node to the SUVmax of the primary lung tumor (SUVmax N1/T ratio) was 0.60 (range 0.08-2.80). ROC curve analysis to obtain the optimal cut-off value of SUVmax N1/T ratio to predict N2 disease was performed. At multivariate analysis, we found that a ratio of 0.46 or greater was an independent predictor factor of N2 mediastinal lymph node metastases with a sensitivity and specificity of 77.8% and 69.7%, respectively. SUVmax N1/T ratio in NSCLC patients correlates with mediastinal lymph node metastasis (N2 disease) after surgical resection. When SUVmax N1/T ratio on integrated PET-CT scan is equal or superior to 0.46, special attention should be paid on higher probability of N2 disease. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  20. Utility of early dynamic and delayed post-diuretic 18F-FDG PET/CT SUVmax in predicting tumour grade and T-stage of urinary bladder carcinoma: results from a prospective single centre study.

    PubMed

    Sharma, Abhishek; Mete, Uttam K; Sood, Ashwani; Kakkar, Nandita; Gorla, Arun K R; Mittal, Bhagwant R

    2017-04-01

    Accurate pre-treatment grading and staging of bladder cancer are vital for better therapeutic decision and prognosis. The aim of the present study was to evaluate the correlation between maximum standardized uptake value (SUV max ) calculated during early dynamic and post-diuretic fluorine-18 fludeoxyglucose ( 18 F-FDG) positron emission tomography (PET)/CT studies with grade and pT-stage of bladder cancer. 39 patients with suspected/proven bladder carcinoma underwent 10-min early dynamic pelvic imaging and delayed post-diuretic whole-body FDG PET/CT imaging. SUV max of the lesions derived from both studies was compared with grade and pT-stage. Relationship of SUV max with grade and pT-stage was analyzed using independent sample t-test and analysis of variance. SUV max of the early dynamic imaging showing tumour perfusion was independent from the SUV max of delayed imaging. High-grade tumours showed higher SUV max than low-grade tumours in the early dynamic imaging (5.4 ± 1.4 vs 4.7 ± 1.6; p-value 0.144) with statistically significant higher value in Stage pT1 tumours (6.8 ± 0.8 vs 5.5 ± 1.2; p-value 0.04). Non-invasive pTa tumours had significantly less SUV max than higher stage tumours during early dynamic imaging [F(4,29) = 6.860, p 0.001]. Early dynamic imaging may have a role in predicting the grade and aggressiveness of the bladder tumours and thus can help in treatment planning and prognostication. Advances in knowledge: Dynamic PET/CT is a limitedly explored imaging technique. This prospective pilot study demonstrates the utility of this modality as a potential adjunct to standard FDG PET/CT imaging in predicting the grade and aggressiveness of the bladder tumours and thus can impact the patient management.

  1. 68Ga-PSMA-PET/CT in Patients With Biochemical Prostate Cancer Recurrence and Negative 18F-Choline-PET/CT

    PubMed Central

    Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K.; Herrmann, Ken

    2016-01-01

    Purpose Investigating the value of 68Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative 18F-choline-PET/CT. Patients and Methods One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an 18F-choline-PET/CT. If negative, an additional 68Ga-PSMA-PET/CTwas offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional 68Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on 18F-choline-PET/CT and those who declined the additional 68Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). Results The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for 18F-choline-PET/CT alone. 68Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and 18F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of 68Ga-PSMA-PET/CT in 18F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. Conclusions The sequential imaging approach designed to limit 68Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. 68Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative 18F-choline PET/CT scans. PMID:26975008

  2. Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods.

    PubMed

    Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Ford, Randall M; Baker, Robert C; Pradhan, Abani K

    2016-01-04

    Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3Log CFU per exposure event. Child exposure due to ingestion of 1g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to

  3. The usefulness of (18)F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with (18)F-FDG PET/CT.

    PubMed

    Nagamachi, Shigeki; Nishii, Ryuichi; Wakamatsu, Hideyuki; Mizutani, Youichi; Kiyohara, Shogo; Fujita, Seigo; Futami, Shigemi; Sakae, Tatefumi; Furukoji, Eiji; Tamura, Shozo; Arita, Hideo; Chijiiwa, Kazuo; Kawai, Keiichi

    2013-07-01

    This study aimed at demonstrating the feasibility of retrospectively fused (18)F FDG-PET and MRI (PET/MRI fusion image) in diagnosing pancreatic tumor, in particular differentiating malignant tumor from benign lesions. In addition, we evaluated additional findings characterizing pancreatic lesions by FDG-PET/MRI fusion image. We analyzed retrospectively 119 patients: 96 cancers and 23 benign lesions. FDG-PET/MRI fusion images (PET/T1 WI or PET/T2WI) were made by dedicated software using 1.5 Tesla (T) MRI image and FDG-PET images. These images were interpreted by two well-trained radiologists without knowledge of clinical information and compared with FDG-PET/CT images. We compared the differential diagnostic capability between PET/CT and FDG-PET/MRI fusion image. In addition, we evaluated additional findings such as tumor structure and tumor invasion. FDG-PET/MRI fusion image significantly improved accuracy compared with that of PET/CT (96.6 vs. 86.6 %). As additional finding, dilatation of main pancreatic duct was noted in 65.9 % of solid types and in 22.6 % of cystic types, on PET/MRI-T2 fusion image. Similarly, encasement of adjacent vessels was noted in 43.1 % of solid types and in 6.5 % of cystic types. Particularly in cystic types, intra-tumor structures such as mural nodule (35.4 %) or intra-cystic septum (74.2 %) were detected additionally. Besides, PET/MRI-T2 fusion image could detect extra benign cystic lesions (9.1 % in solid type and 9.7 % in cystic type) that were not noted by PET/CT. In diagnosing pancreatic lesions, FDG-PET/MRI fusion image was useful in differentiating pancreatic cancer from benign lesions. Furthermore, it was helpful in evaluating relationship between lesions and surrounding tissues as well as in detecting extra benign cysts.

  4. Deep-learning-based classification of FDG-PET data for Alzheimer's disease categories

    NASA Astrophysics Data System (ADS)

    Singh, Shibani; Srivastava, Anant; Mi, Liang; Caselli, Richard J.; Chen, Kewei; Goradia, Dhruman; Reiman, Eric M.; Wang, Yalin

    2017-11-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic Alzheimer's disease (AD) patients. PET scans provide functional information that is unique and unavailable using other types of imaging. However, the computational efficacy of FDG-PET data alone, for the classification of various Alzheimers Diagnostic categories, has not been well studied. This motivates us to correctly discriminate various AD Diagnostic categories using FDG-PET data. Deep learning has improved state-of-the-art classification accuracies in the areas of speech, signal, image, video, text mining and recognition. We propose novel methods that involve probabilistic principal component analysis on max-pooled data and mean-pooled data for dimensionality reduction, and multilayer feed forward neural network which performs binary classification. Our experimental dataset consists of baseline data of subjects including 186 cognitively unimpaired (CU) subjects, 336 mild cognitive impairment (MCI) subjects with 158 Late MCI and 178 Early MCI, and 146 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. We measured F1-measure, precision, recall, negative and positive predictive values with a 10-fold cross validation scheme. Our results indicate that our designed classifiers achieve competitive results while max pooling achieves better classification performance compared to mean-pooled features. Our deep model based research may advance FDG-PET analysis by demonstrating their potential as an effective imaging biomarker of AD.

  5. 18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma.

    PubMed

    Hall, David O; Hooper, Clare E; Searle, Julie; Darby, Michael; White, Paul; Harvey, John E; Braybrooke, Jeremy P; Maskell, Nick A; Masani, Vidan; Lyburn, Iain D

    2018-02-01

    The purpose of this study was to compare the use of fluorine-18-fluorodeoxyglucose (F-FDG) PET with computed tomography (CT) and dynamic contrast-enhanced (DCE) MRI to predict prognosis and monitor treatment in malignant pleural mesothelioma. F-FDG PET/CT and DCE-MRI studies carried out as part of the South West Area Mesothelioma Pemetrexed trial were used. F-FDG PET/CT and DCE-MRI studies were carried out before treatment, and after two cycles of chemotherapy, on patients treated with pemetrexed and cisplatin. A total of 73 patients were recruited, of whom 65 had PET/CT and DCE-MRI scans. Baseline measurements from F-FDG PET/CT (maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis) and DCE-MRI (integrated area under the first 90s of the curve and washout slope) were compared with overall survival (OS) using Kaplan-Meier and Cox regression analyses, and changes in imaging measurements were compared with disease progression. PET/CT and DCE-MRI measurements were not correlated with each other. Maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis were significantly related to OS with Cox regression analysis and Kaplan-Meir analysis, and DCE-MRI washout curve shape was significantly related to OS. DCE-MRI curve shape can be combined with F-FDG PET/CT to give additional prognostic information. Changes in measurements were not related to progression-free survival. F-FDG PET/CT and DCE-MRI give prognostic information in malignant pleural mesothelioma. Neither PET/CT nor DCE-MRI is useful for monitoring disease progression.

