Science.gov

Sample records for flux loop final

  1. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  2. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  3. Boosted Fast Flux Loop Alternative Cooling Assessment

    SciTech Connect

    Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

    2007-08-01

    The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and

  4. Robust Cooling of High Heat Fluxes Using Hybrid Loop Technology

    NASA Astrophysics Data System (ADS)

    Zuo, Jon; Park, Chanwoo; Sarraf, David; Paris, Anthony

    2005-02-01

    This paper discusses the development of an advanced hybrid loop technology that incorporates elements from both passive and active loop technologies. The result is a simple yet high performance cooling technology that can be used to remove high heat fluxes from large heat input areas. Operating principles and test results of prototype hybrid loops are discussed. Prototype hybrid loops have been demonstrated to remove heat fluxes in excess of 350W/cm2 from heat input areas over 4cm2 with evaporator thermal resistances between 0.008 and 0.065°C/W/cm2. Also importantly, this performance was achieved without the need to actively adjust or control the flows in the loops, even when the heat inputs varied between 0 and 350W/cm2. These performance characteristics represent substantial improvements over state of the art heat pipes, loop heat pipes and spray cooling devices. The hybrid loop technology was demonstrated to operate effectively at all orientations.

  5. System having unmodulated flux locked loop for measuring magnetic fields

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  6. High temperature storage loop : final design report.

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  7. Geothermal Loop Experimental Facility. Final report

    SciTech Connect

    Not Available

    1980-04-01

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  8. Distribution of heat flux by working fluid in loop heat pipe

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-03-01

    The main topics of article are construction of loop heat pipe, thermal visualization of working fluid dynamics and research results interpretation. The work deals about heat flux transport by working fluid in loop heat pipe from evaporator to condenser evolution. The result of the work give us how the hydrodynamic and thermal processes which take place inside the loop of heat pipe affect on the overall heat transport by loop heat pipe at start-up and during operation.

  9. A cryo-amplifier working in a double loop-flux locked loop scheme for SQUID readout of TES detectors

    NASA Astrophysics Data System (ADS)

    Torrioli, Guido; Bastia, Paolo; Piro, Luigi; Macculi, Claudio; Colasanti, Luca

    2010-07-01

    In this paper we report on a novel SQUID readout scheme, called Double Loop-Flux Locked loop (DL-FLL), that we are investigating in the frame of ASI and ESA technological development contracts. This scheme is based on the realization of a cryogenic amplifier which is used in order to readout TES detectors in the Frequency Division Multiplexing technique, where high loop-gain is required up to few MHz. Loop-gain in feedback systems is, usually, limited by the propagation delay of the signals traveling in the loop because of the distance between the feedback loop elements. This problem is particularly evident in the case of SQUID systems, where the elements of the feedback loop are placed both at cryogenic and room temperature. To solve this issue we propose a low power dissipation cryo-amplifier capable to work at cryogenic temperatures so that it can be placed close to the SQUID realizing a local cryogenic loop. The adoption of the DL-FLL scheme allows to simplify considerably the cryo-amplifier which, being AC-coupled, don't require the features of a precision DC-coupled amplifier and can be made with a limited number of electronic components and with a consequent reduction of power dissipation.

  10. Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    SciTech Connect

    Chapman, S. C.; Dendy, R. O.; Todd, T. N.; Webster, A. J.; Morris, J.; Watkins, N. W.; Calderon, F. A.

    2014-06-15

    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM.

  11. Chesapeake Bay sediment flux model. Final report

    SciTech Connect

    Di Toro, D.M.; Fitzpatrick, J.J.

    1993-06-01

    Formulation and application of a predictive diagenetic sediment model are described in this report. The model considers two benthic sediment layers: a thin aerobic layer in contact with the water column and a thicker anaerobic layer. Processes represented include diagenesis, diffusion, particle mixing, and burial. Deposition of organic matter, water column concentrations, and temperature are treated as independent variables that influence sediment-water fluxes. Sediment oxygen demand and sediment-water fluxes of sulfide, ammonium, nitrate, phosphate, and silica are predicted. The model was calibrated using sediment-water flux observations collected in Chesapeake Bay 1985-1988. When independent variables were specified based on observations, the model correctly represented the time series of sediment-water fluxes observed at eight stations in the Bay and tributaries.... Chesapeake Bay, Models, Sediments, Dissolved oxygen, Nitrogen Eutrophication, Phosphorus.

  12. Flux pinning and stabilizer studies. Final report

    SciTech Connect

    Collings, E.W.

    1994-11-29

    A synopsis of the results of the flux-pinning and stabilizer studies that form the central theme of the subject contract is followed by a list of papers that were published during the period August 28, 1986 to November 31, 1992.

  13. Frequency multiplexed flux locked loop architecture providing an array of DC SQUIDS having both shared and unshared components

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.

  14. On the heating mechanism of magnetic flux loops in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Song, M. T.; Wu, S. T.

    1984-01-01

    An investigation is conducted of physical heating mechanisms due to the ponderomotive forces exerted by turbulent waves along the solar atmosphere's curved magnetic flux loops. Results indicate that the temperature difference between the inside and outside of the flux loop can be classified into three parts, two of which represent the cooling or heating effect exerted by the ponderomotive force, while the third is the heating effect due to turbulent energy conversion from the localized plasma. This heating mechanism is used to illustrate solar atmospheric heating by means of an example that leads to the formulation of plages.

  15. Vortex-Loop Unbinding and Flux-Line Lattice Melting in Superconductors

    SciTech Connect

    Nguyen, A.K.; Sudbo Hetzel, R. |

    1996-08-01

    We study the interplay between a novel vortex-loop unbinding in finite magnetic field at {ital T}={ital T}{sub {ital V}} and flux-line-lattice (FLL) melting at {ital T}={ital T}{sub {ital M}} in type-II superconductors. The FLL melts due to nucleation of vortex loops parallel to the {ital {cflx c}} axis, connected to flux lines. For moderate anisotropy, phase coherence parallel to {ital {cflx c}} is lost at {ital T}{sub {ital V}}{approx_gt}{ital T}{sub {ital M}} due to an {ital ab}-plane vortex-loop unbinding with loops located close to thermal FLL fluctuations. For large anisotropy, phase coherence parallel to {ital {cflx c}} is lost at {ital T}{sub {ital V}}{lt}{ital T}{sub {ital M}} due to nucleation of vortex loops uncorrelated to flux lines, predominantly in the {ital ab} plane. {copyright} {ital 1996 The American Physical Society.}

  16. Magnetic flux loop in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Dumitru, Adrian; Nara, Yasushi; Petreska, Elena

    2013-09-01

    We consider the expectation value of a chromomagnetic flux loop in the immediate forward light cone of collisions of heavy nuclei at high energies. Such collisions are characterized by a nonlinear scale Qs where color fields become strong. We find that loops of area greater than ˜1.5/Qs2 exhibit area-law behavior, which determines the scale of elementary flux excitations (“vortices”). We also estimate the magnetic string tension, σM≃0.12Qs2. By the time t˜1/Qs even small loops satisfy area-law scaling. We describe corrections to the propagator of semihard particles at very early times in the background of fluctuating magnetic fields.

  17. Heat flux in a non-Maxwellian plasma. [in realistic solar coronal loop

    NASA Technical Reports Server (NTRS)

    Ljepojevic, N. N.; Macneice, P.

    1989-01-01

    A hybrid numerical scheme is applied to solve the Landau equation for the electron distribution function over all velocity space. Evidence is presented for the first time of the degree and character of the failure of the classical Spitzer-Haerm heat flux approximation in a realistic solar coronal loop structure. In the loop model used, the failure is so severe at some points that the role of the heat flux in the plasma's energy balance is completely misinterpreted. In the lower corona the Spitzer-Haerm approximation predicts that the heat flux should act as an energy source, whereas the more accurate distribution functions calculated here show this to be an energy sink.

  18. Validation of the flux loop diagnostic for the measurement of launch package motion during electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Koops, M.

    1992-07-01

    The development of diagnostics for studying the behavior and performance of armatures and rail accelerators is one of the subjects covered by the section EML-research of the PML-Pulse Physics Laboratory. Within that framework the development of data analysis software is in progress. This report describes a new data reduction technique to resolve armature motion from the measurement of the voltage induced in a flux loop diagnostic and the load current through the rail-armature circuit and/or its time derivative. Velocity and position of the armature as a function of time are calculated by the computer code developed. The recent improvements in data reduction are exemplified by the results of experiments performed with a 1m, 15mm square bore dipole rail accelerator. Validation of the flux loop diagnostic, in terms of accuracy, precision, range of operation, resolution, sensitivity and prospects is carried out. Suggestions to reduce the influence of the disadvantages observed are given.

  19. Measuring electrically charged particle fluxes in space using a fiber optic loop sensor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this program was to demonstrate the potential of a fiber optic loop sensor for the measurement of electrically charged particle fluxes in space. The key elements of the sensor are a multiple turn loop of low birefringence, single mode fiber, with a laser diode light source, and a low noise optical receiver. The optical receiver is designed to be shot noise limited, with this being the limiting sensitivity factor for the sensor. The sensing element is the fiber optic loop. Under a magnetic field from an electric current flowing along the axis of the loop, there is a non-vanishing line integral along the fiber optic loop. This causes a net birefringence producing two states of polarization whose phase difference is correlated to magnetic field strength and thus, current in the optical receiver electronic processing. The objectives in this program were to develop a prototype laser diode powered fiber optic sensor. The performance specification of a minimum detectable current density of 1 (mu)amp/sq m-(radical)Hz, should be at the shot noise limit of the detection electronics. OPTRA has successfully built and tested a 3.2 m diameter loop with 137 turns of low birefringence optical fiber and achieved a minimum detectable current density of 5.4 x 10(exp-5) amps/(radical)Hz. If laboratory space considerations were not an issue, with the length of optical fiber available to us, we would have achieved a minimum detectable current density of 4 x 10(exp -7) amps/(radical)Hz.

  20. Direct readout flux locked loop circuit with automatic tuning of bias current and bias flux for high-Tc SQUID

    NASA Astrophysics Data System (ADS)

    Hirano, T.; Nagaishi, T.; Itozaki, H.

    1999-11-01

    Measurement of high-frequency magnetic signals has been required from some SQUID applications. We fabricated a high-Tc SQUID magnetic sensor system that can treat high-frequency signals. This system is composed of a SQUID, a preamplifier circuit, a flux locked loop (FLL) circuit with I/O and a personal computer and a PC card. We used the FLL circuit with no modulation to treat the high-frequency signal and to simplify the circuit. This system can treat a signal from dc to 1 MHz. All the sequence from tuning the SQUID to data acquisition can be done by a personal computer. This system successfully realized easy operation of SQUID measurement.

  1. High slew rate 'channel equalized' DC SQUID flux-locked loop - Concept and simulation

    NASA Astrophysics Data System (ADS)

    Gershenson, Meir; McDonald, Robert J.

    1993-03-01

    The concept of improving conventional dc SQUID flux-locked loop (FLL) performance by applying a channel equalization circuit after the pre-amp, but prior to the demodulation process in order to compensate for bandwidth limitations imposed by conventional dc SQUID impedance matching networks is discussed. The equalization circuit is a bandlimited inverse filter which corrects for the phase and amplitude distortion caused primarily by the dc SQUID impedance matching network. Improvements in the FLL performance were verified with analog circuit simulations in both the time and frequency domains. Using an analog circuit simulator the various subcircuits of the FLL were modeled, and a comparison between a conventional FLL and an equalized one was performed. Computer simulations for the open and closed loop cases were used to quantify the increase in slew rate for the equalized FLL system.

  2. Quantum magnetic flux lines, BPS vortex zero modes, and one-loop string tension shifts

    NASA Astrophysics Data System (ADS)

    Alonso-Izquierdo, A.; Mateos Guilarte, J.; de la Torre Mayado, M.

    2016-08-01

    Spectral heat kernel/zeta function regularization procedures are employed in this paper to control the divergences arising from vacuum fluctuations of Bogomolnyi-Prasad-Sommerfield vortices in the Abelian Higgs model. Zero modes of vortex fluctuations are the source of difficulties appearing when the standard Gilkey-de Witt expansion is the tool used in the calculations of one-loop shifts of vortex masses and string tensions. A modified GdW expansion is developed to diminish the impact of the infrared divergences due to the vortex zero modes of fluctuation. With this new technique at our disposal we compute the one-loop vortex mass shifts in the planar AHM and the quantum corrections to the string tension of the magnetic flux tubes living in three dimensions. In both cases it is observed that weak repulsive forces surge between these classically noninteracting topological defects caused by vacuum quantum fluctuations.

  3. Progress towards a double flux-locked-loop scheme for SQuID readout of TES detector arrays

    NASA Astrophysics Data System (ADS)

    Torrioli, Guido; Lombardo, Simona; Macculi, Claudio; Piro, Luigi; Colasanti, Luca

    2014-07-01

    Frequency Division Multiplexing technique for reading TES detectors with SQuID devices, requires high loop-gain up to MHz frequency range in the SQuID feedback loop. Such a requirement is difficult to achieve when the feedback loop has a physical length that makes the propagation times of signals not negligible, as in the case in which the readout electronics is placed at room temperature. A novel SQuID readout scheme, called Double Loop-Flux Locked loop (DLFLL), has been proposed earlier. According to this scheme it is possible to make use of a simplified cryogenic electronics, AC coupled, featuring low power dissipation, in order to obtain a cryogenic feedback loop that results in reduced propagation times of signals. The DC and low frequency signals are managed by a standard FLL electronics working at room temperature. Here we present the progress of the integrated Double Loop system.

  4. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  5. Flux module decomposition for parameter estimation in a multiple-feedback loop model of biochemical networks.

    PubMed

    Maeda, Kazuhiro; Minamida, Hiroshi; Yoshida, Keisuke; Kurata, Hiroyuki

    2013-03-01

    Computer simulation is an important technique to capture the dynamics of biochemical networks. Since few quantitative values are measured in vivo, the values for unmeasured parameters should be estimated so that the simulation agrees with the experimental data. Considering the sparsity and error rates of experimentally measured data, the first thing is not to find a numerically exact and global solution but to explore a variety of the plausible parameter solutions. To find many plausible parameter solutions without any biases, we developed the two-phase search (TPS) method. However, calculation complexity makes it hard for TPS to optimize a large-scale dynamic model. In this study divide-and-conquer methods are used to solve this problem. The flux module decomposition (FMD) is first proposed that separates a complex, large-scale dynamic model into multiple flux modules without deteriorating its basic control architectures. FMD is combined with TPS, named FMD-TPS, to find many plausible parameter solutions for a dynamic model. To demonstrate the feasibility of FMD-TPS, it is applied to the E. coli ammonia assimilation system that consists of multiple-feedback loops. The variability of the solutions is verified by measuring the space distribution of the parameter solution vectors and by defining the binary vectors checking the consistency with biological behaviors. Compared with non-decomposition methods, FMD-TPS efficiently explored a variety of plausible parameter solutions that reproduce the dynamic behaviors in vivo. PMID:22820677

  6. Non-contact main cable NDE technique for suspension bridge using magnetic flux-based B-H loop measurements

    NASA Astrophysics Data System (ADS)

    Park, Seunghee; Kim, Ju-Won; Moon, Dae-Joong

    2015-04-01

    In this study, a noncontact main cable NDE method has been developed. This cable NDE method utilizes the direct current (DC) magnetization and a searching coil-based total flux measurement. A total flux sensor head prototype was fabricated that consists of an electro-magnet yoke and a searching coil sensor. To obtain a B-H loop, a magnetic field was generated by applying a cycle of low frequency direct current to the electro-magnet yoke. During the magnetization, a search coil sensor measures the electromotive force from magnetized cable. During the magnetization process, a search coil sensor was measured the magnetic flux density. Total flux was calculated by integrating the measured magnetic flux using a fluxmeter. A B-H loop is obtained by using relationship between a cycle of input DC voltage and measured total flux. The B-H loop can reflect the property of the ferromagnetic materials. Therefore, the cross-sectional loss of cable can be detected using variation of features from the B-H curve. To verify the feasibility of the proposed steel cable NDE method, a series of experimental studies using a main-cable mock-up specimen has been performed in this study.

  7. Discrepant asymmetry stars: The role of unsteady magnetic flux loops in the atmospheres of late-type giant stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Stencel, R. E.

    1982-01-01

    A number of spectroscopic peculiarities of K giants and other stars which lie in a wedge in the HR diagram are discussed. These peculiarities can be understood in terms of unsteady magnetic flux loops emerging into the stellar atmosphere from beneath the surface.

  8. 77 FR 55896 - Notice of Final Federal Agency Actions on Loop 1 in Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Act (FPPA) [7 U.S.C. 4201- 4209]. 7. Wetlands and Water Resources: Clean Water Act (Section 404, Section 401, Section 319) ; Land and Water Conservation Fund (LWCF) ; Safe Drinking Water Act (SDWA) [42 U... Federal Highway Administration Notice of Final Federal Agency Actions on Loop 1 in Texas AGENCY:...

  9. Chromospheric Jet and Growing "Loop" Observed by Hinode: New Evidence of Fan-spine Magnetic Topology Resulting from Flux Emergence

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Berger, Thomas E.; Title, Alan M.; Tarbell, Theodore D.; Low, B. C.

    2011-02-01

    We present observations of a chromospheric jet and growing "loop" system that show new evidence of a fan-spine topology resulting from magnetic flux emergence. This event, occurring in an equatorial coronal hole on 2007 February 9, was observed by the Hinode Solar Optical Telescope in the Ca II H line in unprecedented detail. The predecessor of the jet is a bundle of fine material threads that extend above the chromosphere and appear to rotate about the bundle axis at ~50 km s-1 (period lsim200 s). These rotations or transverse oscillations propagate upward at velocities up to 786 km s-1. The bundle first slowly and then rapidly swings up, with the transition occurring at the onset of an A4.9 flare. A loop expands simultaneously in these two phases (velocity: 16-135 km s-1). Near the peak of the flare, the loop appears to rupture; simultaneous upward ejecta and mass downflows faster than free-fall appear in one of the loop legs. The material bundle then swings back in a whip-like manner and develops into a collimated jet, which is orientated along the inferred open-field lines with transverse oscillations continuing at slower rates. Some material falls back along smooth streamlines, showing no more oscillations. At low altitudes, the streamlines bifurcate at presumably a magnetic null point and bypass an inferred dome, depicting an inverted-Y geometry. These streamlines closely match in space the late Ca II H loop and X-ray flare loop. These observations are consistent with the model that flux emergence in an open-field region leads to magnetic reconnection, forming a jet and fan-spine topology. We propose that the material bundle and collimated jet represent the outer spine in quasi-static and eruptive stages, respectively, and the growing loop is a two-dimensional projection of the three-dimensional fan surface.

  10. Fast Flux Test Facility final safety analysis report. Amendment 72

    SciTech Connect

    Gantt, D. A.

    1992-08-01

    This document provides the Final Safety Analysis Report (FSAR) Amendment 72 for incorporation into the Fast Flux Test Facility (FFTF) FSAR set. This amendment change incorporates Engineering Change Notices issued subsequent to Amendment 71 and approved for incorporation before June 24, 1992. These include changes in: Chapter 2, Site Characteristics; Chapter 3, Design Criteria Structures, Equipment, and Systems; Chapter 5B, Reactor Coolant System; Chapter 7, Instrumentation and Control Systems; Chapter 8, Electrical Systems - The description of the Class 1E, 125 Vdc systems is updated for the higher capacity of the newly installed, replacement batteries; Chapter 9, Auxiliary Systems - The description of the inert cell NASA systems is corrected to list the correct number of spare sample points; Chapter 11, Reactor Refueling System; Chapter 12, Radiation Protection and Waste Management; Chapter 13, Conduct of Operations; Chapter 16, Quality Assurance; Chapter 17, Technical Specifications; Chapter 19, FFTF Fire Specifications for Fire Detection, Alarm, and Protection Systems; Chapter 20, FFTF Criticality Specifications; and Appendix B, Primary Piping Integrity Evaluation.

  11. Benthic flux sampling device. Operations, methods, and procedures. Final report

    SciTech Connect

    Chadwick, D.B.; Stanley, S.D.

    1993-02-01

    As part of the Navy's clean up program, the Installation Restoration (IR) Program, methods are evaluated to better assess suitable remediation and restoration strategies for sites that contain sediments contaminated with toxic compounds. Toward this goal, we have developed a Benthic Flux Sampling Device (BFSD) to quantify mobility of toxicants from contaminated sediments. The BFSD is a remote instrument for in-situ measurement of toxicant flux rates from sediments. A flux out of or into the sediment is measured by isolating a volume of water above the sediment, drawing off samples from this volume over time, and analyzing these samples for increase or decrease in toxicant concentration. Increasing concentrations indicate that the toxicant is fluxing out of the sediment. Decreasing concentrations indicate that the toxicant is fluxing into the sediment. Initial tests carried out in conjunction with Scripps Institution of Oceanography and the Environmental Protection Agency's Environmental Research Laboratory (Newport, OR) show that the system is capable of measuring a variety of contaminant and nutrient fluxes.... Marine chemistry, Benthic flux.

  12. A Double Flux Locked Loop Scheme For SQUID Readout Of TES Detector Arrays Using The FDM Technique

    NASA Astrophysics Data System (ADS)

    Torrioli, G.; Bastia, P.; Piro, L.; Macculi, C.; Colasanti, L.

    2009-12-01

    SQUIDs readout electronics for TES microcalorimeters are generally based on the standard Flux Locked Loop scheme in which the SQUID is inserted in a feedback circuit in order to increase its Dynamic Range. For those applications in which a high loop gain at high frequency is needed, such as FDM multiplexing of a large number of pixels, the distance between the SQUID and room temperature electronics limits the performances due to the finite propagation time of the signal. Here we present a solution in which the feedback electronics is located in the cryogenic environment as close as possible to the SQUID. In particular we adopt a scheme in which the feedback loop is split in two paths: a high frequency FLL loop in cryogenic environment and a low frequency loop which is closed at room temperature. With this approach it is not necessary to have a precision DC amplifier working at cryogenic temperatures, resulting in a substantial simplification of the cryogenic components of the electronics. This paper describes the theory behind and the experimental work which is currently carried out to prove this concept.

  13. The behavior of transverse waves in nonuniform solar flux tubes. II. Implications for coronal loop seismology

    SciTech Connect

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2014-02-01

    The seismology of coronal loops using observations of damped transverse oscillations in combination with results from theoretical models is a tool to indirectly infer physical parameters in the solar atmospheric plasma. Existing seismology schemes based on approximations of the period and damping time of kink oscillations are often used beyond their theoretical range of applicability. These approximations assume that the variation of density across the loop is confined to a nonuniform layer much thinner than the radius of the loop, but the results of the inversion problem often do not satisfy this preliminary hypothesis. Here, we determine the accuracy of the analytic approximations of the period and damping time, and the impact on seismology estimates when largely nonuniform loops are considered. We find that the accuracy of the approximations when used beyond their range of applicability is strongly affected by the form of the density profile across the loop, that is observationally unknown and so must be arbitrarily imposed as part of the theoretical model. The error associated with the analytic approximations can be larger than 50% even for relatively thin nonuniform layers. This error directly affects the accuracy of approximate seismology estimates compared to actual numerical inversions. In addition, assuming different density profiles can produce noncoincident intervals of the seismic variables in inversions of the same event. The ignorance about the true shape of density variation across the loop is an important source of error that may dispute the reliability of parameters seismically inferred assuming an ad hoc density profile.

  14. The global build-up to intrinsic edge localized mode bursts seen in divertor full flux loops in JET

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Dendy, R. O.; Todd, T. N.; Watkins, N. W.; Calderon, F. A.; Morris, J.

    2015-07-01

    A global signature of the build-up to an intrinsic edge localized mode (ELM) is found in the temporal analytic phase of signals measured in full flux azimuthal loops in the divertor region of JET. Toroidally integrating, full flux loop signals provide a global measurement proportional to the voltage induced by changes in poloidal magnetic flux; they are electromagnetically induced by the dynamics of spatially integrated current density. We perform direct time-domain analysis of the high time-resolution full flux loop signals VLD2 and VLD3. We analyze plasmas where a steady H-mode is sustained over several seconds during which all the observed ELMs are intrinsic; there is no deliberate intent to pace the ELMing process by external means. ELM occurrence times are determined from the Be II emission at the divertor. We previously [Chapman et al., Phys. Plasmas 21, 062302 (2014); Chapman et al., in 41st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2014), Vol. 38F, ISBN 2-914771-90-8] found that the occurrence times of intrinsic ELMs correlate with specific temporal analytic phases of the VLD2 and VLD3 signals. Here, we investigate how the VLD2 and VLD3 temporal analytic phases vary with time in advance of the ELM occurrence time. We identify a build-up to the ELM in which the VLD2 and VLD3 signals progressively align to the temporal analytic phase at which ELMs preferentially occur, on a ˜ 2 - 5 ms timescale. At the same time, the VLD2 and VLD3 signals become temporally phase synchronized with each other, consistent with the emergence of coherent global dynamics in the integrated current density. In a plasma that remains close to a global magnetic equilibrium, this can reflect bulk displacement or motion of the plasma. This build-up signature to an intrinsic ELM can be extracted from a time interval of data that does not extend beyond the ELM occurrence time, so that these full flux loop signals could assist in ELM

  15. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be

  16. Methane flux from the Central Amazonian Floodplain. Final report

    SciTech Connect

    Bartlett, K.B.; Crill, P.M.; Sebacher, D.I.; Harriss, R.C.; Wilson, J.O.; Melack, J.M.

    1987-08-01

    A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49% of the flux from open water, 54% of that from flooded forests, and 64% of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12% of the estimated global natural sources of methane.

  17. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  18. High flux and high quality FEL resonator mirrors. Final report

    SciTech Connect

    Anthony, F.M.; Mistretta, A.L.; Tonnessen, T.W.

    1989-08-01

    The Free Electron Laser Cooled Mirror Technology Development Program was highly successful; this technology can be applied to cooled silicon mirror requirements for RF linac FEL`s. Designs were developed for a 100 cm hyperboloid subjected to a peak absorbed flux of 1000 w/cm{sup 2} and for a 50 cm paraboloid with an absorbed peak flux of 500 w/cm{sup 2}. Although the design concepts were essentially the same detailed implementation was somewhat different for each of the mirrors. Both designs incorporated variable geometry and internal flow tailoring over the planform area so as to produce a near spherical distortion response to the input Gaussian power distribution. This enhanced correctability of the overall distortion such that the net distortion was only 0.2 A/(w/cm{sup 2}) after correction for sphere, piston and bit as compared to a design goal of 0.5 A/(w/cm{sup 2}). Structural integrity testing of small samples, that incorporated internal geometries of both types of mirrors, verified the adequacy of the designs. Fabrication of the different types of test specimens demonstrated the producibility of the configurations. Planform bonding of manifold simulations was successful; they type of bonding is required to produce a 50 cm diameter circular silicon mirror from boules that are somewhat smaller in diameter. After planform bonding of preforms they were machined, etched, assembled into pressure test specimens, and burst pressure tested. The average burst pressure of 1550 psig was somewhat stronger than early SHOP specimens of the same configuration but somewhat lower than more recently produced specimens which evidenced burst pressure strengths of 2500 psig. Demonstrated planform bond strengths are more than adequate for the mirrors of interest, better performance can be expected as the bonding precess is refined. These, and the other experimental results indicate the large factor of safety provided by the designs.

  19. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  20. A digital flux-locked loop for high temperature SQUID magnetometer and gradiometer systems with field cancellation

    SciTech Connect

    Kraus, R.H. Jr.; Bracht, R.; Flynn, E.R.

    1996-12-01

    The SQUID sensor is typically operated in a null detector mode where an analogue flux-locked-loop, FLL, provides a negative feedback to maintain linear operation. The modulated SQUID signal is amplified, filtered, demodulated, and integrated in the FLL. The resulting analog signal is a measure of the magnetic field and noise at the SQUID and is also fed back to the modulation and feedback (M & F) coil to null the flux at the SQUID to maintain the linear operating point. Thus, the FLL output signal is proportional to the change in magnetic field at the SQUID pickup coil, provided the slew rate and dynamic range of the SQUID and FLL system are not exceeded. The goal of the work is to advance technologies needed for a practical fieldable SQUID biomagnetic sensor. We used HTC SQUIDs to realize the benefits noted above. We also implemented the FLL algorithm on a digital-signal-processor (DSP) to realize a number of benefits including (1) software control of noise filtering and background rejection to enable unshielded use of SQUID sensors, (2) flux quanta countin and resetting SQUID operating point to increase system slew rate and dynamic range, (3) programmable FLL adaptable to numerous specific applications, (4) digital signal output (up to 32-bit precision), and (5) reduced FLL package cost. This paper presents results of external signal rejection for a sensor system using HTC SQUIDs, preamplifier circuit, and DSP FLL designed and built at our laboratory. We also note a companion paper in these proceedings and other references to the use of DSP in SQUID applications.

  1. Final report on regional comparison EURAMET.PR-K4: luminous flux

    NASA Astrophysics Data System (ADS)

    Lindemann, Matthias; Maass, Robert; Sauter, Georg

    2015-01-01

    This report describes the EURAMET comparison for luminous flux carried out at 12 participating national metrology laboratories (NMIs). More than a decade ago, the CCPR initialised a key comparison for luminous flux denoted as CCPR K4. The reference value CCPR-KCRV for luminous flux is maintained since that time by the participants of that early CCPR comparison. Beside the pilot laboratory, the Physikalisch-Technische Bundesanstalt (PTB), two additional former participants acted as link laboratories for this EURAMET-Key-Comparison. The luminous flux CCPR-KCRV, maintained at the link laboratories and transferred by batches of incandescent lamps, was used to evaluate a reference value (EURAMET-RV) at the pilot laboratory as a weighted luminous flux average for this comparison. Finally, the realized or preserved luminous flux values of all other participants were compared with the EURAMET-RV in a star-type comparison at the pilot with batches of three to six lamps of various types. The DOEs of the values of the participants with respect to the reference value and mutually with all other luminous flux values are evaluated and published in the report together with the associated uncertainties. The deviations from the EURAMET-RV and hence from the CCPR-KCRV are within the declared expanded uncertainties for all participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCPR, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  3. 75 FR 10015 - Notice of Final Federal Agency Actions on the Interchange of State Loop 1604 and United States...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ...This notice announces actions taken by the FHWA and other Federal agencies that are final within the meaning of 23 U.S.C. 139(l)(1). The actions relate to a proposed highway project, the interchange of Texas State Loop 1604 (LP 1604) with United States Highway 281 (US 281). Project limits on LP 1604 are from Bitters Road to Redland Road and on US 281 are from LP 1604 to Bitters Road in Bexar......

  4. Application of Karhunen-Loève Expansions for the Dynamic Analysis of a Natural Convection Loop for Known Heat Flux

    NASA Astrophysics Data System (ADS)

    Hummel, Tobias; Pacheco-Vega, Arturo

    2012-11-01

    In the present study we use Karhunen-Loève (KL) expansions to model the dynamic behavior of a single-phase natural convection loop. The loop is filled with an incompressible fluid that exchanges heat through the walls of its toroidal shape. Influx and efflux of energy take place at different parts of the loop. The focus here is a sinusoidal variation of the heat flux exchanged with the environment for three different scenarios; i.e., stable, limit cycles and chaos. For the analysis, one-dimensional models, in which the tilt angle and the amplitude of the heat flux are used as parameters, were first developed under suitable assumptions and then solved numerically to generate the data from which the KL-based models could be constructed. The method of snapshots, along with a Galerkin projection, was then used to find the basis functions and corresponding constants of each expansion, thus producing the optimal representation of the system. Results from this study indicate that the dimension of the KL-based dynamical system depends on the linear stability of the steady states; the number of basis functions necessary to describe the system increases with increased complexity of the system operation. When compared to typical dynamical systems based on Fourier expansions the KL-based models are, in general, more compact and equally accurate in the dynamic description of the natural convection loop.

  5. PILOT-SCALE INVESTIGATION OF CLOSED-LOOP FLY ASH SLUICING. VOLUME 1. FINAL REPORT

    EPA Science Inventory

    The report gives results of a pilot-scale demonstration of the technical feasibility of closed-loop operation of fly ash sluicing systems. Chemical species leached from the ash increase the dissolved solids concentration of recycled sluice water to a point where equipment scaling...

  6. Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware - Final

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John

    2011-01-01

    An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.

  7. String theory in Ad{{S}_{3}}\\times {{S}^{3}}\\times {{T}^{4}} with mixed flux: semiclassical and 1-loop phase in the S-matrix

    NASA Astrophysics Data System (ADS)

    Stepanchuk, A.

    2015-05-01

    We present a semiclassical derivation of the tree-level and 1-loop dressing phases in the massive sector of string theory on Ad{{S}3}× {{S}3}× {{T}4} supplemented by Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz 3-form fluxes. In analogy with the Ad{{S}5}× {{S}5} case, we use the dressing method to obtain scattering solutions for dyonic giant magnons which allows us to determine the semiclassical bound-state S-matrix and its 1-loop correction. We also find that the 1-loop correction to the dyonic giant magnon energy vanishes. Looking at the relation between the bound-state picture and elementary magnons in terms of the fusion procedure we deduce the elementary dressing phases. In both the semiclassical and 1-loop cases we find agreement with recent proposals from finite-gap equations and unitarity cut methods. Further, we find consistency with the finite-gap picture by determining the resolvent for the dyonic giant magnon from the semiclassical bosonic scattering data.

  8. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    SciTech Connect

    Corradini, Michael; Wu, Qiao

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  9. Preliminary considerations of an intense slow positron facility based on a sup 78 Kr loop in the high flux isotopes reactor

    SciTech Connect

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a {sup 78}Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec{sup {minus}1} m{sup {minus}2}, which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec {sup {minus}1}. The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the {sup 78}Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec{sup {minus}1}, which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig.

  10. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 1: Critical heat flux, boiling crisis onset and hysteresis

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. The same loop was used in two experiments with different heated section internal diameter (10 and 6 mm). The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were recorded. The values of critical heat flux (CHF) were found at different positions of the test section, and the post-CHF regime was studied. The predictions of CHF by existing correlations were good in the downstream portion of the section, however CHF anomalies have been observed near the entrance, in the low quality region. In resonance with this, the re-wetting of the surface has distinct hysteresis behavior in each of the two CHF regions. Furthermore, hydraulics effects of crisis, namely on friction, were studied (Part 2). This research is the starting point to future works addressing transients conducing to boiling crisis in helium natural circulation loops.

  11. Evaluation of contaminant flux rates from sediments of Sinclair Inlet, WA, using a benthic flux sampling device. Final report

    SciTech Connect

    Chadwick, D.B.; Lieberman, S.H.; Reimers, C.E.; Young, D.

    1993-02-01

    A Benthic Flux Sampling Device (BFSD) was demonstrated on site to determine the mobility of contaminants in sediments off the Puget Sound Naval Shipyard (PSNS) in Sinclair Inlet, WA. Quantification of toxicant flux from the sediments will support ongoing assessment studies and facilitate the design of appropriate remediation strategies, if required. In general, where release of contaminants was found, the measured rates do not represent a significant source relative to other major inputs such as sewer discharges, nonpoint source runoff, and marinas. They may, however, represent an exposure pathway for benthic biota with a subsequent potential for toxicological effects and/or bioaccumulation. Environmental assessment, CIVAPP:Toxicity, CIVAPP:Marine chemistry, Hazardous waste.

  12. Large-scale Contraction and Subsequent Disruption of Coronal Loops During Various Phases of the M6.2 Flare Associated with the Confined Flux Rope Eruption

    NASA Astrophysics Data System (ADS)

    Kushwaha, Upendra; Joshi, Bhuwan; Veronig, Astrid M.; Moon, Yong-Jae

    2015-07-01

    We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before the filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.

  13. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  14. Effects of temperature, frequency, flux density, and excitation waveform on the core loss and dynamic B-H loops of Supermalloy

    SciTech Connect

    Schwarze, G.E.; Wieserman, W.R.; Niedra, J.M.

    1995-12-31

    The availability of experimental data which characterize the performance of soft magnetic materials for the combined conditions of temperature and frequency over a wide flux density range for different types of excitation is almost nonexistent. An experimental investigation of an 80-20 Ni-Fe alloy (Supermalloy) was conducted over the temperature (T) range of 23 to 300 C, frequency (f) range of 1 to 50 kHz, and maximum flux densities (B{sub M}) from 0.1 T up to 0.7 T for both sine and square wave voltage excitation. The investigation focused on the effects of B{sub M}, f, T, and excitation waveform on the specific core loss (SCL) and dynamic B-H loops. The results show that the ratio (R) of sine to square wave excitation specific core loss was always greater than unity for a given f and T and identical values of B{sub M}. The values of R ranged from 1.07 to 1.34. The classical theory of core loss separation into a hysteresis and eddy current loss component was used to theoretically determine the lower and upper bounds on R, against which the experimental R-values were compared. The experimental R-values were also used to make a comparison of the core loss of a sine and square wave voltage driven transformer.

  15. Effects of temperature, frequency, flux density, and excitation waveform on the core loss and dynamic B-H loops of supermalloy

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Wieserman, William R.; Niedra, Janis M.

    1995-01-01

    The availability of experimental data which characterize the performance of soft magnetic materials for the combined conditions of temperature and frequency over a wide flux density range for different types of excitation is almost nonexistent. An experimental investigation of an 80-20 Ni-Fe alloy (Supermalloy) was conducted over the temperature (T) range of 23 to 300 C, frequency (f) range of 1 to 50 kHz, and maximum flux densities (B(sub M)) from 0.1 T up to 0.7 T for both sine and square wave voltage excitation. The investigation focused on the effects of (B(sub M)), f, T, and excitation waveform on the specific core loss (SCL) and dynamic B-H loops. The results show that the ratio (R) of sine to square wave excitation specific core loss was always greater than unity for a given f and T and identical values of B(sub M). The values of R ranged from 1.07 to 1.34. The classical theory of core loss separation into a hysteresis and eddy current loss component was used to theoretically determine the lower and upper bounds on R, against which the experimental R-values were compared. The experimental R-values were also used to make a comparison of the core loss of a sine and square wave voltage driven transformer.

