Science.gov

Sample records for flux climatologies derived

  1. Uncertainties in global ocean surface heat flux climatologies derived from ship observations

    SciTech Connect

    Gleckler, P.J.; Weare, B.C.

    1995-08-01

    A methodology to define uncertainties associated with ocean surface heat flux calculations has been developed and applied to a revised version of the Oberhuber global climatology, which utilizes a summary of the COADS surface observations. Systematic and random uncertainties in the net oceanic heat flux and each of its four components at individual grid points and for zonal averages have been estimated for each calendar month and the annual mean. The most important uncertainties of the 2{degree} x 2{degree} grid cell values of each of the heat fluxes are described. Annual mean net shortwave flux random uncertainties associated with errors in estimating cloud cover in the tropics yield total uncertainties which are greater than 25 W m{sup {minus}2}. In the northern latitudes, where the large number of observations substantially reduce the influence of these random errors, the systematic uncertainties in the utilized parameterization are largely responsible for total uncertainties in the shortwave fluxes which usually remain greater than 10 W m{sup {minus}2}. Systematic uncertainties dominate in the zonal means because spatial averaging has led to a further reduction of the random errors. The situation for the annual mean latent heat flux is somewhat different in that even for grid point values the contributions of the systematic uncertainties tend to be larger than those of the random uncertainties at most all latitudes. Latent heat flux uncertainties are greater than 20 W m{sup {minus}2} nearly everywhere south of 40{degree}N, and in excess of 30 W m{sup {minus}2} over broad areas of the subtropics, even those with large numbers of observations. Resulting zonal mean latent heat flux uncertainties are largest ({approximately}30 W m{sup {minus}2}) in the middle latitudes and subtropics and smallest ({approximately}10--25 W m{sup {minus}2}) near the equator and over the northernmost regions.

  2. The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.

    2015-07-01

    Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.

  3. Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan

    2002-01-01

    This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.

  4. Satellite derived aerosol optical depth climatology over Bangalore, India

    NASA Astrophysics Data System (ADS)

    Sreekanth, V.

    2013-06-01

    Climatological aerosol optical depths (AOD) over Bangalore, India have been examined to bring out the temporal heterogeneity in columnar aerosol characteristics. AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra and Aqua satellites, for the period of 2002-2011 have been analyzed (independently) for the purpose. Frequency distributions of the AOD values are examined to infer the monthly mean values. Monthly and seasonal variations of AOD are investigated in the light of regional synoptic meteorology. Climatological monthly and seasonal mean Terra and Aqua AOD values exhibited similar temporal variation patterns. Monthly mean AOD values increased from January, peaks during May and thereafter (except for a secondary peak during July) fall off to reach a minimum during December. Monsoon season recorded the highest climatological seasonal mean AOD, while winter season recorded the lowest. AOD values show an overall increasing trend on a yearly basis, which was found mainly due to sustained increase in the seasonal averaged AOD during summer. The results obtained in the present study are compared with that of the earlier studies over the same location and also with AOD over various other Indian locations. Finally, the radiative and climatic impacts are discussed.

  5. Ocean-atmosphere interaction and the tropical climatology. Part I. The dangers of flux correction

    SciTech Connect

    Neelin, J.D.; Dijkstra, H.A.

    1995-05-01

    This sequence of papers examines the role of dynamical feedbacks between the ocean and the atmosphere in determining features of the tropical climatology. A stripped-down, intermediate, coupled ocean-atmosphere model is used to provide a prototype problem for the Pacific basin. Here the authors contrast the fully coupled case with the case where flux correction is used to construct the climatology. In the fully coupled case, the climatology is determined largely by feedback mechanisms within the ocean basin: winds driven by gradients of sea surface temperature (SST) within the basin interact with the ocean circulation to maintain SST gradients. For all realistic cases, these lead to a unique steady solution for the tropical climatology. In the flux-corrected case, the artificially constructed climatology becomes unstable at sufficiently large coupling, leading to multiple steady states as found in a number of coupled models. Using continuation methods, we show that there is a topological change in the bifurcation structure as flux correction is relaxed toward a fully coupled case; this change is characterized as an imperfection and must occur generically for all flux-corrected cases. The cold branch is steady solutions is governed by mechanisms similar to the fully coupled case. The warm branch, however, is spurious and disappears. The dynamics of this and consequences for coupled models are discussed. Multiple steady states can be ruled out as a mechanism for El Nino in favor of oscillatory mechanisms. The important role that coupled feedbacks are suggested to play in establishing tropical climatology is referred to as {open_quotes}the climatological version of the Bjerknes hypothesis.{close_quotes} 43 refs., 10 figs., 2 tabs.

  6. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  7. Constraining the climatology of CO2 ocean surface flux for North Atlantic and the Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, Iwona; Piskozub, Jacek

    2015-04-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, constraining the net flux into the ocean sink is crucial for understanding the global carbon cycle. The air-sea interface flux is calculated from millions of measurements of CO2 partial pressures. However the regional and temporal means depend on parametrization of gas transfer velocity as well as on the wind/waves fields used for calculations. A recently developed tool, FluxEngine, created within the ESA funded (SOLAS related) OceanFlux Greenhouse Gases project, creates an opportunity to create an ensemble of regional CO2 flux climatologies for the North Atlantic and Arctic waters using multiple combinations of forcing fields and gas transfer velocity parameterizations. The aim of the study is to provide constraints on the regional monthly averages for the chosen area for the whole "climatology ensemble". This approach is similar to the one used by IPCC for the whole model ensemble used for modeling of the climate. Doing a regional study provides an additional test of the parameterizations because the local flux averages may differ even for parameterizations giving similar global averages. We present the methodology and CO2 flux climatology constrains for selected regions and seasons, the preliminary results of a study which aim is to cover the whole North Atlantic and ice-free areas of Arctic Ocean. The study is done within the new ESA funded OceanFlux Evolution project we are part of and at the same time is part of a PhD thesis funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science).

  8. A 40-year retrospective European radon flux inventory including climatological variability

    NASA Astrophysics Data System (ADS)

    López-Coto, I.; Mas, J. L.; Bolivar, J. P.

    2013-07-01

    In this work, a 40-year retrospective European radon flux inventory has been calculated. Average values of the radon exhalation rate, probability distributions and seasonal fluctuations have been obtained. To achieve this, a numerical model of radon transport through finite, heterogeneous and porous media has been implemented, enabling us to calculate the radon exhalation rate of European soils with a horizontal resolution of 0.5' (˜1 km). Geological, geochemical and climatological parameters derived from European and international databases (FOREGS, HWSD, ERA-40) have been coupled to the model. The theoretical model is based on the fundamental equation of radon transport in porous media, taking into account the dependency of the transport coefficient on temperature and humidity. It also includes a simple model that evaluates the effect of snow cover. In general, the results show wide variations depending on location and season of the year, with a spatial standard deviation close to the annual average value (30 Bq m-2 h-1) In turn, the seasonal deviation is about 25% of the annual average value. The inventory can be easily integrated into atmospheric transport models acting as baseline that could be used for policy decisions regarding the identification of areas with a high risk of exposure to radon. The gridded data are available for the scientific community upon request. The limitations and sources of errors and uncertainties of the model are also discussed in detail.

  9. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  10. Synoptic Climatological Approaches to Assessing Subcanopy Hydrologic and Nutrient Fluxes in a Temperate Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Levia, D. F.; Leathers, D. J.

    2012-12-01

    The partitioning of precipitation incident to a forest canopy into throughfall and stemflow is controlled by biotic and abiotic factors. Biotic factors include canopy architecture, bark and leaf morphology, and leaf presence whereas abiotic factors include precipitation, antecedent moisture conditions, and wind speed. Previous studies relating the subcanopy hydrologic flux to storm events consider the aforementioned abiotic factors at the event level. This research applies atmospheric classification methods from the field of synoptic climatology to relate large scale weather patterns to local forest hydrologic conditions. A daily synoptic calendar is employed to categorize the observed subcanopy hydrologic flux during storm events and is evaluated as a tool for historical reconstruction and future prediction of forest hydrologic conditions as precipitation regimes are influenced by climate change. At the seasonal scale, the majority of precipitation occurs in 4 out of 13 synoptic types in winter, 4 out of 13 in spring, 2 out of 9 in summer, and 5 out of 11 in autumn, the remaining synoptic types are dominated by fair weather conditions (although small precipitation amounts are sometimes observed). During the study period, precipitation is correctly predicted by synoptic types 82% of the time in winter, 70% in spring, 88% in summer, and 73% in autumn. Analysis of variance (ANOVA) indicates that spring, summer, and fall precipitation-producing synoptic types predict statistically different subcanopy throughfall fluxes. The absence of foliage and more homogenous winter canopy may diminish the predictive ability of synoptic typing in regards to throughfall at that time of year. Biogeochemical canopy fluxes associated with storm events are also distinguishable using the synoptic calendar.

  11. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  12. A 10-Year Climatology of Amazonian Rainfall Derived from Passive Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Anagnostou, Emmanouil N.; Adler, Robert F.

    1998-01-01

    In this study we present and describe a satellite-derived precipitation climatology over northern South America using a passive microwave technique, the Goddard Profiling Algorithm. A period of data slightly longer than 10 years is examined. The climatologies take the form of the mean estimated (adjusted) rainfall for a 10-year (+) period, with sub-divisions by month and meteorological season. For the six-year period 1992-1997, when two satellites were in operation, diurnal variability (to the extent it is discerned by four unequally spaced observations) is presented. We find an alternating pattern of morning and maxima stretching from the northeast (Atlantic coast) clear across the continent to the Pacific. The effects of topography, coastlines and geography (river valleys) on the rainfall patterns are clear. Interannual variability is examined by computing the deviations of yearly and warm season (DJF) rainfall from their respective long-term means. Interannual variability of the diurnal nature of the rainfall is presented, and the strong El Nino event of 1997-1998 is discussed.

  13. Climatological patterns over South America derived from COSMIC radio occultation data

    NASA Astrophysics Data System (ADS)

    Hierro, R.; Llamedo, P.; de la Torre, A.; Alexander, P.; Rolla, A.

    2012-02-01

    Meteorological phenomena are closely linked to the presence of water vapor. They mainly originate and develop in the troposphere, where almost all the atmospheric water is concentrated. The Global Positioning System radio occultation (GPS RO) technique provides vertical profiles of refractivity from which other properties such as temperature and water vapor can be derived. The GPS RO capability to reproduce global, synoptic, and regional climatological patterns over South America, which is a mostly oceanic continent, is tested. From FORMOSAT-3/COSMIC mission data (2006-2010), our previous knowledge regarding global and synoptic/regional patterns of temperature, equivalent potential temperature, specific humidity, and pressure is verified. Special cases such as baroclinic disturbances arriving at South American midlatitudes and storm events over a mountain region near the Andes are analyzed. The temporal evolution and the latitude-longitude distribution in several layers of the variables listed above are well described with this technique.

  14. Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Nelkin, Eric J.; Huffman, George J.

    1994-01-01

    Climatologies of convective precipitation were derived from passive microwave observations from the Special Sensor Microwave Imager using a scattering-based algorithm of Adler et al. Data were aggregated over periods of 3-5 months using data from 4 to 5 years. Data were also stratified by satellite overpass times (primarily 06 00 and 18 00 local time). Four regions (Mexico, Amazonia, western Africa, and the western equatorial Pacific Ocean (TOGA COARE area) were chosen for their meteorological interest and relative paucity of conventional observations. The strong diurnal variation over Mexico and the southern United States was the most striking aspect of the climatologies. Pronounced morning maxima occured offshore, often in concativities in the coastline, the result of the increased convergence caused by the coastline shape. The major feature of the evening rain field was a linear-shaped maximum along the western slope of the Sierra Madre Occidental. Topography exerted a strong control on the rainfall in other areas, particularly near the Nicaragua/Honduras border and in Guatemala, where maxima in excess of 700 mm/month were located adjacent to local maxima in terrain. The correlation between the estimates and monthly gage data over the southern United States was low (0.45), due mainly to poor temporal sampling in any month and an inadequate sampling of the diurnal cycle. Over the Amazon Basin the differences in morning versus evening rainfall were complex, with an alternating series of morning/evening maxima aligned southwest to northeast from the Andes to the northeast Brazilian coast. A real extent of rainfall in Amazonia was slightly higher in the evening, but a maximum in morning precipitation was found on the Amazon River just east of Manaus. Precipitation over the water in the intertropical convergence zone (ITCZ) north of Brazil was more pronounced in the morning, and a pronounced land-/sea-breeze circulation was found along the northeast coast of Brazil

  15. Satellite-derived UV climatology over Europe: daily doses maps from January 1984 to October 2002

    NASA Astrophysics Data System (ADS)

    Verdebout, J.; Groebner, J.

    2003-04-01

    The paper presents a first version of a European satellite-derived ultraviolet (UV) radiation climatology over Europe, covering the period from January 1984 to October 2002. It consists in maps of the surface dose rates and daily doses, covering Europe (12E-32E, 34N-74N) with a spatial resolution of 0.05 deg. The method basically uses a standard radiative transfer code (UVspec) and exploits various sources of information to assign values to the influencing parameters. GOME, TOMS or TOVS data are used for the total column ozone. The attenuation of radiation by clouds is estimated using the MVIRI/METEOSAT visible channel data. In practice, for each METEOSAT pixel, the cloud optical thickness is derived from the enhancement of the signal with respect to the cloudless situation. Other influencing factors taken into account include tropospheric aerosols (using observations by ground meteorological stations), snow cover and surface elevation. The generated data set is made of daily maps of near noontime dose rates from which daily and monthly doses are extrapolated. The maps are available for several action spectra: UVA, UVB, erythemal, SCUPh, DNA and PLANT. The year-to-year variability of the UV radiation during the 19 years period, as deduced from this data set is illustrated. It varies according to the month and can reach ±50% over large areas. Variations are essentially due to changes in total column and cloudiness. These two factors are also documented separately. The validity of the results is discussed. Over such a period, the consistency of the input data and the impact on the modelled surface UV radiation is a critical issue for drawing conclusions on possible changes and trends. A partial validation of the results is demonstrated by comparison with ground UV measurements performed at Ispra, from 1992 to 2002.

  16. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  17. Estimates of the climatological land surface energy- and water balance derived from thermodynamic constraints

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel; Renner, Maik; Porada, Philipp

    2015-04-01

    The land surface energy and water balances are tightly coupled by the partitioning of absorbed solar radiation into terrestrial radiation and the turbulent fluxes of sensible and latent heat, as well as the partitioning of precipitation into evaporation and runoff. Evaporation forms the critical link between these two balances. Its rate is strongly affected by turbulent exchange as it provides the means to efficiently exchange moisture between the heated, moist surface and the cooled, dry atmosphere. Here, we use the constraint that this mass exchange operates at the thermodynamic limit of maximum power to derive analytical expressions for the partitioning of the surface energy and water balances on land. We use satellite-derived forcing of absorbed solar radiation, surface temperature and precipitation to derive simple spatial estimates for the annual mean fluxes of sensible and latent heat and evaluate these estimates with the ERA-Interim reanalysis data set and observations of the discharge of large river basins. Given the extremely simple approach, we find that our estimates explain the climatic mean variations in net radiation, evaporation, and river discharge reasonably well. We conclude that our analytical, minimum approach provides adequate first order estimates of the surface energy and water balance on land and that the thermodynamic limit of maximum power provides a useful closure assumption to constrain the energy partitioning at the land surface.

  18. Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide

    NASA Astrophysics Data System (ADS)

    Kafle, D. N.; Coulter, R. L.

    2013-07-01

    This paper focuses on climatology of the vertical distribution of aerosol optical depth (AOD (z)) from micropulse lidar (MPL) observations for climatically different locations worldwide. For this, a large data set obtained by MPL systems operating at 532 nm during the 4 year period 2007-2010 was used to derive vertical profiles of AOD (z) by combining the corresponding AOD data as an input from an independent measurement using nearly colocated multifilter rotating shadowband radiometer (MFRSR) systems at five different U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program sites—three permanent sites (SGP in north-central Oklahoma, at 36.6°N, 97.5°W, 320 m; TWP-Darwin in the tropical western Pacific, at 12.4°S, 130.9°E, 30 m; and NSA at Barrow on the North Slope of Alaska, at 71.3°N, 156.6°W, 8 m) and two mobile facility sites (GRW at Graciosa Island in the Azores, at 39°N, 28°W, 15 m; and FKB in the Black Forest of Germany, at 48.5°N, 8.4°E, 511 m). Therefore, amount of data used in this study is constrained by the availability of the MFRSR data. The MPL raw data were averaged for 30 s in time and 30 m in altitude. The diurnally averaged AOD (z) profiles from 4 years were combined to obtain a multiyear vertical profile of AOD (z) climatology at various ARM sites, including diurnal, day-to-day, and seasonal variabilities. Most aerosols were found to be confined to 0-2 km (approximately the planetary boundary layer region) at all sites; however, all sites exhibited measurable aerosols well above the mixed layer, with different height maxima. The entire data set demonstrates large day-to-day variability at all sites. However, there is no significant diurnal variation in AOD (z) at all sites. Significant interannual variability was observed at the SGP site. Clear seasonal variations in AOD (z) profiles exist for all five sites, but seasonal behavior was distinct. Moreover, the different seasonal variability for the lower level (0 to ~2

  19. Oceanographic and climatologic controls on the compositions and fluxes of biogenic materials in the water column and sediments of the Cariaco Basin over the Late Holocene

    NASA Astrophysics Data System (ADS)

    Goni, M. A.; Aceves, H.; Benitez-Nelson, B.; Tappa, E.; Thunell, R.; Black, D. E.; Muller-Karger, F.; Astor, Y.; Varela, R.

    2009-04-01

    Materials collected by sediment traps over a 3-y period and sedimentary horizons from a gravity core covering the last 6000 y were used to investigate the effects of climate-related processes such as wind-driven upwelling and regional rainfall on the production, export and burial of particulate organic matter in the Cariaco Basin. A variety of chemical analyses, including organic carbon and nitrogen, biogenic opal, calcite, lithogenic contents, stable carbon isotopic ratios of organic matter and the yields of CuO reaction products derived from distinct biochemicals such as amino acids, fatty acids and lignins, were carried out for this purpose. Principal component analyses were used to investigate the trends in this multivariate data set. These analyses reveal marked temporal differences in the composition of the materials sinking through the water column, which were related to distinct oceanographic and climatic forcings. For example, autochthonous fluxes, characterized by elevated contents of organic carbon and opal as well as high yields of amino acid and fatty acid reaction products, displayed peaks during periods of intense wind-driven upwelling. In contrast, allochthonous materials, characterized by elevated lithogenic contents and elevated yields of lignin-derived products, were more important during periods of high rainfall, low wind and enhanced stratification. In addition to the strong seasonal contrasts, there was significant temporal variability at both shorter (monthly) and longer (inter-annual) time scales. Hence, other factors, such as zooplankton grazing and El Niño effects on local climatology, may also be important. Examination of the gravity core record yielded several significant trends. For example, there was a marked increase in sediment accumulation rates from 5000 to ca. 700 y before present with concomitant increases in the concentrations of organic carbon, opal and most biomarkers. These results suggest that the Cariaco Basin experienced

  20. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    climatological analyses of fluxes derived from ship observations.

  1. Climatology of low latitude ionosphere under effect of varying solar flux during solar cycle 23 and 24

    NASA Astrophysics Data System (ADS)

    Dashora, Nirvikar; Suresh, Sunanda

    2016-07-01

    The characteristics of quiet time equatorial and low latitude total electron content (TEC) over the Indian sector using GIM data (1998-2014) is obtained. For the first time the analysis is carried filtering out the solar flare and storm effects and time series of quiet time VTEC data from three locations namely dip equator and two low latitude conjugate locations in Indian sector are obtained. It is well known that a complex interplay among drivers of equatorial electrodynamics like Solar flux, dynamo electric field and meridional winds determine the daytime ionization and distribution in equatorial ionization anomaly zone. In this study, we have critically examined the role of varying solar flux and response of low latitude ionosphere with new and standardized definitions. The results are examined and interpreted in the context of large number of previous studies. The newly found features from this study are as follows. Marked difference in nature of equinoctial asymmetry is noted between solar cycle 23 and 24. Long absence of winter anomaly both during low and high solar activity (HSA) in LL (low latitude) regions is found. Climatology of the diurnal cycle is provided in four categories using new criteria for demarcation of solar activity levels. Highest correlation (~77%) between GIM ionospheric electron content (IEC) and PI (solar EUV proxy index) is noted over equator in contrast to previous studies. The minimum positive contribution of PI in variation of IEC requires minimum of 2 years of data and if more than 7-8 years of data is used, it saturates. RMS (root mean square) width of PI can be used to define the HSA. Strong QBO (quasi biennial oscillations) in IEC is noted in tune with the one in PI over both the LL location but QBO remains surprisingly subdued over equator. The semi-annual oscillations in GIM-IEC are found to be stronger at all locations during high solar activity and weaker between 2005 and 2011, whereas, the annual oscillations are found to

  2. Climatology of Dry Layers in the Tropical Troposphere Derived from CONTRAST Observations and GFS Analyses

    NASA Astrophysics Data System (ADS)

    Randel, W. J.; Rivoire, L.; Pan, L.; Honomichl, S.

    2015-12-01

    A recent airborne field experiment in the remote tropical western Pacific, CONTRAST (CONvective Transport of Active Species in the Tropics), obtained over 80 vertical profiles of water vapor, ozone and numerous trace species from the surface to above 14 km during January-February 2014. These observations showed the frequent occurrence of extreme dry layers (relative humidity < 20%) co-located with enhanced ozone, occurring primarily over altitudes ~4-10 km. We compare these water vapor measurements with analyses from the NCEP Global Forecast System (GFS), and find good overall agreement. We then use the GFS analyses to quantify the climatological variability of extreme dry layers in the tropical troposphere, finding frequent occurrence in the subtropics of both hemispheres during winter-spring. The space-time structure of the dry layers, in addition to the strong anti-correlation between water vapor and ozone, suggests frequent transport to the tropics from the extratropical upper troposphere - lower stratosphere (UTLS).

  3. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    NASA Astrophysics Data System (ADS)

    Osman, M.; Tarasick, D. W.; Liu, J.; Moeini, O.; Thouret, V.; Fioletov, V. E.; Parrington, M.; Nédélec, P.

    2015-11-01

    A three-dimensional gridded climatology of carbon monoxide (CO) has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012 are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations, and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO dataset is archived monthly from 2001-2012 on a grid of 5° longitude × 5° latitude × 1 km altitude, from the surface to 14 km altitude. The mapping product has been carefully evaluated, by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less, and found to be less than 30 % for almost all cases. The trajectory-mapped CO dataset has also been validated by comparison profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Maps are also compared with Version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. While agreement is good in the lowermost troposphere, the MOPITT CO profile shows negative biases of ~ 20 % between 500 and 300 hPa. These upper troposphere biases are not related to the mapping procedure, as almost identical differences are found with the original in situ MOZAIC-IAGOS data. The total CO trajectory-mapped MOZAIC-IAGOS climatology column agrees with the

  4. Pacific Region Integrated Climatology Information Products (PRICIP) Derived-data Products

    NASA Astrophysics Data System (ADS)

    Marra, J. J.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Integrated Data and Environmental Applications (IDEA) Center has initiated the Pacific Region Integrated Climatology Information Products (PRICIP) project to improve our understanding of patterns and trends of storm frequency and intensity - 'storminess'- within the Pacific region and develop a suite of integrated data and information products. Strong winds, heavy rains, and high seas theme-specific data integration and product development teams have been formed to carry out this work. These teams are comprised of recognized agency and university- based experts in the area of climate-related processes that govern storminess. They include representatives from NOAA's National Climatic Data Center (NCDC), Center for Operational Products and Services (CO-OPS), and National Weather Service (NWS), as well as the University of Hawai'i, University of Alaska, University of Guam, and Oregon State University. Each team is developing regional climatological overviews, identifying corresponding extremes indices, establishing data treatment and analysis protocols, and conducting analyses to establish baseline statistics, long term trends, patterns of variability, and event return recurrence intervals via Generalized Extreme Value (GEV) analyses. Preliminary results of these analyses can be viewed via a beta-version of a Google map- based query utility (http://www.pricip.org/ddp.php ). Data sources for these analyses include NOAA's Integrated Surface Hourly (ISH) mean sea level pressure and wind speed data; the Global Historical Climate Network (GHCN) precipitation dataset; the National Water Level Observing Network (NWLON) sea level station records; the National Data Buoy Center (NDBC) wave buoy records; the U.S. Army Corps of Engineers" Coastal Data Information (CDIP) buoy data, and other data. The northern and central north Pacific, which includes Alaska, the Pacific Northwest, and Hawai'i, have been targeted as

  5. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors

  6. Surface radiation climatology derived from Meteosat First and Second Generation satellites

    NASA Astrophysics Data System (ADS)

    Posselt, Rebekka; Müller, Richard; Trentmann, Jörg; Stöckli, Reto

    2010-05-01

    A 25 year long continuous and consistently validated surface incoming shortwave (SIS) radiation climate data record (CDR) from METEOSAT satellites is MeteoSwiss' contribution to CM SAF (Satellite Application Facility for Climate Monitoring). CM SAF is is a joint activity of several national Meteorological Services within EUMETSAT's satellite data processing (SAF - Satellite Application Facilities). CM SAF generates, archives and distributes widely recognized high-quality satellite-derived products and services relevant for climate monitoring in operational mode with a special emphasis on the retrieval of climate variables such as cloud parameters, radiation budget and water vapor. The SIS CDR by MeteoSwiss and DWD is generated using an extended Heliosat algorithm which exploits the attenuation of radiation by clouds from the METEOSAT visible channel, and using the MAGIC (Mesoscale Atmospheric Global Irradiance Code) radiative transfer model that accounts for water vapor, ozone and aerosol absorption on clear sky radiation fluxes. The dataset is compared to reference surface radiation datasets from ISCCP, GEWEX and ERA interim. Ground based measurements of the BSRN (Baseline surface radiation network) and ASRB (Alpine surface radiation budget) network are used as validation sources to estimate the uncertainty of the SIS CDR and of the reference datasets. In order to satisfy the dataset accuracy required for climate variability and change studies, discontinuities due to changes in satellite instrumentation must be avoided. Therefore, a selfcalibration technique within the Heliosat algorithm is applied. It uses the 95% percentile of the measured radiance distribution obtained in a selected (nearly) always cloudy region in the southern Atlantic. The overlap period between two satellites/instruments (Meteosat7 and Meteosat8 in 2005) is used to examine and validate the performance of the selfcalibration. First validation results show a good agreement for both satellite

  7. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    NASA Astrophysics Data System (ADS)

    Osman, Mohammed K.; Tarasick, David W.; Liu, Jane; Moeini, Omid; Thouret, Valerie; Fioletov, Vitali E.; Parrington, Mark; Nédélec, Philippe

    2016-08-01

    A three-dimensional gridded climatology of carbon monoxide (CO) has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012, are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO data set is archived monthly from 2001 to 2012 on a grid of 5° longitude × 5° latitude × 1 km altitude, from the surface to 14 km altitude.The mapping product has been carefully evaluated, firstly by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less and found to be less than 30 % for almost all cases. Secondly, the method has been validated by comparing profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Finally, the mapping product is compared with global MOZAIC-IAGOS cruise-level data, which were not included in the trajectory-mapped data set, and with independent data from the NOAA aircraft flask sampling program. The trajectory-mapped MOZAIC-IAGOS CO values show generally good agreement with both independent data sets.Maps are also compared with version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. Both data sets clearly show major regional CO sources such

  8. A regional rainfall climatology over Mexico and the southwest United States derived from passive microwave and geosynchronous infrared data

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Maddox, Robert A.; Howard, Kenneth W.; Keehn, Peter R.

    1993-01-01

    A three-year climatology of satellite-estimated rainfall for the warm season for the southwest United States and Mexico has been derived from data from the Special Sensor Microwave Imager (SSM/I). The microwave data have been stratified by month (June, July, August), year (1988, 1989, 1990), and time of day (morning and evening orbits). A rain algorithm was employed that relates 86-GHz brightness temperatures to rain rate using a coupled cloud-radiative transfer model. Results identify an early evening maximum in rainfall along the western slope of the Sierra Madre Occidental during all three months. A prominent morning rainfall maximum was found off the western Mexican coast near Mazatlan in July and August. Substantial differences between morning and evening estimates were noted. To the extent that three years constitute a climatology, results of interannual variability are presented. Results are compared and contrasted to high-resolution (8 km, hourly) infrared cloud climatologies, which consist of the frequency of occurrence of cloud colder than -38 C and -58 C. This comparison has broad implications for the estimation of rainfall by simple (cloud threshold) techniques. By sampling the infrared data to approximate the time and space resolution of the microwave, we produce ratios (or adjustment factors) by which we can adjust the infrared rain estimation schemes. This produces a combined microwave/infrared rain algorithm for monthly rainfall. Using a limited set of raingage data as ground truth, an improvement (lower bias and root-mean-square error) was demonstrated by this combined technique when compared to either method alone. The diurnal variability of convection during July 1990 was examined using hourly rain estimates from the Geostationary Operational Environmental Satellite (GOES) precipitation index and the convective stratiform technique, revealing a maximum in estimated rainfall from 1800 to 2100 local time. It is in this time period when the SSM

  9. Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe

    2000-01-01

    A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.

  10. A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)

    2001-01-01

    A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5

  11. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

    NASA Astrophysics Data System (ADS)

    Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas

    2016-06-01

    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ < 0.03) have been observed during 6 % of the observation time, whereas above Zürich and Jülich fewer clouds of that type were observed. Cirrus have been observed up to altitudes of 14.4 km a.s.l. above Jungfraujoch, whereas they have only been observed to about 1 km lower at the other stations. These features highlight the advantage of the high-altitude station Jungfraujoch, which is often in the free troposphere above the polluted boundary layer, thus enabling lidar measurements of thinner and higher clouds. In addition, the measurements suggest a change in cloud morphology at Jungfraujoch above ˜ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected

  12. New features of global climatology revealed by satellite-derived oceanic rainfall maps

    NASA Technical Reports Server (NTRS)

    Rao, M. S. V.; Theon, J. S.

    1977-01-01

    Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed.

  13. Upper Stratospheric Temperature Climatology Derived from SAGE II Observations: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wang, P.-H.; Cunnold, D. M.; Wang, H. J.; Chu, W. P.; Thomason, L. W.

    2002-01-01

    This study shows that the temperature information in the upper stratosphere can be derived from the SAGE II 385-mn observations. The preliminary results indicate that the zonal mean temperature increases with altitude below 50 km and decreases above 50 km. At 50 km, a regional maximum of 263 K is located in the tropics, and a minimum of 261 K occurs in the subtropics in both hemispheres. The derived long-term temperature changes from 1985 to 1997 reveal a statistically significant negative trend of -2 to -2.5 K/decade in the tropical upper stratosphere and about -2 K/decade in the subtropics near the stratopause. At latitudes poleward of 50, the results show a statistically significant positive trend of about 1 K/decade in the upper stratosphere. The preliminary results also show large annual temperature oscillations in the extratropics with a maximum amplitude of approx. 8 K located at about 44 km near 50 in both hemispheres during local summer. In addition, the semiannual oscillation is found to be a maximum in the tropics with a peak amplitude of approx. 3.3 K located at about 42 km during the equinox.

  14. A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Khaiyer, M. M.; Rapp, A. D.; Doelling, D. R.; Nordeen, M. L.; Minnis, P.; Smith, W. L., Jr.; Nguyen, L.

    2001-01-01

    While the various instruments maintained at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) Central Facility (CF) provide detailed cloud and radiation measurements for a small area, satellite cloud property retrievals provide a means of examining the large-scale properties of the surrounding region over an extended period of time. Seasonal and inter-annual climatological trends can be analyzed with such a dataset. For this purpose, monthly datasets of cloud and radiative properties from December 1996 through November 1999 over the SGP region have been derived using the layered bispectral threshold method (LBTM). The properties derived include cloud optical depths (ODs), temperatures and albedos, and are produced on two grids of lower (0.5 deg) and higher resolution (0.3 deg) centered on the ARM SGP CF. The extensive time period and high-resolution of the inner grid of this dataset allows for comparison with the suite of instruments located at the ARM CF. In particular, Whole-Sky Imager (WSI) and the Active Remote Sensing of Clouds (ARSCL) cloud products can be compared to the cloud amounts and heights of the LBTM 0.3 deg grid box encompassing the CF site. The WSI provides cloud fraction and the ARSCL computes cloud fraction, base, and top heights using the algorithms by Clothiaux et al. (2001) with a combination of Belfort Laser Ceilometer (BLC), Millimeter Wave Cloud Radar (MMCR), and Micropulse Lidar (MPL) data. This paper summarizes the results of the LBTM analysis for 3 years of GOES-8 data over the SGP and examines the differences between surface and satellite-based estimates of cloud fraction.

  15. Fluxes Derivation From a Given Space Object Population

    NASA Astrophysics Data System (ADS)

    X, K.; Pang, Baojun; Peng, Keke

    A particulate environment model is indispensable for describing a space debris environment. The purpose of a space debris environment engineering model is the realistic description of the man-made particulate environment surrounding the Earth and risk assessment via flux predictions for defined target orbits. This paper provides a method for deriving fluxes using data sources whose orbital elements are known (e.g., two-line elements (TLE) data). First, we present the definitions of the output parameters used in the Meteoroid and Space Debris Terrestrial Reference Model of the European Space Agency and summarize the concepts used in the modeling. Second, we convert the original data into a new data format that can be used in deriving fluxes; the new data are equivalent to the original ones. Third, we deriving fluxes regarding the TLEs as the only data source. Finally, we analyze the results for different years and consider the prospects of applying the technique to sources whose orbital elements are unknown.

  16. Linking Carbon Fluxes with Remotely-Sensed Vegetation Indices for Leaf Area and Aboveground Biomass Through Footprint Climatology

    NASA Astrophysics Data System (ADS)

    Wayson, C.; Clark, K.; Hollinger, D. Y.; Skowronski, N.; Schmid, H. E.

    2010-12-01

    A major challenge of bottom-up scaling is that in-situ flux observations are spatially limited. Thus, to achieve valid regional exchange rates, models are used to interpolate and extrapolate to the vegetational/spatial domain covered by these observations. To parameterize these models from flux data, efforts must be made to select data that best represents the region being modeled as well as linking the fluxes to remotely-sensed data products that can be produced from site to regional scales. Because most long-term flux stations are not in spatially extensive, homogeneous locations, this requirement is often a challenge. However, this requirement can be met by selecting observation periods whose flux footprints are statistically representative of the type of ecosystem identified in the model. The flux footprint function indicates the time-varying surface “field-of-view” (or spatial sampling window) of an eddy-flux sensor, oriented mostly in upwind direction. For each observation period, the modeled flux footprint window is overlain with a high-resolution vegetation index map to determine a footprint-weighted vegetation index for which the observation is representative. Using flux-footprint analysis to link fluxes to models using just an enhanced vegetation index (EVI) map shows a positive trend between EVI and eddy covariance measured fluxes, but the link is not strong. Leaf area is linked with carbon (C) uptake, but forests tend to maximize leaf area, as determined through remote sensing, early on with forests having similar leaf areas across a wide range of ages. Adding another remotely-sensed dataset, aboveground biomass map (AGB), helps capture the processes of lower productivity rates (as biomass increases per unit of leaf area there is a decline, due to the forest ageing) and the C losses due to respiration, both heterotrophic and autotrophic (linked to live and detrital biomass pools). Adding biomass from LIDAR and a combined EVI-biomass layer to examine

  17. A global monthly sea surface temperature climatology

    SciTech Connect

    Shea, D.J.; Trenberth, K.E.; Reynolds, R.W. NOAA, Climate Analysis Center, Washington, DC )

    1992-09-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S. 22 refs.

  18. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  19. Satellite-derived Springtime Uv Climatology Over Europe: Months of March, April and May From 1984 To 2001

    NASA Astrophysics Data System (ADS)

    Verdebout, J.

    The poster presents progress made in the building of a satellite-derived ultraviolet (UV) radiation climatology over Europe, covering the last 10 to 20 years. The method- ology to model the surface UV with satellite and ancillary geophysical data has been initially developed and evaluated during the European project MAUVE. The resulting products are maps of the surface dose rates and daily doses, covering Europe (12E- 32E, 34N-74N) with a spatial resolution of 0.05 deg. The method basically consists in using a standard radiative transfer code (UVspec) and in exploiting various sources of information to assign values to the influencing parameters. GOME, TOMS or TOVS data are used for the total column ozone. The attenuation of radiation by clouds is estimated using the MVIRI/METEOSAT visible channel data. In practice, for each METEOSAT pixel, a cloud liquid water path is derived from the enhancement of the signal with respect to the cloudless situation. Other influencing factors taken into ac- count include the tropospheric aerosols (using the observations by the ground mete- orological stations), the snow cover and the surface elevation. The paper presents the results for the months of March, April and May from 1984 to 2001. The generated data set is made of daily maps of near noontime dose rates from which daily and monthly doses are extrapolated. The maps are available for several action spectra: UVA, UVB, erythemal, SCUPh, DNA and PLANT. The variability of the UV radiation during the 18 years period, as deduced from this data set is illustrated. The year-to-year varia- tions are essentially due to changes in total column and cloudiness. These two factors are also documented separately. The validity of the results is discussed. Over such a period, the consistency of the input data and the impact on the modelled surface UV radiation is a critical issue for drawing conclusions on possible changes and trends. A partial validation of the results is demonstrated by

  20. The Climatological Annual Cycle of Satellite-derived Phytoplankton Pigments in the Alboran Sea: A Physical Interpretation

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Carr, M. E.

    1998-01-01

    The circulation and upwelling processes (coastal and gyre-induced) that control the phytoplankton distribution in the Alboran sea are examined by analyzing monthly climatological patterns of Coastal Zone Color Scanner (CZCS) pigment concentrations, sea surface temperatures, winds, and seasonal geostrophic fields.

  1. The SPARC Intercomparison of Middle Atmosphere Climatologies

    NASA Technical Reports Server (NTRS)

    Randel, William; Fleming, Eric; Geller, Marvin; Gelman, Mel; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2003-01-01

    Our current confidence in 'observed' climatological winds and temperatures in the middle atmosphere (over altitudes approx. 10-80 km) is assessed by detailed intercomparisons of contemporary and historic data sets. These data sets include global meteorological analyses and assimilations, climatologies derived from research satellite measurements, and historical reference atmosphere circulation statistics. We also include comparisons with historical rocketsonde wind and temperature data, and with more recent lidar temperature measurements. The comparisons focus on a few basic circulation statistics, such as temperature, zonal wind, and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. Assimilated data sets provide the most realistic tropical variability, but substantial differences exist among current schemes.

  2. Clear sky atmosphere at cm-wavelengths from climatology data

    NASA Astrophysics Data System (ADS)

    Lew, Bartosz; Uscka-Kowalkowska, Joanna

    2016-01-01

    We utilize ground-based, balloon-borne and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature (Tatm) and optical depth (τ) at centimetre wavelengths. We validate the reconstruction by comparing the model column PWV with photometric measurements of PWV, performed in clear sky conditions pointed towards the Sun. Based on the measurements, we devise a selection criteria to filter the climatology data to match the PWV levels to the expectations of the clear sky conditions. We apply the reconstruction to the location of a Polish 32-metre radio telescope, and characterize Tatm and τ year round, at selected frequencies. We also derive the zenith distance dependence for these parameters, and discuss the shortcomings of using planar, single-layer and optically thin atmospheric models in continuum radio-source flux-density measurement calibrations. We obtain PWV-Tatm and PWV-τ scaling relations in clear sky conditions, and constrain limits to which the actual Tatm and τ can deviate from those derived solely from the climatological data. Finally, we suggest a statistical method to detect clear sky that involves ground-level measurements of relative humidity. Accuracy is tested using local climatological data. The method may be useful to constrain cloud cover in cases when no other (and more robust) climatological data are available.

  3. Urban Climatology

    NASA Technical Reports Server (NTRS)

    Brazel, Anthony J.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2002-01-01

    This section on Urban Climates provides a basic understanding of what comprises the urban climate and what factors control the overall development of the urban climate. We also discuss in this section, methods for evaluating urban climate characteristics and forcing functions as well as how the urban heat island effect comes into play as a dynamic influence on urban climatology. Additionally, we examine and discuss the major radiation and energy balance of city (i.e., shortwave and longwave radiation, albedo, net all-wave radiation, total energy balance, and sensible latent, and storage heat) and the interactions of these energy balances with the lower atmosphere. The use of remote sensing to measure urban surface temperatures as a driving force in the development of the urban heat island effect is presented. We also discuss how the overall moisture, precipitation, humidity, and air movement in cities (i,e,, wind speeds and wind direction) and wind environment of the city affects urban climatology.

  4. An application of remotely derived climatological fields for risk assessment of vector-borne diseases : a spatial study of filariasis prevalence in the Nile Delta, Egypt.

    SciTech Connect

    Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.; Brookmeyer, P.; Weil, G. J.; Sultan, M.; Harb, M.; Environmental Research; Washington Univ.; Utah State Univ.; Egyptian Ministry of Health

    1999-12-01

    This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasis prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.

  5. Detect signals of interdecadal climate variations from an enhanced suite of reconstructed precipitation products since 1850 using the historical station data from Global Historical Climatology Network and the dynamical patterns derived from Global Precipitation Climatology Project

    NASA Astrophysics Data System (ADS)

    Shen, S. S.

    2015-12-01

    This presentation describes the detection of interdecadal climate signals in a newly reconstructed precipitation data from 1850-present. Examples are on precipitation signatures of East Asian Monsoon (EAM), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillations (AMO). The new reconstruction dataset is an enhanced edition of a suite of global precipitation products reconstructed by Spectral Optimal Gridding of Precipitation Version 1.0 (SOGP 1.0). The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). This enhanced version has three different temporal resolutions (5-day, monthly, and annual) and two different spatial resolutions (2.5 deg and 5.0 deg). It also has a friendly Graphical User Interface (GUI). SOGP uses a multivariate regression method using an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1981-20010 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed according to the number of EOF modes used in the reconstruction. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction has been validated by GPCP data after 1979. Our reconstruction successfully displays the 1877 El Nino (see the attached figure), which is considered a validation before 1900. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort of San Diego State University (Sam Shen, Gregori Clarke, Christian Junjinger, Nancy Tafolla, Barbara Sperberg, and

  6. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable

  7. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products

    NASA Astrophysics Data System (ADS)

    Gao, Feng; He, Tao; Wang, Zhuosen; Ghimire, Bardan; Shuai, Yanmin; Masek, Jeffrey; Schaaf, Crystal; Williams, Christopher

    2014-01-01

    Surface albedo determines radiative forcing and is a key parameter for driving Earth's climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth's radiation balance due to land cover change. This paper presents albedo look-up maps (LUMs) using a multiscale hierarchical approach based on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions. The albedo LUMs were assessed by using the annual MODIS IGBP land cover map and the projected land use scenarios from the Intergovernmental Panel on Climate Change land-use harmonization project. The comparisons between the reconstructed albedo and the MODIS albedo data product show good agreement. The LUMs provide high temporal and spatial resolution global albedo statistics without gaps for investigating albedo variations under different land cover scenarios and could be used for land surface modeling.

  8. NASA GLDAS Evapotranspiration Data and Climatology

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  9. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    USGS Publications Warehouse

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  10. Validation of Improved Broadband Shortwave and Longwave Fluxes Derived From GOES

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Nordeen, Michele L.; Palikonda, Rabindra; Yi, Yuhong; Minnis, Patrick; Doelling, David R.

    2009-01-01

    Broadband (BB) shortwave (SW) and longwave (LW) fluxes at TOA (Top of Atmosphere) are crucial parameters in the study of climate and can be monitored over large portions of the Earth's surface using satellites. The VISST (Visible Infrared Solar Split-Window Technique) satellite retrieval algorithm facilitates derivation of these parameters from the Geostationery Operational Environmental Satellites (GOES). However, only narrowband (NB) fluxes are available from GOES, so this derivation requires use of narrowband-to-broadband (NB-BB) conversion coefficients. The accuracy of these coefficients affects the validity of the derived broadband (BB) fluxes. Most recently, NB-BB fits were re-derived using the NB fluxes from VISST/GOES data with BB fluxes observed by the CERES (Clouds and the Earth's Radiant Energy Budget) instrument aboard Terra, a sun-synchronous polar-orbiting satellite that crosses the equator at 10:30 LT. Subsequent comparison with ARM's (Atmospheric Radiation Measurement) BBHRP (Broadband Heating Rate Profile) BB fluxes revealed that while the derived broadband fluxes agreed well with CERES near the Terra overpass times, the accuracy of both LW and SW fluxes decreased farther away from the overpass times. Terra's orbit hampers the ability of the NB-BB fits to capture diurnal variability. To account for this in the LW, seasonal NB-BB fits are derived separately for day and night. Information from hourly SW BB fluxes from the Meteosat-8 Geostationary Earth Radiation Budget (GERB) is employed to include samples over the complete solar zenith angle (SZA) range sampled by Terra. The BB fluxes derived from these improved NB-BB fits are compared to BB fluxes computed with a radiative transfer model.

  11. A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra

    NASA Technical Reports Server (NTRS)

    McMillian, W. Wallace; Strow, L. Larrabee; Revercomb, H.; Knuteson, R.; Thompson, A.

    2003-01-01

    This final report summarizes all research activities and publications undertaken as part of NASA Atmospheric Chemistry and Modeling Analysis Program (ACMAP) Grant NAG-1-2022, 'A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra'. Major project accomplishments include: (1) analysis of more than 300,000 AERI spectra from the ARM SGP site yielding a 5-year (1998-2002) timeseries of CO retrievals from the Lamont, OK AERI; (2) development of a prototype CO profile retrieval algorithm for AERI spectra; (3) validation and publication of the first CO retrievals from the Scanning High-resolution Interferometer Sounder (SHIS); and (4) development of a prototype AERI tropospheric O3 retrieval algorithm. Compilation and publication of the 5-year Lamont, OK timeseries is underway including a new collaboration with scientists at the Lawrence Berkeley National Laboratory. Public access to this data will be provided upon article submission. A comprehensive CO analysis of the archive of HIS spectra of remains as the only originally proposed activity with little progress. The greatest challenge faced in this project was motivating the University of Wisconsin Co-Investigators to deliver their archived HIS and AERIOO data along with the requisite temperature and water vapor profiles in a timely manner. Part of the supplied HIS dataset from ASHOE may be analyzed as part of a Master s Thesis under a separate project. Our success with the SAFARI 2000 SHIS CO analysis demonstrates the utility of such aircraft remote sensing data given the proper support from the instrument investigators. In addition to the PI and Co-I s, personnel involved in this CO climatology project include one Post Doctoral Fellow, one Research Scientist, two graduate students, and two undergraduate students. A total of fifteen presentations regarding research related to this

  12. Derivation of Improved Surface and TOA Broadband Fluxes Using CERES-derived Narrowband-to-Broadband Coefficients

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Doelling, David R.; Chan, Pui K.; Nordeen, MIchele L.; Palikonda, Rabindra; Yi, Yuhong; Minnis, Patrick

    2006-01-01

    Satellites can provide global coverage of a number of climatically important radiative parameters, including broadband (BB) shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA) and surface. These parameters can be estimated from narrowband (NB) Geostationary Operational Environmental Satellite (GOES) data, but their accuracy is highly dependent on the validity of the narrowband-to-broadband (NB-BB) conversion formulas that are used to convert the NB fluxes to broadband values. The formula coefficients have historically been derived by regressing matched polarorbiting satellite BB fluxes or radiances with their NB counterparts from GOES (e.g., Minnis et al., 1984). More recently, the coefficients have been based on matched Earth Radiation Budget Experiment (ERBE) and GOES-6 data (Minnis and Smith, 1998). The Clouds and the Earth's Radiant Energy Budget (CERES see Wielicki et al. 1998)) project has recently developed much improved Angular Distribution Models (ADM; Loeb et al., 2003) and has higher resolution data compared to ERBE. A limited set of coefficients was also derived from matched GOES-8 and CERES data taken on Topical Rainfall Measuring Mission (TRMM) satellite (Chakrapani et al., 2003; Doelling et al., 2003). The NB-BB coefficients derived from CERES and the GOES suite should yield more accurate BB fluxes than from ERBE, but are limited spatially and seasonally. With CERES data taken from Terra and Aqua, it is now possible to derive more reliable NB-BB coefficients for any given area. Better TOA fluxes should translate to improved surface radiation fluxes derived using various algorithms. As part of an ongoing effort to provide accurate BB flux estimates for the Atmospheric Radiation Measurement (ARM) Program, this paper documents the derivation of new NB-BB coefficients for the ARM Southern Great Plains (SGP) domain and for the Darwin region of the Tropical Western Pacific (DTWP) domain.

  13. Climatology of urban regional systems

    NASA Technical Reports Server (NTRS)

    Pease, R. W.

    1970-01-01

    The combining of remote sensing technologies to urban-regional energy climatology is studied. It was found to be three dimensional with a mosaic urban surface, each smaller surface with its own radiant and thermal properties. Urban patterns of radiant exchange were found to be constantly changing during diurnal and annual cycles. Results were derived from Barbados data using remote methods for monitoring and mapping radiation. Isoline maps of terrestrial radiation patterns were made generalizing the minute patterns of the scan image.

  14. Sources of discrepancies between satellite-derived and land surface model estimates of latent heat fluxes

    NASA Astrophysics Data System (ADS)

    Lipton, Alan E.; Liang, Pan; Jiménez, Carlos; Moncet, Jean-Luc; Aires, Filipe; Prigent, Catherine; Lynch, Richard; Galantowicz, John F.; d'Entremont, Robert P.; Uymin, Gennady

    2015-03-01

    Monthly-average estimates of latent heat flux have been derived from a combination of satellite-derived microwave emissivities, day-night differences in land surface temperature (from microwave AMSR-E), downward solar and infrared fluxes from ISCCP cloud analysis, and MODIS visible and near-infrared surface reflectances. The estimates, produced with a neural network, were compared with data from the Noah land surface model, as produced for GLDAS-2, and with two alternative estimates derived from different datasets and methods. Areas with extensive, persistent, substantial discrepancies between the satellite and land surface model fluxes have been analyzed with the aid of data from flux towers. The sources of discrepancies were found to include problems with the model surface roughness length and turbulent exchange coefficients for midlatitude cropland areas in summer, inaccuracies in the precipitation data that were used as forcing for the land surface model, and model underestimation of transpiration in some forests during dry periods. At the tower sites analyzed, agreement with tower data was generally closer for our satellite-derived fluxes than for the land surface model fluxes, in terms of monthly averages.

  15. Real-time soil flux measurements and calculations with CRDS + Soil Flux Processor: comparison among flux algorithms and derivation of whole system error

    NASA Astrophysics Data System (ADS)

    Alstad, K. P.; Venterea, R. T.; Tan, S. M.; Saad, N.

    2015-12-01

    Understanding chamber-based soil flux model fitting and measurement error is key to scaling soils GHG emissions and resolving the primary uncertainties in climate and management feedbacks at regional scales. One key challenge is the selection of the correct empirical model applied to soil flux rate analysis in chamber-based experiments. Another challenge is the characterization of error in the chamber measurement. Traditionally, most chamber-based N2O and CH4 measurements and model derivations have used discrete sampling for GC analysis, and have been conducted using extended chamber deployment periods (DP) which are expected to result in substantial alteration of the pre-deployment flux. The development of high-precision, high-frequency CRDS analyzers has advanced the science of soil flux analysis by facilitating much shorter DP and, in theory, less chamber-induced suppression of the soil-atmosphere diffusion gradient. As well, a new software tool developed by Picarro (the "Soil Flux Processor" or "SFP") links the power of Cavity Ring-Down Spectroscopy (CRDS) technology with an easy-to-use interface that features flexible sample-ID and run-schemes, and provides real-time monitoring of chamber accumulations and environmental conditions. The SFP also includes a sophisticated flux analysis interface which offers a user-defined model selection, including three predominant fit algorithms as default, and an open-code interface for user-composed algorithms. The SFP is designed to couple with the Picarro G2508 system, an analyzer which simplifies soils flux studies by simultaneously measuring primary GHG species -- N2O, CH4, CO2 and H2O. In this study, Picarro partners with the ARS USDA Soil & Water Management Research Unit (R. Venterea, St. Paul), to examine the degree to which the high-precision, high-frequency Picarro analyzer allows for much shorter DPs periods in chamber-based flux analysis, and, in theory, less chamber-induced suppression of the soil

  16. Quantum reaction rate from higher derivatives of the thermal flux-flux autocorrelation function at time zero.

    PubMed

    Ceotto, Michele; Yang, Sandy; Miller, William H

    2005-01-22

    A quantum theory of thermal reaction rates is presented which may be viewed as an extension of the recently developed "quantum instanton" (QI) model [W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003)]. It is based on using higher derivatives of the flux-flux autocorrelation function C(t) (as given by Miller, Schwartz, and Tromp) at t=0 to construct a short time approximation for C(t). Tests of this theory on 1d and collinear reactions, both symmetric and asymmetric, show it to be more accurate than the original QI model, giving rate constants to approximately 5% for a wide range of temperature. PMID:15740237

  17. Quantum reaction rate from higher derivatives of the thermal flux-flux autocorrelation function at time zero

    NASA Astrophysics Data System (ADS)

    Ceotto, Michele; Yang, Sandy; Miller, William H.

    2005-01-01

    A quantum theory of thermal reaction rates is presented which may be viewed as an extension of the recently developed "quantum instanton" (QI) model [W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003)]. It is based on using higher derivatives of the flux-flux autocorrelation function C(t) (as given by Miller, Schwartz, and Tromp) at t=0 to construct a short time approximation for C(t). Tests of this theory on 1d and collinear reactions, both symmetric and asymmetric, show it to be more accurate than the original QI model, giving rate constants to ˜5% for a wide range of temperature.

  18. The NEWS Water Cycle Climatology

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  19. HNO 3 fluxes to a deciduous forest derived using gradient and REA methods

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Barthelmie, R. J.; Jensen, B.; Jensen, N. O.; Sørensen, L. L.

    Summertime nitric acid concentrations over a deciduous forest in the midwestern United States are reported, which range between 0.36 and 3.3 μg m -3. Fluxes to the forest are computed using the relaxed eddy accumulation technique and gradient methods. In accord with previous studies, the results indicate substantial uncertainties in the gradient-based calculations. The relaxed eddy accumulation (REA) derived fluxes are physically reasonable and are shown to be of similar magnitude to dry deposition estimates from gradient sampling. The REA derived mean deposition velocity is approximately 3 cm s -1, which is also comparable to growing season estimates derived by Meyers et al. for a similar deciduous forest. Occasional inverted concentration gradients and fluxes are observed but most are not statistically significant. Data are also presented that indicate substantial through canopy penetration of nitric acid.

  20. Higher order treatment on temporal derivative of angular flux for time-dependent MOC

    SciTech Connect

    Tsujita, K.; Endo, T.; Yamamoto, A.; Kamiyama, Y.; Kirimura, K.

    2013-07-01

    A new kinetic analysis method, whose angular dependence of temporal derivative for angular flux is accurately treated within practical memory requirement, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, the computational resources, i.e., the memory capacity, can be still a crucial problem for rigorous kinetic calculations using MOC. In the straightforward approach for kinetic calculation using MOC, the segment-averaged angular fluxes should be stored on the memory in order to explicitly calculate the temporal derivative of the angular flux, which would require huge memory. Thus, in the conventional kinetic calculation code using MOC, the temporal derivative of the angular flux has been approximated as angularly isotropic in order to reduce the memory requirement (isotropic assumption). However, the approximation error caused by the conventional isotropic assumption has not been thoroughly and quantitatively investigated so far and an accurate kinetic calculation method, which can quantitatively estimate the above approximation error within practical memory storage, has not been developed. The present study tries to address this issue with a newly developed approach. Effect of the approximate treatment for the temporal derivative of angular flux is evaluated through benchmark calculations. (authors)

  1. Climatology of precipitating convective clouds in ERA-Interim derived from the Emanuel and Živković-Rothman parameterisation scheme

    NASA Astrophysics Data System (ADS)

    Philipp, Anne; Seibert, Petra

    2016-04-01

    The convective parameterisation scheme of Emanuel and Živković-Rothman (1999) was designed to represent cumulus convection with a special focus on convective water fluxes. This scheme is implemented in the Lagrangian particle transport and dispersion model FLEXPART (FLEXible PARTicle dispersion model, http://flexpart.eu) to calculate a redistribution matrix used for the transport simulation. In order to improve the wet scavenging through convective clouds in this model, we are statistically evaluating a global data set of cloud base and cloud top heights of precipitating clouds derived from the EZ99 scheme and based on ECMWF's ERA-Interim data. They have a spectral resolution of about 80 km and 60 vertical levels available every 6 hours. The results will be evaluated as a function of season and geographical region.