  6. Anatomy and function: PET-CT.

    PubMed

    Kajander, Sami; Saraste, Antti; Ukkonen, Heikki; Knuuti, Juhani

    2010-05-01

    CT coronary angiography and perfusion PET form an attractive combination to study coronary artery lesions and their consequences in patients with coronary artery disease. Whereas CT provides non-invasive assessment of coronary lumen and wall, PET perfusion is a reliable method for the evaluation of myocardial flow. CT, although very capable of ruling out significant coronary artery disease, is less than satisfactory in assessing the actual significance of the detected lesions. PET imaging, despite its excellent sensitivity, fails to describe the exact anatomy of the epicardial vessels. By fusing image data from these two modalities, lesions can be accurately correlated with their physiological or anatomical counterparts. Hybrid PET-CT devices, now in wide clinical use, allow such fusion in a one-stop-shop study. Although still seeking its place in clinical scenarios, growing evidence suggests that hybrid PET-CT imaging of coronary anatomy and myocardial perfusion can accurately - and non-invasively - assess the existence and degree of coronary artery disease.

  7. An experimental phantom study of the effect of gadolinium-based MR contrast agents on PET attenuation coefficients and PET quantification in PET-MR imaging: application to cardiac studies.

    PubMed

    O' Doherty, Jim; Schleyer, Paul

    2017-12-01

    Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image

  8. Efficacy of PET/CT to exclude leiomyoma in patients with lesions suspicious for uterine sarcoma on MRI.

    PubMed

    Kusunoki, Soshi; Terao, Yasuhisa; Ujihira, Takafumi; Fujino, Kazunari; Kaneda, Hiroshi; Kimura, Miki; Ota, Tsuyoshi; Takeda, Satoru

    2017-08-01

    To analyze the efficacy of positron emission tomography/computed tomography (PET/CT) for the diagnosis of uterine sarcoma. Thirty-four patients evaluated between January 2010 and March 2015 were retrospectively enrolled. All patients in whom uterine sarcoma was suspected based on contrast-enhanced magnetic resonance imaging (MRI) findings (heterogeneous, high signal intensity on T2-weighted images and/or high intensity on T1-weighted images) underwent PET/CT for further assessment. Patients were divided into 2 groups based on postoperative pathological findings: uterine sarcoma (n = 15) and leiomyoma (n = 19). The maximum standardized uptake value (SUVmax) of all lesions was measured using PET/CT; we calculated the optimal cutoff value for diagnosing sarcoma. The median SUVmax for uterine sarcoma and leiomyoma was 12 and 4.1, respectively; these values were significantly different. An SUVmax of greater than 7.5 was able to exclude leiomyoma with 80.8% sensitivity and 100% specificity (area under the curve, 95.3%). A cutoff SUVmax of 7.5 yields 100% specificity, and a cutoff SUVmax of 4.4 yields a 100% negative predictive value (NPV). The combination of PET/CT and lactate dehydrogenase (LDH) levels had a sensitivity of 86.6%, specificity of 100%, positive predictive value of 100%, and an NPV of 90.4%. No relation between histopathology or International Federation of Gynecology and Obstetrics (FIGO) stage and 18-fluoro-2-deoxy-d-glucose uptake value on PET/CT was seen. The surgical outcome trended toward a correlation with the SUVmax, although this was not statistically significant. In patients with MRI findings consistent with either uterine sarcoma or leiomyoma, PET/CT can decrease the false-positive rate by setting an optimal cutoff SUVmax of 7.5. Using this cutoff can avoid unnecessary surgery. Copyright © 2017. Published by Elsevier B.V.

  9. Ni interferes in the Cu-regulated transcriptional switch petJ/petE in Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2016-10-01

    Plastocyanin (petE) plays an essential role in photosynthesis as an electron carrier between cytochrome b 6 f and photosystem I, and in some cyanobacteria it can be replaced by the haem-containing protein, cytochrome c 6 (petJ). In Synechocystis sp. PCC 6803, transcription of petE and petJ is activated and repressed, respectively, by Cu. Here, we show that Ni can act similarly to Cu in inducing petE and repressing petJ, thus leading to a partial switch between cytochrome c 6 and plastocyanin. Transcription of these genes is only altered by Ni in Cu-depleted medium, and none of the Ni-dependent transcription factors described in Synechocystis, NrsR and InrS seem to be involved in this regulation. Finally, we show that plastocyanin is essential for growth under conditions of excess Ni. © 2016 Federation of European Biochemical Societies.

  10. Quantitative PET of liver functions

    PubMed Central

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841

  11. Quantitative PET of liver functions.

    PubMed

    Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord

    2018-01-01

    Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.

  12. Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI.

    PubMed

    da Silva, N A; Lohmann, P; Fairney, J; Magill, A W; Oros Peusquens, A-M; Choi, C-H; Stirnberg, R; Stoffels, G; Galldiks, N; Golay, X; Langen, K-J; Jon Shah, N

    2018-06-01

    PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Current research is focused on the evaluation of amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging for brain tumour imaging. In this hybrid MR-PET study, brain tumours were compared using 3D data derived from APT-CEST MRI and amino acid PET using O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET). Eight patients with gliomas were investigated simultaneously with 18 F-FET PET and APT-CEST MRI using a 3-T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B 1 average power of 1μT. B 0 field inhomogeneities were corrected a Prametric images of magnetisation transfer ratio asymmetry (MTR asym ) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test. A tumour-to-brain ratio derived from APT# and 18 F-FET presented no significant differences, and no correlation was found between APT# and 18 F-FET PET data. The distance between local hot spot APT# and 18 F-FET were different (average 20 ± 13 mm, range 4-45 mm). For the first time, CEST images were compared with 18 F-FET in a simultaneous MR-PET measurement. Imaging findings derived from 18 F-FET PET and APT CEST MRI seem to provide different biological information. The validation of these imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy.

  13. Practical Considerations for Clinical PET/MR Imaging.

    PubMed

    Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan

    2018-01-01

    Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Practical Considerations for Clinical PET/MR Imaging.

    PubMed

    Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan

    2017-05-01

    Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. PET/CT: underlying physics, instrumentation, and advances.

    PubMed

    Torres Espallardo, I

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important

  16. 68Ga-HBED-CC-PSMA PET/CT Versus Histopathology in Primary Localized Prostate Cancer: A Voxel-Wise Comparison

    PubMed Central

    Zamboglou, Constantinos; Schiller, Florian; Fechter, Tobias; Wieser, Gesche; Jilg, Cordula Annette; Chirindel, Alin; Salman, Nasr; Drendel, Vanessa; Werner, Martin; Mix, Michael; Meyer, Philipp Tobias; Grosu, Anca Ligia

    2016-01-01

    Purpose: We performed a voxel-wise comparison of 68Ga-HBED-CC-PSMA PET/CT with prostate histopathology to evaluate the performance of 68Ga-HBED-CC-PSMA for the detection and delineation of primary prostate cancer (PCa). Methodology: Nine patients with histopathological proven primary PCa underwent 68Ga-HBED-CC-PSMA PET/CT followed by radical prostatectomy. Resected prostates were scanned by ex-vivo CT in a special localizer and histopathologically prepared. Histopathological information was matched to ex-vivo CT. PCa volume (PCa-histo) and non-PCa tissue in the prostate (NPCa-histo) were processed to obtain a PCa-model, which was adjusted to PET-resolution (histo-PET). Each histo-PET was coregistered to in-vivo PSMA-PET/CT data. Results: Analysis of spatial overlap between histo-PET and PSMA PET revealed highly significant correlations (p < 10-5) in nine patients and moderate to high coefficients of determination (R²) from 42 to 82 % with an average of 60 ± 14 % in eight patients (in one patient R2 = 7 %). Mean SUVmean in PCa-histo and NPCa-histo was 5.6 ± 6.1 and 3.3 ± 2.5 (p = 0.012). Voxel-wise receiver-operating characteristic (ROC) analyses comparing the prediction by PSMA-PET with the non-smoothed tumor distribution from histopathology yielded an average area under the curve of 0.83 ± 0.12. Absolute and relative SUV (normalized to SUVmax) thresholds for achieving at least 90 % sensitivity were 3.19 ± 3.35 and 0.28 ± 0.09, respectively. Conclusions: Voxel-wise analyses revealed good correlations of 68Ga-HBED-CC-PSMA PET/CT and histopathology in eight out of nine patients. Thus, PSMA-PET allows a reliable detection and delineation of PCa as basis for PET-guided focal therapies. PMID:27446496

