Sample records for flux measurement sites

  1. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; George G. Burba; Kenneth J. Davis; Lawrence B. Flanagan; Gabriel G. Katul; J. William Munger; Daniel M. Ricciuto; Paul C. Stoy; Andrew E. Suyker; Shashi B. Verma; Steven C. Wofsy; Steven C. Wofsy

    2006-01-01

    Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the ``true?? flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include ``tall tower?? instrumentation), one grassland site, and one...

  2. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impactmore » on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.« less

  3. Characterization And Partitioning Of CH4 And CO2 Eddy Flux Data Measured at NGEE-Arctic Sites

    NASA Astrophysics Data System (ADS)

    Dengel, S.; Chafe, O.; Curtis, J. B.; Biraud, S.; Torn, M. S.; Wullschleger, S. D.

    2017-12-01

    The high latitudes are experiencing rapid warming with permafrost ecosystems being highly vulnerable to this change. Since the advancement in Eddy Covariance (EC) measurements, the number of high latitude sites measuring greenhouse gases and energy (CO2, CH4 and H2O) fluxes is steadily increasing, with new sites being established each year. Data from these sites are not only valuable for annual carbon budget calculations, but also vital to the modeling community for improving their predictions of emission rates and trends. CH4 flux measurements are not as straightforward as CO2 fluxes. They tend to be less predictable or as easily interpretable as CO2 fluxes. Understanding CH4 emission patterns are often challenging. Moreover, gas flux fluctuations are spatially and temporally diverse, and in many cases event-based. An improvement in understanding would also contribute to improvements in the fidelity of model predictions. These rely on having high quality data, and thus will entail developing new QA/QC and gap-filling methods for Arctic systems, in particularly for CH4. Contributing to these challenges is the limited number of ancillary measurements carried out at many sites and the lack of standardized data processing, QA/QC, and gap-filling procedures, in particular for CH4. CO2, CH4, and energy flux measurements are ongoing at, both NGEE-Arctic/AmeriFlux, US-NGB (Arctic coastal plain), and US-NGC (subarctic tussock tundra) sites. The sites, with underlying continuous permafrost, show a high degree of inter-annual and seasonal variability in CH4 fluxes. In order to interpret this variability, we apply a variety of models, such as footprint characterization, generalized additive models, as well as artificial neural networks, in an attempt to decipher these diverse fluxes, patterns and events.

  4. The value of redundant measurements - highlights from AmeriFlux site visits using a portable eddy covariance system

    NASA Astrophysics Data System (ADS)

    Chan, S.; Billesbach, D. P.; Hanson, C. V.; Dengel, S.; Polonik, P.; Biraud, S.

    2016-12-01

    The AmeriFlux network conducts independent site visits using a portable eddy covariance system (PECS). Short-term (<2 weeks), side-by-side comparisons enable the network to evaluate inter-comparability between sites, improve data quality, and assess measurement uncertainty across the network. The PECS includes commonly used sensors for turbulent flux, radiation, and meteorological measurements which are maintained and calibrated using established best practices at levels at or above the manufacturer's recommendations. The importance of site visits was realized at the inception of the AmeriFlux network with the first site visit in 1997. Since that time, more than 180 site visits at over 120 different sites have been conducted. Site visit reports over the years have led to many key findings and important advances within the flux community which are highlighted in the presentation. Furthermore, we summarize and synthesize results from recent site comparisons that were conducted with the latest generation of the PECS (2013-present). The presentation quantifies observed differences between the PECS and network sites for key flux, radiation, and meteorological metrics. The aggregated comparisons provide insight into comparability amongst network sites as well as areas for improvement. We identify common errors and issues and discuss some best practices.

  5. Measuring surface fluxes in CAPE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; D-Shah, T.; Nie, Dalin

    1992-01-01

    Two stations (site 1612 and site 2008) were operated by the University of Georgia group from 6 July 1991 to 18 August 1991. The following data were collected continuously: surface energy fluxes (i.e., net radiation, soil heat fluxes, sensible heat flux and latent heat flux), air temperature, vapor pressure, soil temperature (at 1 cm depth), and precipitation. Canopy reflectance and light interception data were taken three times at each site between 6 July and 18 August. Soil moisture content was measured twice at each site.

  6. AmeriFlux Site and Data Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Yang, B.; Jackson, B.

    2011-12-01

    The AmeriFlux network was established in 1996. The network provides continuous observations of ecosystem-level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. The current network, including both active and inactive sites, consists of 141 sites in North, Central, and South America. The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) provides data management support for the AmeriFlux network including long-term data storage and dissemination. AmeriFlux offers a broad suite of value-added data products: Level 1 data products at 30 minute or hourly time intervals provided by the site teams, Level 2 data processed by CDIAC and Level 3 and 4 files created using CarboEurope algorithms. CDIAC has developed a relational database to house the vast array of AmeriFlux data and information and a web-based interface to the database, the AmeriFlux Site and Data Exploration System (http://ameriflux.ornl.gov), to help users worldwide identify, and more recently, download desired AmeriFlux data. AmeriFlux and CDIAC offer numerous value-added AmeriFlux data products (i.e., Level 1-4 data products, biological data) and most of these data products are or will be available through the new data system. Vital site information (e.g., location coordinates, dominant species, land-use history) is also displayed in the new system. The data system provides numerous ways to explore and extract data. Searches can be done by site, location, measurement status, available data products, vegetation types, and by reported measurements just to name a few. Data can be accessed through the links to full data sets reported by a site, organized by types of data products, or by creating customized datasets based on user search criteria. The new AmeriFlux download module contains features intended to ease compliance of the AmeriFlux fair-use data policy, acknowledge the contributions of submitting

  7. Micrometeorological flux measurements at a coastal site

    NASA Astrophysics Data System (ADS)

    Song, Guozheng; Meixner, Franz X.; Bruse, Michael; Mamtimin, Buhalqem

    2014-05-01

    The eddy covariance (EC) technique is the only direct measurement of the momentum, heat, and trace gas (e.g. water vapor, CO2 and ozone) fluxes. The measurements are expected to be most accurate over flat terrain where there is an extended homogenous surface upwind from the tower, and when the environmental conditions are steady. Additionally, the one dimensional approach assumes that vertical turbulent exchange is the dominant flux, whereas advective influences should be negligible. The application of EC method under non-ideal conditions, for example in complex terrain, has yet to be fully explored. To explore the possibilities and limitations of EC technique under non-ideal conditions, an EC system was set up at Selles beach, Crete, Greece (35.33°N, 25.71°E) in the beginning of July 2012. The dominant wind direction was west, parallel to the coast. The EC system consisted of a sonic anemometer (CSAT3 Campbell Scientific), an infrared open-path CO2/H2O gas analyzer (LI-7500, Li-COR Biosciences) and a fast chemiluminescence ozone analyzer (enviscope GmbH). All the signals of these fast response instruments were sampled at 10 Hz and the measurement height was 3 m. Besides, another gradient system was setup. Air temperature, relative humidity (HYGROMER MP 103 A), and wind speed (WMT700 Vaisala) were measured every 10 seconds at 3 heights (0.7, 1.45, 3 m). Air intakes were set up at 0.7m and 3m. A pump drew the air through a flow system and a telflon valve alternately switched between the two heights every 30 seconds. H2O, CO2 (LI-840A, Li-COR Biosciences) and ozone mixing ratio s (model 205, 2BTechnologies) were measured every 10 seconds. Momentum, heat, CO2 and ozone fluxes were evaluated by both EC and gradient technique. For the calculation of turbulent fluxes, TK3 algorithm (Department of Micrometeorology, University Bayreuth, Germany) was applied. We will present the measured fluxes of the two systems and assess the data quality under such non-ideal condition.

  8. Measuring and modeling near surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Norman, John M.; Walter-Shea, Elizabeth; Starks, Patrick; Vining, Roel; Hays, Cynthia

    1988-01-01

    Research was conducted during the four Intensive Field Campaigns (IFC) of the FIFE project in 1987. The research was done on a tall grass prairie with specific measurement sites on and near the Konza Prairie in Kansas. Measurements were made to help meet the following objectives: determination of the variability in reflected and emitted radiation fluxes in selected spectral wavebands as a function of topography and vegetative community; development of techniques to account for slope and sun angle effects on the radiation fluxes; estimation of shortwave albedo and net radiation fluxes using the reflected and emitted spectral measurements described; estimation of leaf and canopy spectral properties from calculated normalized differences coupled with off-nadir measurements using inversion techniques; estimation of plant water status at several locations with indices utilizing plant temperature and other environmental parameters; and determination of relationships between estimated plant water status and measured soil water content. Results are discussed.

  9. BOREAS TGB-1 CH4 Concentration and Flux Data from NSA Tower Sites

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.

    2000-01-01

    The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains half-hourly averages of ambient methane (CH4) measurements and calculated fluxes for the NSA-Fen in 1996 and the NSA-BP and NSA-OJP tower sites in 1994. The purpose of this study was to determine the CH4 flux from the study area by measuring ambient CH 4 concentrations. This flux can then be compared to the chamber flux measurements taken at the same sites. The data are provided in tabular ASCII files.

  10. Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies

    PubMed Central

    Balzarolo, Manuela; Anderson, Karen; Nichol, Caroline; Rossini, Micol; Vescovo, Loris; Arriga, Nicola; Wohlfahrt, Georg; Calvet, Jean-Christophe; Carrara, Arnaud; Cerasoli, Sofia; Cogliati, Sergio; Daumard, Fabrice; Eklundh, Lars; Elbers, Jan A.; Evrendilek, Fatih; Handcock, Rebecca N.; Kaduk, Joerg; Klumpp, Katja; Longdoz, Bernard; Matteucci, Giorgio; Meroni, Michele; Montagnani, Lenoardo; Ourcival, Jean-Marc; Sánchez-Cañete, Enrique P.; Pontailler, Jean-Yves; Juszczak, Radoslaw; Scholes, Bob; Martín, M. Pilar

    2011-01-01

    This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903—“Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe” that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites. PMID:22164055

  11. Uncertainties of Large-Scale Forcing Caused by Surface Turbulence Flux Measurements and the Impacts on Cloud Simulations at the ARM SGP Site

    NASA Astrophysics Data System (ADS)

    Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.

    2017-12-01

    Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.

  12. Eddy Covariance Measurements of Methane Flux at Remote Sites with New Low-Power Lightweight Fast Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; Burba, George; Schedlbauer, Jessica; Zona, Donatella; McDermitt, Dayle K.; Anderson, Tyler; Oberbauer, Steven; Oechel, Walter; Komissarov, Anatoly; Riensche, Brad

    2010-05-01

    Majority of natural methane production happens at remote unpopulated areas in ecosystems with little or no infrastructure or easily available grid power, such as arctic and boreal wetlands, tropical mangroves, etc. Present approaches for direct measurements of CH4 fluxes rely on fast closed-path analyzers, which have to work under significantly reduced pressures, and require powerful pumps and grid power. Power and labor demands may be reasons why CH4 flux is often measured at locations with good infrastructure and grid power, and not with high CH4 production. An instrument was developed to allow Eddy Covariance measurements of CH4 flux with power consumption 30-150 times below presently available technologies. This instrument, LI-7700, uses <10W of power, and can easily be run on solar panel, or with small portable generator, while present technologies require 300-1500 Watts of the grid power. The proposed extremely low-power technology would allows placing methane Eddy Covariance stations in the middle of the source (wetland, rice paddy, forest, etc.) in the absence of the grid power. This could significantly expand the Eddy Covariance CH4 flux measurements coverage, and possibly, significantly improve the budget estimates of world CH4 emissions and budget. Various prototypes of the LI-7700 were field-tested for three seasons at the remote site in middle of Everglades National Park (Florida, USA) using solar panels, at three stationary and several mobile sites during three seasons at remote Arctic wetlands near Barrow (Alaska, USA), in the tropical mangroves near La Paz (Mexico) using portable generator, and in bare agricultural field near Mead (Nebraska, USA) during 2005 through 2010. Latest data on CH4 concentration, co-spectra and fluxes, and latest details of instrumental design are examined in this presentation. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the

  13. Eddy-covariance methane flux measurements over a European beech forest

    NASA Astrophysics Data System (ADS)

    Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander

    2015-04-01

    The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our

  14. AmeriFlux US-ARc ARM Southern Great Plains control site- Lamont

    DOE Data Explorer

    Torn, Margaret [Lawrence Berkeley National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARc ARM Southern Great Plains control site- Lamont. Site Description - The ARM SGP Control site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots with identical towers, measurements at the US-ARc unburned plot are used as the experimental control. The second plot, US-Arb, was burned on 2005/03/08. Measurement comparisons between the control and burn plot are used to address questions regarding the effects of burning activities on carbon fluxes. The region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  15. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  16. Integration of Flux-Based Methods and Triad Principles for DNAPL Site Management, Part II: Review of Flux Measurement Methods

    EPA Science Inventory

    Managing dense nonaqueous phase liquid (DNAPL) contaminated sites continues to be among the most pressing environmental problems currently faced. One approach that has recently been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit ar...