  16. TRANSVERSE OSCILLATIONS OF A LONGITUDINALLY STRATIFIED CORONAL LOOP SYSTEM

    SciTech Connect

    Fathalian, N.; Safari, H. E-mail: safari@znu.ac.i

    2010-11-20

    Collective transverse coronal loop oscillations seem to be detected in observational studies. In this regard, Luna et al. modeled the collective kink-like normal modes of several cylindrical loop systems using the T-matrix theory. This paper investigates the effects of longitudinal density stratification along the loop axis on the collective kink-like modes of the system of coronal loops. The coronal loop system is modeled as cylinders of parallel flux tubes, with two ends of each loop at the dense photosphere. The flux tubes are considered as uniform magnetic fields, with stratified density along the loop axis which changes discontinuously at the lateral surface of each cylinder. The MHD equations are reduced to solve a set of two coupled dispersion relations for frequencies and wavenumbers, in the presence of a stratification parameter. The fundamental and first overtone frequencies and longitudinal wavenumbers are computed. The previous results are verified for an unstratified coronal loop system. Finally, we conclude that an increased longitudinal density stratification parameter will result in an increase of the frequencies. The frequency ratios, first overtones to fundamentals, are very sensitive functions of the density scale height parameter. Therefore, stratification should be included in dynamics of coronal loop systems. For unstratified coronal loop systems, these ratios are the same as monoloop ones.

  17. Measurement of emission fluxes from Technical Area 54, Area G and L. Final report

    SciTech Connect

    Eklund, B.

    1995-03-15

    The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m{sup 2}-min to 9.69 x 10{sup 6} pCi/m{sup 2}-min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m{sup 2}-min. The measured emission fluxes of VOCs were < 100 {mu}g/m{sup 2}-min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report.

  18. 76 FR 56493 - Notice of Final Federal Agency Actions on State Loop 375 From Interstate Highway 10 to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Interstate Highway 10 to the Franklin Mountains State Park in Texas AGENCY: Federal Highway Administration... Franklin Mountains State Park Entrance (Loop 375 Transmountain West Project), in El Paso County in the...) to 0.479 Mile East of the Tom Mays Unit of the Franklin Mountains State Park Entrance (Loop...

  19. A direct current superconducting quantum interference device gradiometer with a digital signal processor controlled flux-locked loop and comparison with a conventional analog feedback scheme

    SciTech Connect

    Kung, P.J.; Bracht, R.R.; Flynn, E.R.; Lewis, P.S.

    1996-01-01

    A double-washer dc superconducting quantum interference device (SQUID) gradiometer with a flux-locked loop (FLL) based on a digital signal processor (DSP) has been developed for biomagnetic applications. All of the analog electronics in the conventional FLL are replaced and implemented by the DSP except for the low-noise field-effect transistor preamplifier at the front end of the signal recovery components. The DSP performs the signal demodulation by synchronously sampling the recovered signals and applying the appropriate full wave rectification. The signals are then integrated, filtered, and applied to the output. At 4.2 K, the white flux noise of the gradiometer measured in a DSP FLL mode is about 4{mu}{phi}{sub 0}/{radical}Hz and the noise at 1 Hz is 13 {mu}{phi}{sub 0}/{radical}Hz. The corresponding noise levels in the gradiometer operated by the conventional FLL are 1.8 and 3{mu}{phi}{sub 0}/{radical}Hz. The poorer system performance in the DSP FLL compared to the analog FLL is mainly caused by the ambient field noise and interference signals picked up through the connecting cables. Additional noise is also added to the overall noise floor by the instruments employed in the DSP system in the present prototype setup. Further improvement in the noise characteristics and the dynamic behavior of the DSP SQUID gradiometer is expected when a better configuration of DSP with the associated I/O devices is implemented. Additional improvements of the DSP programs are expected by incorporating higher-order integration, adaptive control, and noise reduction schemes. {copyright} {ital 1996 American Institute of Physics.}

  20. Computational Platform for Flux Analysis Using 13C-Label Tracing- Phase I SBIR Final Report

    SciTech Connect

    Van Dien, Stephen J.

    2005-04-12

    Isotopic label tracing is a powerful experimental technique that can be combined with metabolic models to quantify metabolic fluxes in an organism under a particular set of growth conditions. In this work we constructed a genome-scale metabolic model of Methylobacterium extorquens, a facultative methylotroph with potential application in the production of useful chemicals from methanol. A series of labeling experiments were performed using 13C-methanol, and the resulting distribution of labeled carbon in the proteinogenic amino acids was determined by mass spectrometry. Algorithms were developed to analyze this data in context of the metabolic model, yielding flux distributions for wild-type and several engineered strains of M. extorquens. These fluxes were compared to those predicted by model simulation alone, and also integrated with microarray data to give an improved understanding of the metabolic physiology of this organism.

  1. Studies of low temperature, low flux radiation embrittlement of nuclear reactor structural materials. Final report

    SciTech Connect

    Odette, G.R.; Lucas, G.E.

    1993-06-01

    There are several existing research programs which have components pertinent to the issue of low flux/low temperature embrittlement; in particular, examination of the Shippingport shield tank which has been exposed to low flux and relatively low temperature is being performed by ANL, and evaluation of low temperature embrittlement in A508 and A533B steels in support of the HTGR is currently being performed by ORNL. However, these programs are not specifically directed at the broader issue of low flux/low temperature embrittlement in a range of structural steels. Hence, the authors coordinated their effort with these programs so that their investigations were complementary to existing programs, and they focused on a set of materials which expand the data base developed in these programs. In particular, the authors have investigated embrittlement phenomena in steels that are similar to those used in support structure.

  2. Loop-to-loop coupling.

    SciTech Connect

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  3. Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report

    SciTech Connect

    Not Available

    1982-05-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  4. Sediment flux, east Greenland margin. Final report, 1 October 1988-1 September 1991

    SciTech Connect

    Andrews, J.T.; Williams, K.M.

    1991-09-17

    We investigated sediment flux across an ice-dominated, high latitude continental margin, using cores from the East Greenland Shelf (ca. 68 deg N). Density, weight percentages of the various sediment components, and sediment/age relations (AMS C- 14 dates) were investigated from cores collected 1988 and 1990. High-resolution DTS Huntec surveys indicated 10-20 m of acoustically transparent sediment. Maximum core length was 3 m and most of the gravity cores were between 1-2 m. The radiocarbon assays show that basal core sediments date between ca. 9,000 and 14,500 BP. The acoustic characteristics, the low dry volume densities (ca. 600 kg/m3 and the faunal and floral assemblages) suggest ice-distal conditions between ca. 14,500 and the present. Net sediment flux in the Kangerdlugssuaq Trough during the last 14,500 years has been low; this might be explained by either (1) cold-based glaciological conditions of the East Greenland ice sheet; and/or (2) efficient sediment trap(s) lying along the inner shelf/fjords of East Greenland.

  5. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  6. Observational Evidence for Loop-Loop Interaction

    NASA Astrophysics Data System (ADS)

    Guiping, W.; Guangli, H.; Yuhua, T.; Aoao, X.

    2004-01-01

    Through analysis of the data including the hard x-ray(BASTE) microwave(NoRP) and magnetogram(MDI from SOHO) as well as the images of soft x-ray(YHKOH) and EIT(SOHO) on Apr. 151998 solar flare in the active region 8203(N30W12) we found: (1) there are similar quasi period oscillation in the profile of hard x-ray flux (25-5050-100keV) and microwave flux(1GHz) with duration of 85+/-25s every peak includes two sub-peak structures; (2) in the preheat phase of the flare active magnetic field changes apparently and a s-pole spot emerges ; (3) several EIT and soft x-ray loops exist and turn into bright . All of these may suggest that loop-loop interaction indeed exist. Through reconnection the electrons may be accelerated and the hard x-ray and microwave emission take place.

  7. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration

  8. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 6: failure mode analysis. Final report

    SciTech Connect

    Streit, R.D.

    1981-09-01

    Material properties and failure criteria were evaluated to assess the requirements for double-ended guillotine break in the primary coolant loop of the Zion Unit 1 pressurized water reactor. The properties of the 316 stainless steel piping materials were obtained from the literature. Statistical distributions of both the tensile and fracture properties at room and operating temperatures were developed. Yield and ultimate strength tensile properties were combined to estimate the material flow strength. The flow strength and fracture properties were used in the various failure models analyzed. Linear-elastic, elastic-plastic, and fully plastic fracture models were compared, and the governing fracture criterion was determined. For the particular case studied, the fully plastic flow requirement was found to be the controlling fracture criterion leading to a double-ended guillotine pipe break.

  9. The flow-chart loop: temperature, density, and cooling observables supporting nanoflare coronal heating models

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Dhaliwal, R. S.; Christian, G. M.; Fair, C. B.

    2014-11-10

    We have tested three controversial properties for a target loop observed with the Atmospheric Imaging Assembly: (1) overdense loops; (2) long-lifetime loops; and (3) multithermal loops. Our loop is overdense by a factor of about 10 compared to results expected from steady uniform heating models. If this were the only inconsistency, our loop could still be modeled as a single strand, but the density mismatch would imply that the heating must be impulsive. Moving on to the second observable, however, we find that the loop lifetime is at least an order of magnitude greater than the predicted cooling time. This implies that the loop cannot be composed of a single flux tube, even if the heating were dynamic, and must be multi-stranded. Finally, differential emission measure analysis shows that the cross-field temperature of the target loop is multithermal in the early and middle phases of its lifetime, but effectively isothermal before it fades from view. If these multithermal cooling results are found to be widespread, our results could resolve the original coronal loop controversy of 'isothermal' versus 'multithermal' cross-field temperatures. That is, the cross-field temperature is not always 'multithermal' nor is it always 'isothermal', but might change as the loop cools. We find that the existence and evolution of this loop is consistent with predictions of nanoflare heating.

  10. Loops and trees

    NASA Astrophysics Data System (ADS)

    Caron-Huot, S.

    2011-05-01

    We investigate relations between loop and tree amplitudes in quantum field theory that involve putting on-shell some loop propagators. This generalizes the so-called Feynman tree theorem which is satisfied at 1-loop. Exploiting retarded boundary conditions, we give a generalization to ℓ-loop expressing the loops as integrals over the on-shell phase space of exactly ℓ particles. We argue that the corresponding integrand for ℓ > 2 does not involve the forward limit of any physical tree amplitude, except in planar gauge theories. In that case we explicitly construct the relevant physical amplitude. Beyond the planar limit, abandoning direct integral representations, we propose that loops continue to be determined implicitly by the forward limit of physical connected trees, and we formulate a precise conjecture along this line. Finally, we set up technology to compute forward amplitudes in supersymmetric theories, in which specific simplifications occur.

  11. Phase I Final Report: New Technology Platform to Measure Atmospheric Fluxes and Concentrations of Carbon Isotopes in CO2

    SciTech Connect

    Miles J. Weida, Ph.D. Senior Scientist, Applications Development

    2009-03-24

    There were four goals of the Phase I research carried out to develop the basis for a new technology platform to measure atmospheric fluxes and concentrations of carbon isotopes in CO2. The first was to extend the Daylight Solutions external cavity quantum cascade laser (ECqcL) package to allow continuous, rapid (<10 msec) sweeping of the laser wavelength to acquire spectra. This involved developing a rapid tuning mechanism for our broadly tunable quantum cascade (QC) lasers that meets the requirements of a CO2 isotopologue sensing application. The second goal was to undertake QC device development to procure QC devices capable of lasing in the 4.3 to 4.5 μm spectral region necessary for CO2 isotopologue detection. Final devices procured from this process were to be mounted, coated, and tested to demonstrate their suitability for scanning from 4.3 to 4.5 μm. The third goal was to develop spectral acquisition and analysis algorithms to enable real-time data acquisition and spectral fitting to determine gas temperature and isotopologue concentrations. This involved determining the best spectral analysis algorithm for retrieving CO2 isotopologue temperature and concentration information based on a targeted (i.e. 5% to 10% of center wavelength) scan of CO2 isotopologue absorption features. The culminating goal of Phase I was integration of these three components into a bench-top prototype that can measure CO2 isotopologue ratios in the laboratory.

  12. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect

    Harpeneau, Evan M.

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  13. TRANSVERSE OSCILLATIONS OF A COOLING CORONAL LOOP

    SciTech Connect

    Morton, R. J.; Erdelyi, R. E-mail: Robertus@sheffield.ac.u

    2009-12-10

    Here we present an investigation into how cooling of the plasma influences the oscillation properties (e.g., eigenfunctions and eigenfrequencies) of transverse (i.e., kink) magnetohydrodynamic (MHD) waves in a compressible magnetic flux tube embedded in a gravitationally stratified and uniformly magnetized atmosphere. The cooling is introduced via a temperature-dependent density profile. A time-dependent governing equation is derived and an approximate zeroth-order solution is then obtained. From this the influence of cooling on the behavior of the eigenfrequencies and eigenfunctions of the transverse MHD waves is determined for representative cooling timescales. It is shown analytically, as the loop cools, how the amplitude of the perturbations is found to decrease as time increases. For cooling timescales of 900-2000 s (as observed in typical EUV loops), it is shown that the cooling has important and relevant influence on the damping times of loop oscillations. Next, the theory is put to the test. The damping due to cooling is fitted to a representative observation of standing kink oscillation of EUV loops. It is also shown with an explicit approximate analytical form, how the period of the fundamental and first harmonic of the kink mode changes with time as the loop cools. A consequence of this is that the value of the period ratio P {sub 1}/P {sub 2}, a tool that is popular in magneto-seismological studies in coronal diagnostics, decreases from the value of a uniform loop, 2, as the temperature decreases. The rate of change in P {sub 1}/P {sub 2} is dependent upon the cooling timescale and is well within the observable range for typical EUV loops. Further to this, the magnitude of the anti-node shift of the eigenfunctions of the first harmonic is shown to continually increase as the loop cools, giving additional impetus to the use of spatial magneto-seismology of the solar atmosphere. Finally, we suggest that measurements of the rate of change in the

  14. Treatment of FGD plant wastewater by enhancing microfiltration fluxes. Final report, September 1, 1992--December 31, 1993

    SciTech Connect

    Ilias, S.

    1994-03-24

    In coal-fired boilers, the wet limestone-gypsum based flue gas desulfurization (FGD) plants produce large volumes of wastewater containing dissolved salts and heavy metals. Before discharging these wastes to the environment, the heavy metals must be removed. One of the preferred methods for removal of heavy metals is by co-precipitation of hydroxides and sulfides of heavy metals, followed by coagulation and flocculation techniques. As a post-treatment of the resulting wastewater stream, crossflow microfiltration is being considered as a cost effective and environmentally acceptable method. However, membrane `fouling` and `concentration polarization` in such applications remain serious problems and result in flux decline of product during filtration. In this exploratory research, we investigated a novel concept: flow oscillation as a means of controlling fouling and concentration polarization. The treatment of FGD plants wastewater (simulated) by enhancing microfiltration fluxes was studied here as an example to demonstrate the oscillatory flow system in combating concentration polarization and membrane fouling in crossflow filtration. Microfiltration experiments were conducted in a tubular membrane module. From limited experimental data, it was found that flow oscillation increases the transmembrane flux when compared with the non-oscillatory flow condition. A mathematical model has been developed to evaluate the performance of a tubular membrane module under oscillatory flow condition. Results are presented for both hydrodynamics and transmembrane fluxes for such factors as amplitudes and frequencies of oscillatory flow, membrane permeability, and operating transmembrane pressure.

  15. Final report on P1-APMP.EM-S9: VNIIM/KRISS bilateral comparison of DC magnetic flux density by means of a transfer standard coil

    NASA Astrophysics Data System (ADS)

    Shifrin, V. Ya; Park, P. G.

    2013-01-01

    The purpose of this bilateral comparison is to check the conformance of the base quantities of magnetic measurements, DC magnetic flux density and its ratio to a current, as reproduced at VNIIM and KRISS. In these institutes adequate conditions for precise measurements in low magnetic fields are provided and the appropriate equipment for attaining a high level of accuracy is available. The results in this report cover the comparisons of two units, T/A and T, reproduced by the two institutes. The experimental comparison data show good agreement within the estimated uncertainty components of the standards. The coordinated values of the unit of DC magnetic flux density and its ratios to DC current show a standard uncertainty at the level of 1 × 10-6 to 1.2 × 10-6 (k = 1) using the value of the gyromagnetic ratio of the shielded protons γp that was recommended by CODATA in 2010, the experimental determination of the ratio (γ4He/γp) of 4He atoms to protons, and the standards of the two institutes. The results give a basis for carrying out multilateral comparisons of standard quantum magnetometers of metrological institutes in the framework of APMP with participation of geomagnetic observatories, which require the establishment of a unified standard of the unit of DC magnetic flux density. They also show the possibility of decreasing the uncertainty of the determination of the unit of DC magnetic flux density from direct comparisons of standard quantum magnetometers. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by APMP, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Design and demonstration of an analysis Information system for magnetic flux leakage inspection of natural gas pipeline. Final letter report

    SciTech Connect

    Schuster, G.J.; Saffell, B.A.

    1996-10-01

    A staff exchange was conducted for the mutual benefit of the Department of Energy, the Gas Research Institute (GRI), Vetco Pipeline Services Inc. (VPSI), and the Pacific Northwest National Laboratory. This staff exchange provided direct exposure by a Laboratory staff member knowledgeable in inspection, integrity assessment, and robotic capabilities of the Laboratory to the needs of the natural gas pipeline industry. The project included an assignment to the GRI Pipeline Simulation Facility (PSF) during the period preceding the commissioning of the flow loop. GRI is interested in exploiting advanced technology at the National Laboratories. To provide a sense of the market impact, it is estimated that $3 billion was spent in 1993 for the repair, renovation, and replacement of distribution piping. GRI has goals of saving the distribution industry $500 million in Operations and Maintenance costs and having an additional $250M savings impact on transmission pipelines. The objectives of the project included: (1) For PNNL staff to present technology to GRI and PSF staff on non- destructive evaluation, robotics, ground penetrating radar, and risk based inspection guidelines for application to the operation and maintenance of natural gas pipelines. (2) For GRI and PSF staff to discuss with PNNL staff opportunities for improving the industrial competitiveness of operation and maintenance services. (3) To explore the basis for partnership with GRI and PSF staff on technology transfer topics. In this project, staff exchanges were conducted to GRI`s Pipeline Simulation Facility and to VPSI. PNNL . staff had access to the $10M GRI Pipeline Simulation Facility (PSF) at West Jefferson, Ohio. The facility has a 4,700-ft. long pipe loop, an NDE laboratory, and a data analysis laboratory. PNNL staff had access to the VPSI`s facility in Houston, TX. VPSI has developed some of the most sophisticated inspection tools currently used in the pipeline inspection industry.

  17. Wilson-loop instantons

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Holman, Richard; Kolb, Edward W.

    1987-01-01

    Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.

  18. Magnetic loop emergence within a granule

    NASA Astrophysics Data System (ADS)

    Gömöry, P.; Beck, C.; Balthasar, H.; Rybák, J.; Kučera, A.; Koza, J.; Wöhl, H.

    2010-02-01

    Aims: We investigate the temporal evolution of magnetic flux emerging within a granule in the quiet-Sun internetwork at disk center. Methods: We combined IR spectropolarimetry of high angular resolution performed in two Fe i lines at 1565 nm with speckle-reconstructed G-band imaging. We determined the magnetic field parameters by a LTE inversion of the full Stokes vector using the SIR code, and followed their evolution in time. To interpret the observations, we created a geometrical model of a rising loop in 3D. The relevant parameters of the loop were matched to the observations where possible. We then synthesized spectra from the 3D model for a comparison to the observations. Results: We found signatures of magnetic flux emergence within a growing granule. In the early phases, a horizontal magnetic field with a distinct linear polarization signal dominated the emerging flux. Later on, two patches of opposite circular polarization signal appeared symmetrically on either side of the linear polarization patch, indicating a small loop-like structure. The mean magnetic flux density of this loop was roughly 450 G, with a total magnetic flux of around 3 × 1017 Mx. During the ~12 min episode of loop occurrence, the spatial extent of the loop increased from about 1 to 2 arcsec. The middle part of the appearing feature was blueshifted during its occurrence, supporting the scenario of an emerging loop. There is also clear evidence for the interaction of one loop footpoint with a preexisting magnetic structure of opposite polarity. The temporal evolution of the observed spectra is reproduced to first order by the spectra derived from the geometrical model. During the phase of clearest visibility of the loop in the observations, the observed and synthetic spectra match quantitatively. Conclusions: The observed event can be explained as a case of flux emergence in the shape of a small-scale loop. The fast disappearance of the loop at the end could possibly be due to magnetic

  19. Experiment to Study Alfven Wave Propagation in Plasma Loops

    NASA Astrophysics Data System (ADS)

    Kendall, Mark; Bellan, Paul

    2010-11-01

    Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.

  20. Systematic assembly homogenization and local flux reconstruction for nodal method calculations. Final report, January 1, 1990--September 30, 1992

    SciTech Connect

    Dorning, J.J.

    1993-05-01

    The report is divided into three parts. The main mathematical development of the new systematic simultaneous lattice-cell and fuel-assembly homogenization theory derived from the transport equation is summarized in Part I. Also included in Part I is the validation of this systematic homogenization theory and the resulting calculational procedures for coarse-mesh nodal diffusion methods that follow from it, in the form of their application to a simple one-dimensional test problem. The results of the application of this transport-equation-based systematic homogenization theory are summarized in Part II in which its superior accuracy over traditional flux and volume weighted homogenization procedures and over generalized equivalence theory is demonstrated for small and large practical two-dimensional PWR problems. The mathematical development of a second systematic homogenization theory -- this one derived starting from the diffusion equation -- is summarized in Part III where its application to a practical two-dimensional PWR model also is summarized and its superior accuracy over traditional homogenization methods and generalized equivalence theory is demonstrated for this problem.

  1. Transient brightenings of interconnecting loops. II - Dynamics of the brightened loops

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Howard, R.

    1981-01-01

    Three different kinds of dynamic events related to interconnecting loops observed in soft X-rays aboard Skylab are discussed: (1) a newly born transequatorial loop that was either emerging from subphotospheric layers or gradually filled in with hot plasma; (2) large-scale twists of interconnecting loops which never relax, and often only form after the loop brightenings, and (3) three events where the loop that later interconnected two active regions had been visible long before one of the interconnecting regions was born. Several impacts this observation might have upon the understanding of the process of flux emergence are suggested.

  2. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    NASA Astrophysics Data System (ADS)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the

  3. Probability of pipe fracture in the primary coolant loop of a PWR Plant. Volume 6. Failure mode analysis load combination program. Project I, final report

    SciTech Connect

    Streit, R.D.

    1981-06-01

    Material properties and failure criteria were evaluated to assess the requirements for double-ended guillotine break in the primary coolant loop of the Zion Unit 1 pressurized water reactor. The properties of the 316 stainless steel piping materials were obtained from the literature. Statistical distributions of both the tensile and fracture properties at room and operating temperatures were developed. Yield and ultimate strength tensile properties were combined to estimate the material flow strength. The flow strength and fracture properties were used in the various failure models analyzed. Linear-elastic, elastic-plastic, and fully plastic fracture models were compared, and the governing fracture criterion was determined. For the particular case studied, the fully plastic requirement was found to be the controlling fracture criterion leading to a double-ended guillotine pipe break.

  4. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 1. Summary, Load Combination Program. Project I final report

    SciTech Connect

    Lu, S.; Streit, R.D.; Chou, C.K.

    1981-06-01

    This report summarizes work performed to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading and to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR, is the demonstration plant used in this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated by a deterministic fracture mechanics model with stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without earthquake, is very small (on the order of 10/sup -12/). The probability of a leak was found to be several orders of magnitude greater than that of a large LOCA, complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported.

  5. Waves in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Wang, T. J.

    2016-02-01

    The corona is visible in the optical band only during a total solar eclipse or with a coronagraph. Coronal loops are believed to be plasma-filled closed magnetic flux anchored in the photosphere. Based on the temperature regime, they are generally classified into cool, warm, and hot loops. The magnetized coronal structures support propagation of various types of magnetohydrodynamics (MHD) waves. This chapter reviews the recent progress made in studies based on observations of four types of wave phenomena mainly occurring in coronal loops of active regions, including: flare-excited slow-mode waves; impulsively excited kink-mode waves; propagating slow magnetoacoustic waves; and ubiquitous propagating kink (Alfvénic) waves. This review not only comprehensively discusses these waves and coronal seismology but also topics that are newly emerging or hotly debated in order to provide the reader with useful guidance on further studies.

  6. Loops of Jupiter

    NASA Astrophysics Data System (ADS)

    Opolski, Antoni

    2014-12-01

    Professor Antoni Opolski was actively interested in astronomy after his retirement in 1983. He especially liked to study the works of the famous astronomer Copernicus getting inspiration for his own work. Opolski started his work on planetary loops in 2011 continuing it to the end of 2012 . During this period calculations, drawings, tables, and basic descriptions of all the planets of the Solar System were created with the use of a piece of paper and a pencil only. In 2011 Antoni Opolski asked us to help him in editing the manuscript and preparing it for publication. We have been honored having the opportunity to work on articles on planetary loops with Antoni Opolski in his house for several months. In the middle of 2012 the detailed material on Jupiter was ready. However, professor Opolski improved the article by smoothing the text and preparing new, better drawings. Finally the article ''Loops of Jupiter'', written by the 99- year old astronomer, was published in the year of his 100th birthday.

  7. Rollercoaster Loop Shapes

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie

    2005-01-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  8. Rollercoaster loop shapes

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie

    2005-11-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  9. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  10. Study of the Open Loop and Closed Loop Oscillator Techniques

    SciTech Connect

    Imel, George R.; Baker, Benjamin; Riley, Tony; Langbehn, Adam; Aryal, Harishchandra; Benzerga, M. Lamine

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  11. Plasmoids as magnetic flux ropes

    SciTech Connect

    Moldwin, M.B.; Hughes, W.J. )

    1991-08-01

    Observational constraints on the magnetic topology and orientation of plasmoids is examined using a magnetic field model. The authors develop a magnetic flux rope model to examine whether principal axis analysis (PAA) of magnetometer signatures from a single satellite pass is sufficient to determine the magnetic topology of plasmoids and if plasmoid observations are best explained by the flux rope, closed loop, or large-amplitude wave picture. Satellite data are simulated by extracting the magnetic field along a path through the model of a magnetic flux rope. They then examine the results using PAA. They find that the principal axis directions (and therefore the interpretation of structure orientation) is highly dependent on several parameters including the satellite trajectory through the structure. Because of this they conclude that PAA of magnetometer data from a single satellite pass is insufficient to differentiate between magnetic closed loop and flux rope models. They also compare the model results to ISEE 3 magnetometer data of plasmoid events in various coordinate frames including principal axis and geocentric solar magnetospheric. They find that previously identified plasmoid events that have been explained as closed loop structures can also be modeled as flux ropes. They also searched the literature for previously reported flux rope and closed loop plasmoid events to examine if these structures had any similarities and/or differences. The results of the modeling efforts and examination of both flux rope and plasmoid events lead them to favor the flux rope model of plasmoid formation, as it is better able to unify the observations of various magnetic structures observed by ISEE 3.

  12. Scaling laws of coronal loops compared to a 3D MHD model of an active region

    NASA Astrophysics Data System (ADS)

    Bourdin, Ph.-A.; Bingert, S.; Peter, H.

    2016-04-01

    Context. The structure and heating of coronal loops have been investigated for decades. Established scaling laws relate fundamental quantities like the loop apex temperature, pressure, length, and coronal heating. Aims: We test these scaling laws against a large-scale 3D magneto-hydrodynamics (MHD) model of the solar corona, which became feasible with current high-performance computing. Methods: We drove an active region simulation with photospheric observations and find strong similarities to the observed coronal loops in X-rays and extreme-ultraviolet (EUV) wavelength. A 3D reconstruction of stereoscopic observations shows that our model loops have a realistic spatial structure. We compared scaling laws to our model data extracted along an ensemble of field lines. Finally, we fit a new scaling law that represents hot loops and also cooler structures, which was not possible before based only on observations. Results: Our model data gives some support for scaling laws that were established for hot and EUV-emissive coronal loops. For the Rosner-Tucker-Vaiana (RTV) scaling law we find an offset to our model data, which can be explained by 1D considerations of a static loop with a constant heat input and conduction. With a fit to our model data we set up a new scaling law for the coronal heat input along magnetic field lines. Conclusions: RTV-like scaling laws were fitted to hot loops and therefore do not predict well the coronal heat input for cooler structures that are barely observable. The basic differences between 1D and self-consistent 3D modeling account for deviations between earlier scaling laws and ours. We also conclude that a heating mechanism by MHD-turbulent dissipation within a braided flux tube would heat the corona stronger than is consistent with our model corona.

  13. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  14. PHOTOSPHERIC PROPERTIES OF WARM EUV LOOPS AND HOT X-RAY LOOPS

    SciTech Connect

    Kano, R.; Ueda, K.; Tsuneta, S.

    2014-02-20

    We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between ''warm loops'' (1-2 MK), which are coronal loops observed in EUV wavelengths, and ''hot loops'' (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ∼77 km and horizontal flow at ∼2.6 km s{sup –1} with a spatial scale of ∼120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 10{sup 6} erg s{sup –1} cm{sup –2}, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters.

  15. Photospheric Properties of Warm EUV Loops and Hot X-Ray Loops

    NASA Astrophysics Data System (ADS)

    Kano, R.; Ueda, K.; Tsuneta, S.

    2014-02-01

    We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between "warm loops" (1-2 MK), which are coronal loops observed in EUV wavelengths, and "hot loops" (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ~77 km and horizontal flow at ~2.6 km s-1 with a spatial scale of ~120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 106 erg s-1 cm-2, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters.

  16. OPE for super loops

    NASA Astrophysics Data System (ADS)

    Sever, Amit; Vieira, Pedro; Wang, Tianheng

    2011-11-01

    We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.

  17. The preprocessed doacross loop

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi

    1990-01-01

    Dependencies between loop iterations cannot always be characterized during program compilation. Doacross loops typically make use of a-priori knowledge of inter-iteration dependencies to carry out required synchronizations. A type of doacross loop is proposed that allows the scheduling of iterations of a loop among processors without advance knowledge of inter-iteration dependencies. The method proposed for loop iterations requires that parallelizable preprocessing and postprocessing steps be carried out during program execution.

  18. A flux-mnemonic permanent magnet brushless machine for wind power generation

    NASA Astrophysics Data System (ADS)

    Yu, Chuang; Chau, K. T.; Jiang, J. Z.

    2009-04-01

    In this paper, the concept of flux mnemonics is newly extended to the wind power generator. By incorporating a small magnetizing winding into an outer-rotor doubly salient AlNiCo permanent magnet (PM) machine, a new flux-mnemonic PM brushless wind power generator is proposed and implemented. This generator can offer effective and efficient air-gap flux control. First, the characteristics of the proposed generator are analyzed by using the finite element method. Second, the closed-loop flux control is devised to achieve a constant generated voltage under time-varying wind speeds. Finally, the experimental results are given to verify the validity of the proposed generator and control system.

  19. Determination of ocean/atmosphere carbon dioxide flux within OMP survey area. Final technical progress report, June, 1 1993--May 31, 1995

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1995-10-17

    Determination of the net flux of atmospheric CO{sub 2} with the ocean at the continental margin is one of the three principal goals of the Ocean Margins Program. The work reported here represents the initial phase of that determination, as carried out during two cruises within the OMP survey area in 1993 and 1994. The interannual variability was addressed through the occupation of hydrographic stations of nearly identical location one year apart, while the spatial variability in the air-sea PCO{sub 2} difference (ApCO{sub 2}), representing the driving force for net CO{sub 2} flux, was addressed during a survey of much of the continental shelf between the survey area off North Carolina and Georges Bank. Not addressed by the initial cruises was the seasonal variability of the net CO{sub 2} flux, since both scoping cruises were mounted during the same season of the respective years.

  20. Closing the loop.

    PubMed

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  1. How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Lynch, B. J.; Howard, R. A.; Li, Y.

    2013-05-01

    We intend to provide a comprehensive answer to the question on whether all Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we present a synthesis of the LASCO CME observations over the last 16 years, assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic observations from STEREO and SDO, and statistics from a revised LASCO CME database. We argue that the bright loop often seen as the CME leading edge is the result of pileup at the boundary of the erupting flux rope irrespective of whether a cavity or, more generally, a three-part CME can be identified. Based on our previous work on white light shock detection and supported by the MHD simulations, we identify a new type of morphology, the `two-front' morphology. It consists of a faint front followed by diffuse emission and the bright loop-like CME leading edge. We show that the faint front is caused by density compression at a wave (or possibly shock) front driven by the CME. We also present highly detailed multi-wavelength EUV observations that clarify the relative positioning of the prominence at the bottom of a coronal cavity with a clear flux rope structure. Finally, we visually check the full LASCO CME database for flux rope structures. In the process, we classify the events into two clear flux rope classes (`three-part', and `Loop'), jets and outflows (no clear structure). We find that at least 40 % of the observed CMEs have clear flux rope structures and that ˜ 29 % of the database entries are either misidentifications or inadequately measured and should be discarded from statistical analyses. We propose a new definition for flux rope CMEs (FR-CMEs) as a coherent magnetic, twist-carrying coronal structure with angular width of at least 40∘ and able to reach beyond 10 R⊙ which erupts on a time scale of a few minutes to several hours. We conclude that flux ropes are a common occurrence in CMEs and pose a challenge for future studies to identify CMEs that are

  2. A magnetohydrodynamic theory of coronal loop transients

    NASA Technical Reports Server (NTRS)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  3. Blind loop syndrome

    MedlinePlus

    Blind loop syndrome occurs when digested food slows or stops moving through part of the intestines. This ... The name of this condition refers to the "blind loop" formed by part of the intestine that ...

  4. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  5. Coronal Loops: Observations and Modeling of Confined Plasma

    NASA Astrophysics Data System (ADS)

    Reale, Fabio

    2014-07-01

    Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops) are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  6. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    SciTech Connect

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  7. Free convection in a partially submerged fluid loop

    SciTech Connect

    Britt, T.E.; Wood, D.C.

    1982-01-01

    Several natural convection loop systems are studied in order to determine the operational characteristics for a multiple loop container which is used to cool failed nuclear reactor assemblies. Both analytical and experimental studies were undertaken to examine flow in both circular and rectangular flow loops. It was found that when a circular loop is heated at the bottom and cooled at the top, recirculation cells form at all input power fluxes. At fluxes between 0.1 W/cm/sup 2/ and 0.7 W/cm/sup 2/ the cells caused flow oscillations and reversals. With the circular loop heated from the side, no recirculation cells were observed at the power fluxes up to 1.5 W/cm. Boiling did not occur in the circular loop. For a rectangular loop heated and cooled on its vertical sides, no recirculation cells or flow reversals were seen. At input power fluxes above 1.2 W/cm/sup 2/, periodic boiling in the heated side caused flow oscillations.

  8. Dihedral-like constructions of automorphic loops

    NASA Astrophysics Data System (ADS)

    Aboras, Mouna

    In this dissertation we study dihedral-like constructions of automorphic loops. Automorphic loops are loops in which all inner mappings are automorphisms. We start by describing a generalization of the dihedral construction for groups. Namely, if (G, +) is an abelian group, m > 1 and alpha ∈2 Aut(G), let Dih(m, G, alpha) on Zm x G be defined by. (i, u)(j, v) = (i + j, ((--1)ju + v)alpha ij). We prove that the resulting loop is automorphic if and only if m = 2 or (alpha2 = 1 and m is even) or (m is odd, alpha = 1 and exp(G) ≤ 2). In the last case, the loop is a group. The case m = 2 was introduced by Kinyon, Kunen, Phillips, and Vojtechovsky. We study basic structural properties of dihedral-like automorphic loops. We describe certain subloops, including: nucleus, commutant, center, associator subloop and derived subloop. We prove theorems for dihedral-like automorphic loops analogous to the Cauchy and Lagrange theorems for groups, and further we discuss the coset decomposition in dihedral-like automorphic loops. We show that two finite dihedral-like automorphic loops Dih( m, G, alpha) and Dih(m¯, G¯, [special character omitted]) are isomorphic if and only if m = m¯, G ≅ G¯ and alpha is conjugate to [special character omitted] in Aut(G). We describe the automorphism group of Q and its subgroup consisting of inner mappings of Q. Finally, due to the solution to the isomorphism problem, we are interested in studying conjugacy classes of automorphism groups of finite abelian groups. Then we describe all dihedral-like automorphic loops of order < 128 up to isomorphism. We conclude with a description of all dihedral-like automorphic loops of order < 64 up to isotopism.

  9. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    SciTech Connect

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  10. Atmospheric 14CO2 Constraints on and Modeling of Net Carbon Fluxes 06-ERD-031 An LLNL Exploratory Research in the Directorate's Final Report

    SciTech Connect

    Guilderson, T P; Cameron-Smith, P; Bergmann, D; Graven, H D; Keeling, R; Boering, K; Caldeira, K

    2009-03-18

    A critical scientific question is: 'what are the present day sources and sinks of carbon dioxide (CO{sub 2}) in the natural environment, and how will these sinks evolve under rising CO{sub 2} concentrations and expected climate change and ecosystem response'? Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO{sub 2}. Spatial and temporal trends (variability) provide information on the net surface (atmosphere to ocean, atmosphere to terrestrial biosphere) fluxes. The need to establish more reliable estimates of sources and sinks of CO{sub 2} has lead to an expansion of CO{sub 2} measurement programs over the past decade and the development of new methodologies for tracing carbon flows. These methodologies include high-precision pCO{sub 2}, {delta}{sup 13}CO{sub 2}, and [O{sub 2}/N{sub 2}] measurements on atmospheric constituents that, when combined, have allowed estimates of the net terrestrial and oceanic fluxes at decadal timescales. Major gaps in our understanding remain however, and resulting flux estimates have large errors and are comparatively unconstrained. One potentially powerful approach to tracking carbon flows is based on observations of the {sup 14}C/{sup 12}C ratio of atmospheric CO{sub 2}. This ratio can be used to explicitly distinguish fossil-fuel CO{sub 2} from other sources of CO{sub 2} and also provide constraints on the mass and turnover times of carbon in land ecosystems and on exchange rates of CO{sub 2} between air and sea. Here we demonstrated measurement of {sup 14}C/{sup 12}C ratios at 1-2{per_thousand} on archived and currently collected air samples. In parallel we utilized the LLNL-IMPACT global atmospheric chemistry transport model and the TransCom inversion algorithm to utilize these data in inversion estimates of carbon fluxes. This project has laid the foundation for a more expanded effort in the future, involving collaborations with other air

  11. A closer look at a coronal loop rooted in a sunspot umbra

    NASA Astrophysics Data System (ADS)

    Chitta, L. P.; Peter, H.; Young, P. R.