  17. Survey to investigate pet ownership and attitudes to pet care in metropolitan Chicago dog and/or cat owners.

    PubMed

    Freiwald, Amber; Litster, Annette; Weng, Hsin-Yi

    2014-08-01

    The aims of this descriptive cross-sectional study were to investigate dog and cat acquisition and attitudes toward pet care among residents of the Chicago area (zip codes 60600-60660); to compare data obtained from owners of shelter-acquired pets with those of residents who acquired their pets from other sources; to compare data from dog owners with cat owners; and to compare pet health practices among the respondents of different zip code income groups. In-person surveys administered at five pet store locations collected data from 529 respondents, representing 582 dogs and 402 cats owned or continuously cared for in the past 3 years. Median household income data for represented zip codes was also obtained. Shelters were the most common source of cats (p<0.01) and were the second most common source of dogs. Cats were more likely to have been acquired as strays, while dogs were more likely to have been acquired from friends/family/neighbors, pet stores, breeders or rescue organizations and to be kept as outdoor-only pets (p<0.01). More cats were kept per household than dogs (dogs mean=1.32/household; cats mean=1.78/household; p<0.01). Pet owners were most commonly 'very likely' (5 on a 1-5/5 Likert scale) to administer all hypothetical treatments discussed, although cat owners were less likely to spend time training their pet (p=0.05). Cat owners were less likely to have taken their pet to a veterinarian for vaccinations or annual physical exams (p<0.01). Shelter-acquired cats were significantly more likely to have been taken by their owners to the veterinarian for annual exams (p=0.05) than cats obtained as strays. Owners of shelter-acquired pets were at least as willing as other respondents to administer hypothetical treatments and pay ≥$1000 for veterinary treatment. Respondents from site #3 lived in zip codes that had relatively lower median household incomes (p<0.01) and were less likely to spend ≥$1000 on their pets than those at the four other sites (p<0

  18. PET/MRI of Hepatic 90Y Microsphere Deposition Determines Individual Tumor Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kathryn J.; Maughan, Nichole M.; Laforest, Richard

    PurposeThe purpose of our study is to determine if there is a relationship between dose deposition measured by PET/MRI and individual lesion response to yttrium-90 ({sup 90}Y) microsphere radioembolization.Materials and Methods26 patients undergoing lobar treatment with {sup 90}Y microspheres underwent PET/MRI within 66 h of treatment and had follow-up imaging available. Adequate visualization of tumor was available in 24 patients, and contours were drawn on simultaneously acquired PET/MRI data. Dose volume histograms (DVHs) were extracted from dose maps, which were generated using a voxelized dose kernel. Similar contours to capture dimensional and volumetric change of tumors were drawn on follow-up imaging.more » Response was analyzed using both RECIST and volumetric RECIST (vRECIST) criteria.ResultsA total of 8 hepatocellular carcinoma (HCC), 4 neuroendocrine tumor (NET), 9 colorectal metastases (CRC) patients, and 3 patients with other metastatic disease met inclusion criteria. Average dose was useful in predicting response between responders and non-responders for all lesion types and for CRC lesions alone using both response criteria (p < 0.05). D70 (minimum dose to 70 % of volume) was also useful in predicting response when using vRECIST. No significant trend was seen in the other tumor types. For CRC lesions, an average dose of 29.8 Gy offered 76.9 % sensitivity and 75.9 % specificity for response.ConclusionsPET/MRI of {sup 90}Y microsphere distribution showed significantly higher DVH values for responders than non-responders in patients with CRC. DVH analysis of {sup 90}Y microsphere distribution following treatment may be an important predictor of response and could be used to guide future adaptive therapy trials.« less

  19. Modeling and predicting tumor response in radioligand therapy.

    PubMed

    Kletting, Peter; Thieme, Anne; Eberhardt, Nina; Rinscheid, Andreas; D'Alessandria, Calogero; Allmann, Jakob; Wester, Hans-Jürgen; Tauber, Robert; Beer, Ambros J; Glatting, Gerhard; Eiber, Matthias

    2018-05-10

    The aim of this work was to develop a theranostic method that allows predicting PSMA-positive tumor volume after radioligand therapy (RLT) based on a pre-therapeutic PET/CT measurement and physiologically based pharmacokinetic/dynamic (PBPK/PD) modeling at the example of RLT using 177 Lu-labeled PSMA for imaging and therapy (PSMA I&T). Methods: A recently developed PBPK model for 177 Lu PSMA I&T RLT was extended to account for tumor (exponential) growth and reduction due to irradiation (linear quadratic model). Data of 13 patients with metastatic castration-resistant prostate cancer (mCRPC) were retrospectively analyzed. Pharmacokinetic/dynamic parameters were simultaneously fitted in a Bayesian framework to PET/CT activity concentrations, planar scintigraphy data and tumor volumes prior and post (6 weeks) therapy. The method was validated using the leave-one-out Jackknife method. The tumor volume post therapy was predicted based on pre-therapy PET/CT imaging and PBPK/PD modeling. Results: The relative deviation of the predicted and measured tumor volume for PSMA-positive tumor cells (6 weeks post therapy) was 1±40% excluding one patient (PSA negative) from the population. The radiosensitivity for the PSA positive patients was determined to be 0.0172±0.0084 Gy-1. Conclusion: The proposed method is the first attempt to solely use PET/CT and modeling methods to predict the PSMA-positive tumor volume after radioligand therapy. Internal validation shows that this is feasible with an acceptable accuracy. Improvement of the method and external validation of the model is ongoing. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Pet Ownership by Elderly People: Two New Issues.

    ERIC Educational Resources Information Center

    Smith, David W. E.; And Others

    1992-01-01

    Examined two issues of pet ownership in mail questionnaire and interview survey of 1,595 older adults over age 60, 377 of whom had a pet. Found evidence that pets were important determinant of housing choice. Many elderly pet owners had made no arrangements for pet if they predecease it or become unable to care for it. (Author/NB)

  1. Pets, Purity and Pollution: Why Conventional Models of Disease Transmission Do Not Work for Pet Rat Owners

    PubMed Central

    Robin, Charlotte; Perkins, Elizabeth; Watkins, Francine

    2017-01-01

    In the United Kingdom, following the emergence of Seoul hantavirus in pet rat owners in 2012, public health authorities tried to communicate the risk of this zoonotic disease, but had limited success. To explore this lack of engagement with health advice, we conducted in-depth, semi-structured interviews with pet rat owners and analysed them using a grounded theory approach. The findings from these interviews suggest that rat owners construct their pets as different from wild rats, and by elevating the rat to the status of a pet, the powerful associations that rats have with dirt and disease are removed. Removing the rat from the contaminated outside world moves their pet rat from being ‘out of place’ to ‘in place’. A concept of ‘bounded purity’ keeps the rat protected within the home, allowing owners to interact with their pet, safe in the knowledge that it is clean and disease-free. Additionally, owners constructed a ‘hierarchy of purity’ for their pets, and it is on this structure of disease and risk that owners base their behaviour, not conventional biomedical models of disease. PMID:29215554

  2. Pets in the family: practical approaches.

    PubMed

    Hodgson, Kate; Darling, Marcia

    2011-01-01

    Adapting family life cycle theory to include pets provides veterinarians with a framework for understanding and reinforcing the human-animal bond. The family genogram with pets is a practice tool that identifies all people and pets in the family, enhancing the practice of One Health at the community level.

  3. 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: comparison with conventional imaging techniques.

    PubMed

    Koolen, Bas B; Vrancken Peeters, Marie-Jeanne T F D; Aukema, Tjeerd S; Vogel, Wouter V; Oldenburg, Hester S A; van der Hage, Jos A; Hoefnagel, Cornelis A; Stokkel, Marcel P M; Loo, Claudette E; Rodenhuis, Sjoerd; Rutgers, Emiel J Th; Valdés Olmos, Renato A

    2012-01-01

    The aim of the present study was to investigate if 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) outperforms conventional imaging techniques for excluding distant metastases prior to neoadjuvant chemotherapy (NAC) treatment in patients with stage II and III breast cancer. Second, we assessed the clinical importance of false positive findings. One hundred and fifty four patients with stage II or III breast cancer, scheduled to receive NAC, underwent an 18F-FDG PET/CT scan and conventional imaging, consisting of bone scintigraphy, ultrasound of the liver, and chest radiography. Suspect additional lesions at staging examination were confirmed by biopsy and histopathology and/or additional imaging. Metastases that were detected within 6 months after the PET/CT scan were considered evidence of occult metastasis, missed by staging examination. Forty-two additional distant lesions were seen in 25 patients with PET/CT and could be confirmed in 20 (13%) of 154 patients. PET/CT was false positive for 8 additional lesions (19%) and misclassified the presence of metastatic disease in 5 (3%) of 154 patients. In 16 (80%) of 20 patients, additional lesions were exclusively seen with PET/CT, leading to a change in treatment in 13 (8%) of 154 patients. In 129 patients with a negative staging PET/CT, no metastases developed during the follow-up of 9.0 months. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of PET/CT in the detection of additional distant lesions in patients with stage II or III breast cancer are 100, 96, 80, 100, and 97%, respectively. FDG PET/CT is superior to conventional imaging techniques in the detection of distant metastases in patients with untreated stage II or III breast cancer and is associated with a low false positive rate. PET/CT may be of additional value in the staging of breast cancer prior to NAC.