  2. Diurnal variation climatology of short-lived at atmospheric compositions (ClO, BrO, HO2 and HOCl) derived from SMILES NICT data

    NASA Astrophysics Data System (ADS)

    Kreyling, Daniel; Sagawa, Hideo; Kasai, Yasuko

    2013-04-01

    We present a diurnal variation climatology for short-lived at atmospheric compositions, such as ClO, BrO, HO2 and HOCl, as well as for longer life time species, like O3 and HCl from observations of unprecedented sensitivity with the Superconducting SubMIllimeter wave Limb-Emission Sounder (SMILES), which is installed on the Japanese Experiment Module (JEM) at the International Space Station (ISS). With its non sun synchronous orbit, SMILES measurements comprise observations at all local times. The target altitude range is between lower stratosphere and mesopause. Differences in diurnal variation chemistry of strato-, and mesospheric BrO and ClO of the diurnal climatology are presented. The data employed is produced by the SMILES level 2 retrieval algorithm version 2.1.5 at the National Institute of Information and Communications Technology (NICT). The SMILES climatology data sets are available via the SMILES data distribution homepage in NICT at https://smiles-p6.nict.go.jp/products/research_latitude-longitude.jsf

  3. Estimating sensible heat flux in agricultural screenhouses by the flux-variance and half-order time derivative methods

    NASA Astrophysics Data System (ADS)

    Achiman, Ori; Mekhmandarov, Yonatan; Pirkner, Moran; Tanny, Josef

    2016-04-01

    Previous studies have established that the eddy covariance (EC) technique is reliable for whole canopy flux measurements in agricultural crops covered by porous screens, i.e., screenhouses. Nevertheless, the eddy covariance technique remains difficult to apply in the farm due to costs, operational complexity, and post-processing of data - thereby inviting alternative techniques to be developed. The subject of this research was estimating the sensible heat flux by two turbulent transport techniques, namely, Flux-Variance (FV) and Half-order Time Derivative (HTD) whose instrumentation needs and operational demands are not as elaborate as the EC. The FV is based on the standard deviation of high frequency temperature measurements and a similarity constant CT. The HTD method requires mean air temperature and air velocity data. Measurements were carried out in two types of screenhouses: (i) a banana plantation in a light shading (8%) screenhouse; (ii) a pepper crop in a dense insect-proof (50-mesh) screenhouse. In each screenhouse an EC system was deployed for reference and high frequency air temperature measurements were conducted using miniature thermocouples installed at several levels to identify the optimal measurement height. Quality control analysis showed that turbulence development and flow stationarity conditions in the two structures were suitable for flux measurements by the EC technique. Energy balance closure slopes in the two screenhouses were larger than 0.71, in agreement with results for open fields. Regressions between sensible heat flux measured by EC and estimated by FV resulted with CT values that were usually larger than 1, the typical value for open field. In both shading and insect-proof screenhouses the CT value generally increased with height. The optimal measurement height, defined as the height with maximum R2 of the regression between EC and FV sensible heat fluxes, was just above the screen. CT value at optimal height was 2.64 and 1.52 for

  4. Quantifying the impacts of an updated global dimethyl sulfide climatology on cloud microphysics and aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Mahajan, Anoop S.; Fadnavis, Suvarna; Thomas, Manu A.; Pozzoli, Luca; Gupta, Smrati; Royer, Sarah-Jeanne; Saiz-Lopez, Alfonso; Simó, Rafel

    2015-03-01

    One of the critical parameters in assessing the global impacts of dimethyl sulfide (DMS) on cloud properties and the radiation budget is the estimation of phytoplankton-induced ocean emissions, which are derived from prescribed, climatological surface seawater DMS concentrations. The most widely used global ocean DMS climatology was published 15 years ago and has recently been updated using a much larger database of observations. The updated climatology displays significant differences in terms of the global distribution and regional monthly averages of sea surface DMS. In this study, we use the ECHAM5-HAMMOZ aerosol-chemistry-climate general circulation model to quantify the influence of the updated DMS climatology in computed atmospheric properties, namely, the spatial and temporal distributions of atmospheric DMS concentration, sulfuric acid concentration, sulfate aerosols, number of activated aerosols, cloud droplet number concentration, and the aerosol radiative forcing at the top of the atmosphere. Significant differences are observed for all the modeled variables. Comparison with observations of atmospheric DMS and total sulfate also shows that in places with large DMS emissions, the updated climatology shows a better match with the observations. This highlights the importance of using the updated climatology for projecting future impacts of oceanic DMS emissions, especially considering that the relative importance of the natural sulfur fluxes is likely to increase due to legislation to "clean up" anthropogenic emissions. The largest estimated differences are in the Southern Ocean, Indian Ocean, and parts of the Pacific Ocean, where the climatologies differ in seasonal concentrations over large geographical areas. The model results also indicate that the former DMS climatology underestimated the effect of DMS on the globally averaged annual aerosol radiative forcing at the top of the atmosphere by about 20%.

  5. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP NCAR Reanalyses: Characteristics and Temporal Variability.

    NASA Astrophysics Data System (ADS)

    Marengo, Jose A.; Soares, Wagner R.; Saulo, Celeste; Nicolini, Matilde

    2004-06-01

    A climatology of the South American low-level jet east of the Andes (SALLJ) is developed using the 1950 2000 circulation and moisture fields from the NCEP NCAR reanalyses and available upper-air observations made in Bolivia and Paraguay since 1998. Upper- and low-level circulation fields were derived for seasonal means and SALLJ composites during the warm and cold seasons. The Bonner criterion 1 was applied for sites in central Bolivia and downstream near northern Paraguay, to determine the spatial and temporal characteristics of the SALLJ. On the circulation characteristics, SALLJ composites during the warm season show the enhanced low-level meridional moisture transport coming from equatorial South America as well as an upper-level wave train emanating from the west Pacific propagating toward South America. The intensification of the warm season SALLJ follows the establishment of an upper-level ridge over southern Brazil and a trough over most of Argentina. The circulation anomalies at upper and lower levels suggest that the intensification of the SALLJ would lead to an intensification of the South Atlantic convergence zone (SACZ) later on and to the penetration of cold fronts with an area of enhanced convection ahead at the exit region of the SALLJ.Regarding the time variability, the SALLJ seems to occur all year long, bringing tropical moist air masses from the Amazon into southern Brazil northern Argentina more frequently in the warm season, and bringing tropical maritime air, which is less humid than the tropical air masses coming from the subtropical Atlantic high, more frequently during the cold season. SALLJs are detected mostly during the warm season to the north of 20°S, while to the south the SALLJs seem to occur all year long. The diurnal cycle shows that SALLJs are more frequent and intense between 0600 and 1200 UTC for the warm season north of 20°S, while at the region downstream the maximum is detected between 0000 and 0600 UTC during the cold

  6. SPARC Intercomparison of Middle Atmosphere Climatologies

    NASA Technical Reports Server (NTRS)

    Randel, William; Fleming, Eric; Geller, Marvin; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2002-01-01

    This atlas presents detailed incomparisons of several climatological wind and temperature data sets which cover the middle atmosphere (over altitudes approx. 10-80 km). A number of middle atmosphere climatologies have been developed in the research community based on a variety of meteorological analyses and satellite data sets. Here we present comparisons between these climatological data sets for a number of basic circulation statistics, such as zonal mean temperature, winds and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. We also include comparisons between the global climatologies and historical rocketsonde wind and temperature measurements, and also with more recent lidar temperature data. These comparisons highlight differences and uncertainties in contemporary middle atmosphere data sets, and allow biases in particular analyses to be isolated. In addition, a brief atlas of zonal mean temperature and wind statistics is provided to highlight data availability and as a quick-look reference. This technical report is intended as a companion to the climatological data sets held in archive at the SPARC Data Center (http://www.sparc.sunysb.edu).

  7. On the heat flux vector for flowing granular materials--part II: derivation and special cases

    SciTech Connect

    Massoudi, Mehrdad

    2006-09-10

    Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non-linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient.

  8. Heat and moisture flux modeling of the FIFE grassland canopy aided by satellite derived canopy variables

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Crosson, William L.; Cooper, Harry J.; Weng, Heng-Yi

    1990-01-01

    Satellite data corresponding to radiance variables are used to derive three canopy properties which describe slowly modulating boundary conditions of the interface between the biosphere and the atmosphere. The canopy properties are key factors in the regulation of heat and moisture transfer and are found to be radiance patterns within a homogeneous ecosystem. The physical modeling technique is enhanced by the satellite data, and the surface fluxes are represented more accurately in the resulting biosphere-interface model.

  9. Climatology of globally averaged thermospheric mass density

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Picone, J. M.

    2010-09-01

    We present a climatological analysis of daily globally averaged density data, derived from orbit data and covering the years 1967-2007, along with an empirical Global Average Mass Density Model (GAMDM) that encapsulates the 1986-2007 data. The model represents density as a function of the F10.7 solar radio flux index, the day of year, and the Kp geomagnetic activity index. We discuss in detail the dependence of the data on each of the input variables, and demonstrate that all of the terms in the model represent consistent variations in both the 1986-2007 data (on which the model is based) and the independent 1967-1985 data. We also analyze the uncertainty in the results, and quantify how the variance in the data is apportioned among the model terms. We investigate the annual and semiannual variations of the data and quantify the amplitude, height dependence, solar cycle dependence, and interannual variability of these oscillatory modes. The auxiliary material includes Fortran 90 code for evaluating GAMDM.

  10. Climatology of the East Antarctic ice sheet (100°E to 140°E) derived from automatic weather stations

    NASA Astrophysics Data System (ADS)

    Allison, Ian; Wendler, Gerd; Radok, Uwe

    1993-05-01

    A decade ago, automatic weather stations (AWS) were placed in remote areas of Antarctica where little or no information on the meteorological conditions was available. These stations report to the ARGOS data collection system onboard polar orbiting satellites of the NOAA series. The Australian National Antarctic Research Expeditions (ANARE) and the United States Antarctic Research Program (USARP) of the National Science Foundation (with logistic support from the French Expéditions Polaires Françaises (EPF)) have built up two AWS data nets in East Antarctica. There are a total of 16 stations in the area 55°-145°E and 65°-75°S, stretching from sea level to above 3000 m altitude. The records of 10 of these stations are sufficiently long to be adequate for a climatological study of the basic parameters of surface temperature, pressure, and wind and have been used in this study. The station data were reduced to a common format and interpreted jointly to describe the broad-scale climatic features of the ice sheet. Climatological results include (1) an absolute lowest minimum temperature of -84.6°C at Dome C; (2) no minimum below -40°C at D10 near the coast; (3) a "coreless" winter temperature regime, without seasonal temperature trends for 6 months, at all stations; (4) mean surface wind speeds increasing to maxima near, rather than at, the coast; (5) high directional constancy in all seasons, with directions closer to the fall line in winter and during night hours than in summer and during day hours; (7) a distinct semiannual pressure variation with a main minimum in spring (September) and a secondary minimum in autumn (March); and (8) interrelationships among surface temperature, pressure, and wind related to the ice sheet topography.

  11. Vertical velocities and momentum fluxes derived from wind measurements in the dusk auroral oval

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Mikkelsen, I. S.

    1990-01-01

    Results are presented on a chemical release experiment carried out on March 20, 1985 in connection with NASA's Cooperative Observations of Polar Electrodynamics I campaign. Simultaneous neutral wind measurements in E region were carried out at three separate locations over a triangular region with sides of about 150 km in the dusk auroral oval, and the three wind profiles were used to calculate values of divergence and vorticity over the area. The vertical velocity over the hight range was calculated using the mass continuity equation, and the instantaneous vertical momentum fluxes in the E region were derived using the combination of horizontal-wind measurements and calculated vertical velocities. Results show that there is strong coupling between layers in the E region and that the momentum-flux-induced accelerations are at least comparable in magnitude to the pressure gradient and Coriolis force accelerations.

  12. Thermal performance of multilayer insulation. I - Derivation of a prediction-based heat-flux equation

    NASA Astrophysics Data System (ADS)

    Amano, Toshiyuki

    1993-07-01

    A prediction-based equation for heat flux through a multilayer insulator was derived from comparison of experimental results between room temperature and liquid nitrogen temperature. The employed multilayer insulator was a laminated material with a polyester net inserted between aluminized Mylar films. The prediction equation consists of one thermal radiation and two thermal conduction terms. The first conduction term is that of ordinary thermal contact conductance. The second conduction term depends on the self-compression of the multilayer insulation. The predicted values resulting from the obtained equation coincided fairly well with measured values.

  13. Heat conduction in nanoscale materials: a statistical-mechanics derivation of the local heat flux.

    PubMed

    Li, Xiantao

    2014-09-01

    We derive a coarse-grained model for heat conduction in nanoscale mechanical systems. Starting with an all-atom description, this approach yields a reduced model, in the form of conservation laws of momentum and energy. The model closure is accomplished by introducing a quasilocal thermodynamic equilibrium, followed by a linear response approximation. Of particular interest is the constitutive relation for the heat flux, which is expressed nonlocally in terms of the spatial and temporal variation of the temperature. Nanowires made of copper and silicon are presented as examples. PMID:25314400

  14. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  15. A charge-charge flux-dipole flux decomposition of the dipole moment derivatives and infrared intensities of the AB 3 (A = N, P; B = H, F) molecules

    NASA Astrophysics Data System (ADS)

    César, Paulo H.; Faria, Sérgio H. D. M.; da Silva, João V.; Haiduke, R. L. A.; Bruns, Roy E.

    2005-10-01

    The quantum theory of atoms in molecules (AIM) has been used to decompose dipole moment derivatives and fundamental infrared intensities of the AB 3 (A = N,P; B = H,F) molecules into charge-charge flux-dipole flux (CCFDF) contributions. Calculations were carried out at the MP2(FC)/6-311++G(3d,3p) level. Infrared intensities calculated from the AIM atomic charges and atomic dipoles are within 13.8 km mol -1 of the experimental values not considering the NH 3 and PH 3 stretching vibrations for which the experimental bands are severely overlapped. Group V atomic dipoles are very important in determining the molecular dipole moments of NF 3, PH 3 and PF 3 although the atomic charges account for almost all of the NH 3 molecular moment. Dipole fluxes on the Group V atom are important in determining the stretching band intensities of all molecules whereas they make small contributions to the bending mode intensities. Consideration of dipole flux contributions from the terminal atoms must also be made for accurately describing the intensities of all these molecules. As expected from a simple bond moment model, charge contributions dominate for most of the NH 3, NF 3, and PF 3 dipole moment derivatives and intensities. Charge flux and dipole flux contributions are very substantial for all the PH 3 vibrations, cancelling each other for the stretching modes and reinforcing one another for the bending modes.

  16. A heavy rainfall sounding climatology over Gauteng, South Africa, using self-organising maps

    NASA Astrophysics Data System (ADS)

    Dyson, Liesl L.

    2015-12-01

    The daily weather at a particular place is largely influenced by the synoptic circulation and thermodynamic profile of the atmosphere. Heavy rainfall occurs from a particular subset of synoptic and thermodynamic states. Baseline climatologies provide objective information on heavy rainfall-producing circulation patterns and thermodynamic variables. This is how climatologically large or extreme values associated with heavy rainfall are identified. The aim of this research is to provide a heavy rainfall sounding climatology in austral summer over Gauteng, South Africa, using self-organising maps (SOMs). The results show that the SOM captures the intra-seasonal variability of heavy rainfall soundings by clearly distinguishing between the atmospheric conditions on early summer (October-December) and late summer (January-March) heavy rainfall days. Conditions associated with heavy early summer rainfall are large vertical wind shear and conditional instability, while the atmosphere is drier and cooler than when heavy rainfall occurs in late summer. Late summer heavy rainfall conditions are higher convective instability and small vertical wind shear values. The SOM climatology shows that some heavy rainfall days occur in both early and late summer when large-scale synoptic weather systems cause strong near-surface moisture flux and large values of wind shear. On these days, both the conditional and convective instability of the atmosphere are low and heavy rainfall results from the strong synoptic forcing. In contrast, heavy rainfall also occurs on days when synoptic circulation is not very favourable and the air is relatively dry, but the atmosphere is unstable with warm surface conditions and heavy rainfall develops from local favourable conditions. The SOM climatology provides guidelines to critical values of sounding-derived parameters for all these scenarios.

  17. First space-based derivation of the global atmospheric methanol emission fluxes

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Guenther, A.; Razavi, A.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Karagulian, F.; de Mazière, M.; Vigouroux, C.; Amelynck, C.; Schoon, N.; Laffineur, Q.; Heinesch, B.; Aubinet, M.; Rinsland, C.; Müller, J.-F.

    2011-05-01

    significant error reductions achieved by the optimization concern the derived biogenic emissions over the Amazon and over the Former Soviet Union. The robustness of the derived fluxes to changes in convective updraft fluxes, in methanol removal processes, and in the choice of the biogenic a priori inventory is assessed through sensitivity inversions. Detailed comparisons of the model with a number of aircraft and surface observations of methanol, as well as new methanol measurements in Europe and in the Reunion Island show that the satellite-derived methanol emissions improve significantly the agreement with the independent data, giving thus credence to the IASI dataset.

  18. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Joana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    Processes driving methane (CH4) emissions in wetland ecosystems are highly complex. Especially, the separation of CH4 emissions into ebullition and diffusion derived flux components, a perquisite for the mechanistic process understanding and identification of potential environmental driver is rather challenging. We present a simple calculation algorithm, based on an adaptive R-script, which separates open-water, closed chamber CH4 flux measurements into diffusion- and ebullition-derived components. Hence, flux component specific dynamics are revealed and potential environmental driver identified. Flux separation is based on a statistical approach, using ebullition related sudden concentration changes obtained during high resolution CH4 concentration measurements. By applying the lower and upper quartile ± the interquartile range (IQR) as a variable threshold, diffusion dominated periods of the flux measurement are filtered. Subsequently, flux calculation and separation is performed. The algorithm was verified in a laboratory experiment and tested under field conditions, using flux measurement data (July to September 2013) from a flooded, former fen grassland site. Erratic ebullition events contributed 46% to total CH4 emissions, which is comparable to values reported by literature. Additionally, a shift in the diurnal trend of diffusive fluxes throughout the measurement period, driven by the water temperature gradient, was revealed.

  19. Assessing the Uncertainty of Land Surface Fluxes Derived from Operational Analyses

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Mocko, David

    2009-01-01

    Operational numerical weather prediction systems assimilate tremendous amounts of observations to produce global analyses of the atmospheric states. Since the systems include significant contributions from the model components, physical fields, such as the turbulent heat fluxes, can also be derived. However, the physical fields are indirectly constrained by the data assimilation, and so subject to uncertainty in the model parameterizations. Recently, 10 international operational analyses have been collected and reprocessed through the Coordinated Enhanced. Observing Period (CEOP). Comparisons against independent observations (global precipitation and outgoing longwave radiation) show that while there is significant range of the individual analyses, the ensemble of analyses provide data closest the observations. Here, we evaluate the collection of land surface turbulent heat fluxes. The data are available for Oct 2002 - Dec 2004, at 6 hourly, daily and monthly intervals. An ensemble mean and its variance have been computed. we will analyze the range of analysis results at daily and seasonal time scales, and where possible compare with existing observations.

  20. Wnt directs the endosomal flux of LDL-derived cholesterol and lipid droplet homeostasis

    PubMed Central

    Scott, Cameron C; Vossio, Stefania; Vacca, Fabrizio; Snijder, Berend; Larios, Jorge; Schaad, Olivier; Guex, Nicolas; Kuznetsov, Dmitry; Martin, Olivier; Chambon, Marc; Turcatti, Gerardo; Pelkmans, Lucas; Gruenberg, Jean

    2015-01-01

    The Wnt pathway, which controls crucial steps of the development and differentiation programs, has been proposed to influence lipid storage and homeostasis. In this paper, using an unbiased strategy based on high-content genome-wide RNAi screens that monitored lipid distribution and amounts, we find that Wnt3a regulates cellular cholesterol. We show that Wnt3a stimulates the production of lipid droplets and that this stimulation strictly depends on endocytosed, LDL-derived cholesterol and on functional early and late endosomes. We also show that Wnt signaling itself controls cholesterol endocytosis and flux along the endosomal pathway, which in turn modulates cellular lipid homeostasis. These results underscore the importance of endosome functions for LD formation and reveal a previously unknown regulatory mechanism of the cellular programs controlling lipid storage and endosome transport under the control of Wnt signaling. PMID:25851648

  1. The Global Precipitation Climatology Centre (GPCC) - in situ observation based precipitation climatology on regional and global scale

    NASA Astrophysics Data System (ADS)

    Fuchs, T.; Schneider, U.; Rudolf, B.

    2009-04-01

    The Global Precipitation Climatology Centre (GPCC, http://gpcc.dwd.de) provides global monthly precipitation analyses for monitoring and research of the earth's climate. The centre is a German contribution to the World Climate Research Programme (WCRP), to the Global Climate Observing System (GCOS), and to the Global Earth Observation System of Systems (GEOSS). It contributes to water resources assessments, flood and drought monitoring, climate variability and trend analyses. GPCC published in year 2008 a new global precipitation climatology as well as a reanalysis of its full data base for all months of the period 1901-2007. The GPCC data base comprises monthly precipitation totals from more than 70 000 different stations in the world. It produces gridded data sets of monthly precipitation on the earth's land surface derived from raingauge based observation data. Intensive quality control of observation data and station metadata ensures a high analysis quality. The different GPCC products are adjusted to different user needs. It routinely produces 2 near real-time precipitation monitoring products. Its 2 non real-time products are updated at irregular time intervals after significant updates of its observation station database. All GPCC products can be visualised and accessed free of charge via Internet from http://gpcc.dwd.de. The GPCC First Guess Product of the monthly precipitation anomaly is based on synoptic weather reports (SYNOP) from about 6,300 stations worldwide received near real-time via the WMO Global Telecommunication System (GTS). The product is available within 5 days after end of an observation month. Main application purpose is near real-time drought monitoring. The product uses since mid 2008 the new GPCC monthly precipitation climatology as analysis background. Spatial product resolution: 1.0° and 2.5°. The GPCC Monitoring Product of monthly precipitation is based on SYNOP and monthly CLIMAT reports received near real-time via GTS from about

  2. Situational Lightning Climatologies

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  3. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    NASA Technical Reports Server (NTRS)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  4. Development and application of Labrador Sea climatologies

    NASA Astrophysics Data System (ADS)

    Cetin, Nilgun

    2007-05-01

    Two yearly climatologies of the Labrador Sea are developed. One is based on the traditional geopotential coordinates, and the other employs isopycnal coordinates in the vertical. The analysis of the results show that the isopycnal climatology has more skill at describing the mean state of the Labrador Sea, without smoothing out important flow features such as strong boundary currents and fronts. Seasonal climatologies based on the isopycnal coordinates in the vertical are also developed to study seasonal variability of the Labrador Sea hydrography and freshwater and heat fluxes. The greatest seasonal variability is observed in winter, the season in which deep convective overturning takes place. By using the objective analysis technique which successfully represented the dynamics of the Labrador Sea, a pseudo time-series of water properties is developed to study their inter-annual variability. The contribution of the West Greenland Current to the interior Labrador Sea freshwater budget is found to be greater than that of the Labrador Current, even though the Labrador Current has a larger freshwater content. Diagnostic calculations show that the Labrador Current flows southward mostly parallel to the isobaths without much of its fresher waters ever crossing into the interior Labrador Sea.

  5. QTAIM charge-charge flux-dipole flux interpretation of electronegativity and potential models of the fluorochloromethane mean dipole moment derivatives.

    PubMed

    Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E

    2011-11-17

    Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results

  6. An atomic charge-charge flux-dipole flux atom-in-molecule decomposition for molecular dipole-moment derivatives and infrared fundamental intensities.

    PubMed

    Haiduke, Roberto L A; Bruns, Roy E

    2005-03-24

    The molecular dipole moment and its derivatives are determined from atomic charges, atomic dipoles, and their fluxes obtained from AIM formalism and calculated at the MP2(FC)/6-311++G(3d,3p) level for 16 molecules: 6 diatomic hydrides, CO, HCN, OCS, CO2, CS2, C2H2, C2N2, H2O, H2CO, and CH4. Root-mean-square (rms) errors of 0.052 D and 0.019 e are found for the dipole moments and their derivatives calculated using AIM parameters when compared with those obtained directly from the MP2(FC)/6-311++G(3d,3p) calculations and 0.097 D and 0.049 e when compared to the experimental values. The major deviations occur for the NaH, HF, and H2O molecules. Parallel polar tensor elements for the diatomic and linear polyatomic molecules, except H2, HF, LiH, and NaH, have values resulting from cancellations of substantial contributions from atomic charge fluxes and atomic dipole fluxes. These fluxes have a large negative correlation coefficient, -0.97. IR fundamental intensity sums for CO, HCN, OCS, CO2, CS2, C2H2, C2N2, H2CO, and CH4 calculated using AIM charges, charge fluxes, and atomic dipole fluxes have rms errors of 14.9 km mol(-1) when compared with sums calculated directly from the molecular wave function and 36.2 km mol(-1) relative to experimental values. The classical model proposed here to calculate dipole-moment derivatives is compared with the charge-charge flux-overlap model long used by spectroscopists for interpreting IR vibrational intensities. The utility of the AIM atomic charges and dipoles was illustrated by calculating the forces exerted on molecules by a charged particle. AIM quantities were able to reproduce forces due to a +0.1 e particle over a 3-8-A separation range for the CO and HF molecules in collinear and perpendicular arrangements. These results show that IR intensities do contain information relevant to the study of intermolecular interactions. PMID:16833574

  7. The influence of climate on soil carbon turnover times derived from carbon flux and pool data

    NASA Astrophysics Data System (ADS)

    Khomik, M.; Reichstein, M.; Schrumpf, M.; Beer, C.; Curiel-Yuste, C. J.; Jenssens, I.; Luyssaert, S.; Subke, J.; Trumbore, S.; Wutzler, T.; Jung, M.; Lasslop, G.; Fluxnet Lathuille Synthesis Team (Cf. Www. Fluxdata. Org)

    2010-12-01

    Our understanding of the climatic controls on the rate of soil organic carbon (SOM) decomposition is still limited and greatly debated, especially the temperature sensitivity of decomposition. This lack of understanding and consensus hinders the ability to develop and improve models of soil carbon dynamics. In light of this, we used annual ecosystem carbon flux measurements and soil organic carbon stocks to derive soil carbon turnover times (TO) for a selection of eddy flux sites (FLUXNET LaThuille dataset) , following a method proposed by Sanderman et al.(2003). We then related these TO to mean annual temperatures (MAT) and found that TO decreased exponentially with increasing MAT, in accordance with Sanderman et al (2003) and other studies. However, upon closer examination, we also found that this exponential relationship was largely driven by the difference in TO between sites located in the boreal climate zone and those in the tropical, Mediterranean and temperate climates, combined. The range of computed TO values in the boreal zone was higher compared to the rest. Likewise, we also analyzed the combined effect of MAT and total annual precipitation (TAP) on TO and found that TAP was also negatively correlated to TO, although not as strongly as MAT. Similar to the response to MAT, the observed overall TAP vs TO relationship was also driven primarily by the difference in the range of TO values computed for sites from the boreal climate zone. The results of this study add to our understanding of the spatial variability of SOM controls and can be used to improve and/or direct future studies on soil carbon cycling. Sanderman, J., R. G. Amundson, and D. D. Baldocchi, Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time, Global Biogeochem. Cycles, 17(2), 1061, doi:10.1029/2001GB001833, 2003.

  8. Combined Satellite - and ULS-Derived Sea-Ice Flux in the Weddell Sea

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Liu, X.; Harms, S.

    2000-01-01

    Several years of daily microwave satellite ice-drift are combined with moored Upward Looking Sonar (ULS) ice-drafts into an ice volume flux record at points along a flux gate across the Weddell Sea, Antarctica.

  9. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    NASA Astrophysics Data System (ADS)

    Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.-F.; Van Roozendael, M.; Hurtmans, D.; Clerbaux, C.; Tait, S.; Ferrucci, F.

    2013-06-01

    Sulphur dioxide (SO2) fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile), Nyamulagira (DR Congo) and Nabro (Eritrea). High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A) and thermal infrared (IASI/MetOp-A) spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua) are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case). Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  10. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    NASA Astrophysics Data System (ADS)

    Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.-F.; Van Roozendael, M.; Hurtmans, D.; Clerbaux, C.; Tait, S.; Ferrucci, F.

    2012-12-01

    Sulphur dioxide (SO2) fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of dispersed and large-scale plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile), Nyamulagira (DR Congo) and Nabro (Eritrea). High spectral resolution satellite instruments operating both in the UV-visible (OMI/Aura and GOME-2/MetOp-A) and thermal infrared (IASI/MetOp-A) spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua) are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case). Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables to assess the consistency of the SO2 products from the different sensors used.

  11. On Deriving Incident Auroral Particle Fluxes in the Daytime Using Combined Ground-Based Optical and Radar Measurements

    NASA Technical Reports Server (NTRS)

    Pallamraju, Duggirala; Chakrabarti, Supriya; Solomon, Stanley C.

    2011-01-01

    Particle energies and fluxes have predominantly been measured from instruments onboard satellites. In this study, we use daytime ground-based oxygen redline emission measurements, along with the ionospheric electron density, and electron temperature profiles measured from the incoherent scatter radar, and a physics-based modeling approach to derive the energy and flux of particles incident over Boston during the storm of 30 October 2003. We find that the characteristic energy and the associated flux vary between 0.07.5.7 keV and 0.5.130 mW/sq m, respectively, during the intense magnetic disturbance that brought aurora to midlatitudes. Such an approach not only offers another method to estimate the incident particle energies and fluxes but also enhances our understanding on the channels of energy deposition in the upper atmospheric region, especially during magnetic disturbances, about which database is poor.

  12. On deriving incident auroral particle fluxes in the daytime using combined ground-based optical and radar measurements

    NASA Astrophysics Data System (ADS)

    Pallamraju, Duggirala; Chakrabarti, Supriya; Solomon, Stanley C.

    2011-04-01

    Particle energies and fluxes have predominantly been measured from instruments onboard satellites. In this study, we use daytime ground-based oxygen redline emission measurements, along with the ionospheric electron density, and electron temperature profiles measured from the incoherent scatter radar, and a physics-based modeling approach to derive the energy and flux of particles incident over Boston during the storm of 30 October 2003. We find that the characteristic energy and the associated flux vary between 0.07-5.7 keV and 0.5-130 mW m-2, respectively, during the intense magnetic disturbance that brought aurora to midlatitudes. Such an approach not only offers another method to estimate the incident particle energies and fluxes but also enhances our understanding on the channels of energy deposition in the upper atmospheric region, especially during magnetic disturbances, about which database is poor.

  13. Surface-Layer Flux-Gradient Relationships over Inclined Terrain Derived from a Local Equilibrium, Turbulence Closure Model

    NASA Astrophysics Data System (ADS)

    Łobocki, Lech

    2014-03-01

    Derivation of surface-layer flux-gradient relationships from a local-equilibrium, turbulence-closure model for a forced flow over inclined terrain is presented. Results are shown as a generalization of Monin-Obukhov universal functions respesenting non-dimensional wind and temperature gradients.

  14. Combination of remote sensing data products to derive spatial climatologies of "degree days" and downscale meteorological reanalyses: application to the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Rutter, N.; Brock, B. W.; Fowler, H. J.; Blenkinsop, S.

    2014-12-01

    Lack of observations for the full range of required variables is a critical reason why many cryosphere-dominated hydrological modelling studies adopt a temperature index (degree day) approach to meltwater simulation rather than resolving the full surface energy balance. Thus spatial observations of "degree days" would be extremely useful in constraining model parameterisations. Even for models implementing a full energy balance, "degree day" observations provide a characterisation of the spatial distribution of climate inputs to the cryosphere-hydrological system. This study derives "degree days" for the Upper Indus Basin by merging remote sensing data products: snow cover duration (SCD), from MOD10A1 and land surface temperature (LST), from MOD11A1 and MYD11A1. Pixel-wise "degree days" are calculated, at imagery-dependent spatial resolution, by multiplying SCD by (above-freezing) daily LST. This is coherent with the snowpack-energy-to-runoff conversion used in temperature index algorithms. This allows assessment of the spatial variability of mass inputs (accumulated snowpack) because in nival regime areas - where complete ablation is regularly achieved - mass is the limiting constraint. The GLIMS Randolph Glacier Inventory is used to compare annual totals and seasonal timings of "degree days" over glaciated and nival zones. Terrain-classified statistics (by elevation and aspect) for the MODIS "degree-day" hybrid product are calculated to characterise of spatial precipitation distribution. While MODIS data products provide detailed spatial resolution relative to tributary catchment areas, the limited instrument record length is inadequate for assessing climatic trends and greatly limits use for hydrological model calibration and validation. While multi-decadal MODIS equivalent data products may be developed in the coming years, at present alternative methods are required for "degree day" trend analysis. This study thus investigates the use of the hybrid MODIS

  15. Comparison of ground-derived and satellite-derived surface energy fluxes from a shrub-steppe site

    SciTech Connect

    Kirkham, R.R.; Gee, G.W.; Fritschen, L.J.

    1994-03-01

    Efforts to measure evapotranspiration (ET) remotely are common in agriculture, and the application of such data to irrigation scheduling is readily apparent. Extending this methodology to arid environments is primarily of use as a mechanism for validation of ET algorithms used in large-scale watershed and global climate change modeling efforts. To facilitate testing of the remote sensing method for ET, measurements of sensible and latent heat flux were made at four sites located on the US Department of Energy`s Hanford Site using a combination of lysimeter and Bowen Ratio Energy Balance (BREB) stations. The objective was to calibrate an aerodynamic transport equation that relates sensible heat flux to radiant surface temperature, and to map sensible heat flux using Landsat data.

  16. Tornado climatology of Austria

    NASA Astrophysics Data System (ADS)

    Holzer, A. M.

    After several decades of little work, a revised tornado climatology for Austria is presented. Tornadoes seldom form in the alpine areas, however, near the eastern flanks of the Alps, favourable conditions for tornado genesis are found. Whereas in the alpine regions less than 0.3 tornadoes per 10,000 km 2 a year touch down (averaged for provinces or major parts of a province), we can count 0.9 in the greater Graz area, 1.0 in the greater Linz area and 1.2 tornadoes per 10,000 km 2 a year in the greater Vienna area, suggesting the existence of so-called tornado alleys. As these regions are the most populated areas of Austria, there is a possible population bias in the dataset. The overall average for Austria is 0.3 tornadoes per 10,000 km 2 a year. The database consists of 89 tornadoes, one landspout and six waterspouts, with a total of 96 events. The seasonal peak is in July with a maximum probability of tornadoes in the late afternoon and early evening hours. Every fifth tornado occurs in the hour after 5 p.m. The maximum intensity determined for a tornado in Austria was T7 on the TORRO-Scale (F3 on the Fujita-Scale), the most common intensity is T2 on the TORRO-Scale (F1 on the Fujita-Scale).

  17. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    NASA Astrophysics Data System (ADS)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  18. Correlated time derivatives of current, electric field intensity, and magnetic flux density for triggered lightning at 15 m

    NASA Astrophysics Data System (ADS)

    Uman, M. A.; Schoene, J.; Rakov, V. A.; Rambo, K. J.; Schnetzer, G. H.

    2002-07-01

    We present measured current and its time derivative correlated with the corresponding electric field intensity and magnetic flux density and their time derivatives measured at 15 m for two lightning return strokes triggered in 1999 at Camp Blanding, Florida. Lightning was triggered to a vertical 2-m rod mounted at the center of a 70 × 70 m buried metallic grid. The rocket-launching system was located underground at the center of the grid. The experiment was designed to minimize any influence of either the strike object or a finite-conducting Earth (ground surface arcing and propagation effects) on the fields and field derivatives. The measured current derivative waveform and the return stroke portion of the magnetic flux density derivative and electric field intensity derivative waveforms associated with the two strokes are observed to be essentially unipolar pulses that have similar waveshapes for the first 150 ns or so, including the initial rising portion, the peak, and about 50 ns after the peak. The current and magnetic field derivative waveshapes are very similar for their total duration, and both decay to near zero about 200 ns after the peak derivative is reached. The electric field derivative decays more slowly than the current derivative after about 150 ns, taking about 500 ns to decay to near zero. The transmission-line model, the simplest available and most used return stroke model, is employed to calculate the return stroke field derivatives, given the measured current derivative as a model input, for return stroke speeds of 1 × 108 m s-1, 2 × 108 m s-1, and 3 × 108 m s-1 (the speed of light). A reasonable match between calculated and measured field derivative waveshapes is achieved for both strokes for a return stroke speed between 2 × 108 m s-1 and 3 × 108 m s-1. Although the measured field and current derivatives have similar waveshapes for about 150 ns, which might appear to be consistent with the hypothesis that the radiation field component

  19. The momentum flux-gradient relations derived from field measurements in the urban roughness sublayer in three cities in China

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Liu, Gang; Sun, Jianning; Zhang, Hongsheng; Yuan, Renmin

    2015-10-01

    Field measurements of the momentum flux and wind velocity gradient were carried out at three urban sites in the cities of Nanjing, Changzhou, and Suzhou, China. The observational data in the urban roughness sublayer are analyzed to derive the momentum flux-gradient relations in terms of framework of the local similarity theory with a least squares fit, and the relations are then compared to the classical similarity relations of Businger et al. (1971). The results show that the momentum flux varies with height; thus, the constant-flux assumption in the Monin-Obukhov Similarity Theory is not met in the urban roughness sublayer. However, the dimensionless wind velocity gradient may be described by the local similarity theory, and the derived flux-gradient relations have the same form as the classical similarity relations do. Under stable conditions, the coefficient βm in the fitted relations increases with height and gradually approaches the value of 4.7 in the classical similarity relations. The trend suggests that the turbulent flow may be described by the classical similarity relations once the height increases and reaches the top of the urban roughness sublayer, and thus, the height of the top of the urban roughness sublayer may be estimated by linear extrapolation of the derived relations in this study. The relation between the critical Richardson number Ric and the coefficient βm is derived as Ric = Prt/βm, where Prt is the turbulent Prandtl number. In the urban roughness sublayer, the value of Ric is larger than 0.2.

  20. Atmospheric freshwater fluxes and their effect on the global thermohaline circulation

    SciTech Connect

    Zaucker, F.; Stocker, T.F.; Broecker, W.S.

    1994-06-15

    Atmospheric water vapor fluxes were derived from a 1-year data set of horizontal wind speed and specific humidity assimilated from meteorological observations by the European Center for Medium-Range Weather Forecast (ECMWF). Vertically integrated horizontal freshwater fluxes were compared to those of two data sets based on a climatology and on simulations with an atmospheric general circulation model (AGCM). Zonal transports agree fairly well at all latitudes outside the tropics, where fluxes are about double for the AGCM data set. Meridional fluxes of the AGCM and ECMWF data sets show close agreement, while the climatological fluxes are generally smaller with a considerable northward shift in the southern hemisphere. Atmosphere-to-ocean freshwater fluxes were derived from the three data sets. Not only is there substantial disagreement between the data sets, but their zonal averages over the Atlantic, Pacific, and Indian Ocean basins show little resemblance to the respective restoring freshwater fluxes from a 2-dimensional ocean model. If the ocean model is forced with the observed and modeled atmospheric fluxes, we find that the mode of ocean circulation is determined mostly the net flux to the high-latitude oceans and the amount of freshwater exported from the Atlantic basin. The latitudinal structure of the freshwater fluxes in low-latitudes and midlatitudes has little influence on the modeled thermohaline circulation. The fluxes derived from the climatology and ECMWF permit North Atlantic Deep Water (NADW) formation, but a strong freshwater input to the Southern Ocean inhibits Antarctic Bottom Water formation. The AGCM transports so much moisture to the Arctic Ocean that NADW formation is shut down, resulting in a ocean circulation mode of southern sinking in all three ocean basins.

  1. How well can regional fluxes be derived from smaller-scale estimates?

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.

    1992-01-01

    Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.

  2. How well can regional fluxes be derived from smaller-scale estimates?

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.

    1993-01-01

    Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.

  3. SURFACE HEAT FLUX DERIVED FROM SODAR AMPLITUDE AND FREQUENCY DATA: A COMPARISON

    EPA Science Inventory

    Sensible heat flux measurements were made in an agricultural setting near Champaign, Illinois by using doppler sodar, eddy correlations and profile methods during convective conditions during an experimental study called VOICE, (Vertical Observations Involving Convective Exchange...

  4. Atmospheric moisture transport and fresh water flux over oceans derived from spacebased sensors

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2001-01-01

    preliminary results will be shown to demonstrate the application of spacebased IMT and fresh water flux in ocean-atmosphere-land interaction studies, such as the hydrologica balance on Amazon rainfall and Indian monsoon.

  5. First space-based derivation of the global atmospheric methanol emission fluxes

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Guenther, A.; Razavi, A.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Karagulian, F.; de Mazière, M.; Vigouroux, C.; Amelynck, C.; Schoon, N.; Laffineur, Q.; Heinesch, B.; Aubinet, M.; Müller, J.-F.

    2011-02-01

    This study provides improved methanol emission estimates on the global scale, in particular for the largest methanol source, the terrestrial biosphere, and for biomass burning. To this purpose, one complete year of spaceborne measurements of tropospheric methanol columns retrieved for the first time by the thermal infrared sensor IASI aboard the MetOp satellite are compared with distributions calculated by the IMAGESv2 global chemistry-transport model. Two model simulations are performed using a priori biogenic methanol emissions either from the new MEGANv2.1 emission model, which is fully described in this work and is based on net ecosystem flux measurements, or from a previous parameterization based on net primary production by Jacob et al. (2005). A significantly better model performance in terms of both amplitude and seasonality is achieved through the use of MEGANv2.1 in most world regions, with respect to IASI data, and to surface- and air-based methanol measurements, even though important discrepancies over several regions are still present. As a second step of this study, we combine the MEGANv2.1 and the IASI column abundances over continents in an inverse modelling scheme based on the adjoint of the IMAGESv2 model to generate an improved global methanol emission source. The global optimized source totals 187 Tg yr-1 with a contribution of 100 Tg yr-1 from plants, only slightly lower than the a priori MEGANv2.1 value of 105 Tg yr-1. Large decreases with respect to the MEGANv2.1 biogenic source are inferred over Amazonia (up to 55%) and Indonesia (up to 58%), whereas more moderate reductions are recorded in the Eastern US (20-25%) and Central Africa (25-35%). On the other side, the biogenic source is found to strongly increase in the arid and semi-arid regions of Central Asia (up to a factor of 5) and Western US (factor of 2), probably due to a source of methanol specific to these ecosystems which is unaccounted for in the MEGANv2.1 inventory. Detailed

  6. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II, also located at geosynchronous orbit, indicates a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user requirements.

  7. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    DOE PAGESBeta

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite-years of observations from the Magnetospheric Plasma Analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local-times and 40 energies, at all possible values of Kp. Bi-linear interpolation is used between grid points to provide the ionmore » flux and the electron flux values at any energy and local-time, and for given values of geomagnetic activity (proxied by the 3-hour Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II (CEASE-II), also located at geosynchronous orbit, indicate a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user-requirements.« less

  8. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    SciTech Connect

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite-years of observations from the Magnetospheric Plasma Analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local-times and 40 energies, at all possible values of Kp. Bi-linear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local-time, and for given values of geomagnetic activity (proxied by the 3-hour Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II (CEASE-II), also located at geosynchronous orbit, indicate a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user-requirements.

  9. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lei, Ruibo; Li, Na; Heil, Petra; Cheng, Bin; Zhang, Zhanhai; Sun, Bo

    2014-01-01

    The conductive and oceanic heat fluxes and the mass balance of sea ice were investigated utilizing an ice mass balance buoy (IMB) deployed in the Arctic Ocean. After IMB deployment, the ice thinned from 1.95 m in late August to 1.46 m by mid-October 2008. From then on, ice growth until mid-June 2009 increased the ice thickness to 3.12 m. The ice temperature and consequently the conductive heat flux at the ice surface exhibited persistent high-frequency variations due to diurnal and synoptic-scale atmospheric forcing. These signals propagated downward with damped magnitude and temporal lag. The competition of oceanic and conductive heat flux dominated the low-frequency variations of ice growth. However, high-frequency variations in ice growth were controlled largely by the oceanic heat flux. From mid-November 2008 to mid-June 2009, the average oceanic heat flux along a track from 86.2°N, 115.2°W to 84.6°N, 33.9°W was 7.1 W/m2. This was in agreement with that derived from an IMB deployed in 2005, about 1.5° to the north of our buoy. We attributed the relatively high oceanic heat flux (10-15 W/m2) observed during autumn and early winter to summer warming of the surface ocean. Upward mixing of warm deep water, as observed when our buoy drifted over the shallow region of the Lomonosov Ridge (85.4°-85.9°N, 52.2°-66.4°W), demonstrated the impact of bathymetry on the oceanic heat flux under ice cover, and consequently on the basal ice mass balance.

  10. Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?

    NASA Astrophysics Data System (ADS)

    Wilson, J. D.; Ridgwell, A.; Barker, S.

    2015-03-01

    The average depth in the ocean at which the majority of sinking organic matter particles remineralise is a fundamental parameter in the oceans role in regulating atmospheric CO2. Observed spatial patterns in sinking fluxes and relationships between the fluxes of different particles in the modern ocean have widely been used to invoke controlling mechanisms with important implications for CO2 regulation. However, such analyses are limited by the sparse spatial sampling of the available sediment trap data. Here we explore whether model ocean circulation rates, in the form of a transport matrix, can be used to derive remineralisation rates and sinking particle flux curves from the much more highly resolved observations of dissolved nutrient concentrations. Initially we use the Earth system model GENIE to generate a synthetic tracer dataset to explore the methods and its sensitivity to key sources of uncertainty arising from errors in the tracer observations and in the model circulation. We use a perturbed physics ensemble to generate 54 different estimates of circulation to explore errors associated with model transport rates. We find that reconstructed remineralisation rates are highly sensitive to both errors in observations and our ensemble uncertainty in model circulation rates such that a simple inversion does not provide a robust estimate of particulate flux profiles. Inferred remineralisation rates are particularly sensitive to differences between the "observed" and modelled transport fluxes because remineralisation rates are 3-4 magnitudes smaller than circulation rates. We also find that when inferring particle flux curves from remineralisation rates the cycling of dissolved organic matter also creates biases that have a similar magnitude and spatial variability to flux curves diagnosed using sediment trap data. We end with a discussion on the potential future directions and pitfalls of estimating remineralisation rates using model circulation schemes.

  11. EUMELI oligotrophic site: response of an upper ocean model to climatological and ECMWF atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Dadou, Isabelle C.; Garçon, Véronique C.

    1993-11-01

    Within the frame of the EUMELI program—component of FRANCE-JGOFS—in the Northeast tropical Atlantic ocean, we investigate the potential of a one-dimensional eddy-kinetic-energy model (Gaspar et al., 1990, GGL) to characterize the vertical dynamics of the oceanic mixed layer (ML) at the EUMELI oligotrophic site (21°N, 31°W) north of the Cape Verde Frontal Zone. The atmospheric forcings used are derived from two different sources: the operational Atmospheric General Circulation Model of ECMWF (over two 12-month periods: August 1985-July 1986 and the full year 1990) and climatologies (Esbensen and Kushnir, EK, 1981; Hsiung, H, 1986; Oort, 1983). At the site, depending on the data base, the annual mean of the total energy flux at the ocean-atmosphere interface differs in sign and intensity and its monthly evolution presents significant variation both in amplitude and timing of the maximum. The monthly wind stress evolution due to the regular north-east trade winds prevailing in this region is quite consistent as derived by the different data sources. In our area, a net evaporation rate occurs throughout the year. The simulated ML depth, based on GGL's ML depth definition, is always shallower than climatological observations of ML depth, whatever the surface atmospherical forcing used, the exception being the simulation performed with the atypical ECMWF85-86 forcing. The simulated SST's using H forcing compare rather well (within 1°C) with the observed SST's of the climatologies of Lamb and EK. Sampling experiments on the surface boundary conditions showed that simulated evolutions of the ML depth and SST differ quite significantly due to differences in data bases rather than differences in forcing frequencies. An error analysis on the ocean surface energy fluxes and the prescription of evaporation and precipitation rates under various forms demonstrate the crucial need for heat, momentum and freshwater fluxes estimates as accurate as possible. From the

  12. Relationship between Metabolic Fluxes and Sequence-Derived Properties of Enzymes

    PubMed Central

    Kampenusa, Inara

    2014-01-01

    Metabolic fluxes are key parameters of metabolic pathways being closely related to the kinetic properties of enzymes, thereby could be dependent on. This study examines possible relationships between the metabolic fluxes and the physical-chemical/structural features of enzymes from the yeast Saccharomyces cerevisiae glycolysis pathway. Metabolic fluxes were quantified by the COPASI tool using the kinetic models of Hynne and Teusink at varied concentrations of external glucose. The enzyme sequences were taken from the UniProtKB and the average amino acid (AA) properties were computed using the set of Georgiev's uncorrelated scales that satisfy the VARIMAX criterion and specific AA indices that show the highest correlations with those. Multiple linear regressions (88.41% fluxes and the selected sets of the average AA properties. The hydrophobicity, α-helicity, and net charge were pointed out as the most influential characteristics of the sequences. The results provide an evidence that metabolic fluxes of the yeast glycolysis pathway are closely related to certain physical-chemical properties of relevant enzymes and support the view on the interdependence of catalytic, binding, and structural AA residues to ensure the efficiency of biocatalysts and, hence, physiologically adequate metabolic processes.

  13. Regional CO2 fluxes for eastern Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    Gatti, L. V.; Miller, J. B.; D'Amelio, M. T.; Wofsy, S.; Tans, P.

    2008-12-01

    We have determined regional scale (~105 - 106 km2) CO2 fluxes using atmospheric measurements from aircraft vertical profiles over eastern Amazonia (site SAN: 02°51'S; 54°57'W). Profiles started December 2000 and have continued through 2008. 17 air samples per profile were collected aboard light aircraft between the surface and 4-5 km using the NOAA/ESRL semi- automatic portable flask package. We use a column integration technique to determine the CO2 flux for each vertical profile, where the measured CO2 profile is differenced from a CO2 background, which was determined using co-measured SF6 as a transport tracer. Two NOAA/ESRL background sites, Ascension Island (ASC) located in the Atlantic Ocean (8°S, 14°W) and Barbados (RPB) located in the Atlantic Ocean (12°N, 59°W) were used to calculate the fractions of air arriving at the sites studied. Back trajectories from the HYSPLIT model were calculated for every profile every 500m of altitude to determine the time the air mass took to travel between the coast and SAN. The observed flux, which is representative of that between the coast and measurement sites, averaged -0.03 ± 1.5 g C m-2day-1 for the wet season and 0.3 ± 0.9 g C m-2day-1 for the dry season. The flux variability is high, probably reflecting the dynamic nature of the response of the terrestrial biosphere to environmental conditions. We have attempted to remove the influence of biomass burning from the fluxes using measurements of co-measured CO. This reduces the dry season flux to -0.04 ± 1.2 g C m- 2day-1. We will compare these results to the seasonality found in eddy covariance measurements and to that estimated from models of the terrestrial biosphere.

  14. Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations

    PubMed Central

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie

    2013-01-01

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data. PMID:24386441

  15. A Total Lightning Climatology for the Tennessee Valley Region

    NASA Technical Reports Server (NTRS)

    McCaul, E. W.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hallm, J.; Bateman, M.

    2003-01-01

    Total flash counts derived from the North Alabama Lightning Mapping Array are being processed for 2002 to form a climatology of total lightning for the Tennessee Valley region. The data from this active and interesting period will be compared to data fiom the National Lightning Detection Network, space-based lightning sensors, and weather radars.

  16. Deriving hourly surface energy fluxes and ET from Landsat Thematic mapper data using METRIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface energy fluxes and evapotranspiration (ET) have long been recognized as playing an important role in determining exchanges of energy and mass between the hydrosphere, atmosphere, and biosphere. In this study, we applied the METRIC (Mapping ET at high Resolutions with Internal Calibration) alg...

  17. Daily evapotranspiration estimates by scaling instantaneous latent heat flux derived from a two-source model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radiometric brightness temperature can be used in energy balance models that estimate sensible and latent heat fluxes of the land surface. However, brightness temperature is usually available only at one time of day when acquired from aircraft, fine-scale satellite platforms, or infrared thermometer...

  18. Geogenic Sources Strongly Contribute to the Mackenzie River Delta's Methane Emissions Derived From Airborne Flux Data

    NASA Astrophysics Data System (ADS)

    Kohnert, K.; Serafimovich, A.; Metzger, S.; Hartmann, J.; Sachs, T.

    2015-12-01

    Arctic permafrost-associated wetlands and thawing permafrost emit the greenhouse gas methane (CH4), either as a product of recent microbial activity in the active layer or taliks, or from deeper geogenic sources where pathways through the permafrost exist. Current emission estimates vary strongly between different models and there is still disagreement between bottom-up estimates from local field studies and top-down estimates from atmospheric measurements. We use airborne flux data from two campaigns in the Mackenzie River Delta, Canada, in July 2012 and 2013 to directly quantify permafrost CH4 emissions on the regional scale, to analyse the regional pattern of CH4 fluxes and to estimate the contribution of geogenic emissions to the overall CH4 budget of the delta. CH4 fluxes were calculated with a time-frequency resolved version of the eddy covariance technique, resulting in a gridded 100 m x 100 m resolution flux map within the footprints of the flight tracks. We distinguish geogenic gas seeps from biogenic sources by their strength and show that they contribute strongly to the annual CH4 budget of the delta. Our study provides the first estimate of annual CH4 release from the Mackenzie River Delta and the adjacent coastal plain. We show that one percent of the covered area contains the strongest geogenic seeps which contribute disproportionately to the annual emission estimate. Our results show that geogenic CH4 emissions might need more attention, especially in areas where permafrost is vulnerable to thawing sufficiently to create pathways for geogenic gas migration. The presented map can be used as a baseline for future CH4 flux studies in the Mackenzie River Delta.

  19. Developing a cloud mask climatology covering two Meteosat satellite generations

    NASA Astrophysics Data System (ADS)

    Posselt, Rebekka; Stöckli, Reto; Liniger, Mark A.

    2013-04-01

    Long term cloud cover observations from satellites are fundamental for climate model validation and climate monitoring. Further, they support ground-based observations in regions with sparse coverage. Additionally, information on cloud cover is needed to derive other physical parameters such as surface radiation fluxes or clear sky and cloudy atmospheric states and is of high relevance for the solar energy sector. Within the current project phase of the Satellite Application Facility on Climate Monitoring (CM SAF) an algorithm to calculate a climatological cloud mask (or cloud cover probability) from Meteosat satellites is developed. The algorithm shall be applicable for both Meteosat first generation (1983-2005) and Meteosat second generation (2004-present) which significantly differ in their spectral properties. The algorithm linearly aggregates a set of continuous scores instead of the commonly used decision tree approach. The scores are calculated for different channels as well as different spatial and temporal settings. Each score yields a probability for the pixel's cloud cover. The final result, the cloud cover probability, is obtained by combining all available scores taking into account the varying performance of the scores during day and night and over snow. The uncertainty of the final cloud cover estimate is an inherent part of the probability. The algorithm is calibrated using cloud cover measurements from SYNOP stations located on the Meteosat disc. The subsequent validation is done at an independent set of collocated SYNOP/ARSA (Automated Radiosonde Archive) stations. The presentation introduces the applied cloud mask algorithm and presents the results of the validation for both satellite generations. The comparison of the two satellite generations addresses the climatological homogeneity of the future cloud mask climate data record which will be distributed by CM SAF after 2016. Special attention is also drawn to issues like the day-night-bias of

  20. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  1. Evaluation and Applications of Cloud Climatologies from CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Getzewitch, Brian; Vaughan, Mark

    2008-01-01

    Clouds have a major impact on the Earth radiation budget and differences in the representation of clouds in global climate models are responsible for much of the spread in predicted climate sensitivity. Existing cloud climatologies, against which these models can be tested, have many limitations. The CALIOP lidar, carried on the CALIPSO satellite, has now acquired over two years of nearly continuous cloud and aerosol observations. This dataset provides an improved basis for the characterization of 3-D global cloudiness. Global average cloud cover measured by CALIOP is about 75%, significantly higher than for existing cloud climatologies due to the sensitivity of CALIOP to optically thin cloud. Day/night biases in cloud detection appear to be small. This presentation will discuss detection sensitivity and other issues associated with producing a cloud climatology, characteristics of cloud cover statistics derived from CALIOP data, and applications of those statistics.

  2. Active Learning in Introductory Climatology.

    ERIC Educational Resources Information Center

    Dewey, Kenneth F.; Meyer, Steven J.

    2000-01-01

    Introduces a software package available for the climatology curriculum that determines possible climatic events according to a long-term climate history. Describes the integration of the software into the curriculum and presents examples of active learning. (Contains 19 references.) (YDS)

  3. Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Schweiger, A.; Maslanik, J.; Key, J.; Haefliger, M.; Weaver, R.

    1991-01-01

    In the past six months, work has continued on energy flux sensitivity studies, ice surface temperature retrievals, corrections to Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data, modelling of cloud fraction retrievals, and radiation climatologies. We tentatively conclude that the SSM/I may not provide accurate enough estimates of ice concentration and type to improve our shorter term energy flux estimates. SSM/I derived parameters may still be applicable in longer term climatological flux characterizations. We hold promise for a system coupling observation to a ice deformation model. Such a model may provide information on ice distribution which can be used in energy flux calculations. Considerable variation was found in modelled energy flux estimates when bulk transfer coefficients are modulated by lead fetch. It is still unclear what the optimum formulation is and this will be the subject of further work. Data sets for ice surface temperature retrievals were assembled and preliminary data analysis was started. Finally, construction of a conceptual framework for further modelling of the Arctic radiation flux climatology was started.