    2016-03-01

    Context. Extreme UV (EUV) and X-ray loops in the solar corona connect regions of enhanced magnetic activity, but they are not usually rooted in the dark umbrae of sunspots because the strong magnetic field found there suppresses convection. This means that the Poynting flux of magnetic energy into the upper atmosphere is not significant within the umbra as long as there are no light bridges or umbral dots. Aims: Here we report a rare observation of a coronal loop rooted in the dark umbra of a sunspot without any traces of light bridges or umbral dots. This allows us to investigate the loop without much confusion from background or line-of-sight integration effects. Methods: We used the slit-jaw images and spectroscopic data from the Interface Region Imaging Spectrograph (IRIS) and concentrate on the line profiles of O iv and Si iv that show persistent strong redshifted components in the loop rooted in the umbra. Using the ratios of O iv, we can estimate the density and thus investigate the mass flux. The coronal context and temperature diagnostics of these observations is provided through the EUV channels of the Atmospheric Imaging Assembly (AIA). Results: The coronal loop, embedded within cooler downflows, hosts supersonic downflows. The speed of more than 100 km s-1 is on the same order of magnitude in the transition region lines of O iv and Si iv, and is even seen at comparable speed in the chromospheric Mg ii lines. At a projected distance of within 1'' of the footpoint, we see a shock transition to smaller downflow speeds of about 15 km s-1 being consistent with mass conservation across a stationary isothermal shock. Conclusions: We see no direct evidence for energy input into the loop because the loop is rooted in the dark uniform part of the umbra with no light bridges or umbral dots near by. Thus one might conclude that we are seeing a siphon flow driven from the footpoint at the other end of the loop. However, for a final result data of similar quality at

  12. Electroslag remelting with used fluxes

    SciTech Connect

    Yakovlev, N.F.; Sokha, Yu.S.; Oleinik, Yu.S.; Prokhorov, A.N.; Ol'shanskaya, T.V.

    1988-05-01

    The Ukranian Scientific-Research Institute of Specialty Steel collaborated with plants engaged in the production of quality metals to introduce a low-waste electroslag remelting (ESR) technology employing used fluxes. It was established that the fluoride (type ANF-1) and fluoride-oxide (type ANF-6) fluxes which are widely used in ESR still have a high content of calcium fluoride and alumina and a low impurity content after 8-10 h of ESR. In the ESR of steels with used fluxes, the content of monitored components in the final slags changes negligibly, while the content of most impurities decreases. The used flux is also characterized by a low concentration of phosphorus and sulfur. It was found that flux can be used 3-5 times when it makes up 50% of the flux mixture in the charge. The savings realized from the use of spent flux in ESR amounts to 4-9 rubles/ton steel.

  13. Optical assessment of large marine particles: Development of an imaging and analysis system for quantifying large particle distributions and fluxes. Final report, June 1992--May 1996

    SciTech Connect

    Walsh, I.D.; Gardner, W.D.

    1997-04-01

    The central goal of DOE`s Ocean Margin Program (OMP) has been to determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or exporting it to the open ocean. The overall objective of this work within OMP was to develop an instrument package to measure the large aggregate population of particles in the shelf/slope environment at a rate sufficient to integrate the observed particle distributions into the coupled physical and biogeochemical models necessary to understand the shelf and slope as a system. Pursuant to this the authors have developed a video and optical instrument package (LAPS: Large Aggregate Profiling System) and assembled the computer and software methods to routinely measure a wide spectrum of the large aggregate population of particles in the shelf/slope environment. This particle population, encompassing the `marine snow` size particles (dia. > 0.5 mm), is thought to be the major pathway of material flux in the ocean. The instrument package collects aggregate abundance and size spectrum data using two video camera/strobe subsystems with a third subsystem collecting CTD, beam attenuation and fluorescence data. Additionally, measurements of particle flux were made with sediment traps deployed on the continental slope in conjunction with the physical oceanography mooring program. The authors envisioned a three stages development of the instrument package: (1) design, assembly, and laboratory testing of all components and the package as a whole, (2) a short period of laboratory and field testing of the instrument package to determine the best operational parameters, and (3) operations within a framework of complementary analytical sampling such as an appropriate process study funded under the OMP. The first two stages were covered by this proposal and completed. The third stage was limited to scoping work with the LAPS and deployment of sediment traps.

  14. Laminated BEAM loops

    NASA Astrophysics Data System (ADS)

    Danisch, Lee A.

    1996-10-01

    BEAM sensors include treated loops of optical fiber that modulate optical throughput with great sensitivity and linearity, in response to curvature of the loop out of its plane. This paper describes BEAM sensors that have two loops treated in opposed fashion, hermetically sealed in flexible laminations. The sensors include an integrated optoelectronics package that extracts curvature information from the treated portion of the loops while rejecting common mode errors. The laminated structure is used to sense various parameters including displacement, force, pressure, flow, and acceleration.

  15. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect

    NIELSEN, D L

    2004-02-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  16. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    SciTech Connect

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.

  17. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    SciTech Connect

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated.

  18. Simulations of Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Stein, Robert; Nordlund, Aake

    Magnetic flux emerges from the solar surface on a wide range of scales. We review recent simulations of both large and small scale flux emergence. In our own simulations, we represent the magnetic flux produced by the global dynamo as uniform, untwisted, horizontal field advected into the simulation domain by supergranule scale inflows at the bottom. Our computational domain extends from the temperature minimum (half a megameter above the visible surface) to 20 Mm below the surface, which is 10% of the depth of the convection zone, but contains 2/3 of its scale heights. We investigate how magnetic flux rises through the upper solar convection zone and emerges through the surface. Convective up-flows and magnetic buoyancy bring field toward the surface. Convective down-flows pin down field and prevent its rise. Most of the field gets pumped downward by the convection, but some field rises to the surface. The convective motions both confine the flux concentrations (without the need for twist) and shred them. This process creates a hierarchy of magnetic loops with smaller loops riding "piggy-back", in a serpentine pattern, on larger loops. As a result, magnetic flux emerges in a mixed polarity, "pepper and salt" pattern. The small loops appear as horizontal field over granules with their vertical legs in the bounding intergranular lanes. The fields are quickly swept into the intergranular lanes. As the larger, parent, flux concentrations reach the surface with their legs rooted in the the downflow boundaries of the underlying, supergranule-scale, convective cells near the bottom of the simulation domain, the surface field counter-streams into separate, opposite polarity concentrations, creating pores and spots. The subsurface magnetic field lines of the pores and spots formed by the magneto-convection (without being imposed as an initial condition) are braided, some tightly, some loosely and they connect in complicated ways to the surrounding field at large depths

  19. Uniqueness of measures in loop quantum cosmology

    SciTech Connect

    Hanusch, Maximilian

    2015-09-15

    In Ashtekar and Campiglia [Classical Quantum Gravity 29, 242001 (2012)], residual diffeomorphisms have been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). We show that, in the homogeneous isotropic case, unitarity of the translations with respect to the extended ℝ-action (exponentiated reduced fluxes in the standard approach) singles out the Bohr measure on both the standard quantum configuration space ℝ{sub Bohr} as well as on the Fleischhack one (ℝ⊔ℝ{sub Bohr}). Thus, in both situations, the same condition singles out the standard kinematical Hilbert space of LQC.

  20. Thermoelectric power generator with intermediate loop

    SciTech Connect

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  1. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  2. Three-loop hard-thermal-loop free energy for QED

    SciTech Connect

    Andersen, Jens O.; Strickland, Michael; Su, Nan

    2009-10-15

    We calculate the free energy of a hot gas of electrons and photons to three loops using the hard-thermal-loop perturbation theory reorganization of finite-temperature perturbation theory. We calculate the free energy through three loops by expanding in a power series in m{sub D}/T, m{sub f}/T, and e{sup 2}, where m{sub D} and m{sub f} are thermal masses and e is the coupling constant. We demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e{approx}2. The reorganization is gauge invariant by construction, and due to cancellation among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops. Finally, we compare our result with similar calculations that use the {phi}-derivable approach.

  3. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    SciTech Connect

    Curtis, Peter; Bohrer, Gil; Gough, Christopher; Nadelhoffer, Knute

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest C storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation

  4. Loop Virasoro Lie conformal algebra

    SciTech Connect

    Wu, Henan Chen, Qiufan; Yue, Xiaoqing

    2014-01-15

    The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.

  5. Two-loop quantum gravity

    NASA Astrophysics Data System (ADS)

    van de Ven, Anton E. M.

    1992-07-01

    We prove the existence of a nonrenormalizable infinity in the two-loop effective action of perturbative quantum gravity by means of an explicit calculation. Our final result agrees with that obtained by earlier authors. We use the background-field method in coordinate space, combined with dimensional regularization and a heat kernel representation for the propagators. General covariance is manifestly preserved. Only vacuum graphs in the presence of an on-shell background metric need to be calculated. We extend the background covariant harmonic gauge to include terms nonlinear in the quantum gravitational fields and allow for general reparametrizations of those fields. For a particular gauge choice and field parametrization only two three-graviton and six four-graviton vertices are present in the action. Calculational labor is further reduced by restricting to backgrounds, which are not only Ricci-flat, but satisfy an additional constraint bilinear in the Weyl tensor. To handle the still formidable amount of algebra, we use the symbolic manipulation program FORM. We checked that the on-shell two-loop effective action is in fact independent of all gauge and field redefinition parameters. A two-loop analysis for Yang-Mills fields is included as well, since in that case we can give full details as well as simplify earlier analyses.

  6. Precipitating auroral electron flux characteristics based on uv data obtained by the airs experiment onboard the polar bear satellite. Final report, August 1988-July 1991

    SciTech Connect

    Strickland, D.J.; Cox, R.J.

    1992-03-01

    The AIRS instrument on satellite Polar BEAR is the first to obtain narrow band UV images for more than one band at a time. This provides the opportunity to do serious quantitative analysis of the data in terms of composition and the energy sources producing the emission (aurora and dayglow). Analysis of auroral imaging data from two passes will be presented. On one of these, simultaneous images were obtained at 1356 A (OI 1356 A + N[sub 2] LBH), 1596 A (LBH), and 3914 A (N[sub 2](+) 1N). On the other, the observed bands were centered at 1304 A (OI 1304 A), 1544 A (LBH), and 3914 A. Variations in data ratios among the three bands for either pass exceeded a factor of three over the portion of the auroral oval seen within the images. The possible causes of these variations are changes in the hardness of the precipitating particle spectrum (here the particles are assumed to be electrons), changes in the abundance of O relative to N[sub 2], changes in the albedo at 3914 A, and statistical fluctuations where signals were low. To interpret the data, yields (Rayleighs/(erg cm(-2)s(-1))) and yield ratios appropriate to the band centers and their widths were calculated versus hardness of the precipitating electron spectrum. The calculations used MSIS model atmospheres with O density scalings of 1.0 and 0.5. The input parameters were appropriate to the times at which the data were collected to the regions observed. Incident electron spectra were characterized by modified Gaussian and Maxwellian energy distributions defined in terms of characteristic energy E[sub o] (in keV) and energy flux Q (in ergs cm(-2)s(-1)).

  7. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  8. Saccade learning with concurrent cortical and subcortical basal ganglia loops

    PubMed Central

    N'Guyen, Steve; Thurat, Charles; Girard, Benoît

    2014-01-01

    The Basal Ganglia (BG) is a central structure involved in multiple cortical and subcortical loops. Some of these loops are believed to be responsible for saccade target selection. We study here how the very specific structural relationships of these saccadic loops can affect the ability of learning spatial and feature-based tasks. We propose a model of saccade generation with reinforcement learning capabilities based on our previous BG and superior colliculus models. It is structured around the interactions of two parallel cortico-basal loops and one tecto-basal loop. The two cortical loops separately deal with spatial and non-spatial information to select targets in a concurrent way. The subcortical loop is used to make the final target selection leading to the production of the saccade. These different loops may work in concert or disturb each other regarding reward maximization. Interactions between these loops and their learning capabilities are tested on different saccade tasks. The results show the ability of this model to correctly learn basic target selection based on different criteria (spatial or not). Moreover the model reproduces and explains training dependent express saccades toward targets based on a spatial criterion. Finally, the model predicts that in absence of prefrontal control, the spatial loop should dominate. PMID:24795615

  9. An adaptive human response mechanism controlling the V/STOL aircraft. Appendix 3: The adaptive control model of a pilot in V/STOL aircraft control loops. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Kucuk, Senol

    1988-01-01

    Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.

  10. Thermal power loops

    NASA Technical Reports Server (NTRS)

    Gottschlich, Joseph M.; Richter, Robert

    1991-01-01

    The concept of a thermal power loop (TPL) to transport thermal power over relatively large distances is presented as an alternative to heat pipes and their derivatives. The TPL is compared to heat pipes, and capillary pumped loops with respect to size, weight, conservation of thermal potential, start-up, and 1-g testing capability. Test results from a proof of feasibility demonstrator at the NASA JPL are discussed. This analysis demonstrates that the development of specific thermal power loops will result in substantial weight and cost savings for many spacecraft.

  11. Analog simulation of flux-summing servo-model, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Hriber, E. J.

    1984-01-01

    The analog simulation was developed for a closed-loop system having an electrohydraulic flux-summing servo valve and actuator with associated inertial load. One-fourth of the system's total forward gain is carried by each of four channels. The present study successfully applied failure mode management techniques to the problem of channel failure. Digital logic circuitry was developed to maintain the overall forward gain of the system at a constant value, in the presence of channel failure. Finally, the stability of the system was verified, and performance characteristics were determined through the use of frequency response methods.

  12. Natively Unstructured Loops Differ from Other Loops

    PubMed Central

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%–70% of all worm proteins observed to have more than seven protein–protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  13. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  14. Elimination of thermodynamically infeasible loops in steady-state metabolic models.

    PubMed

    Schellenberger, Jan; Lewis, Nathan E; Palsson, Bernhard Ø

    2011-02-01

    The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steady-state flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoff's second law for electric circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences of the loop law have been known for years, it has been computationally difficult to work with. Therefore, the resulting loop-law constraints have been overlooked. Here, we present a general mixed integer programming approach called loopless COBRA (ll-COBRA), which can be used to eliminate all steady-state flux solutions that are incompatible with the loop law. We apply this approach to improve flux predictions on three common COBRA methods: flux balance analysis, flux variability analysis, and Monte Carlo sampling of the flux space. Moreover, we demonstrate that the imposition of loop-law constraints with ll-COBRA improves the consistency of simulation results with experimental data. This method provides an additional constraint for many COBRA methods, enabling the acquisition of more realistic simulation results. PMID:21281568

  15. Experimental study on sintered powder wick loop heat pipe

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Saputra, Bimo, M. Iqbal; Irwansyah, Ridho; Wayan, S. Nata

    2012-06-01

    Increased of heat flux generated by electronic equipment in particular components of a computer (CPU) should always be accompanied with a good cooling in order to achieve optimal operating capability with a high level of reliability. The use of loop heat pipes in thermal management of electronic cooling becomes one of alternative solution. Before LHPs are implemented as an alternative cooling method for electronic device, a quantity of reliability factors should be considered and evaluated such as wick structure and material, type of working fluid, long term life tests, and other tests. The purposes of this experimental study are to examine and analyze the application of sintered copper powder as a wick on a loop heat pipe, type of cooling system on LHP and the orientation of LHP. The performace of nanofluid as working fluid in loop heat pipe were also investigated in this experiment. The performance of the loop heat pipe was also affected by the type of condenser; the water cooled loop heat pipe has the highest temperature reducing value compared to the heat sink fan. The orientation of loop heat pipe also affected the performance of loop heat pipe. This proved that gravity and capillary pressure affecting the performance of loop heat pipes. Temperature differences between the evaporator and condenser sections with nanofluids were less that pure water, i.e. thermal resistance of the LHP when charged with nanofluids was less. It makes nanofluid attractive as working fluid in loop heat pipe technology.

  16. Crossed Flux Tubes Magnetic Reconnection Experiment

    NASA Astrophysics Data System (ADS)

    Tobin, Zachary; Bellan, Paul

    2012-10-01

    The dynamics of arched, plasma-filled flux tubes have been studied in experiments at Caltech. These flux tubes expand, undergo kink instabilities, magnetically reconnect, and are subject to magnetohydrodynamic forces. An upgraded experiment will arrange for two of these flux tubes to cross over each other. It is expected then that the flux tubes will undergo magnetic reconnection at the crossover point, forming one long flux tube and one short flux tube. This reconnection should also result in a half-twist in the flux tubes at the crossover point, which will propagate along each tube as Alfv'en waves. The control circuitry requires two independent floating high energy capacitor power supplies to power the plasma loops, which will be put in series when the plasma loops reconnect. Coordinating these two power supplies requires the building of new systems for controlling plasma generation. Unlike with previous designs, all timing functions are contained on a single printed circuit board, allowing the design to be easily replicated for use with each independent capacitor involved. The control circuit sequencing has been tested successfully in generating a single flux tube. The plasma gun is currently under construction, with its installation pending completion of prior experiments.

  17. How current loops and solenoids curve spacetime

    NASA Astrophysics Data System (ADS)

    Füzfa, André

    2016-01-01

    The curved spacetime around current loops and solenoids carrying arbitrarily large steady electric currents is obtained from the numerical resolution of the coupled Einstein-Maxwell equations in cylindrical symmetry. The artificial gravitational field associated to the generation of a magnetic field produces gravitational redshift of photons and deviation of light. Null geodesics in the curved spacetime of current loops and solenoids are also presented. We finally propose an experimental setup achievable with current technology of superconducting coils, that produces a phase shift of light of the same order of magnitude as astrophysical signals in ground-based gravitational wave observatories.

  18. Flux-area operator and black hole entropy

    SciTech Connect

    Barbero G, J. Fernando; Lewandowski, Jerzy; Villasenor, Eduardo J. S.

    2009-08-15

    We show that, for space-times with inner boundaries, there exists a natural area operator different from the standard one used in loop quantum gravity. This new flux-area operator has equidistant eigenvalues. We discuss the consequences of substituting the standard area operator in the Ashtekar-Baez-Corichi-Krasnov definition of black hole entropy by the new one. Our choice simplifies the definition of the entropy and allows us to consider only those areas that coincide with the one defined by the value of the level of the Chern-Simons theory describing the horizon degrees of freedom. We give a prescription to count the number of relevant horizon states by using spin components and obtain exact expressions for the black hole entropy. Finally we derive its asymptotic behavior, discuss several issues related to the compatibility of our results with the Bekenstein-Hawking area law and the relation with Schwarzschild quasinormal modes.

  19. Hawking fluxes, back reaction and covariant anomalies

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shailesh

    2008-11-01

    Starting from the chiral covariant effective action approach of Banerjee and Kulkarni (2008 Phys. Lett. B 659 827), we provide a derivation of the Hawking radiation from a charged black hole in the presence of gravitational back reaction. The modified expressions for charge and energy flux, due to the effect of one-loop back reaction are obtained.

  20. Loop Integrands for Scattering Amplitudes from the Riemann Sphere

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2015-09-01

    The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.

  1. Loop Integrands for Scattering Amplitudes from the Riemann Sphere.

    PubMed

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2015-09-18

    The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n-gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory. PMID:26430983

  2. LINE-OF-SIGHT SHELL STRUCTURE OF THE CYGNUS LOOP

    SciTech Connect

    Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Kimura, Masashi; Kosugi, Hiroko; Takahashi, Hiroaki

    2009-11-10

    We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and northeast from the center. We estimated the former thin shell region to be approx1.{sup 0}3 in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.

  3. Magnetic flux amplification by Lenz lenses

    NASA Astrophysics Data System (ADS)

    Schoenmaker, J.; Pirota, K. R.; Teixeira, J. C.

    2013-08-01

    Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

  4. The temperature structure and pressure balance of magnetic loops in active regions. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Foukal, P.

    1975-01-01

    EUV observations show many active region loops in lines formed at temperatures between 10,000 and 2,000,000 K. The brightest loops are associated with flux tubes leading to the umbrae of sunspots. It is shown that the high visibility of certain loops in transition region lines is due principally to a sharp radial decrease of temperature to chromospheric values toward the loop axis. The plasma density of these cool loops is not significantly greater than in the hot gas immediately surrounding it. Consequently, the internal gas pressure of the cool material is clearly lower. The hot material immediately surrounding the cool loops is generally denser than the external corona by a factor 3-4. When the active region is examined in coronal lines, this hot high pressure plasma shows up as loops that are generally parallel to the cool loops but significantly displaced laterally.

  5. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    SciTech Connect

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian; Mehta, Chaitanya; Collins, Price; Lish, Matthew; Cady, Brian; Lollar, Victor; de Wet, Dane; Bayram, Duygu

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  6. ISOTHERMAL AND MULTITHERMAL ANALYSIS OF CORONAL LOOPS OBSERVED WITH AIA

    SciTech Connect

    Schmelz, J. T.; Jenkins, B. S.; Worley, B. T.; Anderson, D. J.; Pathak, S.; Kimble, J. A.

    2011-04-10

    The coronal filters in the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory peak at different temperatures; the series covers the entire active region temperature range, making AIA ideal for multithermal analysis. Here, we analyze coronal loops from several active regions that have been observed by AIA. We have specifically targeted cool loops (or at least loops with a cool component) that were chosen in the 171 A channel of AIA, which has a peak response temperature of log T = 5.8. We wanted to determine if the loops could be described as isothermal or multithermal. We find that several of our 12 loops have narrow temperature distributions, which may be consistent with isothermal plasma; these can be modeled with a single flux tube. Other loops have intermediate-width temperature distributions, appear well-constrained, and should be multi-stranded. The remaining loops, however, have unrealistically broad differential emission measures. We find that this problem is the result of missing low-temperature lines in the AIA 131 A channel. If we repeat the analysis without the 131 A data, these loops also appear to be well-constrained and multi-stranded.

  7. Automatic one-loop calculations with Sherpa+OpenLoops

    NASA Astrophysics Data System (ADS)

    Cascioli, F.; Höche, S.; Krauss, F.; Maierhöfer, P.; Pozzorini, S.; Siegert, F.

    2014-06-01

    We report on the OpenLoops generator for one-loop matrix elements and its application to four-lepton production in association with up to one jet. The open loops algorithm uses a numerical recursion to construct the numerator of one-loop Feynman diagrams as functions of the loop momentum. In combination with tensor integrals this results in a highly efficient and numerically stable matrix element generator. In order to obtain a fully automated setup for the simulation of next-to-leading order scattering processes we interfaced OpenLoops to the Sherpa Monte Carlo event generator.

  8. Interstitial loop transformations in FeCr

    DOE PAGESBeta

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; Xu, Haixuan

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientationmore » depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.« less

  9. Interstitial loop transformations in FeCr

    SciTech Connect

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; Xu, Haixuan

    2015-03-27

    Here, we improve the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) algorithm by integrating the Activation Relaxation Technique nouveau (ARTn), a powerful open-ended saddle-point search method, into the algorithm. We use it to investigate the reaction of 37-interstitial 1/2[1 1 1] and 1/2[View the MathML source] loops in FeCr at 10 at.% Cr. They transform into 1/2[1 1 1], 1/2[View the MathML source], [1 0 0] and [0 1 0] 74-interstitial clusters with an overall barrier of 0.85 eV. We find that Cr decoration locally inhibits the rotation of crowdions, which dictates the final loop orientation. Moreover, the final loop orientation depends on the details of the Cr decoration. Generally, a region of a given orientation is favored if Cr near its interface with a region of another orientation is able to inhibit reorientation at this interface more than the Cr present at the other interfaces. Also, we find that substitutional Cr atoms can diffuse from energetically unfavorable to energetically favorable sites within the interlocked 37-interstitial loops conformation with barriers of less than 0.35 eV.

  10. Livermore Compiler Analysis Loop Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizationsmore » and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  11. Livermore Compiler Analysis Loop Suite

    SciTech Connect

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.

  12. NETL - Chemical Looping Reactor

    SciTech Connect

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  13. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  14. Loops: Twisting and Scaling

    NASA Astrophysics Data System (ADS)

    Walsh, R. W.

    2004-01-01

    Loop-like structures are the fundamental magnetic building blocks of the solar atmosphere. Recent space-based EUV and X-ray satellite observations (from Yohkoh SOHO and TRACE) have challenged the view that these features are simply static gravitationally stratified plasma pipes. Rather it is now surmised that each loop may consist of a bundle of fine plasma threads that are twisted around one another and can brighten independently. This invited review will outline the latest developments in ""untangling"" the topology of these features through three dimensional magnetohydrodynamic modelling and how their properties are being deduced through spectroscopic observations coupled to theoretical scaling laws. In particular recent interest has centred on how the observed thermal profile along loops can be employed as a tool to diagnose any localised energy input to the structure and hence constrain the presence of a particular coronal heating mechanism. The dynamic nature of loops will be highlighted and the implications of superior resolution plasma thread observations (whether spatial temporal or spectral) from future space missions (SolarB STEREO SDO and Solar Orbiter) will be discussed.

  15. RNA in the Loop

    PubMed Central

    Kung, Johnny T.Y.; Lee, Jeannie T.

    2013-01-01

    Long noncoding RNAs (lncRNAs) have been implicated in a variety of biological roles, particularly as cis or trans gene expression regulators. Reporting recently in Nature, Lai et al. (2013) show that a class of gene-activating lncRNAs combines two gene regulation paradigms: enhancer-directed chromosomal looping and RNA-mediated protein effector recruitment. PMID:23537627

  16. Closing the Loop Sampler.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…

  17. Quenching phenomena in natural circulation loop

    SciTech Connect

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  18. Flux growth utilizing the reaction between flux and crucible

    DOE PAGESBeta

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growthmore » in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.« less

  19. COLD TEST LOOP INTEGRATED TEST LOOP RESULTS

    SciTech Connect

    Abraham, TJ

    2003-10-22

    A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75 ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement

  20. Unresolved Magnetic Flux Removal Process in the Photosphere

    NASA Astrophysics Data System (ADS)

    Kubo, Masahito; Chye Low, Boon; Lites, Bruce

    The mutual loss of magnetic flux due to the apparent collision of opposite-polarity magnetic elements is called "magnetic flux cancellation" as a descriptive term. The flux cancellation is essential to understand the dissipation of magnetic flux from the solar surface. An Ω-loop submerging below the surface or a U-loop rising through the photosphere is the usual idea to explain the magnetic flux cancellation. Magnetic reconnection may be crucial for the forma-tion of these loops, especially for the submerging -loop. In fact, chromospheric and coronal activities are often observed at the cancellation sites. We investigate the evolution of 5 cancel-lation events of the opposite-polarity magnetic elements at granular scales by using accurate spectropolarimetric measurements with the Solar Optical Telescope aboard Hinode. We find that the horizontal magnetic field, which is expected in both submerging Ω-loop model and emerging U-loop model, does not appear between the canceling magnetic elements in 4 of the 5 events. The approaching magnetic elements in these events are more concentrated rather than gradually diffused, and they have nearly vertical fields even while they are in contact each other. We thus imply that the actual flux cancellation is highly time dependent event near the solar surface at scales less than a pixel of Hinode/SOT (about 200 km). At the polarity inversion line formed by the canceling magnetic elements, highly asymmetric Stokes-V profiles are observed. We confirm that such asymmetric profile can be made by the sum of the profiles at the opposite-polarity magnetic elements next to the polarity inversion line. This means that the approaching bipolar flux tubes still keep their nature within the pixel where they come in contact with each other, and thus supports the unresolved flux removal process within the pixel at the polarity inversion line.

  1. The Energy Landscape of Hyperstable LacI-DNA Loops

    NASA Astrophysics Data System (ADS)

    Kahn, Jason

    2009-03-01

    The Escherichia coli LacI protein represses transcription of the lac operon by blocking access to the promoter through binding at a promoter-proximal DNA operator. The affinity of tetrameric LacI (and therefore the repression efficiency) is enhanced by simultaneous binding to an auxiliary operator, forming a DNA loop. Hyperstable LacI-DNA loops were previously shown to be formed on DNA constructs that include a sequence-directed bend flanked by operators. Biochemical experiments showed that two such constructs (9C14 and 11C12) with different helical phasing between the operators and the DNA bend form different DNA loop shapes. The geometry and topology of the loops and the relevance of alternative conformations suggested by probable flexible linkers in LacI remain unclear. Bulk and single molecule fluorescence resonance energy transfer (SM-FRET, with D. English) experiments on a dual fluorophore-labeled 9C14-LacI loop demonstrate that it adopts a single, stable, rigid closed-form loop conformation. Here, we characterize the LacI-9C14 loop by SM-FRET as a function of inducer isopropyl-β,D-thiogalactoside (IPTG) concentration. Energy transfer measurements reveal partial but incomplete destabilization of loop formation by IPTG. Surprisingly, there is no change in the energy transfer efficiency of the remaining looped population. Models for the regulation of the lac operon often assume complete disruption of LacI-operator complexes upon inducer binding to LacI. Our work shows that even at saturating IPTG there is still a significant population of LacI-DNA complexes in a looped state, in accord with previous in vivo experiments that show incomplete induction (with J. Maher). Finally, we will report progress on characterizing the ``energy landscape'' for DNA looping upon systematic variation of the DNA linkers between the operators and the bending locus. Rod mechanics simulations (with N. Perkins) provide testable predictions on loop stability, topology, and FRET.

  2. Meisnner holes and turbulent flux structures in high-T{sub c} superconductors

    SciTech Connect

    Kabanov, V.V.; Nikitenko, V.I.; Vlasko-Vlasov, V.K. Welp, U.; Crabtree, G.W.

    1997-02-01

    The magnetic flux structure in HTSC single crystal plates during remagnetization in unidirectional and rotating fields is imaged using advanced magneto-optical techniques. it is found that bending of the flux lines is crucial for remagnetization scenario even in the case of thin plates in parallel fields. Flux bending results in formation of flux free cylinders (Meissner holes) surrounded by closed vortex loops. Essential increase of the current along the holes stipulates instabilities and appearance of unusual turbulent current and flux patterns.

  3. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  4. Gas Test Loop Functional and Technical Requirements

    SciTech Connect

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  5. Inner mappings of Bruck loops

    NASA Astrophysics Data System (ADS)

    Kreuzer, Alexander

    1998-01-01

    K-loops have their origin in the theory of sharply 2-transitive groups. In this paper a proof is given that K-loops and Bruck loops are the same. For the proof it is necessary to show that in a (left) Bruck loop the left inner mappings L(b)L(a) L(ab)[minus sign]1 are automorphisms. This paper generalizes results of Glauberman [3], Kist [8] and Kreuzer [9].

  6. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  7. Closed-loop step motor control using absolute encoders

    SciTech Connect

    Hicks, J.S.; Wright, M.C.

    1997-08-01

    A multi-axis, step motor control system was developed to accurately position and control the operation of a triple axis spectrometer at the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Triple axis spectrometers are used in neutron scattering and diffraction experiments and require highly accurate positioning. This motion control system can handle up to 16 axes of motion. Four of these axes are outfitted with 17-bit absolute encoders. These four axes are controlled with a software feedback loop that terminates the move based on real-time position information from the absolute encoders. Because the final position of the actuator is used to stop the motion of the step motors, the moves can be made accurately in spite of the large amount of mechanical backlash from a chain drive between the motors and the spectrometer arms. A modified trapezoidal profile, custom C software, and an industrial PC, were used to achieve a positioning accuracy of 0.00275 degrees of rotation. A form of active position maintenance ensures that the angles are maintained with zero error or drift.

  8. Closed-loop anesthesia.

    PubMed

    LE Guen, Morgan; Liu, Ngai; Chazot, Thierry; Fischler, Marc

    2016-05-01

    Automated anesthesia which may offer to the physician time to control hemodynamic and to supervise neurological outcome and which may offer to the patient safety and quality was until recently consider as a holy grail. But this field of research is now increasing in every component of general anesthesia (hypnosis, nociception, neuromuscular blockade) and literature describes some successful algorithms - single or multi closed-loop controller. The aim of these devices is to control a predefined target and to continuously titrate anesthetics whatever the patients' co morbidities and surgical events to reach this target. Literature contains many randomized trials comparing manual and automated anesthesia and shows feasibility and safety of this system. Automation could quickly concern other aspects of anesthesia as fluid management and this review proposes an overview of closed-loop systems in anesthesia. PMID:26554614

  9. Yang-Mills vacuum: An attempt of lattice loop calculus

    SciTech Connect

    Furmanski, W.; Kolawa, A.

    1985-01-01

    An attempt is made to derive and to solve the Schrodinger equation in the low energy region (vacuum, first excitation, etc.) of the Yang-Mills theory on the lattice. The complete orthonormal basis in the physical Hilbert space is constructed by classifying independent solutions of Gauss's law. Loops of electric flux are chosen as elementary variables. The loop space Hamiltonian is derived, an ansatz is made for the low energy wave functionals and the Schrodinger equation is solved in the (truncated) loop basis. The resulting physical picture for the Yang-Mills vacuum in the cross-over region is that of, still quite dilute, gas of fluctuating loops. Definite candidate for the confining force emerges: the repulsive non-abelian loop-loop interaction (rather weak but persistent) generates an effective external field (''external pressure'') prohibiting unbounded loop size fluctuations. The negative sign (repulsion) is universal for all compact groups. Preliminary numerical results, so far mainly of illustrative character, are presented. 8 refs., 22 figs.

  10. Verification of Loop Diagnostics

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  11. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  12. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 8. Pipe fracture indirectly induced by an earthquake. Load Combination Program, Project I final report

    SciTech Connect

    Streit, R.D.

    1981-06-01

    This volume considers the probability that a double-ended guillotine break in the primary coolant loop of a pressurized water reactor occurs simultaneously with (and is indirectly caused by) a seismic event. The pipe break is a consequence of a seismically initiated failure in a system other than the primary piping itself. Events studied that can lead to an indirectly induced pipe break include structural and mechanical failures, missile impact, pressure transients, jet impingement, fire, and explosion. Structural failures of the supports for the reactor pressure vessel, reactor coolant pump, and steam generator have the highest probability of causing a double-ended pipe break. Furthermore, we found that structural failure of the containment dome and failure of the reactor coolant pump flywheel have the highest potential for a missile-caused pipe break. Since structural failure proved to be a major factor, we developed a model to estimate the probability of structural failure; this model is based on the engineering factors of safety and seismic hazard. preliminary results indicate that the probability of a double-ended pipe break indirectly caused by a seismic event during the plant life is on the order of 10/sup -9/.

  13. A simple laboratory system for diffusive radon flux measurements

    NASA Astrophysics Data System (ADS)

    Kranrod, C.; Chanyotha, S.; Tonlublao, S.; Burnett, W. C.

    2015-05-01

    This study designed a simple, custom-made system to estimate the diffusive radon flux from solid materials (e.g., sediments, soils, building materials). Determination of the radon flux is based on the measurement of the radon activity in the air over time inside a closed loop system. For sediments, the system consists of wet sediment and water inside a gas-tight flask connected in a closed loop to a drying system and a radon analyzer (Durridge RAD7). The flux is determined based on an initial slope method in which the slope of radon activities vs. time plot during the first 12 h is evaluated. The slope is then multiplied by the total air volume and divided by the exposed sediment area to obtain the radon flux. The minimal thickness or mass of wet sediment should be about 4 cm or (equivalent to approximately 150 g of wet sediment) to obtain a reliable radon diffusive flux in this study.

  14. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  15. Moufang loops of class 2 and cubic forms

    NASA Astrophysics Data System (ADS)

    Hsu, Tim

    2000-03-01

    We classify finite Moufang loops which are centrally nilpotent of class 2 in terms of certain cubic forms, concentrating on small Frattini Moufang loops, or SFMLs, which are Moufang loops L with a central subgroup Z of order p such that L/Z is an elementary abelian p-group. (For example, SFM 2-loops are precisely the class of code loops, in the sense of Griess.)More specifically, we first show that the nuclearly-derived subloop (normal associator subloop) of a Moufang loop of class 2 has exponent dividing 6. It follows that the subloop of elements of p-power order is associative for p > 3. Next, we show that if L is an SFML, then L/Z has the structure of a vector space with a symplectic cubic form. We then show that every symplectic cubic form is realized by some SFML and that two SFMLs are isomorphic in a manner preserving the central subgroup Z if and only if their symplectic cubic spaces are isomorphic up to scalar multiple. Consequently, we also obtain an explicit characterization of isotopy in SFM 3-loops. Finally, we extend many of our results to all finite Moufang loops of class 2.

  16. Standing Kink modes in three-dimensional coronal loops

    SciTech Connect

    Pascoe, D. J.; De Moortel, I.

    2014-04-01

    So far, the straight flux tube model proposed by Edwin and Roberts is the most commonly used tool in practical coronal seismology, in particular, to infer values of the (coronal) magnetic field from observed, standing kink mode oscillations. In this paper, we compare the period predicted by this basic model with three-dimensional (3D) numerical simulations of standing kink mode oscillations, as the period is a crucial parameter in the seismological inversion to determine the magnetic field. We perform numerical simulations of standing kink modes in both straight and curved 3D coronal loops and consider excitation by internal and external drivers. The period of oscillation for the displacement of dense coronal loops is determined by the loop length and the kink speed, in agreement with the estimate based on analytical theory for straight flux tubes. For curved coronal loops embedded in a magnetic arcade and excited by an external driver, a secondary mode with a period determined by the loop length and external Alfvén speed is also present. When a low number of oscillations is considered, these two periods can result in a single, non-resolved (broad) peak in the power spectrum, particularly for low values of the density contrast for which the two periods will be relatively similar. In that case (and for this particular geometry), the presence of this additional mode would lead to ambiguous seismological estimates of the magnetic field strength.

  17. Microbial Activity and Volatile Fluxes in Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Corrigan, R. S.; Lowell, R. P.

    2013-12-01

    Understanding geographically and biologically the production or utilization of volatile chemical species such as CO2, CH4, and H2 is crucial not only for understanding hydrothermal processes but also for understanding life processes in the oceanic crust. To estimate the microbial effect on the transport of these volatiles, we consider a double-loop single pass model as shown in Figure 1 to estimate the mass fluxes shown. We then use a simple mixing formulation: C4Q4 = C3 (Q1 -Q3)+ C2Q2, where C2 is the concentration of the chemical in seawater, C3 is the average concentration of the chemical in high temperature focused flow, C4 is the expected concentration of the chemical as a result of mixing, and the relevant mass flows are as shown in Figure 1. Finally, we compare the calculated values of CO2, CH4, and H2 in diffuse flow fluids to those observed. The required data are available for both the Main Endeavour Field on the Juan de Fuca Ridge and the East Pacific Rise 9°50' N systems. In both cases we find that, although individual diffuse flow sites have observed concentrations of some elements that are greater than average, the average concentration of these volatiles is smaller in all cases than the concentration that would be expected from simple mixing. This indicates that subsurface microbes are net utilizers of these chemical constituents at the Main Endeavour Field and at EPR 9°50' N on the vent field scale. Figure 1. Schematic of a 'double-loop' single-pass model above a convecting, crystallizing, replenished AMC (not to scale). Heat transfer from the vigorously convecting, cooling, and replenished AMC across the conductive boundary layer δ drives the overlying hydrothermal system. The deep circulation represented by mass flux Q1 and black smoker temperature T3 induces shallow circulation noted by Q2. Some black smoker fluid mixes with seawater resulting in diffuse discharge Q4, T4, while the direct black smoker mass flux with temperature T3 is reduced

  18. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  19. PHOTOSPHERIC FLUX CANCELLATION AND THE BUILD-UP OF SIGMOIDAL FLUX ROPES ON THE SUN

    SciTech Connect

    Savcheva, A. S.; Van Ballegooijen, A. A.; DeLuca, E. E.; Green, L. M.