  4. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Cadorette, Jules; Tétrault, Marc-André; Beaudoin, Jean-François; Leroux, Jean-Daniel; Fontaine, Réjean; Lecomte, Roger

    2014-02-01

    The LabPET is an avalanche photodiode (APD) based digital PET scanner with quasi-individual detector read-out and highly parallel electronic architecture for high-performance in vivo molecular imaging of small animals. The scanner is based on LYSO and LGSO scintillation crystals (2×2×12/14 mm3), assembled side-by-side in phoswich pairs read out by an APD. High spatial resolution is achieved through the individual and independent read-out of an individual APD detector for recording impinging annihilation photons. The LabPET exists in three versions, LabPET4 (3.75 cm axial length), LabPET8 (7.5 cm axial length) and LabPET12 (11.4 cm axial length). This paper focuses on the systematic characterization of the three LabPET versions using two different energy window settings to implement a high-efficiency mode (250-650 keV) and a high-resolution mode (350-650 keV) in the most suitable operating conditions. Prior to measurements, a global timing alignment of the scanners and optimization of the APD operating bias have been carried out. Characteristics such as spatial resolution, absolute sensitivity, count rate performance and image quality have been thoroughly investigated following the NEMA NU 4-2008 protocol. Phantom and small animal images were acquired to assess the scanners' suitability for the most demanding imaging tasks in preclinical biomedical research. The three systems achieve the same radial FBP spatial resolution at 5 mm from the field-of-view center: 1.65/3.40 mm (FWHM/FWTM) for an energy threshold of 250 keV and 1.51/2.97 mm for an energy threshold of 350 keV. The absolute sensitivity for an energy window of 250-650 keV is 1.4%/2.6%/4.3% for LabPET4/8/12, respectively. The best count rate performance peaking at 362 kcps is achieved by the LabPET12 with an energy window of 250-650 keV and a mouse phantom (2.5 cm diameter) at an activity of 2.4 MBq ml-1. With the same phantom, the scatter fraction for all scanners is about 17% for an energy threshold of

  5. Pets or People: Another Research Note.

    ERIC Educational Resources Information Center

    Goldmeier, John

    1986-01-01

    Compared four samples of elderly women: living alone, with other persons, and with and without a pet. Pets only made a difference for those living alone. At best, pets only attenuate the sense of loneliness. In intervention with the elderly, the provision of human supports should remain a priority. (Author/BL)

  6. Prevalence and malignancy risk of focal colorectal incidental uptake detected by (18)F-FDG-PET or PET/CT: a meta-analysis.

    PubMed

    Treglia, Giorgio; Taralli, Silvia; Salsano, Marco; Muoio, Barbara; Sadeghi, Ramin; Giovanella, Luca

    2014-06-01

    The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography ((18)F-FDG-PET or PET/CT). A comprehensive computer literature search of studies published through July 31(st) 2012 regarding FCIs detected by (18)F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported. Thirty-two studies comprising 89,061 patients evaluated by (18)F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by (18)F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6-4.7%). Overall, 1,044 FCIs detected by (18)F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60-75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs. FCIs are observed in a not negligible number of patients who undergo (18)F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by (18)F-FDG-PET or PET/CT.

  7. Expanding role of 18F-fluoro-d-deoxyglucose PET and PET/CT in spinal infections

    PubMed Central

    Rijk, Paul C.; Collins, James M. P.; Parlevliet, Thierry; Stumpe, Katrin D.; Palestro, Christopher J.

    2010-01-01

    18F-fluoro-d-deoxyglucose positron emission tomography ([18F]-FDG PET) is successfully employed as a molecular imaging technique in oncology, and has become a promising imaging modality in the field of infection. The non-invasive diagnosis of spinal infections (SI) has been a challenge for physicians for many years. Morphological imaging modalities such as conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are techniques frequently used in patients with SI. However, these methods are sometimes non-specific, and difficulties in differentiating infectious from degenerative end-plate abnormalities or postoperative changes can occur. Moreover, in contrast to CT and MRI, FDG uptake in PET is not hampered by metallic implant-associated artifacts. Conventional radionuclide imaging tests, such as bone scintigraphy, labeled leukocyte, and gallium scanning, suffer from relatively poor spatial resolution and lack sensitivity, specificity, or both. Initial data show that [18F]-FDG PET is an emerging imaging technique for diagnosing SI. [18F]-FDG PET appears to be especially helpful in those cases in which MRI cannot be performed or is non-diagnostic, and as an adjunct in patients in whom the diagnosis is inconclusive. The article reviews the currently available literature on [18F]-FDG PET and PET/CT in the diagnosis of SI. PMID:20052505

  8. Impact of motion and partial volume effects correction on PET myocardial perfusion imaging using simultaneous PET-MR

    NASA Astrophysics Data System (ADS)

    Petibon, Yoann; Guehl, Nicolas J.; Reese, Timothy G.; Ebrahimi, Behzad; Normandin, Marc D.; Shoup, Timothy M.; Alpert, Nathaniel M.; El Fakhri, Georges; Ouyang, Jinsong

    2017-01-01

    PET is an established modality for myocardial perfusion imaging (MPI) which enables quantification of absolute myocardial blood flow (MBF) using dynamic imaging and kinetic modeling. However, heart motion and partial volume effects (PVE) significantly limit the spatial resolution and quantitative accuracy of PET MPI. Simultaneous PET-MR offers a solution to the motion problem in PET by enabling MR-based motion correction of PET data. The aim of this study was to develop a motion and PVE correction methodology for PET MPI using simultaneous PET-MR, and to assess its impact on both static and dynamic PET MPI using 18F-Flurpiridaz, a novel 18F-labeled perfusion tracer. Two dynamic 18F-Flurpiridaz MPI scans were performed on healthy pigs using a PET-MR scanner. Cardiac motion was tracked using a dedicated tagged-MRI (tMR) sequence. Motion fields were estimated using non-rigid registration of tMR images and used to calculate motion-dependent attenuation maps. Motion correction of PET data was achieved by incorporating tMR-based motion fields and motion-dependent attenuation coefficients into image reconstruction. Dynamic and static PET datasets were created for each scan. Each dataset was reconstructed as (i) Ungated, (ii) Gated (end-diastolic phase), and (iii) Motion-Corrected (MoCo), each without and with point spread function (PSF) modeling for PVE correction. Myocardium-to-blood concentration ratios (MBR) and apparent wall thickness were calculated to assess image quality for static MPI. For dynamic MPI, segment- and voxel-wise MBF values were estimated by non-linear fitting of a 2-tissue compartment model to tissue time-activity-curves. MoCo and Gating respectively decreased mean apparent wall thickness by 15.1% and 14.4% and increased MBR by 20.3% and 13.6% compared to Ungated images (P  <  0.01). Combined motion and PSF correction (MoCo-PSF) yielded 30.9% (15.7%) lower wall thickness and 82.2% (20.5%) higher MBR compared to Ungated data reconstructed

  9. PET/CT alignment calibration with a non-radioactive phantom and the intrinsic 176Lu radiation of PET detector

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian

    2016-11-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.

  10. Utility of PET-CT in detecting nodal metastasis in cN0 early stage oral cavity squamous cell carcinoma.

    PubMed

    Zhang, Han; Seikaly, Hadi; Biron, Vincent L; Jeffery, Caroline C

    2018-05-01

    Management of the clinically node-negative neck (cN0) in patients with early stage oral cavity squamous cell carcinoma (OCSCC) is challenging. Accurate imaging alternatives to elective neck dissections would help reduce surgical morbidity. While pooled studies suggest that imaging modalities have similar accuracy in predicting occult nodal disease, no study has examined the utility of PET-CT in this specific population of low-volume, clinically T1 and T2 OCSCC patients. A retrospective review of patients in the Alberta Cancer Registry who were diagnosed with cT1 or T2N0M0 OCSCC who underwent elective unilateral or bilateral neck dissections was performed. Pre-operative PET-CT and CT necks were reviewed for number of radiographically suspicious lymph nodes. Surgical pathology reports were reviewed to obtain the total number of nodes sampled and number of malignant nodes. Between 2009 and 2013, 148 patients were diagnosed with cT1 or T2N0M0 OCSCC. Of these, 96 patients underwent elective neck dissections. All patients underwent preoperative CT of the neck with 32 patients having undergone additional preoperative PET-CT. Based on finally surgical pathology, the overall rate of occult metastasis was 13.5% (13/96). The overall sensitivity and specificity of PET-CT in this cohort was 21.4% and 98.4%, respectively with a negative predictive value of 99.1%. Although sensitivity improved in patients with tumors ≥2 cm and depth ≥4 mm, specificity remained unchanged. In patients with cT1 and T2N0 OCSCC, PET-CT has high negative predictive value. These patients can be considered for treatment with single modality surgical resection and elective neck dissection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Risk-related 18F-FDG PET/CT and new diagnostic strategies in patients with solitary pulmonary nodule: the ITALIAN multicenter trial.