  17. Vertical fogwater flux measurements above an elevated forest canopy at the Lägeren research site, Switzerland

    NASA Astrophysics Data System (ADS)

    Burkard, Reto; Bützberger, Patrick; Eugster, Werner

    During the winter of 2001/2002 wet and occult deposition measurements were performed at the Lägeren research site ( 690 m a.s.l.) in Switzerland. Two types of fog were observed: radiation fog (RF) and fog associated with atmospheric instabilities (FAI). The deposition measurements were performed above the forest canopy on a 45 m high tower. Occult deposition was measured by means of the eddy covariance method. Due to the large differences of microphysical properties of the two fog types, the liquid water fluxes were much higher (6.9 mg m -2 s-1) during RF than during FAI (0.57 mg m -2 s-1) . Fogwater concentrations were considerably enhanced during RF compared with FAI. The comparison of fog and rain revealed that fogwater nutrient concentrations were 3-66 times larger than concentrations in precipitation. The considerably larger water fluxes and nutrient concentrations of RF resulted in much higher nutrient deposition compared with FAI. In winter when RF was quite frequent, occult deposition was the dominant pathway for nitrate and ammonium deposition. Daily fluxes of total inorganic nitrogen were 1.89 mg m -2 d-1 by occult and 1.01 mg m -2 d-1 by wet deposition. The estimated contribution of occult deposition to total annual nitrogen input was 16.4% or 4.3 kg N ha -1 yr-1, and wet deposition contributed 26.5% ( 6.9 kg N ha -1 yr-1) . As a consequence, critical loads of annual N-input were exceeded, resulting in a significant over-fertilization at the Lägeren site.

  18. Eddy Correlation Flux Measurement System Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less

  19. LBA-ECO TG-07 Trace Gas Fluxes, Undisturbed and Logged Sites, Para, Brazil: 2000-2002

    Treesearch

    M.M. Keller; R.K. Varner; J.D. Dias; H.S. Silva; P.M. Crill; Jr. de Oliveira; G.P. Asner

    2009-01-01

    Trace gas fluxes of carbon dioxide, methane, nitrous oxide, and nitric oxide were measured manually at undisturbed and logged forest sites in the Tapajos National Forest, near Santarem, Para, Brazil. Manual measurements were made approximately weekly at both the undisturbed and logged sites. Fluxes from clay and sand soils were completed at the undisturbed sites....

  20. AmeriFlux US-Bo2 Bondville (companion site)

    DOE Data Explorer

    Bernacchi, Carl [University of Illinois, Urbana-Champaign

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bo2 Bondville (companion site). Site Description - Located 400m north of Tilden Meyer's site and planted with opposite crop in corn/soybean rotation

  1. Eddy covariance measurements of methane fluxes over grazed native and improved prairies in Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Although several studies have reported eddy covariance (EC) measurements at several tallgrass prairie sites to investigate the dynamics of carbon and water vapor fluxes, the EC measurements of methane (CH4) fluxes over grazed tallgrass prairie sites are lacking. CH4 fluxes were measured during the 2...

  2. In situ soil temperature and heat flux measurements during controlled surface burns at a southern Colorado forest site

    Treesearch

    W. J. Massman; J. M. Frank; W. D. Shepperd; M. J. Platten

    2003-01-01

    This study presents in situ soil temperature measurements at 5-6 depths and heat flux measurements at 2-5 depths obtained during the fall/winter of 2001/ 2002 at seven controlled (surface) fires within a ponderosa pine forest site at the Manitou Experimental Forest in central Colorado. Six of these burns included three different (low, medium, and high) fuel loadings...

  3. AmeriFlux US-MOz Missouri Ozark Site

    DOE Data Explorer

    Gu, Lianhong [Oak Ridge National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-MOz Missouri Ozark Site. Site Description - The site is located in the University of Missouri Baskett Wildlife Research area, situated in the Ozark region of central Missouri. The site is uniquely located in the ecologically important transitional zone between the central hardwood region and the central grassland region of the US. The land has been publically owned since the 1930s, and is on a land tract that was forested with the same dominant species before settlement in the early 1800s.

  4. AmeriFlux US-Pnp Lake Mendota, Picnic Point Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ankur

    This is the AmeriFlux version of the carbon flux data for the site US-Pnp Lake Mendota, Picnic Point Site. Site Description - The site is located on the shoreline of Lake Mendota on the rooftop of UW-Madison's Center for Limnology.

  5. Integrative measurements focusing on carbon, energy and water fluxes at the forest site 'Hohes Holz' and the grassland 'Grosses Bruch'

    NASA Astrophysics Data System (ADS)

    Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz

    2017-04-01

    The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the

  6. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Hubbard, Kenneth G.; Verma, Shashi B.; Starks, Patrick; Norman, John M.; Walter-Shea, Elizabeth

    1987-01-01

    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning.

  7. Turbulent Surface Flux Measurements over Snow-Covered Sea Ice

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Fairall, C. W.; Grachev, A. A.; Guest, P. S.; Jordan, R. E.; Persson, P. G.

    2006-12-01

    Our group has used eddy correlation to make over 10,000 hours of measurements of the turbulent momentum and heat fluxes over snow-covered sea ice in both the Arctic and the Antarctic. Polar sea ice is an ideal site for studying fundamental processes for turbulent exchange over snow. Both our Arctic and Antarctic sites---in the Beaufort Gyre and deep into the Weddell Sea, respectively---were expansive, flat areas with continuous snow cover; and both were at least 300 km from any topography that might have complicated the atmospheric flow. In this presentation, we will review our measurements of the turbulent fluxes of momentum and sensible and latent heat. In particular, we will describe our experiences making turbulence instruments work in the fairly harsh polar, marine boundary layer. For instance, several of our Arctic sites were remote from our main camp and ran unattended for a week at a time. Besides simply making flux measurements, we have been using the data to develop a bulk flux algorithm and to study fundamental turbulence processes in the atmospheric surface layer. The bulk flux algorithm predicts the turbulent surface fluxes from mean meteorological quantities and, thus, will find use in data analyses and models. For example, components of the algorithm are already embedded in our one- dimensional mass and energy budget model SNTHERM. Our fundamental turbulence studies have included deducing new scaling regimes in the stable boundary layer; examining the Monin-Obukhov similarity functions, especially in stable stratification; and evaluating the von Kármán constant with the largest atmospheric data set ever applied to such a study. During this presentation, we will highlight some of this work.

  8. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  9. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  10. Eddy covariance measurement of isoprene fluxes

    NASA Astrophysics Data System (ADS)

    Guenther, Alex B.; Hills, Alan J.

    1998-06-01

    A system has been developed to directly measure isoprene flux above a forest canopy by eddy covariance using the combination of a fast response, real-time isoprene sensor and sonic anemometer. This system is suitable for making nearly unattended, long-term, and continuous measurements of isoprene fluxes. Isoprene detection is based on chemiluminescence between isoprene and reactant ozone, which produces green light at 500 nm. The sensor has a noise level (1σ) of 450 pptv for a 1-s integration which is dominated by random high-frequency noise that does not significantly degrade eddy covariance flux measurements. Interference from the flux of other compounds is primarily due to the emission of monoterpenes, propene, ethene, and methyl butenol and the deposition of methacrolein and methyl vinyl ketone. The average total interference for North American landscapes in midday summer is estimated to be about 5% for emissions and -3% for deposition fluxes. In only a few North American landscapes, where isoprene emissions are very low and methyl butenol emissions are high, are interferences predicted to be significant. The system was field tested on a tower above a mixed deciduous forest canopy (Duke Forest, North Carolina, U.S.A.) dominated by oak trees, which are strong isoprene emitters. Isoprene fluxes were estimated for 307 half-hour sampling periods over 10 days. Daytime fluxes ranging from 1 to 14 mg C m-2 h-1 were strongly correlated with light and temperature. The daytime mean flux of 6 mg C m-2 h-1 is similar to previous estimates determined by relaxed eddy accumulation by Geron et al [1997] at this site. Nighttime fluxes were near zero (0.01±0.03 mg C m-2 h-1).

  11. AmeriFlux US-Br1 Brooks Field Site 10- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br1 Brooks Field Site 10- Ames. Site Description - The Brooks Field Site 10 - Ames Site is one of three sites (Brooks Field Site 11 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  12. AmeriFlux US-Br3 Brooks Field Site 11- Ames

    DOE Data Explorer

    Parkin, Tim [USDA; Prueger, John [National Laboratory for Agriculture and the Environment

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Br3 Brooks Field Site 11- Ames. Site Description - The Brooks Field Site 11 - Ames Site is one of three sites (Brooks Field Site 10 and Brooks Field Site 1011) located in a corn/soybean agricultural landscape of central Iowa. The farming systems, associated tillage, and nutrient management practices for soybean/corn production are typical of those throughout Upper Midwest Corn Belt. All three sites are members of the AmeriFlux network. Information for all three can be found in synchronous pages of this website.

  13. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; Wang, Guiling; Goulden, Michael L.; Scott, Russell L.; Bible, Kenneth; Cardon, Zoe G.

    2016-05-01

    Effects of hydraulic redistribution (HR) on hydrological, biogeochemical, and ecological processes have been demonstrated in the field, but the current generation of standard earth system models does not include a representation of HR. Though recent studies have examined the effect of incorporating HR into land surface models, few (if any) have done cross-site comparisons for contrasting climate regimes and multiple vegetation types via the integration of measurement and modeling. Here, we incorporated the HR scheme of Ryel et al. (2002) into the NCAR Community Land Model Version 4.5 (CLM4.5), and examined the ability of the resulting hybrid model to capture the magnitude of HR flux and/or soil moisture dynamics from which HR can be directly inferred, to assess the impact of HR on land surface water and energy budgets, and to explore how the impact may depend on climate regimes and vegetation conditions. Eight AmeriFlux sites with contrasting climate regimes and multiple vegetation types were studied, including the Wind River Crane site in Washington State, the Santa Rita Mesquite savanna site in southern Arizona, and six sites along the Southern California Climate Gradient. HR flux, evapotranspiration (ET), and soil moisture were properly simulated in the present study, even in the face of various uncertainties. Our cross-ecosystem comparison showed that the timing, magnitude, and direction (upward or downward) of HR vary across ecosystems, and incorporation of HR into CLM4.5 improved the model-measurement matches of evapotranspiration, Bowen ratio, and soil moisture particularly during dry seasons. Our results also reveal that HR has important hydrological impact in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.

  14. Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites

    DOE PAGES

    Fu, Congsheng; Wang, Guiling; Goulden, Michael L.; ...

    2016-05-17

    Effects of hydraulic redistribution (HR) on hydrological, biogeochemical, and ecological processes have been demonstrated in the field, but the current generation of standard earth system models does not include a representation of HR. Though recent studies have examined the effect of incorporating HR into land surface models, few (if any) have done cross-site comparisons for contrasting climate regimes and multiple vegetation types via the integration of measurement and modeling. Here, we incorporated the HR scheme of Ryel et al. (2002) into the NCAR Community Land Model Version 4.5 (CLM4.5), and examined the ability of the resulting hybrid model to capture themore » magnitude of HR flux and/or soil moisture dynamics from which HR can be directly inferred, to assess the impact of HR on land surface water and energy budgets, and to explore how the impact may depend on climate regimes and vegetation conditions. Eight AmeriFlux sites with contrasting climate regimes and multiple vegetation types were studied, including the Wind River Crane site in Washington State, the Santa Rita Mesquite savanna site in southern Arizona, and six sites along the Southern California Climate Gradient. HR flux, evapotranspiration (ET), and soil moisture were properly simulated in the present study, even in the face of various uncertainties. Our cross-ecosystem comparison showed that the timing, magnitude, and direction (upward or downward) of HR vary across ecosystems, and incorporation of HR into CLM4.5 improved the model-measurement matches of evapotranspiration, Bowen ratio, and soil moisture particularly during dry seasons. Lastly, our results also reveal that HR has important hydrological impact in ecosystems that have a pronounced dry season but are not overall so dry that sparse vegetation and very low soil moisture limit HR.« less

  15. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatfield, Kirk

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction withmore » DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance

  16. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    NASA Astrophysics Data System (ADS)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  17. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  18. AmeriFlux US-Men Lake Mendota, Center for Limnology Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ankur

    This is the AmeriFlux version of the carbon flux data for the site US-Men Lake Mendota, Center for Limnology Site. Site Description - The site is located on the shoreline of Lake Mendota on the rooftop of UW-Madison's Center for Limnology.