    2012-11-10

    In this study we explore the scenario of photospheric flux cancellation being the primary formation mechanism of sigmoidal flux ropes in decaying active regions. We analyze magnetogram and X-ray observations together with data-driven non-linear force-free field (NLFFF) models of observed sigmoidal regions to test this idea. We measure the total and canceled fluxes in the regions from MDI magnetograms, as well as the axial and poloidal flux content of the modeled NLFFF flux ropes for three sigmoids-2007 February, 2007 December, and 2010 February. We infer that the sum of the poloidal and axial flux in the flux ropes for most models amounts to about 60%-70% of the canceled flux and 30%-50% of the total flux in the regions. The flux measurements and the analysis of the magnetic field structure show that the sigmoids first develop a strong axial field manifested as a sheared arcade and then, as flux cancellation proceeds, form long S-shaped field lines that contribute to the poloidal flux. In addition, the dips in the S-shaped field lines are located at the sites of flux cancellation that have been identified from the MDI magnetograms. We find that the line-of-sight-integrated free energy is also concentrated at these locations for all three regions, which can be liberated in the process of eruption. Flare-associated brightenings and flare loops coincide with the location of the X-line topology that develops at the site of most vigorous flux cancellation.

  20. Transverse oscillations in coronal loops observed with TRACE

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Aschwanden, M. J.; De Pontieu, B.; Title, A. M.

    2001-12-01

    TRACE discovered transverse oscillations in coronal loops associated with a flare three years ago, and until recently only two such events were known. We have now identified a total of 17 events that trigger some form of loop oscillations. Oscillation periods are estimated to range over a factor of ~ 15, with most values between 2 and 7 min. The oscillations are excited by filament destabilizations or flares (in 6%\\ of the 255 flares inspected, ranging from about C3 to X2). Oscillations occur in loops that close within an active region, or in loops that connect an active region to a neighboring region or to a patch of strong flux in the quiet Sun. Some magnetic configurations are particularly prone to exhibit oscillations: two active regions showed two, and one region even three, distinct intervals with loop oscillations. The loop oscillations are not a resonance that builds up: oscillations in loops that are excited along their entire length are likely to be near the fundamental resonance mode because of that excitation profile, but asymmetrically excited oscillations clearly show propagating waves that are damped too quickly to build up a resonance, and some cases show multiple frequencies. We discuss evidence that all oscillating loops lie near magnetic separatrices that outline the large-scale topology of the field. Often the oscillations occur in conjunction with gradual adjustments in loop positions in response to the triggering event. We discuss the observations in the context of two models, and evaluate the contraints on coronal properties that can be deduced from them. >http://vestige.lmsal.com/TRACE/POD/TRACEoscillations.html

  1. Control and readout of current-induced magnetic flux quantization in a superconducting transformer

    NASA Astrophysics Data System (ADS)

    Kerner, C.; Hackens, B.; Golubović, D. S.; Poli, S.; Faniel, S.; Magnus, W.; Schoenmaker, W.; Bayot, V.; Maes, H.

    2009-02-01

    We demonstrate a simple and robust method for inducing and detecting changes of magnetic flux quantization in the absence of an externally applied magnetic field. In our device, an isolated ring is interconnected with two access loops via permalloy cores, forming a superconducting transformer. By applying and tuning a direct current at the first access loop, the number of flux quanta trapped in the isolated ring is modified without the aid of an external field. The flux state of the isolated ring is simply detected by recording the evolution of the critical current of the second access loop.

  2. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  3. Shortcomings of the big bounce derivation in loop quantum cosmology

    SciTech Connect

    Cianfrani, Francesco; Montani, Giovanni

    2010-07-15

    We give a prescription to define in loop quantum gravity the electric field operator related to the scale factor of a homogeneous and isotropic cosmological space-time. This procedure allows us to link the fundamental theory with its cosmological implementation. In view of the conjugate relation existing between holonomies and fluxes, the edge length and the area of surfaces in the fiducial metric satisfy a duality condition. As a consequence, the area operator has a discrete spectrum also in loop quantum cosmology. This feature makes the super-Hamiltonian regularization an open issue of the whole formulation.

  4. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    SciTech Connect

    Boyd, Ronald D.

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  5. Closed Loop Welding Controller for Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Bonaccorso, F.; Bruno, C.; Cantelli, L.; Longo, D.; Muscato, G.; Rapisarda, S.

    2011-12-01

    The aim of this paper is to investigate on the closed loop welding controller of a rapid manufacturing Shaped Metal Deposition (SMD) process. SMD was developed and patented by Rolls-Royce in order to produce mechanical parts directly from a CAD model. A simplified SMD plant has been set up in order to investigate the welding dynamics and parameters and to develop a SMD automatic controller. On the basis of the experience acquired, some basic control laws have been developed, and a closed loop controller has been implemented. This controller permits to find and to maintain the process stability condition, so that the final process results totally automatic. The control is performed adjusting the welding conditions on the basis of arc voltage information obtained from the welding machine during the deposition. The experimental results reported confirm the validity of the proposed strategy.

  6. Ekpyrotic loop quantum cosmology

    SciTech Connect

    Wilson-Ewing, Edward

    2013-08-01

    We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.

  7. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  8. The ionospheric outflow feedback loop

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Fok, M.-C.; Garcia-Sage, K.

    2014-08-01

    Following a long period of observation and investigation beginning in the early 1970s, it has been firmly established that Earth's magnetosphere is defined as much by the geogenic plasma within it as by the geomagnetic field. This plasma is not confined to the ionosphere proper, defined as the region within a few density scale heights of the F-region plasma density peak. Rather, it fills the flux tubes on which it is created, and circulates throughout the magnetosphere in a pattern driven by solar wind plasma that becomes magnetically connected to the ionosphere by reconnection through the dayside magnetopause. Under certain solar wind conditions, plasma and field energy is stored in the magnetotail rather than being smoothly recirculated back to the dayside. Its release into the downstream solar wind is produced by magnetotail disconnection of stored plasma and fields both continuously and in the form of discrete plasmoids, with associated generation of energetic Earthward-moving bursty bulk flows and injection fronts. A new generation of global circulation models is showing us that outflowing ionospheric plasmas, especially O+, load the system in a different way than the resistive F-region load of currents dissipating energy in the plasma and atmospheric neutral gas. The extended ionospheric load is reactive to the primary dissipation, forming a time-delayed feedback loop within the system. That sets up or intensifies bursty transient behaviors that would be weaker or absent if the ionosphere did not “strike back” when stimulated. Understanding this response appears to be a necessary, if not sufficient, condition for us to gain accurate predictive capability for space weather. However, full predictive understanding of outflow and incorporation into global simulations requires a clear observational and theoretical identification of the causal mechanisms of the outflows. This remains elusive and requires a dedicated mission effort.

  9. OBSERVATION OF HIGH-SPEED OUTFLOWS IN CORONAL LOOPS ASSOCIATED WITH PHOTOSPHERIC MAGNETIC FIELD EVOLUTION

    SciTech Connect

    Su, J. T.; Liu, S.; Mao, X. J.; Liu, Y.; Shen, Y. D.

    2012-11-20

    Using SDO/AIA instruments, we provide an EUV observation of two adjacent loop strands (Loops 1 and 2) with one side of their footpoints rooted in the boundaries of active region (AR) NOAA 11158 and the other side in the quiet-Sun regions. The AR footpoints of Loop 1 were located in monopolar magnetic areas and those of Loop 2 in mixed polar areas (SDO/HMI magnetograms). There were no apparent outflows found in Loop 1 in 10 hr of observations, whereas in Loop 2, the outflows were detected throughout the whole observation with an average speed of 120-150 km s{sup -1}. We find clear evidence of magnetic reconnections occurring in the AR footpoints of Loop 2 (the opposite magnetic polarities came close and then a part of them disappeared) and magnetic flux dispersal in the quiet-Sun footpoints (a patch of positive polarities decayed with time). Furthermore, with Hinode/SOT observations, there were no significant Ca II H brightenings detected at the loop footpoints of Loop 2 at the chromospheric heights in response to those of the AIA 171 A and 304 A channels when four strong outflow events took place in the loops, which seem to differ from the conclusions of previous studies. In other studies, the rapid coronal outflows along the coronal loops were found to originate from the chromosphere through transient events (e.g., type II spicules).

  10. HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS

    SciTech Connect

    Qiu Jiong; Liu Wenjuan; Longcope, Dana W.

    2012-06-20

    We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

  11. Intermittent Coronal Loop Oscillations by Random Energy Releases

    NASA Astrophysics Data System (ADS)

    Mendoza-Briceño, César A.; Erdélyi, Robert

    2006-09-01

    High-resolution observations by the SOHO and TRACE spacecraft have confirmed the existence of coronal loop oscillations and waves. In a recent work, Mendoza-Briceño et al. studied the heating response of coronal plasma to energy pulses randomly distributed in time and space along coronal loops. In this paper we focus on the oscillatory patterns and other features, such as cool gas blobs traveling along the loop, during the evolution of spatiotemporal randomly heated flux tubes in the corona. The nature of these oscillatory patterns is investigated using wavelet analysis. Periodic features, such as wave packets, with periods of 150-220, 500-600, and 800-1000 s are found. It is also found that the periods increase with the loop length and decrease with the length of the loop segments along which the pulses are injected. On the other hand, the randomly driven intermittent cool plasma blobs that propagate from one footpoint to the other are analyzed. Although plenty of coronal loop oscillations are detected by the cohort of the current high-resolution satellites, there are more controversial observational evidences about the predicted cold plasma blobs.

  12. Buoyant Magnetic Loops Generated by Global Convective Dynamo Action

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas J.; Brown, Benjamin P.; Sacha Brun, A.; Miesch, Mark S.; Toomre, Juri

    2014-02-01

    Our global 3D simulations of convection and dynamo action in a Sun-like star reveal that persistent wreaths of strong magnetism can be built within the bulk of the convention zone. Here we examine the characteristics of buoyant magnetic structures that are self-consistently created by dynamo action and turbulent convective motions in a simulation with solar stratification but rotating at three times the current solar rate. These buoyant loops originate within sections of the magnetic wreaths in which turbulent flows amplify the fields to much higher values than is possible through laminar processes. These amplified portions can rise through the convective layer by a combination of magnetic buoyancy and advection by convective giant cells, forming buoyant loops. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader in extent. We show that the strength of the axisymmetric toroidal field is not a good predictor of the production rate for buoyant loops or the amount of magnetic flux in the loops that are produced.

  13. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  14. Modeling of compact loop antennas

    SciTech Connect

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  15. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  16. Heating Profiles of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Plowman, Joseph; Kankelborg, Charles C.; Martens, Petrus C.

    2016-05-01

    We analyze the temperature and density profiles of coronal loops, as a function of their length, using data from SDO/AIA and Hinode/EIS. The analysis considers the location of the heating along the loop's length, and we conduct a more throrough investigation of our previous preliminary result that heating is concentrated near the loop footpoints. The work now features a larger selection of coronal loops, compared to our previous presentations, and examines their scale-height temperatures to ascertain the extent to which they are hydrostatic.

  17. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  18. Unstable anisotropic loop quantum cosmology

    SciTech Connect

    Nelson, William; Sakellariadou, Mairi

    2009-09-15

    We study stability conditions of the full Hamiltonian constraint equation describing the quantum dynamics of the diagonal Bianchi I model in the context of loop quantum cosmology. Our analysis has shown robust evidence of an instability in the explicit implementation of the difference equation, implying important consequences for the correspondence between the full loop quantum gravity theory and loop quantum cosmology. As a result, one may question the choice of the quantization approach, the model of lattice refinement, and/or the role of the ambiguity parameters; all these should, in principle, be dictated by the full loop quantum gravity theory.

  19. Quantifying the dynamic evolution of individual arched magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Bellan, P. M.

    2012-12-01

    Highly dynamic arched ‘loops’ of plasma were created in the laboratory with a magnetized plasma gun. The magnetic structure of the loops was found to be consistent with that of an expanding flux tube subject to a kink instability. High-speed flows were found to transport plasma along the loop axis, from both footpoints toward the apex of the arched loop. Two complementary MHD models were used to explain the expansion and axial flows, both of which scale in proportion to a ‘toroidal Alfven speed’.

  20. Flux growth utilizing the reaction between flux and crucible

    SciTech Connect

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growth in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.

  1. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…

  2. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  3. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  4. Dynamic PID loop control

    SciTech Connect

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  5. Uranyl Nitrate Flow Loop

    SciTech Connect

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study

  6. Loop-the-Loop: An Easy Experiment, A Challenging Explanation

    NASA Astrophysics Data System (ADS)

    Asavapibhop, B.; Suwonjandee, N.

    2010-07-01

    A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.

  7. Intercomparison of numerical models of flaring coronal loops

    NASA Technical Reports Server (NTRS)

    Kopp, R. A.; Fisher, G. H.; Macneice, P.; Mcwhirter, R. W. P.; Peres, G.

    1986-01-01

    The proposed Benchmark Problem consists of an infinitesimal magnetic flux tube containing a low-beta plasma. The field strength is assumed to be so large that the plasma can move only along the flux tube, whose shape remains invariant with time (i.e., the fluid motion is essentially one-dimensional). The flux tube cross section is taken to be constant over its entire length. In planar view the flux tube has a semi-circular shape, symmetric about its midpoint s = s sub max and intersecting the chromosphere-corona interface (CCI) perpendicularly at each foot point. The arc length from the loop apex to the CCI is 10,000 km. The flux tube extends an additional 2000 km below the CCI to include the chromosphere, which initially has a uniform temperature of 8000 K. The temperature at the top of the loop was fixed initially at 2 X 1 million K. The plasma is assumed to be a perfect gas (gamma = 5/3), consisting of pure hydrogen which is considered to be fully ionized at all temperatures. For simplicity, moreover, the electron and ion temperatures are taken to be everywhere equal at all times (corresponding to an artificially enhanced electron-ion collisional coupling). While there was more-or-less unanimous agreement as to certain global properties of the system behavior (peak temperature reached, thermal-wave time scales, etc.), no two groups could claim satisfactory accord when a more detailed comparison of solutions was attempted.

  8. Shrinking Loops Observations for the 2008 April 9 Flare

    NASA Astrophysics Data System (ADS)

    Savage, S. L.; McKenzie, D. E.; Reeves, K. K.; Forbes, T. G.

    2012-08-01

    Supra-arcade downflows (SADs) have been observed with Yohkoh/SXT (soft X-rays (SXR)), TRACE (extreme ultra-violet (EUV)), SoHO/LASCO (white light), SoHO/SUMER (EUV spectra), and Hinode/XRT (SXR). Characteristics such as low emissivity and trajectories which slow as they reach the top of the arcade are consistent with post-reconnection magnetic flux tubes. The magnetic flux within the tubes provides pressure against filling with plasma. As with the standard model of reconnection, the tubes retract from a reconnection site high in the corona until they reach a more potential magnetic configuration. Viewed from a perpendicular angle, SADs should appear as shrinking loops rather than downflowing voids. We will present observations of supra-arcade downflowing loops (SADLs) and show that their speeds and decelerations are consistent with those determined for SADs.

  9. Loops and Self-Reference in the Construction of Dictionaries

    NASA Astrophysics Data System (ADS)

    Levary, David; Eckmann, Jean-Pierre; Moses, Elisha; Tlusty, Tsvi

    2012-07-01

    Dictionaries link a given word to a set of alternative words (the definition) which in turn point to further descendants. Iterating through definitions in this way, one typically finds that definitions loop back upon themselves. We demonstrate that such definitional loops are created in order to introduce new concepts into a language. In contrast to the expectations for a random lexical network, in graphs of the dictionary, meaningful loops are quite short, although they are often linked to form larger, strongly connected components. These components are found to represent distinct semantic ideas. This observation can be quantified by a singular value decomposition, which uncovers a set of conceptual relationships arising in the global structure of the dictionary. Finally, we use etymological data to show that elements of loops tend to be added to the English lexicon simultaneously and incorporate our results into a simple model for language evolution that falls within the “rich-get-richer” class of network growth.

  10. The Evolution of Transition Region Loops Using IRIS and AIA

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; DePontieu, Bart

    2014-01-01

    Over the past 50 years, the model for the structure of the solar transition region has evolved from a simple transition layer between the cooler chromosphere to the hotter corona to a complex and diverse region that is dominated by complete loops that never reach coronal temperatures. The IRIS slitjaw images show many complete transition region loops. Several of the "coronal" channels in the SDO AIA instrument include contributions from weak transition region lines. In this work, we combine slitjaw images from IRIS with these channels to determine the evolution of the loops. We develop a simple model for the temperature and density evolution of the loops that can explain the simultaneous observations. Finally, we estimate the percentage of AIA emission that originates in the transition region.

  11. Superstring one-loop and gravitino contributions to planckian scattering

    NASA Astrophysics Data System (ADS)

    Bellini, Alessandro; Ademollo, Marco; Ciafaloni, Marcello

    1993-03-01

    Corrections to the semiclassical approximation in nearly forward planckian energy collisions are reconsidered. Starting from the one-loop superstring amplitude, we are able to disentangle the first subleading high-energy contribution at large impact parameters, and we thus directly compute the one-loop correction to the superstring eikonal. By comparing this result with previous ones by Amati, Ciafaloni and Veneziano (ACV) for pure gravity, we identify one-loop gravitino contributions which agree with previous results by Lipatov. We finally argue, on the basis of analyticity and unitarity, that gravitinos do not contribute at all the large-distance two-loop ACV correction, which thus acquires a universal "classical" interpretation.

  12. Magnetic flux cancellation and Doppler shifts in flaring active regions

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga; Petrie, Gordon

    2016-05-01

    Flux cancellation plays an important role in some theories of solar eruptions. The mechanism of flux cancellation is suggested by many models to be a necessary condition of flare initiation as a part of slow reconnection processes in the lower atmosphere. In our earlier work we analyzed flux cancellation events during major flares using GONG line-of-sight magnetograms. In this work we use vector magnetic field data from SDO/HMI for better interpretation of the longitudinal field changes. We also compute Doppler velocity shifts at the cancellation sites in attempt to distinguish between the three physical processes that could stand behind flux removal from the photosphere: submergence of U-shaped loops, emergence of Ω-shaped loops and magnetic reconnection.

  13. Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Final Subcontract Report, 23 April 2003 - 30 September 2006

    SciTech Connect

    Ellison, T.

    2007-05-01

    This report summarizes Energy Conversion Devices' diagnostic systems that were developed in this program, as well as ECD's other major accomplishments. This report concentrates on work carried out in the final (third) phase of this program, beginning in the fall of 2004 and ending in the fall of 2006. ECD has developed a comprehensive in-situ diagnostic system that: Reduces the time between deposition in the a-Si machine and device characterization from about 200 h to about 1 h; The Photovoltaic Capacitive Diagnostic systems measure the open-circuit voltage and charging rate (a measure of the short-circuit current) and intra-cell series resistance for each cell in the triple-junction device prior to deposition of the top conductive-oxide coating in a subsequent deposition machine. These systems operate with an rms precision of about 0.03% and have operated for almost 4 years with no need for servicing of the electronics or for calibration; Spectrometers are used to measure the ZnO thickness of the backreflector, a Si thickness, and top conductive-oxide, coatings.

  14. Quantum black holes in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier

    2016-03-01

    In this contribution I will comment on the last advances in relation to the loop quantization of spherically symmetric spacetimes. I will briefly summarize the vacuum case, where the physical states and observables are known explicitly. The main physical consequences are i) a genuine discretization of the geometry and ii) singularity resolution. Afterwards I will consider the coupling with a thin spherically symmetric null-dust shell. This is one of the simplest collapse scenarios with nontrivial dynamics. I will provide a representation for the scalar constraint that is consistent with the Dirac quantization approach, and the quantum observables of the model. Finally, I comment on the possible physical consequences of this model.

  15. Brief Review on Black Hole Loop Quantization

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier

    2016-06-01

    Here, we present a review about the quantization of spherically-symmetric spacetimes adopting loop quantum gravity techniques. Several models that have been studied so far share similar properties: the resolution of the classical singularity and some of them an intrinsic discretization of the geometry. We also explain the extension to Reissner---Nordstr\\"om black holes. Besides, we review how quantum test fields on these quantum geometries allow us to study phenomena, like the Casimir effect or Hawking radiation. Finally, we briefly describe a recent proposal that incorporates spherically-symmetric matter, discussing its relevance for the understanding of black hole evolution.

  16. RCD+: Fast loop modeling server

    PubMed Central

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-01-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  17. RCD+: Fast loop modeling server.

    PubMed

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  18. Simulations of Solar Jets Confined by Coronal Loops

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; DeVore, C. R.

    2016-03-01

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.

  19. Wilson Loop Diagrams and Positroids

    NASA Astrophysics Data System (ADS)

    Agarwala, Susama; Marin-Amat, Eloi

    2016-07-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  20. Higher dimensional loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  1. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  2. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  3. Formation of Torus-Unstable Flux Ropes and Electric Currents in Erupting Sigmoids

    NASA Astrophysics Data System (ADS)

    Aulanier, G.; Török, T.; Démoulin, P.; DeLuca, E. E.

    2010-01-01

    brightens due to the formation of a vertical current layer in the wake of the erupting flux rope. Slip-running reconnection in this layer yields the formation of flare loops. A rapid decrease of currents due to field line expansion, together with the increase of narrow currents in the reconnecting QSL, yields the sigmoid hooks to thin in the early stages of the eruption. Finally, a slightly rotating erupting loop-like feature (ELLF) detaches from the center of the sigmoid. Most of this ELLF is not associated with the erupting flux rope, but with a current shell that develops within expanding field lines above the rope. Only the short, curved end of the ELLF corresponds to a part of the flux rope. We argue that the features found in the simulation are generic for the formation and eruption of soft X-ray sigmoids.

  4. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  5. Study of Fluid Cooling Loop System in Chinese Manned Spacecraft

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Xu, Jiwan; Fan, Hanlin; Huang, Jiarong

    2002-01-01

    change. To solve the questions, a fluid cooling loop system must be applied to Chinese manned spacecraft besides other conventional thermal control methods, such as thermal control coatings, multiplayer insulation blankets, heat pipes, electro-heating adjustment temperature devices, and so on. The paper will introduce the thermal design of inner and outer fluid loop including their constitution and fundamental, etc. The capability of heat transportation and the accuracy of control temperature for the fluid loop will be evaluated and analyzed. To insure the air temperature of sealed cabins within 21+/-4, the inlet liquid temperature of condensing heat exchanger needs to be controlled within 9+/-2. To insure this, the inlet liquid temperature of middle heat exchanger needs to be controlled within 8+/-1.8. The inlet temperature point is controlled by a subsidiary loop adjusting: when the computer receives feedbacks of the deviation and the variety rate of deviation from the controlled temperature point. It drives the temperature control valve to adjust the flow flux distribution between the main loop through radiator and the subsidiary loop which isn't through radiator to control the temperature of the mixed fluid within 8+/-1.8. The paper will also introduce thermal designs of key parts in the cooling loop, such as space radiators, heat exchangers and cooling plates. Thermal simulated tests on the ground and flight tests have been performed to verify correctness of thermal designs. rational and the loop system works order. It realizes the circulation of absorbing heat dissipation to the loop and transferring it to radiator then radiating it to space. (2) loop control system controls inlet temperature of middle heat exchanger within 8+/-1.8 under various thermal cases. Thermal design of the middle heat exchanger insures inlet temperature of condensing heat within 9+/-2. Thereby, the air temperature of sealed cabins is controlled within about 21+/-4 accurately. (3) The

  6. On the structure of solar and stellar coronae - Loops and loop heat transport

    NASA Technical Reports Server (NTRS)

    Litwin, Christof; Rosner, Robert

    1993-01-01

    We discuss the principal constraints on mechanisms for structuring and heating the outer atmospheres - the coronae - of stars. We argue that the essential cause of highly localized heating in the coronae of stars like the sun is the spatially intermittent nature of stellar surface magnetic fields, and that the spatial scale of the resulting coronal structures is related to the spatial structure of the photospheric fields. We show that significant constraints on coronal heating mechanisms derive from the observed variations in coronal emission, and, in addition, show that the observed structuring perpendicular to coronal magnetic fields imposes severe constraints on mechanisms for heat dispersal in the low-beta atmosphere. In particular, we find that most of commonly considered mechanisms for heat dispersal, such as anomalous diffusion due to plasma turbulence or magnetic field line stochasticity, are much too slow to account for the observed rapid heating of coronal loops. The most plausible mechanism appears to be reconnection at the interface between two adjacent coronal flux bundles. Based on a model invoking hyperresistivity, we show that such a mechanism naturally leads to dominance of isolated single bright coronal loops and to bright coronal plasma structures whose spatial scale transverse to the local magnetic field is comparable to observed dimensions of coronal X-ray loops.

  7. Cosmic string formation by flux trapping

    SciTech Connect

    Blanco-Pillado, Jose J.; Olum, Ken D.; Vilenkin, Alexander

    2007-11-15

    We study the formation of cosmic strings by confining a stochastic magnetic field into flux tubes in a numerical simulation. We use overdamped evolution in a potential that is minimized when the flux through each face in the simulation lattice is a multiple of the fundamental flux quantum. When the typical number of flux quanta through a correlation-length-sized region is initially about 1, we find a string network similar to that generated by the Kibble-Zurek mechanism. With larger initial flux, the loop distribution and the Brownian shape of the infinite strings remain unchanged, but the fraction of length in infinite strings is increased. A 2D slice of the network exhibits bundles of strings pointing in the same direction, as in earlier 2D simulations. We find, however, that strings belonging to the same bundle do not stay together in 3D for much longer than the correlation length. As the initial flux per correlation length is decreased, there is a point at which infinite strings disappear, as in the Hagedorn transition.

  8. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    SciTech Connect

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-08-20

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma {beta} changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  9. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a

  10. BAYESIAN MAGNETOHYDRODYNAMIC SEISMOLOGY OF CORONAL LOOPS

    SciTech Connect

    Arregui, I.; Asensio Ramos, A. E-mail: aasensio@iac.es

    2011-10-10

    We perform a Bayesian parameter inference in the context of resonantly damped transverse coronal loop oscillations. The forward problem is solved in terms of parametric results for kink waves in one-dimensional flux tubes in the thin tube and thin boundary approximations. For the inverse problem, we adopt a Bayesian approach to infer the most probable values of the relevant parameters, for given observed periods and damping times, and to extract their confidence levels. The posterior probability distribution functions are obtained by means of Markov Chain Monte Carlo simulations, incorporating observed uncertainties in a consistent manner. We find well-localized solutions in the posterior probability distribution functions for two of the three parameters of interest, namely the Alfven travel time and the transverse inhomogeneity length scale. The obtained estimates for the Alfven travel time are consistent with previous inversion results, but the method enables us to additionally constrain the transverse inhomogeneity length scale and to estimate real error bars for each parameter. When observational estimates for the density contrast are used, the method enables us to fully constrain the three parameters of interest. These results can serve to improve our current estimates of unknown physical parameters in coronal loops and to test the assumed theoretical model.

  11. Flux-vector splitting for the 1990s

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1991-01-01

    The development of flux-vector splitting through the 1970s and 1980s is reviewed. Attention is given to the diffusive nature of flux-vector splitting, which makes it an undesirable technique for approximating the inviscid fluxes in a Navier-Stokes solver. Several proposed improvements, including a brand new one, are discussed and illustrated by a simple, yet revealing, numerical test case. Finally, an outlook for flux-vector splitting in the 1990s is presented.

  12. Profiles of heating in turbulent coronal magnetic loops

    NASA Astrophysics Data System (ADS)

    Buchlin, E.; Cargill, P. J.; Bradshaw, S. J.; Velli, M.

    2007-07-01

    Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this question in model loops with MHD turbulence and a profile of density and/or magnetic field along the loop. Methods: We use the Shell-Atm MHD turbulent heating model described in Buchlin & Velli (2007, ApJ, 662, 701), with a static mass density stratification obtained by the HydRad model (Bradshaw & Mason 2003, A&A, 401, 699). This assumes the absence of any flow or heat conduction subsequent to the dynamic heating. Results: The average profile of heating is quasi-uniform, unless there is an expansion of the flux tube (non-uniform axial magnetic field) or the variation of the kinetic and magnetic diffusion coefficients with temperature is taken into account: in the first case the heating is enhanced at footpoints, whereas in the second case it is enhanced where the dominant diffusion coefficient is enhanced. Conclusions: These simulations shed light on the consequences on heating profiles of the complex interactions between physical effects involved in a non-uniform turbulent coronal loop.

  13. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  14. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-08-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  15. Digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Cliff, R. A. (Inventor)

    1975-01-01

    An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.

  16. Macroscopic entanglement between a Bose Einstein condensate and a superconducting loop.

    PubMed

    Singh, Mandip

    2009-02-16

    We theoretically study macroscopic entanglement between a magnetically trapped Bose-Einstein condensate and a superconducting loop. We treat the superconducting loop in a quantum superposition of two different flux states coupling with the magnetic trap to generate macroscopic entanglement. The scheme also provides a platform to investigate interferometry with an entangled Bose Einstein condensate and to explore physics at the quantum-classical interface. PMID:19219163

  17. Three-dimensional magnetohydrodynamics of the emerging magnetic flux in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Matsumoto, R.; Tajima, T.; Shibata, K.; Kaisig, M.

    1993-01-01

    The nonlinear evolution of an emerging magnetic flux tube or sheet in the solar atmosphere is studied through 3D MHD simulations. In the initial state, a horizontal magnetic flux sheet or tube is assumed to be embedded at the bottom of MHD two isothermal gas layers, which approximate the solar photosphere/chromosphere and the corona. The magnetic flux sheet or tube is unstable against the undular mode of the magnetic buoyancy instability. The magnetic loop rises due to the linear and then later nonlinear instabilities caused by the buoyancy enhanced by precipitating the gas along magnetic field lines. We find by 3D simulation that during the ascendance of loops the bundle of flux tubes or even the flux sheet develops into dense gas filaments pinched between magnetic loops. The interchange modes help produce a fine fiber flux structure perpendicular to the magnetic field direction in the linear stage, while the undular modes determine the overall buoyant loop structure. The expansion of such a bundle of magnetic loops follows the self-similar behavior observed in 2D cases studied earlier. Our study finds the threshold flux for arch filament system (AFS) formation to be about 0.3 x 10 exp 20 Mx.

  18. SDO Sees Brightening Magnetic Loops

    NASA Video Gallery

    Two active regions sprouted arches of bundled magnetic loops in this video from NASA’s Solar Dynamics Observatory taken on Nov. 11-12, 2015. Charged particles spin along the magnetic field, tracing...

  19. Automatic blocking of nested loops

    NASA Technical Reports Server (NTRS)

    Schreiber, Robert; Dongarra, Jack J.

    1990-01-01

    Blocked algorithms have much better properties of data locality and therefore can be much more efficient than ordinary algorithms when a memory hierarchy is involved. On the other hand, they are very difficult to write and to tune for particular machines. The reorganization is considered of nested loops through the use of known program transformations in order to create blocked algorithms automatically. The program transformations used are strip mining, loop interchange, and a variant of loop skewing in which invertible linear transformations (with integer coordinates) of the loop indices are allowed. Some problems are solved concerning the optimal application of these transformations. It is shown, in a very general setting, how to choose a nearly optimal set of transformed indices. It is then shown, in one particular but rather frequently occurring situation, how to choose an optimal set of block sizes.

  20. SDO Sees Flourishing Magnetic Loops

    NASA Video Gallery

    A bright set of loops near the edge of the sun’s face grew and shifted quickly after the magnetic field was disrupted by a small eruption on Nov. 25, 2015. Charged particles emitting light in extre...

  1. Loop Electrosurgical Excision Procedure (LEEP)

    MedlinePlus

    ... that acts like a scalpel (surgical knife). An electric current is passed through the loop, which cuts away ... A procedure in which an instrument works with electric current to destroy tissue. Local Anesthesia: The use of ...

  2. Observations of loops and prominences

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.

    1994-01-01

    We review recent observations by the Yohkoh-SXT (Soft X-ray Telescope) in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (greater than or equal to 32 s full-disk and greater than or equal to 2 s partial-frame images), high spatial resolution (greater than or equal to 2.5 arcsec pixels), high sensitivity (EM less than or equal to 10(exp 42) cm(exp -3)), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant Gamma's are the exception, not the rule, implying the presence of widespread currents in the corona. All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly

  3. Dynamical behaviour in coronal loops

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1986-01-01

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  4. The Coronal Loop Inventory Project

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S. S.; Paul, K. S.

    2015-11-01

    Most coronal physicists now seem to agree that loops are composed of tangled magnetic strands and have both isothermal and multithermal cross-field temperature distributions. As yet, however, there is no information on the relative importance of each of these categories, and we do not know how common one is with respect to the other. In this paper, we investigate these temperature properties for all loop segments visible in the 171-Å image of AR 11294, which was observed by the Atmospheric Imaging Assembly (AIA) on 2011 September 15. Our analysis revealed 19 loop segments, but only 2 of these were clearly isothermal. Six additional segments were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within measurement uncertainties. One loop had both isothermal transition region and multithermal coronal solutions. Another five loop segments require multithermal plasma to reproduce the AIA observations. The five remaining loop segments could not be separated reliably from the background in the crucial non-171-Å AIA images required for temperature analysis. We hope that the direction of coronal heating models and the efforts modelers spend on various heating scenarios will be influenced by these results.

  5. The Structure of Coronal Loops

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    2009-01-01

    It is widely believed that the simple coronal loops observed by XUV imagers, such as EIT, TRACE, or XRT, actually have a complex internal structure consisting of many (perhaps hundreds) of unresolved, interwoven "strands". According to the nanoflare model, photospheric motions tangle the strands, causing them to reconnect and release the energy required to produce the observed loop plasma. Although the strands, themselves, are unresolved by present-generation imagers, there is compelling evidence for their existence and for the nanoflare model from analysis of loop intensities and temporal evolution. A problem with this scenario is that, although reconnection can eliminate some of the strand tangles, it cannot destroy helicity, which should eventually build up to observable scales. we consider, therefore, the injection and evolution of helicity by the nanoflare process and its implications for the observed structure of loops and the large-scale corona. we argue that helicity does survive and build up to observable levels, but on spatial and temporal scales larger than those of coronal loops. we discuss the implications of these results for coronal loops and the corona, in general .

  6. Doppler displacements in kink MHD waves in solar flux tubes

    NASA Astrophysics Data System (ADS)

    Goossens, Marcel; Van Doorsselaere, Tom; Terradas, Jaume; Verth, Gary; Soler, Roberto

    Doppler displacements in kink MHD waves in solar flux tubes Presenting author: M. Goossens Co-authors: R. Soler, J. Terradas, T. Van Doorsselaere, G. Verth The standard interpretation of the transverse MHD waves observed in the solar atmosphere is that they are non-axisymmetric kink m=1) waves on magnetic flux tubes. This interpretation is based on the fact that axisymmetric and non-axisymmetric fluting waves do not displace the axis of the loop and the loop as a whole while kink waves indeed do so. A uniform transverse motion produces a Doppler displacement that is constant across the magnetic flux tube. A recent development is the observation of Doppler displacements that vary across the loop. The aim of the present contribution is to show that spatial variations of the Doppler displacements across the loop can be caused by kink waves. The motion associated with a kink wave is purely transverse only when the flux tube is uniform and sufficiently thin. Only in that case do the radial and azimuthal components of displacement have the same amplitude and is the azimuthal component a quarter of a period ahead of the radial component. This results in a unidirectional or transverse displacement. When the flux tube is non-uniform and has a non-zero radius the conditions for the generation of a purely transverse motion are not any longer met. In that case the motion in a kink wave is the sum of a transverse motion and a non-axisymmetric rotational motion that depends on the azimuthal angle. It can produce complicated variations of the Doppler displacement across the loop. I shall discuss the various cases of possible Doppler displacenents that can occur depending on the relative sizes of the amplitudes of the radial and azimuthal components of the displacement in the kink wave and on the orientation of the line of sight.

  7. Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-icing of Wind Turbines Using Distributed Heating

    NASA Astrophysics Data System (ADS)

    Shajiee, Shervin

    numerically that high intensity pulsed thermal actuation slightly improves ice melting but relatively increases the amount of applied thermal stress to the blade structure. This thesis includes: (1) A literature study on different methods of ice detection and a review on passive and active anti/de-icing techniques on wind turbines, (2) Development of an optical ice sensing method for direct detection of ice on the blade including experimental results, (3) Description of an aero/thermodynamic model, which predicts how much heat flux is needed locally for de-icing under variable atmospheric conditions, (4) Experimental results showing the proof-of-concept of closed-loop de-icing using distributed optical ice sensing, distributed temperature sensing, and resistive heating, and (5) Numerical modeling of ice melting on a blade for different distributed heater layouts and geometries in order to optimize thermal actuation strategy, improve de-icing efficiency, and finally (6) Development of a computational framework for closed-loop active de-icing using distributed localized heating and sensing.

  8. One-loop soft theorems via dual superconformal symmetry

    NASA Astrophysics Data System (ADS)

    Brandhuber, Andreas; Hughes, Edward; Spence, Bill; Travaglini, Gabriele

    2016-03-01

    We study soft theorems at one loop in planar {N}=4 super Yang-Mills theory through finite order in the infrared regulator and to subleading order in the soft parameter δ. In particular, we derive a universal constraint from dual superconformal symmetry, which we use to bootstrap subleading log δ behaviour. Moreover, we determine the complete infrared-finite subleading soft contribution of n-point MHV amplitudes using momentum twistors. Finally, we compute the subleading log δ behaviour of one-loop NMHV ratio functions at six and seven points, finding that universality holds within but not between helicity sectors.

  9. FINAL REPORT: EDDY-COVARIANCE FLUX TOWER AND TRACER TECHNOLOGY SUPPORT FOR THE UNIVERSITY OF GEORGIA PROPOSAL: FROM TOWER TO PIXEL: INTEGRATION OF PATCH-SIZE NEE USING EXPERIMENTAL MODELING FOOTPRINT ANALYSIS.