  4. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and

  5. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, P.C.; Vesala, T.; Wofsy, S.C.

    2007-01-01

    The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks. ?? 2007 Elsevier B.V. All rights reserved.

  6. Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?

    NASA Astrophysics Data System (ADS)

    Wilson, J. D.; Ridgwell, A.; Barker, S.

    2015-09-01

    The average depth in the ocean at which the majority of sinking organic matter particles remineralise is a fundamental parameter in the ocean's role in regulating atmospheric CO2. Observed spatial patterns in sinking fluxes and relationships between the fluxes of different particles in the modern ocean have widely been used to invoke controlling mechanisms with important implications for CO2 regulation. However, such analyses are limited by the sparse spatial sampling of the available sediment trap data. Here we explore whether model ocean circulation rates, in the form of a transport matrix, can be used to derive remineralisation rates and infer sinking particle flux curves from the much more highly resolved observations of dissolved nutrient concentrations. Initially we show an example of the method using a transport matrix from the MITgcm model and demonstrate that there are a number of potential uncertainties associated with the method. We then use the Earth system model GENIE to generate a synthetic tracer data set to explore the method and its sensitivity to key sources of uncertainty arising from errors in the tracer observations and in the model circulation. We use a 54-member ensemble of different, but plausible, estimates of the modern circulation to explore errors associated with model transport rates. We find that reconstructed re-mineralisation rates are very sensitive to both errors in observations and model circulation rates, such that a simple inversion cannot provide a robust estimate of particulate flux profiles. Estimated remineralisation rates are particularly sensitive to differences between the "observed" and modelled circulation because remineralisation rates are 3-4 magnitudes smaller than transport rates. We highlight a potential method of constraining the uncertainty associated with using modelled circulation rates, although its success is limited by the observations currently available. Finally, we show that there are additional

  7. The effect of assimilating satellite derived soil moisture in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NASA Astrophysics Data System (ADS)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2015-09-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture and carbon fluxes as compared to e.g. Europe. To better constrain our vegetation model SiBCASA, we increase data usage by assimilating two streams of satellite derived soil moisture. We study if the assimilation improved SiBCASA's soil moisture and its effect on the simulated carbon fluxes. By comparing to unique in situ soil moisture observations, we show that the passive microwave soil moisture product did not improve the soil moisture simulated by SiBCASA, but the active data seem promising in some aspects. The match between SiBCASA and ASCAT soil moisture is best in the summer months over low vegetation. Nevertheless, ASCAT failed to detect the major droughts occurring between 2007 and 2013. The performance of ASCAT soil moisture seems to be particularly sensitive to ponding, rather than to biomass. The effect on the simulated carbon fluxes is large, 5-10% on annual GPP and TER, and tens of percent on local NEE, and 2% on area-integrated NEE, which is the same order of magnitude as the inter-annual variations. Consequently, this study shows that assimilation of satellite derived soil moisture has potentially large impacts, while at the same time further research is needed to understand under which conditions the satellite derived soil moisture improves the simulated soil moisture.

  8. Development of an operational global ocean climatology through the use of remotely sensed sea surface temperature

    SciTech Connect

    Winter, T.M.

    1995-05-09

    Monthly mean satellite-derived sea surface temperature SST data have been derived globally using daytime and nighttime AVHRR (Advanced Very High Resolution Radiometer) multi-channel data. From a 12 year data set (1982-1993), valid monthly daytime and nighttime climatologies were created using an eight year subset (1984-1990, 1993). Based on buoy comparisons, four years were omitted due to volcanic aerosol corruption (El Chichon 1982/83, Mt. Pinatubo 1991/92). These resulting monthly climatologies provide SST fields at approximately 1/3rd degree latitude/longitude resolution. Difference fields have been created comparing the new satellite climatology with the older and coarser-resolution climatology constructed from conventional SST data. Regional and zonal climatology differences were also created to highlight the deficiencies, especially in the Southern Hemisphere, in the older climatology believed to result primarily from a lack of buoy/ship (in situ) data. Such comparisons made it clear that the satellite climatology provided a much better product. Ocean current systems, El Nino, La Nina, and other water mass characteristics all appear with better detail and accuracy within the high-resolution satellite climatology.

  9. Validating hydro-meteorological fluxes using GRACE-derived water storage changes - a global and regional perspective

    NASA Astrophysics Data System (ADS)

    Eicker, Annette; Springer, Anne; Kusche, Jürgen; Jütten, Thomas; Diekkrüger, Bernd; Longuevergne, Laurent

    2016-04-01

    Atmospheric and terrestrial water budgets, which represent important boundary conditions for both climate modeling and hydrological studies, are linked by evapotranspiration (E) and precipitation (P). These fields are provided by numerical weather prediction models and atmospheric reanalyses such as ERA-Interim and MERRA-Land; yet, in particular the quality of E is still not well evaluated. Via the terrestrial water budget equation, water storage changes derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission, combined with runoff (R) data can be used to assess the realism of atmospheric models. While on short temporal scales (inter-annual down to sub-seasonal) the modeled fluxes agree remarkably well with GRACE water storage changes, the models exhibit large biases and fail to capture the long-term flux trends in P-E-R corresponding to GRACE accelerations (Eicker et al. 2016). This leads to the assumption that despite the short time span of available gravity field observations, GRACE is able to provide new information for constraining the long-term evolution of water fluxes in future atmospheric reanalyses. In this contribution we will investigate the agreement of GRACE water storage changes with P-E-R flux time series from different (global and regional) atmospheric reanalyses, land surface models, as well as observation-based data sets. We will perform a global analyses and we will additionally focus on selected river basins. The investigations will be carried out for various temporal scales, focussing on the short-term fluxes (month-to-month variations), for which models and GRACE agree well with correlations of the de-trended and de-seasoned fluxes time series reaching up to 0.8 and more. We will furthermore extent the study towards even higher temporal frequencies, investigating whether the modeled and observed fluxes show sub-monthly variability that can be detected in daily GRACE time series. Eicker, A., E. Forootan, A. Springer

  10. A climatology of visible surface reflectance spectra

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  11. Particulate organic carbon export fluxes on Chukchi Shelf, western Arctic Ocean, derived from 210Po/210Pb disequilibrium

    NASA Astrophysics Data System (ADS)

    He, Jianhua; Yu, Wen; Lin, Wuhui; Men, Wu; Chen, Liqi

    2015-05-01

    Fluxes of particulate organic carbon (POC) were derived from 210Po/210Pb disequilibrium during the 4th Chinese National Arctic Research Expedition (CHINARE-4) from July 1 to September 28, 2010. Average residence times of particulate 210Po in the euphotic zone were -16.00 a to 1.54 a, which are higher than those of dissolved 210Po (-6.89 a to -0.70 a). Great excesses of dissolved 210Po were observed at all stations, with an average 210Po/210Pb ratio of 1.91±0.20, resulting from 210Pb atmospheric deposition after sea ice melt. POC fluxes from the euphotic zone were estimated by two methods (E and B) in the irreversible scavenging model. Estimated POC fluxes were 945-126 mmol C/(m2·a) and 1 848-109 mmol C/(m2·a) by methods E and B, respectively, both decreasing from low to high latitude. The results are comparable to previous works for the same region, indicating efficient biological pumping in the Chukchi Sea. The results can improve understanding of the carbon cycle in the western Arctic Ocean.

  12. A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database

    PubMed Central

    2014-01-01

    Background Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. Results We present EcoCyc–18.0–GEM, a genome-scale model of the E. coli K–12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc–18.0–GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc–18.0–GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model’s derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc–18.0–GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization. Conclusion Significant

  13. Latitudinal dependence of solar proton flux derived from interplanetary Lyman alpha emission

    NASA Astrophysics Data System (ADS)

    Nakagawa, H.; Fukunishi, H.; Watanabe, S.; Takahashi, Y.; Taguchi, M.; Bertaux, J.; Quemerais, E.; Lallement, R.

    2004-12-01

    There is a uniform flow of the interplanetary hydrogen in the solar system. The distribution of interplanetary neutral hydrogen is sensitive to solar wind proton flux, which has a latitudinal distribution, because interplanetary neutral hydrogen atoms are mainly ionized through a process of charge-exchange with solar wind protons (contributing to 80% of the total ionization rate). Rucinski et al. [1996] estimated the ionization rate of the interplanetary hydrogen in an average solar activity condition: 6.4±0.14 [10E-7/s] for charge exchange with protons. The most practical technique for determining the latitudinal dependence of the interplanetary hydrogen is observation of resonant backscatter of solar Lyman ƒ¿ emission at 121.6 nm. The interplanetary Lyman ƒ¿ emission has been measured by the ultraviolet imaging spectrometer (UVS) on board the Nozomi spacecraft crusing on its Mars transfer orbit with a periapsis of 1 AU and an apoapsis 1.5 AU from the Sun. The field-of-view of UVS is perpendicular to the spin axis of the spacecraft, which is controlled toward the Earth. The spatial resolution of UVS is 1.41 degrees in a plane perpendicular to the spin axis and 0.29 degrees in a plane including the spin axis. Spatial distributions are obtained from the full sky scanning of UVS with spin and orbital motions of the Nozomi spacecraft. One-year UVS data enable us to construct a full sky image of Lyman ƒ¿ emission. We present the results obtained from Nozomi/UVS data analysis for the period of 1999-2002. From a fitting of model calculations to the observed data, it is confirmed that a latitudinal anisotropy with the higher ionization region at the equator is reduced toward solar maximum. Finally, higher ionization region are found at the poles than at the equator near solar maximum. Basically, this change is produced by variations in the latitudinal dependence of persistent solar wind proton flux. However, proton flux from transient CMEs also affects the

  14. Evaluation of SEBS for Deriving Land Surface Energy Fluxes with MODIS data in a Semiarid Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texas High Plains is one of the largest agricultural regions in the United States where 90% of the water derived from the Ogallala Aquifer is used for irrigation. Accurate seasonal evapotranspiration (ET) estimates at a regional scale would be useful for groundwater management purposes. Remote sensi...

  15. Assessing Inter-Sensor Variability and Sensible Heat Flux Derivation Accuracy for a Large Aperture Scintillometer

    PubMed Central

    Rambikur, Evan H.; Chávez, José L.

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies. PMID:24473285

  16. Global Aerosol Climatology Project.

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael; Penner, Joyce; Anderson, Donald

    2002-02-01

    This paper is concerned with uncertainties in the Advanced Very High Resolution Radiometer (AVHRR)-based retrieval of optical depth for heavy smoke aerosol plumes generated from forest fires that occurred in Canada due to a lack of knowledge on their optical properties (single-scattering albedo and asymmetry parameter). Typical values of the optical properties for smoke aerosols derived from such field experiments as Smoke, Clouds, and Radiation-Brazil (SCAR-B); Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE-A); Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A); and Boreal Ecosystem-Atmosphere Study (BOREAS) were first assumed for retrieving smoke optical depths. It is found that the maximum top-of-atmosphere (TOA) reflectance values calculated by models with these aerosol parameters are less than observations whose values are considerably higher. A successful retrieval would require an aerosol model that either has a substantially smaller asymmetry parameter (g < 0.4 versus g > 0.5), or higher single-scattering albedo ( 0.9 versus < 0.9), or both (e.g., g = 0.39 and = 0.91 versus g = 0.57 and = 0.87) than the existing models. Several potential causes were examined including small smoke particle size, low black carbon content, humidity effect, calibration errors, inaccurate surface albedo, mixture of cloud and aerosol layers, etc. A more sound smoke aerosol model is proposed that has a lower content of black carbon (mass ratio = 0.015) and smaller size (mean radius = 0.02 m for dry smoke particles), together with consideration of the effect of relative humidity. Ground-based observations of smoke suggest that for < 2.5 there is an increasing trend in and a decreasing trend in g with increases in , which is consistent with the results of satellite retrievals. Using these relationships as constraints, more plausible values of can be obtained for heavy smoke aerosol. The possibility of smoke-cloud mixtures is also

  17. Quantum Derivative Fitting and Biomolecular Force Fields: Functional Form, Coupling Terms, Charge Flux, Nonbond Anharmonicity, and Individual Dihedral Potentials.

    PubMed

    Hagler, A T

    2015-12-01

    Computer simulations are increasingly prevalent, complementing experimental studies in all fields of biophysics, chemistry, and materials. Their utility, however, is critically dependent on the validity of the underlying force fields employed. In this Perspective we review the ability of quantum mechanics, and in particular analytical ab initio derivatives, to inform on the nature of intra- and intermolecular interactions. The power inherent in the exploitation of forces and second derivatives (Hessians) to derive force fields for a variety of compound types, including inorganic, organic, and biomolecules, is explored. We discuss the use of these quantities along with QM energies and geometries to determine force constants, including nonbond and electrostatic parameters, and to assess the functional form of the energy surface. The latter includes the optimal form of out-of-plane interactions and the necessity for anharmonicity, and terms to account for coupling between internals, to adequately represent the energy of intramolecular deformations. In addition, individual second derivatives of the energy with respect to selected interaction coordinates, such as interatomic distances or individual dihedral angles, have been shown to select out for the corresponding interactions, annihilating other interactions in the potential expression. Exploitation of these quantities allows one to probe the individual interaction and explore phenomena such as, for example, anisotropy of atom-atom nonbonded interactions, charge flux, or the functional form of isolated dihedral angles, e.g., a single dihedral X-C-C-Y about a tetrahedral C-C bond. PMID:26642978

  18. Climatology of POLDER/PARASOL cloud properties

    NASA Astrophysics Data System (ADS)

    Parol, F.; Riedi, J.; Vanbauce, C.; Cornet, C.; Zeng, S.; Thieuleux, F.; Henriot, N.

    2013-05-01

    Since December 2004 the CNES PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) mission has been flying in the A-Train constellation. More than seven years of data have been routinely acquired and processed by the PARASOL/POLDER ground segment (CNES) and by ICARE Data Center in Lille, France. PARASOL's unique spectral, directional and polarization capabilities give powerful constraints to the cloud retrieval scheme. They allow derivation of classical cloud properties (amount, optical depth, altitude or pressure, albedo) with state of the art performance but also provide original information (thermodynamic phase, angular variability of properties, heterogeneity parameter, etc.). Climatology of cloud fraction and cloud optical thickness have been realized over the 2005-2011 period. Some results and comparisons to MODIS are shown for the year 2008.

  19. GMS-5 Satellite-Derived Cloud Properties Over the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Nordeen, M. L.; Doelling, D. R.; Khaiyer, M. M.; Rapp, A. D.; Minnis, P.; Nguyen, L.

    2001-01-01

    Satellite monitoring is used to supplement the paucity of surface data in the Tropical Western Pacific (TWP). By using satellite data, cloud properties and top-of-atmosphere broadband radiative fluxes can be derived and used for a variety of applications. In turn, these products may be used to develop a climatological base for the TWP. The focus of this study is to produce satellite-derived cloud properties over the TWP.

  20. Deriving Daytime Variables From the AmeriFlux Standard Eddy Covariance Data Set

    SciTech Connect

    van Ingen, Catharine; Agarwal, Deborah A.; Humphrey, Marty; Li, Jie

    2008-12-06

    A gap-filled, quality assessed eddy covariance dataset has recently become available for the AmeriFluxnetwork. This dataset uses standard processing and produces commonly used science variables. This shared dataset enables robust comparisons across different analyses. Of course, there are many remaining questions. One of those is how to define 'during the day' which is an important concept for many analyses. Some studies have used local time — for example 9am to 5pm; others have used thresholds on photosynthetic active radiation (PAR). A related question is how to derive quantities such as the Bowen ratio. Most studies compute the ratio of the averages of the latent heat (LE) and sensible heat (H). In this study, we use different methods of defining 'during the day' for GPP, LE, and H. We evaluate the differences between methods in two ways. First, we look at a number of statistics of GPP. Second, we look at differences in the derived Bowen ratio. Our goal is not science per se, but rather informatics in support of the science.

  1. Thermal performance of multilayer insulation; Part 1, Derivation of a prediction-based heat-flux equation

    SciTech Connect

    Amano, Toshiyuki

    1994-09-01

    How to reduce the heat loss at cryogenic temperatures in superconducting magnets used for MRI (Magnetic Resonance Imaging), magnetically levitated trains, nuclear fusion, etc., is an important subject. The topic is important in providing a superconducting magnet with high-performance thermal insulation. A prediction-based equation for heat flux through a multilayer insulator was derived from comparison of experimental results between room temperature and liquid-nitrogen temperature. The employed multilayer insulator was a laminated material with a polyester net inserted between aluminized Mylar films. The prediction equation consists of one thermal-radiation and two thermal-conduction terms. The first conduction term is that of ordinary thermal-contact conductance. The second conduction term depends on the self-compression of the multilayer insulation. The predicted values resulting from the obtained coincided fairly well with measured values.

  2. TRMM-Based Lightning Climatology

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  3. Seasonal cycles in radium and barium within a subterranean estuary: Implications for groundwater derived chemical fluxes to surface waters

    NASA Astrophysics Data System (ADS)

    Gonneea, Meagan Eagle; Mulligan, Ann E.; Charette, Matthew A.

    2013-10-01

    There is increasing evidence that submarine groundwater discharge (SGD) is an important source of water and dissolved materials to the ocean. One of the primary tracers of this process is the quartet of radium isotopes (223Ra, 224Ra, 226Ra and 228Ra), whereby excess activities in surface waters can often be attributed to an input supplied via SGD. This approach requires the radium end member activity to be well constrained, however, natural variability in groundwater radium may span several orders of magnitude. Therefore, this variability is usually the main driver of uncertainties in volumetric SGD estimates. To investigate the physical and biogeochemical controls on groundwater radium activities, we conducted a three-year time series of radium and barium, a chemical analogue for radium, within the subterranean estuary of a coastal aquifer (Waquoit Bay, MA, USA). Gonneea et al. (2013) demonstrated that movement of the salinity interface within the subterranean estuary is driven by changes in the hydraulic gradient between groundwater level and sea level height. For Waquoit Bay, seasonal scale sea level change, not groundwater level, was the main driver in hydraulic gradient fluctuations. Seasonal changes in groundwater chemistry can be attributed to the resulting movement of the salinity transition zone between terrestrial and marine groundwater. Landward movement of the interface results in a large release of radium isotopes (226Ra = 1400 dpm 100 L-1) and barium (3000 nmol kg-1) associated with an increase in groundwater salinity. The magnitude of these releases cannot be explained by in situ production or weathering alone, but is likely due to salinity driven desorption from surface-bound sediment inventory. The timing of these peak concentrations is not always in phase with model-derived estimates of SGD; as a result, the groundwater concentration rather than the water flux is the main driver of Ra and Ba inputs to Waquoit Bay surface waters. The behavior of

  4. Climatology of lightning in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Novák, Petr; Kyznarová, Hana

    2011-06-01

    The Czech Hydrometeorological Institute (CHMI) has utilized lightning data from the Central European Lightning Detection Network (CELDN) since 1999. The CELDN primarily focuses on the detection of cloud-to-ground (CG) lightning but intra-cloud (IC) lightning detection is also available. Lightning detection is used by the CHMI forecasters as an additional source to radar and satellite data for nowcasting of severe storms. Lightning data are also quantitatively used in automatic nowcasting applications. The quality of lightning data can be evaluated using their climatological characteristics. Climatological characteristics are also useful for defining decision thresholds that are valuable for human forecasters as well as for automatic nowcasting applications. The seven-year period from 2002 to 2008, which had relatively even-quality lightning data, was used to calculate the spatial and temporal distributions of lightning. The monthly number of CG strokes varies depending on the season. The highest number of CG strokes occurs during summer, with more than 20 days of at least five detected CG strokes on the Czech Republic territory in June and July. The least number of CG stokes occurs in winter, with less than three days per month having at least five detected CG stokes. The mean diurnal distribution of CG strokes peaks between 1500 and 1600 UTC and reaches a minimum between 0500 and 0800 UTC. The average spatial distribution of CG strokes shows sharp local maxima corresponding with the locations of the TV broadcast towers. The average spatial distribution of CG flash density, calculated on a 20 × 20 km grid, shows the maximum (3.23 flashes km - 2 year - 1 ) in the western part of Czech Republic and the minimum (0.92 flashes km - 2 year - 1 ) in the south-southeast of the Czech Republic. In addition, lightning characteristics related to the identified convective cells, such as distribution of the lightning stroke rates or relation to the radar derived by Vertically

  5. Spectrally Resolved Flux Derived from Collocated AIRS and CERES Observations and its Application in Model Validation. Part I; Clear-Sky Over the Tropic Oceans

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Yang, Wenze; Loeb, Norman G.; Ramaswamy, V.

    2008-01-01

    Spectrally resolved outgoing IR flux, the integrand of the outgoing longwave radiation (OLR), has its unique value in evaluating model simulations. Here we describe an algorithm of deriving such clear-sky outgoing spectral flux through the whole IR region from the collocated Atmospheric Infrared Sounder (AIRS) and the Clouds & the Earth's Radiant Energy System (CERES) measurements over the tropical oceans. Based on the scene types and corresponding angular distribution models (ADMs) used in the CERES Single Satellite Footprint (SSF) dataset, spectrally-dependent ADMs are developed and used to estimate the spectral flux at each AIRS channel. A multivariate linear prediction scheme is then used to estimate spectral fluxes at frequencies not covered by the AIRS instrument. The whole algorithm is validated using synthetic spectra as well as the CERES OLR measurements. Using the GFDL AM2 model simulation as a case study, the application of the derived clear-sky outgoing spectral flux in model evaluation is illustrated. By comparing the observed and simulated spectral flux in 2004, compensating errors in the simulated OLR from different absorption bands can be revealed, so does the errors from frequencies within a given absorption band. Discrepancies between the simulated and observed spatial distributions and seasonal evolutions of the spectral fluxes at different spectral ranges are further discussed. The methodology described in this study can be applied to other surface types as well as cloudy-sky observations and corresponding model evaluations.

  6. 30 CFR 779.18 - Climatological information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Climatological information. 779.18 Section 779... PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 779.18 Climatological information. (a) When requested by the regulatory authority, the...

  7. 30 CFR 783.18 - Climatological information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Climatological information. 783.18 Section 783... PROGRAMS UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 783.18 Climatological information. (a) When requested by the regulatory authority,...

  8. Carbon-Flux Distribution within Streptomyces coelicolor Metabolism: A Comparison between the Actinorhodin-Producing Strain M145 and Its Non-Producing Derivative M1146

    PubMed Central

    Coze, Fabien; Gilard, Françoise; Tcherkez, Guillaume; Virolle, Marie-Joëlle; Guyonvarch, Armel

    2013-01-01

    Metabolic Flux Analysis is now viewed as essential to elucidate the metabolic pattern of cells and to design appropriate genetic engineering strategies to improve strain performance and production processes. Here, we investigated carbon flux distribution in two Streptomyces coelicolor A3 (2) strains: the wild type M145 and its derivative mutant M1146, in which gene clusters encoding the four main antibiotic biosynthetic pathways were deleted. Metabolic Flux Analysis and 13C-labeling allowed us to reconstruct a flux map under steady-state conditions for both strains. The mutant strain M1146 showed a higher growth rate, a higher flux through the pentose phosphate pathway and a higher flux through the anaplerotic phosphoenolpyruvate carboxylase. In that strain, glucose uptake and the flux through the Krebs cycle were lower than in M145. The enhanced flux through the pentose phosphate pathway in M1146 is thought to generate NADPH enough to face higher needs for biomass biosynthesis and other processes. In both strains, the production of NADPH was higher than NADPH needs, suggesting a key role for nicotinamide nucleotide transhydrogenase for redox homeostasis. ATP production is also likely to exceed metabolic ATP needs, indicating that ATP consumption for maintenance is substantial.Our results further suggest a possible competition between actinorhodin and triacylglycerol biosynthetic pathways for their common precursor, acetyl-CoA. These findings may be instrumental in developing new strategies exploiting S. coelicolor as a platform for the production of bio-based products of industrial interest. PMID:24376790

  9. A solely radiance-based spectral anisotropic distribution model and its application in deriving clear-sky spectral fluxes

    NASA Astrophysics Data System (ADS)

    Song, L.; Huang, X.

    2011-12-01

    Anisotropic distribution model (ADM) plays a uniquely central role in converting broadband radiance measurement to broadband flux. Scene type classifications are usually needed for such ADM and such classifications are usually done with auxiliary measurements and information since broadband radiance does not contain detailed information about temperature, humidity, and clouds. Recently Huang et al. (2008 and 2010) has developed spectral ADM based on such scene type classifications and successfully derived spectral flux from spectral radiance measurement. Unlike broadband radiances, the spectrally resolved radiances indeed contain rich information about temperature, humidity, and clouds. Therefore, it is meaningful to explore whether it is possible to develop scene-type classification solely based on spectral radiance and consequently to construct spectral ADM solely base on radiances measurement. Using AIRS spectrum as an example, here we develop a clear-sky scene classification algorithm solely based on AIRS radiances. The definitions of scene types are similar to those of clear-sky scene types used in CERES SSF algorithm, which are discrete intervals based on surface skin temperature, lapse rate (temperature change of the first 300 mb above the surface), and the total precipitable water (TPW). Brightness temperature of AIRS channel at 963.8 cm-1 are used for determine corresponding discrete intervals of surface skin temperature. This channel is also used in conjunction with a channel at 748.6 cm-1 for categorizing the lapse rate. Given the slow varying of water vapor continuum in the window region and the dominant weight of lower tropospheric humidity in TPW, a double-differential technique is used to categorize the TPW. By choosing two pairs of AIRS channels with similar frequency intervals, the technique can classify the TPW without any a priori information about continuum absorption since double differencing largely remove the slow-varying continuum

  10. Comparative climatology - Mars and earth

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    1985-01-01

    Spacecraft missions to Mars during the 1960's and 1970's gave a remarkably detailed picture of the meteorological and climatological conditions that characterize its atmosphere. During the relatively brief history of close-up exploration of Mars, much of the ambiguity associated with the early telescopic observations has been resolved, and a new image of the red planet has emerged. Accurate measurements taken both from orbit and the surface reveal a cool, thin atmosphere that condenses, transports water, and generates clouds and dust storms, and that has a global-scale wind system not unlike the one known on earth. This paper highlights the current view of the Martian climate system and what controls it. For perspective, comparisons with earth's climate system are included where appropriate.

  11. Uncertainty in Climatology-Based Estimates of Soil Water Infiltration Losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Local climatology is often used to estimate infiltration losses at the field scale. The objective of this work was to assess the uncertainty associated with such estimates. We computed infiltration losses from the water budget of a soil layer from monitoring data on water flux values at the soil su...

  12. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway.

    PubMed

    Jeong, Yu Jeong; An, Chul Han; Woo, Su Gyeong; Park, Ji Hye; Lee, Ki-Won; Lee, Sang-Hoon; Rim, Yeonggil; Jeong, Hyung Jae; Ryu, Young Bae; Kim, Cha Young

    2016-09-01

    The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis. PMID:27338256

  13. Conference on Applied Climatology, 6th, Charleston, SC, Mar. 7-10, 1989, Preprints

    SciTech Connect

    Not Available

    1989-01-01

    Papers on applied climatology are presented, covering topics such as climate resources, precipitation climatology and land use planning, urbanization and rainfall distribution, climate changes, heat stress climatology, climate and culture, climate and agriculture, studies of the 1988 drought, and climatic records. Papers are included on orography and precipitation variability, climate scenarios for impact assessment, temperature changes and the greenhouse effect, the relationship between a GCM simulated climate and the observed local climate, a synoptic approach to the detection of climatic change, and climate modeling with a limited area model coupled to a GCM. Other topics include high-resolution ground-based remote sensors, the application of a spatial synoptic climatological index to changes in atmospheric NO{sub 2} and SO{sub 2} concentrations, thunderstorm and lightning relationships, satellite-derived vegetation indices as indicators of climatic variability, and the relationships between precipitation and 700 mb height patterns.

  14. Investigation of gravity wave activity based on operational radiosonde data from 13 years (1997-2009): Climatology and possible induced variability

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Wüst, S.; Bittner, M.

    2016-03-01

    Atmospheric gravity waves (GWs) are important for the dynamics of the atmosphere. The analysis of 13 years of routine radiosonde data from Prague (50.01°N, 14.27°E) with temporal highly resolved temperature, pressure and wind measurements is presented in order to derive a climatology of gravity wave activity in the lower stratosphere. An annual cycle with a maximum during winter and a minimum during summer is identified. Gravity wave activity is twice as high during winter as during summer. Winter periods are investigated by wavelet analysis. They show similar periods in vertical flux of horizontal momentum and pressure variance time series. These features may be attributed to planetary waves. When analyzing individual years, maxima of gravity wave activity and vertical flux of horizontal momentum often appears together with minima in surface pressure. We speculate therefore that at least parts of the interannual variations of gravity wave activity may due to cyclones.

  15. Climatological assessment of recent severe weather events

    SciTech Connect

    Changnon, D.; Changnon, S.A.

    1997-11-01

    A climatological assessment of a series of exceptionally severe and damaging storms during 1991-1994 was pursued to put these events and their frequency and intensity/severity into a temporal perspective. The severe weather events were assessed according to the damage they caused. Insurance-derived measures of property and crop losses due to weather were used in this study; these measures adjust individual storm losses to changing socioeconomic conditions. Two methods were used to assess the events: (1) a comparative analysis of event frequency, losses and intensity with those in the preceding 40 years, and (2) a comparison of temporal variations of the 1949-1994 events with fluctuations in population, cyclonic activity, and temperatures. The results showed that the 1991-1994 property losses ranked high in number and amount of loss. However, storm intensity was found to be higher in the 1950s. The temporal distributions of the catastrophes and crop losses were well related to North American cyclonic activity, and when cyclonic activity, U.S. mean temperatures, and population were combined, they explained 865 of the variability found in the frequency of catastrophes during 1949-1994. The results suggest that, although the severe weather events in 1991-1994 were exceptionally high in frequency and losses, much of the loss was a result of the ever increasing target at risk. 9 refs., 7 figs., 1 tab.

  16. Corn yield prediction using climatology

    SciTech Connect

    Duchon, C.E.

    1986-05-01

    A method is developed to predict corn yield during the growing season using a plant process model (CERES-Maize), current weather data and climatological data. The procedure is to place the current year's daily weather (temperature and precipitation) into the model up to the time the yield prediction is to be made and sequences of historical data (one sequence per year) after that time until the end of the growing season to produce yield estimates. The mean of the distribution of yield estimates is taken as the prediction. The variance associated with a prediction is relatively constant until the time of tassel initiation and then decreases toward zero as the season progresses. As a consequence, perfect weather forecasts reach their peak value between the beginning of ear growth and the beginning of grain fill. The change in the predicted yield in response to weather as the growing season progresses is discussed for 1983 and 1976 at Peoria, Illinois. Results are given of an attempt to incorporate 30-day Climate Analytic Center outlooks into the predictive scheme. 21 references, 14 figures, 1 table.

  17. Climatological data summary 1993 with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1994-06-01

    This document presents the climatological data summary for calendar year 1993. It presents updated historical climatologies for temperature, wind, precipitation, and other miscellaneous meteorological parameters from the Hanford Meteorology Station (HMS) and Hanford Meteorological Monitoring Network. It also presents climatological normal and extreme values of temperature and precipitation for the HMS. Previous documents have included climatological data collected at the old Hanford Townsite, located approximately 10 miles east-northeast of the present HMS. The records for these two different sites have been frequently interchanged as if representing the same location. With the exception of Section 2.0, the remainder of this document uses data only from the HMS, with a period of record beginning December 7, 1944.

  18. Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Honda, M. C.; Kawakami, H.; Watanabe, S.; Saino, T.

    2013-06-01

    At two stations in the western North Pacific, K2 in the subarctic gyre and S1 in the subtropical gyre, time-series sediment traps were collecting sinking particles when the Fukushima Daiichi Nuclear Power Plant (FNPP1) accident occurred on 11 March 2011. Radiocesium (134Cs and 137Cs) derived from the FNPP1 accident was detected in sinking particles collected at 500 m in late March 2011 and at 4810 m in early April 2011 at both stations. The sinking velocity of 134Cs and 137Cs was estimated to be 22 to 71 m day-1 between the surface and 500 m and >180 m day-1 between 500 m and 4810 m. 137Cs concentrations varied from 0.14 to 0.25 Bq g-1 dry weight. These values are higher than those of surface seawater, suspended particles, and zooplankton collected in April 2011. Although the radiocesium may have been adsorbed onto or incorporated into clay minerals, correlations between 134Cs and lithogenic material were not always significant; therefore, the form of the cesium associated with the sinking particles is still an open question. The total 137Cs inventory by late June at K2 and by late July at S1 was 0.5 to 1.7 Bq m-2 at both depths. Compared with 137Cs input from both stations by April 2011, estimated from the surface 137Cs concentration and mixed-layer depth and by assuming that the observed 137Cs flux was constant throughout the year, the estimated removal rate of 137Cs from the upper layer (residence time in the upper layer) was 0.3 to 1.5% yr-1 (68 to 312 yr). The estimated removal rates and residence times are comparable to previously reported values after the Chernobyl accident (removal rate: 0.2-1%, residence time: 130-390 yr).

  19. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

    NASA Astrophysics Data System (ADS)

    Feng, Yang; Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.

    2015-08-01

    The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr-1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr-1) and buried (46 × 109 g N yr-1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr-1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.

  20. Seasonal export fluxes of size-fractionated particulate derived from polonium-210: A case study in Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Yang, Weifeng; Huang, Yipu; Chen, Min; Qiu, Yusheng

    2010-03-01

    Size-fractionated 210Po and 210Pb, in the size fractions >0.4 μm, >2 μm and >10 μm, were examined to determine the seasonal variability of particulate fluxes in Xiamen Bay. Good correlations between 210Po and particulate organic carbon (POC) or non-Particulate Organic Matter (nPOM) suggested that 210Po can be used to trace the export fluxes of POC and nPOM. Both steady-state (SS) model and nSS model were used to evaluate fluxes of size-fractionated 210Po, results showed that nSS model was better than the SS model in coastal areas. Based on the nSS model, size-fractionated POC fluxes decreased with increasing particle size. For the particle size studied, maximum POC fluxes occurred in autumn, followed by spring, winter, and summer. Fluxes of nPOM were an order of magnitude higher than the corresponding size-fractionated POC fluxes. Differences between size-fractionated nPOM fluxes indicated that hydrodynamic conditions were the main factor regulating transportation of particulate out of the inner Bay. In winter most particulates, including >10 μm particles, were transported under the strongest hydrodynamic conditions. In contrast, only a fraction of the <2 μm particulates were transported from the inner Bay in spring. This study suggested that 210Po is a powerful tracer of seasonal particulate export in coastal seas.

  1. Export Fluxes in Contrasting Environments of the South-East Pacific Ocean Derived From Drifting Sediment traps (BIOSOPE)

    NASA Astrophysics Data System (ADS)

    Miquel, J.; Gasser, B.; Claustre, H.

    2006-12-01

    The South-East Pacific presents contrasting oceanographic environments related to different oceanographic features such as High Nutrient Low Chlorophyl (HNLC) zones, upwelling of eastern boundaries or ultra- oligotrophy of the central gyre. This results in significant differences in particle production in surface waters and export to the deeper ocean. During the BIOSOPE (BIogeochemistry and Optics SOuth Pacific Experiment) cruise held in October-December 2004, particle flux in upper waters was assessed using drifting sediment traps. Traps were deployed at 2 depths (below the maximum chl.a and at the base of the euphotic layer) in six geographical areas, ranging from the oligotrophic central gyre through the mesotrophic area off Marquesas Islands to the eutrophic waters off the South-American coast. For all analyzed parameters fluxes were contrastingly different at the various sites, with lowest fluxes at the central gyre area and highest fluxes at the upwelling sites. Mass flux ranged from 2-7 mg m-2 d-1 to 410-630 mg m-2 d-1, POC flux from less than 1 mg POC m-2 d-1 up to 63 mg POC m^{- 2} d-1, and Th-234 from 35-47 dpm m-2 d-1 to >5000 dpm m-2 d-1. Fluxes were always lower at the deeper horizon except for Th-234 flux which was variable. Also, fluxes were very different at the two upwelling sites studied. The relation between the environmental and trophic characteristics of the sites visited and the two orders of magnitude in fluxes observed is discussed.

  2. Surface Energy Heat Fluxes Using Remotely Sensed Parameters

    NASA Technical Reports Server (NTRS)

    Toll, David L.; Vukovich, Fred M.; Pontikes, Elizabeth G.

    1997-01-01

    Realistic estimates of surface energy heat fluxes are needed for the study of water and energy interactions between the land and atmosphere. The primary objective of this work is to study the estimation of surface heat energy fluxes using remote sensing derived parameters under different spatial and temporal conditions. Surface energy fluxes and remote sensing derived data from two sources were analyzed. First, we used surface heat flux, remote sensing, and ancillary data from the International Satellite Land Surface Climatology Project (ISLSCP), mapped at a 1 deg. x 1 deg. grid. Second, we used NOAA AVHRR (1 km), weather station, and ancillary data to derive estimates of surface latent and sensible heat energy fluxes over a 100 sq kilometers area for three test sites: 1) First ISLSCP Field Experiment (FIFE) grassland site, Konza Prairie, Kansas; 2) Howland, Maine Forest Ecosystem Dynamics Site; and 3) Walnut Gulch, scrubland site, surrounding Tombstone, Arizona. Satellite derived estimates of land surface temperature, surface albedo, and spectral vegetation index are used in selected models to provide estimates of surface heat fluxes. Analysis of results from the 1 deg. x 1 deg. grid for North America indicated there were similar, overall correlations between sensible and latent heat energy fluxes versus remotely sensed vegetation index and ground temperature during dry and wet year conditions. However, there were significant differences in correlations between years when stratified by land cover class. Analysis of 100 km x 100 km data (1 km resolution) indicated partitioning the areas in to primary versus secondary cover, with the secondary cover comprising less than 5% of the area, significantly improved surface heat energy flux estimates.

  3. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  4. Phenological indicators derived with CO2 flux, MODIS image and ground monitor at a temperate mixed forest and an alpine shrub

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Cao, Peiyu; Li, Shenggong; Yu, Guirui; Zhang, Junhui; Li, Yingnian

    2016-04-01

    To accurately assess the change of phenology and its relationship with ecosystem gross primary productivity (GPP) is one of the key issues in context of global change study. In this study, an alpine shrubland meadow in Haibei (HBS) of Qinghai-Tibetan plateau and a broad-leaved Korean pine forest in Changbai Mountain (CBM) of Northeastern China were selected. Based on the long-term GPP from eddy flux measurements and the Normalized Difference Vegetation Index (NDVI) from remote sensed vegetation index, phenological indicators including the start of growing season (SOS), the end of growing season (EOS), and the growing season length (GSL) since 2003 were derived via multiple methods, and then the influences of phenology variation on GPP were explored. Compared with ground phenology observations of dominant plant species, both GPP- and NDVI-derived SOS and EOS exhibited a similar interannual trend. GPP-derived SOS was quite close to NDVI-derived SOS, but GPP-derived EOS differed significantly from NDVI-derived EOS, and thus leading to a significant difference between GPP- and NDVI-derived GSL. Relative to SOS, EOS presented larger differences between the extraction methods, indicating large uncertainties to accurately define EOS. In general, among the methods used, the threshold methods produced more satisfactory assessment on phenology change. This study highlights that how to harmonize with the flux measurements, remote sensing and ground monitoring are a big challenge that needs further consideration in phenology study, especially the accurate extraction of EOS. Key words: phenological variation, carbon flux, vegetation index, vegetation grwoth, interannual varibility

  5. Biomes computed from simulated climatologies

    SciTech Connect

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  6. Nimbus-7 global cloud climatology. II - First year results

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Yeh, H. Y. Michael; Wellemeyer, Charlie G.; Eck, Thomas F.; Kyle, H. Lee

    1989-01-01

    Results are presented on the analysis of the Nimbus-7 satellite data set obtained on regional and seasonal variations in global cloud cover. Four midseason months (April, July, and October 1979 and January 1980) were analyzed for the total cloud amount, the cloud amounts at high, middle, and low altitudes, the cirrus and deep convective clouds, and the cloud and clear-sky 11.5 micron-derived radiances; in addition, noon versus midnight cloud amounts were examined. The Nimbus-7 data are compared with three previously published cloud climatologies, and the differences among these data sets are discussed.

  7. A global satellite-assisted precipitation climatology

    NASA Astrophysics Data System (ADS)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  8. New dynamic NNORSY ozone profile climatology

    NASA Astrophysics Data System (ADS)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  9. A global satellite assisted precipitation climatology

    USGS Publications Warehouse

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  10. Moisture flux changes and trends for the entire Arctic in 2003-2011 derived from EOS Aqua data

    NASA Astrophysics Data System (ADS)

    Boisvert, L. N.; Markus, T.; Vihma, T. P.

    2013-12-01

    The Arctic sea ice acts as a barrier between the ocean and lower atmosphere, reducing the exchange of heat and moisture. In recent years the ice pack has undergone many changes, in particular a rapid reduction in sea ice extent and compactness in summer and autumn. This, along with modeling studies, would cause one to believe that the moisture flux would be increasing. We estimate the daily moisture flux from 2003-2011 using geophysical data from multiple sensors onboard NASA's Aqua satellite, taking advantage of observations being collected at the same time and along the same track. Our findings show the moisture flux, averaged over the entire Arctic, has had large interannual variations. Increases in air specific humidity tend to reduce the moisture flux, whereas the decrease in sea ice cover tends to increase the flux. Statistically significant seasonal decreasing trends are seen in December, January and February because of the dominating effect of increase in 2m air specific humidity increasing, reducing the surface-air specific humidity difference by -0.0547 kg/kg in the Kara/Barents Seas, E. Greenland Sea and Baffin Bay regions where there is some open water year round. Our results also show that the contribution of the sea ice zone to the total moisture flux has increased by 3.6% because the amount of open water within the sea ice has increased by 4.3%.

  11. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  12. First look at the NOAA Aircraft-based Tropospheric Ozone Climatology

    NASA Astrophysics Data System (ADS)

    Leonard, M.; Petropavlovskikh, I. V.; McClure-Begley, A.; Lin, M.; Tarasick, D.; Johnson, B. J.; Oltmans, S. J.

    2015-12-01

    The Global Greenhouse Gas Reference Network's aircraft program has operated since the 1990s as part of the NOAA Global Monitoring Division network to capture spatial and temporal variability in greenhouse tracers (i.e. CO2, CO, N2O, methane, SF6, halo- and hydro-carbons). Since 2005 the suite of airborne measurements also includes ozone, humidity and temperature profiling through the troposphere (up to 8 km). Light commercial aircraft are equipped with modified 2B Technology ozone monitors (Model 205DB), incorporate temperature and humidity probes, and include global positioning system instrumentation. The dataset was analyzed for tropospheric ozone variability at five continental US stations. As site locations within the Tropospheric Aircraft Ozone Measurement Program have flights only once (four times at one site) a month and begun a decade ago, this raises the question of whether this sampling frequency allows the derivation of an accurate vertical climatology of ozone values. We interpret the representativeness of the vertical and seasonal ozone distribution from aircraft measurements using multi-decadal hindcast simulations conducted with the GFDL AM3 chemistry-climate model. When available, climatology derived from co-located ozone-sonde data will be used for comparisons. The results of the comparisons are analyzed to establish altitude ranges in the troposphere where the aircraft climatology would be deemed to be the most representative. Aircraft-based climatologies are tested from two approaches: comparing the aircraft-based climatology to the daily sampled model and to the subset of model data with matching aircraft dates. Whenever the model and aircraft climatologies show significant seasonal differences, further information is gathered from a seasonal Gaussian distribution plot. We will report on the minimum frequency in flights that can provide adequate climatological representation of seasonal and vertical variability in tropospheric ozone.

  13. Technical Note: A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Schulz-Hanke, M.; Garcia Alba, J.; Jurisch, N.; Hagemann, U.; Sachs, T.; Sommer, M.; Augustin, J.

    2015-08-01

    Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. Thus, serious challenges are constitutes in terms of the mechanistic process understanding, the identification of potential environmental drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential environmental drivers. Flux separation is based on ebullition related sudden concentration changes during single measurements. A variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R-script, adjusted for the purpose of CH4 flux calculation. The algorithm was tested using flux measurement data (July to September 2013) from a former fen grassland site, converted into a shallow lake as a result of rewetting ebullition and diffusion contributed 46 and 55 %, respectively, to total CH4 emissions, which is comparable to those previously reported by literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period.

  14. A comparison of methods for deriving solute flux rates using long-term data from streams in the mirror lake watershed

    USGS Publications Warehouse

    Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.

    1998-01-01

    Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.

  15. A bottom-up approach to derive the closure relation for modelling hydrological fluxes at the watershed scale

    NASA Astrophysics Data System (ADS)

    Vannametee, Ekkamol; Karssenberg, Derek; Hendriks, Martin; Bierkens, Marc

    2014-05-01

    Physically-based hydrological modelling could be considered as an ideal approach for predictions in ungauged basins because observable catchment characteristics can be used to parameterize the model, avoiding model calibration using discharge data, which are not available. Lumped physically-based modelling at the watershed scale is possible with the Representative Elementary Watershed (REW) approach. A key to successful application of this approach is to find a reliable way of developing closure relations to calculate fluxes from different hydrological compartments in the REWs. Here, we present a bottom-up approach as a generic framework to identify the closure relations for particular hydrological processes that are scale-independent and can be directly parameterized using the local-scale observable REW characteristics. The approach is illustrated using the Hortonian runoff as an example. This approach starts from developing a physically-based high-resolution model describing the Hortonian runoff mechanism based on physically-based infiltration theory and runoff generation processes at a local scale. This physically-based model is used to generate a synthetic discharge data set of hypothetical rainfall events and HRUs (6×105 scenarios) as a surrogate for real-world observations. The Hortonian runoff closure relation is developed as a lumped process-based model, consisting of the Green-Ampt equation, a time-lagged linear reservoir model, and three scale-transfer parameters representing the processes within REWs. These scale-transfer parameters are identified by calibrating the closure relations against the synthetic discharge data set for each scenario run, which are, in turn, empirically related to their corresponding observable REW properties and rainstorm characteristics. This results in a parameter library, which allows direct estimation of scaling parameter for arbitrary REWs based on their local-scale observable properties and rainfall characteristics

  16. A 3-year dataset of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Li, Maoshan; Babel, Wolfgang; Chen, Xuelong; Zhang, Lang; Sun, Fanglin; Wang, Binbin; Ma, Yaoming; Hu, Zeyong; Foken, Thomas

    2015-11-01

    The Tibetan Plateau (TP) has become a focus of strong scientific interest due to its role in the global water cycle and its reaction to climate change. Regional flux estimates of sensible and latent heat are important variables for linking the energy and hydrological cycles at the TP's surface. Within this framework, a 3-year dataset (2008-2010) of eddy covariance measured turbulent fluxes was compiled from four stations on the TP into a standardised workflow: corrections and quality tests were applied using an internationally comparable software package. Second, the energy balance closure ( C EB) was determined and two different closure corrections applied. The four stations (Qomolangma, Linzhi, NamCo and Nagqu) represent different locations and typical land surface types on the TP (high altitude alpine steppe with sparse vegetation, a densely vegetated alpine meadow, and bare soil/gravel, respectively). We show that the C EB differs between each surface and undergoes seasonal changes. Typical differences in the turbulent energy fluxes occur between the stations at Qomolangma, Linzhi and NamCo, while Nagqu is quite similar to NamCo. Specific investigation of the pre-monsoon, the Tibetan Plateau summer monsoon, post-monsoon and winter periods within the annual cycle reinforces these findings. The energy flux of the four sites is clearly influenced by the Tibetan Plateau monsoon. In the pre-monsoon period, sensible heat flux is the major energy source delivering heat to the atmosphere, whereas latent heat flux is greater than sensible heat flux during the monsoon season. Other factors affecting surface energy flux are topography and location. Land cover type also affects surface energy flux. The energy balance residuum indicates a typically observed overall non-closure in winter, while closure (or `turbulent over-closure') is achieved during the Tibetan Plateau summer monsoon at the Nagqu site. The latter seems to depend on ground heat flux, which is higher in the

  17. Moisture flux changes and trends for the entire Arctic in 2003-2011 derived from EOS Aqua data

    NASA Astrophysics Data System (ADS)

    Boisvert, Linette N.; Markus, Thorsten; Vihma, Timo

    2013-10-01

    The Arctic sea ice acts as a barrier between the ocean and lower atmosphere, reducing the exchange of heat and moisture. In recent years the ice pack has undergone many changes, in particular a rapid reduction in sea ice extent and compactness in summer and autumn. This, along with modeling studies, would cause one to believe that the moisture flux would be increasing. We estimate the daily moisture flux from 2003 to 2011 using geophysical data from multiple sensors onboard NASA's Aqua satellite, taking advantage of observations being collected at the same time and along the same track. Our findings show the moisture flux, averaged over the entire Arctic, has had large interannual variations, with smallest fluxes in 2010, 2003, and 2004, and largest ones in 2007, 2008, and 2005. Increases in air specific humidity tend to reduce the moisture flux, whereas the decrease in sea ice cover tends to increase the flux. Statistically significant seasonal decreasing trends are seen in December, January, and February because of the dominating effect of increase in 2 m air specific humidity increasing, reducing the surface-air specific humidity difference by -0.0547 kg/kg in the Kara/Barents Seas, E. Greenland Sea, and Baffin Bay regions where there is some open water year round. Our results also show that the contribution of the sea ice zone to the total moisture flux (from the open ocean and sea ice zone) has increased by 3.6% because the amount of open water within the sea ice zone has increased by 4.3%.

  18. Moisture Fluxes Derived from EOS Aqua Satellite Data for the North Water Polynya Over 2003-2009

    NASA Technical Reports Server (NTRS)

    Boisvert, Linette N.; Markus, Thorsten; Parkinson, Claire L.; Vihma, Timo

    2012-01-01

    Satellite data were applied to calculate the moisture flux from the North Water polynya during a series of events spanning 2003-2009. The fluxes were calculated using bulk aerodynamic formulas with the stability effects according to the Monin-Obukhov similarity theory. Input parameters were taken from three sources: air relative humidity, air temperature, and surface temperature from the Atmospheric Infrared Sounder (AIRS) onboard NASA's Earth Observing System (EOS) Aqua satellite, sea ice concentration from the Advanced Microwave Scanning Radiometer (AMSR-E, also onboard Aqua), and wind speed from the ECMWF ERA-Interim reanalysis. Our results show the progression of the moisture fluxes from the polynya during each event, as well as their atmospheric effects after the polynya has closed up. These results were compared to results from studies on other polynyas, and fall within one standard deviation of the moisture flux estimates from these studies. Although the estimated moisture fluxes over the entire study region from AIRS are smaller in magnitude than ERA-Interim, they are more accurate due to improved temperature and relative humidity profiles and ice concentration estimates over the polynya. Error estimates were calculated to be 5.56 x10(exp -3) g/sq. m/ s, only 25% of the total moisture flux, thus suggesting that AIRS and AMSR-E can be used with confidence to study smaller scale features in the Arctic sea ice pack and can capture their atmospheric effects. These findings bode well for larger-scale studies of moisture fluxes over the entire Arctic Ocean and the thinning ice pack.

  19. An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Cronin, Meghan F.; Fairall, Christopher W.; McPhaden, Michael J.

    2006-06-01

    As part of the Eastern Pacific Investigation of Climate Processes program, from 2000 through 2003, the easternmost 95°W Tropical Atmosphere Ocean (TAO) moorings were enhanced to provide time series of net surface heat flux, and the National Oceanic and Atmospheric Administration ship maintaining the 95°W and 110°W TAO lines was enhanced to monitor surface heat fluxes and atmospheric boundary layer structure. In this study we compare the ship-based and buoy-based radiative, bulk latent, and sensible heat fluxes, as well as the meteorological state variables used to compute the turbulent heat fluxes. The buoy net surface heat flux measurements appear to have an overall uncertainty near the target 10 W m-2, when careful attention is paid to the state variables. When hourly averaged data were unavailable, the telemetered daily averaged data were used in combination with an estimate of the mesoscale gustiness. In the eastern tropical Pacific a warm layer correction to account for stratification above 1-m depth was important only during the warm season (January-May) near the equator. These high-quality, cross-validated buoy heat flux time series are then used to assess the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), NCEP/Department of Energy, and 40-year European Centre for Medium-Range Weather Forecasts reanalyses' surface heat fluxes. All reanalyses show that over warm water where deep convection is prominent, latent heat loss is too large and net solar radiation is too weak; conversely, in regions of stratocumulus over cool water, net solar radiation is too strong, and for NCEP/NCAR, latent heat loss is too weak.

  20. A surface radiation climatology across two Meteosat satellite generations

    NASA Astrophysics Data System (ADS)

    Posselt, Rebekka; Müller, Richard; Trentmann, Jörg; Stöckli, Reto; Liniger, Mark A.

    2013-04-01

    Long term observations of the surface radiation budget are essential for climate monitoring, for climate model evaluation and for applications such as in the solar energy or agriculture sector. The Satellite Application Facility on Climate Monitoring (CM SAF) released a Climate Data Record (CDR) of global and direct surface irradiance as well as effective cloud albedo derived from observations of the Meteosat First Generation satellites (MFG, 1983-2005). We will present an extension of this CDR using measurements from the Meteosat Second Generation satellites (MSG, 2004-present). The differences in the spectral properties of the radiometers aboard the MFG and MSG satellites requires a modification of the original MagicSol algorithm. In order to guarantee a climatologically homogeneous continuation of MFG-based CDR, the two narrowband visible channels of the MSG satellites are combined to simulate the MFG broadband visible channel. The combination of the MFG and MSG based datasets is tested for homogeneity and no significant breaks are detected during the overlap period of 2004-2005. Validation of the extended global radiation dataset against ground based observations from the Baseline Surface Radiation Network yields a mean monthly absolute bias of 8.15 Wm-2. This complies to the target accuracy threshold of 15 Wm-2 (including a measurement uncertainty of the surface observations of 5 Wm-2) required for satellite-derived CDR's of global radiation by the Global Climate Observing System. Climatological analysis of the extended surface radiation dataset shows an overall positive trend of the global radiation for the Meteosat disc (with variable extents and significances for different regions) which can be attributed to a negative trend in the effective cloud albedo, i.e., a decrease in cloudiness. Trends due to changes in the clear sky radiation are small and only induced by trends in the water vapour fields. Trends caused by changes in the direct effects of

  1. Open ocean gas transfer velocity derived from long-term direct measurements of the CO2 flux

    NASA Astrophysics Data System (ADS)

    Prytherch, John; Yelland, Margaret J.; Pascal, Robin W.; Moat, Bengamin I.; Skjelvan, Ingunn; Srokosz, Meric A.

    2010-12-01

    Air-sea open ocean CO2 flux measurements have been made using the Eddy Covariance (EC) technique onboard the weathership Polarfront in the North Atlantic between September 2006 and December 2009. Flux measurements were made using an autonomous system ‘AutoFlux’. CO2 mass density was measured with an open-path infrared gas analyzer. Following quality control procedures, 3938 20-minute flux measurements were made at mean wind speeds up to 19.6 m/s, significantly higher wind speeds than previously published results. The uncertainty in the determination of gas transfer velocities is large, but the mean relationship to wind speed allows a new parameterisation of the gas transfer velocity to be determined. A cubic dependence of gas transfer on wind speed is found, suggesting a significant influence of bubble-mediated exchange on gas transfer.

  2. An EOF Iteration Approach for Obtaining Homogeneous Radiative Fluxes from Satellites Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Banglin; Pinker, Rachel T.; Stackhouse, Paul W., Jr.

    2007-01-01

    Conventional observations of climate parameters are sparse in space and/or in time and the representativeness of such information needs to be optimized. Observations from satellites provide improved spatial coverage than point observations however they pose new challenges for obtaining homogeneous coverage. Surface radiative fluxes, the forcing functions of the hydrologic cycle and biogeophysical processes, are now becoming available from global scale satellite observations. They are derived from independent satellite platforms and sensors that differ in temporal and spatial resolution and in the size of the footprint from which information is derived. Data gaps, degraded spatial resolution near boundaries of geostationary satellites, and different viewing geometries in areas of satellite overlap, could result in biased estimates of radiative fluxes. In this study, discussed will be issues related to the sources of inhomogeneity in surface radiative fluxes as derived from satellites; development of an approach to obtain homogeneous data sets; and application of the methodology to the widely used International Satellite Cloud Climatology Project (ISCCP) data that currently serve as a source of information for deriving estimates of surface and top of the atmosphere radiative fluxes. Introduced is an Empirical Orthogonal Function (EOF) iteration scheme for homogenizing the fluxes. The scheme is evaluated in several ways including comparison of the inferred radiative fluxes against ground observations, both before and after the EOF approach is applied. On the average, the latter reduces the rms error by about 2-3 W/m2.