  19. Turbulent Fogwater Flux Measurements Above A Forest

    NASA Astrophysics Data System (ADS)

    Burkard, R.; Eugster, W.; Buetzberger, P.; Siegwolf, R.

    Many forest ecosystems in elevated regions receive a significant fraction of their wa- ter and nutrient input by the interception of fogwater. Recently, several studies have demonstrated the suitability of the eddy covariance technique for the direct measure- ment of turbulent liquid water fluxes. Since summer 2001 a fogwater flux measure- ment equipment has been running at a montane site above a mixed forest canopy in Switzerland. The measurement equipment consists of a high-speed size-resolving droplet spectrometer and a three-dimensional ultrasonic anemometer. The chemical composition of the fogwater was determined from samples collected with a modified Caltech active strand collector. The deposition of nutrients by fog (occult deposition) was calculated by multiplying the total fogwater flux (total of measured turbulent and calculated gravitational flux) during each fog event by the ionic concentrations found in the collected fogwater. Several uncertainties still exist as far as the accuracy of the measurements is con- cerned. Although there is no universal statistical approach for testing the quality of the liquid water flux data directly, results of independent data quality checks of the two time series involved in the flux computation and accordingly the two instruments (ultrasonic anemometer and the droplet spectrometer) are presented. Within the measurement period, over 80 fog events with a duration longer than 2.5 hours were analyzed. An enormous physical and chemical heterogeneity among these fog events was found. We assume that some of this heterogeneity is due to the fact that fog or cloud droplets are not conservative entities: the turbulent flux of fog droplets, which can be referred to as the liquid water flux, is affected by phase change processes and coagulation. The measured coexistence of upward fluxes of small fog droplets (di- ameter < 10 µm) with the downward transport of larger droplets indicates the influ- ence of such processes. With the

  20. Greenhouse Gas Fluxes at the Tablelands, NL, Canada: A Site of Active Serpentinization

    NASA Astrophysics Data System (ADS)

    Morrill, P. L.; Morrissey, L. S.; Cumming, E.

    2016-12-01

    Active sites of serpentinization have been proposed as sites for carbon capture and storage (CCS) projects. However, in addition to their ability to convert carbon dioxide to carbonate rock, sites of serpentinization also have the potential release methane, which is a more power greenhouse gas than carbon dioxide. Very little is known about the natural flux of carbon dioxide sequestered and methane released into the atmosphere from active sites of serpentinization. In this study we measured carbon dioxide, methane, and nitrous oxide gas fluxes at a pool of ultra-basic water discharging from serpentinized rock in Winterhouse Canyon, Gros Morne, Newfoundland. We found that the flux of methane released was 4.6 x 10-7 mol/m2/min and the carbon dioxide sequestered was 1.9 x 10-5 mol/m2/min, while the concentrations of nitrous oxide showed little change. Based on these fluxes we calculated predictive climate change parameters such as net radiative forcing and global warming potential which predicted that despite the methane being released the site still had an overall long-term atmospheric cooling effect based on the natural rate of carbon dioxide sequestration.

  1. Estimating Energy Expenditure Using Heat Flux Measured at Single Body Site

    PubMed Central

    Lyden, Kate; Swibas, Tracy; Catenacci, Victoria; Guo, Ruixin; Szuminsky, Neil; Melanson, Edward L.

    2014-01-01

    Introduction The Personal Calorie Monitor (PCM) is a portable direct calorimeter that estimates energy expenditure (EE) from measured heat flux (i.e. the sum of conductive, convective, radiative, and evaporative). Purpose The primary aim of this study was to compare EE estimated from measures of heat flux to indirect calorimetry in a thermoneutral environment (26°C). A secondary aim was to determine if exposure to ambient temperature below thermoneutral (19°C) influences the accuracy of the PCM. Methods 34 Adults (mean±SD, age = 28±5 y, body mass index = 22.9±2.6 kg.m2) were studied for 5 h in a whole-room indirect calorimeter (IC) in thermoneutral and cool conditions. Participants wore the PCM on their upper arm and completed two, 20-minute treadmill-walking bouts (0% grade, 3 mph). The remaining time was spent sedentary (e.g., watching television, using a computer). Results In thermoneutral, EE (mean (95% CI)) measured by IC and PCM was 560.0 (526.5, 593.5) and 623.3 (535.5, 711.1) kcals, respectively. In cool, EE measured by IC and PCM was 572.5 (540.9, 604.0) and 745.5 (668.1, 822.8) kcals, respectively. Under thermoneutral conditions, mean PCM minute-by-minute EE tracked closely with IC, resulting in a small, non-significant bias (63 kcals (−5.8, 132.4)). During cool conditions, mean PCM minute-by-minute EE did not track IC, resulting in a large bias (173.0 (93.9, 252.1)) (p<0.001). Conclusion This study demonstrated the validity of using measured heat flux to estimate EE. However, accuracy may be impaired in cool conditions, possibly due to excess heat loss from the exposed limbs. PMID:24811326

  2. AmeriFlux US-MRf Mary's River (Fir) site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Bev

    This is the AmeriFlux version of the carbon flux data for the site US-MRf Mary's River (Fir) site. Site Description - The Marys River Fir site is part of the "Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon and Northern California (ORCA)". Located in the western region of Oregon the Marys River site represents the western extent of the climate gradient that spans eastward into the semi-arid basin of central Oregon. The sites that make up the eastern extent of the ORCA climate gradient is the Metoliusmore » site network (US-Me1, US-ME2, US-ME4, US-Me5) all of which are part of the TERRA PNW project at Oregon State University.« less

  3. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  4. AmeriFlux US-Wrc Wind River Crane Site

    DOE Data Explorer

    Bible, Ken [University of Washington; Wharton, Sonia [Lawrence Livermore National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wrc Wind River Crane Site. Site Description - Wind River Field Station flux tower site is located in the T.T. Munger Research Area of the Wind River Ranger District in the Gifford Pinchot National Forest. Protected since 1926, the T.T. Munger Research Natural Area (RNA) is administered by the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. The Douglas-fir/western hemlock dominant stand is approximately 500 years old and represents end points of several ecological gradients including age, biomass, structural complexity, and density of the dominant overstory species. A complete stand replacement fire, approximately 450-500 years ago, resulted in the initial establishment. No significant disturbances have occurred since the fire aside from those confined to small groups of single trees, such as overturn from high wind activity and mechanical damage from winter precipitation.

  5. AmeriFlux US-ADR Amargosa Desert Research Site (ADRS)

    DOE Data Explorer

    Moreo, Michael [U.S. Geological Survey

    2018-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ADR Amargosa Desert Research Site (ADRS). Site Description - This tower is located at the Amargosa Desert Research Site (ADRS). The U.S. Geological Survey (USGS) began studies of unsaturated zone hydrology at ADRS in 1976. Over the years, USGS investigations at ADRS have provided long-term "benchmark" information about the hydraulic characteristics and soil-water movement for both natural-site conditions and simulated waste-site conditions in an arid environment. The ADRS is located in a creosote-bush community adjacent to disposal trenches for low-level radioactive waste.

  6. Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes

    NASA Astrophysics Data System (ADS)

    Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.

    2017-11-01

    Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.

  7. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  8. Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects

    USGS Publications Warehouse

    Turnipseed, Andrew A.; Anderson, Dean E.; Blanken, Peter D.; Baugh, William M.; Monson, Russell K.

    2003-01-01

    We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks, turbulent length scales, and profiles of turbulent intensities that were comparable in magnitude and pattern to those reported for forest canopies in simpler terrain. We conclude that in many of these statistical measures, the local canopy exerts considerably more influence than does topographical complexity. Lack of vertical flux divergence and modeling suggests that the flux footprints for the site are within the standards acceptable for the application of flux statistics. We investigated three different methods of coordinate rotation: double rotation (DR), triple rotation (TR), and planar-fit rotation (PF). Significant variability in rotation angles at low wind speeds was encountered with the commonly used DR and TR methods, as opposed to the PF method, causing some overestimation of the fluxes. However, these differences in fluxes were small when applied to large datasets involving sensible heat and CO2 fluxes. We observed evidence of frequent drainage flows near the ground during stable, stratified conditions at night. Concurrent with the appearance of these flows, we observed a positive bias in the mean vertical wind speed, presumably due to subtle topographic variations inducing a flow convergence below the measurement sensors. In the presence of such drainage flows, advection of scalars and non-zero bias in the mean vertical wind speed can complicate closure of the mass conservation budget at the site.

  9. Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum

    NASA Astrophysics Data System (ADS)

    Grimmond, C. S. B.; Salmond, J. A.; Oke, T. R.; Offerle, B.; Lemonsu, A.

    2004-12-01

    Eddy covariance (EC) observations above the densely built-up center of Marseille during the Expérience sur site pour contraindre les modèles de pollution atmosphérique et de transport d'émissions (ESCOMPTE) summertime measurement campaign extend current understanding of surface atmosphere exchanges in cities. The instrument array presented opportunities to address issues of the representativeness of local-scale fluxes in urban settings. Separate EC systems operated at two levels, and a telescoping tower allowed the pair to be exposed at two different sets of heights. The flux and turbulence observations taken at the four heights, stratified by wind conditions (mistral wind and sea breeze), are used to address the partitioning of the surface energy balance in an area with large roughness elements. The turbulent sensible heat flux dominates in the daytime, although the storage heat flux is a significant term that peaks before solar noon. The turbulent latent heat flux is small but not negligible. Carbon dioxide fluxes show that this central city district is almost always a source, but the vegetation reduces the magnitude of the fluxes in the afternoon. The atmosphere in such a heavily developed area is rarely stable. The turbulence characteristics support the empirical functions proposed by M. Roth.

  10. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon '90 experiment

    USGS Publications Warehouse

    Stannard, D.I.; Blanford, J.H.; Kustas, William P.; Nichols, W.D.; Amer, S.A.; Schmugge, T.J.; Weltz, M.A.

    1994-01-01

    A network of 9-m-tall surface flux measurement stations were deployed at eight sparsely vegetated sites during the Monsoon '90 experiment to measure net radiation, Q, soil heat flux, G, sensible heat flux, H (using eddy correlation), and latent heat flux, λE (using the energy balance equation). At four of these sites, 2-m-tall eddy correlation systems were used to measure all four fluxes directly. Also a 2-m-tall Bowen ratio system was deployed at one site. Magnitudes of the energy balance closure (Q + G + H + λE) increased as the complexity of terrain increased. The daytime Bowen ratio decreased from about 10 before the monsoon season to about 0.3 during the monsoons. Source areas of the measurements are developed and compared to scales of heterogeneity arising from the sparse vegetation and the topography. There was very good agreement among simultaneous measurements of Q with the same model sensor at different heights (representing different source areas), but poor agreement among different brands of sensors. Comparisons of simultaneous measurements of G suggest that because of the extremely small source area, extreme care in sensor deployment is necessary for accurate measurement in sparse canopies. A recently published model to estimate fetch is used to interpret measurements of H at the 2 m and 9 m heights. Three sites were characterized by undulating topography, with ridgetops separated by about 200–600 m. At these sites, sensors were located on ridgetops, and the 9-m fetch included the adjacent valley, whereas the 2-m fetch was limited to the immediate ridgetop and hillside. Before the monsoons began, vegetation was mostly dormant, the watershed was uniformly hot and dry, and the two measurements of H were in close agreement. After the monsoons began and vegetation fully matured, the 2-m measurements of H were significantly greater than the 9-m measurements, presumably because the vegetation in the valleys was denser and cooler than on the ridgetops and

  11. A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments

    NASA Astrophysics Data System (ADS)

    Lesmeister, Lukas; Koschorreck, Matthias

    2017-06-01

    Recent research indicates that greenhouse gas (GHG) emissions from dry aquatic sediments are a relevant process in the freshwater carbon cycle. However, fluxes are difficult to measure because of the often rocky substrate and the dynamic nature of the habitat. Here we tested the performance of different materials to seal a closed chamber to stony ground both in laboratory and field experiments. Using on-site material consistently resulted in elevated fluxes. The artefact was caused both by outgassing of the material and production of gas. The magnitude of the artefact was site dependent - the measured CO2 flux increased between 10 and 208 %. Errors due to incomplete sealing proved to be more severe than errors due to non-inert sealing material.Pottery clay as sealing material provided a tight seal between the chamber and the ground and no production of gases was detected. With this approach it is possible to get reliable gas fluxes from hard-substrate sites without using a permanent collar. Our test experiments confirmed that CO2 fluxes from dry aquatic sediments are similar to CO2 fluxes from terrestrial soils.