    PubMed

    Spadafora, Marco; Pace, Leonardo; Evangelista, Laura; Mansi, Luigi; Del Prete, Francesco; Saladini, Giorgio; Miletto, Paolo; Fanti, Stefano; Del Vecchio, Silvana; Guerra, Luca; Pepe, Giovanna; Peluso, Giuseppina; Nicolai, Emanuele; Storto, Giovanni; Ferdeghini, Marco; Giordano, Alessandro; Farsad, Mohsen; Schillaci, Orazio; Gridelli, Cesare; Cuocolo, Alberto

    2018-05-05

    Diagnosis of solitary pulmonary nodule (SPN) is an important public health issue and 18 F-FDG PET/CT has proven to be more effective than CT alone. Pre-test risk stratification and clinical presentation of SPN could affect the diagnostic strategy. A relevant issue is whether thoracic segmental (s)-PET/CT could be implemented in patients with SPN. This retrospective multicenter study compared the results of FDG whole-body (wb)-PET/CT to those of s-PET/CT. 18 F-FDG PET/CT of 502 patients, stratified for pre-test cancer risk, were retrospectively analyzed. The thoracic part of wb-PET/CT, considered s-PET/CT, was compared to wb-PET/CT. Clinical and PET/CT variables were investigated for SPN characterization as well as for identification of patients in whom s-PET/CT could be performed. Histopathology or follow-up data were used as a reference. In the study population, 36% had malignant, 35% benign, and 29% indeterminate SPN. 18 F-FDG uptake indicative of thoracic and extra-thoracic lesions was detectable in 13% and 3% of the patients. All patients with extra-thoracic metastases (n = 13) had thoracic lymph node involvement and highest 18 F-FDG uptake at level of SPN (negative predictive value 100%). Compared to wb-PET/CT, s-PET/CT could save about 2/3 of 18 F-FDG dose, radiation exposure or scan-time, without affecting the clinical impact of PET/CT. Pre-test probability of malignancy can guide the diagnostic strategy of 18 FDG-PET/CT in patients with SPN. In subjects with low-intermediate pretest probability s-PET/CT imaging might be planned in advance, while in those at high risk and with thoracic lymph node involvement a wb-PET/CT is necessary.

  12. Meet the Alpha-Pets.

    ERIC Educational Resources Information Center

    Zitlaw, Jo Ann Bruce; Frank, Cheryl Standish

    1985-01-01

    "Alpha-Pets" are the focal point of an integrated, multidisciplinary curriculum. Each pet is featured for a week in a vocabulary-rich story and introduces related activities beginning with the featured letter, such as the four food groups during Freddie Fish's week or universe during Ulysses Unicorn's week. (MT)

  13. [A report on clinical PET activities in Germany].

    PubMed

    Tashiro, M; Kubota, K; Itoh, M; Sasaki, H; Moser, E

    1999-09-01

    Clinical diagnostic procedure using positron emission tomography (PET) requires high costs. To promote clinical use of PET, sociomedical evaluation is necessary. In this paper, sociomedical situations concerning clinical use of PET in Germany is reported. Some comparisons are made between Japan and this country putting emphases on several points such as 1) number of cyclotron and PET facilities, 2) social restriction to transportation of radioisotopes, 3) activities of satellite PET facilities, and 4) clinical indications for PET studies. Number of cyclotron was larger in Japan (29) than in Germany (17), but number of PET facilities was larger in Germany (47) than in Japan (29). The reason seems that in Germany transportation and buying of radioisotopes is less restricted. Hence, more than half of PET facilities in Germany are "satellite facilities" which do not have their own cyclotrons. Radioisotope distribution seems to serve as a backbone of "satellite concept." Additionally in Germany, list of clinical indications for PET study is almost completed and now is widely in applied to most cases. To promote clinical use of PET in Japan, the German system might serve as an important socioeconomic model in Europe instead of the United States.

  14. Pet ownership increases human risk of encountering ticks.

    PubMed

    Jones, E H; Hinckley, A F; Hook, S A; Meek, J I; Backenson, B; Kugeler, K J; Feldman, K A

    2018-02-01

    We examined whether pet ownership increased the risk for tick encounters and tickborne disease among residents of three Lyme disease-endemic states as a nested cohort within a randomized controlled trial. Information about pet ownership, use of tick control for pets, property characteristics, tick encounters and human tickborne disease were captured through surveys, and associations were assessed using univariate and multivariable analyses. Pet-owning households had 1.83 times the risk (95% CI = 1.53, 2.20) of finding ticks crawling on and 1.49 times the risk (95% CI = 1.20, 1.84) of finding ticks attached to household members compared to households without pets. This large evaluation of pet ownership, human tick encounters and tickborne diseases shows that pet owners, whether of cats or dogs, are at increased risk of encountering ticks and suggests that pet owners are at an increased risk of developing tickborne disease. Pet owners should be made aware of this risk and be reminded to conduct daily tick checks of all household members, including the pets, and to consult their veterinarian regarding effective tick control products. © 2017 Blackwell Verlag GmbH.

  15. Clinical applications of PET in oncology.

    PubMed

    Rohren, Eric M; Turkington, Timothy G; Coleman, R Edward

    2004-05-01

    Positron emission tomography (PET) provides metabolic information that has been documented to be useful in patient care. The properties of positron decay permit accurate imaging of the distribution of positron-emitting radiopharmaceuticals. The wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. PET is used for characterizing brain disorders such as Alzheimer disease and epilepsy and cardiac disorders such as coronary artery disease and myocardial viability. The neurologic and cardiac applications of PET are not covered in this review. The major utilization of PET clinically is in oncology and consists of imaging the distribution of fluorine 18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. FDG PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. In this review, the physics and instrumentation aspects of PET are described. Many of the clinical applications in oncology are mature and readily covered by third-party payers. Other applications are being used clinically but have not been as carefully evaluated in the literature, and these applications may not be covered by third-party payers. The developing applications of PET are included in this review.

  16. Pet ownership and adolescent health: cross-sectional population study.

    PubMed

    Mathers, Megan; Canterford, Louise; Olds, Tim; Waters, Elizabeth; Wake, Melissa

    2010-12-01

    To determine whether adolescent health and well-being are associated with having a pet in the household (any pet, or specifically dogs, cats or horses/ponies) or average daily time spent caring for/playing with pet(s). Design, setting and participants--Cross-sectional data from the third wave of the Health of Young Victorians Study (HOYVS), a school-based population study in Victoria, Australia. Predictors--Adolescent-reported pet ownership and average daily time spent caring for/playing with pet(s). Outcomes--Self-reported quality of life (KIDSCREEN); average 4-day daily physical activity level from a computerised diary; parent-proxy and self-reported physical and psychosocial health status (PedsQL); measured BMI status (not overweight, overweight, obese) and blood pressure. Statistical Analysis--Regression methods, adjusted for socio-demographic factors, and non-parametric methods. Household pet data were available for 928 adolescents (466 boys; mean age of 15.9 (SD 1.2) years). Most adolescents (88.7%) reported having a pet in their household. Of these, 75.1% reported no activity involving pets over the surveyed days. It appeared that neither owning a pet nor time spent caring for/playing with a pet was related, positively or negatively, to adolescent health or well-being. Despite high rates of pet ownership, adolescents had little interaction with pets. It appears that owning a pet and time spent caring for/playing with a pet was not clearly associated with adolescents' health or well-being. © 2010 The Authors. Journal of Paediatrics and Child Health © 2010 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  17. Performance of highly sensitive cardiac troponin T assay to detect ischaemia at PET-CT in low-risk patients with acute coronary syndrome: a prospective observational study.

    PubMed

    Morawiec, Beata; Fournier, Stephane; Tapponnier, Maxime; Prior, John O; Monney, Pierre; Dunet, Vincent; Lauriers, Nathalie; Recordon, Frederique; Trana, Catalina; Iglesias, Juan-Fernando; Kawecki, Damian; Boulat, Olivier; Bardy, Daniel; Lamsidri, Sabine; Eeckhout, Eric; Hugli, Olivier; Muller, Olivier

    2017-07-10

    Highly sensitive troponin T (hs-TnT) assay has improved clinical decision-making for patients admitted with chest pain. However, this assay's performance in detecting myocardial ischaemia in a lowrisk population has been poorly documented. To assess hs-TnT assay's performance to detect myocardial ischaemia at positron emission tomography/CT (PET-CT) in low-risk patients admitted with chest pain. Patients admitted for chest pain with a nonconclusive ECG and negative standard cardiac troponin T results at admission and after 6 hours were prospectively enrolled. Their hs-TnT samples were at T0, T2 and T6. Physicians were blinded to hs-TnT results. All patients underwent a PET-CT at rest and during adenosine-induced stress. All patients with a positive PET-CT result underwent a coronary angiography. Forty-eight patients were included. Six had ischaemia at PET-CT. All of them had ≥1 significant stenosis at coronary angiography. Areas under the curve (95% CI) for predicting significant ischaemia at PET-CT using hs-TnT were 0.764 (0.515 to 1.000) at T0, 0.812(0.616 to 1.000) at T2 and 0.813(0.638 to 0.989) at T6. The receiver operating characteristicbased optimal cut-off value for hs-TnT at T0, T2 and T6 needed to exclude significant ischaemia at PET-CT was <4 ng/L. Using this value, sensitivity, specificity, positive and negative predictive values of hs-TnT to predict significant ischaemia were 83%/38%/16%/94% at T0, 100%/40%/19%/100% at T2 and 100%/43%/20%/100% at T6, respectively. Our findings suggest that in low-risk patients, using the hs-TnT assay with a cut-off value of 4 ng/L demonstrates excellent negative predictive value to exclude myocardial ischaemia detection at PET-CT, at the expense of weak specificity and positive predictive value. ClinicalTrials.gov Identifier: NCT01374607. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly

  18. Comparison of dual-biomarker PIB-PET and dual-tracer PET in AD diagnosis.

    PubMed

    Fu, Liping; Liu, Linwen; Zhang, Jinming; Xu, Baixuan; Fan, Yong; Tian, Jiahe

    2014-11-01

    To identify the optimal time window for capturing perfusion information from early (11)C-PIB imaging frames (perfusion PIB, (11)C-pPIB) and to compare the performance of (18)F-FDG PET and "dual biomarker" (11)C-PIB PET [(11)C-pPIB and amyloid PIB ((11)C-aPIB)] for classification of AD, MCI and CN subjects. Forty subjects (14 CN, 12 MCI and 14 AD patients) underwent (18)F-FDG and (11)C-PIB PET studies. Pearson correlation between the (18)F-FDG image and sum of early (11)C-PIB frames was maximised to identify the optimal time window for (11)C-pPIB. The classification power of imaging parameters was evaluated with a leave-one-out validation. A 7-min time window yielded the highest correlation between (18)F-FDG and (11)C-pPIB. (11)C-pPIB and (18)F-FDG images shared a similar radioactive distribution pattern. (18)F-FDG performed better than (11)C-pPIB for the classification of both AD vs. CN and MCI vs. CN. (11)C-pPIB + (11)C-aPIB and (18)F-FDG + (11)C-aPIB yielded the highest classification accuracy for the classification of AD vs. CN, and (18)F-FDG + (11)C-aPIB had the best classification performance for the classification of MCI vs. C-pPIB could serve as a useful biomarker of rCBF for measuring neural activity and improve the diagnostic power of PET for AD in conjunction with (11)C-aPIB. (18)F-FDG and (11)C-PIB dual-tracer PET examination could better detect MCI. • Dual-tracer PET examination provides neurofunctional and neuropathological information for AD diagnosis. • The identified optimal 11C-pPIB time frames had highest correlation with 18F-FDG. • 11C-pPIB images shared a similar radioactive distribution pattern with 18F-FDG images. • 11C-pPIB can provide neurofunctional information. • Dual-tracer PET examination could better detect MCI.

  19. Comparison of 68Ga-DOTANOC PET/CT and contrast-enhanced CT in localisation of tumours in ectopic ACTH syndrome

    PubMed Central

    Jadhav, Swati S; Lila, Anurag R; Kasaliwal, Rajeev; Khare, Shruti; Yerawar, Chaitanya G; Hira, Priya; Phadke, Uday; Shah, Hina; Lele, Vikram R; Malhotra, Gaurav; Bandgar, Tushar; Shah, Nalini S

    2016-01-01

    Background Localising ectopic adrenocorticotrophic hormone (ACTH) syndrome (EAS) tumour source is challenging. Somatostatin receptor-based PET imaging has shown promising results, but the data is limited to case reports and small case series. We reviewed here the performance of 68Ga-DOTANOC positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) in our cohort of 12 consecutive EAS patients. Materials and methods Retrospective data analysis of 12 consecutive patients of EAS presenting to a single tertiary care centre in a period between January 2013 and December 2014 was done. CECT and 68Ga-DOTANOC PET/CT were reported (blinded) by an experienced radiologist and a nuclear medicine physician, respectively. The performance of CECT and 68Ga-DOTANOC PET/CT was compared. Results Tumours could be localised in 11 out of 12 patients at initial presentation (overt cases), whereas in one patient, tumour remained occult. Thirteen lesions were identified in 11 patients as EAS source (true positives). CECT localised 12 out of these 13 lesions (sensitivity 92.3%) and identified five false-positive lesions (positive predictive value (PPV) 70.5%). Compared with false-positive lesions, true-positive lesions had greater mean contrast enhancement at 60s (33.2 vs 5.6 Hounsfield units (HU)). 68Ga-DOTANOC PET/CT was able to identify 9 out of 13 lesions (sensitivity 69.2%) and reported no false-positive lesions (PPV 100%). Conclusion CECT remains the first-line investigation in localisation of EAS. The contrast enhancement pattern on CECT can further aid in characterisation of the lesions. 68Ga-DOTANOC PET/CT can be added to CECT, to enhance positive prediction of the suggestive lesions. PMID:27006371

  20. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    PubMed

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  1. WE-G-209-03: PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, B.

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This coursemore » will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.« less

  2. Prevalence and malignancy risk of focal colorectal incidental uptake detected by 18F-FDG-PET or PET/CT: a meta-analysis

    PubMed Central

    Treglia, Giorgio; Taralli, Silvia; Salsano, Marco; Muoio, Barbara; Sadeghi, Ramin; Giovanella, Luca

    2014-01-01

    Background The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (18F-FDG-PET or PET/CT). Methods A comprehensive computer literature search of studies published through July 31st 2012 regarding FCIs detected by 18F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported. Results Thirty-two studies comprising 89,061 patients evaluated by 18F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by 18F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6–4.7%). Overall, 1,044 FCIs detected by 18F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60–75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs. Conclusions FCIs are observed in a not negligible number of patients who undergo 18F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by 18F-FDG-PET or PET/CT. PMID:24991198

  3. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia.

    PubMed

    Nestor, Peter J; Altomare, Daniele; Festari, Cristina; Drzezga, Alexander; Rivolta, Jasmine; Walker, Zuzana; Bouwman, Femke; Orini, Stefania; Law, Ian; Agosta, Federica; Arbizu, Javier; Boccardi, Marina; Nobili, Flavio; Frisoni, Giovanni Battista

    2018-05-07

    To assess the clinical utility of FDG-PET as a diagnostic aid for differentiating Alzheimer's disease (AD; both typical and atypical forms), dementia with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD), vascular dementia (VaD) and non-degenerative pseudodementia. A comprehensive literature search was conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted on six different diagnostic scenarios using the Delphi method. The level of empirical study evidence for the use of FDG-PET was considered good for the discrimination of DLB and AD; fair for discriminating FTLD from AD; poor for atypical AD; and lacking for discriminating DLB from FTLD, AD from VaD, and for pseudodementia. Delphi voting led to consensus in all scenarios within two iterations. Panellists supported the use of FDG-PET for all PICOs-including those where study evidence was poor or lacking-based on its negative predictive value and on the assistance it provides when typical patterns of hypometabolism for a given diagnosis are observed. Although there is an overall lack of evidence on which to base strong recommendations, it was generally concluded that FDG-PET has a diagnostic role in all scenarios. Prospective studies targeting diagnostically uncertain patients for assessing the added value of FDG-PET would be highly desirable.

  4. Feasibility of deep-inspiration breath-hold PET/CT with short-time acquisition: detectability for pulmonary lesions compared with respiratory-gated PET/CT.

    PubMed

    Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Nakajima, Kenichi

    2014-01-01

    Deep-inspiration breath-hold (DIBH) PET/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used.

  5. Diagnostic value of [(18)F]-FDG PET/CT in children with fever of unknown origin or unexplained signs of inflammation.

    PubMed

    Jasper, Niklas; Däbritz, Jan; Frosch, Michael; Loeffler, Markus; Weckesser, Matthias; Foell, Dirk

    2010-01-01

    Fever of unknown origin (FUO) and unexplained signs of inflammation are challenging medical problems especially in children and predominantly caused by infections, malignancies or noninfectious inflammatory diseases. The aim of this study was to assess the diagnostic value of (18)F-FDG PET and PET/CT in the diagnostic work-up in paediatric patients. In this retrospective study, 47 FDG PET and 30 PET/CT scans from 69 children (median age 8.1 years, range 0.2-18.1 years, 36 male, 33 female) were analysed. The diagnostic value of PET investigations in paediatric patients presenting with FUO (44 scans) or unexplained signs of inflammation without fever (33 scans) was analysed. A diagnosis in paediatric patients with FUO or unexplained signs of inflammation could be established in 32 patients (54%). Of all scans, 63 (82%) were abnormal, and of the total number of 77 PET and PET/CT scans 35 (45%) were clinically helpful. In patients with a final diagnosis, scans were found to have contributed to the diagnosis in 73%. Laboratory, demographic or clinical parameters of the children did not predict the usefulness of FDG PET scans. This is the first larger study demonstrating that FDG PET and PET/CT may be valuable diagnostic tools for the evaluation of children with FUO and unexplained signs of inflammation. Depicting inflammation in the whole body, while not being traumatic, it is attractive for use especially in children. The combination of PET with CT seems to be superior, since the site of inflammation can be localized more accurately.

  6. PET/CT versus bone marrow biopsy in the initial evaluation of bone marrow infiltration in various pediatric malignancies.