    SciTech Connect

    LEWIN,K.F.; NAGY, J.; WATSON, T.B.

    2007-09-01

    Brookhaven National Laboratory has been funded since October of 2000 to provide assistance to the University of Georgia in conducting footprint analyses of individual towers based on meteorology and trace gas measurements. Brookhaven researchers conducted air flow measurements using perfluorocarbon tracers and meteorological instrumentation for three experimental campaigns at an AmeriFlux research site maintained by Dr. Monique Leclerc near Gainesville, FL. In addition, BNL provided assistance with remote data collection and distribution from remote field sites operated by Dr. John Hom of the US Forest Service in the Pine Barrens of New Jersey and at FACE research sites in North Carolina and Wisconsin.

  10. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  11. Fabrication techniques for superconducting readout loops

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    Procedures for the fabrication of superconducting readout loops out of niobium on glass substrates were developed. A computer program for an existing fabrication system was developed. Both positive and negative resist procedures for the production of the readout loops were investigated. Methods used to produce satisfactory loops are described and the various parameters affecting the performance of the loops are analyzed.

  12. Filter for third order phase locked loops

    NASA Technical Reports Server (NTRS)

    Crow, R. B.; Tausworthe, R. C. (Inventor)

    1973-01-01

    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.

  13. Evidence for flux ropes in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    1990-01-01

    Magnetic field reconnection is a fundamental process that occurs in the magnetotail during geomagnetic substorms. Some 2D reconnection models predict the formation of a plasmoid, or closed loop of magnetic field lines, in the noon-midnight meridional plane at those times. When the 3D magnetotail magnetic field is considered, it becomes clear that reconnection produces a flux rope with an axis transverse to the earth-sun line. Three signatures mark both 2D plasmoids and 3D flux ropes: (1) a bipolar magnetic field signature, (2) tailward flow of a hot plasma, and (3) convecting isotropic energetic particle distributions. Plasmoids and flux ropes may be distinguished by (4) the axial magnetic field that only flux ropes possess. All four signatures have been identified in near-earth, middle, and distant magnetotail observations, but their interpretation is disputed. Thus, the existence of magnetotail flux ropes remains a controversial subject.

  14. Simulating Idealized Flux Ropes with the Flux Rope Insertion Method: A Parameter Space Exploration of Currents and Topology

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia; Tassev, Svetlin; DeLuca, Edward E.; Gibson, Sarah; Fan, Yuhong

    2016-05-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital to the understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from aFan & Gibson emerging flux rope simulation. The goal is to study the effect of of different input flux rope parameters on the geometry of currents, field line connectivity, and topology, in a controled setting. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. We create synthetic images of these flux ropes in AIA passbands with the FORWARD forward-fitting code. The present parametric study will later be used to get a better handle on the initial condition for magnetofrictional and MHD simulations of observed regions containing flux ropes, such as sigmoids and polar-crown filaments.

  15. Analysis of and mathematical model insight into loop formation in colonoscopy.

    PubMed

    Cheng, Wu Bin; Moser, Michael A J; Kanagaratnam, Sivaruban; Zhang, Wen Jun

    2012-11-01

    The colonoscope is an important tool in the diagnosis and management of diseases of the colon; yet its design has not changed appreciably since it was first introduced to clinical practice 40 years ago. One of the ongoing challenges with this device is that the natural shape of the colon predisposes to loop formation by the scope during the examination. The result of this looping is that further insertion of the scope results in a larger loop size without any advancement of the tip of the scope. Looping thus causes pain in the patient, risks perforation of the colon, and results in incomplete examinations. In this article, loop formation is analyzed in terms of frictional force state and Kirchhoff's slender rod model in order to better understand the generic principle of loop formation. Next, a mathematical model of deformation of the colon with respect to external manipulation involving a number of variables involved in loop formation is constructed. Finally, a model of the motion of the scope relative to the colon when looping occurs is presented. The model has clinical significance for prediction of advancement of the tip of the scope when looping occurs. The mathematical model was then validated and verified using data available from the literature. Our models are an important starting point in the development of a novel device to overcome loop formation and result in increased patient comfort and an improved completion rate for colonoscopy procedures. PMID:23185956

  16. Magnetic Flux Leakage: a Benchmark Problem

    NASA Astrophysics Data System (ADS)

    Etcheverry, J. I.; Sánchez, G. A.; Bonadeo, N.

    2011-06-01

    The magnetic flux leaked by artificial notches machined by EDM is measured for two different rectangular steel plates. The measurements were performed for different field intensities, different liftoffs, and both sides, simultaneously recording the three components of the magnetic field. Attention was paid to the accurate measurement of the liftoff, and to make the magnetic history of the material as predictable as possible. This was achieved by measuring for decreasing magnetic excitations, starting from saturation. The descending branch of the major loop is measured and reported, to allow for a detailed comparison against numerical experiments.

  17. Gluing hexagons at three loops

    NASA Astrophysics Data System (ADS)

    Basso, Benjamin; Goncalves, Vasco; Komatsu, Shota; Vieira, Pedro

    2016-06-01

    We perform extensive three-loop tests of the hexagon bootstrap approach for structure constants in planar N = 4 SYM theory. We focus on correlators involving two BPS operators and one non-BPS operator in the so-called SL (2) sector. At three loops, such correlators receive wrapping corrections from mirror excitations flowing in either the adjacent or the opposing channel. Amusingly, we find that the first type of correction coincides exactly with the leading wrapping correction for the spectrum (divided by the one-loop anomalous dimension). We develop an efficient method for computing the second type of correction for operators with any spin. The results are in perfect agreement with the recently obtained three-loop perturbative data by Chicherin, Drummond, Heslop, Sokatchev [2] and by Eden [3]. We also derive the integrand for general multi-particle wrapping corrections, which turns out to take a remarkably simple form. As an application we estimate the loop order at which various new physical effects are expected to kick-in.

  18. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  19. Return flux experiment

    NASA Technical Reports Server (NTRS)

    Tveekrem, June L.

    1992-01-01

    All spacecraft emit molecules via outgassing, thruster plumes, vents, etc. The return flux is the portion of those molecules that scatter from the ambient atmosphere and return to the spacecraft. Return flux allows critical spacecraft surfaces to become contaminated even when there is no direct line of sight between the contamination source and the critical surface. Data from the Long Duration Exposure Facility (LDEF) show that contamination of LDEF surfaces could not have come entirely from direct flux. The data suggest significant return flux. Several computer models have been developed to simulate return flux, but the predictions have never been verified in orbit. Large uncertainties in predictions lead to overly conservative spacecraft designs. The purpose of the REturn FLux EXperiment (REFLEX) is to fly a controlled experiment that can be directly compared with predictions from several models.

  20. Automated event generation for loop-induced processes

    DOE PAGESBeta

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-22

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Furthermore, many of these are computed heremore » for the first time.« less

  1. Automated event generation for loop-induced processes

    SciTech Connect

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-22

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Furthermore, many of these are computed here for the first time.

  2. VERSATILE TWO-AXIS OPEN-LOOP SOLAR TRACKER CONTROLLER*

    SciTech Connect

    Ward, Christina D; Maxey, L Curt; Evans III, Boyd Mccutchen; Lapsa, Melissa Voss

    2008-01-01

    A versatile single-board controller for two-axis solar tracking applications has been developed and tested on operating solar tracking systems with over two years of field experience. The operating experience gained from the two systems and associated modifications are discussed as representative examples of the practical issues associated with implementing a new two-axis solar tracker design. In this research, open and closed loop control methods were evaluated; however, only the open loop method met the 0.125 tracking accuracy requirement and the requirement to maintain pointing accuracy in hazy and scattered cloudy skies. The open loop algorithm was finally implemented in a microcontroller-based tracking system. Methods of applying this controller hardware to different tracker geometries and hardware are discussed along with the experience gained to date.

  3. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  4. Aspects of flux compactification

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited

  5. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  6. Criteria for saturated magnetization loop

    NASA Astrophysics Data System (ADS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A. M. H. de; Schmidt, J. E.; Geshev, J.

    2016-03-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe3O4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one.

  7. Novel Numerical Approaches to Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Diener, Peter

    2015-04-01

    Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.

  8. Loop quantization of the Schwarzschild interior revisited

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Singh, Parampreet

    2016-03-01

    The loop quantization of the Schwarzschild interior region, as described by a homogeneous anisotropic Kantowski-Sachs model, is re-examined. As several studies of different—inequivalent—loop quantizations have shown, to date there exists no fully satisfactory quantum theory for this model. This fact poses challenges to the validity of some scenarios to address the black hole information problem. Here we put forward a novel viewpoint to construct the quantum theory that builds from some of the models available in the literature. The final picture is a quantum theory that is both independent of any auxiliary structure and possesses a correct low curvature limit. It represents a subtle but non-trivial modification of the original prescription given by Ashtekar and Bojowald. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime satisfying vacuum Einstein’s equations is recovered on the ‘other side’ of the bounce. We argue that such a metric represents the interior region of a white-hole spacetime, but for which the corresponding ‘white hole mass’ differs from the original black hole mass. Furthermore, we find that the value of the white hole mass is proportional to the third power of the starting black hole mass.

  9. N/sub 2/O fluxes at the soil-atmosphere interface in various ecosystems and the global N/sub 2/O budget. Final report, 1 October 1985-30 June 1987

    SciTech Connect

    Banin, A.

    1987-01-01

    The overall purpose of this research task is to study the effects of soil properties and ecosystem variables on N/sub 2/O exchanges at the soil-atmosphere interface, and to assess their effects on the globle N/sub 2/O budget. Experimental procedures are implemented in various sites to measure the source/sink relations of N/sub 2/O at the soil-atmosphere interface over prolonged periods of time as part of the research of biogeochemical cycling in terrestrial ecosystems. A data-base for establishing quantitative correlations between N/sub 2/O fluxes and soil and environmental parameters that are of potential use for remote sensing, is being developed.

  10. All digital pulsewidth control loop

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Yi; Jan, Shiun-Dian; Pu, Ruei-Iun

    2013-03-01

    This work presents an all-digital pulsewidth control loop (ADPWCL). The proposed system accepts a wide range of input duty cycles and performs a fast correction to the target output pulsewidth. An all-digital delay-locked loop (DLL) with fast locking time using a simplified time to digital converter and a new differential two-step delay element is proposed. The area of the delay element is much smaller than that in conventional designs, while having the same delay range. A test chip is verified in a 0.18-µm CMOS process. The measured duty cycle ranges from 4% to 98% with 7-bit resolution.

  11. Loop quantum cosmology: an overview

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay

    2009-04-01

    A brief overview of loop quantum cosmology of homogeneous isotropic models is presented with emphasis on the origin of and subtleties associated with the resolution of big bang and big crunch singularities. These results bear out the remarkable intuition that John Wheeler had. Discussion is organized at two levels. The the main text provides a bird’s eye view of the subject that should be accessible to non-experts. Appendices address conceptual and technical issues that are often raised by experts in loop quantum gravity and string theory.

  12. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    1987-09-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively tuned resonant double loop (RDL) antennas, the model treats sub-tuned RDL antennas. Calculations using the model have been compared with measurements on full-scale mock-ups of RDL antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and the Compact Ignition Tokamak (CIT).

  13. Many Ways to Loop DNA

    PubMed Central

    Griffith, Jack D.

    2013-01-01

    In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered. PMID:24005675

  14. Mechanism of promoter repression by Lac repressor-DNA loops.

    PubMed

    Becker, Nicole A; Peters, Justin P; Maher, L James; Lionberger, Troy A

    2013-01-01

    The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap. PMID:23143103

  15. Loop quantum cosmology of Bianchi type I models

    SciTech Connect

    Ashtekar, Abhay; Wilson-Ewing, Edward

    2009-04-15

    The ''improved dynamics'' of loop quantum cosmology is extended to include anisotropies of the Bianchi type I model. As in the isotropic case, a massless scalar field serves as a relational time parameter. However, the extension is nontrivial because one has to face several conceptual subtleties as well as technical difficulties. These include a better understanding of the relation between loop quantum gravity and loop quantum cosmology, handling novel features associated with the nonlocal field strength operator in presence of anisotropies, and finding dynamical variables that make the action of the Hamiltonian constraint manageable. Our analysis provides a conceptually complete description that overcomes limitations of earlier works. We again find that the big-bang singularity is resolved by quantum geometry effects but, because of the presence of Weyl curvature, Planck scale physics is now much richer than in the isotropic case. Since the Bianchi I models play a key role in the Belinskii, Khalatnikov, Lifshitz conjecture on the nature of generic spacelike singularities in general relativity, the quantum dynamics of Bianchi I cosmologies is likely to provide considerable intuition about the fate of generic spacelike singularities in quantum gravity. Finally, we show that the quantum dynamics of Bianchi I cosmologies projects down exactly to that of the Friedmann model. This opens a new avenue to relate more complicated models to simpler ones, thereby providing a new tool to relate the quantum dynamics of loop quantum gravity to that of loop quantum cosmology.

  16. Loop quantum cosmology of Bianchi type I models

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Wilson-Ewing, Edward

    2009-04-01

    The “improved dynamics” of loop quantum cosmology is extended to include anisotropies of the Bianchi type I model. As in the isotropic case, a massless scalar field serves as a relational time parameter. However, the extension is nontrivial because one has to face several conceptual subtleties as well as technical difficulties. These include a better understanding of the relation between loop quantum gravity and loop quantum cosmology, handling novel features associated with the nonlocal field strength operator in presence of anisotropies, and finding dynamical variables that make the action of the Hamiltonian constraint manageable. Our analysis provides a conceptually complete description that overcomes limitations of earlier works. We again find that the big-bang singularity is resolved by quantum geometry effects but, because of the presence of Weyl curvature, Planck scale physics is now much richer than in the isotropic case. Since the Bianchi I models play a key role in the Belinskii, Khalatnikov, Lifshitz conjecture on the nature of generic spacelike singularities in general relativity, the quantum dynamics of Bianchi I cosmologies is likely to provide considerable intuition about the fate of generic spacelike singularities in quantum gravity. Finally, we show that the quantum dynamics of Bianchi I cosmologies projects down exactly to that of the Friedmann model. This opens a new avenue to relate more complicated models to simpler ones, thereby providing a new tool to relate the quantum dynamics of loop quantum gravity to that of loop quantum cosmology.

  17. Smooth Wilson loops in N=4 non-chiral superspace

    NASA Astrophysics Data System (ADS)

    Beisert, Niklas; Müller, Dennis; Plefka, Jan; Vergu, Cristian

    2015-12-01

    We consider a supersymmetric Wilson loop operator for 4d N = 4 super Yang-Mills theory which is the natural object dual to the AdS 5 × S 5 superstring in the AdS/CFT correspondence. It generalizes the traditional bosonic 1 /2 BPS Maldacena-Wilson loop operator and completes recent constructions in the literature to smooth (non-light-like) loops in the full N=4 non-chiral superspace. This Wilson loop operator enjoys global super-conformal and local kappa-symmetry of which a detailed discussion is given. Moreover, the finiteness of its vacuum expectation value is proven at leading order in perturbation theory. We determine the leading vacuum expectation value for general paths both at the component field level up to quartic order in anti-commuting coordinates and in the full non-chiral superspace in suitable gauges. Finally, we discuss loops built from quadric splines joined in such a way that the path derivatives are continuous at the intersection.

  18. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  19. Gauge threshold corrections for {N}=2 heterotic local models with flux, and mock modular forms

    NASA Astrophysics Data System (ADS)

    Carlevaro, Luca; Israël, Dan

    2013-03-01

    We determine threshold corrections to the gauge couplings in local models of {N}=2 smooth heterotic compactifications with torsion, given by the direct product of a warped Eguchi-Hanson space and a two-torus, together with a line bundle. Using the worldsheet cft description previously found and by suitably regularising the infinite target space volume divergence, we show that threshold corrections to the various gauge factors are governed by the non-holomorphic completion of the Appell-Lerch sum. While its holomorphic Mock-modular component captures the contribution of states that localise on the blown-up two-cycle, the non-holomorphic correction originates from non-localised bulk states. We infer from this analysis universality properties for {N}=2 heterotic local models with flux, based on target space modular invariance and the presence of such non-localised states. We finally determine the explicit dependence of these one-loop gauge threshold corrections on the moduli of the two-torus, and by S-duality we extract the corresponding string-loop and E1-instanton corrections to the Kähler potential and gauge kinetic functions of the dual type i model. In both cases, the presence of non-localised bulk states brings about novel perturbative and non-perturbative corrections, some features of which can be interpreted in the light of analogous corrections to the effective theory in compact models.

  20. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    NASA Astrophysics Data System (ADS)

    Nandy, Atanu; Chakrabarti, Arunava

    2015-11-01

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign.

  1. The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites. Final report

    SciTech Connect

    Beverly E. Law; Thomas, Christoph K.

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture

  2. LCLS Spectral Flux Viewer

    Energy Science and Technology Software Center (ESTSC)

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  3. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  4. Closed-Loop Neuromorphic Benchmarks.

    PubMed

    Stewart, Terrence C; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of "minimal" simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  5. Closing the Loop with Exercises

    ERIC Educational Resources Information Center

    Altizer, Andy

    2008-01-01

    Conducting exercises provides a critical bridge between the theory of an Emergency Action Plan and its effective implementation. When conducted properly, exercises can fill the gap between training and after-action review to close the preparedness loop--before an actual emergency occurs. Often exercises are planned and conducted on campus based on…

  6. Manchester transition tracking loop (MTTL)

    NASA Technical Reports Server (NTRS)

    Cellier, A.; Ma, L. N.; Huey, D. C.

    1977-01-01

    In new tracking loop, separate phase detection algorithm is incorporated for acquisition; programmed acquisition-to-track sequence includes automatic bandwidth switching. Additionally, system has very effective phase detection signal-to-noise ratio and can operate at any rate by changing master clock frequency. All system parameters remain constant.

  7. Bimodal loop-gap resonator

    NASA Astrophysics Data System (ADS)

    Piasecki, W.; Froncisz, W.; Hyde, James S.

    1996-05-01

    A bimodal loop-gap resonator for use in electron paramagnetic resonance (EPR) spectroscopy at S band is described. It consists of two identical one-loop-one-gap resonators in coaxial juxtaposition. In one mode, the currents in the two loops are parallel and in the other antiparallel. By introducing additional capacitors between the loops, the frequencies of the two modes can be made to coincide. Details are given concerning variable coupling to each mode, tuning of the resonant frequency of one mode to that of the other, and adjustment of the isolation between modes. An equivalent circuit is given and network analysis carried out both experimentally and theoretically. EPR applications are described including (a) probing of the field distributions with DPPH, (b) continuous wave (cw) EPR with a spin-label line sample, (c) cw electron-electron double resonance (ELDOR), (d) modulation of saturation, and (e) saturation-recovery (SR) EPR. Bloch induction experiments can be performed when the sample extends half way through the structure, but microwave signals induced by Mx and My components of magnetization cancel when it extends completely through. This latter situation is particularly favorable for SR, modulation of saturation, and ELDOR experiments, which depend on observing Mz indirectly using a second weak observing microwave source.

  8. A proof for loop-law constraints in stoichiometric metabolic networks

    PubMed Central

    2012-01-01

    Background Constraint-based modeling is increasingly employed for metabolic network analysis. Its underlying assumption is that natural metabolic phenotypes can be predicted by adding physicochemical constraints to remove unrealistic metabolic flux solutions. The loopless-COBRA approach provides an additional constraint that eliminates thermodynamically infeasible internal cycles (or loops) from the space of solutions. This allows the prediction of flux solutions that are more consistent with experimental data. However, it is not clear if this approach over-constrains the models by removing non-loop solutions as well. Results Here we apply Gordan’s theorem from linear algebra to prove for the first time that the constraints added in loopless-COBRA do not over-constrain the problem beyond the elimination of the loops themselves. Conclusions The loopless-COBRA constraints can be reliably applied. Furthermore, this proof may be adapted to evaluate the theoretical soundness for other methods in constraint-based modeling. PMID:23146116

  9. Vertical and horizontal fluxes of selected radionuclides and trace metals off the coast of southern California. Annual (and final) report, 15 November 1990--14 November 1991 (extended to 14 May 1992)

    SciTech Connect

    Huh, C.A.

    1992-06-01

    This is the final technical report for the trace metal and radionuclide studies during Phase II of the California Basin Study (CaBS) program sponsored by the Ecological Research Division of the US Department of Energy. The CaBS Program had its inception on May 15, 1985. There were two phases in the program, with Phase I lasting the first four years. During Phase I, semiannual reports (including renewal proposals) were made. The CaBS Phase II program, started on May 15, 1989 and ended on November 14, 1991, was broken down into three project/budget periods as follows: Period 1: May 15, 1989--November 14, 1989; Period 2: November 15, 1989--November 14, 1990; Period 3: November 15, 1990--November 14, 1991. Annual progress reports were made and submitted to DOE immediately at the end of each period, except for Period 3. Because of 6-month no-cost extension was requested to provide logistic and administrative support needed for a graduate student to finish his thesis work, this third and final report is deferred until now. Included in this report are (1) a reprise of our objectives in the CaBS Program, (2) a report of our progress, with special reference to work performed during the last budget period, (3) an updated list of publications resulting from this work, and (4) three appendices: a journal article, a meeting abstract, and a graduate student`s Master`s thesis.

  10. Hard thermal loops with a background plasma velocity

    NASA Astrophysics Data System (ADS)

    Metaxas, D.

    2003-03-01

    I consider the calculation of the two- and three-point functions for QED at finite temperature in the presence of a background plasma velocity. The final expressions are consistent with Lorentz invariance, gauge invariance and current conservation, pointing to a straightforward generalization of the hard-thermal-loop formalism to this physical situation. I also give the resulting expression for the effective action and identify the various terms.

  11. Numerical simulations of transverse oscillations in radiatively cooling coronal loops

    NASA Astrophysics Data System (ADS)

    Magyar, Norbert; Van Doorsselaere, Tom; Marcu, Alexandru

    2016-05-01

    We aim to study the influence of radiative cooling on the standing kink oscillations of coronal loops. To solve the 3D MHD ideal problem, we use the FLASH code. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturbed the system initially, leading to a transverse oscillation of the structure, and followed its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory. We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). In high amplitude runs with realistic cooling, instabilities deform the loop, leading to increased damping. In this case, the difference between cooling and non-cooling is still negligible at around 12%. A set of simulations with higher density loops are also performed, to explore what happens when the cooling takes place in a very short time (t cool ≈ 100 s). In this case, the difference in amplitude after nearly 3 oscillation periods for the low amplitude case is 21% between cooling and non-cooling cases. We strengthen the results of previous analytical studies that state that the amplification due to cooling is ineffective, and its influence on the oscillation characteristics is small, at least for the cases shown here. Furthermore, the presence of a relatively strong damping in the high amplitude runs even in the fast cooling case indicates that it is unlikely that cooling could alone account for the observed, flare-related undamped oscillations of coronal loops. These results may be significant in the field of coronal seismology, allowing its application to coronal loop oscillations with observed fading-out or cooling behaviour.

  12. Numerical simulations of transverse oscillations in radiatively cooling coronal loops

    NASA Astrophysics Data System (ADS)

    Magyar, N.; Van Doorsselaere, T.; Marcu, A.

    2015-10-01

    Aims: We aim to study the influence of radiative cooling on the standing kink oscillations of a coronal loop. Methods: Using the FLASH code, we solved the 3D ideal magnetohydrodynamic equations. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturbed the system initially, leading to a transverse oscillation of the structure, and followed its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory. Results: We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). In high amplitude runs with realistic cooling, instabilities deform the loop, leading to increased damping. In this case, the difference between cooling and non-cooling is still negligible at around 12%. A set of simulations with higher density loops are also performed, to explore what happens when the cooling takes place in a very short time (tcool ≈ 100 s). In this case, the difference in amplitude after nearly 3 oscillation periods for the low amplitude case is 21% between cooling and non-cooling cases. We strengthen the results of previous analytical studies that state that the amplification due to cooling is ineffective, and its influence on the oscillation characteristics is small, at least for the cases shown here. Furthermore, the presence of a relatively strong damping in the high amplitude runs even in the fast cooling case indicates that it is unlikely that cooling could alone account for the observed, flare-related undamped oscillations of coronal loops. These results may be significant in the field of coronal seismology, allowing its application to coronal loop oscillations with observed

  13. Exotic Twisted Equivariant Cohomology of Loop Spaces, Twisted Bismut-Chern Character and T-Duality

    NASA Astrophysics Data System (ADS)

    Han, Fei; Mathai, Varghese

    2015-07-01

    We define exotic twisted - equivariant cohomology for the loop space LZ of a smooth manifold Z via the invariant differential forms on LZ with coefficients in the (typically non-flat) holonomy line bundle of a gerbe, with differential an equivariantly flat superconnection. We introduce the twisted Bismut-Chern character form, a loop space refinement of the twisted Chern character form in Bouwknegt et al. (Commun Math Phys 228:17-49, 2002) and Mathai and Stevenson (Commun Math Phys 236:161-186, 2003), which represents classes in the completed periodic exotic twisted -equivariant cohomology of LZ.We establish a localisation theorem for the completed periodic exotic twisted -equivariant cohomology for loop spaces and apply it to establish T-duality in a background flux in type II String Theory from a loop space perspective.

  14. Empirical Measurements of Loop Structures in the Sun's Transition Region Compared with Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Chesny, David; Oluseyi, H. M.; Orange, N. B.; DeBoth, D.; Preuss, L.; Neira, C.; Ebert, M.; Cohen, L.

    2011-01-01

    We have measured the properties of solar upper transition region loop structures barely resolvable in 1-arcsecond resolution data from the Transition Region and Coronal Explorer (TRACE) satellite and from the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument aboard the SOHO satellite for the purpose of investigating the mechanisms that generate and energize these structures. The images were wavelet transformed to elucidate and isolate fine-scale loops, whose lengths, widths, emergent flux, flows, and underlying magnetic field were measured. It was found that the loops' magnetic geometries were well-fit by potential field models. However, hydrostatic models were unable to self-consistently reproduce the loop's observed properties for a wide range of parameter space.

  15. Modeling of the interleaved hysteresis loop in the measurements of rotational core losses

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Pillay, Pragasen

    2016-01-01

    The measurement of core losses in machine laminations reveals a fundamental difference between rotational and pulsating types. Rotational core losses under rotating fields decrease at high flux density, while pulsating losses keep increasing steadily. Experimental analyses of loss components Px and Py in x and y directions with rotating fields show that the loss decreases in one loss component and sometimes attains negative values. Tracking the evolution of hysteresis loops along this loss component discloses a peculiar behavior of magnetic hysteresis, where the loop changes its path from counterclockwise to clockwise within a cycle of magnetization process, the so called interleaved hysteresis loop. This paper highlights a successful procedure for modeling the interleaved hysteresis loop in the measurement of rotational core losses in electrical machine laminations using the generalized Prandtl-Ishlinskii (PI) model. The efficiency of the proposed model is compared to Preisach model. Results and conclusion of this work are of importance toward building an accurate model of rotational core losses.

  16. Loop corrections to the antibrane potential

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Blåbäck, Johan; Turton, David

    2016-07-01

    Antibranes provide some of the most generic ways to uplift Anti-de Sitter flux compactifications to de Sitter, and there is a growing body of evidence that antibranes placed in long warped throats such as the Klebanov-Strassler warped deformed conifold solution have a brane-brane-repelling tachyon. This tachyon was first found in the regime of parameters in which the backreaction of the antibranes is large, and its existence was inferred from a highly nontrivial cancellation of certain terms in the inter-brane potential. We use a brane effective action approach, similar to that proposed by Michel, Mintun, Polchinski, Puhm and Saad in [29], to analyze antibranes in Klebanov-Strassler when their backreaction is small, and find a regime of parameters where all perturbative contributions to the action can be computed explicitly. We find that the cancellation found at strong coupling is also present in the weak-coupling regime, and we establish its existence to all loops. Our calculation indicates that the spectrum of the antibrane worldvolume theory is not gapped, and may generically have a tachyon. Hence uplifting mechanisms involving antibranes remain questionable even when backreaction is small.

  17. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  18. Heat Flux Sensor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A heat flux microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop heat flux sensors to measure the rate of heat energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to heat flux in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.

  19. Evolution in a Braided Loop Ensemble

    NASA Video Gallery

    This braided loop has several loops near the 'base' that appear to be unwinding with significant apparent outflow. This is evidence of untwisting, and the braided structure also seeming to unwind w...

  20. Design of set-point weighting PIλ + Dμ controller for vertical magnetic flux controller in Damavand tokamak.

    PubMed

    Rasouli, H; Fatehi, A

    2014-12-01

    In this paper, a simple method is presented for tuning weighted PI(λ) + D(μ) controller parameters based on the pole placement controller of pseudo-second-order fractional systems. One of the advantages of this controller is capability of reducing the disturbance effects and improving response to input, simultaneously. In the following sections, the performance of this controller is evaluated experimentally to control the vertical magnetic flux in Damavand tokamak. For this work, at first a fractional order model is identified using output-error technique in time domain. For various practical experiments, having desired time responses for magnetic flux in Damavand tokamak, is vital. To approach this, at first the desired closed loop reference models are obtained based on generalized characteristic ratio assignment method in fractional order systems. After that, for the identified model, a set-point weighting PI(λ) + D(μ) controller is designed and simulated. Finally, this controller is implemented on digital signal processor control system of the plant to fast/slow control of magnetic flux. The practical results show appropriate performance of this controller. PMID:25554294

  1. On the collective appearance of coronal loops and the resistive heating instability

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing

    We investigate the onset conditions for direct resistive heating instabilities coupled with radiative processes within a twisted magnetic flux rope of axisymmetry and relate the helical patterns wrapping along the rope initiated by such instabilities to the collective appearance of compact X-ray loops in a certain phase of active region development in the solar corona. Since the emergence and the subsequent evolution of a gigantic magnetic flux rope in the solar atmosphere involve complicated physical processes, it is expected that such instabilities occurring in an ensemble of many current sheaths embedded in a stressed, twisted, and bulged magnetic flux rope will manifest as collective X-ray loop structures on various spatial scales and with varieties of large-scale morphologies.

  2. DEEPER BY THE DOZEN: UNDERSTANDING THE CROSS-FIELD TEMPERATURE DISTRIBUTIONS OF CORONAL LOOPS

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Jenkins, B. S.; Worley, B. T.

    2013-02-10

    Spectroscopic analysis of coronal loops has revealed a variety of cross-field temperature distributions. Some loops appear to be isothermal while others require multithermal plasma. The EUV Imaging Spectrometer on Hinode has the spatial resolution and temperature coverage required for differential emission measure (DEM) analysis of coronal loops. Our results also use data from the X-Ray Telescope on Hinode as a high-temperature constraint. Of our 12 loops, two were post-flare loops with broad temperature distributions, two were narrow but not quite isothermal, and the remaining eight were in the mid range. We consider our DEM methods to be a significant advance over previous work, and it is also reassuring to learn that our findings are consistent with results available in the literature. For the quiescent loops analyzed here, 10 MK plasma, a signature of nanoflares, appears to be absent at a level of approximately two orders of magnitude down from the DEM peak. We find some evidence that warmer loops require broader DEMs. The cross-field temperatures obtained here cannot be modeled as single flux tubes. Rather, the observed loop must be composed of several or many unresolved strands. The plasma contained in each of these strands could be cooling at different rates, contributing to the multithermal nature of the observed loop pixels. An important implication of our DEM results involves observations from future instruments. Once solar telescopes can truly resolve X-ray and EUV coronal structures, these images would have to reveal the loop substructure implied by our multithermal results.

  3. Fragmentation of cosmic-string loops

    NASA Technical Reports Server (NTRS)

    York, Thomas

    1989-01-01

    The fragmentation of cosmic string loops is discussed, and the results of a simulation of this process are presented. The simulation can evolve any of a large class of loops essentially exactly, including allowing fragments that collide to join together. Such reconnection enhances the production of small fragments, but not drastically. With or without reconnections, the fragmentation process produces a collection of nonself-intersecting loops whose typical length is on the order of the persistence length of the initial loop.

  4. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  5. Cryogenic flux-concentrator

    NASA Technical Reports Server (NTRS)

    Bailey, B. M.; Brechna, H.; Hill, D. A.

    1969-01-01

    Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources.

  6. Chromosome Compaction by Active Loop Extrusion.

    PubMed

    Goloborodko, Anton; Marko, John F; Mirny, Leonid A

    2016-05-24

    During cell division, chromosomes are compacted in length by more than a 100-fold. A wide range of experiments demonstrated that in their compacted state, mammalian chromosomes form arrays of closely stacked consecutive ∼100 kb loops. The mechanism underlying the active process of chromosome compaction into a stack of loops is unknown. Here we test the hypothesis that chromosomes are compacted by enzymatic machines that actively extrude chromatin loops. When such loop-extruding factors (LEF) bind to chromosomes, they progressively bridge sites that are further away along the chromosome, thus extruding a loop. We demonstrate that collective action of LEFs leads to formation of a dynamic array of consecutive loops. Simulations and an analytically solved model identify two distinct steady states: a sparse state, where loops are highly dynamic but provide little compaction; and a dense state, where there are more stable loops and dramatic chromosome compaction. We find that human chromosomes operate at the border of the dense steady state. Our analysis also shows how the macroscopic characteristics of the loop array are determined by the microscopic properties of LEFs and their abundance. When the number of LEFs are used that match experimentally based estimates, the model can quantitatively reproduce the average loop length, the degree of compaction, and the general loop-array morphology of compact human chromosomes. Our study demonstrates that efficient chromosome compaction can be achieved solely by an active loop-extrusion process. PMID:27224481

  7. Hard thermal loops in static external fields

    SciTech Connect

    Frenkel, J.; Takahashi, N.; Pereira, S. H.

    2009-04-15

    We examine, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop integral at zero external energies and momenta.

  8. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  9. Microgyroscope with closed loop output

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)

    2002-01-01

    A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.

  10. Loop connectors in dentogenic diastema.

    PubMed

    Nayar, Sanjna; Jayesh, Raghevendra; Venkateshwaran; Dinakarsamy, V

    2015-04-01

    Patients with a missing tooth along with diastema have limited treatment options to restore the edentulous space. The use of a conventional fixed partial denture (FPD) to replace the missing tooth may result in too wide anterior teeth leading to poor esthetics. Loss of anterior teeth with existing diastema may result in excess space available for pontic. This condition presents great esthetic challenge for prosthodontist. If implant supported prosthesis is not possible because of inadequate bone support, FPD along with loop connector may be a treatment option to maintain the diastema and provide optimal esthetic restoration. Here, we report a clinical case where FPD along with loop connector was used to achieve esthetic rehabilitation in maxillary anterior region in which midline diastema has been maintained. PMID:26015732

  11. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    SciTech Connect

    Seiz, J.B.

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  12. Measurement of Decoherence Time in a Flux Qubit

    NASA Astrophysics Data System (ADS)

    Harrabi, K.; Yoshihara, F.; Nakamura, Y.; Tsai, J. S.

    2006-09-01

    We present a measurement of the relaxation and the dephasing times in a flux qubit. In order to improve coherence of the qubit, two external parameters were optimized: the applied flux through the qubit loop and the bias current of the SQUID which serves as a readout device of the qubit state. At the optimal point the dephasing time measured with spin-echo technique was twice longer than the energy relaxation time. By changing one of the two bias parameters while keeping the other at the optimal value, one can separate the contribution of the noise in each parameter to the decoherence of the qubit.

  13. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  14. Nature of the Vacuum inside the Color Flux Tube

    NASA Astrophysics Data System (ADS)

    Gliozzi, F.; Vinti, S.

    1997-02-01

    The interior of the color flux tube joining a quark pair can be probed by evaluating the correlator of pair of Polyakov loops in a vacuum modified by another Polyakov pair, in order to check the dual superconductivity conjecture, which predicts a deconfined, hot core. We also point out that at the critical point of any 3 D gauge theories with a continuous deconfining transition the Svetitsky-Yaffe conjecture provides us with an analytic expression of the Polyakov correlator as a function of the location of the probe inside the flux tube. Both these predictions are compared with numerical results in 3 DZ2 gauge model, finding complete agreement.

  15. Planar thin film SQUID with integral flux concentrator

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N. (Inventor); Sisk, Robert C. (Inventor)

    1988-01-01

    A thin film SQUID is disclosed having improved flux concentration combined with simplicity of design and fabrication. The SQUID starts with a wafer like substrate having simple planar geometry. A large area of superconducting film is coated on the substrate, with a small open or uncoated area remaining at its center to define a SQUID loop, and a gap in the film formed, beginning at the outer circumferential edge of the substrate and extending radially inward to the open area. A Josephson junction is formed across the gap near the open area to interrupt the electrical continuity of the SQUID loop. A coil is attached to the surface of the substrate, electrically insulated from the superconducting film, and is energized to induce flux within the SQUID which is concentrated within the open area.

  16. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    NASA Astrophysics Data System (ADS)

    Kliem, Bernhard; Green, L. M.

    2009-12-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  17. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    NASA Astrophysics Data System (ADS)

    Green, L. M.; Kliem, B.

    2009-08-01

    We analyze the evolution of a sigmoidal (S-shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  18. FLUX ROPE FORMATION PRECEDING CORONAL MASS EJECTION ONSET

    SciTech Connect

    Green, L. M.; Kliem, B. E-mail: bhk@mssl.ucl.ac.uk

    2009-08-01

    We analyze the evolution of a sigmoidal (S-shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  19. Two Loop Higgs Unitarity Constraints

    NASA Astrophysics Data System (ADS)

    Maher, Peter Noel

    The perturbative approximation in the Symmetry Breaking sector of the Standard Model is investigated to two loops. The breakdown of perturbative unitarity seen at one loop is only slightly postponed. Attention is restricted to the coupled elastic scattering matrix of the neutral channels W^+W ^-, ZZ, HH, ZH. The high energy limit s gg M_sp{H} {2} gg M_sp{W}{2} and the Equivalence Theorem are used to simplify the calculation. The theory is renormalized on mass shell, in a way that automatically sums the tadpole graphs. Calculation of the counterterms was the most difficult part of the entire work. The running coupling and anomalous dimensions are calculated. The Landau pole of the running coupling is not significantly affected by the two loop contributions unless the coupling is large. Similarly, the anomalous dimensions are small. The eigen-amplitudes of the partial wave projected scattering matrix are analysed for breakdown of perturbative unitarity using Argand diagrams, and for term-wise convergence. It is found that if the Standard Model is to hold true up to sqrt{s} ~ 2TeV, the theory is strongly coupled and perturbative approximations are no longer trustworthy if M_{H} _sp{~}{>} 350 - 450 GeV. If the Standard Model is embedded in a perturbative grand unified theory, and assumed to hold true up to sqrt{s} = 10^ {15} GeV, then the Higgs mass is bounded M_{H} _sp{~ }{<} 160 GeV.