  12. Uncertainties Associated with Flux Measurements Due to Heterogeneous Contaminant Distributions

    EPA Science Inventory

    Mass flux and mass discharge measurements at contaminated sites have been applied to assist with remedial management, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Extrapolation across un-sampled space is necessary when usi...

  13. Continuous measurements of methane flux in two Japanese temperate forests based on the micrometeorological and chamber methods

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Ueyama, M.; Takagi, K.; Kominami, Y.

    2015-12-01

    Methane (CH4) budget in forest ecosystems have not been accurately quantified due to limited measurements and considerable spatiotemporal heterogeneity. In order to quantify CH4 fluxes at temperate forest at various spatiotemporal scales, we have continuously measured CH4 fluxes at two upland forests based on the micrometeorological hyperbolic relaxed eddy accumulation (HREA) and automated dynamic closed chamber methods.The measurements have been conducted at Teshio experimental forest (TSE) since September 2013 and Yamashiro forest meteorology research site (YMS) since November 2014. Three automated chambers were installed on each site. Our system can measure CH4 flux by the micrometeorological HREA, vertical concentration profile at four heights, and chamber measurements by a laser-based gas analyzer (FGGA-24r-EP, Los Gatos Research Inc., USA).Seasonal variations of canopy-scale CH4 fluxes were different in each site. CH4 was consumed during the summer, but was emitted during the fall and winter in TSE; consequently, the site acted as a net annual CH4 source. CH4 was steadily consumed during the winter, but CH4 fluxes fluctuated between absorption and emission during the spring and summer in YMS. YMS acted as a net annual CH4 sink. CH4 uptake at the canopy scale generally decreased with rising soil temperature and increased with drying condition for both sites. CH4 flux measured by most of chambers showed the consistent sensitivity examined for the canopy scale to the environmental variables. CH4 fluxes from a few chambers located at a wet condition were independent of variations in soil temperature and moisture at both sites. Magnitude of soil CH4 uptake was higher than the canopy-scale CH4 uptake. Our results showed that the canopy-scale CH4 fluxes were totally different with the plot-scale CH4 fluxes by chambers, suggesting the considerable spatial heterogeneity in CH4 flux at the temperate forests.

  14. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    DOE PAGES

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; ...

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis ofmore » the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be

  15. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    PubMed Central

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-01-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich

  16. Assessing and correcting spatial representativeness of tower eddy-covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Xu, K.; Desai, A. R.; Taylor, J. R.; Kljun, N.; Blanken, P.; Burns, S. P.; Scott, R. L.

    2014-12-01

    Estimating the landscape-scale exchange of ecologically relevant trace gas and energy fluxes from tower eddy-covariance (EC) measurements is often complicated by surface heterogeneity. For example, a tower EC measurement may represent less than 1% of a grid cell resolved by mechanistic models (order 100-1000 km2). In particular for data assimilation or comparison with large-scale observations, it is hence critical to assess and correct the spatial representativeness of tower EC measurements. We present a procedure that determines from a single EC tower the spatio-temporally explicit flux field of its surrounding. The underlying principle is to extract the relationship between biophysical drivers and ecological responses from measurements under varying environmental conditions. For this purpose, high-frequency EC flux processing and source area calculations (≈60 h-1) are combined with remote sensing retrievals of land surface properties and subsequent machine learning. Methodological details are provided in our companion presentation "Towards the spatial rectification of tower-based eddy-covariance flux observations". We apply the procedure to one year of data from each of four AmeriFlux sites under different climate and ecological environments: Lost Creek shrub fen wetland, Niwot Ridge subalpine conifer, Park Falls mixed forest, and Santa Rita mesquite savanna. We find that heat fluxes from the Park Falls 122-m-high EC measurement and from a surrounding 100 km2 target area differ up to 100 W m-2, or 65%. Moreover, 85% and 24% of the EC flux observations are adequate surrogates of the mean surface-atmosphere exchange and its spatial variability across a 900 km2 target area, respectively, at 5% significance and 80% representativeness levels. Alternatively, the resulting flux grids can be summarized as probability density functions, and used to inform mechanistic models directly with the mean flux value and its spatial variability across a model grid cell. Lastly

  17. AmeriFlux US-Ho3 Howland Forest (harvest site)

    DOE Data Explorer

    Hollinger, David [USDA Forest Service; Hollinger, David [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ho3 Howland Forest (harvest site). Site Description - Closed conifer forest, minimal disturbance. References: Fernandez et al. (1993), Canadian Journal of Soil Science 73 317-328. Hollinger et al. (1999), Global Change Biology 5: 891-902. Savage KE, Davidson EA (2001), Global Biogeochemical Cycles 15 337-350. Scott et al. (2004), Environmental Management, Vol. 33, Supplement 1, pp. S9-S22. Hollinger et al. (2004), Global Change Biology 10: 1689-1706.

  18. AmeriFlux CA-NS6 UCI-1989 burn site

    DOE Data Explorer

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS6 UCI-1989 burn site. Site Description - The UCI-1989 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  19. AmeriFlux CA-NS2 UCI-1930 burn site

    DOE Data Explorer

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS2 UCI-1930 burn site. Site Description - The UCI-1930 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  20. AmeriFlux CA-NS3 UCI-1964 burn site

    DOE Data Explorer

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS3 UCI-1964 burn site. Site Description - The UCI-1964 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  1. AmeriFlux CA-NS7 UCI-1998 burn site

    DOE Data Explorer

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS7 UCI-1998 burn site. Site Description - The UCI-1998 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  2. AmeriFlux CA-NS8 UCI-2003 burn site

    DOE Data Explorer

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS8 UCI-2003 burn site. Site Description - The UCI-2003 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  3. AmeriFlux CA-NS5 UCI-1981 burn site

    DOE Data Explorer

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS5 UCI-1981 burn site. Site Description - The UCI-1981 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  4. AmeriFlux CA-NS1 UCI-1850 burn site

    DOE Data Explorer

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS1 UCI-1850 burn site. Site Description - The UCI-1850 site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  5. Estimating terrestrial uranium and thorium by antineutrino flux measurements.

    PubMed

    Dye, Stephen T; Guillian, Eugene H

    2008-01-08

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth.

  6. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    PubMed Central

    Dye, Stephen T.; Guillian, Eugene H.

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth. PMID:18172211

  7. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements

    DOE PAGES

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; ...

    2016-08-23

    Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolving representativeness of FLUXNET through time. Results providemore » quantitative insights into the extent that various biomes are sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at any given time, and how that representativeness has changed through time due to changing operational status and data availability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of the carbon cycle captured by the in situ measurements. In conclusion, this study presents a method for optimal use of the rich point measurements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data become available, and direct network expansion by identifying regions poorly sampled by the current network.« less

  8. Measurement uncertainties in quantifying aeolian mass flux: evidence from wind tunnel and field site data

    PubMed Central

    Keijsers, Joep G.S.; Maroulis, Jerry; Visser, Saskia M.

    2014-01-01

    Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the measurement compartments and the analysis approach used. In this study, we analyse the uncertainty of these measurements by investigating the vertical cumulative distribution and relative sediment flux derived from both wind tunnel and field studies. Vertical flux data was examined using existing data in combination with a newly acquired dataset; comprising meteorological data and sediment fluxes from six different events, using three customized catchers at Ameland beaches in northern Netherlands. Fast-temporal data collected in a wind tunnel shows that the median transport height has a scattered pattern between impact and fluid threshold, that increases linearly with shear velocities above the fluid threshold. For finer sediment, a larger proportion was transported closer to the surface compared to coarser sediment fractions. It was also shown that errors originating from the distribution of sampling compartments, specifically the location of the lowest sediment trap relative to the surface, can be identified using the relative sediment flux. In the field, surface conditions such as surface moisture, surface crusts or frozen surfaces have a more pronounced but localized effect than shear velocity. Uncertainty in aeolian mass flux estimates can be reduced by placing multiple compartments in closer proximity to the surface. PMID:25071984

  9. Airflows and turbulent flux measurements in mountainous terrain: Part 2: Mesoscale effects

    USGS Publications Warehouse

    Turnipseed, A.A.; Anderson, D.E.; Burns, S.; Blanken, P.D.; Monson, Russell K.

    2004-01-01

    The location of the Niwot Ridge Ameriflux site within the rocky mountains subjects it to airflows which are common in mountainous terrain. In this study, we examine the effects of some of these mesoscale features on local turbulent flux measurements; most notably, the formation of valley/mountain flows and mountain lee-side waves. The valley/mountain flows created local non-stationarities in the wind flow caused by the passage of a lee-side convergence zone (LCZ) in which upslope and downslope flows met in the vicinity of the measurement tower. During June-August, 2001, possible lee-side convergences were flagged for ???26% of all half-hour daytime flux measurement periods. However, there was no apparent loss of flux during these periods. On some relatively stable, summer nights, turbulence (designated via ??w), and scalar fluctuations (temperature and CO2, for example) exhibited periodicities that appeared congruent with passage of low frequency gravity waves (?? ??? 20 min). Spectral peaks at 0.0008 Hz (20 min) in both vertical velocity and scalar spectra were observed and indicated that 25-50% of the total scalar covariances were accounted for by the low frequency waves. During some periods of strong westerly winds (predominantly in winter), large mountain gravity waves were observed to form. Typically, the flux tower resided within a region of downslope "shooting flow", which created high turbulence, but had no detrimental effect on local flux measurements based on valid turbulence statistics and nearly complete energy budget closure. Periodically, we found evidence for re-circulating, rotor winds in the simultaneous time series of wind data from the Ameriflux tower site and a second meteorological site situated 8 km upslope and to the West. Only 14% of the half-hour time periods that we examined for a 4 month period in the winter of 2000-2001 indicated the possible existence of rotor winds. On average, energy budget closure was ???20% less during periods with

  10. Heat flux microsensor measurements

    NASA Technical Reports Server (NTRS)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  11. A mobile detector for measurements of the atmospheric muon flux

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Brancus, I. M.; Margineanu, R.; Petcu, M.; Dima, M.; Sima, O.; Haungs, A.; Rebel, H.; Petre, M.; Toma, G.; Saftoiu, A.; Apostu, A.

    2011-04-01

    Measurements of the underground atmospheric muon flux are important in order to determine accurately the overburden in mwe (meter water equivalent) of an underground laboratory for appreciating which kind of experiments are feasible for that location. Slanic- Prohava is one of the 7 possible locations for the European large underground experiment LAGUNA (Large Apparatus studying Grand Unification and Neutrino Astrophysics). A mobile device consisting of 2 scintillator plates (≍0.9 m2, each) one above the other and measuring in coincidence, was set-up for determining the muon flux. The detector it is installed on a van which facilitates measurements on different positions at the surface or in the underground and it is in operation since autumn 2009. The measurements of muon fluxes presented in this contribution have been performed in the underground salt mine Slanic-Prahova, Romania, where IFIN-HH has built a low radiation level laboratory, and at the surface on different sites of Romania, at different elevations from 0 m a.s.l up to 655 m a.s.l. Based on our measurements we can say that Slanic site is a feasible location for LAGUNA in Unirea salt mine at a water equivalent depth of 600 mwe. The results have been compared with Monte-Carlo simulations performed with the simulation codes CORSIKA and MUSIC.

  12. An inter-comparison of surface energy flux measurement systems used during FIFE, 1987

    NASA Technical Reports Server (NTRS)

    Nie, D.; Kanemasu, E. T.; Fritschen, L. J.; Weaver, H.; Smith, E. A.; Verma, S. B.; Field, R. T.; Kustas, W.; Stewart, J. B.