    PubMed

    Zapata, Claudia P; Cuglievan, Branko; Zapata, Catalina M; Olavarrieta, Raquel; Raskin, Scott; Desai, Kavita; De Angulo, Guillermo

    2018-02-01

    Accurate staging is essential in the prognosis and management of pediatric malignancies. Current protocols require screening for marrow infiltration with bone marrow biopsy (BMB) as the gold standard. Positron emission tomography-computed tomography (PET-CT) is commonly used to complete the staging process and can also be used to evaluate marrow infiltration. To compare PET-CT and BMB in the initial evaluation of bone marrow infiltration in pediatric cancers. We retrospectively reviewed new cases of EWS, rhabdomyosarcoma, neuroblastoma, and lymphoma diagnosed between January 2009 and October 2014. Each case had undergone both PET-CT and BMB within 4 weeks without treatment in the interval between screening modalities. We reviewed 69 cases. Bone marrow infiltration was demonstrated in 34 cases by PET-CT and in 18 cases by BMB. The sensitivity and negative predictive value of PET-CT were both 100%. Interestingly, the cases in which infiltration was not detected on BMB had an abnormal marrow signal on PET-CT focal or distant to iliac crest. PET-CT has a high sensitivity when assessing marrow infiltration in pediatric malignancies. Advances in radiologic modalities may obviate the use of invasive, painful, and costly procedures like BMB. Furthermore, biopsy results are limited by insufficient tissue or the degree of marrow infiltration (diffuse vs. focal disease). PET-CT can improve the precision of biopsy when used as a guiding tool. This study proposes the use of PET-CT as first-line screening for bone marrow infiltration to improve the accuracy of staging in new diagnoses. © 2017 Wiley Periodicals, Inc.

  7. Early-Dynamic Positron Emission Tomography (PET)/Computed Tomography and PET Angiography for Endoleak Detection After Endovascular Aneurysm Repair.

    PubMed

    Drescher, Robert; Gühne, Falk; Freesmeyer, Martin

    2017-06-01

    To propose a positron emission tomography (PET)/computed tomography (CT) protocol including early-dynamic and late-phase acquisitions to evaluate graft patency and aneurysm diameter, detect endoleaks, and rule out graft or vessel wall inflammation after endovascular aneurysm repair (EVAR) in one examination without intravenous contrast medium. Early-dynamic PET/CT of the endovascular prosthesis is performed for 180 seconds immediately after intravenous injection of F-18-fluorodeoxyglucose. Data are reconstructed in variable time frames (time periods after tracer injection) to visualize the arterial anatomy and are displayed as PET angiography or fused with CT images. Images are evaluated in view of vascular abnormalities, graft configuration, and tracer accumulation in the aneurysm sac. Whole-body PET/CT is performed 90 to 120 minutes after tracer injection. This protocol for early-dynamic PET/CT and PET angiography has the potential to evaluate vascular diseases, including the diagnosis of complications after endovascular procedures.

  8. TH-E-202-03: PET for Tumor Response Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W.

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand

  9. Whole-Body 68Ga-DOTANOC PET/MRI Versus 68Ga-DOTANOC PET/CT in Patients With Neuroendocrine Tumors

    PubMed Central

    Berzaczy, Dominik; Giraudo, Chiara; Haug, Alexander R.; Raderer, Markus; Senn, Daniela; Karanikas, Georgios; Weber, Michael; Mayerhoefer, Marius E.

    2017-01-01

    Purpose The aim of this study was to assess the diagnostic performance of simultaneous whole-body 68Ga-DOTANOC PET/MRI compared with 68Ga-DOTANOC PET/CT for detection of distant metastatic disease in patients with well-differentiated neuroendocrine tumors (NETs). Methods Patients with histologically proven, well-differentiated NET (G1 or G2) were included in this prospective, institutional review board–approved study. Patients underwent 68Ga-DOTANOC PET/CT and subsequent 68Ga-DOTANOC PET/MRI after a single tracer injection on the same day for staging or restaging purposes. Images were evaluated for the presence of NET lesions by 2 rater teams, each consisting of a nuclear medicine physician and a radiologist, in an observer-blinded fashion. Overall agreement, accuracy, sensitivity, and specificity, relative to a composite reference standard (consensus review including follow-up data), were calculated. Results Between July 2014 and June 2016, 28 patients were enrolled. Overall agreement and accuracy between the 2 rater teams were 91.7% (95% confidence interval [CI], 87.5%–95.9%) and 97% (95% CI, 94.4%–99.6%) for PET/MRI and 92.3% (95% CI, 88.3%–96.3%) and 94.6% (95% CI, 91.2%–98.1%) for PET/CT, respectively (P = 1.00). Overall, PET/MRI reached 89.8% sensitivity (95% CI, 77.8%–96.6%) and 100% specificity (95% CI, 97%–100%); PET/CT showed 81.6% sensitivity (95% CI, 68%–91.2%) and 100% specificity (95% CI, 97%–100%) for the detection of metastatic disease in NETs. Conclusions Whole-body 68Ga-DOTANOC PET/MRI appears to be comparable to 68Ga-DOTANOC PET/CT for lesion detection in patients with well-differentiated NETs. PMID:28682844

  10. Role of 18F-FDG PET/CT in the Carcinoma of the Uterus: A Review of Literature

    PubMed Central

    Musto, Alessandra; Grassetto, Gaia; Marzola, Maria Cristina; Chondrogiannis, Sotirios; Maffione, Anna Margherita; Rampin, Lucia; Fuster, David; Giammarile, Francesco; Colletti, Patrick M.

    2014-01-01

    In the present review we reported the value of 18F-fluorodeoxyglucose (FDG) PET/CT in face of uterine cancer, in terms of sensitivity, specificity and accuracy. Moreover, we made a comparison with the other imaging techniques currently used to evacuate these tumors including contrast-enhanced CT, contrast enhanced-MRI and transvaginal ultrasonography. FDG PET/CT has been reported to be of particular value in detecting occult metastatic lesions, in prediction of response to treatment and as a pro-gnostic factor. PMID:25323881

  11. 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients

    PubMed Central

    Spick, Claudio; Herrmann, Ken; Czernin, Johannes

    2016-01-01

    18F-FDG PET/CT has become the reference standard in oncologic imaging against which the performance of other imaging modalities is measured. The promise of PET/MRI includes multiparametric imaging to further improve diagnosis and phenotyping of cancer. Rather than focusing on these capabilities, many investigators have examined whether 18F-FDG PET combined with mostly anatomic MRI improves cancer staging and restaging. After a description of PET/MRI scanner designs and a discussion of technical and operational issues, we review the available literature to determine whether cancer assessments are improved with PET/MRI. The available data show that PET/MRI is feasible and performs as well as PET/CT in most types of cancer. Diagnostic advantages may be achievable in prostate cancer and in bone metastases, whereas disadvantages exist in lung nodule assessments. We conclude that 18F-FDG PET/MRI and PET/CT provide comparable diagnostic information when MRI is used simply to provide the anatomic framework. Thus, PET/MRI could be used in lieu of PET/CT if this approach becomes economically viable and if reasonable workflows can be established. Future studies should explore the multiparametric potential of MRI. PMID:26742709

  12. Subcortical aphasia: a longitudinal PET study.

    PubMed

    de Boissezon, Xavier; Démonet, Jean-François; Puel, Michèle; Marie, Nathalie; Raboyeau, Gaëlle; Albucher, Jean-François; Chollet, François; Cardebat, Dominique

    2005-07-01

    Very few neuroimaging studies have focused on follow-up of subcortical aphasia. Here, overt language production tasks were used to correlate regional cerebral blood flow (rCBF) changes and language performance in patients with vascular subcortical lesions. Seven aphasic patients were scanned twice with positron emission tomography (PET) at 1-year interval during a word-generation task. Using SPM2, Language-Rest contrast at PET1 was correlated to language performance and to time-lag from stroke. The same contrast was performed at PET2 and session effect (PET2-PET1) was correlated with performance improvement. At PET1, correlation between rCBF and delay from stroke involved mainly ventral regions of the left temporal cortex and mesial frontal cortex. Correlations between rCBF and performance showed predominantly left dorsal regions in the frontal, temporal, and parietal lobes, but also the left ventral temporal cortex. One year apart, language performance improved and rCBF increased in perisylvian regions bilaterally. Best performers at PET2 showed an increase of activity in left ventral temporal cortex as well as in right middle temporal gyrus. On follow-up, expected language improvement and increase of activation in the classical language areas and their counterparts were observed. Moreover, all correlational analyses both at PET1 and on follow-up implicated the anterior part of the left inferior temporal gyrus, suggesting a disconnection between the superior and inferior parts of the left temporal cortex and a specific role for this region in lexical semantic processing.

  13. The history of cerebral PET scanning

    PubMed Central

    Portnow, Leah H.; Vaillancourt, David E.; Okun, Michael S.