  3. Heat flux estimates over vegetation derived using radiometric surface temperatures and a boundary layer model in comparison with sodar-derived values. M.S. Thesis; [Rock Springs Agricultural Research Center, Pennsylvania

    NASA Technical Reports Server (NTRS)

    Cooper, J. N. (Principal Investigator)

    1981-01-01

    An attempt was made to validate a method that uses radiometric surface temperatures and a boundary layer model to estimate surface energy budgets and characteristics. Surface temperatures from a hand-held radiometer and sodar data were collected simultaneously on seven days between mid-July and mid-October 1980. The comparison of the RDMS and sodar heat fluxes proved disappointing. Free convection conditions, required to produce sodar-derived heat fluxes, were inhibited by a terrain-induced low level inversion. Only three out of seven cases produced meaningful sodar heat fluxes. Of those three cases, one had good agreement and the other two had sodar heat fluxes 15 to 45 w/sq m lower than the RDMS values. Since the RDMS method is relatively untested, it was impossible to conclusively determine its validity from the results. There was evidence that the true heat flux was not underestimated by the RDMS, so it could be concluded that the Bowen ratios over well-watered vegetation were likely to be quite small.

  4. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    stimulate further research on this critical subject. The study of climate involves much more than understanding atmospheric processes. This subtlety is particularly appreciated for Earth, where chemical cycles, geology, ocean influences, and biology are considered in most climate models. In Part IV, Surface and Interior, we look at the role that geochemical cycles, volcanism, and interior mantle processes play in the stability and evolution of terrestrial planetary climates. There is one vital commonality between the climates of all the planets of the solar system: Regardless of the different processes that dominate each of the climates of Earth, Mars, Venus, and Titan, they are all ultimately forced by radiation from the same star, albeit at variable distances. In Part V, Solar Influences, we discuss how the Sun's early evolution affected the climates of the terrestrial planets, and how it continues to control the temperatures and compositions of planetary atmospheres. This will be of particular interest as models of exoplanets, and the influences of much different stellar types and distances, are advanced by further observations. Comparisons of atmospheric and climate processes between the planets in our solar system has been a focus of numerous conferences over the past decade, including the Exoclimes conference series. In particular, this book project was closely tied to a conference on Comparative Climatology of Terrestrial Planets that was held in Boulder, Colorado, on June 25-28, 2012. This book benefited from the opportunity for the author teams to interact and obtain feedback from the broader community, but the chapters do not in general tie directly to presentations at the conference. The conference, which was organized by a diverse group of atmospheric and climate scientists led by Mark Bullock and Lori Glaze, sought to build connections between the various communities, focusing on synergies and complementary capabilities. Discussion panels at the end of most

  5. Long-wave radiative forcing due to dust aerosols: observations and climatology comparisons

    NASA Astrophysics Data System (ADS)

    Gunn, L. N.; Collins, W.

    2012-12-01

    Dust aerosols have been identified by the Intergovernmental Panel for Climate Change as a major source of uncertainty in the radiative forcing of the climate system. Optically thick plumes of dust and pollutants originating from arid regions can be lifted into the middle troposphere and are often transported over synoptic length scales. These events can decrease the upwelling long-wave fluxes at the top of atmosphere (TOA), especially in the mid-infrared portion of the spectrum. Although the long-wave effects of dust are included in model simulations, it is difficult to validate these effects in the absence of satellite-derived global estimates. Using hyper-spectral measurements from NASA's AIRS instrument, we estimate long-wave radiative forcing due to dust over the oceans for the year 2007. Firstly, we will present the results of these global, year long, radiative forcing estimates and secondly, we will use these estimates, along with other variables available from A-train instruments (e.g. MODIS aerosol optical depth) to evaluate the long-wave radiative forcing values from climatological data.

  6. Comparative climatology of four marine stratocumulus regimes

    NASA Technical Reports Server (NTRS)

    Hanson, Howard P.

    1990-01-01

    The climatology of marine stratocumulus (MSc) cloud regimes off the west coasts of California, Peru, Morocco, and Angola are examined. Long-term, annual averages are presented for several quantities of interest in the four MSc regimes. The climatologies were constructed using the Comprehensive Ocean-Atmosphere Data Set (COADS). A 40 year time series of observations was extracted for 32 x 32 deg analysis domains. The data were taken from the monthly-averaged, 2 deg product. The resolution of the analysis is therefore limited to scales of greater than 200 km with submonthly variability not resolved. The averages of total cloud cover, sea surface temperature, and surface pressure are presented.

  7. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, D. D.; Ma, Siyan; Cook, David R.; Oren, Ram; Katul, G. G.; Gu, Lianhong

    2010-03-01

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000 2004, and was validated using observed GPP over the period 2005 2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr 1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these

  8. A solely radiance-based spectral angular distribution model and its application in deriving clear-sky spectral fluxes over tropical oceans

    NASA Astrophysics Data System (ADS)

    Song, Lei; Wang, Yinan

    2016-02-01

    The radiation budget at the top of the atmosphere plays a critical role in climate research. Compared to the broadband flux, the spectrally resolved outgoing longwave radiation or flux (OLR), with rich atmospheric information in different bands, has obvious advantages in the evaluation of GCMs. Unlike methods that need auxiliary measurements and information, here we take atmospheric infrared sounder (AIRS) observations as an example to build a self-consistent algorithm by an angular distribution model (ADM), based solely on radiance observations, to estimate clear-sky spectrally resolved fluxes over tropical oceans. As the key step for such an ADM, scene type estimations are obtained from radiance and brightness temperature in selected AIRS channels. Then, broadband OLR as well as synthetic spectral fluxes are derived by the spectral ADM and validated using both synthetic spectra and CERES (Clouds and the Earth's Radiant Energy System) observations. In most situations, the mean OLR differences between the spectral ADM products and the CERES observations are within ±2 W m-2, which is less than 1% of the typical mean clear-sky OLR over tropical oceans. The whole algorithm described in this study can be easily extended to other similar hyperspectral radiance measurements.

  9. Xylem transport of root-derived CO2: An alternative flux pathway of substantial importance for understanding the components of ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Aubrey, D. P.; Teskey, R. O.

    2011-12-01

    Forest ecosystem respiration releases one of the largest annual CO2 fluxes of the global carbon cycle and is dominated by belowground autotrophic and heterotrophic contributions. A mechanistic understanding of forest respiratory flux pathways is imperative to understanding carbon cycling in forests. We recently demonstrated that, on a daily basis, the amount of CO2 that fluxes upward from tree root systems into stems via the xylem stream rivals the amount of CO2 diffusing from the soil surface. However, our original observations were limited to only four individual eastern cottonwood (Populus deltoides L.) trees over a single week where environmental conditions remained similar. Here, we expand our investigation to an entire growing season using nine trees. We calculated the internal transport of root-derived CO2 as the product of sap flow and dissolved CO2 concentration ([CO2]) in the xylem at the base of the stem and measured soil CO2 efflux using the [CO2] gradient approach. We then compared the magnitude of these two flux pathways throughout the growing season. The internal transport of root-derived CO2 was equivalent to one-third of the total belowground respiration throughout the growing season. This indicates that autotrophic respiration was substantially higher than previously estimated, and also higher than heterotrophic soil respiration. The quantity of internally transported CO2 was influenced by both seasonal and daily environmental factors that influenced sap flow rates. We observed high concentrations of CO2 in xylem sap which ranged from 1% to 20% [CO2] among and within individual trees through time. Our results provide evidence that belowground autotrophic respiration consumes a larger amount-and stem respiration consumes a smaller amount-of carbohydrates than previously realized. The magnitude of the internal pathway for root-derived CO2 flux highlights the inadequacy of using the CO2 efflux from the soil surface to the atmosphere alone to measure

  10. Towards a Wind Energy Climatology at Advanced Turbine Hub-Heights: Preprint

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2005-05-01

    Measurements of wind characteristics over a wide range of heights up to and above 100 m are useful to: (1) characterize the local and regional wind climate; (2) validate wind resource estimates derived from numerical models; and (3) evaluate changes in wind characteristics and wind shear over the area swept by the blades. Developing wind climatology at advanced turbine hub heights for the United States benefits wind energy development. Tall tower data from Kansas, Indiana, and Minnesota (which have the greatest number of tall towers with measurement data) will be the focus of this paper. Analyses of data from the tall towers will start the process of developing a comprehensive climatology.

  11. A 30 year High -Spatial Resolution Cloud Climatology from NOAA's PATMOS-x Project

    NASA Astrophysics Data System (ADS)

    Heidinger, A. K.; Walther, A.; Foster, M. J.

    2010-12-01

    The Pathfinder Atmospheres Extended (PATMOS-x) project at NOAA has recently developed a new higher spatial resolution data set derived from over 30 years of data from the Advanced Very High Resolution Radiometer. The PATMOS-x data is now online and has been submitted into the GEWEX cloud climatology assessment library of cloud climate data sets. This data also benefits from a recent recalibration of the solar reflectance channels. This work will present our latest analysis and provide our insights into the strengths and limitations of this new data. Comparisons with GEWEX data sets and to the recently generated AVHRR cloud climatology from EUMETSAT will be shown.

  12. On the climatological probability of the vertical propagation of stationary planetary waves

    NASA Astrophysics Data System (ADS)

    Karami, K.; Braesicke, P.; Sinnhuber, M.; Versick, S.

    2015-11-01

    We introduce a diagnostic tool to assess in a climatological framework the optimal propagation conditions for stationary planetary waves. Analyzing 50 winters using NCEP/NCAR reanalysis data we derive probability density functions (PDFs) of positive refractive indices as a function of zonal and meridional wave numbers. We contrast this quantity with classical climatological means of the refractive index. Introducing a Membership Value Function (MVF) based on fuzzy logic, we objectively generate a modified set of PDFs (mPDFs) and demonstrate their superior performance compared to the climatological mean of refractive indices and the original PDFs. We argue that mPDFs allow an even better understanding of how background conditions impact wave propagation in a climatological sense. As expected, probabilities are decreasing with increasing zonal wave numbers. In addition we discuss the meridional wave number dependency of the PDFs which is usually neglected, highlighting the contribution of meridional wave numbers 2 and 3 in the stratosphere. We also describe how mPDFs change in response to strong vortex regime (SVR) and weak vortex regime (WVR) conditions, with increased probabilities during WVR than SVR in the stratosphere. We conclude that the mPDFs are a convenient way to summarize climatological information about planetary wave propagation in reanalysis and climate model data.

  13. On the climatological probability of the vertical propagation of stationary planetary waves

    NASA Astrophysics Data System (ADS)

    Karami, Khalil; Braesicke, Peter; Sinnhuber, Miriam; Versick, Stefan

    2016-07-01

    We introduce a diagnostic tool to assess a climatological framework of the optimal propagation conditions for stationary planetary waves. Analyzing 50 winters using NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research) reanalysis data we derive probability density functions (PDFs) of positive vertical wave number as a function of zonal and meridional wave numbers. We contrast this quantity with classical climatological means of the vertical wave number. Introducing a membership value function (MVF) based on fuzzy logic, we objectively generate a modified set of PDFs (mPDFs) and demonstrate their superior performance compared to the climatological mean of vertical wave number and the original PDFs. We argue that mPDFs allow an even better understanding of how background conditions impact wave propagation in a climatological sense. As expected, probabilities are decreasing with increasing zonal wave numbers. In addition we discuss the meridional wave number dependency of the PDFs which is usually neglected, highlighting the contribution of meridional wave numbers 2 and 3 in the stratosphere. We also describe how mPDFs change in response to strong vortex regime (SVR) and weak vortex regime (WVR) conditions, with increased probabilities of the wave propagation during WVR than SVR in the stratosphere. We conclude that the mPDFs are a convenient way to summarize climatological information about planetary wave propagation in reanalysis and climate model data.

  14. Aircraft trace gas measurements during the London 2012 Olympics: Air quality and emission fluxes derived from sampling upwind and downwind of a megacity

    NASA Astrophysics Data System (ADS)

    Allen, G.; O'Shea, S.; Muller, J.; Jones, B.; O'Sullivan, D.; Lee, J. D.; Bauguitte, S.; Gallagher, M. W.; Percival, C.; Barratt, B.; McQuaid, J. B.; Illingworth, S.

    2013-12-01

    This study presents airborne in situ and remote sensing measurements recorded during July and August 2012, across the period of the London 2012 Summer Olympics and simultaneous with the Clear air for London (ClearfLo) ground-based measurement and modelling campaign. Through long-term (2-year) and intensive observation periods (Winter 2011 and Summer 2012), the ClearfLo programme aims to better understand emissions, as well as the chemical, dynamical and micro-meteorological processes which modulate air quality in the London urban environment - an important risk factor for both acute and chronic health effects. The work presented here focuses on two contrasting case studies within the summer ClearfLo period: 30 July 2012 and 9 August 2012, representing relatively clean background and polluted background cases, respectively, and characterised by well-mixed Atlantic westerly maritime inflow in the former and stagnant air (high pressure) in the latter. Measurements of CO, CO2, CH4, N2O, O3, HCN, and other gases measured on board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 aircraft will be presented and interpreted, with emphasis on observed concentration gradients and tracer-tracer correlations as well as airmass vertical structure and airmass history upwind and downwind of central London in each case. By applying a simple advective model and making use of vertically resolved thermodynamic and composition data, we are able to derive emission strengths for these gases that are representative of the total enclosed surface area. Example emissions for these two cases range between 6x105 kg(C)/hr and 9x105 kg(C)/hr for CO2, and ~0.6x105 kg(C)/hr for CH4. This airborne sampling methodology highlights the unique utility of aircraft measurements to routinely and climatologically characterise emissions from area sources such as cities, and points to future missions to target localised hotspots and distributed point sources.

  15. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  16. A 19-Month Climatology of Marine Aerosol-Cloud-Radiation Properties Derived From DOE ARM AMF Deployment at the Azores: Part I: Cloud Fraction and Single-Layered MBL Cloud Properties

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Minnis, Patrick; Wood, Robert

    2013-01-01

    A 19-month record of total, and single-layered low (0-3 km), middle (3-6 km), and high (> 6 km) cloud fractions (CFs), and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties has been generated from ground-based measurements taken at the ARM Azores site between June 2009 and December 2010. It documents the most comprehensive and longest dataset on marine cloud fraction and MBL cloud properties to date. The annual means of total CF, and single-layered low, middle, and high CFs derived from ARM radar-lidar observations are 0.702, 0.271, 0.01 and 0.106, respectively. More total and single-layered high CFs occurred during winter, while single-layered low CFs were greatest during summer. The diurnal cycles for both total and low CFs are stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at approx. 1 km and higher one between 8 and 11 km during all seasons, except summer, when only the low peak occurs. The persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, while the low pressure and moist air masses during winter generate more total and multilayered-clouds, and deep frontal clouds associated with midlatitude cyclones.

  17. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  18. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA

    NASA Astrophysics Data System (ADS)

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.

    2012-12-01

    Minnaert equation predicts. Furthermore, bubbles from a cohesive media escaped in pulses of multiple bubbles, which caused significant inter-bubble acoustic coupling and mud-bubble interaction. The acoustic signature of subsurface bubble migration and concurrent sediment movements, including bubble pinch off, presented additional complexities. Use of passive acoustic derived flux was applied to natural gas seepage in the Mackenzie Delta in the North West Territories, Canada as well as offshore Coal Oil Point (COP), CA. Video data were used to calibrate the COP acoustic observations and showed a strong current impact for non-cohesive sediments. Seepage flux in the delta (cohesive sediments) was calibrated using a custom turbine tent that directly measured flux. Further applications of passive acoustic-derived seep fluxes include monitoring of marine pipelines for leaks, and studying biogenic wetlands ebullition as well as thermogenic and hydrate seepage.

  19. A 15-year Climatology of Deep Stratosphere-troposphere Exchange With A Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    James, P.; Stohl, A.; Forster, C.; Eckhardt, S.

    Stratosphere-Troposphere Exchange (STE) is a key element of the global atmospheric circulation, impacting on mean atmospheric chemistry budgets in both stratosphere and troposphere. A comprehensive study of deep STE, based on ECMWF global at- mospheric re-analysis data, has been carried out for the EU-project STACCATO with the Lagrangian particle dispersion model FLEXPART. The model was initialised with half a million particles, distributed randomly throughout the atmosphere, and inte- grated continually for 15 years, providing the basis for a climatology of STE, showing its typical timescales, seasonality, and spatial and interannual variability. A major ad- vantage of FLEXPART is enabling one to distinguish between short-term STE, during which air parcels rapidly return to the stratosphere, and deep and/or long-term STE, in which air parcels have subsequently long residence times in the troposphere, thus having a greater impact on atmospheric chemistry. STE distributions relate closely to global circulation features. Stratospheric intrusions occur most frequently in the mid- latitude storm track regions. Much of this air returns to the stratosphere within synop- tic timescales. The more deeply intruded air which remains is subsequently imbedded into the large-scale meridional circulation, resulting in the greatest proportion of old stratospheric air in the tropics and the polar boundary layer, as revealed by age spec- tra. Circulation anomalies (eg. NAO) influence the tropospheric distribution of young stratospheric air in particular. Concentrations of stratospheric air in the troposphere show a distinct winter maximum for deep STE intrusions, especially for cases of rapid descent. The often quoted 'spring maximum' of STE, typically derived by just fo- cussing on cross-tropopause fluxes, applies only in the upper troposphere and thus to shallow STE events alone. Cross-tropopause mass flux is shown to be an inadequate measure for many aspects of STE.

  20. The Savannah River Technology Center Research and Development Climatology Center

    SciTech Connect

    Kurzeja, R.J.

    1995-12-31

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) built and has operated the Climatology Site (CS) for almost 10 years. The Climatology Site provides a wide variety of meteorological support functions for Savannah River Site (SRS) operations and research. This document describes the Climatology Site facility to familiarize present and potential users with its capabilities.

  1. The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NASA Astrophysics Data System (ADS)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2016-02-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our vegetation model SiBCASA, we increase data usage by assimilating two streams of satellite-derived soil moisture. We study whether the assimilation improved SiBCASA's soil moisture and its effect on the simulated carbon fluxes. By comparing to unique in situ soil moisture observations, we show that the passive microwave soil moisture product did not improve the soil moisture simulated by SiBCASA, but the active data seem promising in some aspects. The match between SiBCASA and ASCAT soil moisture is best in the summer months over low vegetation. Nevertheless, ASCAT failed to detect the major droughts occurring between 2007 and 2013. The performance of ASCAT soil moisture seems to be particularly sensitive to ponding, rather than to biomass. The effect on the simulated carbon fluxes is large, 5-10 % on annual GPP and TER, tens of percent on local NEE, and 2 % on area-integrated NEE, which is the same order of magnitude as the inter-annual variations. Consequently, this study shows that assimilation of satellite-derived soil moisture has potentially large impacts, while at the same time further research is needed to understand under which conditions the satellite-derived soil moisture improves the simulated soil moisture.

  2. Climatology of extratropical transition for North Atlantic tropical cyclones in the high-resolution GFDL climate model

    NASA Astrophysics Data System (ADS)

    Liu, M.; Vecchi, G. A.; Smith, J. A.

    2015-12-01

    The extratropical transition (ET) process of tropical cyclones can lead to fundamental changes in hurricane structure and storms that continue to pose large threats to life and properties. Given the importance of ET, it is necessary to understand how ET changes under a warming climate. Towards this goal, the GFDL climate model (FLOR) is first used to understand the current-day ET climatology. The standard model and a flux-adjusted version of FLOR are both used to examine ET climatology. The operational cyclone phase space method is used to define the onset and completion times of ET. The ET climatology from the climate model is compared with those from two reanalysis data sets ranging from 1979 to 2012. Both models exhibit good skills at simulating the frequency map of phase space diagram. The flux-adjusted version shows much better skill in capturing the ET climatology in terms of ET track patterns, ET locations and monthly ET variations. The model is able to simulate the frequency ratio of reintensified tropical cyclones from all ET cases. Future work involves examining changes in the ET climatology under a changing climate.

  3. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Staiger, Henning; Tinz, Birger; Batchvarova, Ekaterina; Rieder, Harald; Vuilleumier, Laurent; Maturilli, Marion; Jendritzky, Gerd

    2012-05-01

    In the present study, we investigate the determination accuracy of the Universal Thermal Climate Index (UTCI). We study especially the UTCI uncertainties due to uncertainties in radiation fluxes, whose impacts on UTCI are evaluated via the mean radiant temperature ( Tmrt). We assume "normal conditions", which means that usual meteorological information and data are available but no special additional measurements. First, the uncertainty arising only from the measurement uncertainties of the meteorological data is determined. Here, simulations show that uncertainties between 0.4 and 2 K due to the uncertainty of just one of the meteorological input parameters may be expected. We then analyse the determination accuracy when not all radiation data are available and modelling of the missing data is required. Since radiative transfer models require a lot of information that is usually not available, we concentrate only on the determination accuracy achievable with empirical models. The simulations show that uncertainties in the calculation of the diffuse irradiance may lead to Tmrt uncertainties of up to ±2.9 K. If long-wave radiation is missing, we may expect an uncertainty of ±2 K. If modelling of diffuse radiation and of longwave radiation is used for the calculation of Tmrt, we may then expect a determination uncertainty of ±3 K. If all radiative fluxes are modelled based on synoptic observation, the uncertainty in Tmrt is ±5.9 K. Because Tmrt is only one of the four input data required in the calculation of UTCI, the uncertainty in UTCI due to the uncertainty in radiation fluxes is less than ±2 K. The UTCI uncertainties due to uncertainties of the four meteorological input values are not larger than the 6 K reference intervals of the UTCI scale, which means that UTCI may only be wrong by one UTCI scale. This uncertainty may, however, be critical at the two temperature extremes, i.e. under extreme hot or extreme cold conditions.

  4. A Statistical Aggregation Engine for Climatology and Trend Analysis

    NASA Astrophysics Data System (ADS)

    Chapman, D. R.; Simon, T. A.; Halem, M.

    2014-12-01

    Fundamental climate data records (FCDRs) from satellite instruments often span tens to hundreds of terabytes or even petabytes in scale. These large volumes make it difficult to aggregate or summarize their climatology and climate trends. It is especially cumbersome to supply the full derivation (provenance) of these aggregate calculations. We present a lightweight and resilient software platform, Gridderama that simplifies the calculation of climatology by exploiting the "Data-Cube" topology often present in earth observing satellite records. By using the large array storage (LAS) paradigm, Gridderama allows the analyst to more easily produce a series of aggregate climate data products at progressively coarser spatial and temporal resolutions. Furthermore, provenance tracking and extensive visualization capabilities allow the analyst to track down and correct for data problems such as missing data and outliers that may impact the scientific results. We have developed and applied Gridderama to calculate a trend analysis of 55 Terabytes of AIRS Level 1b infrared radiances, and show statistically significant trending in the greenhouse gas absorption bands as observed by AIRS over the 2003-2012 decade. We will extend this calculation to show regional changes in CO2 concentration from AIRS over the 2003-2012 decade by using a neural network retrieval algorithm.

  5. Tracer Lamination in the Stratosphere: A Global Climatology

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  6. A climatological link between slantwise instability and surface weather conditions

    NASA Astrophysics Data System (ADS)

    Glinton, M. R.; Gray, S. L.; Chagnon, J. M.; Morcrette, C. J.

    2012-04-01

    Midlatitude weather phenomena including rainbands in fronts and cloud heads and the descending sting jets found in extreme windstorms have been attributed, in part, to the release of conditional symmetric instability (CSI). CSI is a slantwise parcel instability arising from the combination of inertial and gravitational instability in a baroclinic atmosphere; its release gives slantwise convection. However, to date, demonstration of the link between CSI and severe weather has been confined to a few case studies. Weather forecast models with domains big enough to encompass entire midlatitude storms do not have sufficient resolution to realistically resolve the release of CSI, and CSI release is not parameterized in these models. The consequences of this lack of representation of CSI release are currently unknown and motivate this study. We present a North Atlantic climatology of the energy available for slantwise convection due to CSI derived from the ERA-Interim re-analysis, and compare it with an equivalent climatology of CAPE (the energy available for upright convection due to conditional instability). The annual cycle of land and sea surface temperatures are shown to strongly modulate these instabilities. The statistical relationship between these instabilities and surface weather conditions are presented.

  7. A semianalytical algorithm for quantitatively estimating sediment and atmospheric deposition flux from MODIS-derived sea ice albedo in the Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Zhantang; Hu, Shuibo; Wang, Guifen; Zhao, Jun; Yang, Yuezhong; Cao, Wenxi; Lu, Peng

    2016-05-01

    Quantitative estimates of particulate matter [PM) concentration in sea ice using remote sensing data is helpful for studies of sediment transport and atmospheric dust deposition flux. In this study, the difference between the measured dirty and estimated clean albedo of sea ice was calculated and a relationship between the albedo difference and PM concentration was found using field and laboratory measurements. A semianalytical algorithm for estimating PM concentration in sea ice was established. The algorithm was then applied to MODIS data over the Bohai Sea, China. Comparisons between MODIS derived and in situ measured PM concentration showed good agreement, with a mean absolute percentage difference of 31.2%. From 2005 to 2010, the MODIS-derived annual average PM concentration was approximately 0.025 g/L at the beginning of January. After a month of atmospheric dust deposition, it increased to 0.038 g/L. Atmospheric dust deposition flux was estimated to be 2.50 t/km2/month, similar to 2.20 t/km2/month reported in a previous study. The result was compared with on-site measurements at a nearby ground station. The ground station was close to industrial and residential areas, where larger dust depositions occurred than in the sea, but although there were discrepancies between the absolute magnitudes of the two data sets, they demonstrated similar trends.

  8. Fluxes of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Perennial Ryegrass Recovering from Defoliation. The Regrowing Tiller and Its Component Functionally Distinct Zones1

    PubMed Central

    Schnyder, Hans; de Visser, Ries

    1999-01-01

    The quantitative significance of reserves and current assimilates in regrowing tillers of severely defoliated plants of perennial ryegrass (Lolium perenne L.) was assessed by a new approach, comprising 13C/12C and 15N/14N steady-state labeling and separation of sink and source zones. The functionally distinct zones showed large differences in the kinetics of currently assimilated C and N. These are interpreted in terms of ”substrate” and ”tissue” flux among zones and C and N turnover within zones. Tillers refoliated rapidly, although C and N supply was initially decreased. Rapid refoliation was associated with (a) transient depletion of water-soluble carbohydrates and dilution of structural biomass in the immature zone of expanding leaves, (b) rapid transition to current assimilation-derived growth, and (c) rapid reestablishment of a balanced C:N ratio in growth substrate. This balance (C:N, approximately 8.9 [w/w] in new biomass) indicated coregulation of growth by C and N supply and resulted from complementary fluxes of reserve- and current assimilation-derived C and N. Reserves were the dominant N source until approximately 3 d after defoliation. Amino-C constituted approximately 60% of the net influx of reserve C during the first 2 d. Carbohydrate reserves were an insignificant source of C for tiller growth after d 1. We discuss the physiological mechanisms contributing to defoliation tolerance. PMID:10198102

  9. A new evaporation duct climatology over the South China Sea

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Yang, Kunde; Yang, Yixin; Ma, Yuanliang

    2015-10-01

    The climatology of evaporation ducts is important for shipborne electromagnetic system design and application. The evaporation duct climatology that is currently used for such applications was developed in the mid 1980s; this study presents efforts to improve it over the South China Sea (SCS) by using a state-of-the-art evaporation duct model and an improved meteorology dataset. This new climatology provides better evaporation duct height (EDH) data over the SCS, at a higher resolution of 0.312°×0.313°. A comparison between the new climatology and the old one is performed. The monthly average EDH in the new climatology is between 10 and 12 m over the SCS, higher than that in the old climatology. The spatiotemporal characteristics of the evaporation duct over the SCS in different months are analyzed in detail, based on the new climatology.

  10. Formation of the world's largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids

    PubMed Central

    Ling, Ming-Xing; Liu, Yu-Long; Williams, Ian S.; Teng, Fang-Zhen; Yang, Xiao-Yong; Ding, Xing; Wei, Gang-Jian; Xie, Lu-Hua; Deng, Wen-Feng; Sun, Wei-Dong

    2013-01-01

    Rare Earth Elements (REE) are essential to modern society but the origins of many large REE deposits remain unclear. The U-Th-Pb ages, chemical compositions and C, O and Mg isotopic compositions of Bayan Obo, the world's largest REE deposit, indicate a protracted mineralisation history with unusual chemical and isotopic features. Coexisting calcite and dolomite are in O isotope disequilibrium; some calcitic carbonatite samples show highly varied δ26Mg which increases with increasing Si and Mg; and ankerite crystals show decreases in Fe and REE from rim to centre, with highly varied REE patterns. These and many other observations are consistent with an unusual mineralisation process not previously considered; protracted fluxing of calcitic carbonatite by subduction-released high-Si fluids during the closure of the Palaeo-Asian Ocean. The fluids leached Fe and Mg from the mantle wedge and scavenged REE, Nb and Th from carbonatite, forming the deposit through metasomatism of overlying sedimentary carbonate.

  11. Anti-Atlas Moroccan Chain as the source of lithogenic-derived micronutrient fluxes to the deep Northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Chavagnac, V.; Waniek, J. J.; Atkin, D.; Milton, J. A.; Leipe, T.; Green, D. R. H.; Bahlo, R.; Hayes, T. E. F.; Schulz-Bull, D. E.

    2007-11-01

    Identifying the source of atmospheric dust is crucial to better understand the global marine biogeochemical cycle as phytoplankton growth relies on dissolved micronutrient elements available in the open ocean. Mineralogical, geochemical and Sr isotope analyses of a one year-time series (April 2003-April 2004) of deep ocean particle flux at the Madeira Abyssal Plain in the subtropical northeast Atlantic are presented. The lithogenic fraction has a high occurrence of palygorskite and smectite and an absence of kaolinite together with Sr isotopic compositions similar to the Northeast Atlantic aerosols. This indicates the Anti-Atlas Moroccan chain of Paleozoïc age as the source region. The lithogenic fraction supplies 4 times more Fe during a dust event than during the spring-summer aeolian input. A continuous input of only 1% of the lithogenic iron made available over a year period, could lead to an increase in primary productivity of 40% relative to today's value.

  12. A tornado climatology for Ireland

    NASA Astrophysics Data System (ADS)

    Tyrrell, John

    The results of detailed records and site investigations of reported tornadoes, waterspouts and funnel clouds over the last 3 years (1999-2001) are presented. Part of the analysis also includes the more fragmented record from 1950. These results are placed in the context of the potential for the atmosphere to produce the type of severe convective weather over Ireland often associated with tornadoes. This has been characterised from an analysis of daily values of several extreme weather parameters, namely Convective Available Potential Energy (CAPE), Bulk Richardson Number (BRN) and Severe Weather (SWEAT), derived from upper air soundings at Valentia. It is concluded that this potential is slight, though sufficient to produce moderately intense tornadoes at times. The analysis of the tornado record demonstrates that the annual frequency of such severe events is highly variable. Nevertheless, there have been many as 30 per year, although the average frequency of 10 per year may be more typical. In contrast to neighbouring countries, tornadoes mostly occurred during the summer months, especially August. It suggested that the strong monthly and diurnal patterns in the data might have more complex explanations than appears at first sight, when the particular climatic circumstances of Ireland are taken into account. Tornado intensities have ranged between T0 and T6 (F0 and F3) and a relationship between tornado intensity, track length and track width is considered. Finally, the geographical distribution of tornado and funnel cloud events is presented and an interpretation is given that considers the possible role of the terrain and land surface conditions in the development of atmospheric environments conducive for tornado events in Ireland.

  13. Climatological data summary 1994, with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1995-05-01

    This document presents the climatological data measured at the U.S. Department of Energy`s Hanford Site for calendar year 1994. Pacific Northwest Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink et al. (1994); however, Appendix B-Wind Climatology is excluded. 1994 was the second warmest year on record, averaging 56.2{degrees}F, 2.9{degrees}F above normal (53.3{degrees}F). For the 12-month period, 10 were warmer than normal (7 were at least 3.5{degrees}F and 2 were more than 5.0{degrees}F above normal). Precipitation totaled 6.12 in., 98% of normal (6.26 in.); snowfall totaled 5.2 in., compared to the normal of 13.8 in. The average wind speed during 1994 was 7.3 mph, 0.4 mph below normal (7.7 mph). The peak gust during the year was 52 mph from the south-southwest on February 13. There were 29 days with peak gusts {ge}40 mph, compared to a yearly average of 26.

  14. Derivation of the photometric flux of daylight from filtered measurements of global (sun and sky) radiant energy.

    PubMed

    Drummond, A J; Angström, A K

    1971-09-01

    The study reported on here is a continuation of an earlier investigation by the same authors into the relationship between natural illumination and shortwave solar radiation. Whereas the initial approach treated the illumination of sunlight as derived from the corresponding filtered direct radiation component, the results now given extend this work to parallel determination of the (more generally applicable) illumination of integral daylight on the basis of similarly filtered global (sun and sky) radiation. Characteristics are outlined of the instrumentation employed in the investigation undertaken at different locations, viz., Newport, Jerusalem (Israel), and Mauna Loa (Hawaii), as compared with the basic work that utilized data assembled at Pretoria (South Africa). Included is an extension to recent solar radiation measurements obtained on high-altitude aircraft. In general, it is established that it is possible to derive such estimates of natural illumination from radiometric measurements with an accuracy comparable with that obtainable in the best direct photometric efforts. PMID:20111265

  15. Cross-shelf and along-shelf fluxes derived from observation and modelling in the Gulf of Naples

    NASA Astrophysics Data System (ADS)

    Iermano, Ilaria; Falco, Pierpaolo; Zambianchi, Enrico

    2015-04-01

    Hydrological and currentmeter observations were collected on the continental shelf and slope of the Gulf of Naples during the GELATO experiment in the framework of med-TOSCA project (27 July to 6 August 2012). Results from the cruise are used to estimate the onshore/offshore cross-frontal transport at the shelf break of the Gulf of Naples. The hydrological structures evidence well-stratified water masses on the eastern and western ends of the shelf. In the coastal area the situation is quite complex, with the influence of the Sarno river's freshwater plume in the first meters of the water column. ADCP current profiles were used to estimate integrated transport along the meridional transect connecting the northern and southern gulf coast. ADCP data are missing in the surface layer because of the transducer ringing effect. To add the surface contribution to the total transport, HF radar current measurement were used to determine this component. CTD measurement were collected approximately along the same transect so both the barotropic and baroclinic contribution to the total transport can be evaluated. In addition, coastal circulation is simulated with a high resolution three-dimensional numerical model forced by daily realistic forcing along with heat and salt fluxes calculated by bulk formulae. The model outputs are in agreement with the main hydrological and circulation patterns and reproduces well the onshore transport.

  16. A novel tropopause-related climatology of ozone profiles

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Tamminen, J.; Kyrölä, E.; Mielonen, T.; Veefkind, P.; Hassler, B.; Bodeker, G. E.

    2013-08-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the Earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local tropopause heights. Compared to the standard latitude-month categorization, this presentation improves the representativeness of the ozone climatology in the upper troposphere and the lower stratosphere (UTLS). The probability distribution of tropopause heights in each latitude-month bin provides additional climatological information and allows transforming/comparing the TpO3 climatology to a standard climatology of zonally mean ozone profiles. The TpO3 climatology is based on high-vertical-resolution measurements of ozone from the satellite-based Stratospheric Aerosol and Gas Experiment II (in 1984 to 2005) and from balloon-borne ozonesondes in 1980 to 2006. The main benefits of the TpO3 climatology are reduced standard deviations on climatological ozone profiles in the UTLS, partial characterization of longitudinal variability, and characterization of ozone profiles in the presence of double tropopauses. The first successful application of the TpO3 climatology as a priori in ozone profiles retrievals from Ozone Monitoring Instrument on board the EOS-Aura satellite shows an improvement of ozone precision in UTLS of up to 10% compared with the use of conventional climatologies. In addition to being advantageous for use as a priori in satellite retrieval algorithms, the TpO3 climatology might be also useful for validating the representation of ozone in climate model simulations.

  17. A novel tropopause-related climatology of ozone profiles

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Tamminen, J.; Kyrölä, E.; Mielonen, T.; Veefkind, P.; Hassler, B.; Bodeker, G. E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local tropopause heights. Compared to the standard latitude-month categorization, this presentation improves the representativeness of the ozone climatology in the upper troposphere and the lower stratosphere (UTLS). The probability distribution of tropopause heights in each latitude-month bin provides additional climatological information and allows transforming/comparing the TpO3 climatology to a standard climatology of zonal mean ozone profiles. The TpO3 climatology is based on high-vertical-resolution measurements of ozone from the satellite-based Stratospheric Aerosol and Gas Experiment II (in 1984 to 2005) and from balloon-borne ozonesondes from 1980 to 2006. The main benefits of the TpO3 climatology are reduced standard deviations on climatological ozone profiles in the UTLS, partial characterization of longitudinal variability, and characterization of ozone profiles in the presence of double tropopauses. The first successful application of the TpO3 climatology as a priori in ozone profile retrievals from Ozone Monitoring Instrument on board the Earth Observing System (EOS) Aura satellite shows an improvement of ozone precision in UTLS of up to 10% compared with the use of conventional climatologies. In addition to being advantageous for use as a priori in satellite retrieval algorithms, the TpO3 climatology might be also useful for validating the representation of ozone in climate model simulations.

  18. Climatological Impact of Atmospheric River Based on NARCCAP and DRI-RCM Datasets

    NASA Astrophysics Data System (ADS)

    Mejia, J. F.; Perryman, N. M.

    2012-12-01

    This study evaluates spatial responses of extreme precipitation environments, typically associated with Atmospheric River events, using Regional Climate Model (RCM) output from NARCCAP dataset (50km grid size) and the Desert Research Institute-RCM simulations (36 and 12 km grid size). For this study, a pattern-detection algorithm was developed to characterize Atmospheric Rivers (ARs)-like features from climate models. Topological analysis of the enhanced elongated moisture flux (500-300hPa; daily means) cores is used to objectively characterize such AR features in two distinct groups: (i) zonal, north Pacific ARs, and (ii) subtropical ARs, also known as "Pineapple Express" events. We computed the climatological responses of the different RCMs upon these two AR groups, from which intricate differences among RCMs stand out. This study presents these climatological responses from historical and scenario driven simulations, as well as implications for precipitation extreme-value analyses.

  19. Radiative Flux Changes by Aerosols from North America, Europe, and Africa over the Atlantic Ocean: Measurements and Calculations from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Livingston, J. M.; Schmid, B.; Chien, A.; Bergstrom, R.; Durkee, P. A.; Hobbs, P. V.; Bates, T. S.; Quinn, P. K.; Condon, Estelle (Technical Monitor)

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that is a major source of uncertainty in understanding the past climate and predicting climate change. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Experiment (TARFOX) and the 1997 second Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of American, European, and African aerosols over the Atlantic. In TARFOX, radiative fluxes and microphysics of the American aerosol were measured from the UK C-130 while optical depth spectra, aerosol composition, and other properties were measured by the University of Washington C-131A and the CIRPAS Pelican. Closure studies show that the measured flux changes agree with those derived from the aerosol measurements using several modelling approaches. The best-fit midvisible single-scatter albedos (approx. 0.89 to 0.93) obtained from the TARFOX flux comparisons are in accord with values derived by independent techniques. In ACE-2 we measured optical depth and extinction spectra for both European urban-marine aerosols and free-tropospheric African dust aerosols, using sunphotometers on the R/V Vodyanitskiy and the Pelican. Preliminary values for the radiative flux sensitivities (Delta Flux / Delta Optical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean are similar to those found in TARFOX. Combining a satellite-derived optical depth climatology with the aerosol optical model validated for flux sensitivities in TARFOX provides first-cut estimates of aerosol-induced flux changes over the Atlantic Ocean.

  20. Mapping of coupling hot spots of satellite derived latent heat flux in indian agro-climatic regions

    NASA Astrophysics Data System (ADS)

    Choudhury, I.

    2014-11-01

    This study focuses on the understanding and mapping of coupling hotspots of LE versus terrestrial and meteorological parameters. Single source surface energy balance model was used to derive surface energy balance parameters. Agro climatic region wise monthly information of terrestrial, energy balance and meteorological parameters were derived during June- September from decadal analysis of MODIS data (2003-2012) over India (68-100°E, 5-40°N) at 5 km spatial resolution. Information on rainfall was obtained from gridded rainfall data (1° × 1° spatial resolution) from Indian Meteorological Department (IMD). The spatiotemporal variability of the parameters such as rainfall, evapotranspiration (ET), evaporative fraction (EF), soil water index (SWI), land surface temperature (LST) and air temperature (Ta) showed strong influence on seasonal LE fluctuation. LE showed positive linear coupling with ET (0.52

  1. Scaling water and energy fluxes in climate system: Three land-atmospheric modeling experiments

    SciTech Connect

    Wood, E.F.; Lakshmi, V. )

    1993-05-01

    The effects of small-scale heterogeneity in land-surface characteristics on the large-scale fluxes of water and energy in the land-atmosphere system have become a central focus of many of the climatology research experiments. The acquisition of high-resolution land-surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small-scale heterogeneities and whether [open quotes]effective[close quotes] parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the land-surface hydrology during rain events and between rain events. The second experiment applies the Simple Biosphere Model (SiB) to a heterogeneous domain and the spatial and temporal latent heat flux is analyzed. The third experiment uses thermatic mapper (TM) data to look at the scaling of the normalized vegetation index (NDVI), latent heat flux, and sensible heat flux through either scaling of the TM-derived fields using the TM data or the fields derived from aggregated TM data. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated. The paper also suggests that the scale at which a macroscale model becomes valid, the representative elementary scale (REA), is on the order 1.5-3 correlation lengths, which for land processes investigated appears to be about 1000-1500 m. At scales less than the REA scale, exact patterns of subgrid heterogeneities are needed for accurate small-scale modeling. 31 refs., 19 figs.

  2. Flux-creep activation energy for a BaFe1.9Ni0.1As2 single crystal derived from alternating current susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Ge, Jun-Yi; Li, Lin-Jun; Xu, Zhu-An; Moshchalkov, Victor V.

    2016-04-01

    Systematic ac susceptibility measurements have been performed to investigate the vortex dynamics in a BaFe1.9Ni0.1As2 single crystal as a function of temperature, frequency, ac field amplitude, and dc magnetic field. The complex activation energy U ( T , B , j ) is derived in the framework of thermally activated flux creep theory and can be expressed in one simple formula. A power law dependence of U ˜ B α with α = -0.46 is observed. The activation energy reaches 104 K at low fields, suggesting strong pinning in the material. The nonlinear function of the activation energy vs. the current density is determined, which has the expression of U ∝ j - 0.1 .

  3. Local time variation of high-frequency gravity wave momentum flux and its relationship with background wind derived from LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Agner, R. M.; Liu, A. Z.

    2013-12-01

    Gravity waves and atmospheric tides have strong interactions in the mesopause region and is a major contributor to the large variabilities in this region. How these two large perturbations interact with each other is not well understood. Observational studies of their relationships are needed to help clarify some contradictory results from modeling studies. Due to large differences in temporal and spatial scales between gravity waves and tides, they are not easily observed simultaneously and consistently with extended periods of time. In this work, we use four-hundred hours of Na LIDAR observation at Starfire Optical Range (SOR, 35.0 N, 106.5 W), New Mexico to derive the local time variation of gravity wave momentum flux and corresponding background wind. Their relationship is then examined in detail. The effects of gravity waves on the background wind at the tidal time scale are deduced. These results are explained through gravity wave propagation in a varying background atmosphere.

  4. Comparison of 37 months global net radiation flux derived from PICARD-BOS over the same period observations of CERES and ARGO

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Wild, Martin

    2016-04-01

    The absolute level of the global net radiation flux (NRF) is fixed at the level of [0.5-1.0] Wm-2 based on the ocean heat content measurements [1]. The space derived global NRF is at the same order of magnitude than the ocean [2]. Considering the atmosphere has a negligible effects on the global NRF determination, the surface global NRF is consistent with the values determined from space [3]. Instead of studying the absolute level of the global NRF, we focus on the interannual variation of global net radiation flux, which were derived from the PICARD-BOS experiment and its comparison with values over the same period but obtained from the NASA-CERES system and inferred from the ocean heat content survey by ARGO network. [1] Allan, Richard P., Chunlei Liu, Norman G. Loeb, Matthew D. Palmer, Malcolm Roberts, Doug Smith, and Pier-Luigi Vidale (2014), Changes in global net radiative imbalance 1985-2012, Geophysical Research Letters, 41 (no.15), 5588-5597. [2] Loeb, Norman G., John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R. Doelling, Takmeng Wong, Brian J. Soden, and Graeme L. Stephens (2012), Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geoscience, 5 (no.2), 110-113. [3] Wild, Martin, Doris Folini, Maria Z. Hakuba, Christoph Schar, Sonia I. Seneviratne, Seiji Kato, David Rutan, Christof Ammann, Eric F. Wood, and Gert Konig-Langlo (2015), the energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 44 (no.11-12), 3393-3429.

  5. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel - annual budgets and seasonality

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Issoufou, H. B.-A.; Boulain, N.; Ramier, D.; Mainassara, I.; Charvet, G.; Boucher, M.; Chazarin, J.-P.; Oï, M.; Yahou, H.; Maidaji, B.; Arpin-Pont, F.; Benarrosh, N.; Mahamane, A.; Nazoumou, Y.; Favreau, G.; Seghieri, J.

    2014-05-01

    In the African Sahel, energy and water cycling at the land surface is pivotal for regional climate, water resources and land productivity, yet it is still extremely poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt, rainfed millet crop and fallow bush. These estimates build on the combination of a 7 year field dataset from two typical plots in southwestern Niger with detailed physically-based soil-plant-atmosphere modelling, yielding a continuous, comprehensive set of water and energy flux and storage variables over the 7 year period. In this study case in particular, blending field data with mechanistic modelling is considered as making best use of available data and knowledge for such purpose. It extends observations by reconstructing missing data and extrapolating to unobserved variables or periods. Furthermore, model constraining with observations compromises between extraction of observational information content and integration of process understanding, hence accounting for data imprecision and departure from physical laws. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to subseasonal scales from the 7 year series produced. Similarities and differences in the two ecosystems behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82-85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40-60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. The model developed in this context has the

  6. The reactivity of plant-derived organic matter in the Amazon River and implications on aquatic carbon fluxes to the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Sawakuchi, H. O.; Keil, R. G.; da Silva, R.; Brito, D. C.; Cunha, A. C.; Gagne-Maynard, W.; de Matos, A.; Neu, V.; Bianchi, T. S.; Krusche, A. V.; Richey, J. E.

    2014-12-01

    The remineralization of terrestrially-derived organic carbon (OC), along with direct CO2 inputs from autochthonous plant respiration in floodplains, results in an evasive CO2 gas flux from inland waters that is an order of magnitude greater than the flux of OC to the ocean. This phenomenon is enhanced in tropical systems as a result of elevated temperatures and productivity relative to temperate and high-latitude counterparts. Likewise, this balance is suspected to be influenced by increasing global temperatures and alterations to hydrologic and land use regimes. Here, we assess the reactivity of terrestrial and aquatic plant-derived OM near the mouth of the Amazon River. The stable isotopic signature of CO2 (δ13CO2) was monitored in real-time during incubation experiments performed in a closed system gas phase equilibration chamber connected to a Picarro Cavity Ring-Down Spectrometer. Incubations were performed under natural conditions and with the injection of isotopically labeled terrestrial macromolecules (e.g. lignin) and algal fatty acids. Under natural conditions, δ13CO2 became more depleted, shifting from roughly -23‰ to -27‰ on average, suggesting that C3 terrestrial vegetation was the primary fuel for CO2 production. Upon separate injections of 13C-labeled lignin and algal fatty acids, δ13CO2 increased near instantaneously and peaked in under 12 hours. Roughly 75% of the labeled lignin was converted to CO2 at the peak in δ13CO2, whereas less than 20% of the algal fatty acids were converted to CO2 (preliminary data subject to change). The rate of labeled-OC remineralization was enhanced by the addition of a highly labile substrate (e.g. ethyl acetate). Likewise, constant measurements of O2/pCO2 along the lower river revealed anomalously high CO2 and low O2 levels near the confluence of the mainstem and large tributaries with high algal productivity. These collective results suggest that the remineralization of complex terrestrial macromolecules is

  7. Regional Climatology and Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.

    1999-01-01

    The climatology and surface radiation budget (SRB) of a region are intimately related. This paper presents a brief examination of this relationship. An 8-year surface radiation budget data set has been developed based on satellite measurements. In that data set and in this paper a region is defined as a quasi-square 2.5o in latitude and approximately the same physical distance in longitude. A pilot study by Wilber et al. (1998) showed a variety of behaviors of the annual cycles for selected regions. Selected desert regions form a loop in a specific part of the plot, with large NLW and large NSW. Tropical wet regions form much smaller loops in a different part of the plot, with small NLW and large NSW. For regions selected in high latitude the annual cycles form nearly linear figures in another part of the plot. The question arises as to whether these trajectories are characteristic of the climatology of the region or simply the behavior of the few regions selected from the set of 6596 regions. In order to address this question, it is necessary to classify the climatology of the each region, e.g. as classified by Koeppen (1936) or Trenwarthe and Horne (1980). This paper presents a method of classifying climate of the regions on the basis of the surface radiation behavior such that the results are very similar to the classification of Trenwarthe and Horne. The characteristics of the annual cycle of SRB components can then be investigated further, based on the climate classification of each region.

  8. A new climatological oceanic eddy census

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Pascual, Ananda; Pujol, Isabel; Faugère, Yannice; Delepoulle, Antoine; Briol, Frederic

    2015-04-01

    We present a new climatological oceanic eddy census dataset based on gridded sea level anomalies from satellite altimeter observations that is due for release by Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO). The identification and automated tracking of oceanic eddies is carried out using the py-eddy-tracker of Mason et al. (2014). Daily outputs of eddy properties (including position, radius, amplitude and nonlinearity) covering the period 1993-2013 over the global domain are presented and discussed. Validation and comparison is made with the published global eddy track database of Chelton et al. (2011).

  9. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol - Part 1: Source fluxes

    NASA Astrophysics Data System (ADS)

    Fuentes, E.; Coe, H.; Green, D.; de Leeuw, G.; McFiggans, G.

    2010-10-01

    , which revealed a higher production of particles with Dp0<100 nm at regions with high biological activity. These findings suggest that the increase in the atmospheric aerosol modal sizes from winter to summer, reported by long-term observations in North Atlantic waters, is not directly due to an impact of the higher primary organic matter production occurring during warm periods. A novel sub-micrometric size-resolved source flux function, explicitly defined as a function of the diatomaceous exudate concentration, was derived from the size distribution measurements and the estimation of the fractional whitecap coverage. According to the defined parameterisation, a 300 μM OC<0.2 μm concentration of diatomaceous exudate in seawater produces an overall increment in the total source particle flux of ~20% with respect to the organics-free seawater case. The effect increases with decreasing particle size for Dp0<100 nm, resulting in multiplicative factors between 1.02-2 with respect to the particle flux generated from seawater devoid of marine organics. The total source flux derived from the presented parameterisation was compared to recent definitions of sea-spray source fluxes based on laboratory and field observations in the literature.

  10. Do Australian sclerophyll forests exhibit seasonality? an analysis with phenocam, eddy covariance fluxes, and satellite derived phenology.

    NASA Astrophysics Data System (ADS)

    Restrepo-Coupe, N.; Huete, A. R.; Davies, K.; Macfarlane, C.; Beringer, J.; Van Gorsel, E.; Maier, C.; Resco de Dios, V.

    2014-12-01

    Temperate broadleaf evergreen forests in Australia exhibit characteristically unique and contradictory seasonality behaviors with strongly seasonal gross primary productivity (GPP) values and weak to no seasonality in satellite-derived vegetation indices (VIs), leaf area index (LAI), and fraction of absorbed photosynthetically active radiation (fPAR). As part of adaptation strategies to highly variable rainfall and water balance deficit conditions, sclerophyll forests allocate carbon to long-lived, thick leaves with low water content, and generally exhibit small seasonal changes in canopy infrastructure (LAI). Erectophile leaf angle distributions, and/or differences in leaf adaxial and abaxial optical properties allow the leaves to achieve thermal protection. However, these leaf traits complicate any spectral analysis and the study of sclerophyll forest phenology. Our goal was to utilize tower mounted phenocam imagery of whole-canopy, multiple tree crowns, and understory layers to trace multi-functional phenology profiles at three sclerophyll forest sites (one banksia dominated and two eucalyptus dominated) all part of the Terrestrial Ecosystem Research Network (TERN). We contrast and compare in-situ phenocam time series data with satellite vegetation products from the Moderate Resolution Imaging Spectroradiometer (MODIS), and eddy covariance measures of ecosystem built photosynthetic capacity (ecosystem light use efficiency, LUE, and chlorophyll fPAR). We found that at sclerophyll forests, despite ecosystem photosynthetic capacity exhibiting weak seasonality, climate and in particular rainfall pulses, drove diverse responses over each of the different forest components (e.g. overstory and understory). Interestingly, tree and understory growing and browning cycles were out-of phase, and contributed to the characteristic VI seasonality behavior of the whole ecosystem.

  11. Distance and luminosity probability distributions derived from parallax and flux with their measurement errors. With application to the millisecond pulsar PSR J0218+4232

    NASA Astrophysics Data System (ADS)

    Igoshev, Andrei; Verbunt, Frank; Cator, Eric

    2016-06-01

    We use a Bayesian approach to derive the distance probability distribution for one object from its parallax with measurement uncertainty for two spatial distribution priors, a homogeneous spherical distribution and a galactocentric distribution - applicable for radio pulsars - observed from Earth. We investigate the dependence on measurement uncertainty, and show that a parallax measurement can underestimate or overestimate the actual distance, depending on the spatial distribution prior. We derive the probability distributions for distance and luminosity combined - and for each separately when a flux with measurement error for the object is also available - and demonstrate the necessity of and dependence on the luminosity function prior. We apply this to estimate the distance and the radio and gamma-ray luminosities of PSR J0218+4232. The use of realistic priors improves the quality of the estimates for distance and luminosity compared to those based on measurement only. Use of the wrong prior, for example a homogeneous spatial distribution without upper bound, may lead to very incorrect results.

  12. Lightning Climatology with a Generalized Additive Model

    NASA Astrophysics Data System (ADS)

    Simon, Thorsten; Mayr, Georg; Umlauf, Nikolaus; Zeileis, Achim

    2016-04-01

    This study present a lightning climatology on a 1km x 1km grid estimated via generalized additive models (GAM). GAMs provide a framework to account for non-linear effects in time and space and for non-linear spatial-temporal interaction terms simultaneously. The degrees of smoothness of the non-linear effects is selected automatically in our approach. Furthermore, the influence of topography is captured in the model by including a non-linear term. To illustrate our approach we use lightning data from the ALDIS networks and selected a region in Southeastern Austria, where complex terrain extends from 200 an 3800 m asl and summertime lightning activity is high compared to other parts of the Eastern Alps. The temporal effect in the GAM shows a rapid increase in lightning activity in early July and a slow decay in activity afterwards. The estimated spatial effect is not very smooth and requires approximately 225 effective degrees of freedom. It reveals that lightning is more likely in the Eastern and Southern part of the region of interest. This spatial effect only accounts for variability not already explained by the topography. The topography effect shows lightning to be more likely at higher altitudes. The effect describing the spatio-temporal interactions takes approximately 200 degrees of freedom, and reveals local deviations of the climatology.

  13. Precipitation Climatology on Titan-like Exomoons.

    PubMed

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets. PMID:25796390

  14. Precipitation Climatology on Titan-like Exomoons

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets.

  15. A climatological analysis of Saharan cyclones

    NASA Astrophysics Data System (ADS)

    Ammar, K.; El-Metwally, Mossad; Almazroui, Mansour; Abdel Wahab, M. M.

    2014-07-01

    In this study, the climatology of Saharan cyclones is presented in order to understand the Saharan climate, its variability and its changes. This climatology includes an analysis of seasonal and interannual variations, the identification and classification of cyclone tracks, and a presentation of their chief characteristics. The data used are drawn from the 1980-2009, 2.5° × 2.5°, NCEP/NCAR reanalysis (NNRP I) dataset. It is found that cyclone numbers increase in September-October-November (SON) at 4.9 cyclones per decade, while they decrease in June-July-August at 12.3 cyclones per decade. The identification algorithm constructed 562 tracks, which are categorized into 12 distinct clusters. Around 75 % of the Saharan cyclones originate south of the Atlas Mountains. The percentage of tracks that move over the Sahara is around 48 %. The eastern Mediterranean receives 27 % of the Saharan tracks, while the western basin receives only 17 and 8 % of all the Saharan cyclones decay over the Arabian Peninsula. The maximum cyclonic activity occurs in April. There is a general decrease in the number of tracks in all categories between 1993 and 2009, compared with the period between 1980 and 1992. About 72 % of the Saharan cyclones do not live more than 3 days, and about 80 % of the cyclones in the tracks never reach central pressures 1,000 hPa during their lifetimes. The maximum deepening in the tracks occurs over the western Mediterranean and over northern Algeria.