    1990-01-01

    During the first International Satellite Land Surface Climatology Program Field Experiment (FIFE-87), surface energy fluxes were measured at 22 flux sites by nine groups of scientists using different measuring systems. A rover Bowen ratio station was taken to nearly all the flux stations to serve as a reference for estimating the instrument related differences. The rover system was installed within a few meters from the host instrument of a site. Net radiation, Bowen ratio, and latent heat fluxes were compared between the rover and the host for the stations visited. Linear regression analysis was used to examine the relationship between rover measurements and host measurements. These inter-comparisons are needed to examine the influence of instrumentation on measurement uncertainty. Highly significant effects of instrument type were detected from these comparisons. Instruments of the same type showed average differences of less than 5 percent for net radiation, 10 percent for Bowen ratio, and 6 percent for latent heat flux. The corresponding average differences for different types of instruments can be up to 10, 30, and 20 percent respectively. The Didcot net radiometer gave higher net radiation while the Swissteco type showed lower values, as compared to the corrected REBS model. The 4-way components methed and the Thornswaite type give similar values to the REBS. The SERBS type Bowen ratio systems exhibit slightly lower Bowen ratios and thus higher latent heat fluxes, compared to the AZET systems. Eddy correlation systems showed slightly lower latent heat flux in comparison to the Bowen ratio systems.

  13. Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.

    2008-05-01

    The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their

  14. Carbon Fluxes at the AmazonFACE Research Site

    NASA Astrophysics Data System (ADS)

    Norby, R.; De Araujo, A. C.; Cordeiro, A. L.; Fleischer, K.; Fuchslueger, L.; Garcia, S.; Hofhansl, F.; Garcia, M. N.; Grandis, A.; Oblitas, E.; Pereira, I.; Pieres, N. M.; Schaap, K.; Valverde-Barrantes, O.

    2017-12-01

    The free-air CO2 enrichment (FACE) experiment to be implemented in the Amazon rain forest requires strong pretreatment characterization so that eventual responses to elevated CO2 can be detected against a background of substantial species diversity and spatial heterogeneity. Two 30-m diameter plots have been laid out for initial characterization in a 30-m tall, old-growth, terra firme forest. Intensive measurements have been made of aboveground tree growth, leaf area, litter production, and fine-root production; these data sets together support initial estimates of plot-scale net primary productivity (NPP). Leaf-level measurements of photosynthesis throughout the canopy and over a daily time course in both the wet and dry season, coupled with meterological monitoring, support an initial estimate of gross primary productivity (GPP) and carbon-use efficiency (CUE = NPP/GPP). Monthly monitoring of CO2 efflux from the soil, partitioned into autotrophic and heterotrophic components, supports an estimate of net ecosystem production (NEP). Our estimate of NPP in the two plots (1.2 and 1.4 kg C m-2 yr-1) is 16-38% greater than previously reported for the site, primarily due to our more complete documentation of fine-root production, including root production deeper than 30 cm. The estimate of CUE of the ecosystem (0.52) is greater than most others in Amazonia; this discrepancy reflects large uncertainty in GPP, which derived from just two days of measurement, or to underestimates of the fine-root component of NPP in previous studies. Estimates of NEP (0 and 0.14 kg C m-2 yr-1) are generally consistent with a landscape-level estimate from flux tower data. Our C flux estimates, albeit very preliminary, provide initial benchmarks for a 12-model a priori evaluation of this forest. The model means of GPP, NPP, and NEP are mostly consistent with our field measurements. Predictions of C flux responses to elevated CO2 from the models become hypotheses to be tested in the FACE

  15. Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign

    NASA Astrophysics Data System (ADS)

    Pacifico, Federica; Delon, Claire; Jambert, Corinne; Durand, Pierre; Morris, Eleanor; Evans, Mat J.; Lohou, Fabienne; Derrien, Solène; Donnou, Venance H. E.; Houeto, Arnaud V.; Reinares Martinez, Irene; Brilouet, Pierre-Etienne

    2018-03-01

    It is important to correctly simulate biogenic fluxes from soil in atmospheric chemistry models at a local and regional scale to study air pollution and climate in an area of the world, West Africa, that has been subject to a strong increase in anthropogenic emissions due to a massive growth in population and urbanization. Anthropogenic pollutants are transported inland and northward from the mega cities located on the coast, where the reaction with biogenic emissions may lead to enhanced ozone production outside urban areas, as well as secondary organic aerosols formation, with detrimental effects on humans, animals, natural vegetation and crops. Here we present field measurements of soil fluxes of nitric oxide (NO) and ammonia (NH3) observed over four different land cover types, i.e. bare soil, grassland, maize field and forest, at an inland rural site in Benin, West Africa, during the DACCIWA field campaign in June and July 2016. We observe NO fluxes up to 48.05 ngN m-2 s-1. NO fluxes averaged over all land cover types are 4.79 ± 5.59 ngN m-2 s-1, maximum soil emissions of NO are recorded over bare soil. NH3 is dominated by deposition for all land cover types. NH3 fluxes range between -6.59 and 4.96 ngN m-2 s-1. NH3 fluxes averaged over all land cover types are -0.91 ± 1.27 ngN m-2 s-1 and maximum NH3 deposition is measured over bare soil. The observations show high spatial variability even for the same soil type, same day and same meteorological conditions. We compare point daily average measurements of NO emissions recorded during the field campaign with those simulated by GEOS-Chem (Goddard Earth Observing System Chemistry Model) for the same site and find good agreement. In an attempt to quantify NO emissions at the regional and national scale, we also provide a tentative estimate of total NO emissions for the entire country of Benin for the

  16. Using dynamic flux chambers to estimate the natural attenuation rates in the subsurface at petroleum contaminated sites.

    PubMed

    Verginelli, Iason; Pecoraro, Roberto; Baciocchi, Renato

    2018-04-01

    In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m 2 . These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites. Copyright © 2017 Elsevier B.V. All

  17. Estimation of surface heat and moisture fluxes over a prairie grassland. II - Two-dimensional time filtering and site variability

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Smith, Eric A.

    1992-01-01

    The behavior of in situ measurements of surface fluxes obtained during FIFE 1987 is examined by using correlative and spectral techniques in order to assess the significance of fluctuations on various time scales, from subdiurnal up to synoptic, intraseasonal, and annual scales. The objectives of this analysis are: (1) to determine which temporal scales have a significant impact on areal averaged fluxes and (2) to design a procedure for filtering an extended flux time series that preserves the basic diurnal features and longer time scales while removing high frequency noise that cannot be attributed to site-induced variation. These objectives are accomplished through the use of a two-dimensional cross-time Fourier transform, which serves to separate processes inherently related to diurnal and subdiurnal variability from those which impact flux variations on the longer time scales. A filtering procedure is desirable before the measurements are utilized as input with an experimental biosphere model, to insure that model based intercomparisons at multiple sites are uncontaminated by input variance not related to true site behavior. Analysis of the spectral decomposition indicates that subdiurnal time scales having periods shorter than 6 hours have little site-to-site consistency and therefore little impact on areal integrated fluxes.

  18. Micrometeorological flux measurements of aerosol and gases above Beijing

    NASA Astrophysics Data System (ADS)

    Nemitz, Eiko; Langford, Ben; Mullinger, Neil; Cowan, Nicholas; Coyle, Mhairi; Acton, William Joe; Lee, James; Fu, Pingqing

    2017-04-01

    less sensitive to transport effects. However, not only fluxes, but also these CO2-ratioed fluxes are highly variable in both space and time, indicating a complex mix of sources, which will be further investigated. The organic aerosol fluxes were the largest we have recorded to date at any urban measurement site. Nitrate, sulphate, chloride and ammonium all showed emissions that followed a similar diurnal cycle as the organic aerosol. Much of this aerosol is likely to have been formed by chemistry below the measurement height, but it nevertheless indicates significant sources of the precursor gases within the footprint. Comparing the measured fluxes of gas-phase NH3 and aerosol NH4+, at 102 m the aerosol phase makes a significant contribution to the reduced nitrogen emission.

  19. Low Permafrost Methane Emissions from Arctic Airborne Flux Measurements

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale greenhouse gas release from Arctic permafrost areas. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of energy and matter. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this question. During the AIRMETH-2012 and AIRMETH-2013 campaigns aboard the research aircraft POLAR 5 we measured turbulent exchange of energy, methane, and (in 2013) carbon dioxide along thousands of kilometers covering the North Slope of Alaska and the Mackenzie Delta, Canada. Time-frequency (wavelet) analysis, footprint modeling, and machine learning techniques are used to (i) determine spatially resolved turbulence statistics, fluxes, and contributions of biophysical surface properties, and (ii) extract regionally valid functional relationships between environmental drivers and the observed fluxes. These environmental response functions (ERF) are used to explain spatial flux patterns and - if drivers are available in temporal resolution - allow for spatio-temporal scaling of the observations. This presentation will focus on 2012 methane fluxes on the North Slope of Alaska and the relevant processes on the regional scale and provide an updated 100 m resolution methane flux map of the North Slope of Alaska.

  20. AmeriFlux CA-NS4 UCI-1964 burn site wet

    DOE Data Explorer

    Goulden, Mike [University of California - Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-NS4 UCI-1964 burn site wet. Site Description - The UCI-1964 wet site is located in a continental boreal forest, dominated by black spruce trees, within the BOREAS northern study area in central Manitoba, Canada. The site is a member of a chronological series of sites that are representative secondary succession growth stages after large stand replacement fires. Black spruce trees undergo a slow growth process enabling the accurate determination of the chronosequence of stand age disturbance. Additionally, boreal forests make up approximately 25% of forest ecosystems on earth. With both of these in mind, the UCI sites provide an excellent location to study the CO2 exchange between the atmosphere and boreal forest ecosystems as a function of sequential wildfires.

  1. 3-D density imaging with muon flux measurements from underground galleries

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  2. Software used with the flux mapper at the solar parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C.

    1984-01-01

    Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.

  3. AmeriFlux US-Ne3 Mead - rainfed maize-soybean rotation site

    DOE Data Explorer

    Suyker, Andy [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne3 Mead - rainfed maize-soybean rotation site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. While the other two sites are equipped with irrigation systems, this site relies on rainfall. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since initiation of the study in 2001, this site has been under no-till management.

  4. AmeriFlux US-Ha2 Harvard Forest Hemlock Site

    DOE Data Explorer

    Munger, William [Harvard University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ha2 Harvard Forest Hemlock Site. Site Description - The forest surrounding the Hemlock site has remained pristine with two exceptions. In the early to mid-1700s, European settlers cleared the majority of the forest for agricultural purposes. Selective harvesting of hemlock and chestnut trees occurred up until the early 1900s, when the chestnut blight killed all of the chestnut trees. In the current forest, about 83% of the total basal area of trees is hemlock. The remainder is equally divided between eastern white pine (Pinus strobus L.) and deciduous species, including red maple (Acer rubrum), red oak (Quercus rubra) and black birch (Betula lenta). A very thick organic layer (10-20 cm or more) covers the soil surface, and highly decayed coarse woody debris is abundant.

  5. Temporal variation of VOC fluxes measured with PTR-TOF above a boreal forest

    NASA Astrophysics Data System (ADS)

    Schallhart, Simon; Rantala, Pekka; Kajos, Maija K.; Aalto, Juho; Mammarella, Ivan; Ruuskanen, Taina M.; Kulmala, Markku

    2018-01-01

    Between April and June 2013 fluxes of volatile organic compounds (VOCs) were measured in a Scots pine and Norway spruce forest using the eddy covariance (EC) method with a proton transfer reaction time-of-flight (PTR-TOF) mass spectrometer. The observations were performed above a boreal forest at the SMEAR II site in southern Finland.We found a total of 25 different compounds with exchange and investigated their seasonal variations from spring to summer. The majority of the net VOC flux was comprised of methanol, monoterpenes, acetone and butene + butanol. The butene + butanol emissions were concluded to not originate from the forest and, therefore, be anthropogenic. The VOC exchange followed a seasonal trend and the emissions increased from spring to summer. Only three compounds were emitted during the snowmelt while in summer emissions of some 19 VOCs were observed. During the measurement period in April, the emissions were dominated by butene + butanol, while during the start of the growing season and in summer, methanol was the most emitted compound. The main source of methanol was likely the growth of new biomass. During a 21-day period in June, the net VOC flux was 2.1 nmol m-2 s-1. This is on the lower end of PTR-TOF flux measurements from other ecosystems, which range from 2 to 10 nmol m-2 s-1. The EC flux results were compared with surface layer profile measurements, using a proton transfer reaction quadrupole mass spectrometer, which is permanently installed at the SMEAR II site. For the major compounds, the fluxes measured with the two different methods agreed well.