    2013-01-01

    Objective: To review the discoveries underpinning the introduction of cerebral PET scanning and highlight its modern applications. Background: Important discoveries in neurophysiology, brain metabolism, and radiotracer development in the post–World War II period provided the necessary infrastructure for the first cerebral PET scan. Methods: A complete review of the literature was undertaken to search for primary and secondary sources on the history of PET imaging. Searches were performed in PubMed, Google Scholar, and select individual journal Web sites. Written autobiographies were obtained through the Society for Neuroscience Web site at www.sfn.org. A reference book on the history of radiology, Naked to the Bone, was reviewed to corroborate facts and to locate references. The references listed in all the articles and books obtained were reviewed. Results: The neurophysiologic sciences required to build cerebral PET imaging date back to 1878. The last 60 years have produced an evolution of technological advancements in brain metabolism and radiotracer development. These advancements facilitated the development of modern cerebral PET imaging. Several key scientists were involved in critical discoveries and among them were Angelo Mosso, Charles Roy, Charles Sherrington, John Fulton, Seymour Kety, Louis Sokoloff, David E. Kuhl, Gordon L. Brownell, Michael Ter-Pogossian, Michael Phelps, and Edward Hoffman. Conclusions: Neurophysiology, metabolism, and radiotracer development in the postwar era synergized the development of the technology necessary for cerebral PET scanning. Continued use of PET in clinical trials and current developments in PET-CT/MRI hybrids has led to advancement in diagnosis, management, and treatment of neurologic disorders. PMID:23460618

  14. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  15. Read the Label First: Protect Your Pets

    EPA Pesticide Factsheets

    Learn about the importance of reading pet products labels before purchasing and using any product to insure the safety of your pets. Find tips for ways to reduce the changes of pets accessing potentially dangerous products.

  16. Electromagnetic Interactions in a Shielded PET/MRI System for Simultaneous PET/MR Imaging in 9.4 T: Evaluation and Results

    NASA Astrophysics Data System (ADS)

    Maramraju, Sri Harsha; Smith, S. David; Rescia, Sergio; Stoll, Sean; Budassi, Michael; Vaska, Paul; Woody, Craig; Schlyer, David

    2012-10-01

    We previously integrated a magnetic resonance-(MR-) compatible small-animal positron emission tomograph (PET) in a Bruker 9.4 T microMRI system to obtain simultaneous PET/MR images of a rat's brain and of a gated mouse-heart. To minimize electromagnetic interactions in our MR-PET system, viz., the effect of radiofrequency (RF) pulses on the PET, we tested our modular front-end PET electronics with various shield configurations, including a solid aluminum shield and one of thin segmented layers of copper. We noted that the gradient-echo RF pulses did not affect PET data when the PET electronics were shielded with either the aluminum- or the segmented copper-shields. However, there were spurious counts in the PET data resulting from high-intensity fast spin-echo RF pulses. Compared to the unshielded condition, they were attenuated effectively by the aluminum shield ( 97%) and the segmented copper shield ( 90%). We noted a decline in the noise rates as a function of increasing PET energy-discriminator threshold. In addition, we observed a notable decrease in the signal-to-noise ratio in spin-echo MR images with the segmented copper shields in place; however, this did not substantially degrade the quality of the MR images we obtained. Our results demonstrate that by surrounding a compact PET scanner with thin layers of segmented copper shields and integrating it inside a 9.4 T MR system, we can mitigate the impact of the RF on PET, while acquiring good-quality MR images.

  17. Convergent effects of mouse Pet-1 deletion and human PET-1 variation on amygdala fear and threat processing.

    PubMed

    Wellman, Cara L; Camp, Marguerite; Jones, V Morgan; MacPherson, Kathryn P; Ihne, Jessica; Fitzgerald, Paul; Maroun, Mouna; Drabant, Emily; Bogdan, Ryan; Hariri, Ahmad R; Holmes, Andrew

    2013-12-01

    Serotonin is critical for shaping the development of neural circuits regulating emotion. Pet-1 (FEV-1) is an ETS-domain transcription factor essential for differentiation and forebrain targeting of serotonin neurons. Constitutive Pet-1 knockout (KO) causes major loss of serotonin neurons and forebrain serotonin availability, and behavioral abnormalities. We phenotyped Pet-1 KO mice for fear conditioning and extinction, and on a battery of assays for anxiety- and depression-related behaviors. Morphology of Golgi-stained neurons in basolateral amygdala (BLA) and prelimbic cortex was examined. Using human imaging genetics, a common variant (rs860573) in the PET-1 (FEV) gene was tested for effects on threat-related amygdala reactivity and psychopathology in 88 Asian-ancestry subjects. Pet-1 KO mice exhibited increased acquisition and expression of fear, and elevated fear recovery following extinction, relative to wild-type (WT). BLA dendrites of Pet-1 KO mice were significantly longer than in WT. Human PET-1 variation associated with differences in amygdala threat processing and psychopathology. This novel evidence for the role of Pet-1 in fear processing and dendritic organization of amygdala neurons and in human amygdala threat processing extends a growing literature demonstrating the influence of genetic variation in the serotonin system on emotional regulation via effects on structure and function of underlying corticolimbic circuitry. © 2013.

  18. Should immunocompromised patients have pets?

    PubMed

    Steele, Russell W

    2008-01-01

    To evaluate the risks and benefits of pet ownership by immunodeficient patients, focusing primarily on organisms that colonize animals and are transmitted to humans. Those diseases that are known to be progressive or more severe in patients with altered immune function are emphasized. A review of the medical and veterinary literature pertaining to zoonoses transmitted by domestic animals was completed. Information pertaining to issues involving immunosuppressed patients including AIDS was carefully evaluated and summarized for inclusion. There are significant clinical and psychosocial benefits to pet ownership. However, numerous diseases can be acquired from these animals which may be more severe in immunocompromised individuals. Simple guidelines for pet ownership by immunosuppressed patients can be implemented to reduce their risk of disease and allow them to safely interchange with their pets.

  19. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients.

    PubMed

    Ryvlin, P; Bouvard, S; Le Bars, D; De Lamérie, G; Grégoire, M C; Kahane, P; Froment, J C; Mauguière, F

    1998-11-01

    We assessed the clinical utility of [11C]flumazenil-PET (FMZ-PET) prospectively in 100 epileptic patients undergoing a pre-surgical evaluation, and defined the specific contribution of this neuro-imaging technique with respect to those of MRI and [18F]fluorodeoxyglucose-PET (FDG-PET). All patients benefited from a long term video-EEG monitoring, whereas an intracranial EEG investigation was performed in 40 cases. Most of our patients (73%) demonstrated a FMZ-PET abnormality; this hit rate was significantly higher in temporal lobe epilepsy (94%) than in other types of epilepsy (50%) (P < 0.001). Most FMZ-PET findings coexisted with a MRI abnormality (81%), including hippocampal atrophy (35%) and focal hypometabolism on FDG-PET (89%). The area of decreased FMZ binding was often smaller than that of glucose hypometabolism (48%) or larger than that of the MRI abnormality (28%). FMZ-PET did not prove superior to FDG-PET in assessing the extent of the ictal onset zone, as defined by intracranial EEG recordings. However, it provided useful data which were complementary to those of MRI and FDG-PET in three situations: (i) in temporal lobe epilepsy associated with MRI signs of hippocampal sclerosis, FMZ-PET abnormalities delineated the site of seizure onset precisely, whenever they were coextensive with FDG-PET abnormalities; (ii) in bi-temporal epilepsy, FMZ-PET helped to confirm the bilateral origin of seizures by showing a specific pattern of decreased FMZ binding in both temporal lobes in 33% of cases; (iii) in patients with a unilateral cryptogenic frontal lobe epilepsy, FMZ-PET provided further evidence of the side and site of seizure onset in 55% of cases. Thus, FMZ-PET deserves to be included in the pre-surgical evaluation of these specific categories of epileptic patients, representing approximately half of the population considered for epilepsy surgery.

  20. [(18)F]Florbetaben: a review in β-amyloid PET imaging in cognitive impairment.

    PubMed

    Syed, Yahiya Y; Deeks, Emma

    2015-07-01

    Intravenous (18)F-labelled florbetaben ([(18)F]florbetaben) [Neuraceq™] is a polyethylene glycol stilbene derivative that is approved in the USA, EU and South Korea for positron emission tomography (PET) imaging of the brain. It is used to estimate β-amyloid neuritic plaque density in adult patients with cognitive impairment who are being evaluated for Alzheimer's disease and other causes of cognitive impairment. In vitro, [(18)F]florbetaben has high affinity and selectivity for β-amyloid. It has a short PET scan time (15-20 min). Visual assessment of regional and whole brain [(18)F]florbetaben PET images detected brain β-amyloid with high sensitivity and specificity, with good inter-reader agreement, in a phase III study in patients with various levels of cognitive function when compared with postmortem histopathological assessment. The whole brain visual assessment displayed high positive and negative predictive values, enabling amyloid pathology to be reliably detected or excluded. Quantitative PET analyses were generally consistent with the visual assessments. [(18)F]florbetaben was generally well tolerated in clinical trials. All adverse reactions in [(18)F]florbetaben recipients were mild to moderate in severity and the most common were injection-site-related (erythema, irritation and pain). There were no serious adverse reactions related to [(18)F]florbetaben. In summary, [(18)F]florbetaben is a highly accurate β-amyloid PET tracer that has the potential to support the clinical diagnosis of Alzheimer's disease and other causes of cognitive decline.