  20. Polyhedra in loop quantum gravity

    SciTech Connect

    Bianchi, Eugenio; Speziale, Simone; Dona, Pietro

    2011-02-15

    Intertwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in R{sup 3}: A polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: We give formulas for the edge lengths, the volume, and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of the quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra. Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine its relation with the standard volume operator of loop quantum gravity. We also comment on the semiclassical limit of spin foams with nonsimplicial graphs.

  1. Polyhedra in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Bianchi, Eugenio; Doná, Pietro; Speziale, Simone

    2011-02-01

    Intertwiners are the building blocks of spin-network states. The space of intertwiners is the quantization of a classical symplectic manifold introduced by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to interpret generic configurations in this space as bounded convex polyhedra in R3: A polyhedron is uniquely described by the areas and normals to its faces. We provide a reconstruction of the geometry of the polyhedron: We give formulas for the edge lengths, the volume, and the adjacency of its faces. At the quantum level, this correspondence allows us to identify an intertwiner with the state of a quantum polyhedron, thus generalizing the notion of the quantum tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent intertwiners result to be peaked on the classical geometry of polyhedra. We discuss the relevance of this result for loop quantum gravity. In particular, coherent spin-network states with nodes of arbitrary valence represent a collection of semiclassical polyhedra. Furthermore, we introduce an operator that measures the volume of a quantum polyhedron and examine its relation with the standard volume operator of loop quantum gravity. We also comment on the semiclassical limit of spin foams with nonsimplicial graphs.

  2. Quantum reduced loop gravity and the foundation of loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Cianfrani, Francesco

    2016-06-01

    Quantum reduced loop gravity is a promising framework for linking loop quantum gravity and the effective semiclassical dynamics of loop quantum cosmology. We review its basic achievements and its main perspectives, outlining how it provides a quantum description of the Universe in terms of a cuboidal graph which constitutes the proper framework for applying loop techniques in a cosmological setting.

  3. Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Khrustalev, Dmitry

    1996-01-01

    Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.

  4. Elimination of flux-transformer crosstalk in multichannel SQUID magnetometers

    NASA Astrophysics Data System (ADS)

    ter Brake, H. J. M.; Fleuren, F. H.; Ulfrnan, J. A.; Flokstra, J.

    Multichannel SQUID magnetometers are being developed for signal-field mapping in biomagnetic experiments. A problem that becomes more serious as the number of channels is increased is the crosstalk caused by the mutual inductances between the individual sensing coils. A simple and effective method for eliminating this crosstalk is presented in this Paper. The method is based on a rearrangement of the feedback loops which causes the flux-transformer circuits to become currentless. The feasibility of the method is verified experimentally.

  5. Premeasured Chordal Loops for Mitral Valve Repair.

    PubMed

    Gillinov, Marc; Quinn, Reed; Kerendi, Faraz; Gaudiani, Vince; Shemin, Richard; Barnhart, Glenn; Raines, Edward; Gerdisch, Marc W; Banbury, Michael

    2016-09-01

    Premeasured expanded polytetrafluoroethylene chordal loops with integrated sutures for attachment to the papillary muscle and leaflet edges facilitate correction of mitral valve prolapse. Configured as a group of 3 loops (length range 12 to 24 mm), the loops are attached to a pledget that is passed through the papillary muscle and tied. Each of the loops has 2 sutures with attached needles; these needles are passed through the free edge of the leaflet and then the sutures are tied to each other, securing the chordal loop to the leaflet. PMID:27549563

  6. Z-Sum approach to loop integrals

    NASA Astrophysics Data System (ADS)

    Rottmann, Paulo A.

    We study the applicability of the Z-Sum approach to multi-loop calculations with massive particles in perturbative quantum field theory. We systematically analyze the case of one-loop scalar integrals, which represent the building blocks of any higher-loop calculation. We focus in particular on triangle one-loop integrals and identify strengths and limitations of the Z-Sum approach, extending our results to the case of one-loop box integrals when appropriate. We conclude with the calculation of a specific physical example: the calculation of heavy flavor corrections to the renormalized scattering amplitude for deep inelastic scattering.

  7. Dynamic Aperture-based Solar Loop Segmentation

    NASA Technical Reports Server (NTRS)

    Lee, Jon Kwan; Newman, Timothy S.; Gary, G. Allen

    2006-01-01

    A new method to automatically segment arc-like loop structures from intensity images of the Sun's corona is introduced. The method constructively segments credible loop structures by exploiting the Gaussian-like shape of loop cross-sectional intensity profiles. The experimental results show that the method reasonably segments most of the well-defined loops in coronal images. The method is only the second published automated solar loop segmentation method. Its advantage over the other published method is that it operates independently of supplemental time specific data.

  8. Dynamics of flux tubes in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, E. T.; Duncan, R. C.

    1994-01-01

    The study of magnetized plasmas in astrophysics is complicated by a number of factors, not the least of which is that in considering magnetic fields in stars or accretion disks, we are considering plasmas with densities well above those we can study in the laboratory. In particular, whereas laboratory plasmas are dominated by the confining magnetic field pressure, stars, and probably accretion disks, have magnetic fields whose beta (ratio of gas pressure to magnetic field pressure) is much greater than 1. Observations of the Sun suggest that under such circumstances the magnetic field breaks apart into discrete flux tubes with a small filling factor. On the other hand, theoretical treatments of MHD turbulence in high-beta plasmas tend to assume that the field is more or less homogeneously distributed throughout the plasma. Here we consider a simple model for the distribution of magnetic flux tubes in a turbulent medium. We discuss the mechanism by which small inhomogeneities evolve into discrete flux tubes and the size and distribution of such flux tubes. We then apply the model to accretion disks. We find that the fibrilation of the magnetic field does not enhance magnetic buoyancy. We also note that the evolution of an initially diffuse field in a turbulent medium, e.g., any uniform field in a shearing flow, will initially show exponential growth as the flux tubes form. This growth saturates when the flux tube formation is complete and cannot be used as the basis for a self-sustaining dynamo effect. Since the typical state of the magnetic field is a collection of intense flux tubes, this effect is of limited interest. However, it may be important early in the evolution of the galactic magnetic field, and it will play a large role in numerical simulations. Finally, we note that the formation of flux tubes is an essential ingredient in any successful dynamo model for stars or accretion disks.

  9. Loop quantum cosmology with self-dual variables

    NASA Astrophysics Data System (ADS)

    Wilson-Ewing, Edward

    2015-12-01

    Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.

  10. Effect of coronal structure on loop oscillations: exponential profiles

    NASA Astrophysics Data System (ADS)

    Díaz, A. J.; Donnelly, G. R.; Roberts, B.

    2007-12-01

    Aims:The role of longitudinal structuring of the surrounding corona on the modes of oscillation of a coronal magnetic flux tube was studied in Donnelly et al. (2006) for a piecewise uniform profile. Here we investigate whether a more realistic continuous exponential profile changes the conclusions drawn from that paper. Methods: A partial differential equation is derived for the total pressure perturbation of the fast modes, which is then decomposed by separation of variables. The longitudinal part is solved numerically, obtaining a dispersion relation. These results are supported by an analytical investigation in terms of Bessel functions of purely imaginary order. Results: Structure in the interior of the loop shifts the frequencies of the modes (and may trap higher harmonics), an effect which can be understood by taking an averaged profile with a suitable weight. Structure in the environment modifies only slightly the frequencies, but displaces the cutoff frequency. The shift due to the structure in the fundamental period is small, but the ratio between the periods of the fundamental mode and its harmonics can be used to probe the structure. Conclusions: The results support our previous study in a more realistic, continuously varying profile and provide limits to the conclusions drawn in coronal seismology if an unstructured loop is used. Also, the ratio between the period of the fundamental kink (even) mode and its first (odd) harmonic is proven as an extra seismological tool for coronal loops.

  11. Wilson loops in noncompact U(1) gauge theories at criticality

    SciTech Connect

    Metlitski, Max A.

    2008-04-15

    We study the properties of Wilson loops in three-dimensional noncompact U(1) gauge theories with global Abelian symmetries. We use duality in the continuum and on the lattice to argue that, close to the critical point between the Higgs and Coulomb phases, all correlators of the Wilson loops are periodic functions of the Wilson loop charge, Q. The period depends on the global symmetry of the theory, which determines the magnetic flux carried by the dual particles. For single flavor scalar electrodynamics, the emergent period is Q=1. In the general case of N complex scalars with a U(1){sup N-1} global symmetry, the period is Q=N. We also give some arguments why this phenomenon does not generalize to theories with a full non-Abelian SU(N) symmetry, where no periodicity in Q is expected. Implications for lattice simulations, as well as for physical systems, such as easy-plane antiferromagnets and disordered superfluids, are noted.

  12. Efficient Tiled Loop Generation: D-Tiling

    NASA Astrophysics Data System (ADS)

    Kim, Daegon; Rajopadhye, Sanjay

    Tiling is an important loop optimization for exposing coarse-grained parallelism and enhancing data locality. Tiled loop generation from an arbitrarily shaped polyhedron is a well studied problem. Except for the special case of a rectangular iteration space, the tiled loop generation problem has been long believed to require heavy machinery such as Fourier-Motzkin elimination and projection, and hence to have an exponential complexity. In this paper we propose a simple and efficient tiled loop generation technique similar to that for a rectangular iteration space. In our technique, each loop bound is adjusted only once, syntactically and independently. Therefore, our algorithm runs linearly with the number of loop bounds. Despite its simplicity, we retain several advantages of recent tiled code generation schemes - unified generation for fixed, parameterized and hybrid tiled loops, scalability for multi-level tiled loop generation with the ability to separate full tiles at any levels, and compact code. We also explore various schemes for multi-level tiled loop generation. We formally prove the correctness of our scheme and experimentally validate that the efficiency of our technique is comparable to existing parameterized tiled loop generation approaches. Our experimental results also show that multi-level tiled loop generation schemes have an impact on performance of generated code. The fact that our scheme can be implemented without sophisticated machinery makes it well suited for autotuners and production compilers.

  13. Hyperstaticity and loops in frictional granular packings

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  14. Magnetic-Flux-Compensated Voltage Divider

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.

    2005-01-01

    A magnetic-flux-compensated voltage-divider circuit has been proposed for use in measuring the true potential across a component that is exposed to large, rapidly varying electric currents like those produced by lightning strikes. An example of such a component is a lightning arrester, which is typically exposed to currents of the order of tens of kiloamperes, having rise times of the order of hundreds of nanoseconds. Traditional voltage-divider circuits are not designed for magnetic-flux-compensation: They contain uncompensated loops having areas large enough that the transient magnetic fluxes associated with large transient currents induce spurious voltages large enough to distort voltage-divider outputs significantly. A drawing of the proposed circuit was not available at the time of receipt of information for this article. What is known from a summary textual description is that the proposed circuit would contain a total of four voltage dividers: There would be two mixed dividers in parallel with each other and with the component of interest (e.g., a lightning arrester), plus two mixed dividers in parallel with each other and in series with the component of interest in the same plane. The electrical and geometric configuration would provide compensation for induced voltages, including those attributable to asymmetry in the volumetric density of the lightning or other transient current, canceling out the spurious voltages and measuring the true voltage across the component.

  15. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    SciTech Connect

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-09-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglass 2605SC over the frequency range of 1-50 kHz and temperature range of 23-300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  16. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  17. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loop for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  18. Energetic consequences of flux emergence

    NASA Astrophysics Data System (ADS)

    Tarr, Lucas Adrian

    When magnetic field in the solar convection zone buoyantly rises to pierce the visible solar surface (photosphere), the atmosphere (corona) above this surface must respond in some way. One response of the coronal field to photospheric forcing is the creation of stress in the magnetic field, generating large currents and storing magnetic free energy. Using a topological model of the coronal magnetic field we will quantify this free energy. We find the free energy just prior to major flares in active regions to be between 30% and 50% of the potential field energy. In a second way, the coronal field may topologically restructure to form new magnetic connections with newly emerged fields. We use our topological model to quantify the rapid restructuring in the case of solar flare and coronal mass ejections, finding that between 1% and 10% of total active region flux is exchanged. Finally, we use observational data to quantify the slow, quiescent reconnection with preexisting field, and find that for small active regions between 20% and 40% of the total emerged flux may have reconnected at any given time.

  19. Annihilation of Quantum Magnetic Fluxes

    NASA Astrophysics Data System (ADS)

    Gonzalez, W. D.

    After introducing the concepts associated with the Aharonov and Bohm effect and with the existence of a quantum of magnetic flux (QMF), we briefly discuss the Ginzburg-Landau theory that explains its origin and fundamental consequences. Also relevant observations of QMFs obtained in the laboratory using superconducting systems (vortices) are mentioned. Next, we describe processes related with the interaction of QMFs with opposite directions in terms of the gauge field geometry related to the vector potential. Then, we discuss the use of a Lagrangian density for a scalar field theory involving radiation in order to describe the annihilation of QMFs, claimed to be responsible for the emission of photons with energies corresponding to that of the annihilated magnetic fields. Finally, a possible application of these concepts to the observed variable dynamics of neutron stars is briefly mentioned.

  20. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the

  1. Algebraic Flux Correction II

    NASA Astrophysics Data System (ADS)

    Kuzmin, Dmitri; Möller, Matthias; Gurris, Marcel

    Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity operators, the choice of variables to be limited, and the transformation of antidiffusive fluxes. An a posteriori control mechanism is implemented to make the limiter failsafe. The numerical treatment of initial and boundary conditions is discussed in some detail. The initialization is performed using an FCT-constrained L 2 projection. The characteristic boundary conditions are imposed in a weak sense, and an approximate Riemann solver is used to evaluate the fluxes on the boundary. We also present an unconditionally stable semi-implicit time-stepping scheme and an iterative solver for the fully discrete problem. The results of a numerical study indicate that the nonlinearity and non-differentiability of the flux limiter do not inhibit steady state convergence even in the case of strongly varying Mach numbers. Moreover, the convergence rates improve as the pseudo-time step is increased.

  2. Magnetic flux tube tunneling

    SciTech Connect

    Dahlburg, R.B.; Antiochos, S.K.; Norton, D.

    1997-08-01

    We present numerical simulations of the collision and subsequent interaction of {ital orthogonal} magnetic flux tubes. The simulations were carried out using a parallelized spectral algorithm for compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the flux tubes can {open_quotes}tunnel{close_quotes} through each other, a behavior not previously seen in studies of either vortex tube or magnetic flux tube interactions. Two conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch {gt}1, and the Lundquist number must be somewhat large, {ge}2880. An examination of magnetic field lines suggests that tunneling is due to a double-reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections, and {open_quotes}pass{close_quotes} through each other. The implications of these results for solar and space plasmas are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  3. Superradiance and flux conservation

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt

    2014-09-01

    The theoretical foundations of the phenomenon known as superradiance still continue to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that superradiance in a quantum field theory context is not the same as superradiance (superfluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation (and, in the presence of dissipation, a controlled amount of flux nonconservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of superradiance. To help clarify the situation we present a simple exactly solvable toy model exhibiting both superradiance and damping.

  4. Magnetic flux tube tunneling

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Antiochos, S. K.; Norton, D.

    1997-08-01

    We present numerical simulations of the collision and subsequent interaction of orthogonal magnetic flux tubes. The simulations were carried out using a parallelized spectral algorithm for compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the flux tubes can ``tunnel'' through each other, a behavior not previously seen in studies of either vortex tube or magnetic flux tube interactions. Two conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch >>1, and the Lundquist number must be somewhat large, >=2880. An examination of magnetic field lines suggests that tunneling is due to a double-reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections, and ``pass'' through each other. The implications of these results for solar and space plasmas are discussed.

  5. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  6. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  7. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  8. Development of 2.8-GHz Solar Flux Receivers

    NASA Astrophysics Data System (ADS)

    Yun, Youngjoo; Park, Yong-Sun; Kim, Chang-Hee; Lee, Bangwon; Kim, Jung-Hoon; Yoo, Saeho; Lee, Chul-Hwan; Han, Jinwook; Kim, Young Yun

    2014-12-01

    We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at 100° C. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

  9. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops.

    PubMed

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a "brain in the loop" using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a "brain-state dynamics" loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a "task dynamics" loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  10. Effect of Thermal Conduction on Acoustic Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2006-05-01

    The influence of classical (Spitzer) thermal conduction on longitudinal acoustic waves in a coronal loop is determined through an idealized but exactly solvable model. The model consists of an isothermal, stratified (constant gravity) atmosphere in which a monochromatic acoustic wave, traveling in the direction of decreasing density, is imposed throughout the lower half of the atmosphere. Based on the linearized equations of motion, the complete steady state (t-->∞) solution is obtained. In addition to the imposed driving wave, the solution also contains reflected and transmitted acoustic and thermal conduction waves. The mode transformation and mixing occurs in the vicinity of the atmospheric layer where the gas pressure passes through a critical value set by the magnitude of the thermal conduction and other model parameters. For 5 minute waves in a million degree loop, this critical pressure is on the order of 8×10-4 in cgs units. Since the apex gas pressure of many coronal loops of current interest is thought to be comfortably in excess of this value, mode mixing and transformation is not likely to be a relevant factor for understanding acoustic waves in these structures. On the other hand, enhanced thermal conductivity as a result of plasma instabilities, for example, could revive the importance of this mechanism for coronal loops. If this mixing layer is present, the calculations show that the pair of thermal conduction waves invariably gains the overwhelming majority of the energy flux of the incoming acoustic wave. This energy is rapidly dissipated in the neighborhood of the mixing layer.

  11. An Insight to the Modeling of 1 × 1 Rib Loop Formation Process on Circular Weft Knitting Machine using Computer

    NASA Astrophysics Data System (ADS)

    Ray, Sadhan Chandra

    2015-10-01

    The mechanics of single jersey loop formation is well-reported is literature. However, as the concept of any model of double jersey loop formation process is not available in accessible international literature. Therefore, it was planned to develop a model of 1 × 1 rib loop formation process on dial and cylinder machine using computer so that the influence of various input variables on the final loop length as well on the profile of tension on the yarn inside Knitting Zone (KZ) can be understood. The model provides an insight into the mechanics of 1 × 1 rib loop formation system on dial and cylinder machine. Besides, the degree of agreement between predicted and measured values of loop length and cam forces as well as theoretical analysis of the model have justified the acceptability of the model.

  12. Thermal Analysis of CDS Coronal Loops

    NASA Astrophysics Data System (ADS)

    Kimble, J. A.; Schmelz, J. T.; Nasraoui, K.; Rightmire, L. A.; Andrews, J. M.; Cirtain, J. W.

    2008-05-01

    The coronal loop data used for this analysis was obtained using the Coronal Diagnostic Spectrometer (CDS) aboard the Solar and Heliospheric Observatory on 2003 January 17 at 14:24:43 UT. We use the Chianti atomic physics database and the hybrid coronal abundances to determine temperatures and densities for positions along several loops. We chose six pixels along each loop as well as background pixels. The intensities of the background pixels are subtracted from each loop pixel to isolate the emission from the loop pixel, and then spectral lines with significant contributions to the loop intensities are selected. The loops were then analyzed with a forward folding process to produce differential emission measure (DEM) curves. Emission measure loci plots and DEM automatic inversions are then used to verify those conclusions. We find different results for each of these loops. One appears to be isothermal at each loop position, and the temperature does not change with height. The second appears to be multithermal at each position and the third seems to be consistent with two DEM spikes, which might indicate that there are two isothermal loops so close together, that they are not resolved by CDS. Solar physics research at the University of Memphis is supported by a Hinode subcontract from NASA/SAO as well as NSF ATM-0402729.

  13. Multidimensional smooth loops with universal elasticity

    NASA Astrophysics Data System (ADS)

    Dzhukashev, K. R.; Shelekhov, A. M.

    2015-05-01

    Let \\widetilde E be a universal (isotopically invariant) identity that is derived from the elasticity identity E\\colon (xy)x=x(yx). One of the authors has previously shown that a) each local loop of dimension r with identity \\widetilde E (briefly, a loop \\widetilde E) is a smooth middle Bol loop of dimension r; b) smooth two-dimensional loops \\widetilde E are Lie groups; c) up to isotopy, there exist only two three-dimensional loops \\widetilde E: the loops E_1 and E_2. In this paper, the loops E_1 and E_2 are extended to the multidimensional case. The fact that each smooth loop \\widetilde E of dimension r corresponds to a unique multidimensional three-web on a manifold of dimension 2r is key to our work. In addition, the class of loops under investigation is characterized by the fact that the torsion tensor of the corresponding web has rank 1 (that is, the algebra generated by this tensor has a one-dimensional derived algebra). This enables us to express the differential equations of the problem in an invariant form. The system of equations thus obtained was found to be amenable to integration in the most general case, and the equations of the required loops have been obtained in local coordinates. Bibliography: 17 titles.

  14. Effect of various pulse wave forms for pulse-type magnetic flux pump

    NASA Astrophysics Data System (ADS)

    Bai, Zhiming; Chen, Chuan; Wu, Yanqing; Zhen, Zhen

    2011-09-01

    The excitation current of magnetic pole windings in magnetic flux pump needs to be generated by a control system. In this paper, the control system of pulse-type high temperature superconducting magnetic flux pump is discussed in detail. The control system consists of a control circuit and a drive circuit. A direct current power supply is the unique power supply of the drive circuit. The control circuit is powered by a computer through a USB interface of the computer. The control circuit receives commands from the computer and controls the drive circuit to generate different pulse waves. Each pulse wave generates a unique pulse-type traveling magnetic field and will pump magnetic flux into the superconducting loop. Experiments have been performed to examine the pumping effect of different pulse waves on both MgB 2 and Bi-2223 superconducting loops using the proposed control system, and the best pulse wave has been found. The experimental results show that the magnetic flux pump can compensate current decay up to 32.5 A for MgB 2 loop and 129 A for Bi-2223 loop. It indicates that the control system of the pulse-type magnetic flux pump is effective and feasible.

  15. Numerical analysis of the big bounce in loop quantum cosmology

    SciTech Connect

    Laguna, Pablo

    2007-01-15

    Loop quantum cosmology (LQC) homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semidiscrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity.

  16. Black hole spectroscopy from loop quantum gravity models

    NASA Astrophysics Data System (ADS)

    Barrau, Aurelien; Cao, Xiangyu; Noui, Karim; Perez, Alejandro

    2015-12-01

    Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the framework of loop quantum gravity (LQG). The black hole emission rates are governed by the entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-Immirzi parameter γ . Starting with black holes of initial horizon area A ˜102 in Planck units, we present the spectra for different values of γ . Each spectrum clearly decomposes into two distinct parts: a continuous background which corresponds to the semiclassical stages of the evaporation and a series of discrete peaks which constitutes a signature of the deep quantum structure of the black hole. We show that γ has an effect on both parts that we analyze in detail. Finally, we estimate the number of black holes and the instrumental resolution required to experimentally distinguish between the considered models.

  17. 2D quantum gravity at three loops: A counterterm investigation

    NASA Astrophysics Data System (ADS)

    Leduc, Lætitia; Bilal, Adel

    2016-02-01

    We analyze the divergences of the three-loop partition function at fixed area in 2D quantum gravity. Considering the Liouville action in the Kähler formalism, we extract the coefficient of the leading divergence ∼ AΛ2(ln ⁡ AΛ2) 2. This coefficient is non-vanishing. We discuss the counterterms one can and must add and compute their precise contribution to the partition function. This allows us to conclude that every local and non-local divergence in the partition function can be balanced by local counterterms, with the only exception of the maximally non-local divergence (ln ⁡ AΛ2) 3. Yet, this latter is computed and does cancel between the different three-loop diagrams. Thus, requiring locality of the counterterms is enough to renormalize the partition function. Finally, the structure of the new counterterms strongly suggests that they can be understood as a renormalization of the measure action.

  18. Revisiting Ribbon Fluxes and CME Speeds

    NASA Astrophysics Data System (ADS)

    Welsch, Brian; Kazachenko, Maria D.; Hencheck, Michael

    2016-05-01

    The dynamics of coronal mass ejections (CMEs) remain poorly understood. A previous study found that the final speeds of CMEs were strongly correlated with the amount of photospheric magnetic flux swept out by flare ribbons. The latter quantity, which we refer to as the ribbon flux, is thought to be directly related to the amount of coronal magnetic flux that reconnects during an eruption. The prior study, however, analyzed flare ribbons associated with a small sample (N=13) of relatively fast CMEs (all > 600 km/s, mean speed > 1300 km/s). With the launch of the Solar Dynamics Observatory (SDO) in 2010, automated co-registration of ribbon images observed in UV by its Atmospheric Imaging Assembly (AIA) with line-of-sight magnetograms observed by its Helioseismic and Magnetic Imager (HMI) enabled compilation of a relatively large database of ribbon fluxes. Here, we characterize relationships between ribbon fluxes and the speeds (and other properties) of manually-associated CMEs in a sample of several dozen events.

  19. A flux capacitor for moth pheromones.

    PubMed

    Olsson, Shannon B; Hansson, Bill S

    2012-05-01

    In this issue of Chemical Senses, Baker et al. propose a provocative and intriguing explanation for a commonly observed phenomenon in moth chemocommunication. Sex pheromones in moths typically consist of mixtures of long-chain unsaturated compounds in specific ratios. These ratios are correspondingly detected by male moths using separate olfactory sensory neurons for each pheromone component housed singly or multiply in long trichoid sensilla on the antennal surface. These neurons are often present in different proportions, typically with the neuron responding to the highest ratio component present in greatest abundance or with the largest dendritic diameter. In their article, Baker et al. postulate that these physical differences in neuron magnitudes arise to compensate for the higher molecular flux present with the most abundant pheromone components. Such a suggestion raises several questions concerning the physiological and behavioral nature of pheromone communication. Specifically, is the flux in a natural pheromone plume high enough to warrant increased flux detection for the most abundant components? Second, how can changes in neuronal number or size lead to increased flux detection? And finally, how would this increased flux detection be accomplished at molecular, cellular, and ultimately network scales? We address each of these questions and propose future experiments that could offer insight into the stimulating proposition raised by Baker et al. PMID:22334600

  20. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  1. Electrostatic heat flux instabilities

    NASA Technical Reports Server (NTRS)

    Morrison, P. J.; Ionson, J. A.

    1980-01-01

    The electrostatic cyclotron and ion acoustic instabilities in a plasma driven by a combined heat flux and current were investigated. The minimum critical heat conduction speed (above which the plasma is unstable) is given as a function of the ratio of electron to ion temperatures.

  2. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  3. Extended loop representation of quantum gravity

    SciTech Connect

    Di Bartolo, C. ); Gambini, R.; Griego, J. )

    1995-01-15

    A new representation of quantum gravity is developed. This formulation is based on an extension of the group of loops. The enlarged group that we call the extended loop group behaves locally as an infinite dimensional Lie group. Quantum gravity can be realized on the state space of extended loop-dependent wave functions. The extended representation generalizes the loop representation and contains this representation as a particular case. The resulting diffeomorphism and Hamiltonian constraints take a very simple form and allow us to apply functional methods and simplify the loop calculus. In particular we show that the constraints are linear in the momenta. The nondegenerate solutions known in the loop representation are also solutions of the constraints in the new representation. An approach to the regularization problems associated with the formal calculus is performed. We show that the solutions are generalized knot invariants, smooth in the extended variables, and any framing is unnecessary.

  4. Flux sensitivity of quantum spin Hall rings

    NASA Astrophysics Data System (ADS)

    Crépin, F.; Trauzettel, B.

    2016-01-01

    We analyze the periodicity of persistent currents in quantum spin Hall loops, partly covered with an s-wave superconductor, in the presence of a flux tube. Much like in normal (non-helical) metals, the periodicity of the single-particle spectrum goes from Φ0 = h / e to Φ0 / 2 as the length of the superconductor is increased past the coherence length of the superconductor. We further analyze the periodicity of the persistent current, which is a many-body effect. Interestingly, time reversal symmetry and parity conservation can significantly change the period. We find a 2Φ0-periodic persistent current in two distinct regimes, where one corresponds to a Josephson junction and the other one to an Aharonov-Bohm setup.

  5. Closing the tau loop: the missing tau mutation.

    PubMed

    McCarthy, Allan; Lonergan, Roisin; Olszewska, Diana A; O'Dowd, Sean; Cummins, Gemma; Magennis, Brian; Fallon, Emer M; Pender, Niall; Huey, Edward D; Cosentino, Stephanie; O'Rourke, Killian; Kelly, Brendan D; O'Connell, Martin; Delon, Isabelle; Farrell, Michael; Spillantini, Maria Grazia; Rowland, Lewis P; Fahn, Stanley; Craig, Peter; Hutton, Michael; Lynch, Tim

    2015-10-01

    Frontotemporal lobar degeneration comprises a group of disorders characterized by behavioural, executive, language impairment and sometimes features of parkinsonism and motor neuron disease. In 1994 we described an Irish-American family with frontotemporal dementia linked to chromosome 17 associated with extensive tau pathology. We named this disinhibition-dementia-parkinsonism-amyotrophy complex. We subsequently identified mutations in the MAPT gene. Eleven MAPT gene splice site stem loop mutations were identified over time except for 5' splice site of exon 10. We recently identified another Irish family with autosomal dominant early amnesia and behavioural change or parkinsonism associated with the 'missing' +15 mutation at the intronic boundary of exon 10. We performed a clinical, neuropsychological and neuroimaging study on the proband and four siblings, including two affected siblings. We sequenced MAPT and performed segregation analysis. We looked for a biological effect of the tau variant by performing real-time polymerase chain reaction analysis of RNA extracted from human embryonic kidney cells transfected with exon trapping constructs. We found a c.915+15A>C exon 10/intron 10 stem loop mutation in all affected subjects but not in the unaffected. The c.915+15A>C variant caused a shift in tau splicing pattern to a predominantly exon 10+ pattern presumably resulting in predominant 4 repeat tau and little 3 repeat tau. This strongly suggests that the c.915+15A>C variant is a mutation and that it causes frontotemporal dementia linked to chromosome 17 in this pedigree by shifting tau transcription and translation to +4 repeat tau. Tau (MAPT) screening should be considered in families where amnesia or atypical parkinsonism coexists with behavioural disturbance early in the disease process. We describe the final missing stem loop tau mutation predicted 15 years ago. Mutations have now been identified at all predicted sites within the 'stem' when the stem-loop

  6. The folding of 5′-UTR human G-quadruplexes possessing a long central loop

    PubMed Central

    Jodoin, Rachel; Bauer, Lubos; Garant, Jean-Michel; Mahdi Laaref, Abdelhamid; Phaneuf, Francis; Perreault, Jean-Pierre

    2014-01-01

    G-quadruplexes are widespread four-stranded structures that are adopted by G-rich regions of both DNA and RNA and are involved in essential biological processes such as mRNA translation. They are formed by the stacking of two or more G-quartets that are linked together by three loops. Although the maximal loop length is usually fixed to 7 nt in most G-quadruplex-predicting software, it has already been demonstrated that artificial DNA G-quadruplexes containing two distal loops that are limited to 1 nt each and a central loop up to 30 nt long are likely to form in vitro. This report demonstrates that such structures possessing a long central loop are actually found in the 5′-UTRs of human mRNAs. Firstly, 1453 potential G-quadruplex-forming sequences (PG4s) were identified through a bioinformatic survey that searched for sequences respecting the requirement for two 1-nt long distal loops and a long central loop of 2–90 nt in length. Secondly, in vitro in-line probing experiments confirmed and characterized the folding of eight candidates possessing central loops of 10–70 nt long. Finally, the biological effect of several G-quadruplexes with a long central loop on mRNA expression was studied in cellulo using a luciferase gene reporter assay. Clearly, the actual definition of G-quadruplex-forming sequences is too conservative and must be expanded to include the long central loop. This greatly expands the number of expected PG4s in the transcriptome. Consideration of these new candidates might aid in elucidating the potentially important biological implications of the G-quadruplex structure. PMID:24865610

  7. Magnetic monopole in the loop representation

    SciTech Connect

    Leal, Lorenzo; Lopez, Alexander

    2006-01-15

    We quantize, within the Loop Representation formalism, the electromagnetic field in the presence of a static magnetic pole. It is found that the loop-dependent physical wave functionals of the quantum Maxwell theory become multivalued, through a topological phase factor depending on the solid angle subtended at the monopole by a surface bounded by the loop. It is discussed how this fact generalizes what occurs in ordinary quantum mechanics in multiply connected spaces.

  8. Biopolymer hairpin loops sustained by polarons

    NASA Astrophysics Data System (ADS)

    Chakrabarti, B.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2012-08-01

    We show that polarons can sustain looplike configurations in flexible biopolymers and that the size of the loops depend on both the flexural rigidity of the polymer and the electron-phonon coupling constant. In particular we show that for single stranded DNA (ssDNA) and polyacetylene such loops can have as few as seven monomers. We also show that these configurations are very stable under thermal fluctuations and so could facilitate the formation of hairpin loops of ssDNA.

  9. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  10. Loop anomalies in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2015-01-01

    We consider gauge models in the causal approach and study one-loop contributions to the chronological products and the anomalies they produce. We prove that in order greater than 4 there are no one-loop anomalies. Next we analyze one-loop anomalies in the second- and third-order of the perturbation theory. We prove that the even parity contributions (with respect to parity) do not produce anomalies; for the odd parity contributions we reobtain the well-known result.

  11. Loop quantization of vacuum Bianchi I cosmology

    SciTech Connect

    Martin-Benito, M.; Mena Marugan, G. A.; Pawlowski, T.

    2008-09-15

    We analyze the loop quantization of the family of vacuum Bianchi I spacetimes, a gravitational system of which classical solutions describe homogeneous anisotropic cosmologies. We rigorously construct the operator that represents the Hamiltonian constraint, showing that the states of zero volume completely decouple from the rest of quantum states. This fact ensures that the classical cosmological singularity is resolved in the quantum theory. In addition, this allows us to adopt an equivalent quantum description in terms of a well-defined densitized Hamiltonian constraint. This latter constraint can be regarded in a certain sense as a difference evolution equation in an internal time provided by one of the triad components, which is polymerically quantized. Generically, this evolution equation is a relation between the projection of the quantum states in three different sections of constant internal time. Nevertheless, around the initial singularity the equation involves only the two closest sections with the same orientation of the triad. This has a double effect: on the one hand, physical states are determined just by the data on one section, on the other hand, the evolution defined in this way never crosses the singularity, without the need of any special boundary condition. Finally, we determine the inner product and the physical Hilbert space employing group averaging techniques, and we specify a complete algebra of Dirac observables. This completes the quantization program.

  12. A method for simulating a flux-locked DC SQUID

    NASA Technical Reports Server (NTRS)

    Gutt, G. M.; Kasdin, N. J.; Condron, M. R., II; Muhlfelder, B.; Lockhart, J. M.; Cromar, M. W.

    1993-01-01

    The authors describe a computationally efficient and accurate method for simulating a dc SQUID's V-Phi (voltage-flux) and I-V characteristics which has proven valuable in evaluating and improving various SQUID readout methods. The simulation of the SQUID is based on fitting of previously acquired data from either a real or a modeled device using the Fourier transform of the V-Phi curve. This method does not predict SQUID behavior, but rather is a way of replicating a known behavior efficiently with portability into various simulation programs such as SPICE. The authors discuss the methods used to simulate the SQUID and the flux-locking control electronics, and present specific examples of this approach. Results include an estimate of the slew rate and linearity of a simple flux-locked loop using a characterized dc SQUID.

  13. Turbulent fluxes by "Conditional Eddy Sampling"

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2015-04-01

    for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.

  14. Binary phase locked loops for Omega receivers

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.

    1974-01-01

    An all-digital phase lock loop (PLL) is considered because of a number of problems inherent in an employment of analog PLL. The digital PLL design presented solves these problems. A single loop measures all eight Omega time slots. Memory-aiding leads to the name of this design, the memory-aided phase lock loop (MAPLL). Basic operating principles are discussed and the superiority of MAPLL over the conventional digital phase lock loop with regard to the operational efficiency for Omega applications is demonstrated.

  15. Loop statistics in polymers in crowded environment

    NASA Astrophysics Data System (ADS)

    Haydukivska, K.; Blavatska, V.

    2016-02-01

    We analyze the probability to find a single loop in a long flexible polymer chain in disordered environment in d dimensions. The structural defects are considered to be correlated on large distances r according to a power law ˜r-a. Working within the frames of continuous chain model and applying the direct polymer renormalization scheme, we obtain the values of critical exponents governing the scaling of probabilities to find the loops of various positions along the chain as function of loops' length. Our results quantitatively reveal that the presence of structural defects in environment decreases the probability of loop formation in polymer macromolecules.

  16. Multi-instrument observations of coronal loops

    NASA Astrophysics Data System (ADS)

    Scott, Jason Terrence

    This document exhibits results of analysis from data collected with multiple EUV satellites (SOHO, TRACE, STEREO, Hinode, and SDO). The focus is the detailed observation of coronal loops using multiple instruments, i.e. filter imagers and spectrometers. Techniques for comparing the different instruments and deriving loop parameters are demonstrated. Attention is given to the effects the different instruments may introduce into the data and their interpretation. The assembled loop parameters are compared to basic energy balance equations and scaling laws. Discussion of the blue-shifted, asymmetric, and line broadened spectral line profiles near the footpoints of coronal loops is made. The first quantitative analysis of the anti-correlation between intensity and spectral line broadening for isolated regions along loops and their footpoints is presented. A magnetic model of an active region shows where the separatrices meet the photospheric boundary. At the boundary, the spectral data reveal concentrated regions of increased blue-shifted outflows, blue wing asymmetry, and line broadening. This is found just outside the footpoints of bright loops. The intensity and line broadening in this region are anti-correlated. A comparison of the similarities in the spectroscopic structure near the footpoints of the arcade loops and more isolated loops suggests the notion of consistent structuring for the bright loops forming an apparent edge of an active region core.

  17. EUV spectroscopy of cool stars. III. Interpretation of EUVE spectra in terms of quasi-static loops.

    NASA Astrophysics Data System (ADS)

    van den Oord, G. H. J.; Schrijver, C. J.; Camphens, M.; Mewe, R.; Kaastra, J. S.