  6. Radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Zara, Pedro; Vining, Roel; Hays, Cynthia J.; Mesarch, Mark A.

    1993-01-01

    The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions'. The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Our last report (Walter-Shea et al., 1992b) focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989. We report here on the final analysis of the slope data as well as results from thermal radiation studies conducted during the FIFE experiment. The specific areas reported are the following: (1) analysis of slope effects on measured reflectance values and estimates of surface albedo; (2) using remotely-measured surface temperatures as a means of estimating sensible heat flux from the Konza Prairie; (3) extracting canopy temperatures from remotely-measured composite surface temperatures; (4) modeling the measured composite temperature of partially vegetated surfaces; and (5) estimating gap distribution in partially vegetated surfaces from reflectance measurements.

  7. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Verma, Shashi B.; Hubbard, Kenneth G.; Starks, Patrick; Hays, Cynthia; Norman, John M.; Waltershea, Elizabeth

    1988-01-01

    The primary objectives of the 1985 study were to test the feasibility of using radio frequency receivers to collect data from automated weather stations and to evaluate the use of the data collected by the automated weather stations for modeling the fluxes of latent heat, sensible heat, and radiation over wheat. The model Cupid was used to calculate these fluxes which were compared with fluxes of these entities measured using micrometeorological techniques. The primary objectives of the 1986 study were to measure and model reflected and emitted radiation streams at a few locations within the First International Satellite Land-Surface Climatology Project Field Experiment (FIFE) site and to compare modeled and measured latent heat and sensible heat fluxes from the prairie vegetation.

  8. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont

    DOE Data Explorer

    Torn, Margaret [Lawrence Berkeley National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned on 2005/03/08. The second plot, US-ARc, was left unburned as the control for experimental purposes. Aside from 2005, the region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  9. BOREAS TE-1 CO2 and CH4 Flux Data Over the SSA-OBS Site

    NASA Technical Reports Server (NTRS)

    Anderson, Darwin; Papagno, Andrea; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor)

    2000-01-01

    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall transect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains carbon dioxide and methane flux values from the SSA-OBS site. The data were collected from 09-Jun to 04-Sep-1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Scaling up of Carbon Exchange Dynamics from AmeriFlux Sites to a Super-Region in the Eastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans Peter Schmid; Craig Wayson

    The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the modelsmore » will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.« less

  11. What can we learn about ammonia fluxes from open-path eddy covariance measurements?

    NASA Astrophysics Data System (ADS)

    Pan, D.; Zondlo, M. A.; Benedict, K. B.; Schichtel, B. A.; Ham, J. M.; Shonkwiler, K. B.; Collett, J. L., Jr.

    2016-12-01

    Ammonia (NH3) is an important component of bio-atmospheric N cycle with implications of regional air quality, human and ecosystem health degradation, and global climate change. NH3 fluxes have high spatiotemporal variability controlled by several factors, such as atmospheric NH3 concentration, meteorological conditions, and compensation point of underlying surfaces. Quantifying NH3 fluxes is further complicated by severe measurement challenges including adsorption to instrument surfaces, low mole fractions, and gas-particle phase partitioning. To overcome these challenges, we have developed an open-path, eddy covariance NH3 instrument that minimizes these sampling issues. Eddy covariance measurements in 2015 and 2016 in the Rocky Mountain National Park (RMNP), Colorado showed the capabilities of the system to measure fluxes in clean and moderate-polluted regions. Interesting patterns of NH3 fluxes and NH3 concentration variations were observed, such as deposition of NH3 associated plumes from urban and agricultural areas and reemission of a similar magnitude when clean free-tropospheric air passing the site. Observed downward fluxes during midnight and upward fluxes in early morning also indicated NH3 fluxes related to dew formation and evaporation events. More details about these patterns and their relationships with ambient temperature, relative humidity, and other fluxes will be presented. These measurements also provided an opportunity to evaluate our current understanding of transport and deposition of NH3. Micrometeorological method, backward trajectory model, and bidirectional NH3 flux model were used to analyze observed variability of NH3 concentrations and fluxes. Implications of these results and how eddy covariance measurements combined with other measurements may provide insights to better quantify NH3 fluxes will be discussed.

  12. Evaluation of the Community Land Model simulated carbon and water fluxes against observations over ChinaFLUX sites

    DOE PAGES

    Zhang, Li; Mao, Jiafu; Shi, Xiaoying; ...

    2016-07-15

    The Community Land Model (CLM) is an advanced process-based land surface model that simulates carbon, nitrogen, water vapor and energy exchanges between terrestrial ecosystems and the atmosphere at various spatial and temporal scales. We use observed carbon and water fluxes from five representative Chinese Terrestrial Ecosystem Flux Research Network (ChinaFLUX) eddy covariance tower sites to systematically evaluate the new version CLM4.5 and old version CLM4.0, and to generate insights that may inform future model developments. CLM4.5 underestimates the annual carbon sink at three forest sites and one alpine grassland site but overestimates the carbon sink of a semi-arid grassland site.more » The annual carbon sink underestimation for the deciduous-dominated forest site results from underestimated daytime carbon sequestration during summer and overestimated nighttime carbon emission during spring and autumn. Compared to CLM4.0, the bias of annual gross primary production (GPP) is reduced by 24% and 28% in CLM4.5 at two subtropical forest sites. However, CLM4.5 still presents a large positive bias in annual GPP. The improvement in net ecosystem exchange (NEE) is limited, although soil respiration bias decreases by 16%–43% at three forest sites. CLM4.5 simulates lower soil water content in the dry season than CLM4.0 at two grassland sites. Drier soils produce a significant drop in the leaf area index and in GPP and an increase in respiration for CLM4.5. The new fire parameterization approach in CLM4.5 causes excessive burning at the Changbaishan forest site, resulting in an unexpected underestimation of NEE, vegetation carbon, and soil organic carbon by 46%, 95%, and 87%, respectively. Altogether, our study reveals significant improvements achieved by CLM4.5 compared to CLM4.0, and suggests further developments on the parameterization of seasonal GPP and respiration, which will require a more effective representation of seasonal water conditions and the

  13. Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    DOE PAGES

    Duarte, Henrique F.; Raczka, Brett M.; Ricciuto, Daniel M.; ...

    2017-09-28

    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site ormore » at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C: 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD) and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball–Berry stomatal conductance slope ( m bb) at Wind River aligned with findings from recent CLM experiments at sites

  14. Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, Henrique F.; Raczka, Brett M.; Ricciuto, Daniel M.

    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site ormore » at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C: 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD) and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball–Berry stomatal conductance slope ( m bb) at Wind River aligned with findings from recent CLM experiments at sites

  15. Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    NASA Astrophysics Data System (ADS)

    Duarte, Henrique F.; Raczka, Brett M.; Ricciuto, Daniel M.; Lin, John C.; Koven, Charles D.; Thornton, Peter E.; Bowling, David R.; Lai, Chun-Ta; Bible, Kenneth J.; Ehleringer, James R.

    2017-09-01

    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site or at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C : 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD) and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball-Berry stomatal conductance slope (mbb) at Wind River aligned with findings from recent CLM experiments at sites characterized by

  16. AmeriFlux US-Ne2 Mead - irrigated maize-soybean rotation site

    DOE Data Explorer

    Suyker, Andy [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne2 Mead - irrigated maize-soybean rotation site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. This site is irrigated with a center pivot system. Prior to the initiation of the study, the irrigated site had a 10-yr history of maize-soybean rotation under no-till. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since this tillage operation, the site has been under no-till management.

  17. Eddy covariance flux measurements of net ecosystem carbon dioxide exchange from a lowland peatland flux tower network in England and Wales

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Balzter, Heiko; Burden, Annette; Callaghan, Nathan; Cumming, Alenander; Dixon, Simon; Evans, Jonathan; Kaduk, Joerg; Page, Susan; Pan, Gong; Rayment, Mark; Ridley, Luke; Rylett, Daniel; Worrall, Fred; Evans, Christopher

    2016-04-01

    Peatlands store disproportionately large amounts of soil carbon relative to other terrestrial ecosystems. Over recent decades, the large amount of carbon stored as peat has proved vulnerable to a range of land use pressures as well as the increasing impacts of climate change. In temperate Europe and elsewhere, large tracts of lowland peatland have been drained and converted to agricultural land use. Such changes have resulted in widespread losses of lowland peatland habitat, land subsidence across extensive areas and the transfer of historically accumulated soil carbon to the atmosphere as carbon dioxide (CO2). More recently, there has been growth in activities aiming to reduce these impacts through improved land management and peatland restoration. Despite a long history of productive land use and management, the magnitude and controls on greenhouse gas emissions from lowland peatland environments remain poorly quantified. Here, results of surface-atmosphere measurements of net ecosystem CO2 exchange (NEE) from a network of seven eddy covariance (EC) flux towers located at a range of lowland peatland ecosystems across the United Kingdom (UK) are presented. This spatially-dense peatland flux tower network forms part of a wider observation programme aiming to quantify carbon, water and greenhouse gas balances for lowland peatlands across the UK. EC measurements totalling over seventeen site years were obtained at sites exhibiting large differences in vegetation cover, hydrological functioning and land management. The sites in the network show remarkable spatial and temporal variability in NEE. Across sites, annual NEE ranged from a net sink of -194 ±38 g CO2-C m-2 yr-1 to a net source of 784±70 g CO2-C m-2 yr-1. The results suggest that semi-natural sites remain net sinks for atmospheric CO2. Sites that are drained for intensive agricultural production range from a small net sink to the largest observed source for atmospheric CO2 within the flux tower network

  18. Flux Measurements of Trace Gases, Aerosols and Energy from the Urban Core of Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Molina, L.; Lamb, B.; Pressley, S.; Grivicke, R.; Westberg, H.; Jobson, T.; Allwine, E.; Coons, T.; Jimenez, J.; Nemitz, E.; Alexander, L. M.; Worsnop, D.; Ramos, R.

    2007-05-01

    As part of the MILAGRO field campaign in March 2006 we deployed a flux system in a busy district of Mexico City surrounded by congested avenues. The flux system consisted of a tall tower instrumented with fast-response sensors coupled with eddy covariance (EC) techniques to measure fluxes of volatile organic compounds (VOCs), CO2, CO, aerosols and energy. The measured fluxes represent direct measurements of emissions that include all major and minor emission sources from a typical residential and commercial district. In a previous study we demonstrated that the EC techniques are valuable tools to evaluate emissions inventories in urban areas, and understand better the atmospheric chemistry and the role that megacities play in global change. We measured fluxes of olefins using a Fast Olefin Sensor (FOS) and the EC technique, fluxes of aromatic and oxygenated VOCs by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique, fluxes of CO2 and H2O with an open path Infrared Gas Analyzer (IRGA) and the EC technique, fluxes of CO using a modified gradient method and a commercial CO instrument, and fluxes of aerosols (organics, nitrates and sulfates) using an Aerodyne Aerosol Mass Spectrometer (AMS) and the EC technique. In addition we used a disjunct eddy accumulation (DEA) system to extend the number of VOCs. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site using gas chromatography / flame ionization detection (GC-FID). We also measured fluxes of sensible and latent heat by EC and the radiation components with a net radiometer. Overall, these flux measurements confirm the results of our previous flux measurements in Mexico City in terms of the magnitude, composition, and distribution. We found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns show clear anthropogenic signatures, with important contributions from

  19. Storage flux uncertainty impact on eddy covariance net ecosystem exchange measurements

    NASA Astrophysics Data System (ADS)

    Nicolini, Giacomo; Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernard; Lindroth, Anders; Mamadou, Ossénatou; Moderow, Uta; Mölder, Meelis; Montagnani, Leonardo; Rebmann, Corinna; Papale, Dario

    2017-04-01

    Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements, quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC (Fc) and the storage flux (Sc). Sc is the rate of change of CO2, within the so called control volume below the EC measurement level, given by the difference in the instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. While cumulating over time led to a nullification of Sc, it can be significant at short time periods. The approaches used to estimate Sc fluxes largely vary, from measurements based only on a single sampling point (usually located at the EC measurement height) to measurements based on several sampling profiles distributed within the control volume. Furthermore, the number of sampling points within each profile vary, according to their height and the ecosystem typology. It follows that measurement accuracy increases with the sampling intensity within the control volume. In this work we use the experimental dataset collected during the ADVEX campaign in which Sc flux has been measured in three similar forest sites by the use of 5 sampling profiles (towers). Our main objective is to quantify the impact of Sc measurement uncertainty on NEE estimates. Results show that different methods may produce substantially different Sc flux estimates, with problematic consequences in case high frequency (half-hourly) data are needed for the analysis. However, the uncertainty on long-term estimates may be tolerate.