  16. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-06-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE. The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster's spatial domain and used to estimate climatological values of key optical and microphysical parameters. The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  17. Martian middle-atmosphere climatology from modern spacecraft

    NASA Astrophysics Data System (ADS)

    McDunn, Tamara; Bougher, Stephen; Forget, Francois; Kleinboehl, Armin; Tolson, Robert

    We construct a climatology from middle atmosphere (˜ 40-130 km) temperature and den-sity data from the following instruments: MEx/SPICAM, MRO/MCS, MGS/Accelerometer, ODY/Accelerometer, and MRO/Accelerometer. We examine the data for trends with latitude, local time, season, and solar cycle, thereby characterizing the structure and climactic patterns of the middle atmosphere using modern datasets. In this talk we identify significant middle-altitude climate patterns, including: winter polar warming (WPW), areas of sub-freezing tem-peratures, patterns of the middle-atmosphere temperature bulge, and patterns of the mesopause altitude and temperature. We also explore the implications of these patterns in the data. In brief, middle-atmosphere WPW indicates dynamical patterns linking the lower, middle, and upper atmospheres. Areas of sub-freezing temperatures indicate locations where CO2 clouds can be expected to form. Finally, the temperature bulge and mesopause patterns identified again suggest distinct large-scale circulations. These results support previous findings that solar flux, lower-atmosphere dust loading, and gravity waves from the lower atmosphere sub-stantially impact the wind systems of the middle atmosphere and the resulting distribution of energy.

  18. DL0805-2, a novel indazole derivative, relaxes angiotensin II-induced contractions of rat aortic rings by inhibiting Rho kinase and calcium fluxes

    PubMed Central

    Yuan, Tian-yi; Chen, Yu-cai; Zhang, Hui-fang; Li, Li; Jiao, Xiao-zhen; Xie, Ping; Fang, Lian-hua; Du, Guan-hua

    2016-01-01

    Aim: DL0805-2 [N-(1H-indazol-5-yl)-1-(4-methylbenzyl) pyrrolidine-3-carboxamide] is a DL0805 derivative with more potent vasorelaxant activity and lower toxicity. This study was conducted to investigate the vasorelaxant mechanisms of DL0805-2 on angiotensin II (Ang II)-induced contractions of rat thoracic aortic rings in vitro. Methods: Rat thoracic aortic rings and rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DL0805-2, and then stimulated with Ang II. The tension of the aortic rings was measured through an isometric force transducer. Ang II-induced protein phosphorylation, ROS production and F-actin formation were assessed with Western blotting and immunofluorescence assays. Intracellular free Ca2+ concentrations were detected with Fluo-3 AM. Results: Pretreatment with DL0805-2 (1–100 μmol/L) dose-dependently inhibited the constrictions of the aortic rings induced by a single dose of Ang II (10−7 mol/L) or accumulative addition of Ang II (10−10–10−7 mol/L). The vasodilatory effect of DL0805-2 was independent of endothelium. In the aortic rings, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) suppressed Ang II-induced Ca2+ influx and intracellular Ca2+ mobilization, and Ang II-induced phosphorylation of two substrates of Rho kinase (MLC and MYPT1). In VSMCs, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) also suppressed Ang II-induced Ca2+ fluxes and phosphorylation of MLC and MYPT1. In addition, pretreatment with DL0805-2 attenuated ROS production and F-actin formation in the cells. Conclusion: DL0805-2 exerts a vasodilatory action in rat aortic rings through inhibiting the Rho/ROCK pathway and calcium fluxes. PMID:27041459

  19. The Global Precipitation Climatology Centre (GPCC) - in situ observation based precipitation climatology on regional and global scale

    NASA Astrophysics Data System (ADS)

    Fuchs, T.; Schneider, U.; Rudolf, B.

    2009-04-01

    The Global Precipitation Climatology Centre (GPCC, http://gpcc.dwd.de) provides global monthly precipitation analyses for monitoring and research of the earth's climate. The centre is a German contribution to the World Climate Research Programme (WCRP), to the Global Climate Observing System (GCOS), and to the Global Earth Observation System of Systems (GEOSS). It contributes to water resources assessments, flood and drought monitoring, climate variability and trend analyses. GPCC published in year 2008 a new global precipitation climatology as well as a reanalysis of its full data base for all months of the period 1901-2007. The GPCC data base comprises monthly precipitation totals from more than 70 000 different stations in the world. It produces gridded data sets of monthly precipitation on the earth's land surface derived from raingauge based observation data. Intensive quality control of observation data and station metadata ensures a high analysis quality. The different GPCC products are adjusted to different user needs. It routinely produces 2 near real-time precipitation monitoring products. Its 2 non real-time products are updated at irregular time intervals after significant updates of its observation station database. All GPCC products can be visualised and accessed free of charge via Internet from http://gpcc.dwd.de. The GPCC First Guess Product of the monthly precipitation anomaly is based on synoptic weather reports (SYNOP) from about 6,300 stations worldwide received near real-time via the WMO Global Telecommunication System (GTS). The product is available within 5 days after end of an observation month. Main application purpose is near real-time drought monitoring. The product uses since mid 2008 the new GPCC monthly precipitation climatology as analysis background. Spatial product resolution: 1.0° and 2.5°. The GPCC Monitoring Product of monthly precipitation is based on SYNOP and monthly CLIMAT reports received near real-time via GTS from about

  20. Long-term records of global radiation, carbon and water fluxes derived from multi-satellite data and a process-based model

    NASA Astrophysics Data System (ADS)

    Ryu, Youngryel; Jiang, Chongya

    2016-04-01

    To gain insights about the underlying impacts of global climate change on terrestrial ecosystem fluxes, we present a long-term (1982-2015) global radiation, carbon and water fluxes products by integrating multi-satellite data with a process-based model, the Breathing Earth System Simulator (BESS). BESS is a coupled processed model that integrates radiative transfer in the atmosphere and canopy, photosynthesis (GPP), and evapotranspiration (ET). BESS was designed most sensitive to the variables that can be quantified reliably, fully taking advantages of remote sensing atmospheric and land products. Originally, BESS entirely relied on MODIS as input variables to produce global GPP and ET during the MODIS era. This study extends the work to provide a series of long-term products from 1982 to 2015 by incorporating AVHRR data. In addition to GPP and ET, more land surface processes related datasets are mapped to facilitate the discovery of the ecological variations and changes. The CLARA-A1 cloud property datasets, the TOMS aerosol datasets, along with the GLASS land surface albedo datasets, were input to a look-up table derived from an atmospheric radiative transfer model to produce direct and diffuse components of visible and near infrared radiation datasets. Theses radiation components together with the LAI3g datasets and the GLASS land surface albedo datasets, were used to calculate absorbed radiation through a clumping corrected two-stream canopy radiative transfer model. ECMWF ERA interim air temperature data were downscaled by using ALP-II land surface temperature dataset and a region-dependent regression model. The spatial and seasonal variations of CO2 concentration were accounted by OCO-2 datasets, whereas NOAA's global CO2 growth rates data were used to describe interannual variations. All these remote sensing based datasets are used to run the BESS. Daily fluxes in 1/12 degree were computed and then aggregated to half-month interval to match with the spatial

  1. A comparison of ground-based and satellite-derived radiative heat flux at Mt Etna: the 12 August lava fountain case study

    NASA Astrophysics Data System (ADS)

    Ganci, Gaetana; Calvari, Sonia; James, Mike; Del Negro, Ciro

    2013-04-01

    The recent eruptive activity at Mt Etna has been characterized by quiet frequent, intermittent episodes of lava fountains associated with small lava flow output, occurring especially at the SE Crater. During 2011, 18 paroxysmal lava fountains were produced by a new cone, named "Sturiale Cone", on the east flank of the SE Crater. Given the high hazard posed by this activity, and the need of improving detection, description and knowledge of these events, remote monitoring through fixed cameras and satellites has becoming crucial, especially using thermal sensors. We here focus on the 12 August 2011 episode, the strongest of the lava fountains occurred in 2011, and also the best monitored, given the clear sky, absence of clouds, and possibility to collect also images from a close-up view. We disposed of a total of 8 fixed cameras working around the volcano, three of them offering a thermal view of the episode. Moreover, as satellite observations, we could use the complete data set from the SEVIRI sensor, which has a temporal resolution of 15 minutes. To compare the field- and satellite-derived radiative heat flux curves, thermal images were registered by taking into account a DEM, the GPS camera position, the relative camera rotations and first order lens distortion parameters. Moreover, it was performed a pixel by pixel correction from path length and atmospheric effects. Finally, a temperature threshold was fixed to identify the active lava area and the amount of heat lost by radiation from all the pixels covered by lava was computed. SEVIRI data were analyzed by the HOTSAT thermal monitoring system. Through automatic hot-spot detection algorithm based on dynamic thresholds, we are able to provide an estimate of the radiant heat flux for each thermally anomalous pixel and possibly convert it into time averaged discharge rate. Preliminary results showed a good agreement on timing, shape and amplitude of the radiative heat flux time series between thermal camera and

  2. Multi-summer Cumulus-Radiation-Aerosol Climatology at SGP site

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Berg, L. K.; Flynn, C.; Long, C.; Barnard, J.

    2010-12-01

    Compared to other cloud types, shallow cumulus clouds are relatively small in size and have large variations over time/space that are poorly captured by current large-scale models of the atmosphere. Since these small-scale variations are very difficult to monitor and accurately describe, models improvement is hampered, in part, by the lack of appropriate observational constraints, including cloud and aerosol properties, surface parameters and radiative fluxes. To address this issue, a multi-summer (2000-2007) cumulus-radiation-aerosol climatology has been developed for the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Site. In particular, this climatology is applied to illustrate that positive values of shortwave cloud radiative forcing occur frequently and are characterized by fluctuations with a small temporal scale; the duration for the majority of events with positive radiative forcing is less than 5 minutes. In this presentation, the developed climatology will be described and several important applications will be shown.

  3. Hanford Site Climatological Data Summary 1998

    SciTech Connect

    DJ Hoitink; JV Ramsdell; KW Burk

    1999-05-26

    This document presents the climatological data measured at the U.S. Department of Energy's Hanford Site for calendar year 1998. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature; precipitation, normal and extreme values of temperature and precipitation and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk (1994, 1995, 1996, 1997, 1998); however, Appendix B--Wind Climatology (1994) is excluded. 1998 was much warmer than normal, tying 1992 as the warmest year on record. The average temperature was 56.4 F, 3.1 F above normal (53.3 F). The highest July temperature ever recorded was 112 F on July 27, 1998. The first week in May, three daily temperature records were broken or tied. November 1998 was the third warmest on record. For the year 1998, there were 73 days with maximum temperature >90 F, the third highest on record. For the 12-month period, 11 months were warmer than normal and 1 was cooler than normal. The summer (June, July, and August) and autumn (September, October, and November) of 1998 were the fourth warmest on record. 1998 was slightly wetter than normal. Precipitation totaled 6.45 in., 103% of normal (6.26 in.); snow-fall totaled 7.2 in., compared to the normal of 13.8 in. There were eight thunderstorms recorded at Hanford Meteorological Station in July 1998, tying 1983 for the most thunderstorms in July. The average wind speed during 1998 was 7.9 mph, 0.2 mph above normal (7.7 mph). There were 32 days with peak gusts {ge}40 mph, compared to a yearly average of 26 mph. The peak gust during the year was 56 mph from the south-southwest on November 21. November 1998 had a record number of days (10) with wind gusts {ge}40 mph. The heating-degree days for 1997-1998 were 4,523 (14% below the 5

  4. Metrological challenges for measurements of key climatological observables Part 2: oceanic salinity

    NASA Astrophysics Data System (ADS)

    Pawlowicz, R.; Feistel, R.; McDougall, T. J.; Ridout, P.; Seitz, S.; Wolf, H.

    2016-02-01

    Salinity is a key variable in the modelling and observation of ocean circulation and ocean-atmosphere fluxes of heat and water. In this paper, we examine the climatological relevance of ocean salinity, noting fundamental deficiencies in the definition of this key observable, and its lack of a secure foundation in the International System of Units, the SI. The metrological history of salinity is reviewed, problems with its current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10.

  5. A high-resolution global sea surface temperature climatology

    SciTech Connect

    Reynolds, R.W.; Smith, T.M.

    1995-06-01

    In response to the development of a new higher-resolution sea surface temperature (SST) analysis at the National Meteorological Center (NMC), a new monthly 1{degrees} global sea surface temperature climatology was constructed from two intermediate climatologies: the 2{degrees} SST climatology used a 30-yr 1950-1979 base period between roughly 40{degrees}S and 60{degrees}N based on in situ (ship and buoy) SST data supplemented by four years (1982-1985) of satellite SST retrievals, and sea-ice coverage data over a 12-yr period (1982-1993). The final climatology was combined from these two products so that a 1{degrees} resolution was maintained and the base period was adjusted to the 1950-1979 period wherever possible (approximately between 40{degrees}S and 60{degrees}N). Compared to the 2{degrees} climatology, the 1{degrees} climatology resolves equatorial upwelling and fronts much better. This leads to a better matching of the scales of the new analysis and climatology. In addition, because the magnitudes of large-scale features are consistently maintained in both the older 2{degrees} and the new 1{degrees} climatologies, climate monitoring of large-scale anomalies will be minimally affected by the analysis change. The use of 12 years of satellite SST retrievals makes this new climatology useful for many additional purposes because its effective resolution actually approaches 1{degrees} everywhere over the global ocean and because the mean SST values are more accurate south of 40{degrees}S than climatologies without these data. 12 refs., 16 figs.

  6. Climatology of fog in SW-Iceland

    NASA Astrophysics Data System (ADS)

    Barranco, Aurelio; Ólafsson, Haraldur

    2016-04-01

    The climatology of fog in Keflavik Airport in Southwest-Iceland has been investigated for the latter half of the 20th Century. Fog is twice as frequent in the late night than in the afternoon, suggesting important, but not dominating, impact of the diurnal cycle. There is large interannual variability in the frequency of fog, but no clear long-term trend. However, there is a clear shift in seasonal frequency; the period 1953-1977 had relatively frequent fog in the autumn, while 1978-1998, fog is relatively frequent in the spring and summer. This indicates sensitivity of the fog to mean sea surface temperatures. An attempt is made to assess frequency of fog in climate scenarii.

  7. Climatology of Urban-regional Systems

    NASA Technical Reports Server (NTRS)

    Pease, R. W.

    1971-01-01

    Urbanized areas have come to be significant if not dominant components of many regional land surfaces. They represent perhaps the most dramatic recent change man has made in his environment - a change that may well burgeon in the foreseeable future as greater percentages of world populations crowd into metropolitan areas. The climate of urban-regional systems is involved because temperature, air, and pollutants added to the air are significant aspects of this change. During the past two years, substantial progress has been made in the application of remote sensing techniques to the study of urban climatology by programs jointly sponsored by NASA and the United States Geological Survey. The initial effort has endeavored with considerable success to map terrestrial radiation emission or the general thermal state of the land surface with the aid of imaging radiometers (mechanical-optical scanners).

  8. Inner Radiation Belt Dynamics and Climatology

    NASA Astrophysics Data System (ADS)

    Guild, T. B.; O'Brien, P. P.; Looper, M. D.

    2012-12-01

    We present preliminary results of inner belt proton data assimilation using an augmented version of the Selesnick et al. Inner Zone Model (SIZM). By varying modeled physics parameters and solar particle injection parameters to generate many ensembles of the inner belt, then optimizing the ensemble weights according to inner belt observations from SAMPEX/PET at LEO and HEO/DOS at high altitude, we obtain the best-fit state of the inner belt. We need to fully sample the range of solar proton injection sources among the ensemble members to ensure reasonable agreement between the model ensembles and observations. Once this is accomplished, we find the method is fairly robust. We will demonstrate the data assimilation by presenting an extended interval of solar proton injections and losses, illustrating how these short-term dynamics dominate long-term inner belt climatology.

  9. Tohono O'odham Monsoon Climatology

    NASA Astrophysics Data System (ADS)

    Ackerman, G.

    2006-12-01

    The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.

  10. Climatological perspectives, oceanographic and meteorological, on variability in the subtropical convergence zone in the northwestern Atlantic

    NASA Technical Reports Server (NTRS)

    Hanson, Howard P.; Cornillon, Peter; Halliwell, George R., Jr.; Halliwell, Vicki

    1991-01-01

    The large-scale climatological environment of the Frontal Air-Sea Interaction Experiment (FASINEX) is described, with emphasis on the largest scales. Both long-term and annual sea surface temperature (SST) variability is discussed; a climatology of the west-central North Atlantic, derived from various sets of data obtained during the intensive phases of January-March, is presented, and the meteorological and oceanographic context for FASINEX is thus established. Surface marine observations and SST variability are discussed, and the marine meteorology of the FASINEX area is examined in terms of the surface pressure and winds, the sea-air temperature difference, and the cloud cover. Near 28 deg N in February is found to be a favorable time and place to observe large mean temperature gradients and downward Ekman pumping. The large-scale processes that set up the favorable environment for frontal activity are not limited to the winter months.

  11. Polar low climatology over the Nordic and Barents seas based on satellite passive microwave data

    NASA Astrophysics Data System (ADS)

    Smirnova, Julia E.; Golubkin, Pavel A.; Bobylev, Leonid P.; Zabolotskikh, Elizaveta V.; Chapron, Bertrand

    2015-07-01

    A new climatology of polar lows over the Nordic and Barents seas for 14 seasons (1995/1996-2008/2009) is presented. For the first time in climatological studies of polar lows an approach based on satellite passive microwave data was adopted for polar low identification. A total of 637 polar lows were found in 14 extended winter seasons by combining total atmospheric water vapor content and sea surface wind speed fields retrieved from Special Sensor Microwave/Imager data. As derived, the polar low activity in the Norwegian and Barents Seas is found to be almost equal, and the main polar low genesis area is located northeastward of the North Cape. For the Barents Sea, a significant correlation is found between the number of polar lows and mean sea ice extent. Individual indicative polar low characteristics (i.e., diameter, lifetime, distance traveled, translation speed, and maximum wind speed) are also presented.

  12. A Variational Analysis of Divergence Profiles Based upon Column-Integrated Mass, Moisture and Energetic Constraints with Satellite-Derived Boundary Fluxes

    NASA Technical Reports Server (NTRS)

    Lu, Huei-Lin; Robertson, Franklin R.

    2003-01-01

    A diagnostic study is made of the mean global divergent circulation based upon a constrained least action principle that minimizes column-integrated divergent kinetic energy subject to constraints on mass, moisture, available potential energy (ape) and total kinetic energy. The concept of gross moist stability was incorporated in the prescription of Lagrange weight function associated with the ape constraint in order to simulate the net effects of cumulus convective heating in the tropics. The variational analyses were validated satisfactorily with the original NCEP/NCAR-reanalysis divergence fields for the Septembers of 1987 and 1988. Further analyses show that in the tropical ascending regions, the analyzed divergences are dominated by the mass and ape constraints; the moisture constraint is implicitly satisfied while the kinetic energy constraint is highly dependent on the ape constraint. In the subtropical descending regions, the analyzed divergences are dominated by the mass, moisture and kinetic energy constraints; the ape constraint is implicitly satisfied. When the constraint integrals were blended with the satellite-derived boundary flux data from GPCP precipitation and ERBE/SRB radiation estimates, the newly analyzed divergences are significantly stronger than the reanalysis divergences in the areas where the estimates of precipitation rates are higher. With few exceptions, the increases in upper-layer divergences are coupled with nearly equal increases in lower-layer convergences.

  13. Uncertainties in climatological tropical humidity profiles: Some implications for estimating the greenhouse effect

    SciTech Connect

    Gutzler, D.S. )

    1993-05-01

    The vertical profile of water vapor, the principal infrared-absorbing gas in the atmosphere, is an important factor in determining the energy balance of the climate system. This study examines uncertainties in calculating a climatological humidity profile: specifically one derived from radiosonde data representative of the moist and highly convective region over the western tropical Pacific Ocean. Uncertainties in the humidity data are large in conditions of low temperature or low humidity in the mid- and upper troposphere. Results derived from a single United States station (Koror) and from an average of four United States-operated stations (all near the equator west of the date line) yield nearly identical results. No humidity measurements are reported in fully the upper third of the troposphere. The implications of these uncertainties for determining the climatological humidity profile are quantitatively assessed by bracketing the range of plausible assumptions for unreported humidity to produce extreme estimates of the climatological profile. These profiles, together with the observed climatological temperature profile, are used as input to a radiative transfer model to ascertain the uncertainty in clear-sky outgoing infrared radiance due to water vapor uncertainties. The radiance uncertainty is shown to be comparable in magnitude to the purely radiative response of the tropical atmosphere to doubling carbon dioxide. The uncertainty associated with unmeasured upper-tropospheric humidity is approximately equal to that arising from incompletely measured midtropospheric humidity. Clear-sky radiative uncertainties, however, are modest relative to the uncertainty associated with variations of infrared absorption due to clouds, as demonstrated by introducing citrus ice particles into the radiative transfer calculations.

  14. A climatology of air-sea interactions at the Mediterranean LION and AZUR buoys

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Bouin, Marie-Noëlle; Giordani, Hervé

    2014-05-01

    The LION and AZUR buoys (respectively at 42.1°N 4.7°E and 43.4°N 7.8°E) provide an extended data set since respectively 1999 and 2001 to present for studying air-sea interactions in the northwestern Mediterranean basin. The two buoys are located where high wind events occur (resp. north western and north easterly gale winds), that force and condition deep oceanic winter convection in that region. A short-term climatology (resp. 13 and 11 years) of air-sea interactions has been developed, which includes classical meteo-oceanic parameters, but also waves period and significant wave heights and radiative fluxes. Moreover turbulent surface fluxes have been estimated from various bulk parameterizations, in order to estimate uncertainties on fluxes. An important dispersion of turbulent fluxes is found at high wind speeds according to the parameterization used, larger than taking into account the second order effects of cool skin, warm layer and waves. An important annual cycle affects air temperatures (ATs), SSTs and turbulent fluxes at the two buoys. The annual cycle of ATs and SSTs can be well reconstructed from the first two annual harmonics, while for the turbulent heat fluxes the erratic occurrence of high and low flux events, well correlated with high/dry and low windy periods, strongly affect their annual and interannual cycles. The frequency of high surface heat fluxes and high wind stress is found highest during the autumn and winter months, despite the fact that north-westerly gale winds occur all year long at LION buoy. During calm weather period, ATs and SSTs experience an important diurnal cycle (on average 1 and 0.5°C respectively), that affect latent and sensible heat fluxes. Finally, an estimate of the interannual variability of the turbulent fluxes in Autumn and Winter is discussed, in order to characterize their potential role on deep ocean convection.

  15. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  16. Lightning climatology in the Congo Basin

    NASA Astrophysics Data System (ADS)

    Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.

    2016-09-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide Lightning Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with Lightning Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong activity from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very active region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).

  17. Tropical Tropospheric Ozone Climatology: Approaches Based on SHADOZ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Chatfield, Robert B.; Hudson, Robert D.; Andrade, Marcos; Coetzee, Geert J. R.; Posny, Francoise

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, , for 12 stations that span the entire equatorial zone [Thompson et al., JGR, 108,8238, 2003]. The most striking features of tropospheric ozone profiles in SHADOZ are: (1) persistent longitudinal variability in tropospheric ozone profiles, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; (2) intense short-term variability triggered by changing meteorological conditions and advection of pollution. The implications of these results for profile climatologies and trends are described along with several approaches to classifying ozone profiles: 1) Seasonal means during MAM (March-April-May) and SON (September-October-November); 2) Maxima and minima, identified through correlation of TOMS-derived TTO (tropical tropospheric ozone) column depth with the sonde integrated tropospheric ozone column; and 3) Meteorological regimes, a technique that is effective in the subtropics where tropical and mid-latitude conditions alternate.

  18. Updated population metadata for United States historical climatology network stations

    USGS Publications Warehouse

    Owen, T.W.; Gallo, K.P.

    2000-01-01

    The United States Historical Climatology Network (HCN) serial temperature dataset is comprised of 1221 high-quality, long-term climate observing stations. The HCN dataset is available in several versions, one of which includes population-based temperature modifications to adjust urban temperatures for the "heat-island" effect. Unfortunately, the decennial population metadata file is not complete as missing values are present for 17.6% of the 12 210 population values associated with the 1221 individual stations during the 1900-90 interval. Retrospective grid-based populations. Within a fixed distance of an HCN station, were estimated through the use of a gridded population density dataset and historically available U.S. Census county data. The grid-based populations for the HCN stations provide values derived from a consistent methodology compared to the current HCN populations that can vary as definitions of the area associated with a city change over time. The use of grid-based populations may minimally be appropriate to augment populations for HCN climate stations that lack any population data, and are recommended when consistent and complete population data are required. The recommended urban temperature adjustments based on the HCN and grid-based methods of estimating station population can be significantly different for individual stations within the HCN dataset.

  19. Situational Lightning Climatologies for Central Florida: Phase V

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2011-01-01

    The AMU added three years of data to the POR from the previous work resulting in a 22-year POR for the warm season months from 1989-2010. In addition to the flow regime stratification, moisture and stability stratifications were added to separate more active from less active lighting days within the same flow regime. The parameters used for moisture and stability stratifications were PWAT and TI which were derived from sounding data at four Florida radiosonde sites. Lightning data consisted of NLDN CG lightning flashes within 30 NM of each airfield. The AMU increased the number of airfields from nine to thirty-six which included the SLF, CCAFS, PAFB and thirty-three airfields across Florida. The NWS MLB requested the AMU calculate lightning climatologies for additional airfields that they support as a backup to NWS TBW which was then expanded to include airfields supported by NWS JAX and NWS MFL. The updated climatologies of lightning probabilities are based on revised synoptic-scale flow regimes over the Florida peninsula (Lambert 2007) for 5-, 10-, 20- and 30-NM radius range rings around the thirty-six airfields in 1-, 3- and 6-hour increments. The lightning, flow regime, moisture and stability data were processed in S-PLUS software using scripts written by the AMU to automate much of the data processing. The S-PLUS data files were exported to Excel to allow the files to be combined in Excel Workbooks for easier data handling and to create the tables and charts for the Gill. The AMU revised the Gill developed in the previous phase (Bauman 2009) with the new data and provided users with an updated HTML tool to display and manipulate the data and corresponding charts. The tool can be used with most web browsers and is computer operating system independent. The AMU delivered two Gills - one with just the PWAT stratification and one with both the PWAT and TI stratifications due to insufficient data in some of the PWATITI stratification combinations. This will allow

  20. Comparison of Satellite-Derived TOA Shortwave Clear-Sky Fluxes to Estimates from GCM Simulations Constrained by Satellite Observations of Land Surface Characteristics

    NASA Technical Reports Server (NTRS)

    Anantharaj, Valentine G.; Nair, Udaysankar S.; Lawrence, Peter; Chase, Thomas N.; Christopher, Sundar; Jones, Thomas

    2010-01-01

    Clear-sky, upwelling shortwave flux at the top of the atmosphere (S(sub TOA raised arrow)), simulated using the atmospheric and land model components of the Community Climate System Model 3 (CCSM3), is compared to corresponding observational estimates from the Clouds and Earth's Radiant Energy System (CERES) sensor. Improvements resulting from the use of land surface albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) to constrain the simulations are also examined. Compared to CERES observations, CCSM3 overestimates global, annual averaged S(sub TOA raised arrow) over both land and oceans. However, regionally, CCSM3 overestimates S(sub TOA raised arrow) over some land and ocean areas while underestimating it over other sites. CCSM3 underestimates S(sub TOA raised arrow) over the Saharan and Arabian Deserts and substantial differences exist between CERES observations and CCSM3 over agricultural areas. Over selected sites, after using groundbased observations to remove systematic biases that exist in CCSM computation of S(sub TOA raised arrow), it is found that use of MODIS albedo improves the simulation of S(sub TOA raised arrow). Inability of coarse resolution CCSM3 simulation to resolve spatial heterogeneity of snowfall over high altitude sites such as the Tibetan Plateau causes overestimation of S(sub TOA raised arrow) in these areas. Discrepancies also exist in the simulation of S(sub TOA raised arrow) over ocean areas as CCSM3 does not account for the effect of wind speed on ocean surface albedo. This study shows that the radiative energy budget at the TOA is improved through the use of MODIS albedo in Global Climate Models.

  1. Sprite climatology in the Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30 and 02:15 LST (22:30-00:15 UT; LST = UT + 2). The detection times of sprites are well-correlated with a relative increase in the fraction of + CG strokes, which exhibit maxima between 00:00 and 02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in Central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogenous types are slightly more frequent than mixed ones (55%). Our observations suggest winter Mediterranean thunderstorms to have a vertical structure in between high tropical convective systems and the lower cloud-top cells in Japan. The climatology shows the Eastern Mediterranean to be a major sprite producer in Northern Hemisphere winter, and offers ground-based coverage for future space missions.

  2. Sprite Climatology in the Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30-02:15 LST (22:30-00:15 UT; LST=UT+2). The detection times of sprites are well-correlated with a relative increase in the fraction of +CG strokes, which exhibit maxima between 00:00-02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogeneous types are slightly more frequent than mixed ones (55%). Our observations suggest winter East Mediterranean thunderstorms to have a vertical structure that is an intermediate type between high tropical convective systems and the lower cloud-top cells in winter thunderstorms over the Sea of Japan. The climatology shows that the Eastern Mediterranean is a major sprite producer during Northern Hemisphere winter, and thus the existing and future optical observation infrastructure in Israel offers ground-based coverage for upcoming space missions that aim to map global sprite activity.

  3. Tower Mesonetwork Climatology and Interactive Display Tool

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the 45th Weather Squadron and Spaceflight Meteorology Group use data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria, and issue and verify forecasts for ground operations. Systematic biases in these parameters could adversely affect an analysis, forecast, or verification. Also, substantial geographical variations in temperature and wind speed can occur under specific wind directions. To address these concerns, the Applied Meteorology Unit (AMU) developed a climatology of temperatures and winds from the tower network, and identified the geographical variation and significant tower biases. The mesoclimate is largely driven by the complex land-water interfaces across KSC/CCAFS. Towers with close proximity to water typically had much warmer nocturnal temperatures and higher wind speeds throughout the year. The strongest nocturnal wind speeds occurred from October to March whereas the strongest mean daytime wind speeds occurred from February to May. These results of this project can be viewed by forecasters through an interactive graphical user interface developed by the AMU. The web-based interface includes graphical and map displays of mean, standard deviation, bias, and data availability for any combination of towers, variables, months, hours, and wind directions.

  4. Ocean surface geostrophic circulation climatology and annual variations inferred from satellite altimetry and goce gravity data

    NASA Astrophysics Data System (ADS)

    Vigo, Isabel M.; Sánchez Reales, José M.; Trottini, Mario

    2015-04-01

    In this work we study for the first time absolute Surface Geostrophic Currents (SGC) variations using only satellite data. The proposed approach combines 18 years altimetry data, which provide reliable measurements of the Absolute Sea Level (ASL) height with a GOCE geoid model to obtain a Dynamic Topography with an unprecedented precision and accuracy. Our proposal allows overcoming the main limitations of existing approaches based solely on altimetry data (that suffer the lack of an independent reference to derive ASL maps), and approximations based on in-situ data (which are characterized by a sparse and non homogeneous coverage in time and space). Features of the SGC annual variations are also addressed. As a result of our study we provide a new climatology of absolute SGC in the form of a 52 weeks data set of surface current fields, gridded at a quarter degree longitude and latitude resolution resolving spatial scales as short as 140 km. For presentation, this data set is averaged monthly and the results, presented as monthly climatology, are compared with a climatology based on in-situ observations from drifter data.

  5. Ocean Surface Geostrophic Circulation Climatology and Annual Variations Inferred from Satellite Altimetry and GOCE Gravity Data

    NASA Astrophysics Data System (ADS)

    Sánchez-Reales, J. M.; Vigo, M. I.; Trottini, M.

    2016-03-01

    We have studied, for the first time, variations in absolute surface geostrophic currents (SGC) using satellite data only. The proposed approach combines 18 years' altimetry data, which provide reliable measurements of absolute sea level (ASL), with a gravity field and steady-state ocean circulation explorer geoid model to obtain dynamic topography, and achieves unprecedented precision and accuracy. Our proposal overcomes the main limitations of existing approaches based solely on altimetry data (which suffer from lack of an independent reference for derivation of ASL maps), and approximations based on in-situ data (which are characterized by a sparse and inhomogeneous coverage in time and space). Features of annual variations of SGC are also addressed. As a result of our study we provide new absolute SGC climatology in the form of a 52-week data set of surface current fields, gridded at quarter degree longitude and latitude resolution and resolving spatial scales as short as 140 km. For presentation, this data set is averaged monthly and the results, presented as monthly climatology, are compared with climatology based on in-situ observations from drifter data.

  6. Study of the consistency of climatological products of Nimbus-7

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1988-01-01

    The study, in addition to investigating the consistency of climatological products from Nimbus-7 Earth Radiation Budget and Temperature Humidity Infrared Radiometer experiments, focussed on the climatological analysis of the specified regions of the Earth. The climatological study consisted of the effects of various types of clouds on the net radiation, albedos, and emitted radiation. In addition to a correlational study for determining consistency level of data, a population study of the regions was formulated and conducted. The regions under this study were formed by clustering the target areas using the criteria of climatological conditions such as geography, ocean, and land. Research is limited to tropics from 18 deg north to 18 deg south. A correlational study indicates that there is high positive correlation between high clouds and albedo, and a reduced negative correlation between albedo and net radiation.

  7. Hanford Site Climatological Summary 2004 with Historical Data

    SciTech Connect

    Hoitink, Dana J.; Burk, Kenneth W.; Ramsdell, James V.; Shaw, William J.

    2005-06-03

    This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation.

  8. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Crane, R. G.

    1985-01-01

    A daily climatology of the atmospheric circulation of the Arctic and the associated cloud conditions were determined. These are used for comparisons with the variability of general circulation model, generated circulation, and cloud cover for the same region.

  9. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  10. Simulating a 40-year flood event climatology of Australia with a view to ocean-land teleconnections

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Andreadis, Konstantinos; Stampoulis, Dimitrios; Bates, Paul

    2015-04-01

    We develop, for the first time, a proof-of-concept version for a high-resolution global flood inundation model to generate a flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent at a native 1 km resolution. The objectives of our study includes (1) deriving an inundation climatology for a continent (Australia) as a demonstrator case to understand the requirements for expanding globally; (2) developing a test bed to assess the potential and value of current and future satellite missions (GRACE, SMAP, ICESat-2, AMSR-2, Sentinels and SWOT) in flood monitoring; and (3) answering science questions such as the linking of inundation to ocean circulation teleconnections. We employ the LISFLOOD-FP hydrodynamic model to generate a flood inundation climatology. The model will be built from freely available SRTM-derived data (channel widths, bank heights and floodplain topography corrected for vegetation canopy using ICESat canopy heights). Lakes and reservoirs are represented and channel hydraulics are resolved using actual channel data with bathymetry inferred from hydraulic geometry. Simulations are run with gauged flows and floodplain inundation climatology are compared to observations from GRACE, flood maps from Landsat, SAR, and MODIS. Simulations have been completed for the entire Australian continent. Additionally, changes in flood inundation have been correlated with indices related to global ocean circulation, such as the El Niño Southern Oscillation index. We will produce data layers on flood event climatology and other derived (default) products from the proposed model including channel and floodplain depths, flow direction, velocity vectors, floodplain water volume, shoreline extent and flooded area. These data layers will be in the form of simple vector and raster formats. Since outputs will be large in size we propose to upload them onto Google Earth under the GEE API license.

  11. LIVAS: a 3-D multi-wavelength aerosol/cloud climatology based on CALIPSO and EARLINET

    NASA Astrophysics Data System (ADS)

    Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.

    2015-01-01

    We present LIVAS, a 3-dimentional multi-wavelength global aerosol and cloud optical climatology, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. LIVAS database provides averaged profiles of aerosol optical properties for the potential space-borne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global climatology is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent spectral conversion factors for backscatter and extinction, derived from EARLINET ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversion factors are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO extinction and backscatter data correspondingly to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud climatology based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for space-borne lidar performance assessments. The final global climatology includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO data on a uniform grid of 1×1 degree with the original high vertical resolution of CALIPSO in order to ensure realistic simulations of the atmospheric variability in lidar end-to-end simulations.

  12. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    NASA Astrophysics Data System (ADS)

    Liu, G.; Liu, J.; Tarasick, D. W.; Fioletov, V. E.; Jin, J. J.; Moeini, O.; Liu, X.; Sioris, C. E.; Osman, M.

    2013-11-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1965 are used. The small number of stations results in a sparse geographical distribution. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal and annual averages can provide a global view of tropospheric ozone changes, although uncertainties with regard to the performance of older sonde types, as well as more recent variations in operating procedures, need to be taken into account.

  13. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    NASA Astrophysics Data System (ADS)

    Liu, G.; Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; Jin, J. J.; Moeni, O.; Liu, X.; Sioris, C. E.

    2013-05-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1962 are used. The small number of stations causes the set of ozone soundings to be sparse in geographical spacing. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically-based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal averages provides a global view of tropospheric ozone trends, which appear to be surprisingly modest over the last four decades.

  14. Exploring reanalysis application for the purposes of climatological applications at regional scale

    NASA Astrophysics Data System (ADS)

    Kaspar, F.; Kaiser-Weiss, A.; Obregon, A.; Borsche, M.

    2014-12-01

    drawn. Finally, the wind climatologies derived from the different reanalyses (ERA-Interim, ERA-20C, HErZ-COSMO) are compared with point measurements and gridded field climatologies derived from ground-based stations, illustrating the added value of the reanalysis fields.

  15. Dominance of ENSO-Like Variability in Controlling Tropical Ocean Surface Energy Fluxes in the Satellite Era

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Miller, T. L.; Bosilovich, M. G.

    2008-01-01

    Ocean surface turbulent and radiative fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Moreover, interannual to decadal climate variability depends crucially on the nature of these exchange processes. For example, addressing the question of the degree to which the global hydrologic cycle is changing depends on our ability to observe and model these fluxes accurately. In this work we investigate the interannual to decadal variation of fluxes over the global tropics, especially the tropical oceans. Recent versions of satellite-derived fresh water flux estimates as well as some reanalyses (e.g. products from Remote Sensing Systems, the Woods Hole Oceanographic Institute, and Global Precipitation Climatology Project) suggest that increases in evaporation and precipitation over the past 20 years exceed those expected on the basis of climate model projected responses to greenhouse gas forcing. At the same time, it is well known that E1 Nino / Southern Oscillation behavior in the Pacific exhibits significant variability at scales longer than interannual. We examine here the degree to which surface fluxes attending these interannual to decadal fluctuations are related to ENSO. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations.

  16. KoFlux: Korean Regional Flux Network in AsiaFlux

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  17. A tornado and waterspout climatology for Greece

    NASA Astrophysics Data System (ADS)

    Sioutas, Michalis V.

    2011-06-01

    The results of a systematic investigation and recording of tornado and waterspout occurrence in Greece for the 10-year period 2000-2009 are presented. This is the first database developed in Greece in an attempt to collect and record comprehensive information about tornadoes, waterspouts, funnel clouds, dust devils and other whirlwind phenomena. The primary research purpose of this database is to search, diagnose and record tornado and waterspout occurrences and identify their morphological and climatological features. Based on the 10-year data, a mean annual number of 1.1 tornadoes per unit area of 10 4 km 2, is depicted for Greece. The seasonality appears differently for various parts, with winter most active tornado season for western Greece and summer for northern Greece. Spatial distribution showed that tornadoes are more frequent over western Greece and the Ionian coasts with a local maximum over northwest Peloponnese. Waterspouts occur in both the Aegean and the Ionian Sea mostly in summer and autumn, with a peak in September, while a considerable geographical maximum is located over north off the shore of Iraklion, Crete Island. A preliminary estimate of probability of tornado occurrence for each of the 51 Greek prefectures plus the Mount Athos area, showed highest values for Kerkyra Island and Elias prefectures, western Greece. Analysis based on intensities as assessed by damage data, indicated that the majority of tornadoes reached T4 of the T-scale or F2 of the F-scale. Short wave trough is found as the most relevant synoptic circulation pattern to tornadic activity. Thermodynamic and wind parameters showed a wide range of values, suggesting that threat levels should be adjusted for various areas since tornadoes and waterspouts can occur in different environments.

  18. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  19. Snow density climatology across the former USSR

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.

    2014-04-01

    Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for linking snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density (bulk density) climatology and its spatiotemporal variations across the former Soviet Union (USSR) from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.22 ± 0.05 g cm-3 over the study area. The maximum and minimum monthly mean snow density was about 0.33 g cm-3 in June, and 0.14 g cm-3 in October, respectively. Maritime and ephemeral snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, on the coast of Arctic Russia, and the Kamchatka Peninsula, while the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966-2008) monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. There was a high correlation of snow density with elevation for tundra snow and snow density was highly correlated with latitude for prairie snow.

  20. Vortex Plastic Flow in Superconductors: Computing and Visualizing Dynamical Instabilities, Flux Cascades, Voltage Bursts, and the Derivation of Macroscopic Magnetic Quantities from the Microscopic Dynamics of Individual Flux Lines

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    1996-03-01

    Computer simulations can be a valuable tool for the analysis of the microscopic spatio-temporal dynamics of individual flux-lines in superconductors, lending insight to commonly measured bulk macroscopic quantities such as magnetization and critical currents. We have performed(In collaboration with C. Reichhardt, C.J. Olson, J. Groth, and S. Field, Phys. Rev. B 52), 10441 (1995); and preprints. extensive MD simulations of flux-gradient-driven flux lines (i.e., there is no artificial uniform external force on the vortices) as an external field H(t) is quasi-statically ramped up and down. We explore a wide variety of relevant parameters which are difficult to continuously tune experimentally, such as the density, strength, radius, and location of the pinning sites. We find a rich variety of behavior in which all these parameters play an important role. Our predictions (e.g., magnetization hysteresis loops) can be directly compared with commonly-measured experimental quantities. Among others, we study in detail samples (i) with twin boundaries, (ii) with a periodic array of pinning sites, (iii) in the Bose glass regime. We analyze both global (e.g., M(H), J_c(H)) and local (e.g., B(x,y,H(t)), M(x,y,H(t)), J_c(x,y,B)) measurable quantities. Our results elucidate the topological order dynamics of a driven plastic lattice interacting with a rigid disordered substrate, a problem that has recently attracted considerable attention. We characterize, and illustrate with a color video, dynamical instabilities (i.e., flux cascades, voltage bursts), as well as the evolution of the topological order and vortex flow paths (``vortex streets" surrounded by regions of pinned flux).

  1. Ammonia fluxes in relation to cutting and fertilization of an intensively managed grassland derived from an inter-comparison of gradient measurements

    NASA Astrophysics Data System (ADS)

    Milford, C.; Theobald, M. R.; Nemitz, E.; Hargreaves, K. J.; Horvath, L.; Raso, J.; Dämmgen, U.; Neftel, A.; Jones, S. K.; Hensen, A.; Loubet, B.; Cellier, P.; Sutton, M. A.

    2009-05-01

    Quantification of ammonia (NH3) land-atmosphere exchange is required for atmospheric modelling and assessment of nitrogen deposition, yet flux measurement methods remain highly uncertain. To address this issue, a major inter-comparison of ammonia fluxes over intensively managed grassland was conducted during the GRAMINAE Integrated Experiment held in Braunschweig, Germany. In order to provide a robust dataset of ammonia exchange with the vegetation, four independent continuous flux gradient systems were operated. Three independently operated continuous wet denuders systems (AMANDA) were compared with a Wet Effluent Diffusion Denuder (mini-WEDD) system. Measurements were made at two distances from an adjacent livestock farm, allowing effects of advection to be quantified in a real landscape setting. Data treatment included filtering for instrument failure, disturbed wind sectors and unsuitable micrometeorological conditions, with corrections made for storage and advection errors. The inter-comparison demonstrated good agreement in measured ammonia concentrations and fluxes (relative standard error <20%) for some periods, although the performance of the ammonia analyzers were variable, with much poorer agreement on particular days. However, by using four systems, the inter-comparison was able to provide a robust mean estimate of continuous ammonia fluxes through the experiment. The observed fluxes were: a) small bi-directional fluxes prior to cutting (-64 to 42 ng NH3 m-2 s-1), b) larger diurnally-varying emissions following cutting (-49 to 703 ng NH3 m-2 s-1) and c) much larger emissions following fertilizer application (0 to 3820 ng NH3 m-2 s-1). The results are a salutary reminder of the uncertainty in unreplicated ammonia flux measurements, while the replication of the present study provides a uniquely robust dataset for the evaluation of ammonia exchange processes. It is clear that consistently reliable determination of ammonia concentrations remains the major

  2. Comparison of three methods to derive canopy-scale flux measurements above a mixed oak and hornbeam forest in Northern Italy

    NASA Astrophysics Data System (ADS)

    Acton, William; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Mentel, Thomas; Tomlinson, Sam; Dragosits, Ulrike; Hewitt, Nicholas; Nemitz, Eiko

    2015-04-01

    Plants emit a wide range of Biogenic Volatile Organic Compounds (BVOCs) into the atmosphere. These BVOCs are a major source of reactive carbon into the troposphere and play an important role in atmospheric chemistry by, for example, acting as an OH sink and contributing to the formation of secondary organic aerosol. While the emission rates of some of these compounds are relatively well understood, large uncertainties are still associated with the emission estimates of many compounds. Here the fluxes and mixing ratios of BVOCs recorded during June/July 2012 over the Bosco Fontana forest reserve in northern Italy are reported and discussed, together with a comparison of three methods of flux calculation. This work was carried out as a part of the EC FP7 project ECLAIRE (Effects of Climate Change on Air Pollution and Response Strategies for European Ecosystems). The Bosco Fontana reserve is a semi natural deciduous forest dominated by Carpinus betulus (hornbeam), Quercus robur (pedunculate oak) and Quercus rubra (northern red oak). Virtual disjunct eddy covariance measurements made using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) were used to calculate fluxes and mixing ratios of BVOCs above the forest canopy at Bosco Fontana. BVOC mixing ratios were dominated by methanol with acetaldehyde, acetone, acetic acid, isoprene, the sum of methyl vinyl ketone and methacrolein, methyl ethyl ketone and monoterpenes also recorded. A large flux of isoprene was observed as well as significant fluxes of monoterpenes, methanol, acetaldehyde and methyl vinyl ketone / methacrolein. The fluxes recorded using the PTR-MS and PTR-ToF-MS showed good agreement. Comparison of the isoprene fluxes calculated using these instruments also agreed well with fluxes modelled using the MEGAN algorithms (Guenther et al. 2006). The detailed tree distribution maps for the forest at Bosco Fontana compiled by Dalponte et

  3. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  4. Image processing software for providing radiometric inputs to land surface climatology models

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Goetz, Scott J.; Strebel, Donald E.; Hall, Forrest G.

    1989-01-01

    During the First International Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), 80 gigabytes of image data were generated from a variety of satellite and airborne sensors in a multidisciplinary attempt to study energy and mass exchange between the land surface and the atmosphere. To make these data readily available to researchers with a range of image data handling experience and capabilities, unique image-processing software was designed to perform a variety of nonstandard image-processing manipulations and to derive a set of standard-format image products. The nonconventional features of the software include: (1) adding new layers of geographic coordinates, and solar and viewing conditions to existing data; (2) providing image polygon extraction and calibration of data to at-sensor radiances; and, (3) generating standard-format derived image products that can be easily incorporated into radiometric or climatology models. The derived image products consist of easily handled ASCII descriptor files, byte image data files, and additional per-pixel integer data files (e.g., geographic coordinates, and sun and viewing conditions). Details of the solutions to the image-processing problems, the conventions adopted for handling a variety of satellite and aircraft image data, and the applicability of the output products to quantitative modeling are presented. They should be of general interest to future experiment and data-handling design considerations.

  5. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids.

    PubMed

    Jordà, Joel; de Jesus, Sérgio S; Peltier, Solenne; Ferrer, Pau; Albiol, Joan

    2014-01-25

    The yeast Pichia pastoris has emerged as one of the most promising yeast cell factories for the production of heterologous proteins. The readily available genetic tools and the ease of high-cell density cultivations using methanol or glycerol/methanol mixtures are among the key factors for this development. Previous studies have shown that the use of mixed feeds of glycerol and methanol seem to alleviate the metabolic burden derived from protein production, allowing for higher specific and volumetric process productivities. However, initial studies of glycerol/methanol co-metabolism in P. pastoris by classical metabolic flux analyses using (13)C-derived Metabolic Flux Ratio (METAFoR) constraints were hampered by the reduced labelling information obtained when using C3:C1 substrate mixtures in relation to the conventional C6 substrate, that is, glucose. In this study, carbon flux distributions through the central metabolic pathways in glycerol/methanol co-assimilation conditions have been further characterised using biosynthetically directed fractional (13)C labelling. In particular, metabolic flux distributions were obtained under 3 different glycerol/methanol ratios and growth rates by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids using the software tool (13)CFlux2. Specifically, cells were grown aerobically in chemostat cultures fed with 80:20, 60:40 and 40:60 (w:w) glycerol/methanol mixtures at two dilutions rates (0.05 hour(-1) and 0.16 hour(-1)), allowing to obtain additional data (biomass composition and extracellular fluxes) to complement pre-existing datasets. The performed (13)C-MFA reveals a significant redistribution of carbon fluxes in the central carbon metabolism as a result of the shift in the dilution rate, while the ratio of carbon sources has a lower impact on carbon flux distribution in cells growing at the same dilution rate. At low growth rate, the percentage of methanol directly dissimilated to CO2 ranges

  6. A climatology of Central American Gyres

    NASA Astrophysics Data System (ADS)

    Papin, Philippe P.

    Central American gyres (CAGs) are large, low-level, cyclonic circulations that are observed over Central America during the tropical cyclone (TC) season. CAGs often occur in conjunction with TCs, and can result in torrential rainfall over portions of Central America, the Caribbean Islands, and eastern United States. The lack of prior research on CAGs, their apparent links to TC activity, and their association with high- impact weather motivates this study. To study CAG occurrence, an algorithm was developed to identify cyclonic circulations possessing similar characteristics to monsoon depressions (MDs) and monsoon gyres (MGs) in other ocean basins. This algorithm also includes a series of tests that distinguishes CAG events from large TCs and non-closed circulations. This algorithm was run between May-November 1980-2010 using the National Centers for Environmental Prediction Climate Forecast System Reanalysis 0.5o gridded dataset to produce the CAG climatology. 42 CAGs were classified (˜1.4 per season) with a bimodal distribution of occurrence favoring the early (May-Jun) and late (Sep-Nov) TC season. Stratification of CAG occurrence by the phase of the Madden Julian Oscillation (MJO) shows that over 75% of all CAGs develop in phases 8,1, and 2. A gyre-relative, time-lagged, CAG composite analysis is performed on CAG cases spanning from three days prior to two days after CAG formation. Positive low-level geopotential height anomalies are present in the east Pacific and Atlantic basins and are associated with anomalous low-level flow before the formation of the CAG. This results in increasing cyclonic vorticity near anomalously high precipitable water over Central America, a pattern that aids the generation of deep convection and the broad closed low-level cyclonic circulation that defines the CAG. CAGs are also split into two subsets using potential vorticity (PV) on the 350K isentropic surface. Tropical CAGs possess upper-tropospheric ridging associated with low

  7. Design and operation - Surface flux measurements in FIFE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Verma, Shashi B.; Fritschen, L. J.; Gurney, R. J.; Hsu, A. T.

    1990-01-01

    A general overview of the structure, technology, and methodology of the investigation of surface flux is presented for the First International Satellite Land-Surface Climatology Project Field Experiment. The paper examines the placement of stations, choice of constants, instruments, and micrometeorological techniques, the information system, and comparisons between the data from the sensors and data from different sites. The differences between sites are generally small, and a similarity is noted in the magnitude of fluxes across all sites.

  8. A global climatology of stratosphere-troposphere exchange using the ERA-interim dataset from 1979 to 2011

    NASA Astrophysics Data System (ADS)

    Skerlak, B.; Sprenger, M.; Wernli, H.

    2013-05-01

    In this study we use the ERA-Interim reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) and a refined version of a previously developed Lagrangian methodology to compile a global 33 year climatology of stratosphere-troposphere exchange (STE) from 1979 to 2011. Fluxes of mass and ozone are calculated across the tropopause, pressure surfaces in the troposphere, and the top of the planetary boundary layer (PBL). This climatology provides a state-of-the-art quantification of the geographical distribution of STE and the preferred transport pathways, and insight into the temporal evolution of STE during the last 33 yr. We confirm the distinct zonal and seasonal asymmetry found in previous studies using comparable methods. The subset of "deep STE", where stratospheric air reaches the PBL within 4 days or vice versa, shows especially strong geographical and seasonal variations. The global hotspots for deep STE are found along the west coast of North America and over the Tibetan Plateau, especially in boreal winter and spring. An analysis of the time series reveals significant positive trends of the net downward mass flux and of deep STE in both directions. The downward ozone flux across the tropopause is dominated by the seasonal cycle of ozone concentrations at the tropopause and peaks in summer, when the mass flux is nearly at its minimum. For the subset of deep STE events, the situation is reversed and the downward ozone flux into the PBL is dominated by the mass flux and peaks in early spring. Thus surface ozone concentration along the west coast of North America and around the Tibetan Plateau are likely to be influenced by deep stratospheric intrusions. Quantitatively, all our results depend on the minimum residence time τ used to filter out transient STE trajectories. This dependence is shown to be a~power law with exponents ranging between -0.44 and -0.87 for mass and ozone fluxes in both directions.

  9. Mapping Atmospheric Moisture Climatologies across the Conterminous United States.

    PubMed

    Daly, Christopher; Smith, Joseph I; Olson, Keith V

    2015-01-01

    Spatial climate datasets of 1981-2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981-2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981-2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4

  10. Mapping Atmospheric Moisture Climatologies across the Conterminous United States

    PubMed Central

    Daly, Christopher; Smith, Joseph I.; Olson, Keith V.

    2015-01-01

    Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981–2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m

  11. The QCRad Value Added Product: Surface Radiation Measurement Quality Control Testing, Including Climatology Configurable Limits

    SciTech Connect

    Long, CN; Shi, Y

    2006-09-01

    This document describes the QCRad methodology, which uses climatological analyses of the surface radiation measurements to define reasonable limits for testing the data for unusual data values. The main assumption is that the majority of the climatological data are “good” data, which for field sites operated with care such as those of the Atmospheric Radiation Measurement (ARM) Program is a reasonable assumption. Data that fall outside the normal range of occurrences are labeled either “indeterminate” (meaning that the measurements are possible, but rarely occurring, and thus the values cannot be identified as good) or “bad” depending on how far outside the normal range the particular data reside. The methodology not only sets fairly standard maximum and minimum value limits, but also compares what we have learned about the behavior of these instruments in the field to other value-added products (VAPs), such as the Diffuse infrared (IR) Loss Correction VAP (Younkin and Long 2004) and the Best Estimate Flux VAP (Shi and Long 2002).

  12. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  13. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel - annual budgets and seasonality

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Issoufou, H. B.-A.; Boulain, N.; Ramier, D.; Mainassara, I.; Charvet, G.; Boucher, M.; Chazarin, J.-P.; Oï, M.; Yahou, H.; Maidaji, B.; Arpin-Pont, F.; Benarrosh, N.; Mahamane, A.; Nazoumou, Y.; Favreau, G.; Seghieri, J.

    2014-12-01

    In the sub-Saharan Sahel, energy and water cycling at the land surface is pivotal for the regional climate, water resources and land productivity, yet it is still very poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of long-term average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt: rainfed millet crop and fallow bush. These estimates build on the combination of a 7-year field data set from two typical plots in southwestern Niger with detailed physically based soil-plant-atmosphere modeling, yielding a continuous, comprehensive set of water and energy flux and storage variables over this multiyear period. In the present case in particular, blending field data with mechanistic modeling makes the best use of available data and knowledge for the construction of the multivariate time series. Rather than using the model only to gap-fill observations into a composite series, model-data integration is generalized homogeneously over time by generating the whole series with the entire data-constrained model simulation. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to sub-seasonal scales from the time series produced. Similarities and differences in the two ecosystem behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82-85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40-60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. Their significance and the benefits they gain from the innovative data-model integration approach are thoroughly discussed

  14. Comparing momentum and mass (aerosol source function) fluxes for the North Atlantic and the European Arctic using different parameterizations

    NASA Astrophysics Data System (ADS)

    Wróbel, Iwona; Piskozub, Jacek

    2016-04-01

    Wind speed has a disproportionate role in the forming of the climate as well it is important part in calculate of the air-sea interaction thanks which we can study climate change. It influences on mass, momentum and energy fluxes and the standard way of parametrizing those fluxes is use this variable. However, the very functions used to calculate fluxes from winds have evolved over time and still have large differences (especially in the case of aerosol sources function). As we have shown last year at the EGU conference (PICO presentation EGU2015-11206-1) and in recent public article (OSD 12,C1262-C1264,2015) there is a lot of uncertainties in the case of air-sea CO2 fluxes. In this study we calculated regional and global mass and momentum fluxes based on several wind speed climatologies. To do this we use wind speed from satellite data in FluxEngine software created within OceanFlux GHG Evolution project. Our main area of interest is European Arctic because of the interesting air-sea interaction physics (six-monthly cycle, strong wind and ice cover) but because of better data coverage we have chosen the North Atlantic as a study region to make it possible to compare the calculated fluxes to measured ones. An additional reason was the importance of the area for the North Hemisphere climate, and especially for Europe. The study is related to an ESA funded OceanFlux GHG Evolution project and is meant to be part of a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). We have used a modified version FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) for calculating trace gas fluxes to derive two purely wind driven (at least in the simplified form used in their parameterizations) fluxes. The modifications included removing gas transfer velocity formula from the toolset and replacing it with the respective formulas for momentum transfer and mass (aerosol production

  15. Aerodynamic Temperature Derived from Flux-Profile Measurements and Two-Source Model Predictions over a Cotton Row Crop in an Advective Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface aerodynamic temperature (SAT) is related to the atmospheric forcing conditions (radiation, wind speed and air temperature) and surface conditions. SAT is required in the bulk surface resistance equation to calculate the rate of sensible heat flux exchange. SAT cannot be measured directly...