    1997-10-01

    We discuss the limitations of coronal spectroscopy to derive physical parameters of stellar magnetic loops. We distinguish between the intrinsic non-uniqueness of emitted spectra for models of quasi-static coronal loops, and the supplemental ambiguity introduced by both instrumental effects and spectral line formation. We demonstrate that the spectrum emitted by loops with constant cross-sections is the same for a large range of values of the conductive flux at the base when the apex temperature is fixed. Because it is impossible to estimate the conductive flux at the base from observations, it is also impossible to determine the volume heating rate and the loop length uniquely. For geometrically expanding (tapered) loops, the emitted spectrum depends on the expansion and on the conductive flux at the base, and there is a trade off between them without significant changes in the spectrum. We show that loop length and heating rate can only be derived if the density is known, but that even then a large intrinsic uncertainty remains for these loop parameters. We conclude that there is no unambiguous relationship between loop parameters and emitted spectra: modeling the spectra as the sum of spectra from discrete loops cannot result in a unique determination of coronal structure. Based on spectra observed with the Extreme Ultra Violet Explorer (EUVE) we find that quasi-static loop models allow adequate modeling of stellar coronal spectra. We show that coronal loops on active cool stars must expand with height. The minimum required areal expansion between base and apex is not very large, lying between 2 and 5. For three stars (α Cen, Capella and ξ UMa) the observations suggest the presence of two distinct, dominant loop populations, while for χ^1^ Ori a single population, characterized by a single apex temperature, suffices. The high electron densities (10^12^-10^13^cm^-3^) for coronal components on Capella and ξ UMa require abnormally large heating rates. It is

  18. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops

    PubMed Central

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a “brain in the loop” using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a “brain-state dynamics” loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a “task dynamics” loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  19. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  20. Closed loop steam cooled airfoil

    SciTech Connect

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  1. Delay locked loop integrated circuit.

    SciTech Connect

    Brocato, Robert Wesley

    2007-10-01

    This report gives a description of the development of a Delay Locked Loop (DLL) integrated circuit (IC). The DLL was developed and tested as a stand-alone IC test chip to be integrated into a larger application specific integrated circuit (ASIC), the Quadrature Digital Waveform Synthesizer (QDWS). The purpose of the DLL is to provide a digitally programmable delay to enable synchronization between an internal system clock and external peripherals with unknown clock skew. The DLL was designed and fabricated in the IBM 8RF process, a 0.13 {micro}m CMOS process. It was designed to operate with a 300MHz clock and has been tested up to 500MHz.

  2. Closing the loop with blur

    NASA Astrophysics Data System (ADS)

    Tani, Jacopo

    A great variety of systems use image sensors to provide measurements for closed loop operation. A drawback of using image sensors in real-time feedback is that they provide measurements at slower sampling rates as compared to the actuators, typically around 30 Hz for CCD cameras, hence acting as the bottleneck for closed loop control bandwidths. While high speed cameras exist, higher frame rates imply an upper bound on exposures which lowers the signal-to-noise-ratio (SNR), reducing measurements accuracy. The integrative nature of image sensors though offers the opportunity to prolong the exposure window and collect motion blurred measurements. This research describes how to exploit the dynamic information of observed system outputs, encoded in motion blur, to control fast systems at the fast rate through slow rate image sensors. In order to achieve this objective it is necessary to (a) design a controller providing fast rate input to the system based on the slow image measurements. Ideally such a controller would require a fast rate estimate of the system's state variables in order to provide the necessary control action, therefore an (b) image blur based estimator is to be developed. State estimators typically need a model of the system in order to provide their estimates, so (c) a system identification problem has to be addressed, where a reliable model describing the frequency content of the system, up to frequencies corresponding to the fast rate, has to be determined through slow rate image sensor measurements. Alternatively when such a procedure is not possible for lack, e.g., of knowledge of the input to the system, then (d) a method to reconstruct the output signal frequency content up to frequencies above those set by the limitations of the sampling theorem is to be devised. Therefore in order to "close the loop with blur", this work describes how to pose and solve the problems of, namely: system identification , state estimation, closed loop control and

  3. Methane Flux of Amazonian Peatland Ecosystems: Large Ecosystem Fluxes with Substantial Contribution from Palm (maritia Flexuosa) STEM Emissions

    NASA Astrophysics Data System (ADS)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2015-12-01

    Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.

  4. The Effects of Including Non-Thermal Particles in Flare Loop Models

    NASA Astrophysics Data System (ADS)

    Reeves, K. K.; Winter, H. D.; Larson, N. L.

    2012-05-01

    In this work, we use HyLoop (Winter et al. 2011), a loop model that can incorporate the effects of both MHD and non-thermal particle populations, to simulate soft X-ray emissions in various situations. First of all, we test the effect of acceleration location on the emission in several XRT filters by simulating a series of post flare loops with different injection points for the non-thermal particle beams. We use an injection distribution peaked at the loop apex to represent a direct acceleration model, and an injection distribution peaked at the footpoints to represent the Alfvén wave interaction model. We find that footpoint injection leads to several early peaks in the apex-to-footpoint emission ratio. Second, we model a loop with cusp-shaped geometry based on the eruption model developed byLin & Forbes (2000) and Reeves & Forbes (2005a), and find that early in the flare, emission in the loop footpoints is much brighter in the XRT filters if non-thermal particles are included in the calculation. Finally, we employ a multi-loop flare model to simulate thermal emission and compare with a previous model where a semi-circular geometry was used (Reeves et al. 2007). We compare the Geostationary Operational Environmental Satellite (GOES) emission from the two models and find that the cusp-shaped geometry leads to a smaller GOES class flare.

  5. Three-loop cusp anomalous dimension and a conjecture for n loops

    NASA Astrophysics Data System (ADS)

    Kidonakis, Nikolaos

    2016-05-01

    I present analytical expressions for the massive cusp anomalous dimension in QCD through three loops, first calculated in 2014, in terms of elementary functions and ordinary polylogarithms. I observe interesting relations between the results at different loops and provide a conjecture for the n-loop cusp anomalous dimension in terms of the lower-loop results. I also present numerical results and simple approximate formulas for the cusp anomalous dimension relevant to top-quark production.

  6. Gauge thresholds in the presence of oblique magnetic fluxes

    NASA Astrophysics Data System (ADS)

    Bianchi, Massimo; Trevigne, Elisa

    2006-01-01

    We compute the one-loop partition function and analyze the conditions for tadpole cancellation in type I theories compactified on tori in the presence of internal oblique magnetic fields. We check open-closed string channel duality and discuss the effect of T-duality. We address the issue of the quantum consistency of the toroidal model with stabilized moduli recently proposed by Antoniadis and Maillard (AM). We then pass to describe the computation of one-loop threshold corrections to the gauge couplings in models of this kind. Finally we briefly comment on coupling unification and dilaton stabilization in phenomenologically more viable models.

  7. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  8. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  9. Atmospheric lepton fluxes

    NASA Astrophysics Data System (ADS)

    Gaisser, Thomas K.

    2015-08-01

    This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  10. Collapse of flux tubes

    NASA Astrophysics Data System (ADS)

    Wilets, L.; Puff, R. D.

    1995-01-01

    The dynamics of an idealized, infinite, MIT-type flux tube is followed in time as the interior evolves from a pure gluon field to a q¯q plasma. We work in color U(1). q¯q pair formation is evaluated according to the Schwinger mechanism using the results of Brink and Pavel. The motion of the quarks toward the tube end caps is calculated by a Boltzmann equation including collisions. The tube undergoes damped radial oscillations until the electric field settles down to zero. The electric field stabilizes the tube against pinch instabilities; when the field vanishes, the tube disintegrates into mesons. There is only one free parameter in the problem, namely the initial flux tube radius, to which the results are very sensitive. Among various quantities calculated is the mean energy of the emitted pions.

  11. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    SciTech Connect

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.

  12. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    SciTech Connect

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints of the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.

  13. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  14. Reconnecting Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; van Compernolle, Bart

    2012-10-01

    Magnetic flux ropes are due to helical currents and form a dense carpet of arches on the surface of the sun. Occasionally one tears loose as a coronal mass ejection and its rope structure is detected by satellites close to the earth. Current sheets can tear into filaments and these are nothing other than flux ropes. Ropes are not static, they exert mutual JxB forces causing them to twist about each other and merge. Kink instabilities cause them to violently smash into each other and reconnect at the point of contact. We report on experiments done in the large plasma device (LAPD) at UCLA (L=17m,dia=60cm,0.3<=B0z<=2.5kG,n˜2x10^12cm-3)on three dimensional flux ropes. Two, three or more magnetic flux ropes are generated from initially adjacent pulsed current channels in a background magnetized plasma. The currents and magnetic fields form exotic shapes with no ignorable direction and no magnetic nulls. Volumetric space-time data show multiple reconnection sites with time-dependent locations. The concept of a quasi-separatrix layer (QSL), a tool to understand 3D reconnection without null points. In our experiment the QSL is a narrow ribbon-like region(s) that twists between field lines. Within the QSL(s) field lines that start close to one another rapidly diverge as they pass through one or more reconnection regions. When the field lines are tracked they are observed to slip along the QSL when reconnection occurs. The Heating and other co-existing waves will be presented.

  15. Heat Flux Sensor Testing

    NASA Technical Reports Server (NTRS)

    Clark, D. W.

    2002-01-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  16. Measurement of the energy content of the JET tokamak plasma with a diamagnetic loop

    NASA Astrophysics Data System (ADS)

    Tonetti, G.; Christiansen, J. P.; de Kock, L.

    1986-08-01

    An accurate and reliable measurement of poloidal β is essential to assess the performances of Joint European Torus (JET). The diamagnetic loop can measure β values as low as 0.1 in JET discharges with a plasma current larger than 2×106 A. The instrumentation used includes a flux loop rigidly fitted on a toroidal field (TF) coil, a large Rogowski coil measuring the TF busbar current, and a displacement gauge measuring the TF coil expansion. The fluxes to be compensated originate, in order of importance, from the TF current, the eddy current in the vessel, the TF coil expansion, and the stray coupling with the poloidal fields. The TF and eddy currents must be particularly well compensated on JET since the plasma current starts before the toroidal field has reached its plateau value. Comparison between the diamagnetic and other evaluations of β shows a good agreement.

  17. Measurement of the energy content of the JET tokamak plasma with a diamagnetic loop

    SciTech Connect

    Tonetti, G.; Christiansen, J.P.; de Kock, L.

    1986-08-01

    An accurate and reliable measurement of poloidal ..beta.. is essential to assess the performances of Joint European Torus (JET). The diamagnetic loop can measure ..beta.. values as low as 0.1 in JET discharges with a plasma current larger than 2 x 10/sup 6/ A. The instrumentation used includes a flux loop rigidly fitted on a toroidal field (TF) coil, a large Rogowski coil measuring the TF busbar current, and a displacement gauge measuring the TF coil expansion. The fluxes to be compensated originate, in order of importance, from the TF current, the eddy current in the vessel, the TF coil expansion, and the stray coupling with the poloidal fields. The TF and eddy currents must be particularly well compensated on JET since the plasma current starts before the toroidal field has reached its plateau value. Comparison between the diamagnetic and other evaluations of ..beta.. shows a good agreement.

  18. Improved methods for the formation and stabilization of R-loops

    PubMed Central

    Kaback, David B.; Angerer, Lynne M.; Davidson, Norman

    1979-01-01

    Improved methods for the formation and stabilization of R-loops for visualization in the electron microscope are presented. The two complementary strands of a duplex DNA are photochemically crosslinked once every 1 to 3 kb using 4, 5', 8 trimethylpsoralen. R-loops are then formed by incubation with RNA in 70% formamide at a temperature above the DNA melting temperature. Finally, the R-loops are stabilized by modifying the free single strand of DNA with glyoxal, thus minimizing the displacement of the hybridized RNA by branch migration. In this manner R-loops can be formed and visualized at a high frequency irrespective of the base composition of the nucleic acid of interest. Images PMID:379821

  19. A novel double loop control model design for chemical unstable processes.

    PubMed

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. PMID:24309506

  20. Frequency multiplying optoelectronic oscillator based on nonlinearly-coupled double loops.

    PubMed

    Xu, Wei; Jin, Tao; Chi, Hao

    2013-12-30

    We propose and demonstrate a frequency multiplying optoelectronic oscillator with nonlinearly-coupled double loops based on two cascaded Mach-Zehnder modulators, to generate high frequency microwave signals using only low-frequency devices. We find the final oscillation modes are only determined by the length of the master oscillation loop. Frequency multiplying signals are generated via nonlinearly-coupled double loops, the output of one loop being used to modulate the other. In the experiments, microwave signals at 10 GHz with -121 dBc/Hz phase noise at 10 kHz offset and 20 GHz with -112.8 dBc/Hz phase noise at 10 kHz offset are generated. Meanwhile, their side-mode suppression ratios are also evaluated and the maximum ratio of 70 dB is obtained. PMID:24514845

  1. The complete one-loop dilatation operator of planar real β-deformed = 4 SYM theory

    NASA Astrophysics Data System (ADS)

    Fokken, Jan; Sieg, Christoph; Wilhelm, Matthias

    2014-07-01

    We determine the missing finite-size corrections to the asymptotic one-loop dilatation operator of the real β-deformed = 4 SYM theory for the gauge groups U( N) and SU( N) in the 't Hooft limit. In the SU( N) case, the absence of the U(1) field components leads to a new kind of finite-size effect, which we call prewrapping. We classify which states are potentially affected by prewrapping at generic loop orders and comment on the necessity to include it into the integrability-based description. As a further result, we identify classes of n-point correlation functions which at all loop orders in the planar theory are given by the values of their undeformed counterparts. Finally, we determine the superconformal multiplet structure and one-loop anomalous dimensions of all single-trace states with classical scaling dimension Δ0 ≤ 4.5.

  2. Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells.

    PubMed

    Priest, David G; Kumar, Sandip; Yan, Yan; Dunlap, David D; Dodd, Ian B; Shearwin, Keith E

    2014-10-21

    Eukaryotic gene regulation involves complex patterns of long-range DNA-looping interactions between enhancers and promoters, but how these specific interactions are achieved is poorly understood. Models that posit other DNA loops--that aid or inhibit enhancer-promoter contact--are difficult to test or quantitate rigorously in eukaryotic cells. Here, we use the well-characterized DNA-looping proteins Lac repressor and phage λ CI to measure interactions between pairs of long DNA loops in E. coli cells in the three possible topological arrangements. We find that side-by-side loops do not affect each other. Nested loops assist each other's formation consistent with their distance-shortening effect. In contrast, alternating loops, where one looping element is placed within the other DNA loop, inhibit each other's formation, thus providing clear support for the loop domain model for insulation. Modeling shows that combining loop assistance and loop interference can provide strong specificity in long-range interactions. PMID:25288735

  3. Flow and Heat Transfer Characteristics in a Closed-Type Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Saito, Yuji; Fujimoto, Hiromitsu

    A closed-loop two-phase thermosyphon can transport a large amount of thermal energy with small temperature differences without any external power supply. A fundamental investigation of flow and heat transfer characteristics was performed experimentally and theoretically using water, ethanol and R113 as the working liquids. Heat transfer coefficients in an evaporator and a condenser, and circulation flow rates were measured experimentally. The effects of liquid fill charge, rotation angle, pressure in the loop and heat flux on the heat transfer coefficients were examined. The heat transfer coefficients in the evaporator and the condenser were correlated by the expressions for pool boiling and film condensation respectively. As a result, the heat transfer coefficients in the evaporator were correlated by the Stephan-Abdelsalam equations within a±40% error. Theoretically, the circulation flow rate was predicted by calculating pressure, temperature, quality and void fraction along the loop. And, the comparison between the calculated and experimental results was made.

  4. Transmantle flux tectonics

    NASA Technical Reports Server (NTRS)

    Finn, V. J.; Dolginov, A. Z.; Baker, V. R.

    1993-01-01

    Venus, Earth, and Mars have surfaces that display topographic domes and depressions with quasi-circular planimetric shapes, relief of 0 to several km, and large spatial scales (10(exp 2) to 10(exp 4) km). Our morphostructural mapping reveals hierarchical arrangements of these features. They are explained by a model of long-acting mantle convection, as a particular case of convection in a stratified and random inhomogeneous medium, which develops the form of a hierarchy of different convective pattern scales, each arising from different levels in the mantle. The hypothesis of transmantle flux tectonics parsimoniously explains a diversity of seemingly unrelated terrestrial planetary phenomena, including Earth megaplumes, global resurfacing epochs on Venus, and cyclic ocean formation and global climate change for Mars. All these phenomenon are hypothesized to be parsimoniously explained by a process of transmantle flux tectonics in which long-acting mantle convection generates stresses in blocks of planetary lithosphere to produce distinctive quasi-circular global-hierarchical morphostructure (QGM) patterns. Transmantle flux tectonics differs from plume tectonics in that individual plumes are not considered in isolation. Rather, a wholly interactive process is envisioned in which various spatial and temporal scales of convection operate contemporaneously and hierarchically within other scales. This process of continual change by hierarchical convective cells affects the surface at varying temporal and spatial scales, and its effects are discernable through their relic geological manifestations, the QGM patterns.

  5. Mechanism of a high-Tc superconducting flux pump: Using alternating magnetic field to trigger flux flow

    NASA Astrophysics Data System (ADS)

    Geng, Jianzhao; Coombs, T. A.

    2015-10-01

    High-Tc Superconducting (HTS) magnets operating in persistent current mode suffer a current decay due to flux creep of superconductor and joint resistance. Flux pumps are able to inject direct current into superconducting circuit to compensate the current decay, without the thermal loss caused by current leads. In this work, we proposed a flux pumping mechanism for HTS coils, with an experimental verification and an analytical model. The basic principle we have used is that flux flow can be triggered when the superconductor carrying a direct current is subjected to a perpendicular AC magnetic field. Low frequency alternating current is induced in a loop of YBCO tape using an AC field. A portion of the tape which we refer to as the "bridge" shorts a superconducting coil. A high frequency AC field is applied perpendicular to the bridge tape when alternating current in the tape reaches one polarity. This triggers a net flux flow and results in a current increase in the coil. The proposed flux pump has clear physics and is easily controllable, which may make it promising in practical use.

  6. Loop-Loop Interactions Regulate KaiA-Stimulated KaiC Phosphorylation in the Cyanobacterial KaiABC Circadian Clock

    SciTech Connect

    Egli, Martin; Pattanayek, Rekha; Sheehan, Jonathan H.; Xu, Yao; Mori, Tetsuya; Smith, Jarrod A.; Johnson, Carl H.

    2013-01-25

    We found that the Synechococcus elongatus KaiA, KaiB, and KaiC proteins in the presence of ATP generate a post-translational oscillator that runs in a temperature-compensated manner with a period of 24 h. KaiA dimer stimulates phosphorylation of KaiC hexamer at two sites per subunit, T432 and S431, and KaiB dimers antagonize KaiA action and induce KaiC subunit exchange. Neither the mechanism of KaiA-stimulated KaiC phosphorylation nor that of KaiB-mediated KaiC dephosphorylation is understood in detail at present. We demonstrate here that the A422V KaiC mutant sheds light on the former mechanism. It was previously reported that A422V is less sensitive to dark pulse-induced phase resetting and has a reduced amplitude of the KaiC phosphorylation rhythm in vivo. A422 maps to a loop (422-loop) that continues toward the phosphorylation sites. By pulling on the C-terminal peptide of KaiC (A-loop), KaiA removes restraints from the adjacent 422-loop whose increased flexibility indirectly promotes kinase activity. We found in the crystal structure that A422V KaiC lacks phosphorylation at S431 and exhibits a subtle, local conformational change relative to wild-type KaiC. Molecular dynamics simulations indicate higher mobility of the 422-loop in the absence of the A-loop and mobility differences in other areas associated with phosphorylation activity between wild-type and mutant KaiCs. Finally, the A-loop–422-loop relay that informs KaiC phosphorylation sites of KaiA dimer binding propagates to loops from neighboring KaiC subunits, thus providing support for a concerted allosteric mechanism of phosphorylation.

  7. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  8. Witten's loop in the flipped SU(5) unification

    SciTech Connect

    Malinský, Michal; Rodríguez, Carolina Arbeláez

    2014-06-24

    We study a very simple, yet potentially realistic renormalizable flipped SU(5) scenario in which the right-handed neutrino masses are generated at very high energies by means of a two-loop diagram similar to that identified by E. Witten in the early 1980's in the SO(10) GUT framework. This mechanism leaves its traces in the baryon number violating signals such as the proton decay, especially in the 'clean' channels with a charged lepton and a neutral meson in the final state.

  9. Loop calculus for lattice gauge theories

    SciTech Connect

    Gambini, R.; Leal, L.; Trias, A.

    1989-05-15

    Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(/ital N/) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2.

  10. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  11. The Cygnus Loop: An Older Supernova Remnant.

    ERIC Educational Resources Information Center

    Straka, William

    1987-01-01

    Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)

  12. Resonant loop antenna design with a 2-D steady state analysis

    SciTech Connect

    Chen, G.I.; Ryan, P.M.; Hoffman, D.J.; Baity, F.W.; Swain, D.W.; Whealton, J.H.

    1987-01-01

    Evaluation of resonant loop antenna designs for ICRF heating of plasmas requires information concerning the electrical characteristics of the structure. Our 2-D steady state model described herein provides us with current strap inductance and capacitance, surface current distributions, and flux linkage to the plasma. These are used to determine the current and voltage requirements, ohmic dissipation, frequency limits and matching requirements, maximum electric fields, and plasma loading in order to compare antenna designs.

  13. Software applications for flux balance analysis.

    PubMed

    Lakshmanan, Meiyappan; Koh, Geoffrey; Chung, Bevan K S; Lee, Dong-Yup

    2014-01-01

    Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to operational environment, user-interface and supported analysis algorithms. Presented herein is an in-depth evaluation of currently available FBA applications, focusing mainly on usability, functionality, graphical representation and inter-operability. Overall, most of the applications are able to perform basic features of model creation and FBA simulation. COBRA toolbox, OptFlux and FASIMU are versatile to support advanced in silico algorithms to identify environmental and genetic targets for strain design. SurreyFBA, WEbcoli, Acorn, FAME, GEMSiRV and MetaFluxNet are the distinct tools which provide the user friendly interfaces in model handling. In terms of software architecture, FBA-SimVis and OptFlux have the flexible environments as they enable the plug-in/add-on feature to aid prospective functional extensions. Notably, an increasing trend towards the implementation of more tailored e-services such as central model repository and assistance to collaborative efforts was observed among the web-based applications with the help of advanced web-technologies. Furthermore, most recent applications such as the Model SEED, FAME, MetaFlux and MicrobesFlux have even included several routines to facilitate the reconstruction of genome-scale metabolic models. Finally, a brief discussion on the future directions of FBA applications was made for the benefit of potential tool developers. PMID:23131418

  14. Magnetically coupled quantum-flux-latch with wide operation margins

    NASA Astrophysics Data System (ADS)

    Tsuji, Naoki; Takeuchi, Naoki; Narama, Tatsuya; Ortlepp, Thomas; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-11-01

    We have been developing adiabatic quantum-flux-parametron (AQFP) circuits as an ultra-low-power superconductor logic for energy-efficient computing. In a previous study, we proposed and demonstrated a quantum-flux-latch (QFL), which is a compact and compatible latch for AQFP logic. The QFL is composed of an AQFP buffer gate and a storage loop, which are directly connected to each other. However, the operation margins were not sufficiently wide due to a trade-off between the operation margins of the storage loop and that of the buffer gate. In this present study, we propose a magnetically coupled QFL (MC-QFL), where the storage loop and the buffer gate are physically separated and magnetically coupled to each other to eliminate the trade-off in the operation margins. The simulation results showed that the critical parameter margin of the MC-QFL is twice as large as that of the previously designed QFL. For comparison, we fabricated and demonstrated both the previously designed QFL and the newly designed MC-QFL. The measurement results showed that the MC-QFL has wider operation margins compared with the previously designed QFL.

  15. Cross correlation of thermal flux noise in layered superconductors

    SciTech Connect

    Ashkenazy, V.D.; Jung, G. |; Shapiro, B.Y. |

    1996-10-01

    Cross correlation in the magnetic flux noise due to thermally activated movements of pancake vortices in strongly anisotropic layered superconductors has been investigated theoretically. It has been shown that there exists a crossover frequency, inversely proportional to the sample thickness, below which vortices behave as rigid rods and their ends move coherently on the opposite sides of the sample. At low frequencies, the cross-correlation spectrum is identical to the spectrum measured at each side of the sample. The cross-correlation spectrum demonstrates two regimes of behavior, separated by a characteristic frequency which depends on the geometry of the flux measuring loop. At high frequencies above the crossover frequency, the excitations of the elastic lattice modes lead to exponentially vanishing oscillations of the cross-correlation spectra. Pancake movements became incoherent and the correlation function decays, accompanied by the oscillations. The oscillations are most pronounced for the separation between pickup loops smaller than the sample thickness. In a typical experimental configuration with pickup loops located on the sample surface, the oscillations constitute only small perturbations to the dominating powerlike decay of the correlation function. {copyright} {ital 1996 The American Physical Society.}

  16. Heat Transfer in a Two-Phase Closed-Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Saito, Yuji

    A two-phase closed-loop thermosyphon is a device which transports heat energy from a heat source to a sink under the body force field and has many practical applications. The critical heat flux of this thermosyphon is larger than that of a non-loop thermosyphon, because the flooding phenomenon occurring in the no-loop one does not occur. In addition, there is another merit that the evaporator and the condencer can be installed in comparatively arbitrary position because these are interconnected by piping. In most previous investigations of the two-phase closed-loop thermosyphons, overall heat resistances were measured. The overall heat resistance, however, consists of three heat resistances; the heat resistances in the evaporator and the condenser, and the transport resistance in the interconnecting pipe. Therefore, we should consider these heat resistances separately. In the present study, we took note of the heat resistances (or heat transfer coefficients) of the evaporator and the condenser. The experiment was performed using two experimental setups and three kinds of test liquid. And, the effects of rotation angle, heat flux, inside temperature (or inside pressure) and liquid charge on the heat transfer coefficients were investigated.

  17. Direct observations of plasma upflows and condensation in a catastrophically cooling solar transition region loop

    SciTech Connect

    Orange, N. B.; Chesny, D. L.; Oluseyi, H. M.; Hesterly, K.; Patel, M.; Champey, P.

    2013-12-01

    Minimal observational evidence exists for fast transition region (TR) upflows in the presence of cool loops. Observations of such occurrences challenge notions of standard solar atmospheric heating models as well as their description of bright TR emission. Using the EUV Imaging Spectrometer on board Hinode, we observe fast upflows (v {sub λ} ≤ –10 km s{sup –1}) over multiple TR temperatures (5.8 ≤log T ≤ 6.0) at the footpoint sites of a cool loop (log T ≤ 6.0). Prior to cool loop energizing, asymmetric flows of +5 km s{sup –1} and –60 km s{sup –1} are observed at footpoint sites. These flows, speeds, and patterns occur simultaneously with both magnetic flux cancellation (at the site of upflows only) derived from the Solar Dynamics Observatory's Helioseismic Magnetic Imager's line-of-sight magnetogram images, and a 30% mass influx at coronal heights. The incurred non-equilibrium structure of the cool loop leads to a catastrophic cooling event, with subsequent plasma evaporation indicating that the TR is the heating site. From the magnetic flux evolution, we conclude that magnetic reconnection between the footpoint and background field is responsible for the observed fast TR plasma upflows.

  18. Chemical Looping Combustion Reactions and Systems

    SciTech Connect

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    , they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  19. Loop polymer brushes from polymer single crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Li, Christopher

    2014-03-01

    Loop polymer brushes represent a category of polymer brushes with both chain ends being tethered to a surface or interface with sufficiently high density. Due to this morphological difference, loop brushes exhibit distinct properties compared with traditional polymer brushes with single chain end being tethered. In our study, α, ω-functionalized polycaprolactone (PCL) single crystals were prepared as templates for polymer brush synthesis. By carefully controlling crystallization condition and immobilization, looped polymer brushes were successfully prepared. Comprehensive studies on the morphology and physical properties of these polymer brushes were carried out using Atomic Force Microscopy and FTIR. Advantages of using this method include exclusive loop morphology, high grafting density, controlled tethering sites and tunable loop size.

  20. MPO B593110 - Final Report

    SciTech Connect

    Brooksby, C

    2011-07-25

    National Security Technologies, LLC (NSTec) shall provide one (1) Mechanical Engineer to support the Linear Collider Subsystem Development Program at Lawrence Livermore National Security, LLC (LLNS). The NSTec Mechanical Engineer's efforts will include engineering, design, and drawing support for the Vacuum Seal Test. NSTec will also provide a final report of the setup and input to LLNL's project management on project status. The NSTec Mechanical Engineer's efforts will also include engineering, design, and drawing support to the conceptual design for manufacturing of the Flux Concentrator Magnet. NSTec will also contribute to LLNS's final report on the Flux Concentrator Magnet. The deliverables are drawings, sketches, engineering documents, and final reports delivered to the LLNS Technical Representative.

  1. Genomic looping: a key principle of chromatin organization.

    PubMed

    van der Valk, Ramon A; Vreede, Jocelyne; Crémazy, Frédéric; Dame, Remus T

    2014-01-01

    The effective volume occupied by the genomes of all forms of life far exceeds that of the cells in which they are contained. Therefore, all organisms have developed mechanisms for compactly folding and functionally organizing their genetic material. Through recent advances in fluorescent microscopy and 3C-based technologies, we finally have a first glimpse into the complex mechanisms governing the 3-D folding of genomes. A key feature of genome organization in all domains of life is the formation of DNA loops. Here, we describe the main players in DNA organization with a focus on DNA-bridging proteins. Specifically, we discuss the properties of the bacterial DNA-bridging protein H-NS. Via two different modes of binding to DNA, this protein is a key driver of bacterial genome organization and provides a link between 3-D organization and transcription regulation. Importantly, H-NS function is modulated in response to environmental cues, which are translated into adapted gene expression patterns. We delve into the mechanisms underlying DNA looping and explore the complex and subtle modulation of these diverse, yet difficult-to-study, structures. DNA looping is universal and a conserved mechanism of genome organization throughout all domains of life. PMID:25732337

  2. Hard matching for boosted tops at two loops

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Pathak, Aditya; Pietrulewicz, Piotr; Stewart, Iain W.

    2015-12-01

    Cross sections for top quarks provide very interesting physics opportunities, being both sensitive to new physics and also perturbatively tractable due to the large top quark mass. Rigorous factorization theorems for top cross sections can be derived in several kinematic scenarios, including the boosted regime in the peak region that we consider here. In the context of the corresponding factorization theorem for e + e - collisions we extract the last missing ingredient that is needed to evaluate the cross section differential in the jet-mass at two-loop order, namely the matching coefficient at the scale μ≃ m t . Our extraction also yields the final ingredients needed to carry out logarithmic re-summation at next-to-next-to-leading logarithmic order (or N3LL if we ignore the missing 4-loop cusp anomalous dimension). This coefficient exhibits an amplitude level rapidity logarithm starting at O({α}_s^2) due to virtual top quark loops, which we treat using rapidity renormalization group (RG) evolution. Interestingly, this rapidity RG evolution appears in the matching coefficient between two effective theories around the heavy quark mass scale μ ≃ m t .

  3. Coronal loop detection and salient contour group extraction from solar images

    NASA Astrophysics Data System (ADS)

    Durak, Nurcan

    2011-01-01

    This dissertation addresses two different problems: 1) coronal loop detection from solar images: and 2) salient contour group extraction from cluttered images. In the first part, we propose two different solutions to the coronal loop detection problem. The first solution is a block-based coronal loop mining method that detects coronal loops from solar images by dividing the solar image into fixed sized blocks, labeling the blocks as "Loop" or "Non-Loop", extracting features from the labeled blocks, and finally training classifiers to generate learning models that can classify new image blocks. The block-based approach achieves 64% accuracy in 10-fold cross validation experiments. To improve the accuracy and scalability, we propose a contour-based coronal loop detection method that extracts contours from cluttered regions, then labels the contours as "Loop" and "Non-Loop", and extracts geometric features from the labeled contours. The contour-based approach achieves 85% accuracy in 10-fold cross validation experiments, which is a 20% increase compared to the block-based approach. In the second part, we propose a method to extract semi-elliptical open curves from cluttered regions. Our method consists of the following steps: obtaining individual smooth contours along with their saliency measures; then starting from the most salient contour, searching for possible grouping options for each contour; and continuing the grouping until an optimum solution is reached. Our work involved the design and development of a complete system for coronal loop mining in solar images, which required the formulation of new Gestalt perceptual rules and a systematic methodology to select and combine them in a fully automated judicious manner using machine learning techniques that eliminate the need to manually set various weight and threshold values to define an effective cost function. After finding salient contour groups, we close the gaps within the contours in each group and perform

  4. Design of set-point weighting PI{sup λ} + D{sup μ} controller for vertical magnetic flux controller in Damavand tokamak

    SciTech Connect

    Rasouli, H.; Fatehi, A.

    2014-12-15

    In this paper, a simple method is presented for tuning weighted PI{sup λ} + D{sup μ} controller parameters based on the pole placement controller of pseudo-second-order fractional systems. One of the advantages of this controller is capability of reducing the disturbance effects and improving response to input, simultaneously. In the following sections, the performance of this controller is evaluated experimentally to control the vertical magnetic flux in Damavand tokamak. For this work, at first a fractional order model is identified using output-error technique in time domain. For various practical experiments, having desired time responses for magnetic flux in Damavand tokamak, is vital. To approach this, at first the desired closed loop reference models are obtained based on generalized characteristic ratio assignment method in fractional order systems. After that, for the identified model, a set-point weighting PI{sup λ} + D{sup μ} controller is designed and simulated. Finally, this controller is implemented on digital signal processor control system of the plant to fast/slow control of magnetic flux. The practical results show appropriate performance of this controller.

  5. A communication scheme for the distrubted execution of loop nests with while loops

    SciTech Connect

    Griebl, M.; Lengauer, C.

    1995-10-01

    The mathematical model for the parallelization, or {open_quotes}space-time mapping,{close_quotes} of loop nests is the polyhedron model. The presence of while loops in the nest complicates matters for two reasons: (1) the parallelized loop nest does not correspond to a polyhedron but instead to a subset that resembles a (multi-dimensional) comb and (2) it is not clear when the entire loop nest has terminated. We describe a communication scheme which can deal with both problems and which can be added to the parallel target loop nest by a compiler.

  6. Loop heat pipes and capillary pumped loops-an applications perspective

    NASA Astrophysics Data System (ADS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore

    2002-01-01

    Capillary pumped loops (CPLs) and loop heat pipes (LHPs) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed. .

  7. Gas Test Loop Facilities Alternatives Assessment Report Rev 1

    SciTech Connect

    William J. Skerjanc; William F. Skerjanc

    2005-07-01

    An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL.

  8. Stabilization of moduli by fluxes

    SciTech Connect

    Behrndt, Klaus

    2004-12-10

    In order to fix the moduli, non-trivial fluxes might the essential input. We summarize different aspects of compactifications in the presence of fluxes, as there is the relation to generalized Scherk-Schwarz reductions and gauged supergravity but also the description of flux-deformed geometries in terms of G-structures and intrinsic torsion.

  9. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  10. Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells

    PubMed Central

    Priest, David G.; Kumar, Sandip; Yan, Yan; Dunlap, David D.; Dodd, Ian B.; Shearwin, Keith E.

    2014-01-01

    Eukaryotic gene regulation involves complex patterns of long-range DNA-looping interactions between enhancers and promoters, but how these specific interactions are achieved is poorly understood. Models that posit other DNA loops—that aid or inhibit enhancer–promoter contact—are difficult to test or quantitate rigorously in eukaryotic cells. Here, we use the well-characterized DNA-looping proteins Lac repressor and phage λ CI to measure interactions between pairs of long DNA loops in E. coli cells in the three possible topological arrangements. We find that side-by-side loops do not affect each other. Nested loops assist each other’s formation consistent with their distance-shortening effect. In contrast, alternating loops, where one looping element is placed within the other DNA loop, inhibit each other’s formation, thus providing clear support for the loop domain model for insulation. Modeling shows that combining loop assistance and loop interference can provide strong specificity in long-range interactions. PMID:25288735

  11. Optimal flux patterns in cellular metabolic networks

    SciTech Connect

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  12. Optimal flux patterns in cellular metabolic networks

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind

    2007-06-01

    The availability of whole-cell-level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate the metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30 000 random cellular environments. The distribution of reaction fluxes is heavy tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations has relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reactions are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central carbon metabolic pathways for the sample of random environments.

  13. Measurement of the Magnetic Flux Noise Spectrum in Superconducting Xmon Transmon Quantum Bits

    NASA Astrophysics Data System (ADS)

    Chiaro, Ben; Sank, D.; Kelly, J.; Chen, Z.; Campbell, B.; Dunsworth, A.; O'Malley, P.; Neill, C.; Quintana, C.; Vainsencher, A.; Wenner, J.; Barends, R.; Chen, Y.; Fowler, A.; Jeffrey, E.; Migrant, A.; Mutus, J.; Roushan, P.; White, T.; Martinis, J. M.

    Dephasing induced by magnetic flux noise limits the performance of modern superconducting quantum processors. We measure the flux noise power spectrum in planar, frequency-tunable, Xmon transmon quantum bits (qubits), with several SQUID loop geometries. We extend the Ramsey Tomography Oscilloscope (RTO) technique by rapid sampling up to 1 MHz, without state reset, to measure the flux noise power spectrum between 10-2 and 105 Hz. The RTO measurements are combined with idle gate randomized benchmarking and Ramsey decay to give a more complete picture of dephasing in SQUID-based devices.

  14. Development of heat flux sensors for turbine airfoils

    NASA Astrophysics Data System (ADS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  15. Development of heat flux sensors for turbine airfoils

    NASA Technical Reports Server (NTRS)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  16. Poloidal flux linkage requirements for the International Thermonuclear Experimental Reactor

    SciTech Connect

    Jardin, S.C.; Kessel, C.; Pomphrey, N.

    1994-01-01

    We have applied two computational models to calculate the poloidal flux linkage requirements for the current ramp-up and for the flattop phase of the proposed International Thermonuclear Experimental Reactor (ITER). For the current ramp-up phase, we have used the TSC code to simulate the entire current ramp-up period as described in the TAC-3 Physics Report. We have extended the time of the simulation to cover the full current penetration time, that is, until the loop voltage is a constant throughout the plasma. Sensitivity studies have been performed with respect to current ramp-up time, impurity concentration, and to the time of onset of auxiliary heating. We have also used a steady state plasma equilibrium code that has the constant loop voltage constraint built in to survey the dependence of the steady state loop-voltage on the density and temperature profiles. This calculation takes into account the plasma bootstrap current contribution, including non-circular and collisional corrections. The results can be displayed as contours of the loop-voltage on a POPCON like diagram.