  20. Relating chamber measurements to eddy correlation measurements of methane flux

    Treesearch

    R.J. Clement; S.B. Verma; E.S. Verry

    1995-01-01

    Methane fluxes were measured using eddy correlation and chamber techniques during 1991 and 1997 at a peatland in north central Minnesota. Comparisons of the two techniques were made using averages of methane flux data available during 1-week periods. The seasonal patterns of fluxes measured by the two techniques compared well. Chamber flux, in 1991, was about 1.8 mg m...

  1. LOW-POWER SOLUTION FOR EDDY COVARIANCE MEASUREMENTS OF METHANE FLUX

    NASA Astrophysics Data System (ADS)

    Anderson, T.; Burba, G. G.; Komissarov, A.; McDermitt, D. K.; Xu, L.; Zona, D.; Oechel, W. C.; Schedlbauer, J. L.; Oberbauer, S. F.; Riensche, B.; Allyn, D.

    2009-12-01

    Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in-situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and possibility of remote and mobile solar-powered or small-generator-powered deployments due to lower power demands in the absence of a pump. The LI-7700 open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 5 ppb at 10 Hz sampling in controlled laboratory conditions. The power consumption of the stand-alone LI-7700 in steady-state is about 8W, so it can be deployed in any methane-generating location of interest on a portable or mobile solar-powered tower, and it does not have to have grid power or permanent industrial generator. Eddy Covariance measurements of methane flux using the LI-7700 open-path methane analyzer were conducted in 2006-2009 in five ecosystems with contrasting weather and moisture conditions: (1) sawgrass wetland in the Florida Everglades; (2) coastal wetlands in an Arctic tundra; and (3) pacific mangroves in Mexico; (4) maize field and (5) ryegrass field in Nebraska. Methane co-spectra behaved in a manner similar to that of the co-spectra of carbon dioxide, water vapor, and air temperature, demonstrating that the LI-7700 adequately measured fluctuations in methane concentration across the whole spectrum of frequencies contributing to vertical atmospheric turbulent transport at the experimental sites. All co-spectra also closely followed the Kaimal model, and demonstrated good agreement with another methane co-spectrum obtained with a TDLS (Tunable Diode Laser Spectroscope; Unisearch Associates, Inc.) over a peatland. Overall, hourly methane fluxes ranged from near-zero at

  2. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  3. Initial assessment of multi-scale measures of C02 and H20 flux in the Siberian taiga

    Treesearch

    D.Y. Hollinger; F.M. Kelliher; E.-D. Schulze; N.N. Vygodskaya; A. Varlagin; I. Milukova; J.N. Byers; A. Sogachov; J.E. Hunt; T.M. McSeveny; K.I. Kobak; G. Bauer; A. Arneth

    1995-01-01

    We measured CO2 and H2O fluxes between undisturbed Larix gmelinii forest and the atmosphere at a remote Eastern Siberian site in July 1993. Scaled-up leaf-level porometer measurements agreed with those derived from the eddy correlation technique for the canopy fluxes of CO2 and H...

  4. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    NASA Astrophysics Data System (ADS)

    Laubach, J.; Barthel, M.; Fraser, A.; Hunt, J. E.; Griffith, D. W. T.

    2015-09-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier-transform infrared spectrometer (FTIR), measuring the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently-emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 60 % of days at one site and 77 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for one year at the unfertilised, winter-grazed site were 8.2 (± 0.91) nmol CH4 m-2 s-1 and 0.40 (± 0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally-grazed site were 7.0 (± 0.89) nmol CH4 m-2 s-1 and 0.57 (± 0.019) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.19 (± 0.15) % of the

  5. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    NASA Astrophysics Data System (ADS)

    Laubach, Johannes; Barthel, Matti; Fraser, Anitra; Hunt, John E.; Griffith, David W. T.

    2016-03-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier transform infrared (FTIR) spectrometer, which measured the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 56 % of days at one site and 73 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for 1 year at the unfertilised, winter-grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.38 (±0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.58 (±0.020) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.21 (±0.15) % of the nitrogen

  6. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE PAGES

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; ...

    2016-06-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  7. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  8. Observed and modeled carbon and energy fluxes for agricultural sites under North American Carbon Program site-level interim synthesis

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E. Y.; Denning, A.

    2010-12-01

    Croplands are unique, man-made ecosystems with dynamics mostly dependent on human decisions. Crops uptake a significant amount of Carbon dioxide (CO2) during their short growing seasons. Reliability of the available models to predict the carbon exchanges by croplands is important in estimating the cropland contribution towards overall land-atmosphere carbon exchange and global carbon cycle. The energy exchanges from croplands include both sensible and latent heat fluxes. This study focuses on analyzing the performance of 19 land surface models across five agricultural sites under the site-level interim synthesis of North American Carbon Program (NACP). Model simulations were performed using a common simulation protocol and input data, including gap-filled meteorological data corresponding to each site. The net carbon fluxes (i.e. net ecosystem exchange; NEE) and energy fluxes (sensible and latent heat) predicted by 12 models with sub-hourly/hourly temporal resolution and 7 models with daily temporal resolution were compared against the site-specific gap-filled observed flux tower data. Comparisons were made by site and crop type (i.e. maize, soybean, and wheat), mainly focusing on the coefficient of determination, correlation, root mean square error, and standard deviation. Analyses also compared the diurnal, seasonal, and inter-annual variability of the modeled fluxes against the observed data and the mean modeled data.

  9. N2O eddy covariance fluxes: From field measurements to flux calculation

    NASA Astrophysics Data System (ADS)

    Lognoul, Margaux; Debacq, Alain; Heinesch, Bernard; Aubinet, Marc

    2017-04-01

    From March to October 2016, we performed eddy covariance measurements in a sugar beet crop at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium. N2O and H2O atmospheric concentrations were measured at 10 Hz using a quantum-cascade laser spectrometer (Aerodyne Research, Inc.) and combined to wind speed 3D components measured with a sonic anemometer (Gill HS-50). Flux computation was carried out using the EddyPro Software (LI-COR) with a focus on adaptations needed for tracers like N2O. Data filtering and quality control were performed according to Vickers and Mahrt (1997) and Mauder and Foken (2004). The flags were adapted to N2O time series. In this presentation, different computation steps will be presented. More specifically: 1) Considering that a large proportion of N2O fluxes are small (within ± 0.5 nmol m-2 s-1), the classical stationarity test might lead to excessive data filtering and in such case, some searchers have chosen to use the running mean (RM) as a detrend method over block averaging (BA) and to filter data otherwise. For our dataset, BA mean fluxes combined to the stationarity test did not significantly differ from RM fluxes when the averaging window was 300s or larger, but were significantly larger otherwise, suggesting that significant eddies occurred at the 5-min timescale and that they were not accounted for with a shorter averaging window. 2) The determination of time-lag in the case of N2O fluxes can become tricky for two reasons : (1) the signal amplitude can differ from one time period to the next, making it difficult to use the method of covariance maximization and (2) an additional clock drift can appear if the spectrometer is not logging on the same computer than the anemometer. In our case, the N2O signal was strong enough to solve both problems and to perform time-lag compensation according to the covariance maximization, with a default value equal to the mode of the lag distribution. The automatic time

  10. Latent Heat in Soil Heat Flux Measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  11. AmeriFlux US-Ne1 Mead - irrigated continuous maize site

    DOE Data Explorer

    Suyker, Andy [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ne1 Mead - irrigated continuous maize site. Site Description - The study site is one of three fields (all located within 1.6 km of each other) at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska. This site is irrigated with a center pivot system. Prior to the initiation of the study, the irrigated site had a 10-yr history of maize-soybean rotation under no-till. A tillage operation (disking) was done just prior to the 2001 planting to homogenize the top 0.1 m of soil, incorporate P and K fertilizers, as well as previously accumulated surface residues. Since the tillage operation, the site has been under no-till management until the harvest of 2005. Following harvest, a conservation-plow tillage operation was initiated where a small amount of N fertilizer is sprayed on the residue immediately prior to the plow operation. Approximately 1/3 of the crop residue is left on the surface. The post-harvest conservation-plow operation continues as the current practice.

  12. Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin Site

    USGS Publications Warehouse

    Nimmo, John R.; Deason, Jeffrey A.; Izbicki, John A.; Martin, Peter

    2002-01-01

    Vertical and horizontal water fluxes in the unsaturated zone near intermittent streams critically affect ecosystems, water supply, and contaminant transport in arid and semiarid regions. The subsurface near the Oro Grande Wash is typical in having great textural diversity, pronounced layer contrasts, and extremely low hydraulic conductivities associated with nearly dry media. These features prevent a straightforward application of the Darcian method for recharge estimation, which has provided high‐quality flux estimates at simpler, wetter sites. We have augmented the basic Darcian method with theoretical developments such that a small number of core sample unsaturated hydraulic property measurements, combined with additional, easily obtained data (e.g., drillers' logs) can provide useful flux estimates and knowledge of two‐dimensional water behavior beneath the wash.

  13. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  14. Advances in the Surface Renewal Flux Measurement Method

    NASA Astrophysics Data System (ADS)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  15. Carbon fluxes in a heterogeneous estuarine wetland in Northern Ohio. Comparing eddy covariance and chamber measurements

    NASA Astrophysics Data System (ADS)

    Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Wrighton, K. C.; Bohrer, G.

    2016-12-01

    Wetlands are important carbon dioxide (CO2) sinks but also the largest source of methane (CH4), a powerful greenhouse gas. Wetlands are often heterogeneous landscapes with highly diverse land covers and different paths of CH4 release and CO2 uptake. Understanding the ecosystem level greenhouse gas budget of a wetland involves understanding several carbon fluxes associated with each of the different land cover patches. We studied CO2 and CH4 fluxes from different land cover types at the Old Woman Creek (OWC) National Estuarine Research Reserve, at the Lake Erie shore in Northern Ohio. OWC is composed of four main types of land cover: open water, emergent cattail vegetation (Typha spp), floating vegetation (Nelimbo spp), and mud flats. CH4 and CO2 gas exchange was measured in each patch type using enclosed chambers monthly during the growing seasons of 2015 and 2016. During the same period of time, an eddy covariance tower was deployed in a representative section of the wetland to measure continuous site-level CO2 and CH4 fluxes. A footprint model was used to account for the relative contributions of each patch type to the flux measured by the tower. The chamber measurements were used to constrain the contributions of each patch within the flux tower footprint, and to correct the flux measurements to the whole-wetland total flux. We analyzed the spatial and temporal variability of methane and carbon dioxide and related this variation to some of the most important environmental drivers at the site. We used these data to analyze the implications of different arrangements of land cover types on the carbon balance and greenhouse-gas budget in wetlands.

  16. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  17. AmeriFlux US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction

    DOE Data Explorer

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction. Site Description - The Delta Junction 1920 Control site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. In 2001, total aboveground biomass consisted almost entirely of black spruce (Picea mariana).

  18. Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.

    2013-06-01

    Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analyzers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and season-long performance were not assessed. The open-path gas analyzer is a practical choice for measurement sites in remote locations due to its low power demand, whereas for G1301-f methane measurements interference from water vapor is straightforward to correct since the instrument measures both gases simultaneously. In any case, if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyzer is needed.

  19. Apparatus for measuring a flux of neutrons

    DOEpatents

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  20. Primary production export flux in Marguerite Bay (Antarctic Peninsula): Linking upper water-column production to sediment trap flux

    NASA Astrophysics Data System (ADS)

    Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.

    2013-05-01

    A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.

  1. Measurement of Urban fluxes of CO2 and water

    NASA Astrophysics Data System (ADS)

    Grimmond, S.; Crawford, B.; Offerle, B.; Hom, J.