  16. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    SciTech Connect

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan; Martin, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven C.

    2009-01-28

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated

  17. Wind Climate Analyses for SRTC's Central Climatology Site

    SciTech Connect

    Weber, A.H.

    2003-06-23

    This report was written to present climatological summaries of the wind data at the Central Climatology (CC) tower in a convenient format and to point out some features of the wind speed and direction that have not been widely appreciated in the past. Short-term (two-week) wind roses provide a means to demonstrate the temporal and spatial relationships that wind speed and direction undergo using a ten-year database from the CC tower. These relationships are best demonstrated by examining the figures provided in this report or looking at loops of computer-generated images provided by the authors.

  18. A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011

    NASA Astrophysics Data System (ADS)

    Škerlak, B.; Sprenger, M.; Wernli, H.

    2014-01-01

    In this study we use the ERA-Interim reanalysis data set from the European Centre for Medium-Range Weather Forecasts (ECMWF) and a refined version of a previously developed Lagrangian methodology to compile a global 33 yr climatology of stratosphere-troposphere exchange (STE) from 1979 to 2011. Fluxes of mass and ozone are calculated across the tropopause, pressure surfaces in the troposphere, and the top of the planetary boundary layer (PBL). This climatology provides a state-of-the-art quantification of the geographical distribution of STE and the preferred transport pathways, as well as insight into the temporal evolution of STE during the last 33 yr. We confirm the distinct zonal and seasonal asymmetry found in previous studies using comparable methods. The subset of "deep STE", where stratospheric air reaches the PBL within 4 days or vice versa, shows especially strong geographical and seasonal variations. The global hotspots for deep STE are found along the west coast of North America and over the Tibetan Plateau, especially in boreal winter and spring. An analysis of the time series reveals significant positive trends of the net downward mass flux and of deep STE in both directions, which are particularly large over North America. The downward ozone flux across the tropopause is dominated by the seasonal cycle of ozone concentrations at the tropopause and peaks in summer, when the mass flux is nearly at its minimum. For the subset of deep STE events, the situation is reversed and the downward ozone flux into the PBL is dominated by the mass flux and peaks in early spring. Thus surface ozone concentration along the west coast of North America and around the Tibetan Plateau are likely to be influenced by deep stratospheric intrusions. We discuss the sensitivity of our results on the choice of the control surface representing the tropopause, the horizontal and vertical resolution of the trajectory starting grid, and the minimum residence time τ used to filter

  19. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  20. Impacts of atmospheric and oceanic resolution on the tropical Pacific climatology simulated by GFDL's new climate models

    NASA Astrophysics Data System (ADS)

    Wittenberg, A. T.; Vecchi, G. A.; Delworth, T. L.; Rosati, A.; Anderson, W.; Zeng, F. J.

    2014-12-01

    We examine impacts of atmospheric and oceanic grid refinement on simulations of the tropical Pacific climatology, using a series of high-resolution global coupled GCMs recently developed at GFDL. Starting from the CM2.1 model developed for CMIP3, the new models progressively refine the horizontal grid spacing in the atmosphere by a factor of five (CM2.5-FLOR), and additionally in the ocean by factors of four (CM2.5) and ten (CM2.6). The atmospheric refinement is found to substantially improve the coupled simulation's tropical Pacific climatology of SST, rainfall, surface pressure, winds, coastal upwelling, and upper-ocean temperature and salinity -- and also reduces the net air-sea heat flux into the ocean near the equator, indicating reduced ocean-dynamical cooling due to weaker trade winds. Oceanic refinement, in contrast, results in much less improvement to the simulated surface climatology -- and in some respects actually degrades the simulation, for example by over-intensifying the thermal stratification of the equatorial upper ocean. This suggests that in the more strongly-eddying regimes permitted by higher resolution, some of the ocean component's physical parameterizations may need retuning or reformulation. The causes of these various sensitivities are discussed, along with avenues toward future improvements.

  1. Canadian Network for Isotopes in Precipitation (CNIP)and Isotope Climatology and Hydroclimatology in Canada

    NASA Astrophysics Data System (ADS)

    Birks, S. J.; Edwards, T. W.; Gibson, J. J.

    2002-12-01

    The distribution of stable isotopes in precipitation provides fundamental information about the partitioning of the global atmospheric water budget, and hence about key aspects of Earth's climate, that cannot be discerned using other means. Although continuing demand exists for monitoring of isotopes in precipitation to define isotopic input functions for local hydrologic studies or for calibration of isotopic indicators of paleoclimate, based on longterm averages and climatological norms, awareness is also growing of the significant value of the monthly snapshots of the precipitation isotope field provided by the IAEA/WMO Global Network for Isotopes in Precipitation and its affiliated national networks as benchmark maps of the ongoing and dynamic evolution of the global water cycle. An initiative within the Canadian Network for Isotopes in Precipitation program includes development of a spatial and temporal database incorporating Canadian data to create a gridded isotope overlay compatible with gridded pressure and flux field data from the NCAR/CDAS Re-analysis Project. This database includes interpolated fields of our current best approximations of climatological isotopic means in addition to the original monthly data for the period 1997-2000. Studies are underway to test the sensitivity of the isotope-climate signal in precipitation to changes in these parameters utilizing perturbations in local climate arising from the El Nino/Southern Oscillation (ENSO). Intriguing results have been obtained from preliminary studies incorporating pressure and flux field data for the 1997-98 El Nino with CNIP isotope overlays. The strongest climate anomalies were found during the winter following the 1997 El Nino event, consistent with the expected strengthening of the Pacific North American pattern during this period. Comparisons of the isotopic fields with climate fields illustrate the complexity and dynamic nature of isotope climate not evident in time-series of data from

  2. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    NASA Astrophysics Data System (ADS)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  3. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  4. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    NASA Technical Reports Server (NTRS)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  5. A Comparative Study of Wave Forcing Derived from Era-40 and Era-Interim

    NASA Astrophysics Data System (ADS)

    Bracegirdle, T.; Lu, H.; Phillips, T.; Turner, J.

    2014-12-01

    This study examines the wave forcing estimated from the ERA-40 and ERA-Interim reanalyses during northern winter. The discrepancies in the wave forcing are most significant at high latitudes and are marked by vertically alternating positive-negative anomalies of the Eliassen-Palm (E-P) flux divergence. In the stratosphere, the discrepancies intensify with altitude and expand equatorwards in the upper stratosphere. They are mainly associated with the vertical E-P fluxes and due primarily to differences in the climatology. The magnitude of discrepancies is about 20-40% of the climatology derived from ERA-Interim and can be greater than the interannual variability of the E-P flux divergence in certain regions. The dynamical implications of these discrepancies on the Brewer-Dobson circulation are also studied. A sudden drop in the 100hPa poleward eddy heat flux is detected in ERA-40 over subtropical oceans after the 1990/1991 northern winter. It is likely related to the bias corrections applied to the infrared radiances from the NOAA-12 High-resolution Infrared Radiation Sounder, which was known to be contaminated by volcanic aerosol from the eruption of Mt. Pinatubo. A sudden increase in 10hPa poleward eddy heat flux is detected in ERA-Interim at high latitudes after the 1997/1998 winter, likely due in part to the use of uncorrected radiances from the NOAA-15 Advanced Microwave Sounding Units. These sudden changes induced artificial trends in stratospheric wave forcing in the affected reanalysis.

  6. Validating soil denitrification models based on laboratory N_{2} and N_{2}O fluxes and underlying processes derived by stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Müller, Carsten; Müller, Christoph; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole

    2016-04-01

    Robust denitrification data suitable to validate soil N2 fluxes in denitrification models are scarce due to methodical limitations and the extreme spatio-temporal heterogeneity of denitrification in soils. Numerical models have become essential tools to predict denitrification at different scales. Model performance could either be tested for total gaseous flux (NO + N2O + N2), individual denitrification products (e.g. N2O and/or NO) or for the effect of denitrification factors (e.g. C-availability, respiration, diffusivity, anaerobic volume, etc.). While there are numerous examples for validating N2O fluxes, there are neither robust field data of N2 fluxes nor sufficiently resolved measurements of control factors used as state variables in the models. To the best of our knowledge there has been only one published validation of modelled soil N2 flux by now, using a laboratory data set to validate an ecosystem model. Hence there is a need for validation data at both, the mesocosm and the field scale including validation of individual denitrification controls. Here we present the concept for collecting model validation data which is be part of the DFG-research unit "Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)" starting this year. We will use novel approaches including analysis of stable isotopes, microbial communities, pores structure and organic matter fractions to provide denitrification data sets comprising as much detail on activity and regulation as possible as a basis to validate existing and calibrate new denitrification models that are applied and/or developed by DASIM subprojects. The basic idea is to simulate "field-like" conditions as far as possible in an automated mesocosm system without plants in order to mimic processes in the soil parts not significantly influenced by the rhizosphere (rhizosphere soils are studied by other DASIM projects). Hence, to allow model testing in a wide range of conditions

  7. Climatology of wave breaking and mixing in the Northern Hemisphere summer stratosphere

    SciTech Connect

    Wagner, R.E.

    1999-07-02

    The cause of large zonal ozone variations observed by POAM II (Polar Ozone and Aerosol Measurement II) in the Northern Hemisphere (NH) summer stratosphere between 55N-65N and 20-30 km is investigated using the United Kingdom Meteorological Office stratospheric data set with time-mean anomalies removed. This study tests the hypothesis from Hoppel et al. 1999 that breaking of westward-propagating planetary waves in the region of maximum ozone variance (RMV) induces substantial meridional transport which is responsible for the observed ozone variance. EP-flux vectors show that wave activity propagates vertically from source regions in the lower midlatitude troposphere into the stratosphere and RMV during the NH summer. In the RMV, EP-flux divergence is clearly nonzero, which means the zonal-mean zonal flow is forced by waves in this region. Close examination of individual zonal wavenumber contributions to the climatological monthly-mean EP-flux divergence shows that wavenumbers 1-5 generally account for over 90% of the forcing of the zonal-mean flow in the RMV from June to August.

  8. Global cloud climatology from surface observations

    SciTech Connect

    Warren, S.

    1995-09-01

    Surface weather observations from stations on land and ships in the ocean are used to obtain the global distribution, at 5{sup o}x5{sup o} latitude-longitude resolution, of total cloud cover and the average amounts of the different cloud types: cumulus, cumulonimbus, stratus, stratocumulus, nimbostratus, altostratus, altocumulus, cirrus, cirrostratus, cirrocumulus, and fog. Diurnal and seasonal variations are derived, as well as interannual variations and multi-year trends. 3 refs., 3 figs.

  9. Fire Weather Index : from high resolution climatology to Climate change impact study

    NASA Astrophysics Data System (ADS)

    Cloppet, E.; Regimbeau, M.

    2010-09-01

    Fire meteo indices provide efficient guidance tools for the prevention, early warning and surveillance of forest fires. These indices are only based on meteorological input data. Fire meteorological danger is estimated by Météo-France at national level through the use of Fire Weather Index. This study deals with the impact of climate change on fire danger in France. It has been motivated by the numerous forest fires during the 2003 drought and it aims at finding whether such events will be more frequent in the future. The first step of this project was to produce a high resolution FWI climatology. Safran model has been used to derive a 50-year hydrometeorological reanalysis, running from 1958 to 2008, on a 8 km regular grid. This reanalysis has been used in order to assess a long-term trend (a statistically significant increase in FWI for France). Then climate change potential impact on forest fire risk has been studied with climate change scenarios (ARPEGE V4 model with 3 emissions scenarios : A1B, A2 and B1) with special focus on downscaling and correction methods. Quantile-quantile normalization approach has been applied in order to calculate daily FWI from 2030 to 2100. Observed climatology (1958-2008 reanalysis on a 8km grid) has been compared to model climatology. Correction method has been applied for each statistical threshold. This method allowed us to produce downscaled FWI data and to study climate change impact at 8 km resolution. Trends are very clear for FWI and in terms of total number of daily FWI above a threshold. We can expect a huge increase in forest fire risk by 2060. All the French territory could face an average fire risk currently observed on Mediterranean area only. According to A2 and A1B scenarios, the year 2003 could become in France the standard in terms of fire risk by 2060.

  10. A new aircraft hurricane wind climatology and applications in assessing the predictive skill of tropical cyclone intensity using high-resolution ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.

    2015-07-01

    Hurricane surface wind is a key measure of storm intensity. However, a climatology of hurricane winds is lacking to date, largely because hurricanes are relatively rare events and difficult to observe over the open ocean. Here we present a new hurricane wind climatology based on objective surface wind analyses, which are derived from Stepped Frequency Microwave Radiometer measurements acquired by NOAA WP-3D and U.S. Air Force WC-130J hurricane hunter aircraft. The wind data were collected during 72 aircraft reconnaissance missions into 21 western Atlantic hurricanes from 1998 to 2012. This climatology provides an opportunity to validate hurricane intensity forecasts beyond the simplistic maximum wind speed metric and allows evaluating the predictive skill of probabilistic hurricane intensity forecasts using high-resolution model ensembles. An example of application is presented here using a 1.3 km grid spacing Weather Research and Forecasting model ensemble forecast of Hurricane Earl (2010).

  11. A climatological description of the Savannah River Site

    SciTech Connect

    Hunter, C.H.

    1990-05-22

    This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site or near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.

  12. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  13. Biologically effective surface UV climatology at Rome and Aosta, Italy

    NASA Astrophysics Data System (ADS)

    Siani, Anna Maria; Modesti, Sarah; Casale, Giuseppe Rocco; Diemoz, Henri; Colosimo, Alfredo

    2013-05-01

    Given the beneficial and harmful effects of UV radiation on human health, our study aims to provide a characterization of erythemal and vitamin D dose rates at two Italian sites, Rome and Aosta, subject to quite different environmental conditions. Based on the respective UV climatologies, exposure times needed to induce erythema or vitamin D photoproduction are provided as a function of the UV index.

  14. Are climatological correlations with the Hale double sunspot cycle meaningful?

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Herman, J. R.

    1975-01-01

    A sunspot cycle which may have been subject to a predicted phase reversal between 1800 and 1880 A. D is discussed. Several climatological parameters normally correlated with this cycle are examined and do not exhibit a corresponding phase reversal during this period. It is proposed that this apparent discrepancy can be resolved by suitable observations during the upcoming half decade.

  15. Some Spatial Aspects of Southeastern United States Climatology.

    ERIC Educational Resources Information Center

    Soule, Peter T.

    1998-01-01

    Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)

  16. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    NASA Astrophysics Data System (ADS)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  17. An Aircraft-Based Upper Troposphere Lower Stratosphere O3, CO, and H2O Climatology for the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.; Hinsta, E. J.; Loewenstein, M.; Lopez, J.; Paige, M. E.; Pittman, J. V.; Podolske, J. R.; Proffitt, M. R.; Sachse, G. W.; Schiller, C.; Schlager, H.; Smith, J.; Spelten, N.; Webster, C.; Weinheimer, A.; Zondlo, M. A.

    2010-01-01

    We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation

  18. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    NASA Astrophysics Data System (ADS)

    Popp, C.; Wang, P.; Brunner, D.; Stammes, P.; Zhou, Y.; Grzegorski, M.

    2011-03-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA) data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near-infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS) derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80) and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006) of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU) algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric trace gas

  19. Climatological aspects of drought in Ohio

    SciTech Connect

    Rogers, J.C. )

    1993-06-01

    Precipitation and Palmer hydrological drought index (PHDI) data have been used to identify past occurrences of Ohio drought, to illustrate the temporal variability occurring statewide within dry periods, and to compare some of the key dry spells to those of 1987-88 and 1991-92. Periods of hydrologic drought and low precipitation generally persist for 2 to 5 years and tend to cluster in time, such as occurred from 1930-1966. It is not uncommon for precipitation to return to normal or near normal conditions while short-term drought persists in terms of streamflow, ground water supply, and runoff, as measured by the PHDI. The period April 1930 to March 1931 is the driest on record in Ohio although longer periods of low precipitation have occurred from 1893-1896, 1952-1955, and 1963-1965. The temporal clusters of droughts are separated by prolonged wet periods, including those extending roughly from 1875-1893, 1905-1924, and 1966-1987. Correlations between Ohio monthly precipitation and mean air temperature suggest that drought is linked to unusually high summer temperatures through mechanisms such as increased evapotranspiration, leading to increased fluxes of sensible heat from dry soil surfaces. In winter, warm conditions tend to favor higher precipitation, soil recharge, and runoff. Variations in mean temperature and atmospheric circulation may also be linked to other observed climatic features such as long-term trends in soil-water recharge season (October-March) precipitation.

  20. Uncertainties in calculating precipitation climatology in East Asia

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, S. K.

    2016-02-01

    This study examines the uncertainty in calculating the fundamental climatological characteristics of precipitation in the East Asia region from multiple fine-resolution gridded analysis data sets based on in situ rain gauge observations and data assimilations. Five observation-based gridded precipitation data sets are used to derive the long-term means, standard deviations in lieu of interannual variability and linear trends over the 28-year period from 1980 to 2007. Both the annual and summer (June-July-August) mean precipitation is examined. The agreement amongst these precipitation data sets is examined using two metrics including the signal-to-noise ratio (SNR) defined as the ratio between long-term means and the corresponding standard deviations, and Taylor diagrams, which allow examinations of the pattern correlation, the standard deviation, and the centered root mean square error. It is found that the five gauge-based precipitation analysis data sets agree well in the long-term mean and interannual variability in most of the East Asia region including eastern China, Manchuria, South Korea, and Japan, which are densely populated and have fairly high-density observation networks. The regions of large inter-data-set variations include Tibetan Plateau, Mongolia, northern Indo-China, and North Korea. The regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or extremely high elevations. Unlike the long-term mean and interannual variability, agreement between data sets in the linear trend is weak, both for the annual and summer mean values. In most of the East Asia region, the SNR for the linear trend is below 0.5: the inter-data-set variability exceeds the multi-data ensemble mean. The uncertainty in the spatial distribution of long-term means among these data sets occurs both in the spatial pattern and variability, but the uncertainty for the interannual variability and time trend is much larger in the

  1. Uncertainties in calculating precipitation climatology in East Asia

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, S. K.

    2015-08-01

    This study examines the uncertainty in calculating the fundamental climatological characteristics of precipitation in the East Asia region from multiple fine-resolution gridded analysis datasets based on in-situ rain gauge observations. Five observation-based gridded precipitation datasets are used to derive the long-term means, standard deviations in lieu of interannual variability and linear trends over the 28-year period from 1980 to 2007. Both the annual and summer (June-July-August) mean precipitation is examined. The agreement amongst these precipitation datasets are examined using multiple metrics including the signal-to-noise ratio (SNR) defined as the ratio between long-term means and the corresponding standard deviations, and Taylor diagrams which allows examinations of the pattern correlation, the standard deviation, and the centered root mean square error. It is found that the five gauge-based precipitation analysis datasets agree well in the long-term mean and interannual variability in most of the East Asia region including eastern China, Manchuria, South Korea, and Japan, which are densely populated and have fairly high density observation networks. The regions of large inter-dataset variations include Tibetan Plateau, Mongolia, northern Indo-China, and North Korea. The regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or extreme high elevations. Unlike the long-term mean and interannual variability, agreements between datasets in the linear trend is weak, both for the annual and summer mean values. In most of the East Asia region, the SNR for the linear trend is below 0.5, i.e., the inter-dataset variability exceeds the multi-data ensemble mean. The uncertainty in the spatial distribution of long-term means among these datasets occurs both in the spatial pattern and variability, but the uncertainty for the interannual variability and time trend is much larger in the variability than in the

  2. European drought climatologies for the period 1950 to 2012

    NASA Astrophysics Data System (ADS)

    Spinoni, Jonathan; Naumann, Gustavo; Vogt, Jürgen V.; Barbosa, Paulo

    2014-05-01

    In the context of global climate change, characterized in particular by rising temperatures and more extreme weather events, drought is one of the most relevant natural disasters that has hit Europe frequently in the last decades. This paper presents climatologies of a set of drought indicators and derived drought characteristics at European scale for the period 1950-2012. Following the definitions in Spinoni et al. (2013), we computed drought frequency, duration, severity, and maximum intensity on a grid with spatial resolution of 0.25°x0.25°. Calculations have been based on three well-known drought indicators calculated for time scales of 3 and 12 months: the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), and the Reconnaissance Drought Index (RDI). Indicators have been calculated on a monthly basis for the period 1951-2012, using statistical distributions fitted to a 30-year baseline period (1971-2000). Input data stem from the E-OBS (version 9.0) European grids (0.25°x0.25°) provided by the Royal Meteorological Service of The Netherlands (KNMI). Monthly precipitation data served as input for all indicators, while mean monthly temperature data were used to calculate Thornthwaite's potential evapotranspiration necessary to calculate SPEI and RDI. On the basis of these indicators, we then quantified, on a monthly basis, the total European area under meteorological drought conditions from 1950 to 2012 and their intensity. We further sub-divided Europe into 14 regions according to geographical borders and climatic features and for each of them we computed linear trends of different drought characteristics (i.e. frequency, duration, severity, and intensity) for the entire period, and for the sub-periods 1951-1980 and 1981-2010. Results show that the Mediterranean, the Balkans, and Eastern Europe are characterized by increasing drought frequency, duration, severity, and maximum intensity, while Russia and

  3. Derivation of Surface Net Radiation at the Valencia Anchor Station from Top of the Atmosphere Gerb Fluxes by Means of Linear Models and Neural Networks

    NASA Astrophysics Data System (ADS)

    Geraldo Ferreira, A.; Lopez-Baeza, Ernesto; Velazquez Blazquez, Almudena; Soria-Olivas, Emilio; Serrano Lopez, Antonio J.; Gomez Chova, Juan

    2012-07-01

    In this work, Linear Models (LM) and Artificial Neural Networks (ANN) have been developed to estimate net radiation (RN) at the surface. The models have been developed and evaluated by using the synergy between Geostationary Earth Radiation Budget (GERB-1) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, both instruments onboard METEOSAT-9, and ``in situ'' measurements. The data used in this work, corresponding to August 2006 and June to August 2007, proceed from Top of the Atmosphere (TOA) broadband fluxes from GERB-1, every 15 min, and from net radiation at the surface measured, every 10 min, at the Valencia Anchor Station (VAS) area, having measured independently the shortwave and the longwave radiation components (downwelling and upwelling) for different land uses and land cover. The adjustment of both temporal resolutions for the satellite and in situ data was achieved by linear interpolation that showed less standard deviation than the cubic one. The LMs were developed and validated by using satellite TOA RN and ground station surface RN measurements, only considering cloudy free days selected from the ground data. The ANN model was developed both for cloudy and cloudy-free conditions using seven input variables selected for the training/validation sets, namely, hour, day, month, surface RN, solar zenith angle and TOA shortwave and longwave fluxes. Both, LMs and ANNs show remarkably good agreement when compared to surface RN measurements. Therefore, this methodology can be successfully applied to estimate RN at surface from GERB/SEVIRI data.

  4. Anthropogenically derived changes in the sedimentary flux of Mg, Cr, Ni, Cu, Zn, Hg, Pb, and P in Lough Neagh, Northern Ireland

    SciTech Connect

    Rippey, B.; Murphy, R.J.; Kyle, S.W.

    1982-01-01

    The concentration-depth behavior of Mg, Cr, Ni, Cu, Zn, Hg, Pb, and P in three sediment cores from a central site in Lough Neagh, Northern Ireland, was examined for changes in the sedimentary flux of these elements. Two main periods of change were found. A change in the catchment erosion-leaching regime in the 17th century, caused by widespread and comprehensive woodland clearance, produced increased sedimentary Mg, Cu, and Pb concentrations. A second and larger change occurred after about 1880 A.D. Cr, Cu, Zn, Hg, Pb, and P, and , to a lesser extent, Ni concentrations increase toward the sediment surface. Differing P and trace-metal profiles, a comparison of the estimated anthropogenic sedimentary flux with background atmospheric contributions, and a general comparison with other situations all suggest that background atmospheric sources make a substantial contribution to the more recent Cu, Zn, Hg, and Pb sedimentary contamination. The trace-metal contamination of Lough Neagh is part of a global pattern.

  5. Regional Surface Fluxes From Remotely Sensed Skin Temperature and Lower Boundary Layer Measurements

    NASA Astrophysics Data System (ADS)

    Sugita, Michiaki; Brutsaert, Wilfried

    1990-12-01

    During First International Satellite Land Surface Climatology Project Field Experiment in north-eastern Kansas, surface temperature was measured by infrared radiation thermometers at some 12 stations spread over the 15 × 15 km experimental area. These data, together with wind and temperature profiles in the unstable atmospheric boundary layer measured by means of radiosondes, were analyzed within the framework of Monin-Obukhov similarity. The radiometric scalar roughness corresponding to the radiometric surface temperature was found to increase as the season progressed; for the spring campaign the mean value was zoh,r = 4.56 × 10-7 m and for the fall zoh, r = 1.01 × 10 -2 m. The radiometric scalar roughness could also be expressed as a function of solar elevation and to a lesser extent, of canopy height or leaf area index. For an elevation range 10° ≤ α ≤ 75° the regression equation is zoh,r = exp [-0.735 - 3.61 tan (α)]. With this function good agreement (r = 0.87) was obtained between the profile-derived regional surface flux of sensible heat and the mean flux measured independently at ground-based stations under unstable conditions. Similarly, regional values of evaporation, obtained by means of the energy budget method from these sensible heat flux estimates, were in good agreement (r = 0.96).

  6. Atmospheric response to Ice Age conditions: Climatology near the Earth's surface

    NASA Astrophysics Data System (ADS)

    Lautenschlager, M.; Herterich, K.

    1990-12-01

    We present a 6-year simulation of the ice age atmosphere using the T21 Atmospheric General Circulation Model (AGCM) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The lower boundary conditions (18 kyr B.P.) were taken from CLIMAP Project Members (1981). The analysis is restricted to the surface climatology for two reasons: The surface fields are the test data derived from the geological record on land, and they define the upper boundary conditions for simulating the glacial ocean. Model results are shown for the mean annual surface fields of temperature, wind, and precipitation. In the global average the surface temperature was 4.7°C cooler compared to the present temperature. The wind strength increased in mid-latitudes and decreased in tropical trade wind regions. Precipitation did not change significantly in the global average; however, precipitation decreased over land and increased over the ocean. Most of the difference patterns between the present conditions and the ice age climate were statistically significant. The simulated surface climatology is roughly consistent with the paleogeological evidence and with numerical AGCM simulations of other authors. This suggests that presently available AGCMs, including the ECMWF model (T21), are able to describe climates far away from the present, although internal parameterizations were tuned to present data sets.

  7. Climatological Processing and Product Development for the TRMM Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Marks, D. A.; Kulie, M. S.; Robinson, M.; Silberstein, D. S.; Wolff, D. B.; Ferrier, B. S.; Amitai, E.; Fisher, B.; Wang, J.; Augustine, D.; Thiele, O.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November 1997.The main purpose of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented. The primary goal of TRMM GV is to provide basic validation of satellite-derived precipitation measurements over monthly climatologies for the following primary sites: Melbourne, FL; Houston, TX; Darwin, Australia- and Kwajalein Atoll, RMI As part of the TRMM GV effort, research analysts at NASA Goddard Space Flight Center (GSFC) generate standardized rainfall products using quality-controlled ground-based radar data from the four primary GV sites. This presentation will provide an overview of TRMM GV climatological processing and product generation. A description of the data flow between the primary GV sites, NASA GSFC, and the TRMM Science and Data Information System (TSDIS) will be presented. The radar quality control algorithm, which features eight adjustable height and reflectivity parameters, and its effect on monthly rainfall maps, will be described. The methodology used to create monthly, gauge-adjusted rainfall products for each primary site will also be summarized. The standardized monthly rainfall products are developed in discrete, modular steps with distinct intermediate products. A summary of recently reprocessed official GV rainfall products available for TRMM science users will be presented. Updated basic standardized product results involving monthly accumulation, Z-R relationship, and gauge statistics for each primary GV site will also be displayed.

  8. Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts

    NASA Astrophysics Data System (ADS)

    Richaud, Benjamin; Kwon, Young-Oh; Joyce, Terrence M.; Fratantoni, Paula S.; Lentz, Steven J.

    2016-08-01

    A new hydrographic climatology has been created for the continental shelf region, extending from the Labrador shelf to the Mid-Atlantic Bight. The 0.2-degree climatology combines all available observations of surface and bottom temperature and salinity collected between 1950 and 2010 along with the location, depth and date of these measurements. While climatological studies of surface and bottom temperature and salinity have been presented previously for various regions along the Canadian and U.S. shelves, studies also suggest that all these regions are part of one coherent system. This study focuses on the coherent structure of the mean seasonal cycle of surface and bottom temperature and salinity and its variation along the shelf and upper slope. The seasonal cycle of surface temperature is mainly driven by the surface heat flux and exhibits strong dependency on latitude (r≈-0.9). The amplitude of the seasonal cycle of bottom temperature is rather dependent on the depth, while the spatial distribution of bottom temperature is correlated with latitude. The seasonal cycle of surface salinity is influenced by several components, such as sea-ice on the northern shelves and river discharge in the Gulf of St. Lawrence. The bottom salinity exhibits no clear seasonal cycle, but its spatial distribution is highly correlated with bathymetry, thus Slope Water and its intrusion on the shelf can be identified by its relatively high salinity compared to shallow, fresher shelf water. Two different regimes can be identified, especially on the shelf, separated by the Laurentian Channel: advection influences the phasing of the seasonal cycle of surface salinity and bottom temperature to the north, while in the southern region, river runoff and air-sea heat flux forcing are dominant, especially over the shallower bathymetry.

  9. Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts

    NASA Astrophysics Data System (ADS)

    Richaud, Benjamin; Kwon, Young-Oh; Joyce, Terrence M.; Fratantoni, Paula S.; Lentz, Steven J.

    2016-08-01

    A new hydrographic climatology has been created for the continental shelf region, extending from the Labrador shelf to the Mid-Atlantic Bight. The 0.2-degree climatology combines all available observations of surface and bottom temperature and salinity collected between 1950 and 2010 along with the location, depth and date of these measurements. While climatological studies of surface and bottom temperature and salinity have been presented previously for various regions along the Canadian and U.S. shelves, studies also suggest that all these regions are part of one coherent system. This study focuses on the coherent structure of the mean seasonal cycle of surface and bottom temperature and salinity and its variation along the shelf and upper slope. The seasonal cycle of surface temperature is mainly driven by the surface heat flux and exhibits strong dependency on latitude (r≈-0.9). The amplitude of the seasonal cycle of bottom temperature is rather dependent on the depth, while the spatial distribution of bottom temperature is correlated with latitude. The seasonal cycle of surface salinity is influenced by several components, such as sea-ice on the northern shelves and river discharge in the Gulf of St. Lawrence. The bottom salinity exhibits no clear seasonal cycle, but its spatial distribution is highly correlated with bathymetry, thus Slope Water and its intrusion on the shelf can be identified by its relatively high salinity compared to shallow, fresher shelf water. Two different regimes can be identified, especially on the shelf, separated by the Laurentian Channel: advection influences the phasing of the seasonal cycle of surface salinity and bottom temperature to the north, while in the southern region, river runoff and air-sea heat flux forcing are dominant, especially over the shallower bathymetry.

  10. Diffuse venting at the ASHES hydrothermal field: Heat flux and tidally modulated flow variability derived from in situ time-series measurements

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Fornari, Daniel J.; Crone, Timothy J.; Kinsey, James; Kelley, Deborah; Elend, Mitch

    2016-04-01

    Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ˜12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ˜6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m-2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.

  11. Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn

    1989-01-01

    Techniques for extraction boundary layer parameters from measurements of a short-pulse CO2 Doppler lidar are described. The measurements are those collected during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). By continuously operating the lidar for about an hour, stable statistics of the radial velocities can be extracted. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. Combining many measurements would normally reduce the error provided that, it is unbiased and uncorrelated. The nature of some of the algorithms however, is such that, biased and correlated errors may be generated even though the raw measurements are not. Data processing procedures were developed that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is shown to reduce the errors substantially. The principal features of the derived turbulence statistics for two case studied are presented.

  12. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Faivre, M. L.; Hernandez, G.; Jarvis, M. J.; Meriwether, J. W.; Niciejewski, R. J.; Sipler, D. P.; Tepley, C. A.

    2006-12-01

    We analyze ground-based Fabry-Perot interferometer observations of upper thermospheric (˜250 km) horizontal neutral winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90°S), Halley (76°S, 27°W), Arequipa (17°S, 72°W), Arecibo (18°N, 67°W), Millstone Hill (43°N, 72°W), Søndre Strømfjord (67°N, 51°W), and Thule (77°N, 68°W). We derive climatological quiet time (Kp < 3) wind patterns as a function of local time, solar cycle, day of year, and the interplanetary magnetic field (IMF), and provide parameterized representations of these patterns. At the high-latitude stations, and at Arequipa near the geomagnetic equator, wind speeds tend to increase with increasing solar extreme ultraviolet (EUV) irradiance. Over Millstone Hill and Arecibo, solar EUV has a negative effect on wind magnitudes. As represented by the 10.7 cm radio flux proxy, the solar EUV dependence of the winds at all latitudes is characterized by a saturation or weakening of the effect above moderate values (F10.7 > 150). The seasonal dependence of the winds is generally annual, but there are isolated cases in which a semiannual variation is observed. Within the austral winter, winds measured from the South Pole show a substantial intraseasonal variation only along longitudes directed toward the magnetic pole. IMF effects are described in a companion paper.

  13. Measured and parameterized energy fluxes estimated for Atlantic transects of RV Polarstern

    NASA Astrophysics Data System (ADS)

    Bumke, Karl; Macke, Andreas; Kalisch, John; Kleta, Henry

    2013-04-01

    parameterized sensible and latent heat fluxes shows that the data are suitable to validate satellite derived fluxes at the sea surface and re-analysis data. References Dupuis, H., P. K. Taylor, A. Weill, and K. Katsaros, 1997: Inertial dissipation method applied to derive turbulent fluxes over the ocean during the surface of the ocean. J. Geophys. Res., 102 (C9), 21 115-21 129. Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, J. B. Edson, 2003: Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Climate, 16, 571-591. Large, W.G., and S.G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dynamics 33, 341-364. Macke, A., Kalisch, J., Zoll, Y., and Bumke, K., 2010: Radiative effects of the cloudy atmosphere from ground and satellite based observations, EPJ Web of Conferences, 5 9, 83-94

  14. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    NASA Astrophysics Data System (ADS)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  15. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  16. Use of RegCM gridded dataset for thunderstorm favorable conditions analysis over Poland—climatological approach

    NASA Astrophysics Data System (ADS)

    Walawender, Ewelina; Kielar, Rafał; Ustrnul, Zbigniew

    2015-09-01

    The paper analyzes equivalent data for a low density meteorological station network (spatially discontinuous data) and poor temporal homogeneity of thunderstorm observational data. Due to that, a Regional Climate Model (RegCM) dataset was tested. The Most Unstable Convective Available Potential Energy index value (MUCAPE) above the 200 J kg-1 threshold was selected as a predictor describing favorable conditions for the occurrence of thunderstorms. The quality of the dataset was examined through a comparison between model results and soundings from several aerological stations in Central Europe. Good, statistically significant (0.05 significance level) results were obtained through correlation analysis; the value of Pearson's correlation coefficient was above 0.8 in every single case. Then, using methods associated with gridded climatology, data series for 44 weather stations were derived and an analysis of correlation between RegCM modeled data and in situ thunderstorm observations was conducted with coefficients in the range of 0.75-0.90. The possibility of employing the dataset in thunderstorm climatology analysis was checked via a few examples by mapping monthly, seasonal, and annual means. Moreover, long-term variability and trend analysis along with modeled MUCAPE data were tested. As a result, the RegCM modeled MUCAPE gridded dataset was proposed as an easily available, suitable, and valuable predictor for thunderstorm climatology analysis and mapping. Finally, some limitations are discussed and recommendations for further improvements are given.

  17. Uncertainty quantification for a climatology of the frequency and spatial distribution of North Atlantic tropical cyclone landfalls

    NASA Astrophysics Data System (ADS)

    Tolwinski-Ward, S. E.

    2015-03-01

    A spatially resolved climatology for the annual frequency of tropical cyclone (TC) landfalls along the Atlantic coast of North America is developed, and its uncertainty deriving from multiple sources is quantified. Historical landfall counts in piecewise-linear segments approximating the coastline are modeled using Poisson regression with spatial random effects. Predictors include index representations of the mean hurricane-season phases of the Southern Oscillation, the Atlantic Multidecadal Oscillation, and the North Atlantic Oscillation, with the effect of the latter also modeled spatially. This spatial generalized linear model for landfall frequency is used in conjunction with a data level accounting explicitly for the time-dependent uncertainty in the recorded landfall positions. The model performs skillfully in cross-validation exercises. The inferred effects of the climatic predictors are also consistent with current scientific understanding of the mechanisms through which related large-scale climatic variability affects the development and motion of Atlantic tropical cyclones. Sampling variability in the data over the short length of the observational record and observational error in the historical data are found to contribute substantially to the overall climatological uncertainty. The contribution from uncertainty in the underlying model parameters is negligible compared to these other sources. The model presented here could be used for applications in insurance and risk management, and adaptations could also be used to investigate changes in TC landfall climatology under an uncertain and changing climate.

  18. Climatology of Warm Boundary Layer Clouds at the ARM SGP Site and Their Comparison to Models

    SciTech Connect

    Sengupta, Manajit; Clothiaux, Eugene E.; Ackerman, Thomas P.

    2004-12-01

    A four-year climatology (1997-2000) of warm boundary layer cloud properties is developed for the U.S. Department of Energy Atmospheric Radiation (ARM) Program Southern Great Plains (SGP) site. Parameters in the climatology include cloud liquid water path, cloud base height and surface solar flux. These parameters are retrieved from measurements produced by a dual-channel microwave radiometer, a millimeter-wave cloud radar, a micropulse lidar, a Belfort ceilometer, shortwave radiometers and atmospheric temperature profiles amalgamated from multiple sources, including radiosondes. No significant interannual differences are observed, but nighttime liquid water paths are consistently higher than daytime values. The summer months of June, July and August have the lowest liquid water paths and the highest cloud base heights. Model outputs of cloud liquid water paths from the European Center for Medium Range Weather Forecasting (ECMWF) model and the Early Eta Model for 104 Model Output Location Time Series (MOLTS) stations in the environs of the SGP central facility are compared to observations. The ECMWF and MOLTS mean and median liquid water paths are 3 and 4 times greater, respectively, than the observed values. The MOLTS data show lower liquid water paths in summer, which is consistent with observations, while the ECMWF data exhibit the opposite tendency. A parameterization of normalized cloud forcing that requires only cloud liquid water path and solar zenith angle is developed from the observations. The parameterization, which has a correlation coefficient of 0.81 with the observations, provides estimates of surface solar flux that are comparable to values obtained from explicit radiative transfer calculations based on plane-parallel theory. This parameterization is used to estimate the impact on the surface solar flux of differences in the liquid water paths between models and observations. Overall, there is a low bias of 50% in modeled normalized cloud forcing

  19. Envisat MIPAS measurements of CFC-11: retrieval, validation, and climatology

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Kaufmann, M.; Spang, R.; Müller, R.; Remedios, J. J.; Moore, D. P.; Volk, C. M.; von Clarmann, T.; Riese, M.

    2008-07-01

    From July 2002 to March 2004 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Environmental Satellite (Envisat) measured nearly continuously mid infrared limb radiance spectra. These measurements are utilised to retrieve the global distribution of the chlorofluorocarbon CFC-11 by applying a new fast forward model for Envisat MIPAS and an accompanying optimal estimation retrieval processor. A detailed analysis shows that the total retrieval errors of the individual CFC-11 volume mixing ratios are typically below 10% in the altitude range 10 to 25 km and that the systematic components dominate. Contribution of a priori information to the retrieval results are less than 5 to 10% and the vertical resolution of the observations is about 3 to 4 km in the same vertical range. The data are successfully validated by comparison with several other space experiments, an air-borne in-situ instrument, measurements from ground-based networks, and independent Envisat MIPAS analyses. The retrieval results from 425 000 Envisat MIPAS limb scans are compiled to provide a new climatological data set of CFC-11. The climatology shows significantly lower CFC-11 abundances in the lower stratosphere compared with the Reference Atmospheres for MIPAS (RAMstan V3.1) climatology. Depending on the atmospheric conditions the differences between the climatologies are up to 30 to 110 ppt (45 to 150%) at 19 to 27 km altitude. Additionally, time series of CFC-11 mean abundance and variability for five latitudinal bands are presented. The observed CFC-11 distributions can be explained by the residual mean circulation and large-scale eddy-transports in the upper troposphere and lower stratosphere. The new CFC-11 data set is well suited for further scientific studies.

  20. Climatology of the Planetary Boundary Layer over the Continental United States and Europe

    NASA Astrophysics Data System (ADS)

    Seidel, D. J.; Medeiros, B.; Zhang, Y.; Golaz, J.; Beljaars, A.; Jacobson, A. R.

    2012-12-01

    Boundary layer processes are important in climate because they determine vertical fluxes of energy, water and trace gases, cloud formation, and lapse rate, all which influence climate feedback processes and therefore climate sensitivity. However, PBL climatology and variability have received little attention, partly for lack of observational datasets, and the representation of the PBL in climate models has not been evaluated in detail. We analyze the PBL over Europe and the continental U.S. during 1981-2005 using radiosonde observations, the ERA-Interim (a reanalysis that assimilates observations), and two contemporary climate models, the NCAR CAM5 and GFDL AM3 (which do not assimilate observations). A bulk Richardson number method is used to determine a PBL height metric in a consistent fashion from these datasets. Although the method has uncertainties that can exceed 50 % for heights < 1 km, they are generally < 20 % for higher values. Using the resulting 25-year datasets with temporal resolution of 2/day (from radiosondes), 4/day (climate models) or 8/day (reanalysis), we have analyzed the climatological diurnal and seasonal variability of the PBL over the two midlatitude spatial domains with the greatest density of radiosonde observations. Climatological heights are generally < 1 km during daytime and < 0.5 km at night over both Europe and the U.S. The amplitude and phase of the diurnal cycle are reasonably well captured by fortuitously-timed radiosonde observations over Europe, but over the U.S. the 0000 and 1200 UTC soundings do not capture the full range of diurnal variability apparent in the reanalysis. Therefore, we base all model-observation comparisons on matched temporal sampling. During daytime, summertime heights are deeper than in wintertime, but at night winter values exceed summer values. The models all reproduce general features of observed spatial, seasonal and diurnal variability, with better agreement for daytime than nighttime. While ERA

  1. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from numerical weather prediction and regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan F.; Suomi, Irene; Bröde, Peter; Formayer, Herbert; Rieder, Harald E.; Nadeem, Imram; Jendritzky, Gerd; Batchvarova, Ekaterina; Weihs, Philipp

    2013-03-01

    In this study we examine the determination accuracy of both the mean radiant temperature (Tmrt) and the Universal Thermal Climate Index (UTCI) within the scope of numerical weather prediction (NWP), and global (GCM) and regional (RCM) climate model simulations. First, Tmrt is determined and the so-called UTCI-Fiala model is then used for the calculation of UTCI. Taking into account the uncertainties of NWP model (among others the HIgh Resolution Limited Area Model HIRLAM) output (temperature, downwelling short-wave and long-wave radiation) stated in the literature, we simulate and discuss the uncertainties of Tmrt and UTCI at three stations in different climatic regions of Europe. The results show that highest negative (positive) differences to reference cases (under assumed clear-sky conditions) of up to -21°C (9°C) for Tmrt and up to -6°C (3.5°C) for UTCI occur in summer (winter) due to cloudiness. In a second step, the uncertainties of RCM simulations are analyzed: three RCMs, namely ALADIN (Aire Limitée Adaptation dynamique Développement InterNational), RegCM (REGional Climate Model) and REMO (REgional MOdel) are nested into GCMs and used for the prediction of temperature and radiation fluxes in order to estimate Tmrt and UTCI. The inter-comparison of RCM output for the three selected locations shows that biases between 0.0 and ±17.7°C (between 0.0 and ±13.3°C) for Tmrt (UTCI), and RMSE between ±0.5 and ±17.8°C (between ±0.8 and ±13.4°C) for Tmrt (UTCI) may be expected. In general the study shows that uncertainties of UTCI, due to uncertainties arising from calculations of radiation fluxes (based on NWP models) required for the prediction of Tmrt, are well below ±2°C for clear-sky cases. However, significant higher uncertainties in UTCI of up to ±6°C are found, especially when prediction of cloudiness is wrong.

  2. Dynamical climatology of the NASA Langley Research Center Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model

    NASA Astrophysics Data System (ADS)

    Pierce, R. Bradley; Al-Saadi, Jassim A.; Eckman, Richard S.; Fairlie, T. Duncan; Grose, William L.; Kleb, Mary M.; Natarajan, Murali; Olson, Jennifer R.

    2000-12-01

    A comparison of the NASA Langley Research Center (LaRC) Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model's dynamical characteristics with assimilated data sets and observations is presented to demonstrate the ability of the model to represent the dynamical characteristics of Earth's troposphere and stratosphere. The LaRC IMPACT model is a coupled chemical/dynamical general circulation model (GCM) of the Earth's atmosphere extending from the surface to the lower mesosphere. It has been developed as a tool for assessing the effects of chemical, dynamical, and radiative coupling in the stratosphere on the Earth's climate. The LaRC IMPACT model winds and temperatures are found to be in fairly good agreement with Upper Atmospheric Research Satellite (UARS) United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures in the lower stratosphere. The model upper stratospheric zonal mean temperatures are also in good agreement with the UARS-UKMO climatology except for a cold winter pole which results from the upward extension of the cold vortex temperatures and an elevated winter stratopause in the model. The cold pole bias is consistent with the overprediction of the winter stratospheric jet strength, and is characteristic of stratospheric GCMs in general. The model northern and southern hemisphere stratospheric eddy heat and momentum fluxes are within the expected interannual variability of the UARS-UKMO climatology. The combined effects of water vapor transport, radiative, convective, and planetary boundary layer parameterizations are shown to produce tropospheric winds and circulation statistics that are in good agreement with the UARS-UKMO climatology, although the model tropopause and upper tropospheric temperatures are generally cold relative to the UARS-UKMO temperatures. Comparisons between the model and UARS-UKMO climatology indicate that the model does a reasonable job in reproducing the frequency of observed

  3. A Web-Based Climatology of Global Ocean Winds

    NASA Astrophysics Data System (ADS)

    Risien, C. M.; Chelton, D. B.; Hodges, M. K.

    2004-12-01

    A climatology of winds over the global ocean on a 0.5° x 0.5° grid is under development based on five-years of measurements from the SeaWinds scatterometer. The SeaWinds instrument was launched on 19 June 1999 onboard the QuikSCAT satellite. SeaWinds is an active microwave radar that, using electromagnetic backscatter from the wind roughened ocean surface, measures vector winds with an accuracy equivalent to well-calibrated buoy observations. This five-year climatology is a web-based interactive atlas from which users can retrieve wind statistics, both in tabular and graphic form, for any particular region of interest. The global coverage of the scatterometer data provides valuable information about the wind statistics in the many regions of the world ocean that are sparsely sampled by ships and buoys. One of the anticipated uses of this climatology will be presented via a case study of the NOAA/HAZMAT response to a 2001 oil spill that resulted from the grounding of the tanker "Jessica" at the entrance to Puerto Baquerizo Moreno, in Wreck Bay, on San Cristóbal island, Galápagos.

  4. Mars Orbiter Camera climatology of textured dust storms

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Toigo, Anthony D.; Kulowski, Laura; Wang, Huiqun

    2015-09-01

    We report the climatology of "textured dust storms", those dust storms that have visible structure on their cloud tops that are indicative of active dust lifting, as observed in Mars Daily Global Maps produced from Mars Orbiter Camera wide-angle images. Textured dust storms predominantly occur in the equinox seasons while both solstice periods experience a planet-wide "pause" in textured dust storm activity. These pauses correspond to concurrent decreases in global atmospheric dust opacity. Textured dust storms most frequently occur in Acidalia Planitia, Chryse Planitia, Arcadia Planitia, and Hellas basin. To examine the nature of the link between textured dust storms and atmospheric dust opacity, we compare the textured dust storm climatology with a record of atmospheric dust opacity and find a peak global correlation coefficient of approximately 0.5 with a lag of 20-40° in solar longitude in the opacity compared to the solar climatology. This implies that textured dust storms observed at 1400 local time by MOC are responsible for a large fraction of atmospheric dust opacity and that other mechanisms (e.g., dust devil lifting or storm-scale lifting not observed in this study) may supply a comparable amount of dust.

  5. Hanford Site climatological data summary 1995 with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1996-05-01

    This document presents the climatological data measured at the US Department of Energy`s Hanford Site for calendar year 1995. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk (1994, 1995); however, Appendix B--Wind Climatology (1994) is excluded. 1995 was warmer than normal, averaging 54.7 F, 1.4 F above normal (53.3 F). For the 12-month period, 8 months were warmer than normal, and 4 were cooler than normal. 1995 was the wettest year on record. Precipitation totaled 12.31 in., 197% of normal (6.26 in.); snowfall totaled 7.7 in., compared to the normal of 13.8 in. The average wind speed during 1995 was 7.8 mph, 0.1 mph above normal (7.7 mph). The peak gust during the year was 61 mph from the south-southwest on December 12. There were 27 days with peak gusts {ge} 40 mph, compared to a yearly average of 26.

  6. Situational Lightning Climatologies for Central Florida: Phase IV

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-,20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  7. A Lagrangian Climatology of Tropical Moisture Exports to the Northern Hemispheric Extratropics

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter; Wernli, Heini

    2010-05-01

    Case studies have shown that heavy precipitation events and rapid cyclogenesis in the extratropics can be fueled by moist and warm tropical air masses. Often the tropical moisture export (TME) occurs through a longitudinally confined region in the subtropics. Here a comprehensive climatological analysis of TME is constructed on the basis of seven-day forward trajectories started daily from the tropical lower troposphere using 6-hourly ERA-40 data from the 23-year period 1979-2001. The objective TME identification procedure retains only those trajectories that reach a water vapor flux of at least 100 g kg-1 m s-1 somewhere north of 35°N. The results show four distinct activity maxima with different seasonal behavior: (I) The "pineapple express", which connects tropical moisture sources near Hawaii with precipitation near the North American west coast, has a marked activity maximum in boreal winter. (II) TME over the West Pacific is largest in summer, partly related to the East Asian monsoon and the Meiyu-Baiu front. This region alone is responsible for a large portion of TME across 35°N. (III) The narrow activity maximum over the Great Plains of North America is rooted over the Gulf of Mexico and the Caribbean Sea, and has a clear maximum in summer and spring. (IV) TME over the western North Atlantic shows the smallest annual cycle with a maximum in winter and autumn. The interannual variability of (I) and (IV) is significantly modulated by El Niño. Over the African-European-Asian region, high orographic barriers impede TME. A typical TME trajectory evolution is poleward and quasi-horizontal in the subtropics and then more eastward and upward in the southern midlatitudes, where TME contributes up to 60% to climatological precipitation. The TME dataset presented here can serve as a basis for future studies on extreme events.

  8. Assesment of CALIPSO's level 3 climatological product

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2015-04-01

    Since December 2011 has been released the latest CALIPSO Level 3 (CL3) monthly product and is subject to calibration/validation studies. EARLINET as the unique European lidar network on a continental scale is the key candidate for these kind of studies. CALIPSO Level 3 data were compared against EARLINET monthly averages obtained by profiles during satellite overpasses. Data from stations of Potenza, Naples, Granada, Évora and Leipzig equipped with advanced multi-wavelength Raman lidars were used for this study. EARLINET monthly profiles yielded higher extinction values comparing to CALIPSO ones. In order to mitigate uncertainties due to spatial and temporal differences, we reproduced the CL3 filtering rubric onto the CALIPSO Level 2 data. Only grid CALIPSO overflights during EARLINET correlative measurements were used. From these data, monthly averages on 2x5 grid are reconstructed. The CALIPSO monthly mean profiles following the new approach are called CALIPSOLevel 3*,CL3*. This offers the possibility to achieve direct comparable datasets, even if greatly reduces the number of satellite grid overflights. Moreover, the comparison of matched observations reduces uncertainties from spatial variability that affects the sampled volumes. The agreement typically improved, in particular above the areas directly affected by the anthropogenic activities within the planetary boundary layer. In contrast to CL3 product, CL3* data offers the possibility to assess also the CALIPSO performance in terms of the backscatter coefficient keeping the same quality assurance criteria applied to extinction coefficient. Lastly, the typing capabilities of CALIPSO were assessed outlining the importance of the correct aerosol type assessment to the CALIPSO aerosol properties retrieval. This work is the first in-depth assessment to evaluate the aerosol optical properties reported in the CL 3 data product. The outcome will assist the establishment of independently derived uncertainty

  9. The influence of grazing on surface climatological variables of tallgrass prairie

    NASA Technical Reports Server (NTRS)

    Seastedt, T. R.; Dyer, M. I.; Turner, Clarence L.

    1992-01-01

    Mass and energy exchange between most grassland canopies and the atmosphere are mediated by grazing activities. Ambient temperatures can be increased or decreased by grazers. Data have been assembled from simulated grazing experiments on Konza Prairie Research Natural Area and observations on adjacent pastures grazed by cattle show significant changes in primary production, nutrient content, and bidirectional reflectance characteristics as a function of grazing intensity. The purpose of this research was to provide algorithms that would allow incorporation of grazing effects into models of energy budgets using remote sensing procedures. The approach involved: (1) linking empirical measurements of plant biomass and grazing intensities to remotely sensed canopy reflectance, and (2) using a higher resolution, mechanistic grazing model to derive plant ecophysiological parameters that influence reflectance and other surface climatological variables.

  10. Climatologically tuned reflectivity-rain rate relations and links to area-time integrals

    NASA Technical Reports Server (NTRS)

    Atlas, David; Rosenfeld, Daniel; Wolff, David B.

    1990-01-01

    An effort is made to determine relationships between reflectivity (Z) and rain rate (R) which are tuned to the local climatology. The development of such relations was motivated by the need to understand the role of precipitation in controlling general circulation and in affecting such phenomena as ENSO. Attention is given to methods of deriving such relations and how they are linked to area integral rainfall measurements. In essence, the relation is tuned so that the probability distribution of reflectivity, P(Z), replicates that of R over some predetermined space-time climatic domain. Thus, the accurate measurement of the average R over any smaller domain depends on how closely the sampled P(Z) approximates the climatic P(Z). The probability matching method used is a modification of the approach of Calheiros and Zawadzki (1987) and Rosenfeld (1980). The technique is applied to data from Germany and the eastern tropical Atlantic (GATE).

  11. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Cho, Byung S.

    1992-01-01

    A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.