  17. Thermal flux transfer system

    NASA Technical Reports Server (NTRS)

    Freggens, R. A. (Inventor)

    1973-01-01

    A thermal flux transfer system for use in maintaining the thrust chamber of an operative reaction motor at given temperatures is described. The system is characterized by an hermetically sealed chamber surrounding a thrust chamber to be cooled, with a plurality of parallel, longitudinally spaced, disk-shaped wick members formed of a metallic mesh and employed in delivering a working fluid, in its liquid state, radially toward the thrust chamber and delivering the working fluid, in its vapor state, away from the nozzle for effecting a cooling of the nozzle, in accordance with known principles of an operating heat pipe.

  18. High flux reactor

    DOEpatents

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  19. Magnetic Cycles and Buoyant Loops in Convective Dynamos

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas J.

    2013-01-01

    Solar-type stars display a rich spectrum of magnetic activity. Seeking to explore convective dynamo action in solar-like stars with the anelastic spherical harmonic (ASH) code, we have carried out a series of global 3-D MHD simulations. Here we report on the dynamo mechanisms realized in a series of numerical models of a sun-like star which explore the effects of decreasing diffusion. While these models nominally rotate at three times the current solar rate (3Ω), the results may be more widely applicable as both these simulations and the solar convection zone achieve similar levels of rotationally constrained convection. Previous simulations at 3Ω have shown that convective dynamos can build persistent wreath-like structures of strong toroidal magnetic field in the convection zone (Brown et al. 2010). Here we find that magnetic reversals and cycles can be realized at 3Ω by decreasing the explicit diffusion and thereby making the resolved flows more turbulent. In these more turbulent models, diffusive processes no longer play a primary role in the key dynamical balances which maintain differential rotation and generate the global-scale wreaths. With reduced resistive diffusion of magnetic fields, the axisymmetric poloidal fields can no longer achieve a steady state and this triggers reversals in global magnetic polarity. Additionally, the enhanced levels of turbulence lead to greater intermittency in the toroidal magnetic wreaths, which can create buoyant magnetic loops that rise from the deep interior to the upper regions of our simulated domain. Turbulence-enabled magnetic buoyancy in our most turbulent simulation yields large numbers of buoyant loops, enabling us to examine the distribution of the characteristics of buoyant magnetic loops, such as twist, tilt angle, and relation to axisymmetric fields. These models provide a pathway towards linking convective dynamo models and the emergence of magnetic flux in the Sun and sun-like stars.

  20. Towards conformal loop quantum gravity

    NASA Astrophysics Data System (ADS)

    H-T Wang, Charles

    2006-03-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity.

  1. Direct Demonstration That Loop1 of Scap Binds to Loop7: A CRUCIAL EVENT IN CHOLESTEROL HOMEOSTASIS.

    PubMed

    Zhang, Yinxin; Lee, Kwang Min; Kinch, Lisa N; Clark, Lindsay; Grishin, Nick V; Rosenbaum, Daniel M; Brown, Michael S; Goldstein, Joseph L; Radhakrishnan, Arun

    2016-06-10

    Cholesterol homeostasis is mediated by Scap, a polytopic endoplasmic reticulum (ER) protein that transports sterol regulatory element-binding proteins from the ER to Golgi, where they are processed to forms that activate cholesterol synthesis. Scap has eight transmembrane helices and two large luminal loops, designated Loop1 and Loop7. We earlier provided indirect evidence that Loop1 binds to Loop7, allowing Scap to bind COPII proteins for transport in coated vesicles. When ER cholesterol rises, it binds to Loop1. We hypothesized that this causes dissociation from Loop7, abrogating COPII binding. Here we demonstrate direct binding of the two loops when expressed as isolated fragments or as a fusion protein. Expressed alone, Loop1 remained intracellular and membrane-bound. When Loop7 was co-expressed, it bound to Loop1, and the soluble complex was secreted. A Loop1-Loop7 fusion protein was also secreted, and the two loops remained bound when the linker between them was cleaved by a protease. Point mutations that disrupt the Loop1-Loop7 interaction prevented secretion of the Loop1-Loop7 fusion protein. These data provide direct documentation of intramolecular Loop1-Loop7 binding, a central event in cholesterol homeostasis. PMID:27068746

  2. PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier

    2012-05-01

    Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not

  3. The Four-loop Six-gluon NMHV Ratio Function

    SciTech Connect

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2015-09-29

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N = 4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q- differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result against multi- Regge predictions at NNLL and N3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We also study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. Furthermore, we provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.

  4. EBTEL: Enthalpy-Based Thermal Evolution of Loops

    NASA Astrophysics Data System (ADS)

    Klimchuk, J. A.; Patsourakos, S.; Cargill, P. J.

    2012-03-01

    Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It treats both slowly varying and highly impulsive coronal heating; it provides the differential emission measure distribution, DEM(T), at the transition region footpoints; and there are options for heat flux saturation and nonthermal electron beam heating. EBTEL gives excellent agreement with far more sophisticated 1D hydro simulations despite using four orders of magnitude less computing time. It promises to be a powerful new tool for solar and stellar studies.

  5. The four-loop six-gluon NMHV ratio function

    DOE PAGESBeta

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N=4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q¯ differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result againstmore » multi-Regge predictions at NNLL and N3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. As a result, we also provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.« less

  6. SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS

    SciTech Connect

    Berger, Mitchell A.; Asgari-Targhi, Mahboubeh E-mail: m.asgari@ucl.ac.u

    2009-11-01

    The Parker model for heating of the solar corona involves reconnection of braided magnetic flux elements. Much of this braiding is thought to occur at as yet unresolved scales, for example, braiding of threads within an extreme-ultraviolet or X-ray loop. However, some braiding may be still visible at scales accessible to TRACE or Hinode. We suggest that attempts to estimate the amount of braiding at these scales must take into account the degree of coherence of the braid structure. In this paper, we examine the effect of reconnection on the structure of a braided magnetic field. We demonstrate that simple models of braided magnetic fields which balance the input of topological structure with reconnection evolve to a self-organized critical state. An initially random braid can become highly ordered, with coherence lengths obeying power-law distributions. The energy released during reconnection also obeys a power law. Our model gives more frequent (but smaller) energy releases nearer to the ends of a coronal loop.

  7. Porous Foam Based Wick Structures for Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  8. Transient boiling in two-phase helium natural circulation loops

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2014-01-01

    Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.

  9. Optimizing laboratory-based radon flux measurements for sediments.

    PubMed

    Chanyotha, Supitcha; Kranrod, Chutima; Kritsananuwat, Rawiwan; Lane-Smith, Derek; Burnett, William C

    2016-07-01

    Radon flux via diffusion from sediments and other materials may be determined in the laboratory by circulating air through the sample and a radon detector in a closed loop. However, this approach is complicated by the necessity of having to determine the total air volume in the system and accounting for any small air leaks that can arise if using extended measurement periods. We designed a simple open-loop configuration that includes a measured mass of wet sediment and water inside a gas-tight reaction flask connected to a drying system and a radon-in-air analyzer. Ambient air flows through two charcoal columns before entering the reaction vessel to eliminate incoming radon. After traveling through the reaction flask, the air passes the drier and the radon analyzer and is then vented. After some time, the radon activity will reach a steady state depending upon the airflow rate. With this approach, the radon flux via diffusion is simply the product of the steady-state radon activity (Bq/m(3)) multiplied by the airflow rate (mL/min). We demonstrated that this setup could produce good results for materials that produce relatively high radon fluxes. We also show that a modified closed system approach, including radon removal of the incoming air by charcoal filtration in a bypass, can produce very good results including samples with very low emission rates. PMID:27064564

  10. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  11. Temperature Analysis of Coronal Loop Cross-Sections: Monolithic vs. Nanoflare Heating

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Boerner, P.

    2011-05-01

    We present a first systematic study on the cross-sectional temperature structure of coronal loops using the six coronal temperature filters of the Atmospheric Imaging Assembly (AIA) instrument on the Solar Dynamics Observatory (SDO). We analyze a sample of 100 loop snapshots measured at 10 different locations and 10 different times in active region NOAA 11089 on 2010 July 24, 21:00-22:00 UT. The cross-sectional flux profiles are measured and a cospatial background is subtracted in 6 filters in a temperature range of T ≈ 0.5-16 MK, and 4 different parameterizations of differential emission measure (DEM) distributions are fitted. We find that the reconstructed DEMs consist predominantly of narrowband peak temperature components with a thermal width of σlog(T) ≤ 0.11±0.02, close to the temperature resolution limit of the instrument, consistent with earlier triple-filter analysis from TRACE by Aschwanden and Nightingale (2005) and from EIS/Hinode by Warren et al. (2008) or Tripathi et al. (2009). We find that 66% of the loops could be fitted with a narrowband single-Gaussian DEM model, and 19% with a DEM consisting of two narrowband Gaussians (which mostly result from pairs of intersecting loops along the same line-of-sight). The mostly isothermal loop DEMs allow us also to derive an improved empirical response function of the AIA 94 [[Unable to Display Character: Ǻ

  12. Global Sausage Oscillation of Solar Flare Loops Detected by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Tian, Hui; Young, Peter R.; Reeves, Katharine K.; Wang, Tongjiang; Antolin, Patrick; Chen, Bin; He, Jiansen

    2016-05-01

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites (GOES). With an estimated phase speed of ∼2420 km s‑1 and a derived electron density of at least 5.4 × 1010 cm‑3, the observed short-period oscillation is most likely the global fast sausage mode of a hot flare loop. We find a phase shift of ∼π/2 (1/4 period) between the Doppler shift oscillation and the intensity/GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.

  13. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  14. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K.; Patsourakos, S.; Anastasiadis, A.

    2013-07-10

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  15. Effects of Mn addition on dislocation loop formation in A533B and model alloys

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Masaki, S.; Masubuchi, S.; Yoshida, N.; Dohi, K.

    2013-08-01

    It is well known that the radiation hardening or embrittlement of pressure vessel steels is very sensitive to the contents of minor solutes. To study the effect of dislocation loop formation on radiation hardening in these steels, in situ observation using a high-voltage electron microscope was conducted for the reference pressure vessel steel JRQ and Fe-based model alloys containing Mn, Si, and Ni. In the Fe-based model alloys, the addition of Mn was most effective for increasing dislocation loop density at 290 °C. Based on the assumption that a di-interstitial was adopted as the nucleus for the formation of an interstitial loop, a binding energy of 0.22 eV was obtained for the interaction of a Mn atom and an interstitial. The formation of Mn clusters detected by three-dimensional atom probe and interstitial-type loops at room temperature clearly showed that the oversized Mn atoms migrate through an interstitial mechanism. The temperature and flux dependence of loop density in pressure vessel steels was very weak up to 290 °C. This suggests that interstitial atoms are deeply trapped by the radiation-induced solute clusters in pressure vessel steels.

  16. Computing the Flux Footprint

    NASA Astrophysics Data System (ADS)

    Wilson, J. D.

    2015-07-01

    We address the flux footprint for measurement heights in the atmospheric surface layer, comparing eddy diffusion solutions with those furnished by the first-order Lagrangian stochastic (or "generalized Langevin") paradigm. The footprint given by Langevin models differs distinctly from that given by the random displacement model (i.e. zeroth-order Lagrangian stochastic model) corresponding to its "diffusion limit," which implies that a well-founded theory of the flux footprint must incorporate the turbulent velocity autocovariance. But irrespective of the choice of the eddy diffusion or Langevin class of model as basis for the footprint, tuning relative to observations is ultimately necessary. Some earlier treatments assume Monin-Obukhov profiles for the mean wind and eddy diffusivity and that the effective Schmidt number (ratio of eddy viscosity to the tracer eddy diffusivity) in the neutral limit , while others calibrate the model to the Project Prairie Grass dispersion trials. Because there remains uncertainty as to the optimal specification of (or a related parameter in alternative theories, e.g. the Kolmogorov coefficient in Langevin models) it is recommended that footprint models should be explicit in this regard.

  17. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    NASA Technical Reports Server (NTRS)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  18. Connection stiffness and dynamical docking process of flux pinned spacecraft modules

    SciTech Connect

    Lu, Yong; Zhang, Mingliang Gao, Dong

    2014-02-14

    This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.

  19. Microwave Reflectometry Measurements of Flux States of a dc SQUID Phase Qubit

    NASA Astrophysics Data System (ADS)

    Cooper, B. K.; Lewis, R. M.; Dutta, S. K.; Palomaki, T. A.; Przybysz, Anthony; Kwon, H.; Paik, Hanhee; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2008-03-01

    We examine microwave reflectometry readout of a dc SQUID phase qubit. Our device is a Nb/AlOx/Nb SQUID fabricated by Hypres with loop inductance of 1.3 nH and symmetric junction critical currents of approximately 5 μA. The SQUID is current and flux biased, with one junction used as the qubit and the other used to provide isolation. The isolation junction is shunted by a large capacitor to depress its plasma frequency to about 1.5 GHz. This frequency can be shifted by flux-induced circulating current in the SQUID loop, allowing us to determine which flux state we are in by making reflectometry measurements of the resonant behavior of the isolation junction. The utility of this measurement for qubit state readout is discussed.

  20. Observations of an Emerging Flux Region Surge: Implications for Coronal Mass Ejections Triggered by Emerging Flux

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Su, J. T.; Morimoto, T.; Kurokawa, H.; Shibata, K.

    2005-08-01

    It is well known that coronal mass ejections (CMEs) are often associated with flares and filament eruptions. Previous studies of CMEs, however, have not established any association between CMEs and surges. In this paper, we present a detailed analysis of a large emerging flux region (EFR) surge and a jetlike CME, both observed on 1998 April 16. Our analysis shows a close temporal and spatial relationship between the two. Using observations from the Large Angle and Spectrometric Coronagraph (LASCO) and Hida Flare Monitoring Telescope (Hα, Hα+/-0.8 Å), we found that the CME's onset time and central position angle were coincident with the surge features. Magnetograms and Hα filtergrams showed that the surge resulted from the successive emergence of a bipolar sunspot group, NOAA Active Region 8203, which was the only active region in the northern hemisphere. The surge was impulsively accelerated at around the peak time of the GOES SXR flux. The associated CME appeared in the field of view of LASCO C2 16 minutes after the surge disappeared. Importantly, observations from the EUV Imaging Telescope at λ195 Å clearly demonstrate topological changes in the coronal field due to its interaction with the EFR. An initially closed EFR-loop system opened up during the surge. There was no filament involved in this surge-CME event. We propose that the onset of the CME resulted from the significant restructuring of the large-scale coronal magnetic field as a result of flux emergence in the active region. This surge-CME event strongly suggests that emerging flux may not only trigger a surge but also simultaneously trigger a CME by means of small-scale reconnection in the lower atmosphere.

  1. Soft X-ray emission in kink-unstable coronal loops

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Vilmer, N.; Brun, A. S.

    2015-04-01

    Context. Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink-unstable twisted flux-ropes provide a source of magnetic energy that can be released impulsively and may account for the heating of the plasma in flares. Aims: We investigate the temporal, spectral, and spatial evolution of the properties of the thermal continuum X-ray emission produced in such kink-unstable magnetic flux-ropes and discuss the results of the simulations with respect to solar flare observations. Methods: We computed the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops based on a series of magnetohydrodynamical numerical simulations. The numerical setup consisted of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, computed the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduced the X-ray emission properties of the plasma during the whole flaring episode. Results: During the initial (linear) phase of the instability, plasma heating is mostly adiabatic (as a result of compression). Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (up to more than 20 MK), to a quick enhancement of X-ray emission, and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures higher than 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events, but cools down globally by thermal conduction. The total thermal X-ray emission slowly fades away during this phase, and the high

  2. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink

  3. Final Report

    SciTech Connect

    DeTar, Carleton

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  4. Final Report

    SciTech Connect

    Gurney, Kevin R

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  5. The instability and non-existence of multi-stranded loops, when driven by transverse waves

    NASA Astrophysics Data System (ADS)

    Van Doorsselaere, Tom; Magyar, Norbert

    2016-05-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands, in order to explain their thermal behaviour and appearance. We perform 3D ideal MHD simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted to synthetic images, corresponding to the AIA 171Å and 193Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin-Helmholtz instability acting as the main mechanism. The final product of our simulation is mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises a strong doubt on the usability and applicability of coronal loop models consisting of independent strands.

  6. The Instability and Non-existence of Multi-stranded Loops When Driven by Transverse Waves

    NASA Astrophysics Data System (ADS)

    Magyar, N.; Van Doorsselaere, T.

    2016-06-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands in order to explain their thermal behavior and appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193 Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin–Helmholtz instability acting as the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.

  7. An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation

    NASA Technical Reports Server (NTRS)

    Burns, Rich

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.

  8. An Environmental for Hardware-in-the-Loop Formation Navigation and Control

    NASA Technical Reports Server (NTRS)

    Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.

  9. The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions

    NASA Astrophysics Data System (ADS)

    Grozin, Andrey G.; Henn, Johannes M.; Korchemsky, Gregory P.; Marquard, Peter

    2016-01-01

    We present the details of the analytic calculation of the three-loop angle-dependent cusp anomalous dimension in QCD and its supersymmetric extensions, including the maximally supersymmetric N=4 super Yang-Mills theory. The three-loop result in the latter theory is new and confirms a conjecture made in our previous paper. We study various physical limits of the cusp anomalous dimension and discuss its relation to the quark-antiquark potential including the effects of broken conformal symmetry in QCD. We find that the cusp anomalous dimension viewed as a function of the cusp angle and the new effective coupling given by light-like cusp anomalous dimension reveals a remarkable universality property — it takes the same form in QCD and its supersymmetric extensions, to three loops at least. We exploit this universality property and make use of the known result for the three-loop quark-antiquark potential to predict the special class of nonplanar corrections to the cusp anomalous dimensions at four loops. Finally, we also discuss in detail the computation of all necessary Wilson line integrals up to three loops using the method of leading singularities and differential equations.

  10. PromptNuFlux: Prompt atmospheric neutrino flux calculator

    NASA Astrophysics Data System (ADS)

    Rottoli, Luca

    2015-11-01

    PromptNuFlux computes the prompt atmospheric neutrino flux E3Φ(GeV2/(cm2ssr)), including the total associated theory uncertainty, for a range of energies between E=103 GeV and E=107.5 GeV. Results are available for five different parametrizations of the input cosmic ray flux: BPL, H3P, H3A, H14a, H14b.

  11. Fan-Spine Topology Formation Through Two-Step Reconnection Driven by Twisted Flux Emergence

    NASA Astrophysics Data System (ADS)

    Török, T.; Aulanier, G.; Schmieder, B.; Reeves, K. K.; Golub, L.

    2009-10-01

    We address the formation of three-dimensional nullpoint topologies in the solar corona by combining Hinode/X-ray Telescope (XRT) observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a three-dimensional (3D) zero-β magnetohydrodynamics (MHD) simulation. To this end, we model the boundary-driven "kinematic" emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil a two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.

  12. Temperature evolution of a magnetic flux rope in a failed solar eruption

    SciTech Connect

    Song, H. Q.; Chen, Y.; Li, B.; Zhang, J.; Cheng, X.; Liu, R.; Wang, Y. M.

    2014-03-20

    In this paper, we report for the first time the detailed temperature evolution process of the magnetic flux rope in a failed solar eruption. Occurring on 2013 January 05, the flux rope was impulsively accelerated to a speed of ∼400 km s{sup –1} in the first minute, then decelerated and came to a complete stop in two minutes. The failed eruption resulted in a large-size high-lying (∼100 Mm above the surface), high-temperature 'fire ball' sitting in the corona for more than two hours. The time evolution of the thermal structure of the flux rope was revealed through the differential emission measure analysis technique, which produced temperature maps using observations of the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The average temperature of the flux rope steadily increased from ∼5 MK to ∼10 MK during the first nine minutes of the evolution, which was much longer than the rise time (about three minutes) of the associated soft X-ray flare. We suggest that the flux rope is heated by the energy release of the continuing magnetic reconnection, different from the heating of the low-lying flare loops, which is mainly produced by the chromospheric plasma evaporation. The loop arcade overlying the flux rope was pushed up by ∼10 Mm during the attempted eruption. The pattern of the velocity variation of the loop arcade strongly suggests that the failure of the eruption was caused by the strapping effect of the overlying loop arcade.

  13. Casimir interactions between magnetic flux tubes in a dense lattice

    NASA Astrophysics Data System (ADS)

    Mazur, Dan; Heyl, Jeremy S.

    2015-03-01

    We use the worldline numerics technique to study a cylindrically symmetric model of magnetic flux tubes in a dense lattice and the nonlocal Casimir forces acting between regions of magnetic flux. Within a superconductor the magnetic field is constrained within magnetic flux tubes and if the background magnetic field is on the order the quantum critical field strength, Bk=m/2 e =4.4 ×1013 Gauss, the magnetic field is likely to vary rapidly on the scales where QED effects are important. In this paper, we construct a cylindrically symmetric toy model of a flux tube lattice in which the nonlocal influence of QED on neighboring flux tubes is taken into account. We compute the effective action densities using the worldline numerics technique. The numerics predict a greater effective energy density in the region of the flux tube, but a smaller energy density in the regions between the flux tubes compared to a locally constant-field approximation. We also compute the interaction energy between a flux tube and its neighbors as the lattice spacing is reduced from infinity. Because our flux tubes exhibit compact support, this energy is entirely nonlocal and predicted to be zero in local approximations such as the derivative expansion. This Casimir-Polder energy can take positive or negative values depending on the distance between the flux tubes, and it may cause the flux tubes in neutron stars to form bunches. In addition to the above results we also discuss two important subtleties of determining the statistical uncertainties within the worldline numerics technique. Firstly, the distributions generated by the worldline ensembles are highly non-Gaussian, and so the standard error in the mean is not a good measure of the statistical uncertainty. Secondly, because the same ensemble of worldlines is used to compute the Wilson loops at different values of T and xcm, the uncertainties associated with each computed value of the integrand are strongly correlated. We recommend a

  14. California's Future Carbon Flux

    NASA Astrophysics Data System (ADS)

    Xu, L.; Pyles, R. D.; Paw U, K.; Gertz, M.

    2008-12-01

    The diversity of the climate and vegetation systems in the state of California provides a unique opportunity to study carton dioxide exchange between the terrestrial biosphere and the atmosphere. In order to accurately calculate the carbon flux, this study couples the sophisticated analytical surface layer model ACASA (Advance Canopy-Atmosphere-Soil Algorithm, developed in the University of California, Davis) with the newest version of mesoscale model WRF (the Weather Research & Forecasting Model, developed by NCAR and several other agencies). As a multilayer, steady state model, ACASA incorporates higher-order representations of vertical temperature variations, CO2 concentration, radiation, wind speed, turbulent statistics, and plant physiology. The WRF-ACASA coupling is designed to identify how multiple environmental factors, in particularly climate variability, population density, and vegetation distribution, impact on future carbon cycle prediction across a wide geographical range such as in California.

  15. Quantitative Flux Ecoregions for AmeriFlux Using MODIS

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Hargrove, W. W.

    2004-12-01

    Multivariate Geographic Clustering was used with maps of climate, soils, and physiography and MODIS remotely sensed data products to statistically produce a series of the 90 most-different homogeneous flux-relevant ecoregions in the conterminous United States using a parallel supercomputer. Nine separate sets of flux ecoregions were produced; only two will be discussed here. Both the IB and IIIB maps were quantitatively constructed from subsets of the input data integrated during the local growing season (frost-free period) in every 1 km cell. Each map is shown two ways --- once with the 90 flux ecoregions colored randomly, and once using color combinations derived statistically from the first three Principal Component Axes. Although the underlying flux ecoregion polygons are the same in both cases, the statistically derived colors show the similarity of conditions within each flux ecoregion. Coloring the same map in this way shows the continuous gradient of changing flux environments across the US. The IB map, since it considers only abiotic environmental factors, represents flux-ecoregions based on potential vegetation. The IIIB map, since it contains remotely sensed MODIS information about existing vegetation, includes the effects of natural and anthropogenic disturbance, and represents actual or realized flux ecoregions. Thus, differences between the maps are attributable to human activity and natural disturbances. The addition of information on existing vegetation exerts a unifying effect on abiotic-only flux ecoregions. The Mississippi Valley and Corn Belt areas show large differences between the two maps. Map IIIB shows a mosaic of ``speckles'' in areas of intense human land use, ostensibly from disturbances like agriculture, irrigation, fertilization, and clearing. Such ``speckles'' are absent from areas devoid of intense human land use. Major cities are also evident in the IIIB map. We will use the quantitative similarity of the suite of flux

  16. Open-loop digital frequency multiplier

    NASA Technical Reports Server (NTRS)

    Moore, R. C.

    1977-01-01

    Monostable multivibrator is implemented by using digital integrated circuits where multiplier constant is too large for conventional phase-locked-loop integrated circuit. A 400 Hz clock is generated by divide-by-N counter from 1 Hz timing reference.

  17. The universal one-loop effective action

    NASA Astrophysics Data System (ADS)

    Drozd, Aleksandra; Ellis, John; Quevillon, Jérémie; You, Tevong

    2016-03-01

    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.

  18. Loop Diuretics in the Treatment of Hypertension.

    PubMed

    Malha, Line; Mann, Samuel J

    2016-04-01

    Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal. PMID:26951244

  19. Mathematical Modeling of Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  20. A multiple-pass ring oscillator based dual-loop phase-locked loop

    NASA Astrophysics Data System (ADS)

    Danfeng, Chen; Junyan, Ren; Jingjing, Deng; Wei, Li; Ning, Li

    2009-10-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz @ 1 MHz offset from a 5.5 GHz carrier.

  1. Loop quantum cosmology in 2 +1 dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2014-12-01

    As a first step to generalize the structure of loop quantum cosmology to the theories with the spacetime dimension other than four, the isotropic model of loop quantum cosmology in 2 +1 dimension is studied in this paper. We find that the classical big bang singularity is again replaced by a quantum bounce in the model. The similarities and differences between the (2 +1 )-dimensional model and the (3 +1 )-dimensional one are also discussed.

  2. Onset of inflation in loop quantum cosmology

    SciTech Connect

    Germani, Cristiano; Nelson, William; Sakellariadou, Mairi

    2007-08-15

    Using a Liouville measure, similar to the one proposed recently by Gibbons and Turok, we investigate the probability that single-field inflation with a polynomial potential can last long enough to solve the shortcomings of the standard hot big bang model, within the semiclassical regime of loop quantum cosmology. We conclude that, for such a class of inflationary models and for natural values of the loop quantum cosmology parameters, a successful inflationary scenario is highly improbable.

  3. Deployable radiator with flexible line loop

    NASA Technical Reports Server (NTRS)

    Keeler, Bryan V. (Inventor); Lehtinen, Arthur Mathias (Inventor); McGee, Billy W. (Inventor)

    2003-01-01

    Radiator assembly (10) for use on a spacecraft (12) is provided including at least one radiator panel assembly (26) repeatably movable between a panel stowed position (28) and a panel deployed position (36), at least two flexible lines (40) in fluid communication with the at least one radiator panel assembly (26) and repeatably movable between a stowage loop (42) and a flattened deployed loop (44).

  4. Bonus symmetry for super Wilson loops

    NASA Astrophysics Data System (ADS)

    Münkler, Hagen

    2016-05-01

    The Yangian level-one hypercharge generator for the super Wilson loop in { N }=4 supersymmetric Yang-Mills theory is constructed. Moreover, evidence for the presence of a corresponding symmetry generator at all higher levels is provided. The derivation is restricted to the strong-coupling description of the super Wilson loop and based on the construction of novel conserved charges for type IIB superstrings on {{AdS}}5× {{{S}}}5.

  5. Cyclic universe from Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Cianfrani, Francesco; Kowalski-Glikman, Jerzy; Rosati, Giacomo

    2016-02-01

    We discuss how a cyclic model for the flat universe can be constructively derived from Loop Quantum Gravity. This model has a lower bounce, at small values of the scale factor, which shares many similarities with that of Loop Quantum Cosmology. We find that Quantum Gravity corrections can be also relevant at energy densities much smaller than the Planckian one and that they can induce an upper bounce at large values of the scale factor.

  6. Tachyon matter in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Sen, A. A.

    2006-08-01

    An analytical approach for studying the cosmological scenario with a homogeneous tachyon field within the framework of loop quantum gravity is developed. Our study is based on the semiclassical regime where space time can be approximated as a continuous manifold, but matter Hamiltonian gets nonperturbative quantum corrections. A formal correspondence between classical and loop quantum cosmology is also established. The Hamilton-Jacobi method for getting exact solutions is constructed and some exact power law as well as bouncing solutions are presented.

  7. Can Chemical Looping Combustion Use CFB Technology?

    SciTech Connect

    Gamwo, I.K.

    2006-11-01

    Circulating Fluidized Bed (CFB) technology has demonstrated an unparalleled ability to achieve low SO2 and NOx emissions for coal-fired power plants without CO2 capture. Chemical Looping combustion (CLC) is a novel fuel combustion technology which appears as a leading candidate in terms of competitiveness for CO2 removal from flue gas. This presentaion deals with the adaptation of circulating fluidized bed technology to Chemical looping combustion

  8. Untangling Autophagy Measurements: All Fluxed Up

    PubMed Central

    Gottlieb, Roberta A.; Andres, Allen M.; Sin, Jon; Taylor, David

    2015-01-01

    Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly as the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to measure autophagy, selective mitochondrial autophagy (mitophagy), and autophagic flux. We will examine several published studies where confusion arose in in data interpretation, in order to illustrate the challenges. Finally we will discuss methods to assess autophagy in vivo and in patients. PMID:25634973

  9. Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop

    SciTech Connect

    Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell; Woloshun, Keith Albert; Dale, Gregory E.

    2015-11-16

    The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.

  10. Space Station evolution study oxygen loop closure

    NASA Technical Reports Server (NTRS)

    Wood, M. G.; Delong, D.

    1993-01-01

    In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.

  11. Flare Half-Loops: What Are They?

    NASA Astrophysics Data System (ADS)

    McKenzie, David Eugene; Guidoni, S. E.; Longcope, D. W.; Yoshimura, K.

    2012-05-01

    The M1.4 flare of 28 January 2011 has a remarkable resemblance to the famous "Tsuneta candle-flame" flare of 1992. It was observed with Hinode/XRT, SDO/AIA, and STEREO (A)/EUVI, resulting in higher resolution, greater temperature coverage, and stereoscopic views of this iconic structure. The high temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the arcade. They also show that loops which are successively connected to this tower develop a density increase in one of their legs that can exceed twice the density of the other leg, giving the appearance of "half loops". These jumps in density last for an extended period of time. On the other hand, XRT filter ratios suggest that temperature is approximately uniform along the entire loop. XRT filter-ratio density maps corroborate that the brighter legs have higher density than the fainter halves. The tower is associated with a localized density increase, with even higher densities than either leg of the loop. This spatial variation of density may correspond to a shock at the top of the loops. We use STEREO images to show that the half loop brightening is not a line-of-sight projection effect of the type suggested by Forbes & Acton. This work is supported under contract SP02H3901R from Lockheed-Martin to MSU, and under contract NNM07AB07C with the Harvard-Smithsonian Astrophysical Observatory.

  12. Vorticity flux from active dimples

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley; Sherwin, Spencer; Morrison, Jonathan

    2004-11-01

    The effect of surface depressions, or dimples, in reducing drag on golf balls is well-known. Here this concept is extended to using ``active" dimples to manipulate vorticity flux at the wall. Surface vorticity flux is governed by surface accelerations, pressure and shear stress gradients, and surface curvature. ``Active" (or vibrating) dimples may generate vorticity flux by each of these terms, making them an excellent candidate for a basic study of flux manipulation, by which flow control may be achieved. Flow over an active dimple in fully-developed laminar channel flow is simulated with velocity boundary conditions developed from a linearized perturbation method imposed at the wall. This simple model cannot capture flow separation, but gives insight into the most straightforward means of flux generation from the concave surface. Vorticity flux due to dimple geometry and motion is quantified, and enhancements of two to three orders of magnitude in peak vorticity over the static dimple case are observed.

  13. SMALL MAGNETIC LOOPS CONNECTING THE QUIET SURFACE AND THE HOT OUTER ATMOSPHERE OF THE SUN

    SciTech Connect

    Martinez Gonzalez, M. J.; Manso Sainz, R.; Asensio Ramos, A.

    2010-05-01

    Sunspots are the most spectacular manifestation of solar magnetism, yet 99% of the solar surface remains 'quiet' at any time of the solar cycle. The quiet sun is not void of magnetic fields, though; they are organized at smaller spatial scales and evolve relatively fast, which makes them difficult to detect. Thus, although extensive quiet Sun magnetism would be a natural driver to a uniform, steady heating of the outer solar atmosphere, it is not clear what the physical processes involved would be, due to lack of observational evidence. We report on the topology and dynamics of the magnetic field in very quiet regions of the Sun from spectropolarimetric observations of the Hinode satellite, showing a continuous injection of magnetic flux with a well-organized topology of {omega}-loop from below the solar surface into the upper layers. At first stages, when the loop travels across the photosphere, it has a flattened (staple-like) geometry and a mean velocity ascent of {approx}3 km s{sup -1}. When the loop crosses the minimum temperature region, the magnetic fields at the footpoints become almost vertical and the loop topology resembles a potential field. The mean ascent velocity at chromospheric height is {approx}12 km s{sup -1}. The energy input rate of these small-scale loops in the lower boundary of the chromosphere is (at least) of 1.4 x 10{sup 6}-2.2 x 10{sup 7} erg cm{sup -2} s{sup -1}. Our findings provide empirical evidence for solar magnetism as a multi-scale system, in which small-scale low-flux magnetism plays a crucial role, at least as important as active regions, coupling different layers of the solar atmosphere and being an important ingredient for chromospheric and coronal heating models.

  14. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  15. Consistency of loop regularization method and divergence structure of QFTs Beyond one-loop order

    NASA Astrophysics Data System (ADS)

    Huang, Da; Li, Ling-Fong; Wu, Yue-Liang

    2013-04-01

    We study the problem how to deal with tensor-type two-loop integrals in the Loop Regularization (LORE) scheme. We use the two-loop photon vacuum polarization in the massless Quantum Electrodynamics (QED) as the example to present the general procedure. In the processes, we find a new divergence structure: the regulated result for each two-loop diagram contains a gauge-violating quadratic harmful divergent term even combined with their corresponding counterterm insertion diagrams. Only when we sum up over all the relevant diagrams do these quadratic harmful divergences cancel, recovering the gauge invariance and locality.

  16. Heat-Flux-Measuring Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1990-01-01

    Apparatus simulates conditions in turbine engines. Automated facility generates and measures transient and steady-state heat fluxes at flux densities from 0.3 to 6 MW/m(Sup2) and temperatures from 100 to 1,200 K. Positioning arm holds heat-flux gauge at focal point of arc lamp. Arm previously chilled gauge in liquid nitrogen in Dewar flask. Cooling water flows through lamp to heat exchanger. Used to develop heat-flux gauges for turbine blades and to test materials for durability under rapidly changing temperatures.

  17. Measuring surface fluxes in CAPE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; D-Shah, T.; Nie, Dalin

    1992-01-01

    Two stations (site 1612 and site 2008) were operated by the University of Georgia group from 6 July 1991 to 18 August 1991. The following data were collected continuously: surface energy fluxes (i.e., net radiation, soil heat fluxes, sensible heat flux and latent heat flux), air temperature, vapor pressure, soil temperature (at 1 cm depth), and precipitation. Canopy reflectance and light interception data were taken three times at each site between 6 July and 18 August. Soil moisture content was measured twice at each site.

  18. Magneto-Acoustic Waves in Compressible Magnetically Twisted Flux Tubes

    NASA Astrophysics Data System (ADS)

    Erdélyi, Robert; Fedun, Viktor

    2010-05-01

    The oscillatory modes of a magnetically twisted compressible flux tube embedded in a compressible magnetic environment are investigated in cylindrical geometry. Solutions to the governing equations to linear wave perturbations are derived in terms of Whittaker’s functions. A general dispersion equation is obtained in terms of Kummer’s functions for the approximation of weak and uniform internal twist, which is a good initial working model for flux tubes in solar applications. The sausage, kink and fluting modes are examined by means of the derived exact dispersion equation. The solutions of this general dispersion equation are found numerically under plasma conditions representative of the solar photosphere and corona. Solutions for the phase speed of the allowed eigenmodes are obtained for a range of wavenumbers and varying magnetic twist. Our results generalise previous classical and widely applied studies of MHD waves and oscillations in magnetic loops without a magnetic twist. Potential applications to solar magneto-seismology are discussed.

  19. South Atlantic meridional fluxes

    NASA Astrophysics Data System (ADS)

    Garzoli, Silvia L.; Baringer, Molly O.; Dong, Shenfu; Perez, Renellys C.; Yao, Qi

    2013-01-01

    The properties of the meridional overturning circulation (MOC) and associated meridional heat transport (MHT) and salt fluxes are analyzed in the South Atlantic. The oceanographic data used for the study consist of Expendable bathythermograph (XBT) data collected along 27 sections at nominally 35°S for the period of time 2002-2011, and Argo profile data collected in the region. Previous estimates obtained with a shorter record are improved and extended, using new oceanographic sections and wind fields. Different wind products are analyzed to determine the uncertainty in the Ekman component of the MHT derived from their use. Results of the analysis provide a 9-year time series of MHT, and volume transport in the upper layer of the MOC. Salt fluxes at 35°S are estimated using a parameter introduced by numerical studies, the Mov that represents the salt flux and helps determine the basin scale salt feedback associated with the MOC. Volume and heat transport by the western and eastern boundary currents are estimated, and their covariablity is examined. Analysis of the data shows that the South Atlantic is responsible for a northward MHT with a mean value of 0.54±0.14 PW. The MHT exhibits no significant trend from 2002 to 2011. The MOC varies from 14.4 to 22.7 Sv with a mean value of 18.1±2.3 Sv and the maximum overturning transport is found at a mean depth of 1250 m. Statistical analysis suggests that an increase of 1 Sv in the MOC leads to an increase of the MHT of 0.04±0.02 PW. Estimates of the Mov from data collected from three different kinds of observations, contrary to those obtained from models, feature a positive salt advection feedback (Mov<0) suggesting that freshwater perturbations will be amplified and that the MOC is bistable. In other words, the MOC might collapse with a large enough freshwater perturbation. Observations indicate that the mean value of the Brazil Current is -8.6±4.1 Sv at 24°S and -19.4±4.3 Sv at 35°S, increasing towards the

  20. KoFlux: Korean Regional Flux Network in AsiaFlux

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and