  12. Mars Sample Return: The Next Step Required to Revolutionize Knowledge of Martian Geological and Climatological History

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2012-01-01

    The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic

  13. Situational Lightning Climatologies for Central Florida: Phase IV: Central Florida Flow Regime Based Climatologies of Lightning Probabilities

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  14. Climatological Processing of Radar Data for the TRMM Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Kulie, Mark; Marks, David; Robinson, Michael; Silberstein, David; Wolff, David; Ferrier, Brad; Amitai, Eyal; Fisher, Brad; Wang, Jian-Xin; Augustine, David; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November, 1997. The main purpose of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented. The primary goal of TRMM GV is to provide basic validation of satellite-derived precipitation measurements over monthly climatologies for the following primary sites: Melbourne, FL; Houston, TX; Darwin, Australia; and Kwajalein Atoll, RMI. As part of the TRMM GV effort, research analysts at NASA Goddard Space Flight Center (GSFC) generate standardized TRMM GV products using quality-controlled ground-based radar data from the four primary GV sites as input. This presentation will provide an overview of the TRMM GV climatological processing system. A description of the data flow between the primary GV sites, NASA GSFC, and the TRMM Science and Data Information System (TSDIS) will be presented. The radar quality control algorithm, which features eight adjustable height and reflectivity parameters, and its effect on monthly rainfall maps will be described. The methodology used to create monthly, gauge-adjusted rainfall products for each primary site will also be summarized. The standardized monthly rainfall products are developed in discrete, modular steps with distinct intermediate products. These developmental steps include: (1) extracting radar data over the locations of rain gauges, (2) merging rain gauge and radar data in time and space with user-defined options, (3) automated quality control of radar and gauge merged data by tracking accumulations from each instrument, and (4) deriving Z-R relationships from the quality-controlled merged data over monthly time scales. A summary of recently reprocessed official GV rainfall products available for TRMM science users will be presented. Updated basic standardized product results and trends involving

  15. Regional biomass and leaf-area estimates derived from satellite imagery as inputs to spatial trace-gas flux models for arctic tundra

    SciTech Connect

    Shippert, M.M.; Walker, D.A.; Auerbach, N.A.; Lewis, B.E. )

    1994-06-01

    Reflectance spectra, leaf area index (LAI), and live biomass measurements were collected for 60 plots near Toolik Lake and Imnavait Creek, Alaska during July and August, 1993. Normalized difference vegetation indices (NDVI) were calculated from the reflectance spectra. NDVI was found to be highly correlated to both LAI and biomass. These relationships have been seen in temperate ecosystems, but have never been tested in Arctic tundra previous to this study. In addition, a clear relationship is seen between NDVI values and pH and moisture. Acidic plots have much higher NDVI values than non-acidic plots, while moist plots have high NDVI values relative to dry and wet plots. The average field NDVI measurements for major physiognomic categories were compared to average NDVI values for the same categories derived from a SPOT multispectral satellite image of the area. These values were also found to be highly correlated. However, field NDVI values were consistently about 40% higher than SPOT NDVI values. Possible explanations for this consistent trend include effects of low sun angle in the Arctic in combination with relatively high view angle of the SPOT sensor. Using the regression equations for the above relationships, biomass and LAI images were calculated from the SPOT image. The resulting images show expected trends in the LAI and biomass across the landscape. The image of biomass will be used as an input to a spatial model of methane emissions for the Alaskan Arctic. Another key input variable to the methane model will be soil moisture. Alternative image processing methods and/or radar images will be used to derive this important variable.

  16. Diagnosing the stratosphere-to-troposphere flux of ozone in a chemistry transport model

    NASA Astrophysics Data System (ADS)

    Hsu, Juno; Prather, Michael J.; Wild, Oliver

    2005-10-01

    Events involving stratosphere-troposphere exchange (STE) of ozone, such as tropopause folds and westerly ducts, are readily identified in observations and models, but a quantitative flux specifying where and when stratospheric ozone is mixed into the troposphere is not readily discerned from either. This work presents a new diagnostic based on determining when stratospheric air is mixed and diluted down to tropospheric abundances (<100 ppb) and hence effectively participates in tropospheric chemistry. The method is applied to two years of high-resolution, global meteorological fields (1.9 degrees, 40 levels) from the ECMWF forecast model derived by U. Oslo for chemistry transport modeling and used in TRACE-P studies. The UCI CTM is run here with linearized stratospheric ozone chemistry (Linoz) and a parameterized tropospheric sink. In terms of events, the CTM accurately follows a March 2001 westerly duct stratospheric intrusion into the tropical eastern Pacific as observed by TOMS and calculates a 48-hour burst of STE O3 flux for that region. The influx associated with the event (0.3 Tg) is much less than the anomalous amount seen as an isolated island in column ozone (1.7 Tg). A climatology of monthly mean STE fluxes is similar for both years (January to December 1997 and May 2000 to April 2001), but the warm phase of ENSO December 1997 is distinctly different from the cold phase of ENSO month December 2000. Global ozone fluxes are about 515 Tg (year 1997) and 550 Tg (year 2000/2001) with an equal amount into each hemisphere, and larger springtime fluxes for both hemispheres. In terms of geographical distribution, Northern Hemisphere regions of high ozone flux follow the jet streams over the oceans in the winter and over the continents in the summer, in agreement with many previous studies. In contrast, we find the largest STE flux is located in the subtropics during late spring, particularly over the Tibetan Plateau in May. This hot spot of STE is not a numerical

  17. Satellite-derived geoid for the estimation of lithospheric cooling and basal heat flux anomalies over the northern Indian Ocean lithosphere

    NASA Astrophysics Data System (ADS)

    Rajesh, S.; Majumdar, T. J.

    2015-12-01

    The northern Indian Ocean consists of older Bay of Bengal (BOB) oceanic lithosphere with numerous intra-plate loads; whereas, contrasting elements like active Mid-Ocean ridge divergence and slow spreading ridges are present in the relatively younger (<60 Ma) Arabian Sea oceanic lithosphere. The mechanism of lithospheric cooling of young age oceanic lithosphere from the moderately active and slow spreading Carlsberg Ridge is analysed by considering the hypothesis of near lithospheric convective action or whole upper mantle convection. We addressed these issues by studying the marine geoid at different spatial wavelengths and retrieved and compared their lithospheric cooling signatures, plate spreading and distribution of mass and heat anomalies along with seismicity, bathymetry, gravity and isochron age data. Results show that progressive cooling of young-aged oceanic lithosphere from the Mid-Ocean Carlsberg Ridge is because of conductive cooling and those signals are retrieved in the shorter wavelength band (111 < λ< 1900 km) of constrained residual geoid with mass anomaly sources near to sublithospheric. This shows steadiness in the geoid anomaly decay rate (˜-0.1 m/Ma), consistency in the growth of thermal boundary layer and progressive fall of basal temperature and heat flux (900- 300 K and 100-18 mW m-2) with increase of lithospheric age. The above observations are attributed to the fact that the advective-convective action beneath the Mid-Ocean Carlsberg Ridge is driven by the basal temperature gradient between the lithosphere and the near lithospheric low viscose thin layer. But, for the case of old-aged oceanic lithosphere in the BOB, the residual geoid anomaly cooling signals are not prominently seen in the same band as that of the Arabian Sea because of the Ninetyeast Ridge magmatism. However, its cooling anomaly signatures are retrieved at relatively higher band (1335 ≤ λ≤ 3081 km) having erratic geoid decay rates (-0.3 to 0.2 m/Ma) owing to

  18. Climatology of clouds and precipitation over East Antarctica using ground-based remote sensing at the Princess Elizabeth station

    NASA Astrophysics Data System (ADS)

    Souverijns, Niels; Gossart, Alexandra; Gorodetskaya, Irina; Lhermitte, Stef; Van Tricht, Kristof; Mangold, Alexander; Laffineur, Quentin; Van Lipzig, Nicole

    2016-04-01

    The surface mass balance of the Antarctic ice sheet is highly dependent on the interaction between clouds and precipitation. Our understanding of these processes is challenged by the limited availability of observations over the area and problems in Antarctic climate simulations by state-of-the-art climate models. Improvements are needed in this field, as the Antarctic ice sheet is expected to become a dominant contributor to sea level rise in the 21st century. In 2010, an observational site was established at the Princess Elisabeth (PE) Antarctic station. PE is located in the escarpment area of Dronning Maud Land, East Antarctica (72°S, 23°E). The instruments consist of several ground-based remote sensing instruments: a ceilometer (measuring cloud-base height and vertical structure), a 24-GHz Micro Rain Radar (MRR; providing vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (measuring effective cloud base temperature). An automatic weather station provides info on boundary-layer meteorology (temperature, wind speed and direction, humidity, pressure), as well as broadband radiative fluxes and snow height changes. This set of instruments can be used to infer the role of clouds in the Antarctic climate system, their interaction with radiation and their impact on precipitation. Cloud and precipitation characteristics are derived from 5-year-long measurement series, which is unprecedented for the Antarctic region. Here, we present an overview of the cloud and precipitation climatology. Statistics on cloud occurrence are calculated on annual / seasonal basis and a distinction between liquid / mixed phase and ice clouds is made. One can discriminate between liquid-bearing and ice-only clouds by investigating the ceilometer attenuated backscatter, since liquid phase clouds have a much higher signal. Furthermore, by using pyrometer measurements, we are able to identify the range of temperatures at which liquid / ice clouds are

  19. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    NASA Astrophysics Data System (ADS)

    Popp, C.; Wang, P.; Brunner, D.; Stammes, P.; Zhou, Y.; Grzegorski, M.

    2010-10-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA) data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS) derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80) and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006) of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU) algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric trace gas

  20. Influence of YBa2HfO5.5 - 'derived secondary phase' on the critical current density and flux-Pinning force of YBa2Cu3O7-δ thick films

    NASA Astrophysics Data System (ADS)

    Rejith, Pullanhiyodan Puthiyaveedu; Vidya, Sukumariamma; Thomas, Jijimon Kumbukkattu

    2015-12-01

    Enhancement in critical current density (Jc) and flux pinning force (Fp) in superconducting thick films of YBa2Cu3O7-δ (YBCO) added with small quantities of nanopowders of HfO2, BaHfO3 and YBa2HfO5.5, coated on YBa2ZrO5.5 substrate by dip-coating technique is reported. Critical current density measurements were done over an applied magnetic field using standard four probe technique and the results are compared with that of pure YBCO. High critical current density (Jc) of ∼4.84 MA/cm2 at 77 K in self-field was obtained for 2 wt% of YBa2HfO5.5 added YBCO. A systematic increase in Jc observed in YBCO films prepared by the addition of nano HfO2, BaHfO3 and YBa2HfO5.5, attributed to the formation of a non-reacting 'derived secondary phase' YBa2HfO5.5 (YBHO) in the YBCO matrix. YBCO-YBa2HfO5.5 composite thick films have showed eightfold increases in Jc (3.29 MA/cm2) at 77 K and 0.4 T compared to pure YBa2Cu3O7-δ film (0.37 MA/cm2), while maintaining a high transition temperature (Tc). The development of effective pinning centers in nano particle added YBCO thick film have enhanced the flux pinning force from 1.8 GN/m3 for pure YBCO to a maximum value of 13.15 GN/m3 for YBCO-YBa2HfO5.5. X-ray diffraction and energy dispersive spectroscopic analysis confirmed the presence of secondary phase, derived in the matrix.

  1. The climatological distribution of extreme Arctic winds and implications for ocean and sea ice processes

    NASA Astrophysics Data System (ADS)

    Hughes, Mimi; Cassano, John J.

    2015-08-01

    Some of the strongest near-surface winds on Earth form in the Arctic and sub-Arctic due to intense midlatitude cyclones and mesoscale processes, and these strong surface winds have important impacts on ocean and sea ice processes. We examine the climatological distribution of over-ocean, near-surface wind speeds within a Pan-Arctic domain for 18 years (1990-2007) in four gridded data sets: the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-I), the Climate Forecast System Reanalysis, version 2 of the Common Ocean-Ice Reference Experiment data set, and a regional climate simulation generated using the Weather Research and Forecasting (WRF) model run at 50 km (WRF50) horizontal resolution with ERA Interim as lateral boundary conditions. We estimate probability density functions, the annual cycle, and map the 50th and 99th percentile winds. We then perform the same statistical analysis of winds for 2 years when 10 km WRF data are available (June 2005 to May 2007); despite the much shorter time period, the Pan-Arctic statistics are very similar to those from the 18 year analysis. We repeat the wind speed statistical analysis within a subdomain surrounding Greenland and find that WRF10 has consistently larger maximum wind speeds, but this difference only appears at wind speed percentiles higher than 99%. Differences in the 99th percentile wind speeds are spatially heterogeneous. An investigation of surface fluxes within WRF50 and WRF10 reveals unrealistically large sensible heat fluxes along the sea ice edge, and the geographic distribution and magnitude of these fluxes is shown to be sensitive to sea ice representation in WRF.

  2. Quantitative Flux Ecoregions for AmeriFlux Using MODIS

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Hargrove, W. W.

    2004-12-01

    Multivariate Geographic Clustering was used with maps of climate, soils, and physiography and MODIS remotely sensed data products to statistically produce a series of the 90 most-different homogeneous flux-relevant ecoregions in the conterminous United States using a parallel supercomputer. Nine separate sets of flux ecoregions were produced; only two will be discussed here. Both the IB and IIIB maps were quantitatively constructed from subsets of the input data integrated during the local growing season (frost-free period) in every 1 km cell. Each map is shown two ways --- once with the 90 flux ecoregions colored randomly, and once using color combinations derived statistically from the first three Principal Component Axes. Although the underlying flux ecoregion polygons are the same in both cases, the statistically derived colors show the similarity of conditions within each flux ecoregion. Coloring the same map in this way shows the continuous gradient of changing flux environments across the US. The IB map, since it considers only abiotic environmental factors, represents flux-ecoregions based on potential vegetation. The IIIB map, since it contains remotely sensed MODIS information about existing vegetation, includes the effects of natural and anthropogenic disturbance, and represents actual or realized flux ecoregions. Thus, differences between the maps are attributable to human activity and natural disturbances. The addition of information on existing vegetation exerts a unifying effect on abiotic-only flux ecoregions. The Mississippi Valley and Corn Belt areas show large differences between the two maps. Map IIIB shows a mosaic of ``speckles'' in areas of intense human land use, ostensibly from disturbances like agriculture, irrigation, fertilization, and clearing. Such ``speckles'' are absent from areas devoid of intense human land use. Major cities are also evident in the IIIB map. We will use the quantitative similarity of the suite of flux

  3. An Assessment of the Effect of Sea-Surface Surfactants on Global Atmosphere-Ocean CO2 Flux

    NASA Astrophysics Data System (ADS)

    Tsai, W.; Liu, K.

    2001-05-01

    \\def\\ea{et al.} \\def\\CO2{CO2} \\def\\dpCO2{Δ pCO2} We assess the possible impact of the distribution of naturally occurring surfactants on the direct integration of the global atmosphere-ocean \\CO2 flux across the ocean surface. The global atmosphere-ocean \\CO2 flux is calculated using the monthly mean \\dpCO2 climatology compiled by Takahashi \\ea\\ [1997] as well as satellite wind speed and sea-surface temperature data. In the absence of any global map of surfactant coverage, and as it is known that phytoplankton exudates and degradation products are the major sources of marine surfactants, ocean primary productivity, which can be derived from the satellite-based estimate of chlorophyll concentration, is used as an indicator of the presence of surfactants. From the calculated results, it is found that suppression of the upward and downward \\CO2 fluxes by marine surfactants exhibits an asymmetric effect. For almost half of the year (between January and May), the presence of surfactants does not affect \\CO2 outgassing from global oceans. In contrast, throughout the entire year, the presence of surfactants suppresses \\CO2 absorption by the oceans. The average percent reduction of absorption flux by surfactants is about twice that of outgassing, which results in an overall decrease in the net global \\CO2 uptake by the oceans. The major reduction in absorption fluxes occurs in the northern Pacific and Atlantic (10oN to 70oN) in all seasons and in the Southern Ocean (south of 40oS) in austral spring and summer. However, the most significant decrease in outgassing fluxes occurs in the equatorial and southern Pacific Ocean (40oS to 10oN), particularly in the eastern equatorial and subtropical waters off the southern American coast, in the period of austral spring and summer.

  4. Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many regions of the globe are experiencing a simultaneous change in the dominant plant functional type and regional climatology. We explored how atmospheric temperature and precipitation input control leaf- and ecosystem scale carbon fluxes within a pair of semiarid shrublands that had undergone woo...

  5. Modeling drought impact occurrence based on climatological drought indices for four European countries

    NASA Astrophysics Data System (ADS)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information (www.geo.uio.no/edc/droughtdb/). The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts

  6. Climatology of Westerly Wind Events in the Lee of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Grubišić, Vanda; Serafin, Stefano; Strauss, Lukas

    2014-05-01

    Owens Valley is a narrow valley in eastern California, approximately north-south oriented and bounded by the highest portion of the Sierra Nevada to the west and by the White-Inyo Range to the east. There is abundance of anecdotal evidence for the occurrence of downslope windstorms in Owens Valley, in particular on the eastern slope of the Sierra Nevada. Indeed, the area has been the theatre of two major research efforts and several field campaigns, including the Sierra Wave and Jet Stream Projects in the 1950s and the Sierra Rotors Project (2004) and the Terrain-induced Rotor Experiment (2006) in the mid 2000s. However, existing climatological studies of strong wind events in this region reveal hardly any signature of westerly winds. In the present contribution, a climatology of westerly wind events in Owens Valley is derived from data measured by a mesonet of sixteen automatic weather stations. Compared to previous climatologies, which have primarily used measurements from stations located along the valley's main axis, this paper presents the analysis of data from stations placed along several cross-valley transects that reach a significant distance up the western slope. Data from these stations conclusively demonstrate the frequent occurrence of westerly downslope windstorms in the valley. Thermally driven up- and down-valley flows (from the South and North, respectively) are found to account for a large part of the wind variability in the area. However, a significant fraction of high wind speed events observed on the western side of the valley deviates from this basic pattern by showing a higher percentage of westerly winds. Strong westerly wind events tend to be more persistent and to display higher sustained wind speeds than winds from the other quadrants. Although the highest frequency of westerly wind events is found in the afternoon hours from April to September, the intense episodes can happen at any time of the day throughout the year. The key dynamical

  7. A Prototype Hail Detection Algorithm and Hail Climatology Developed with the Advanced Microwave Sounding Unit (AMSU)

    NASA Technical Reports Server (NTRS)

    Ferraro, Ralph; Beauchamp, James; Cecil, Dan; Heymsfeld, Gerald

    2015-01-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 SMMR, the TRMM Microwave Imager (TMI) and most recently, the Aqua AMSR-E sensor. This lead to climatologies of hail frequency from TMI and AMSR-E, however, limitations include geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. Since 1998, NOAA and EUMETSAT have been operating the AMSU-A/B and the MHS on several operational satellites: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 hours, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental U.S. for a 12-year period (2000-2011). Compared with the surface observations, the algorithm detects approximately 40 percent of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology that is based on all available AMSU observations during 2000-11 that is stratified in several ways, including total hail occurrence by month (March through September), total annual, and over the diurnal cycle. Independent comparisons are made compared to similar data sets derived from other

  8. Statistical examination of climatological data relevant to global temperature variation

    SciTech Connect

    Gray, H.L.; Gunst, R.F.; Woodward, W.A.

    1992-01-01

    The research group at Southern Methodist University has been involved in the examination of climatological data as specified in the proposal. Our efforts have resulted in three papers which have been submitted to scholarly journals, as well as several other projects which should be completed either during the next six months or next year. In the following, we discuss our results to date along with projected progress within the next six months. Major topics discussed in this progress report include: testing for trend in the global temperature data; (2) defining and estimating mean global temperature change; and, (3) the effect of initial conditions on autoregressive models for global temperature data.

  9. Mars Geoscience Climatology Orbiter (MGCO) extended study: Technical volume

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The FLTSATCOM Earth orbiting communications satellite is a prominent candidate to serve as the Mars Geoscience Climatology Orbiter (MGCO) spacecraft. Major aspects directly applicable are: (1) the incorporation of solid orbit insertion motor; (2) the ability to cruise to Mars in the spin-stabilized mode; (3) ample capability for payload mass and power; (4) attitude control tried to nadir and orbit plane coordinates; (5) exemplary Earth orbital performance record and projected lifetime; and (6) existence of an on-going procurement into the MGCO time period.

  10. Mars geoscience/climatology orbiter low cost mission operations

    NASA Technical Reports Server (NTRS)

    Erickson, K. D.

    1984-01-01

    It will not be possible to support the multiple planetary missions of the magnitude and order of previous missions on the basis of foreseeable NASA funding. It is, therefore, necessary to seek innovative means for accomplishing the goals of planetary exploration with modestly allocated resources. In this connection, a Core Program set of planetary exploration missions has been recommended. Attention is given to a Mission Operations design overview which is based on the Mars Geoscience/Climatology Orbiter Phase-A study performed during spring of 1983.

  11. A preliminary zonal mean climatology of water vapour in the stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Pumphrey, Hugh C.; Rind, D.; Russell, J. M.; Harries, J. E.

    The Microwave Limb Sounder on the UARS satellite measures water vapour concentration in the stratosphere and mesosphere. Water vapour profiles are retrieved from radiance measurements using a version of the optimal estimation algorithm. This requires an a priori profile which is obtained from a climatology. The MLS retrieval currently uses the standard UARS pre-launch climatology, which contains water vapour based on a 2-D model constrained to LIMS data in the stratosphere. This climatology has several defects which affect the ability of MLS to retrieve water vapour. This paper presents a new climatology constructed from the HALOE (HALogen Occultation Experiment) and SAGE II (Stratospheric Aerosol and Gas Experiment) data, which have become available recently. The new climatology is more realistic in several ways, particularly in the mesosphere and near the tropopause. It is proving to be an improvement as an a priori for MLS retrievals and might also have other uses. The paper will present the climatology, show how it was constructed, and compare it to the UARS pre-launch climatology and to various other data. As it stands, this climatology is not suitable for a reference atmosphere, but it is an improvement on CIRA part III in some way simply because it contains more accurate data and shows a number of new features. Suggestions are made for constructing an improved reference climatology for middle atmosphere water vapour.

  12. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    observations and the choices of constants that are used. Analysis of the preliminary SAMOS flux products will be presented, including spatial and temporal coverage for each derived parameter. The unique quality and sampling locations of research vessel observations and their independence from many models and products makes them ideal for validation studies. The strengths and limitations of research observations for flux validation studies will be discussed. The authors welcome a discussion with the flux community regarding expansion of the SAMOS program to include additional international vessels, thus facilitating and expansion of this research vessel-based flux product.

  13. A new river discharge and river temperature climatology data set for the pan-Arctic region

    NASA Astrophysics Data System (ADS)

    Whitefield, Jonathan; Winsor, Peter; McClelland, James; Menemenlis, Dimitris

    2015-04-01

    Most regional ocean models that use discharge as part of the forcing use relatively coarse river discharge data sets (1°, or ∼110 km) compared to the model resolution (typically 1/4° or less), and do not account for seasonal changes in river water temperature. We introduce a new climatological data set of river discharge and river water temperature with 1/6° grid spacing over the Arctic region (Arctic River Discharge and Temperature; ARDAT), incorporating observations from 30 Arctic rivers. The annual mean discharge for all rivers in ARDAT is 2817 ± 330 km3 yr-1. River water temperatures range between 0 °C in winter to 14.0-17.6 °C in July, leading to a long-term mean monthly heat flux from all rivers of 3.2 ± 0.6 TW, of which 31% is supplied by Alaskan rivers and 69% is supplied by Eurasian rivers. This riverine heat flux is equivalent to 44% of the estimated ocean heat flux associated with the Bering Strait throughflow, but during the spring freshet can be ∼10 times as large, suggesting that heat flux associated with Arctic rivers is an important component of the Arctic heat budget on seasonal time scales. We apply the ARDAT data set to a high-resolution regional ocean-ice model, and compare results to a model integration using a 1° resolution discharge data set. Integrated freshwater content on the Arctic shelves (<200 m) increases by ∼3600 km3 in the ARDAT forced model run compared to the coarser forcing, suggesting that river discharge is contained on the Arctic shelves when forced with the ARDAT data set. Modelled summer heat fluxes over the shelves increase by 8 TW when river water temperature is included, which subsequently reduces basin-wide September sea ice extent by ∼10%. Regional differences are larger, where e.g., sea ice extent on the Beaufort shelf is reduced by ∼36%. Using a non-linear free surface parameterization along with the ARDAT data set, we find an increase in the sea surface height gradient around river mouths

  14. Fast Longwave and Shortwave Radiative Flux (FLASHFlux) Products from CERES and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Kratz, David P.; McGarragh, Greg R.; Gupta, Shashi K.; Geier, Erika B.

    2006-01-01

    The Clouds and the Earth s Radiant Energy Systems (CERES) project is currently producing world-class climatological data products derived from measurements taken aboard the Terra and Aqua spacecrafts (Wielicki et al., 1996). While of exceptional fidelity, these data products require a considerable amount of processing to assure quality and verify accuracy and precision. Obtaining such high quality assurance, however, means that the CERES data is typically released more than six months after the acquisition of the initial measurements. For climate studies, such delays are of little consequence, especially considering the improved quality of the released data products. There are, however, many uses for the CERES data products on a near real-time basis. These include: CERES instrument calibration and subsystem quality checks, CLOUDSAT operations, seasonal predictions, agricultural and ocean assimilations, support of field campaigns, and outreach programs such as S'Cool. The FLASHflux project was envisioned as a conduit whereby CERES data could be provided to the community within a week of the initial measurements, with the trade-off that some degree of fidelity would be exacted to gain speed. In this paper, we will report on some very encouraging initial results from the FLASHflux project in which we compared the FLASHflux instantaneous surface fluxes to the CERES surface-only flux algorithm data products.

  15. Spatial Representativeness of Flux Tower Sites: A Comparison Between Tower and Aircraft Eddy-Covariance Fluxes

    NASA Astrophysics Data System (ADS)

    Caulton, D.; Shepson, P. B.; Munger, J. W.; Hollinger, D. Y.; Saatchi, S. S.; Moghaddam, M.; Stirm, B. H.

    2013-12-01

    Development and testing of regional and global scale ecosystem models rely on analysis of data from flux towers that have footprint scales (~1 km2) that are much smaller and contain relatively homogeneous land use types. This approach tends to assume that the patchwork approach appropriately represents regions that are, especially on larger scale, much more heterogeneous in terms of land cover, soil moisture, topography and climatology, etc. While aircraft platforms provide snapshot views of NEE, they have access to essentially any environment and can access difficult and heterogeneous environments. We used an instrumented aircraft platform equipped with a 50 Hz wind probe and GPS/INS and a 10 Hz Picarro CO2/H2O analyzer to measure eddy covariance fluxes over larger spatial scales (~20 km2) over and near Howland Forest, ME, Harvard Forest, MA and Duke Forest, NC, as part of the Airborne Observatory of Subcanopy and Subsurface (AirMOSS) mission campaigns. Flux measurements were conducted for varying land cover types in these forests in July, 2012 and June-August, 2013. Measured fluxes will be compared with tower fluxes from each of the three sites to investigate the quality of the aircraft data, and the ability to assess local-regional scale variability and the spatial representativeness of these towers, with respect to the larger scale fluxes. In addition, soil moisture data from a NASA G-III aircraft will be used to investigate spatial representativeness and the soil moisture dependence of the fluxes.

  16. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Lavado, Waldo; Willems, Bram; Robles, Luis Alberto; Rodríguez-Sánchez, Juan-Pablo

    2016-02-01

    Satellite precipitation products are becoming increasingly useful to complement rain gauge networks in regions where these are too sparse to capture spatial precipitation patterns, such as in the Tropical Andes. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (TPR) was active for 17 years (1998-2014) and has generated one of the longest single-sensor, high-resolution, and high-accuracy rainfall records. In this study, high-resolution (5 km) gridded mean monthly climatological precipitation is derived from the raw orbital TPR data (TRMM 2A25) and merged with 723 rain gauges using multiple satellite-gauge (S-G) merging approaches. The resulting precipitation products are evaluated by cross validation and catchment water balances (runoff ratios) for 50 catchments across the Tropical Andes. Results show that the TPR captures major synoptic and seasonal precipitation patterns and also accurately defines orographic gradients but underestimates absolute monthly rainfall rates. The S-G merged products presented in this study constitute an improved source of climatological rainfall data, outperforming the gridded TPR product as well as a rain gauge-only product based on ordinary Kriging. Among the S-G merging methods, performance of inverse distance interpolation of satellite-gauge residuals was similar to that of geostatistical methods, which were more sensitive to gauge network density. High uncertainty and low performance of the merged precipitation products predominantly affected regions with low and intermittent precipitation regimes (e.g., Peruvian Pacific coast) and is likely linked to the low TPR sampling frequency. All S-G merged products presented in this study are available in the public domain.

  17. Ungulate Reproductive Parameters Track Satellite Observations of Plant Phenology across Latitude and Climatological Regimes

    PubMed Central

    Stoner, David C.; Sexton, Joseph O.; Nagol, Jyoteshwar; Bernales, Heather H.; Edwards, Thomas C.

    2016-01-01

    The effect of climatically-driven plant phenology on mammalian reproduction is one key to predicting species-specific demographic responses to climate change. Large ungulates face their greatest energetic demands from the later stages of pregnancy through weaning, and so in seasonal environments parturition dates should match periods of high primary productivity. Interannual variation in weather influences the quality and timing of forage availability, which can influence neonatal survival. Here, we evaluated macro-scale patterns in reproductive performance of a widely distributed ungulate (mule deer, Odocoileus hemionus) across contrasting climatological regimes using satellite-derived indices of primary productivity and plant phenology over eight degrees of latitude (890 km) in the American Southwest. The dataset comprised > 180,000 animal observations taken from 54 populations over eight years (2004–2011). Regionally, both the start and peak of growing season (“Start” and “Peak”, respectively) are negatively and significantly correlated with latitude, an unusual pattern stemming from a change in the dominance of spring snowmelt in the north to the influence of the North American Monsoon in the south. Corresponding to the timing and variation in both the Start and Peak, mule deer reproduction was latest, lowest, and most variable at lower latitudes where plant phenology is timed to the onset of monsoonal moisture. Parturition dates closely tracked the growing season across space, lagging behind the Start and preceding the Peak by 27 and 23 days, respectively. Mean juvenile production increased, and variation decreased, with increasing latitude. Temporally, juvenile production was best predicted by primary productivity during summer, which encompassed late pregnancy, parturition, and early lactation. Our findings offer a parsimonious explanation of two key reproductive parameters in ungulate demography, timing of parturition and mean annual production

  18. Ungulate Reproductive Parameters Track Satellite Observations of Plant Phenology across Latitude and Climatological Regimes.

    PubMed

    Stoner, David C; Sexton, Joseph O; Nagol, Jyoteshwar; Bernales, Heather H; Edwards, Thomas C

    2016-01-01

    The effect of climatically-driven plant phenology on mammalian reproduction is one key to predicting species-specific demographic responses to climate change. Large ungulates face their greatest energetic demands from the later stages of pregnancy through weaning, and so in seasonal environments parturition dates should match periods of high primary productivity. Interannual variation in weather influences the quality and timing of forage availability, which can influence neonatal survival. Here, we evaluated macro-scale patterns in reproductive performance of a widely distributed ungulate (mule deer, Odocoileus hemionus) across contrasting climatological regimes using satellite-derived indices of primary productivity and plant phenology over eight degrees of latitude (890 km) in the American Southwest. The dataset comprised > 180,000 animal observations taken from 54 populations over eight years (2004-2011). Regionally, both the start and peak of growing season ("Start" and "Peak", respectively) are negatively and significantly correlated with latitude, an unusual pattern stemming from a change in the dominance of spring snowmelt in the north to the influence of the North American Monsoon in the south. Corresponding to the timing and variation in both the Start and Peak, mule deer reproduction was latest, lowest, and most variable at lower latitudes where plant phenology is timed to the onset of monsoonal moisture. Parturition dates closely tracked the growing season across space, lagging behind the Start and preceding the Peak by 27 and 23 days, respectively. Mean juvenile production increased, and variation decreased, with increasing latitude. Temporally, juvenile production was best predicted by primary productivity during summer, which encompassed late pregnancy, parturition, and early lactation. Our findings offer a parsimonious explanation of two key reproductive parameters in ungulate demography, timing of parturition and mean annual production, across

  19. Top-of-the-Atmosphere Shortwave Flux Estimation from UV Observations: An Empirical Approach

    NASA Technical Reports Server (NTRS)

    Gupta, P.; Joiner, Joanna; Vasilkov, A.; Bhartia, P. K.; da Silva, Arlindo

    2012-01-01

    Measurements of top of the atmosphere (TOA) radiation are essential to the understanding of Earth's climate. Clouds, aerosols, and ozone (0,) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths, and Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long- and short-wave. OMI measurements have been successfully utilized to derive the information on trace gases (e.g., 0 1, NO" and SO,), clouds, and absorbing aerosols. TOA SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). In this paper, OMI retrievals of cloud/aerosol parameters and 0 1 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. This input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column 0" and sun-satellite viewing geometry from OMI as well as wind speed and water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content. We train the neural network using a subset of CERES retrievals of TOA SW flux as the target output (truth) and withhold a different subset of

  20. The climatology of Australian tropical aerosol: Evidence for regional correlation

    NASA Astrophysics Data System (ADS)

    Mitchell, R. M.; Forgan, B. W.; Campbell, S. K.; Qin, Y.

    2013-05-01

    Biomass burning aerosols from the tropical savanna of Northern Australia constitute a globally significant aerosol source, with impacts on regional climate and air quality. Knowledge of the seasonal cycle and spatial distribution of this aerosol is required for its realistic representation in models of global climate, and to help define the role of this region in the global carbon cycle. This paper presents a decadal climatology of these aerosols, based on Sun photometer records from three stations in the Australian tropics, over the period 1998-2012. The monthly time series shows enhanced aerosol emissions following prodigious wet seasons, two of which occurred during the study period. The monthly climatology shows the expected peak during the late dry season (September-November), when most burning takes place, with clear evidence of the dominant modulating effect of fine-particle smoke emission apparent from the annual cycle of the Ångström exponent, a proxy for particle size. The aerosol levels during the early dry season are higher at the northern "Top End" stations than at the south-westerly Kimberley station. The time variation of aerosol optical depth is highly correlated between all three station pairs, with a correlation coefficient r2> 0.75 at monthly resolution between all pairs. This high correlation between widely separated stations declines only gradually as the filtering interval is reduced, suggesting remarkably high coherence in the emission and transport of biomass burning aerosol across the entire region.

  1. Global climatological maps of ionospheric parameters from recent satellite missions

    NASA Astrophysics Data System (ADS)

    Stolle, Claudia; Luehr, Hermann; Liu, Huixin; Park, Jaeheung; Förster, Matthias; Olsen, Nils; Friis-Christensen, Eigil

    Satellite observations have always been crucial in determining and regularizing the IRI model by providing global data bases for empirical models. Special attraction may have local time precessing, polar orbiting satellites which cover the Earth ionosphere from polar to equatorial regions at all local times and longitudes. Out of these, CHAMP is a successful example with a presently unique orbit altitude of 400 km, and a live time and continuous data base of 10 years at the time of COSPAR 2010. We want to present results of global climatologies on plasma parameters, such as electron density and temperature and emphasis their special characteristics. CHAMP magnetic field and electron density observations have also enabled the statistical global review of the occurrence rates of equatorial plasma irregularities. Even enhanced knowledge on the climatological distribution of these parameters is expected from multi-spacecraft satellite missions, such as is the upcoming ESA Swarm mission. It will provide a multitude of ionospheric and magnetospheric parameters, such as plasma densities and temperatures, the electric and the magnetic field, neutral density and wind, as well as GPS Total Electron Content at three satellites in two different altitudes. We will present products and scientific possibilities arising from the Swarm mission in view of enriching the development of empirical models.

  2. Observational Constraints of Humidity Climatology From GPS Radio Occultation measurements

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Jiang, J. H.; Su, H.; Mannucci, A. J.

    2014-12-01

    Recent studies have shown large differences in the humidity climatology of the upper troposphere (UT) region between global models and observations. Such discrepancies can lead to large differences in the water vapor feedback estimations between models, reanalyses and satellite observations, and therefore climate projection uncertainties. Global Circulation Models (GCMs) could also mischaracterize the middle troposphere moist convection leading to erroneous conclusions about the water vapor vertical distribution and horizontal transport. We observationally constrain the UT humidity by employing high accuracy (<1.0%) and high vertical resolution (100-200 m) Global Positioning System Radio Occultation (GPSRO) refractivity measurements. Preliminary results from GPSRO reveal a significantly drier tropical boundary layer than both ECMWF and MERRA reanalyses. In the middle and upper troposphere, GPSRO is moister than ECMWF but drier than MERRA. These features are more pronounced at equatorial latitudes. These differences could have greater repercussions with regards to the water vapor feedback estimation. Also, zonally varying distributions of relative humidity (RH) from GPSRO, MERRA and ECMWF were also correlated with precipitation measurements from the Global Precipitation Climatology Project (GPCP). We found latitudinal differences between maxima of precipitation and RH, which could imply that large-scale horizontal transport in the boundary layer plays a critical role to governing the coupling strength between precipitation and RH. The application of GPSRO data in constraining the underlying model physics will be discussed.

  3. The climatology of tornadoes and waterspouts in Italy

    NASA Astrophysics Data System (ADS)

    Giaiotti, Dario B.; Giovannoni, Mauro; Pucillo, Arturo; Stel, Fulvio

    2007-02-01

    In this work 10 years of reports collected by weather amateurs are used to define a preliminary climatology of tornadoes and waterspouts in Italy. The results show behaviors different from those observed in other countries. Generally, tornadoes and waterspouts are more frequent in late summer and autumn than in the other seasons. The seasonality of tornadoes and waterspouts appears different for different Italian zones, in particular in the Po Valley and Friulian plain and coast (south to the Alps) tornadoes and waterspouts are more frequent in spring and early summer while in the Tirrenian and Ionian coasts (western and southern Italy), tornadoes and waterspouts are more frequent in late summer and autumn. As observed in other studies (Brooks, H., E. and Doswell, C. A. III, 2001. Some aspects of the international climatology of tornadoes by damage classification. Atmos. Res., 56, 191-201.) Italian tornadoes and waterspouts are statistically weaker than in other countries but this difference cannot be completely ascribed to the presence of waterspouts. The "CAPE Storm-Relative-Helicity diagrams" and "Shear Magnitude diagrams" obtained for Italian tornadoes and waterspouts show different characteristics than those obtained for US. The cause of these differences is still unknown, it can rely in the sample selection (problems with the concept of proximity sounding) or in a real climatic effect.

  4. Climatology of Tropical Intraseasonal Convective Anomalies: 1979 2002.

    NASA Astrophysics Data System (ADS)

    Jones, Charles; Carvalho, Leila M. V.; Higgins, R. Wayne; Waliser, Duane E.; Schemm, J.-K. E.

    2004-02-01

    Tropical intraseasonal convective anomalies (TICA) have a central role in subseasonal changes in the coupled ocean atmosphere system, but the climatology of TICA events has not been properly documented. This study exploits 24 years of outgoing longwave radiation (OLR) data and a tracking algorithm to develop a climatology of eastward propagating TICA events. Three distinct types of TICA occurrences are documented according to their propagation characteristics. The first type (IND) is characterized by events that propagate in the Indian Ocean without significant influence in the western Pacific Ocean. The second and third types are associated with occurrences of the Madden Julian oscillation during boreal winters (MJO) and summers (ISO). The frequency of occurrence of TICA events is highest in April June and October December and lowest in July September. An analysis of the spatial and temporal characteristics reveals that MJO events tend to have the longest life cycle, greatest intensity, and largest variability inside the contiguous region of OLR anomaly. Given the data record of 24 years, the analysis of interannual occurrences of TICA events does not show statistically significant differences among events that occur in different phases of the El Niño Southern Oscillation (ENSO). A procedure is developed to identify major MJO events and estimate their frequency of occurrence in the data record.

  5. Climatological Structures of the GRIPS Models: Mean States and Forcing

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    1999-01-01

    The GCM-Reality Intercomparison Project for SPARC (GRIPS) is assessing and monitoring the performance of state-of-the-art general circulation models (GCMs). A wide variety of tasks have been initiated. These are designed to: (1) assess the ability of the GCMs to represent the current climatological structure of the troposphere and middle atmosphere,(2) to compare their response to imposed forcing anomalies, and (3) to estimate the certainty with which future climate perturbations can be predicted. This paper is concerned with assessments of the climatological states in the GCM simulations. Comparing the simulations with observational datasets reveals considerable discrepancies in the modelled fields. While it might be anticipated that certain types of biases in the model simulations might be related to the formulation of different aspects of the numerical package (dynamical schemes, cloud schemes, radiation transfer, inclusion of gravity wave drag), there is no clear relationship between these features. This paper attempts to draw a more comprehensive picture of the GCMs'performance than has previously been shown, by comparing the dominant forcing mechanisms in the models with observational estimates, and relating model deficiencies to the differences in the physical mechanisms in the GCMS.

  6. Global Surface Ultraviolet Radiation Climatology from TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    1998-01-01

    The overall goal of this project has been to develop a method for calculating the distribution of solar ultraviolet radiation (UVR) over most of the earth's surface using NASA's Total Ozone Mapping Spectrometer (TOMS) and Earth Radiation Budget Experiment (ERBE) data, and to use this method to develop a UVR climatology that is useful in the context of the global ozone depletion issue. The research carried out with this support has resulted the following accomplishments: (1) a radioactive transfer method. based on the delta-Eddington approximation, was successfully developed; (2) the method was applied to the five years of overlapping TOMS and ERBE Monthly-Hourly data to examine the impact of global variability in cloud cover on trends in surface UVR; (3) a presentation was made on effects of stratospheric ozone depletion; (4) the radioactive transfer model was finally applied to all daylight hours to make a through study of the global effect of cloud cover;and (6) a five-year global climatology of surface UVR based on all of the research has been prepared for general distribution.

  7. Climatological Diversity of Producing Places for Vegetables in Japan

    NASA Astrophysics Data System (ADS)

    Masutomi, Y.

    2012-12-01

    Climatic variability, including extreme events such as heat waves, floods, and droughts, is one of main factors that threaten stable agricultural production. In fact, it has caused many agro-meteorological disasters all over the world. Furthermore, climate change will increase the frequency and severity of extreme events and will increase the risk of agro-meteorological disasters. Crop diversification that increase the variety of production locations, crops, enterprises or income sources, has been commonly identified at local scale, and is thought as an useful adaptation to climatic variability. However, little is known about crop diversification at national or international scales. Here, I focus on the spatial diversity of producing places, and propose a new index that quantifies the spatial diversity of producing places in consideration of climatological correlations between producing places. I named the index "Climatological Diversity of Producing Places (CDPP)." Second, using the CDPP, I investigated the long-term trends of vulnerability to climatic variability for 14 vegetables (31 cropping types) in Japan. I found that the GDPPs of 12 vegetables (17 cropping types) showed statistically significant increases. The results revealed the vulnerability to climatic variability has been reducing for many vegetables in Japan.

  8. The World Ocean Circulation Experiment (WOCE): An ocean climatology for the 1990s

    SciTech Connect

    Chapman, P.; Nowlin, W.D. Jr.

    1997-11-01

    During the last ten years, scientists have made remarkable progress in predicting seasonal and interannual climate variability, based on interactions between the atmosphere and the tropical ocean. The goals of the World Ocean Circulation Experiment (WOCE) are to develop models useful for predicting climate variability on longer time scales and to collect the data from the global ocean necessary to test them. Using a variety of instrument platforms, researchers in the US and other nations have been sampling a suite of ocean variables which will be used to build up a climatology of the oceans in the 1990s and from the basis for developing both new models of ocean circulation and coupled models of the ocean and atmosphere. This paper presents some recent results from WOCE research. It includes examples of advances in the fields of sea surface temperature measurements, sea level monitoring, current velocities, upper ocean heat content, and air-sea flux measurements. In addition, we discuss some of the recent advances in modeling and the link between WOCE research and future programs such as CLIVAR, GOOS and GCOS. 27 refs., 2 tabs.

  9. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)

    SciTech Connect

    Key, Robert; Kozyr, Alexander; Sabine, Chris; Lee, K.; Wanninkhof, R.; Bullister, J.L.; Feely, R. A.; Millero, F. J.; Mordy, C.; Peng, T.-H.

    2004-01-01

    During the 1990s, ocean sampling expeditions were carried out as part of the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the Ocean Atmosphere Carbon Exchange Study (OACES). Subsequently, a group of U.S. scientists synthesized the data into easily usable and readily available products. This collaboration is known as the Global Ocean Data Analysis Project (GLODAP). Results were merged into a common format data set, segregated by ocean. For comparison purposes, each ocean data set includes a small number of high-quality historical cruises. The data were subjected to rigorous quality control procedures to eliminate systematic data measurement biases. The calibrated 1990s data were used to estimate anthropogenic CO{sub 2}, potential alkalinity, CFC watermass ages, CFC partial pressure, bomb-produced radiocarbon, and natural radiocarbon. These quantities were merged into the measured data files. The data were used to produce objectively gridded property maps at a 1{sup o} resolution on 33 depth surfaces chosen to match existing climatologies for temperature, salinity, oxygen, and nutrients. The mapped fields are interpreted as an annual mean distribution in spite of the inaccuracy in that assumption. Both the calibrated data and the gridded products are available from the Carbon Dioxide Information Analysis Center. Here we describe the important details of the data treatment and the mapping procedure, and present summary quantities and integrals for the various parameters.

  10. A global ETCCDI based precipitation climatology from satellite and rain gauge measurements

    NASA Astrophysics Data System (ADS)

    Dietzsch, Felix; Andersson, Axel; Schröder, Marc; Ziese, Markus; Becker, Andreas

    2016-04-01

    The project framework MiKlip ("Mittelfristige Klimaprognosen") is focused onto the development of an operational forecast system for decadal climate predictions. The objective of the "Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized" (DAPAGLOCO) project, is the development and operationalization of a global precipitation dataset for forecast validation of the MPI-ESM experiments used in MiKlip. The dataset is a combination of rain gauge measurement data over land and satellite-based precipitation retrievals over ocean. Over land, gauge data from the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst (DWD) are used. Over ocean, retrievals from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) dataset are used as data source. The currently available dataset consists of 21 years of data (1988-2008) and has a spatial resolution of 1°. So far, the MiKlip forecast validation is based upon the Expert Team on Climate Change and Detection Indices (ETCCDI). These indices focus on precipitation extrema in terms of spell durations, percentiles, averaged precipitation amounts and further more. The application of these indices on the DAPAGLOCO dataset in its current state delivers insight into the global distribution of precipitation characteristics and extreme events. The resulting global patterns of these characteristics and extrema are the main objective of the presentation.

  11. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE PAGESBeta

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura

    2016-06-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Lastly, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  12. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites

    NASA Astrophysics Data System (ADS)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura

    2016-07-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.

  13. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    NASA Technical Reports Server (NTRS)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  14. A 4-year shortwave and longwave radiation climatology in a dust-influenced mountain snow regime

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Barrett, A. P.; Landry, C. C.; McNeally, P. B.

    2008-12-01

    In winter 2005, we established detailed radiation infrastructure in the Senator Beck Basin Study Area (SBBSA), which lies near Red Mountain Pass in the San Juan Mountains, SW Colorado, US. The San Juan Mountains are subject to multiple dust deposition events each year, primarily in spring and summer. In the period 2004-2008, the study site received 4 to 9 deposition events a year, with mass coming primarily from the Colorado Plateau. The loading observed today is approximately 500% greater than that prior to the disturbance of fragile desert surfaces in the southwest US in the 1870s when numbers of grazing cattle and sheep began to increase dramatically. Snowmelt model sensitivity analyses indicate that snow cover duration is reduced by 25-35 days as a result of enhanced absorption of shortwave radiation by dust in the snow cover. Land surface radiative forcing as a result of early removal of snowcover is of the order 150 W/m2. In this study, we describe the shortwave and longwave climatology (winter 2005 through summer 2008) at alpine and subalpine towers in the SBBSA. At each tower, we measure incident and reflected fluxes for broadband shortwave and NIR/SWIR (from which we infer the visible fluxes), longwave irradiance and snow surface temperature (from which we infer snow longwave exitance), and noontime diffuse irradiance. A CIMEL sunphotometer (NASA AERONET site RedMountainPass) is situated near the subalpine tower to measure aerosol optical depth coordinated with the above radiation measurements. During winter and spring, the top 30 cm of the snow column was sampled at 3 cm resolution to determine the stratigraphy of dust concentration contributing to enhanced absorption.

  15. Assessing scalar concentration footprint climatology and land surface impacts on tall-tower CO2 concentration measurements in the boreal forest of central Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Zhang, Huifang; Coops, Nicholas C.; Fu, Dongjie; Worthy, Douglas E. J.; Xu, Guang; Black, T. Andy

    2014-10-01

    Reducing the large uncertainties in current estimates of CO2 sources and sinks at regional scales (102-105 km2) is fundamental to improving our understanding of the terrestrial carbon cycle. Continuous high-precision CO2 concentration measurements on a tower within the planetary boundary layer contain information on regional carbon fluxes; however, its spatial representativeness is generally unknown. In this study, we developed a footprint model (Simple Analytical Footprint model based on Eulerian coordinates for scalar Concentration [SAFE-C]) and applied it to two CO2 concentration towers in central Canada: the East Trout Lake 106-m-tall tower (54°21'N, 104°59'W) and the Candle Lake 28-m-high tower (53°59'N, 105°07'W). Results show that the ETL tower's annual concentration footprints were around 103-105 km2. The monthly footprint climatologies in summer were 1.5-2 times larger than in winter. The impacts of land surface carbon flux associated with heterogeneous distribution of vegetation types on the CO2 concentration measurements were different for the different heights, varied with a range of ±5 % to ±10 % among four heights. This study indicates that concentration footprint climatology analysis is important in interpreting the seasonal, annual and inter-annual variations of tower measured CO2 concentration data and is essential for comparing and scaling regional carbon flux estimates using top-down or bottom-up approaches.

  16. A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data

    NASA Astrophysics Data System (ADS)

    Labow, G. J.; McPeters, R. D.; Ziemke, J. R.

    2014-12-01

    A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.

  17. Annual Climatology of the Diurnal Cycle on the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Betts, Alan; Tawfik, Ahmed

    2016-01-01

    We show the annual climatology of the diurnal cycle, stratified by opaque cloud, using the full hourly resolution of the Canadian Prairie data. The opaque cloud field itself has distinct cold and warm season diurnal climatologies; with a near-sunrise peak of cloud in the cold season and an early afternoon peak in the warm season. There are two primary climate states on the Canadian Prairies, separated by the freezing point of water, because a reflective surface snow cover acts as a climate switch. Both cold and warm season climatologies can be seen in the transition months of November, March and April with a large difference in mean temperature. In the cold season with snow, the diurnal ranges of temperature and relative humidity increase quasi-linearly with decreasing cloud, and increase from December to March with increased solar forcing. The warm season months, April to September, show a homogeneous coupling to the cloud cover, and a diurnal cycle of temperature and humidity that depends only on net longwave. Our improved representation of the diurnal cycle shows that the warm season coupling between diurnal temperature range and net longwave is weakly quadratic through the origin, rather than the linear coupling shown in earlier papers. We calculate the conceptually important 24-h imbalances of temperature and relative humidity (and other thermodynamic variables) as a function of opaque cloud cover. In the warm season under nearly clear skies, there is a warming of +2oC and a drying of -6% over the 24-h cycle, which is about 12% of their diurnal ranges. We summarize results on conserved variable diagrams and explore the impact of surface windspeed on the diurnal cycle in the cold and warm seasons. In all months, the fall in minimum temperature is reduced with increasing windspeed, which reduces the diurnal temperature range. In July and August, there is an increase of afternoon maximum temperature and humidity at low windspeeds, and a corresponding rise in

  18. Climatological to Near Real Time Global Meteorological Data for Agricultural, Range, and Forestry Applications

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stackhouse, P. W.; Westberg, D. J.; Chandler, W. S.; Whitlock, C. H.; Zhang, T.

    2007-12-01

    Application of Decision Support Systems (DSS) software often requires accurate environmental data on time scales ranging from daily forecasts to long-range climate outlooks. The NASA Science Mission Directorate's Applied Science Energy Management Program provides estimates of many of the required meteorological and solar parameters from a combination of assimilation models and satellite observations. However these data holdings are often in large archives and/or in formats unfamiliar to many potential users. NASA, through its Applications Program, has recognized that many potential data users are either unwilling or lack the resources required to investigate the applicability of these data to their particular application. NASA's Prediction of Worldwide Energy Resource (POWER) is one of NASA's Applications Project that has as one of its objectives the development of user-friendly data products for agricultural applications and to make these products readily accessible to the user community. The POWER project has adapted and reformatted data parameters from NASA Science Directorate sponsored research programs such as the International Satellite Cloud Climatology Project (ISCCP), the Surface Radiation Budget Project (SRB), the Global Precipitation Climatology Project (GPCP), the Tropical Rain Measuring Mission (TRMM) and the meteorological assimilation projects from the Global Modeling and Assimilation Office (GMAO). The POWER project currently provides a database of meteorological parameters and surface solar energy fluxes on a global 1-degree latitude/longitude grid. The agricultural data products currently available through a prototype web based information interface (http://power.larc.nasa.gov), consist of daily integrated surface solar radiation, daily averaged dew point temperature, daily maximum and minimum temperatures, and daily precipitation. The solar data has been inferred from satellite observations that cover the time period from July 1, 1983 through

  19. Global observation-based diagnosis of soil moisture control on land surface flux partition

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  20. The Climatology of Extreme Rainfall in the Eastern US (Invited)

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Baeck, M. L.; Yeung, J. K.; Villarini, G.; Krajewski, W. F.

    2009-12-01

    Recent studies have shown that flood peak distributions in the eastern US can be represented through mixtures of flood generating mechanisms, including landfalling tropical cyclones, extratropical cyclones and organized convective systems. The eastern US is a complex setting for examining rainfall climatology, with land-ocean boundaries, mountainous terrain and the urban megalopolis all playing important roles in controlling rainfall distribution. In this study we examine the dynamics of extreme rainfall in the eastern US through a combination of observational analyses and numerical modeling studies. Observational analyses utilize long records of high-resolution rainfall fields from the Hydro-NEXRAD system. We also utilize observational resources from the Princeton environmental sensor network, including a network of rain gages and disdrometer, to examine rainfall microstructure. Numerical model studies are based on the Weather Research and Forecasting (WRF) model. In addition to rainfall microstructure, analyses focus on spatial heterogeneities of rainfall associated with land surface processes and the diurnal cycle of warm season rainfall.

  1. Aerosol optical properties of the free troposphere: Tropospheric backscatter climatology

    NASA Astrophysics Data System (ADS)

    Rosen, James M.

    1994-12-01

    A unique ensemble of aerosol sensors (backscattersondes, nephelometers and particle counters) has been assembled during the course of this research to obtain new measurements relating to the optical properties of aerosols in the atmosphere, especially in the free troposphere. A knowledge of the aerosol extinction-to-backscatter ratio has been greatly enhanced as a result of this project and the inference of representative values along with the range of variation is now possible. Agreement between the optical model results and actual measurements appears to be quite satisfactory. An initial climatology of aerosol backscatter in the free troposphere has been developed and is in general agreement with results and inferences from global remote sensing instruments. However, the data from remote sensors may indicate a larger influence of volcanic aerosols on the upper troposphere than actually exists. Further work with high resolution soundings is needed to fully resolve this issue.

  2. The Mars Geoscience/Climatology Orbiter 1990 mission

    NASA Technical Reports Server (NTRS)

    Low, G. D.; Stuart, J. R.; Palluconi, F. D.; Blume, W. H.; Erickson, K. D.

    1984-01-01

    The fundamental objectives of the Mars Geoscience/Climatology Orbiter (MGCO) 1990 mission are related to the determination of the surface composition and topography of the planet Mars, its gravitational and intrinsic magnetic fields, and the seasonal behavior of volatiles, dust, and the atmosphere of Mars. These objectives would be achieved through a global mapping of the planet over a Martian year. For the baseline mission, a single spacecraft would be launched in August 1990, arrive at Mars in August 1991, and map the planet from a Sun-synchronous, near-circular, polar orbit for one Martian year. Attention is given to a science rationale and objectives, a mission description, the flight system, and mission operations.

  3. Towards a new aerosol climatology to improve the SPECMAGIC algorithm to retrieve surface solar irradiation from MVIRI and SEVIRI

    NASA Astrophysics Data System (ADS)

    Träger-Chatterjee, Christine; Müller, Richard W.; Trentmann, Jörg

    2015-04-01

    The Satellite Application Facility on Climate Monitoring (CM SAF) provides long-term climate datasets of surface solar radiation for more than 30 years retrieved from MVIRI and SEVIRI instruments on board the METEOSAT first and second generation satellites, respectively. The surface solar radiation is retrieved using the SPECMAGIC algorithm. The SPECMAGIC method is composed of the Heliosat approach to calculate the cloud transmission and a clear sky model. The Heliosat approach as well as the SPECMAGIC method will be described in the presentation "The SPECMAGIC algorithm for the retrieval of spectrally resolved surface radiation, overview and applications" by R. Müller in this session. The clear sky model SPECMAGIC consists of look-up tables calculated with the radiative transfer model libradtran for the consideration of aerosol as well as water vapour and ozone. The effect of four different state of the art aerosol data sources on the accuracy of surface solar radiation derived with SPECMAGIC is evaluated. The respective results are compared with calculations assuming constant aerosol (0.15) and zero optical depth. The SPECMAGIC calculations using the different aerosol information are compared to measurements of stations of the Baseline Surface Radiation Network (BSRN). The results indicate that in regions with a low frequency of clouds and enhanced variability of aerosol optical depth the climatologies investigated lead to large underestimations of the surface solar radiation, indicating that high aerosol optical depth provided by these climatologies are overestimated. As a consequence the best performing aerosol climatology investigated is modified in such a way very high AODs are cut down, which leads to promising results in the surface solar radiation retrieval.

  4. Analysis of the global ISCCP TOVS water vapor climatology

    NASA Technical Reports Server (NTRS)

    Wittmeyer, Ian L.; Vonder Haar, Thomas H.

    1994-01-01

    A climatological examination of the global water vapor field based on a multiyear period of successfull satellite-based observations is presented. Results from the multiyear global ISCCP TIROS Operational Vertical Sounder (TOVS) water vapor dataset as operationally produced by NESDIS and ISCCP are shown. The methods employed for the retrieval of precipitable water content (PWC) utilize infrared measurements collected by the TOVS instrument package flown aboard the NOAA series of operational polar-orbiting satellites. Strengths of this dataset include the nearly global daily coverage, availability for a multiyear period, operational internal quality checks, and its description of important features in the mean state of the atmosphere. Weaknesses of this PWC dataset include that the infrared sensors are unable to collect data in cloudy regions, the retrievals are strongly biased toward a land-based radiosonde first-guess dataset, and the description of high spatial and temporal variability is inadequate. Primary consequences of these factors are seen in the underestimation of ITCZ water vapor maxima, and underestimation of midlatitude water vapor mean and standard deviation values where transient atmospheric phenomena contribute significantly toward time means. A comparison of TOVS analyses to SSM/I data over ocean for the month of July 1988 shows fair agreement in the magnitude and distribution of the monthly mean values, but the TOVS fields exhibit much less temporal and spatial variability on a daily basis in comparison to the SSM/I analyses. The emphasis of this paper is on the presentation and documentation of an early satellite-based water vapor climatology, and description of factors that prevent a more accurate representation of the global water vapor field.

  5. Climatology and Characteristics of Aerosol Optical Properties in the Arctic

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra

    2016-04-01

    Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.

  6. Eight-year climatology of dust optical depth on Mars

    NASA Astrophysics Data System (ADS)

    Montabone, L.; Forget, F.; Millour, E.; Wilson, R. J.; Lewis, S. R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M. T.; Smith, M. D.; Wolff, M. J.

    2015-05-01

    We have produced a multiannual climatology of airborne dust from martian year 24-31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced spatio-temporal grid, using an iterative procedure that is weighted in space, time, and retrieval quality. The lack of observations at certain times and locations introduces missing grid points in the maps, which therefore may result in irregularly gridded (i.e. incomplete) fields. In order to evaluate the strengths and weaknesses of the resulting gridded maps, we compare with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability, in addition to provide a basis for instrument intercomparison. Finally, we have produced regularly gridded maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modeling

  7. The Interfaces Between Historical, Paleo-, and Modern Climatology

    NASA Astrophysics Data System (ADS)

    Mock, C. J.

    2011-12-01

    Historical climatology, commonly defined as the study of reconstructing past climates from documentary and early instrumental data, has routinely utilized data within the last several hundred years down to sub-daily temporal resolution prior to the advent of "modern" instrumental records beginning in the late 19th and 20th centuries. Historical climate reconstruction methods generally share similar aspects conducted in both paleoclimate reconstruction and modern climatology, given the need to quantify, calibrate, and conduct careful data quality assessments. Although some studies have integrated historical climatic studies with other high resolution paleoclimatic proxies, very few efforts have integrated historical data with modern "systematic" climate networks to further examine spatial and temporal patterns of climate variability. This presentation describes historical climate examples of how such data can be integrated within modern climate timescales, including examples of documentary data on tropical cyclones from the Western Pacific and Atlantic Basins, colonial records from Belize and Constantinople, ship logbooks in the Western Arctic, plantation diaries from the American Southeast, and newspaper data from the Fiji Islands and Bermuda. Some results include a unique wet period in Belize and active tropical cyclone periods in the Western and South Pacific in the early 20th century - both are not reflected in conventional modern climate datasets. Documentary data examples demonstrate high feasibility in further understanding extreme weather events at daily timeframes such as false spring/killing frost episodes and hydrological extremes in southeastern North America. Recent unique efforts also involve community participation, secondary education, and web- based volunteer efforts to digitize and archive historical weather and climate information.

  8. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    PubMed

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  9. Lightning climatology in the Congo Basin: detailed analysis

    NASA Astrophysics Data System (ADS)

    Soula, Serge; Kigotsi, Jean; Georgis, Jean-François; Barthe, Christelle

    2016-04-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analyzed in detail for the first time. It is based on World Wide Lightning Location Network (WWLLN) data for the period from 2005 to 2013. A comparison of these data with the Lightning Imaging Sensor (LIS) data for the same period shows the WWLLN detection efficiency (DE) in the region increases from about 1.70 % in the beginning of the period to 5.90 % in 2013, relative to LIS data, but not uniformly over the whole 2750 km × 2750 km area. Both the annual flash density and the number of stormy days show sharp maximum values localized in eastern of Democratic Republic of Congo (DRC) and west of Kivu Lake, regardless of the reference year and the period of the year. These maxima reach 12.86 fl km-2 and 189 days, respectively, in 2013, and correspond with a very active region located at the rear of the Virunga mountain range characterised with summits that can reach 3000 m. The presence of this range plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003) and other authors. Thus, a mean maximum value of about 157 fl km-2 y-1 is found for the annual lightning density. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56 % of the flashes located below the equator in the 10°S - 10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year, in agreement with previous works in other regions of the world.

  10. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    PubMed Central

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  11. Energetic particle characteristics of magnetotail flux ropes

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Klecker, B.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.

    1985-01-01

    During the recent ISEE-3 Geotail Mission three events have been identified from the magnetometer data which are consistent with a spacecraft crossing of a magnetotail flux rope. Energetic electron and proton observations obtained by the Max-Planck-Institut/University of Maryland sensor system during two of the possible flux rope events are presented. During one event remote sensing of the flux rope with energetic protons reveals that the flux rope is crossed by the spacecraft from south to north. This allows determination of the bandedness of the magnetic field twist and of the flux rope velocity relative to the spacecraft. A minimal flux rope radius of 3 earth radii is derived. Energetic proton intensity is highest just inside of the flux rope and decreases towards the core. Energetic electrons are streaming tailward near the outer boundary, indicating openness of the field lines, and are isotropic through the inner part of the flux rope.

  12. Geometrical correction factors for heat flux meters

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Papell, S. S.

    1974-01-01

    General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. The local averaging error e(x) is defined as the difference between the measured value of the heat flux and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local heat flux. For many practical problems, it is possible to use relatively large gages to obtain acceptable heat flux measurements.

  13. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  14. Improved Climatological Characterization of Optical Turbulence for Space Optical Imaging and Communications

    NASA Astrophysics Data System (ADS)

    Alliss, R.; Felton, B.

    2010-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical or other telescopes. In addition, the quality of service of a free space optical communications link may also be impacted. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, particularly for OCONUS locations, so simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using the Maui High Performance Computing Centers (MHPCC) Mana cluster. The WRF model is configured to run at 1km horizontal resolution over a domain covering several hundreds of kilometers. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. We are interested in the variations in Cn2 and the Fried Coherence Length (ro). Nearly two years of simulations have been performed over various regions

  15. Solar flux and its variations

    NASA Technical Reports Server (NTRS)

    Smith, E. V. P.; Gottlieb, D. M.

    1975-01-01

    Data are presented on the solar irradiance as derived from a number of sources. An attempt was made to bring these data onto a uniform scale. Summation of fluxes at all wavelengths yields a figure of 1357.826 for the solar constant. Estimates are made of the solar flux variations due to flares, active regions (slowly varying component), 27-day period, and the 11-yr cycle. Solar activity does not produce a significant variation in the value of the solar constant. Variations in the X-ray and EUV portions of the solar flux may be several orders of magnitude during solar activity, especially at times of major flares. It is established that these short wavelength flux enhancements cause significant changes in the terrestrial ionosphere.

  16. Radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Zara, Pedro; Vining, Roel; Hays, Cynthia J.; Mesarch, Mark A.

    1993-01-01

    The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions'. The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Our last report (Walter-Shea et al., 1992b) focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989. We report here on the final analysis of the slope data as well as results from thermal radiation studies conducted during the FIFE experiment. The specific areas reported are the following: (1) analysis of slope effects on measured reflectance values and estimates of surface albedo; (2) using remotely-measured surface temperatures as a means of estimating sensible heat flux from the Konza Prairie; (3) extracting canopy temperatures from remotely-measured composite surface temperatures; (4) modeling the measured composite temperature of partially vegetated surfaces; and (5) estimating gap distribution in partially vegetated surfaces from reflectance measurements.

  17. Coastal ocean climatology of temperature and salinity off the Southern California Bight: Seasonal variability, climate index correlation, and linear trend

    NASA Astrophysics Data System (ADS)

    Kim, Sung Yong; Cornuelle, Bruce D.

    2015-11-01

    A coastal ocean climatology of temperature and salinity in the Southern California Bight is estimated from conductivity-temperature-depth (CTD) and bottle sample profiles collected by historical California Cooperative Oceanic Fisheries Investigation (CalCOFI) cruises (1950-2009; quarterly after 1984) off southern California and quarterly/monthly nearshore CTD surveys (within 30 km from the coast except for the surfzone; 1999-2009) off San Diego and Los Angeles. As these fields are sampled regularly in space, but not in time, conventional Fourier analysis may not be possible. The time dependent temperature and salinity fields are modeled as linear combinations of an annual cycle and its five harmonics, as well as three standard climate indices (El Niňo-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO)), the Scripps Pier temperature time series, and a mean and linear trend without time lags. Since several of the predictor indices are correlated, the indices are successively orthogonalized to eliminate ambiguity in the identification of the contributed variance of each component. Regression coefficients are displayed in both vertical transects and horizontal maps to evaluate (1) whether the temporal and spatial scales of the two data sets of nearshore and offshore observations are consistent and (2) how oceanic variability at a regional scale is related to variability in the nearshore waters. The data-derived climatology can be used to identify anomalous events and atypical behaviors in regional-scale oceanic variability and to provide background ocean estimates for mapping or modeling.

  18. Influences of specific land use/land cover conversions on climatological normals of near-surface temperature

    USGS Publications Warehouse

    Hale, Robert C.; Gallo, Kevin P.; Loveland, Thomas R.

    2008-01-01

    Quantification of the effects of land use/land cover (LULC) changes on proximal measurements of near-surface air temperature is crucial to a better understanding of natural and anthropogenically induced climate change. In this study, data from stations utilized in deriving U.S. climatological temperature normals were analyzed in conjunction with NCEP-NCAR 50-Year Reanalysis (NNR) estimates and highly accurate LULC change maps in order to isolate the effects of LULC change from other climatological factors. While the “Normals” temperatures exhibited considerable warming in both minima and maxima, the NNR data revealed that the majority of the warming of maximum temperatures was not due to nearby LULC change. Warming of minimum temperatures was roughly evenly split between the effects of LULC change and other influences. Furthermore, the effects of LULC change varied considerably depending upon the particular type of land cover conversion that occurred. Urbanization, in particular, was found to result in warming of minima and maxima, while some LULC conversions that might be expected to have significantly altered nearby temperatures (e.g., clear-cutting of forests) did not.

  19. A Radar-Based Climatology of Thunderstorm Days across New York State.

    NASA Astrophysics Data System (ADS)

    Falconer, Phillip D.

    1984-07-01

    Archived radar reports, derived from the National Weather Service radar network, were used to estimate the average annual frequencies of thunderstorm days across New York State for the period 1978-81. The archival records consist of manually-digitized radar (MDR) data, available on magnetic tapes and arranged as hourly, digitally-encoded radar reflectivity values within a high-resolution grid of reporting blocks, each 45 × 45 km. Analyses of these data made use of an experimentally-derived relationship between radar reflectivities and the presence and intensities of thunderstorms. The radar-based thunderstorm day climatology generally agreed to within 15% of conventional, surface-based thunderstorm day statistics reported for the same period by National Weather Service (NWS) offices located within range of two or more network radars in the State. Poorest agreement between annual totals was found at selected NWS offices in the Greater New York City Metropolitan Area and northward into the lower Hudson River Valley, in far western New York and over far northern New York. Where redundant, near-continuous network radar coverage was available, a northwest-to-southeast increase of thunderstorm days, approaching an annual maximum of 45 in downstate New York was revealed. This gradient in thunderstorm day activity is significantly different from that depicted on isokeraunic maps derived from conventional thunder observing protocol. Because the MDR data are archived on a high-resolution grid of reporting blocks, local thunderstorm maxima on a scale of tens of kilometers may be resolved. Analyses further revealed that 5-25% of all thunderstorm days contained sufficiently vigorous storms to be characterized as `intense'. The greatest frequency of intense thunderstorm days, approaching 8 annually, was located in the highly-populated region of the State along the New York-New Jersey borders, northwest of the Greater New York City Metropolitan Area.

  20. Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Papa, Fabrice; Bala, Sujit K.; Pandey, Rajesh K.; Durand, Fabien; Gopalakrishna, V. V.; Rahman, Atiqur; Rossow, William B.

    2012-11-01

    This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than ˜4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from ˜2180 m3/s (6.5%) over the Brahmaputra to ˜1458 m3/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of ˜16% for 2009-2011 and ˜17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of ˜12500 m3/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.

  1. The climatology of dust aerosol over the arabian peninsula

    NASA Astrophysics Data System (ADS)

    Shalaby, A.; Rappenglueck, B.; Eltahir, E. A. B.

    2015-01-01

    Dust storms are considered to be a natural hazard over the Arabian Peninsula, since they occur all year round with maximum intensity and frequency in Spring and Summer. The Regional Climate Model version 4 (RegCM4) has been used to study the climatology of atmospheric dust over the Arabian Peninsula from 1999 to 2012. This relatively long simulation period samples the meteorological conditions that determine the climatology of mineral dust aerosols over the Arabian Peninsula. The modeled Aerosol Optical Depth (AOD) has been compared against ground-based observations of three Aerosol Robotic Network (AERONET) stations that are distributed over the Arabian Peninsula and daily space based observations from the Multi-angle Imaging SpectroRadiometer (MISR), the Moderate resolution Imaging SpectroRadimeter (MODIS) and Ozone Monitoring Instrument (OMI). The large scale atmospheric circulation and the land surface response that lead to dust uplifting have been analyzed. While the modeled AOD shows that the dust season extends from March to August with two pronounced maxima, one over the northern Arabian Peninsula in March with AOD equal to 0.4 and one over the southern Arabian Peninsula in July with AOD equal to 0.7, the observations show that the dust season extends from April to August with two pronounced maxima, one over the northern Arabian Peninsula in April with AOD equal to 0.5 and one over the southern Arabian Peninsula in July with AOD equal to 0.5. In spring a high pressure dominates the Arabian Peninsula and is responsible for advecting dust from southern and western part of the Arabian Peninsula to northern and eastern part of the Peninsula. Also, fast developed cyclones in northern Arabian Peninsula are responsible for producing strong dust storms over Iraq and Kuwait. However, in summer the main driver of the surface dust emission is the strong northerly wind ("Shamal") that transport dust from the northern Arabian Peninsula toward south parallel to the

  2. Cloud climatology at the Andes/Amazon Transition in Peru

    NASA Astrophysics Data System (ADS)

    Halladay, K.; New, M. G.; Malhi, Y.

    2011-12-01

    The climate of tropical montane regions is complex but may be sensitive to global change. We examine the local and regional cloud climatology of a region of the tropical Andes in Peru using corrected ISCCP (International Satellite Cloud Climatology Project) DX cloud product (1983-2008), MODIS (Moderate Resolution Imaging Spectroradiometer) MOD35 visible cloud flags (2000-2008) and ground-based cloud observations. The results were compared for three zones: highlands (grassland), eastern slope (the montane forest) and lowlands (tropical forest). We found that in the dry season (JJA) the study area is part of a localised region of increased cloud frequency relative to the highlands, lowlands and other parts the eastern slope, which is likely to result from the mean low-level wind trajectory and diurnal upslope flow. The highlands exhibited the greatest amplitude mean annual cycle of cloud frequency, with a minimum in June for all times of day. This was linked to the effect of the annual cycle of upper level zonal winds, with persistent westerlies in the austral winter suppressing cloud formation at higher elevations. Higher lowland cloud frequencies than those on the eastern slope in the morning in May and June suggest the persistence of nighttime downslope flows and low-level convergence at lower altitudes. We also examined trends and variability in cloud cover for the three zones, and their relationship to sea surface temperatures (SSTs) in the Pacific and Atlantic oceans. Lowland cloud frequencies were significantly correlated with tropical North Atlantic (TNA) SSTs in February, March, August and September, but this was reduced after detrending, whereas the eastern slope and the highlands were not significantly correlated with tropical North Atlantic SSTs. Pacific SST correlations were highest for the eastern slope and highlands from February to April. Indian Ocean SST anomalies were significantly correlated with dry season cloud frequency for the lowlands and

  3. Predictability and Diagnostics of Western Himalayan Hydro-climatology

    NASA Astrophysics Data System (ADS)

    Pal, I.; Lall, U.; Robertson, A. W.; Cane, M. A.

    2011-12-01

    Snowmelt dominated streamflow of the Western Himalayan rivers is an important water resource during the dry pre-monsoon months to meet the irrigation and hydropower needs in northern India. On the other hand, winter precipitation as the form of snow over Himalayas helps in maintaining the glaciers, which serve as a storehouse of freshwater throughout the year. With the help of the hydro-climatological data provided by the Bhakra Beas Management Board in India, we present the outcome of our research on the prediction and diagnostics of Satluj river basin hydro-climatology at the Indian side up to the upstream of Bhakra dam, which is a major source of water for irrigation and electricity generation (1325MW) for north India. Spring seasonal inflow anomalies to Bhakra dam are strongly correlated with large-scale precipitation and temperature in the preceding winter over the Western Himalayas and adjoining north and central Indian plains, suggesting a potentially usable predictability for reservoir managers. Winter precipitation in the Western Himalayas is mainly brought about by the mid-latitude jet stream leading to the formation of low-pressure synoptic systems known as Western Disturbances (WD). WDs originate over the North Atlantic Ocean or Mediterranean Sea, with secondaries developing over the Persian Gulf and Caspian Sea either directly or as a result of the arrival of low-pressure systems from southwest Arabia, and travel eastward over Iran, Afghanistan, Pakistan, and northwest India. Winter WDs (and therefore the average volume of winter precipitation over Western Himalayas) are also modulated by the large-scale interaction between ocean and atmosphere led by the variation of the SSTs of the Indian Ocean and Pacific. As a result, average spring inflow volume, which is a function of the average volume of precipitation in winter, was also found to be positively correlated with the SSTs over the western and equatorial Indian Ocean, and with below-normal sea

  4. Modeling the effect of climatological drought on European wildfire extent

    NASA Astrophysics Data System (ADS)

    Stagge, James H.; Dias, Susana; Rego, Francisco; Tallaksen, Lena M.

    2014-05-01

    Wildfires are a natural hazard most commonly associated with the Mediterranean region in Europe, but which can affect all regions and cause significant impact and damage. Because vegetation dryness is a primary factor in both the ignition and spread of wildfires, it is assumed that there is a link between climatological drought and wildfire extent in Europe. The objective of this study is therefore to test this link between wildfire extent, defined by area burned, and several climatological drought indices across all geoclimatic regions of Europe, eventually determining the relative effect and most relevant combination of these indices on fire extent. Using the European Fire Database, compiled by the EU Joint Research Centre, these analyses are performed at the national and sub-national (NUTS 1,2,3) scale for 22 countries. Drought indices used as predictor variables include the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), which calculate anomalies in precipitation and climatic water balance, respectively, accumulated over several periods (1, 2, 3, 6, 9, 12, and 24 months). Climate data is based on the gridded Watch Forcing Dataset ERA-Interim (WFDEI), which spans the duration of the wildfire series (1985-2010). Two methods of analysis are used in this study. First, the annual maximum wildfire extent for each country or region is modeled using multiple linear regression for all possible linear combinations of the drought indices. Second, wildfire extent is modeled individually for each month to determine how the relevant drought indices change throughout the wildfire season. Preliminary results show that, for the majority of European countries, wildfire extent is most strongly related to short-term (2-3 month) SPEI anomalies, which represent a combined lack of precipitation and increased evapotranspiration associated with high temperatures. Longer accumulated dryness (6-9 months) was also related to

  5. Climatological context for large-scale coral bleaching

    NASA Astrophysics Data System (ADS)

    Barton, A. D.; Casey, K. S.

    2005-12-01

    Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will

  6. A Precipitation Climatology of the Snowy Mountains, Australia

    NASA Astrophysics Data System (ADS)

    Theobald, Alison; McGowan, Hamish; Speirs, Johanna

    2014-05-01

    The precipitation that falls in the Snowy Mountains region of southeastern Australia provides critical water resources for hydroelectric power generation. Water storages in this region are also a major source of agricultural irrigation, environmental flows, and offer a degree of flood protection for some of the major river systems in Australia. Despite this importance, there remains a knowledge gap regarding the long-term, historic variability of the synoptic weather systems that deliver precipitation to the region. This research aims to increase the understanding of long-term variations in precipitation-bearing weather systems resulting in runoff into the Snowy Mountains catchments and reservoirs, and the way in which these are influenced by large-scale climate drivers. Here we present initial results on the development of a climatology of precipitation-bearing synoptic weather systems (synoptic typology), spanning a period of over 100 years. The synoptic typology is developed from the numerical weather model re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), in conjunction with regional precipitation and temperature data from a network of private gauges. Given the importance of surface, mid- and upper-air patterns on seasonal precipitation, the synoptic typing will be based on a range of meteorological variables throughout the depth of the troposphere, highlighting the importance of different atmospheric levels on the development and steering of synoptic precipitation bearing systems. The temporal and spatial variability of these synoptic systems, their response to teleconnection forcings and their contribution to inflow generation in the headwater catchments of the Snowy Mountains will be investigated. The resulting climatology will provide new understanding of the drivers of regional-scale precipitation variability at inter- and intra-annual timescales. It will enable greater understanding of how variability in synoptic scale

  7. Climatology of damage-causing hailstorms over Germany

    NASA Astrophysics Data System (ADS)

    Kunz, M.; Puskeiler, M.; Schmidberger, M.

    2012-04-01

    In several regions of Central Europe, such as southern Germany, Austria, Switzerland, and northern Italy, hailstorms often cause substantial damage to buildings, crops, or automobiles on the order of several million EUR. In the federal state of Baden-Württemberg, for example, most of the insured damage to buildings is caused by large hailstones. Due to both their local-scale extent and insufficient direct monitoring systems, hail swaths are not captured accurately and uniquely by a single observation system. Remote-sensing systems such as radars are able to detect convection signals in a basic way, but they lack the ability to discern a clear relation between measured intensity and hail on the ground. These shortcomings hamper statistical analysis on the hail probability and intensity. Hail modelling thus is a big challenge for the insurance industry. Within the project HARIS-CC (Hail Risk and Climate Change), different meteorological observations are combined (3D / 2D radar, lightning, satellite and radiosounding data) to obtain a comprehensive picture of the hail climatology over Germany. The various approaches were tested and calibrated with loss data from different insurance companies between 2005 and 2011. Best results are obtained by considering the vertical distance between the 0°C level of the atmosphere and the echo top height estimated from 3D reflectivity data from the radar network of German Weather Service (DWD). Additionally, frequency, intensity, width, and length of hail swaths are determined by applying a cell tracking algorithm to the 3D radar data (TRACE3D; Handwerker, 2002). The hailstorm tracks identified are merged with loss data using a geographical information system (GIS) to verify damage-causing hail on the ground. Evaluating the hailstorm climatology revealed that hail probability exhibits high spatial variability even over short distances. An important issue is the spatial pattern of hail occurrence that is considered to be due to

  8. Relationship between satellite-derived vegetation indices and aircraft-based CO2 measurements

    SciTech Connect

    Cihlar, J.; Caramori, P.H.; Schuepp, P.H.; Desjardins, R.L.; Macpherson, J.I. McGill Univ., Montreal Agriculture Canada, Centre for Land and Biological Resources Research, Ottawa National Research Council of Canada, Inst. for Aerospace Research, Ottawa )

    1992-11-01

    The objective of this study was to analyze the relationship between satellite-derived vegetation indices and CO2 uptake, as an initial step in exploring the possibility of using a satellite-derived vegetation index as a measure of net photosynthesis. The study area included the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site located on the Konza prairie and adjacent area as well as a transect between Manhattan and Salina. One third of the transect exhibited vegetation and terrain characteristics similar to those on the FIFE site, whereas cultivated land predominated in the remaining portion of the 75-km-long flight line. In June, July, August, and October 1987, several CO2 data sets were obtained using the National Research Council of Canada's Twin Otter research aircraft. The normalized difference vegetation index (NDVI) and the simple ratio (SR) were computed from NOAA AVHRR data acquired as part of FIFE. Aircraft and satellite data were processed to obtain spatially coincident and locally representative flux values. Results show a linear relationship between NDVI and CO2 uptake during a single day; however, a nonlinear relationship emerged when all data sets were combined. The data from FIFE and the regional transect were consistent for one date but differed for other periods. Overall, about 60 percent of total variability in CO2 flux was accounted for by the NDVI and 74 percent by the SR. 14 refs.

  9. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    SciTech Connect

    Kowalski, Greg M.; De Souza, David P.; Risis, Steve; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Lee-Young, Robert S.; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-08-07

    Rationale: Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective: To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results: Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-{sup 13}C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring {sup 13}C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic–hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions: Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism. - Highlights: • Insulin clamp was used to determine the evolution of cardiac

  10. Status and Plans for the WCRP/GEWEX Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2007-01-01

    The Global Precipitation Climatology Project (GPCP) is an international project under the auspices of the World Climate Research Program (WCRP) and GEWEX (Global Water and Energy Experiment). The GPCP group consists of scientists from agencies and universities in various countries that work together to produce a set of global precipitation analyses at time scales of monthly, pentad, and daily. The status of the current products will be briefly summarized, focusing on the monthly analysis. Global and large regional rainfall variations and possible long-term changes are examined using the 27-year (1 979-2005) monthly dataset. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of long-term change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward change in the Tropics (25s-25N) during the period,. especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the linear change is examined. Plans for a GPCP reprocessing for a Version 3 of products, potentially including a fine-time resolution product will be discussed. Current and future links to IPWG will also be addressed.

  11. The Impact of Climatological Variables on Kelp Canopy Area in the Santa Barbara Channel

    NASA Astrophysics Data System (ADS)

    Zigner, K.; Bausell, J.; Kudela, R. M.

    2015-12-01

    Kelp canopy area (KCA), a proxy for kelp forest health, has important implications for small and large-scale processes pertaining to fisheries, near shore currents, and marine ecosystems. As part of the NASA Airborne Science Research Program (SARP), this study examines the impact of ocean chemistry and climatological variables on KCA in the Santa Barbara Channel through time series analysis. El Niño Southern Oscillation (ENSO), North Pacific Gyre Oscillation (NPGO), North Pacific Oscillation (NPO), and upwelling indices as well as sea surface temperature (SST), salinity, nitrate, and chlorophyll-a concentrations taken within the Santa Barbara channel (1990-2014) were acquired from the Climate Prediction Center (CPC), California Cooperative Oceanic Fisheries Investigation (CalCOFI), and Di Lorenzo's NPGO websites. These data were then averaged for winter (November-January) and summer (May-August) seasons and compared to KCA measurements derived from Landsat images via unsupervised classification. Regression, cumulative sum tests, and cross-correlation coefficients revealed a two year lag between KCA and the NPGO, indicating the presence of an additional factor driving both variables. Further analyses suggests that the NPO may be this driving factor, as indicated by the correlation (lag 0) with KCA. Comparing relationships between kelp and other variables over various time periods supports the acceleration of the NPGO and other variables in more recent years. Exploring relationships between KCA, NPGO, and NPO may provide insight into potential impacts of climate change on coastal marine ecosystems.

  12. Transport of anthropogenic emissions during ARCTAS-A: a climatology and regional case studies

    NASA Astrophysics Data System (ADS)

    Harrigan, D. L.; Fuelberg, H. E.; Simpson, I. J.; Blake, D. R.; Carmichael, G. R.; Diskin, G. S.

    2011-02-01

    sampled anthropogenic emissions from Asia, North America, and Europe during the spring phase of ARCTAS. The pathways travelled by these emissions agree with our derived "climatologies" and previous studies of Arctic transport. Meteorological analysis and trajectory calculations indicate that middle latitude cyclones and their associated warm conveyor belts play an important role in lofting the surface based emissions to their sampling altitude in all three cases.

  13. Impact of Planetary Boundary Layer Depth on Climatological Tracer Transport in the GEOS-5 AGCM

    NASA Astrophysics Data System (ADS)

    McGrath-Spangler, E. L.; Molod, A.

    2013-12-01

    Planetary boundary layer (PBL) processes have large implications for tropospheric tracer transport since surface fluxes are diluted by the depth of the PBL through vertical mixing. However, no consensus on PBL depth definition currently exists and various methods for estimating this parameter can give results that differ by hundreds of meters or more. In order to facilitate comparisons between the Goddard Earth Observation System (GEOS-5) and other modeling and observational systems, seven PBL depth estimation methods are used to diagnose PBL depth and produce climatologies that are evaluated here. All seven methods evaluate a single atmosphere so differences are related solely to the definition chosen. PBL depths that are estimated using a Richardson number are shallower than those given by methods based on the scalar diffusivity during warm, moist conditions at midday and collapse to lower values at night. In GEOS-5, the PBL depth is used in the estimation of the turbulent length scale and so impacts vertical mixing. Changing the method used to determine the PBL depth for this length scale thus changes the tracer transport. Using a bulk Richardson number method instead of a scalar diffusivity method produces changes in the quantity of Saharan dust lofted into the free troposphere and advected to North America, with more surface dust in North America during boreal summer and less in boreal winter. Additionally, greenhouse gases are considerably impacted. During boreal winter, changing the PBL depth definition produces carbon dioxide differences of nearly 5 ppm over Siberia and gradients of about 5 ppm over 1000 km in Europe. PBL depth changes are responsible for surface carbon monoxide changes of 20 ppb or more over the biomass burning regions of Africa.

  14. Thunderstorm Initiation Climatology Over the Amazon Region Based on Fortracc System

    NASA Astrophysics Data System (ADS)

    Bourscheidt, V.; Pinto, O., Jr.

    2015-12-01

    The increasing availability of meteorological data worldwide (satellite, weather radar, etc.) has led to the development of many systems to track thunderstorms. Despite their primary application on nowcasting, they may also provide information on the onset of thunderstorms. The main tracking system based on satellite data in Brazil is the FORTRACC (Forecast and Track of Cloud Cluster), which was developed by Vila and Machado (2006) to detect and follow clusters of penetrative clouds using the difference of water vapor and infrared channels of GOES imagery. The resulting data comprise different information of the trajectory and evolution of convective systems, as well as the starting point of each thunderstorm, called spontaneous generation (N). Based on a collection of 12 years (2003-2014) of these data (N) over the Amazon region, the resulting climatology of thunderstorm onset location is presented, which is expected to be less subject to errors than the other variables given by the tracking system (despite the storm trajectory and stages are not completely recognized in many cases, the convective system will exist). The initial results indicate a singular behavior, with a reduced number of convective systems starting over the main rivers and lower areas (see attached Figure). To better understand the underlying conditions, storm onset data (N) will be will be separated in different time intervals in a further analysis and the observed spatial distribution will be compared with lightning climatoligies (based on LIS/WWLLN data), as well as on the elevation (from GEOTOPO 30 dataset). Besides the influence of terrain, which is widely described in several previous studies on the thunderstorm initiation, large water bodies and adjacent forest/land may influence on storm onset. At the Amazon region, synoptic effects are reduced, which may increases the influence of contrasting surface characteristics on the sensible/latent heat fluxes and on the local circulation; and

  15. A Lagrangian Climatology of Tropical Moisture Exports to the Northern Hemispheric Extratropics

    NASA Astrophysics Data System (ADS)

    Knippertz, P.; Wernli, H.

    2009-09-01

    Many case studies have shown that heavy precipitation events and rapid cyclogenesis in the extratropics can be fueled by moist and warm tropical air masses. Often the tropical moisture export (TME) occurs through a longitudinally confined region in the subtropics. Here a comprehensive climatological analysis of TME is constructed on the basis of daily five-day forward trajectories started from the tropical lower troposphere using 6-hourly ERA-40 data from the 23-year period 1979-2001. The objective identification procedure retains only those trajectories that reach a water vapor flux of at least 200 g kg-1 m s-1 somewhere north of 35°N. The results show four distinct activity maxima with different seasonal behavior: (I) The "pineapple express”, which connects tropical moisture sources near Hawaii with precipitation near the North American west coast, has a marked activity maximum in boreal winter. (II) TME over the West Pacific is most frequent in summer and autumn and is partly related to the East Asian monsoon and the Meiyu-Baiu front. This region alone is responsible for a large portion of TME across 35°N. (III) The narrow activity maximum over the Great Plains of North America is rooted over the Gulf of Mexico and the Caribbean Sea, and has a clear maximum in summer and spring. (IV) TMEs over the western North Atlantic show the smallest annual cycle with a maximum in winter and autumn. Interannual variability in this and region I is significantly influenced by El Niño. Over the African-European-Asian region, high orographic barriers impede TME. Typical TME trajectory evolutions are quasi-horizontally poleward in the subtropics and then more eastward and upward in the southern midlatitudes, where they contribute significantly to precipitation.

  16. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology

    NASA Astrophysics Data System (ADS)

    Gutenbrunner, Christoph; Bender, Tamas; Cantista, Pedro; Karagülle, Zeki

    2010-09-01

    Health Resort Medicine, Balneology, Medical Hydrology and Climatology are not fully recognised as independent medical specialties at a global international level. Analysing the reasons, we can identify both external (from outside the field) and internal (from inside the field) factors. External arguments include, e.g. the lack of scientific evidence, the fact that Balneotherapy and Climatotherapy is not used in all countries, and the fact that Health Resort Medicine, Balneology, Medical Hydrology and Climatology focus only on single methods and do not have a comprehensive concept. Implicit barriers are the lack of international accepted terms in the field, the restriction of being allowed to practice the activities only in specific settings, and the trend to use Balneotherapy mainly for wellness concepts. Especially the implicit barriers should be subject to intense discussions among scientists and specialists. This paper suggests one option to tackle the problem of implicit barriers by making a proposal for a structure and description of the medical field, and to provide some commonly acceptable descriptions of content and terminology. The medical area can be defined as “medicine in health resorts” (or “health resort medicine”). Health resort medicine includes “all medical activities originated and derived in health resorts based on scientific evidence aiming at health promotion, prevention, therapy and rehabilitation”. Core elements of health resort interventions in health resorts are balneotherapy, hydrotherapy, and climatotherapy. Health resort medicine can be used for health promotion, prevention, treatment, and rehabilitation. The use of natural mineral waters, gases and peloids in many countries is called balneotherapy, but other (equivalent) terms exist. Substances used for balneotherapy are medical mineral waters, medical peloids, and natural gases (bathing, drinking, inhalation, etc.). The use of plain water (tap water) for therapy is called

  17. a Climatology of Extreme Minimum Winter Temperatures in Ohio

    NASA Astrophysics Data System (ADS)

    Edgell, Dennis Joe

    The Extreme Minimum Winter Temperature (EMWT) is the coldest temperature recorded each winter at a given weather station. This variable is a measure of winter temperature stress. Extreme cold influences the geographic distribution of plants, and is a prime control for the production of some valuable fruit crops grown in Ohio. EMWT values are often used to map plant hardiness zones, however the magnitude of EMWT and the date that it occurs has varied widely from year to year. Climatic variables rarely remain constant over time, and the plant hardiness zones could shift significantly if the climate changes and there is a trend towards warmer EMWTs. Plants that have their present geographic ranges limited by cold winter temperatures could increase their spatial extent. Furthermore, EMWT has impacts on human health and has applications for architecture. EMWTs at eighty-nine weather stations in Ohio were analyzed. Summary statistics and return period intervals for critical EMWTs are tabulated and mapped. Return period maps may be more useful for environmental planning than plant hardiness zone maps based on average EMWT, especially in a variable climate. Graphical methods, curve fitting and a probability model for the mean were utilized to examine the long term trend. The EMWT has not warmed during the known climatic record of this variable in Ohio. This study demonstrates the need for more applied climatological studies based on the observed climate record, not obscured by the assumptions of the global warming paradigm.

  18. Tropical Plumes over the Middle East: Climatology and synoptic conditions

    NASA Astrophysics Data System (ADS)

    Tubi, Amit; Dayan, Uri

    2014-08-01

    A 10-yr climatological study of Tropical Plumes (TPs) observed over the Middle East was undertaken. Several tools were used to identify and analyze these mid-tropospheric elongated cloudbands: satellite images, reanalysis and radiosonde data, backward trajectories, and cluster analysis. In order to conduct an in-depth examination of the synoptic conditions controlling this tropical-extratropical phenomenon, a dual methodology was adopted. In the first analysis, the identified 45 plumes were classified to precipitative and non-precipitative. In the second analysis, backward trajectories of the plumes were clustered in order to detect their moisture origins and pathways. In addition to the well documented south-western plumes originating in West Africa, a more southern pathway was identified, in which moisture was transported from Central to East African sources. The ‘south-western’ plumes are associated with a southwards penetration of mid-latitude troughs, associated with an intensified thermal wind and a longer jet streak, extending as far as Northwestern Africa. In the ‘southern’ category the Sub-Tropical Jet is associated with an anticyclonic flow over the south of the Arabian Peninsula, serving as an essential vehicle advecting moisture from tropical origins. This moisture pathway is considerably shorter than the south-western one. Several conditions favor precipitation induced by TPs over the domain: a northward migration of the jet streak resulting in a weakening of the wind speed over the target area, a deeper trough at the 500 hPa level and a shorter moisture corridor.

  19. "Tropical Plumes over the Middle East: Climatology and synoptic conditions"

    NASA Astrophysics Data System (ADS)

    Dayan, Uri; Tubi, Amit

    2015-04-01

    A 10-yr climatological study of Tropical Plumes (TPs) observed over the Middle East was undertaken. Several tools were used to identify and analyze these mid-tropospheric elongated cloudbands: satellite images, reanalysis and radiosonde data, backward trajectories, and cluster analysis. In order to conduct an in-depth examination of the synoptic conditions controlling this tropical-extratropical phenomenon, a dual methodology was adopted. In the first analysis, the identified 45 plumes were classified to precipitative and non-precipitative. In the second analysis, backward trajectories of the plumes were clustered in order to detect their moisture origins and pathways. In addition to the well documented south-western plumes originating in West Africa, a more southern pathway was identified, in which moisture was transported from Central to East African sources. The 'south-western' plumes are associated with a southwards penetration of mid-latitude troughs, associated with an intensified thermal wind and a longer jet streak, extending as far as Northwestern Africa. In the 'southern' category the Sub-Tropical Jet is associated with an anticyclonic flow over the south of the Arabian Peninsula, serving as an essential vehicle advecting moisture from tropical origins. This moisture pathway is considerably shorter than the south-western one. Several conditions favor precipitation induced by TPs over the domain: a northward migration of the jet streak resulting in a weakening of the wind speed over the target area, a deeper trough at the 500 hPa level and a shorter moisture corridor.

  20. Climatology of daily rainfall semivariance in The Netherlands

    NASA Astrophysics Data System (ADS)

    van de Beek, C. Z.; Leijnse, H.; Torfs, P. J. J. F.; Uijlenhoet, R.

    2010-03-01

    Rain gauges can offer high quality rainfall measurements at their location. Networks of rain gauges can offer better insight into the space-time variability of rainfall, but they tend to be too widely spaced for accurate estimates between points. While remote sensing systems, such as radars and networks of microwave links, can offer good insight in the spatial variability of rainfall they tend to have more problems in identifying the correct rain amounts at the ground. A way to estimate the variability of rainfall between gauge points is to interpolate between them using fitted variograms. If a dense rain gauge network is lacking it is difficult to estimate accurate variograms. In this paper a 30-year dataset of daily rain accumulations gathered at 29 automatic weather stations operated by KNMI and a one-year dataset of 10 gauges in a network with a radius of 5 km around CESAR (Cabauw Experimental Site for Atmospheric Research) are employed to estimate variograms. Fitted variogram parameters are shown to vary according to season, closely following simple cosine functions allowing for applications in catchment hydrology and rainfall field generation. Semivariances at short ranges during winter and spring tend to be underestimated, but summer and autumn are well predicted. This climatological semivariance can be employed to estimate the accuracy of the rainfall input to a hydrological model even with only few gauges in a given catchment area.

  1. Climatology and Impact of Convection on the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  2. Climatology and Genesis Environment of North Atlantic Polar Lows

    NASA Astrophysics Data System (ADS)

    Michel, Clio; Spengler, Thomas

    2016-04-01

    Polar lows are intense maritime cyclones occurring during cold air outbreaks in high latitudes. We use the Melbourne University cyclone algorithm to detect and track polar lows. The algorithm employs the Laplacian of mean sea level pressure and is applied to the ERA-Interim reanalyses from 1979 to 2014. Track density maps indicate that polar lows mainly occur close to Svalbard, as well as in the northern Norwegian Sea and the Barents Sea. This is in accordance to previous studies about polar low tracks densities which are using less objective method and shorter time periods. Also the cyclogenesis density correlates well with the winter-time climatology of cold air outbreaks. Furthermore, we present inter- and intra-annual variability of polar lows and its relation to the NAO as well as sea ice extent. We also differentiated the polar low genesis environment into forward and reverse shear conditions, where forward shear implies that the thermal and mean wind are in the same direction, whereas they are opposite for reverse shear conditions. The forward and reverse shear results based on the objective tracking are similar to a previous study based on polar low tracks from the STARS data set provided by MET Norway.

  3. Climatology of upper air temperature in the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Philandras, C. M.; Nastos, P. T.; Kapsomenakis, I. N.; Repapis, C. C.

    2015-01-01

    The goal of this study is to contribute to the climatology of upper air temperature in the Mediterranean region, during the period 1965-2011. For this purpose, both radiosonde recordings and gridded reanalysis datasets of upper air temperature from National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) were used for seven barometric levels at 850 hPa, 700 hPa, 500 hPa, 300 hPa, 200 hPa, 150 hPa and 100 hPa. Trends and variability of upper air temperature were analyzed on annual and seasonal basis. Further, the impact of atmospheric circulation, by means of correlation between upper air temperature at different barometric levels and specific climatic indices such as Mediterranean Oscillation Index (MOI), North Sea Caspian Pattern Index (NCPI) and North Atlantic Oscillation Index (NAOI), was also quantified. Our findings have given evidence that air temperature is increasing at a higher rate in lower/middle troposphere against upper, and this is very likely due to increasing greenhouse gas concentrations.

  4. The ``coming of age'' of land surface climatology

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.

    1990-08-01

    Land surface climates have never been more crucial that at the present. Scenarios of climatic change, say due to greenhouse warming, require successful prediction of the land surface characteristics since this is the locus of mankind's activities. Evaluation of the state-of-the-art land surface parameterization schemes has only just begun. Here we consider the performance of the Biosphere Atmosphere Transfer Scheme (BATS) when coupled to the National Center for Atmospheric Research's Community Climate Model (CCM). The land surface climatology generated by averaging the results of a three year model integration on a monthly basis is evaluated for the continent of Australia by comparison with published descriptions of a wide range of parameters. Proposals are outlined for improved methods of validation and testing the predictions of such complex biospheric submodels at least at continental scale. Future requirements for an interactive vegetation submodel are examined by assessing the generalized life zones predicted by the CCM as compared with the life zone types currently specified in the model and those predicted by the same GCM but using a simpler land-surface scheme. It is concluded that the climate community is now poised for the next crucial step towards a fully interactive land-surface climatic model.

  5. TRMM's Contribution to Our Knowledge of Climatology, Storms and Floods

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2007-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has successfully completed nearly ten years in orbit. A brief review of the history and accomplishments of this joint mission between the U.S. and Japan is presented. Research highlights will focus on the seasonal cycle of a TRMM-based rainfall climatology, which takes advantage of the multiple rain estimates available from TRMM. Examples will be given of the use of TRMM data to diagnose the impact of man on precipitation patterns through urbanization and the effect of pollution. Use of TRMM data for tropical cyclone operational analysis in the U.S. will also be shown. Methods for generating 3-hourly rainfall information from multiple satellites using TRMM to calibrate all the information will be described as will application of such information to study extreme rainfall events and associated floods and landslides. These results will emphasize the breadth of science success achieved with the 10-year record of observations from the only rain radar and passive microwave instrument combination in space. The outlook for continued operation of the TRMM satellite and progress in TRMM science and applications will be addressed.

  6. Aerosol and Precipitation Chemistry Climatology for Bermuda: the Long View

    NASA Astrophysics Data System (ADS)

    Moody, J. L.; Keene, W. C.; Galloway, J. N.; Prospero, J. M.; Cooper, O. R.; Eckhardt, S.

    2011-12-01

    Aerosol and precipitation ionic composition have been measured on Bermuda from 1988 through 2009. Data for the period July 1988 to July 1998, and June 2006 to July 2009 were collected during two field campaigns supported by NSF. Wet-only precipitation and flow-sectored aerosol chemical composition have been sampled from the top of a walk-up tower and virtually identical sampling, handling and analytical protocols were used for both programs. A source-receptor climatology has been developed based on daily Flexpart trajectory retroplumes which characterize the residence time as a percentage of transport arriving from different source regions. This paper compares the composition and trends in composition by dominant source region comparing flow from the Eastern North America, the North Atlantic Ocean, and from locations off/downwind of North Africa. Transport from Eastern North America is further segregated into source regions in the NE US and the SE US/Gulf of Mexico. Annual volume weighted averages in non-seasalt sulfate illustrate a distinct secular decline since 1989, and the influence of transport as a controlling influence on this temporal trend will be quantified. The long term average composition will be compared with the more recent data record on Bermuda where the radiative characteristics of different types of aerosols were simultaneously measured.

  7. Tropospheric ozone climatology over Peninsular Malaysia from 1992 to 1999

    NASA Astrophysics Data System (ADS)

    Yonemura, Seiichiro; Tsuruta, Haruo; Kawashima, Shigeto; Sudo, Shigeto; Peng, Leong Chow; Fook, Lim Sze; Johar, Zubaidi; Hayashi, Masayasu

    2002-08-01

    We present the climatology of tropospheric ozone over Peninsular Malaysia in tropical Asia for the 8 years from 1992 through 1999 as measured by ozonesondes twice a month. The mean ozone concentrations in vertical profile were in the same range (30-40 ppbv) as those observed at Watukosek, Indonesia, and were lower than those at Natal, Brazil, South America, and at Brazzaville, Congo, Africa, indicating that air masses over Peninsular Malaysia are primarily influenced by the maritime environment and deep convection, as shown by the significant levels of water vapor in the middle troposphere throughout the year. Seasonally averaged ozone concentrations were highest in December, January, and February (DJF) from 6 to 7.5 km altitude and in March, April, and May (MAM) at all other heights and were lowest in June, July, and August (JJA) and September, October, and November (SON), excluding 1994 and 1997, at all heights. The ozone enhancements during DJF in the middle troposphere could be caused by depression of the deep convection because of the positive temperature anomaly and negative water vapor anomaly. The ozone enhancements above the middle troposphere (>5 km) in MAM, especially in 1997 and 1998, could be predominantly attributed to photochemical production from enhanced ozone precursor gases of Northern Hemisphere origin, especially biomass burning in continental Southeast Asia. Large ozone enhancements as high as 10-20 Dobson units observed during SON of 1994 and 1997 were associated with large-scale biomass burnings in Indonesia.

  8. Generation of Fine Scale Wind and Wave Climatologies

    NASA Astrophysics Data System (ADS)

    Vandenberghe, F. C.; Filipot, J.; Mouche, A.

    2013-12-01

    A tool to generate 'on demand' large databases of atmospheric parameters at high resolution has been developed for defense applications. The approach takes advantage of the zooming and relocation capabilities of the embedded domains that can be found in regional models like the community Weather Research and Forecast model (WRF). The WRF model is applied to dynamically downscale NNRP, CFSR and ERA40 global analyses and to generate long records, up to 30 years, of hourly gridded data over 200km2 domains at 3km grid increment. To insure accuracy, observational data from the NCAR ADP historical database are used in combination with the Four-Dimensional Data Assimilation (FDDA) techniques to constantly nudge the model analysis toward observations. The atmospheric model is coupled to secondary applications such as the NOAA's Wave Watch III model the Navy's APM Electromagnetic Propagation model, allowing the creation of high-resolution climatologies of surface winds, waves and electromagnetic propagation parameters. The system was applied at several coastal locations of the Mediterranean Sea where SAR wind and wave observations were available during the entire year of 2008. Statistical comparisons between the model output and SAR observations are presented. Issues related to the global input data, and the model drift, as well as the impact of the wind biases on wave simulations will be discussed.

  9. Low/Mid-latitude Ionospheric irregularities and scintillation climatology

    NASA Astrophysics Data System (ADS)

    Abdallah, Amr; Groves, K. M.; Mahrous, Ayman; Hussein, Fayrouz

    Ionospheric scintillation occur when radio signals propagate through an irregular ionosphere (e.g., plasma bubbles). Since plasma bubbles are regions of depleted ion and electron densities, a plasma bubble located on the satellite-to-ground signal path will cause radio signals to fluctuate in phase and amplitude. Ionospheric scintillation data were analyzed in the magnetic latitudinal field-of-view 29° N -13.4° N, observed by a stand-alone SCINDA (Scintillation Network Decision Aid) - GPS receiver at Helwan, Egypt (29.86° N, 31.32° E). A minimum 20° elevation cut off angle has been set in order to minimize the multipath effect. During the enhancing phase of the current solar cycle 24 (years 2010, 2011, 2012 and 2013), the behaviour of the scintillation occurrence were characterized. The seasonal, annual and solar cycle variation of scintillation occurrence is investigated together with the Total Electron Content (TEC), to put in evidence the relation between the electron density gradients and the ionospheric irregularities causing scintillation. This study considers a first step to develop a scintillation climatology over Northern Africa.

  10. Situational Lightning Climatologies for Central Florida, Phase 2, Part 3

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2007-01-01

    The threat of lightning is a daily concern during the warm season in Florida. The forecasters at the Spaceflight Meteorology Group (SMG) at Johnson Spaceflight Center in Houston, TX consider lightning in their landing forecasts for space shuttles at the Kennedy Space Center (KSC), FL Shuttle Landing Facility (SLF). The forecasters at the National Weather Service in Melbourne, FL (NWS MLB) do the same in their routine Terminal Aerodrome Forecasts (TAFs) for seven airports in the NWS MLB County Warning Area (CWA). The Applied Meteorology Unit created flow regime climatologies of lightning probability in the 5-, 10-, 20-, and 30-n mi circles surrounding the Shuttle Landing Facility (SLF) and all airports in the NWS MLB county warning area in 1-, 3-, and 6-hour increments. The results were presented in tabular and graphical format and incorporated into a web-based graphical user interface so forecasters could easily navigate through the data and to make the GUI usable in any web browser on computers with different operating systems.

  11. Situational Lightning Climatologies for Central Florida: Phase III

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) to add composite soundings to the Advanced Weather Interactive Processing System (AWIPS). This allows National Weather Service (NWS) forecasters to compare the current atmospheric state with climatology. In a previous phase, the AMU created composite soundings for four rawinsonde observation stations in Florida, for each of eight flow regimes. The composite soundings were delivered to the NWS Melbourne (MLB) office for display using the NSHARP software program. NWS MLB requested that the AMU make the composite soundings available for display in AWIPS. The AMU first created a procedure to customize AWIPS so composite soundings could be displayed. A unique four-character identifier was created for each of the 32 composite soundings. The AMU wrote a Tool Command Language/Tool Kit (TcVTk) software program to convert the composite soundings from NSHARP to Network Common Data Form (NetCDF) format. The NetCDF files were then displayable by AWIPS.

  12. Steps Toward an EOS-Era Aerosol Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2, or when the range of scattering angles observed is reduced by solar geometry, even though the quality of the AOD retrieval itself is much less sensitive to these factors. This presentation will review a series of studies aimed at assessing the capabilities, as well as the limitations, of MISR aerosol type retrievals involving wildfire smoke, desert dust, volcanic ash, and urban pollution, in specific cases where suborbital validation data are available. A synthesis of results, planned upgrades to the MISR Standard aerosol algorithm to improve aerosol type retrievals, and steps toward the development of an aerosol type quality flag for the Standard product, will also be covered.

  13. Antarctic Ultraviolet Radiation Climatology from Total Ozone Mapping Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    2004-01-01

    This project has successfully produced a climatology of local noon spectral surface irradiance covering the Antarctic continent and the Southern Ocean, the spectral interval 290-700 nm (UV-A, UV-B, and photosynthetically active radiation, PAR), and the entire sunlit part of the year for November 1979-December 1999. Total Ozone Mapping Spectrometer (TOMS) data were used to specify column ozone abundance and UV-A (360- or 380-nm) reflectivity, and passive microwave (MW) sea ice concentrations were used to specify the surface albedo over the Southern Ocean. For this latter task, sea ice concentration retrievals from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and its successor, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) were identified with ultraviolet/visible-wavelength albedos based on an empirical TOMS/MW parameterization developed for this purpose (Lubin and Morrow, 2001). The satellite retrievals of surface albedo and UV-A reflectivity were used in a delta-Eddington radiative transfer model to estimate cloud effective optical depth. These optical depth estimates were then used along with the total ozone and surface albedo to calculate the downwelling spectral UV and PAR irradiance at the surface. These spectral irradiance maps were produced for every usable day of TOMS data between 1979-1999 (every other day early in the TOMS program, daily later on).

  14. Splitting of inviscid fluxes for real gases

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Vanleer, Bram; Shuen, Jian-Shun

    1988-01-01

    Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations or auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.

  15. Effect of Scale Coupling Frequency on Simulated Climatology in the Uncoupled Superparameterized Community Atmosphere Model v. 3.0

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pritchard, M. S.

    2014-12-01

    Recent attempts to accelerate cloud superparameterization for climate simulation by using reduced cloud resolving model (CRM) extents unsatisfyingly amplify upper tropospheric temperature biases and liquid water condensate. The effect of scale coupling frequency, fscale, is investigated as a candidate strategy to remedy these biases by compensating for CRM-trapped subsidence. Significant sensitivity to fscale is found in the 10-year climatology of a superparameterized version of NCAR Community Atmosphere Model 3.0. Higher fscale improves both long wave cloud forcing (LWCF) and short wave cloud forcing (SWCF) in a systematic manner that scales quasi-linearly with increased fscale. In addition, a systematic quasi-linear mid-tropospheric warming associated with faster updraft is observed with higher fscale. These improvements suggest fscale is a useful tuning parameter in superparamtereized global climate models to improve mean state cloud forcing biases and can help remedy the too cold mid-troposphere thermal bias associated with the trapped subsidence when using reduced CRM setups. However, inconsistent LWCF response with ice water path (IWP), e.g. lower LWCF with more IWP, and confounding surface flux responses, e.g. increasing surface flux with fscale, need be further investigated.

  16. A climatological analysis of the seasonal variability of surface temperature and circulation over the Canary current upwelling system.

    NASA Astrophysics Data System (ADS)

    Faye, Saliou; Lazar, Alban; Sow, Bamol; Gaye, Amadou

    2015-04-01

    The seasonal climatological budget of the mixed layer temperature of the Canary Current upwelling system (CCUS) is described and analyzed using an eddy permitting numerical simulation of the Tropical Atlantic, validated against observed surface temperature, winds and currents. During the so-called cooling period from November to May, the maximum temperature decrease is observed over an area extending meridionnaly along Mauritania and Senegal and over about 1-2° of longitude from the coast .It is driven mainly by vertical turbulent mixing, due to the season strengthening of Ekman pumping and vertical shear of horizontal currents, and by horizontal advection of northern waters.. Farther offshore, except near the Cap Verde islands away from the direct influence of coastal upwelling, the SST drop is mainly governed by air-sea fluxes,. During the so-called warming season from June to October, the temperature increase is overall driven by air-sea heat fluxes, except south of about 10-12°N. There, horizontal advection and vertical turbulent mixing control the temperature due to the influence of, respectively, the North Equatorial Counter-Current and temperature inversions just below the MLD. A more detailed analysis is proposed along the coastal region

  17. Extending and Merging the Purple Crow Lidar Temperature Climatologies Using the Inversion Method

    NASA Astrophysics Data System (ADS)

    Jalali, Ali; Sica, R. J.; Argall, P. S.

    2016-06-01

    Rayleigh and Raman scatter measurements from The University of Western Ontario Purple Crow Lidar (PCL) have been used to develop temperature climatologies for the stratosphere, mesosphere, and thermosphere using data from 1994 to 2013 (Rayleigh system) and from 1999 to 2013 (vibrational Raman system). Temperature retrievals from Rayleigh-scattering lidar measurements have been performed using the methods by Hauchecorne and Chanin (1980; henceforth HC) and Khanna et al. (2012). Argall and Sica (2007) used the HC method to compute a climatology of the PCL measurements from 1994 to 2004 for 35 to 110 km, while Iserhienrhien et al. (2013) applied the same technique from 1999 to 2007 for 10 to 35 km. Khanna et al. (2012) used the inversion technique to retrieve atmospheric temperature profiles and found that it had advantages over the HC method. This paper presents an extension of the PCL climatologies created by Argall and Sica (2007) and Iserhienrhien et al. (2013). Both the inversion and HC methods were used to form the Rayleigh