    2006-05-01

    Measurements of surface-atmosphere fluxes of carbon dioxide (FCO2) and latent heat in urban environments are rare even though cities are a major source of atmospheric CO2 and users of water. In this paper, an overview of urban FCO2 measurements will be presented to illustrate how and where such measurements are being conducted and emerging results to date. Most of these studies have been conducted over short periods of time; few studies have considered annual sources/sinks. More investigations have been conducted, and are planned, in European cities than elsewhere, most commonly in areas of medium density urban development. The most dense urban sites are significant net sources of carbon. However, in areas where there is large amounts of vegetation present, there is a net sink of carbon during the summertime. In the second part of the presentation, more detailed attention will be directed to an ongoing measurement program in Baltimore, MD (part of the Baltimore Ecosystem Study). Eddy covariance instrumentation mounted on a tall-tower at 41.2 m has continuously measured local-scale fluxes of carbon dioxide from a suburban environment since 2001. Several features make this particular study unique: 1) for an urban area, the study site is extensively vegetated, 2) the period of record (2001-2005) is among the longest available for urban FCO2 measurements, 3) both closed-path and open-path infrared gas analyzers are used for observations, and 4) several unique data quality control and gap-filling methods have been developed for use in an urban environment. Additionally, detailed surface datasets and GIS software are used to perform flux source area analysis. Results from Baltimore indicate that FCO2 is very dependent on source area land-cover characteristics, particularly the proportion of vegetated and built surfaces. Over the course of a year, the urban surface is a strong net source of CO2, though there is considerable inter-annual variability depending on

  2. Airborne boundary layer flux measurements of trace species over Canadian boreal forest and northern wetland regions

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Barrick, John D. W.; Watson, Catherine E.; Sachse, Glen W.; Gregory, Gerald L.; Anderson, Bruce E.; Woerner, Mary A.; Collins, James E., Jr.

    1994-01-01

    Airborne heat, moisture, O3, CO, and CH4 flux measurements were obtained over the Hudson Bay lowlands (HBL) and northern boreal forest regions of Canada during July - August 1990. The airborne flux measurements were an integral part of the NASA/Arctic Boundary Layer Expedition (ABLE) 3B field experiment executed in collaboration with the Canadian Northern Wetlands Study (NOWES). Airborne CH4 flux measurements were taken over a large portion of the HBL. The surface level flux of CH4 was obtained from downward extrapolations of multiple-level CH4 flux measurements. Methane source strengths ranged from -1 to 31 mg m(exp -2)/d, with the higher values occurring in relatively small, isolated areas. Similar measurements of the CH4 source strength in the boreal forest region of Schefferville, Quebec, ranged from 6 to 27 mg m(exp -2)/d and exhibited a diurnal dependence. The CH4 source strengths found during the ABLE 3B expedition were much lower than the seasonally averaged source strength of 51 mg m(exp -2)/d found for the Yukon-Kuskokwim delta region of Alaska during the previous ABLE 3A study. Large positive CO fluxes (0.31 to 0.53 parts per billion by volume (ppbv) m/s) were observed over the inland, forested regions of the HBL study area, although the mechanism for the generation of these fluxes was not identified. Repetitive measurements along the same ground track at various times of day near the Schefferville site also suggested a diurnal dependence for CO emissions. Measurements of surface resistance to the uptake of O3 (1.91 to 0.80 s/cm) for the HBL areas investigated were comparable to those observed near the Schefferville site (3.40 to 1.10 s/cm). Surface resistance values for the ABLE 3B study area were somewhat less than those observed over the Yukon-Kuskokwim delta during the previous ABLE 3A study. The budgets for heat, moisture, O3, CO, and CH4 were evaluated. The residuals from these budget studies indicated, for the cases selected, a moderate net

  3. Why we need to estimate the sampling uncertainty of eddy covariance flux measurement?

    NASA Astrophysics Data System (ADS)

    Kim, W.; Seo, H. H.

    2015-12-01

    Fruitful studies on exchanges of energy, water and carbon dioxide between the atmosphere and terrestrial ecosystem has been produced under a global network (http://fluxnet.ornl.gov). The exchange is defined by a flux, and in traditional the flux is estimated with eddy covariance (EC) method as a mean flux F for 30-min or 1-hr, because no techniques have been established for a direct measurement of a momentary flux itself. Therefore, the exchange analysis with F is to paid attention to estimations of spatial or temporal mean, because the exchange estimated by arithmetic mean Fa might be inappropriate in terms of the sample F used in this averaging having nonidentical inherent quality within one another in accordance with different micrometeorological and ecophysiological conditions while those are measured by the same instruments. To overcome this issue, we propose the weighted mean Fw using a relative sampling uncertainty ɛ estimated by a sampling F and its uncertainty, and introduce Fw performance tested with EC measurements for various sites.

  4. Flux measurements of energy and trace gases in urban Houston, Texas

    NASA Astrophysics Data System (ADS)

    Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.

    2008-12-01

    We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing

  5. Eddy covariance measurements of the net turbulent methane flux in the city centre - results of 2-year campaign in Łódź, Poland

    NASA Astrophysics Data System (ADS)

    Pawlak, Włodzimierz; Fortuniak, Krzysztof

    2016-07-01

    To investigate temporal variability of methane (CH4) fluxes in an urban environment, air-surface exchange fluxes of CH4 were continuously measured using eddy covariance techniques at a city-centre site in Łódź, Poland, from July 2013 to August 2015. In the immediate vicinity of the measurement site, potential methane sources include vehicle traffic, dense sewerage infrastructure and natural gas networks. Sensible and latent heat fluxes have also been measured since 2000 and carbon dioxide fluxes since 2007 at this site. Upward CH4 fluxes dominated during the measurement period, indicating that the city centre is a net source of CH4 to the troposphere. The highest monthly fluxes were observed in winter (2.0 to 2.7 g m-2 month-1) and the lowest in summer (0.8 to 1.0 g m-2 month-1). Fluxes on working days were around 6 % higher than on weekends. The cumulative flux indicates that the city centre emitted a net quantity of nearly 18 g m-2 of CH4 in 2014. Stable values of the FCO2/ FCH4 ratio in months (minimum 2.41 × 10-3, maximum 5.3 × 10-3) and the lack of a clear annual course suggest comparable magnitude of both fluxes.

  6. Combining tracer flux ratio methodology with low-flying aircraft measurements to estimate dairy farm CH4 emissions

    NASA Astrophysics Data System (ADS)

    Daube, C.; Conley, S.; Faloona, I. C.; Yacovitch, T. I.; Roscioli, J. R.; Morris, M.; Curry, J.; Arndt, C.; Herndon, S. C.

    2017-12-01

    Livestock activity, enteric fermentation of feed and anaerobic digestion of waste, contributes significantly to the methane budget of the United States (EPA, 2016). Studies question the reported magnitude of these methane sources (Miller et. al., 2013), calling for more detailed research of agricultural animals (Hristov, 2014). Tracer flux ratio is an attractive experimental method to bring to this problem because it does not rely on estimates of atmospheric dispersion. Collection of data occurred during one week at two dairy farms in central California (June, 2016). Each farm varied in size, layout, head count, and general operation. The tracer flux ratio method involves releasing ethane on-site with a known flow rate to serve as a tracer gas. Downwind mixed enhancements in ethane (from the tracer) and methane (from the dairy) were measured, and their ratio used to infer the unknown methane emission rate from the farm. An instrumented van drove transects downwind of each farm on public roads while tracer gases were released on-site, employing the tracer flux ratio methodology to assess simultaneous methane and tracer gas plumes. Flying circles around each farm, a small instrumented aircraft made measurements to perform a mass balance evaluation of methane gas. In the course of these two different methane quantification techniques, we were able to validate yet a third method: tracer flux ratio measured via aircraft. Ground-based tracer release rates were applied to the aircraft-observed methane-to-ethane ratios, yielding whole-site methane emission rates. Never before has the tracer flux ratio method been executed with aircraft measurements. Estimates from this new application closely resemble results from the standard ground-based technique to within their respective uncertainties. Incorporating this new dimension to the tracer flux ratio methodology provides additional context for local plume dynamics and validation of both ground and flight-based data.

  7. The influence of idealized surface heterogeneity on virtual turbulent flux measurements

    NASA Astrophysics Data System (ADS)

    De Roo, Frederik; Mauder, Matthias

    2018-04-01

    The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity, which affects the boundary-layer turbulence. To investigate the impact of surface variables on the partitioning of the energy budget of flux measurements in the surface layer under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on surface heterogeneity of the kilometer scale, and one order of magnitude smaller. For these two length scales, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g., downdraft region, updraft region, at border between domains, etc.). As the storage term is always small, the non-closure is given by the sum of the advection by the mean flow and the flux-divergence. Remarkably, the missing flux can be described by either the advection by the mean flow or the flux-divergence separately, because the latter two have a high correlation with each other. For kilometer scale heterogeneity, we notice a clear dependence of the updrafts and downdrafts on the surface heterogeneity and likewise we also see a dependence of the energy

  8. AmeriFlux US-Wkg Walnut Gulch Kendall Grasslands

    DOE Data Explorer

    Scott, Russell [United States Department of Agriculture

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wkg Walnut Gulch Kendall Grasslands. Site Description - This site is located in a small, intensively-studied, experimental watershed within USDA-ARS's Walnut Gulch Experimental Watershed. Eddy covariance measurements of energy, water and CO2 fluxes began in the spring of 2004, though meteorological (including Bowen ratio) and hydrological measurements are available much further back.

  9. Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Walter-Shea, Elizabeth A.; Starks, Patrick J.; Vining, Roel C.; Hays, Cynthia J.; Mesarch, Mark A.

    1990-01-01

    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study.

  10. Eddy correlation measurements of size-dependent cloud droplet turbulent fluxes to complex terrain

    NASA Astrophysics Data System (ADS)

    Vong, Richard J.; Kowalski, Andrew S.

    1995-07-01

    An eddy correlation technique was used to measure the turbulent flux of cloud droplets to complex, forested terrain near the coast of Washington State during the spring of 1993. Excellent agreement was achieved for cloud liquid water content measured by two instruments. Substantial downward liquid water fluxes of ~ 1mm per 24 h were measured at night during "steady and continuous" cloud events, about twice the magnitude of those measured by Beswick etal. in Scotland. Cloud water chemical fluxes were estimated to represent up to 50% of the chemical deposition associated with precipitation at the site. An observed size-dependence in the turbulent liquid water fluxes suggested that both droplet impaction, which leads to downward fluxes, and phase change processes, which can lead to upward fluxes, consistently are important contributors to the eddy correlation results. The diameter below which phase change processes were important to observed fluxes was shown to depend upon σLL, the relative standard deviation of the liquid water content (LWC) within a 30-min averaging period. The crossover from upward to downward LW flux occurs at 8µm for steady and continuous cloud events but at ~ 13µm for events with a larger degree of LWC variability. This comparison of the two types of cloud events suggested that evaporation was the most likely cause of upward droplet fluxes for the smaller droplets (dia<13µm) during cloud with variable LWC (σLL>0.3).

  11. Using In Situ Eddy Covariance Flux Measurements from a Low Flying Aircraft in the Arctic to Measure Regional Methane Fluxes.

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Dobosy, R.; Healy, C. E.; Dumas, E. J.; Kochendorfer, J.; Munster, J. B.; Wilkerson, J.; Baker, B.; Anderson, J. G.

    2016-12-01

    The Arctic terrestrial and subsea permafrost region contains approximately 30% of the global carbon stock and therefore understanding Arctic methane emissions and how they might change with a changing climate is important for quantifying the global methane budget and understanding its growth in the atmosphere. Here we present measurements from a new in situ flux observation system designed for use on a small, low-flying aircraft that flew over the North Slope of Alaska during August of 2013. The system combines a small methane instrument based on Integrated Cavity Output Spectroscopy (ICOS) with an air turbulence probe to calculate methane fluxes based on eddy covariance. Surface fluxes are grouped by ecotope using a map based on LandSat 30 meter resolution data. We find that wet sedge areas dominate the methane fluxes during the first part of August, with methane emissions from the Sagavanirktok river being the second highest. We compare the aircraft measurements with an eddy covariance flux tower located in a wet sedge area and show that the two measurements agree quantitatively when the footprints of both overlap. However, fluxes from sedge vary at times by a factor of two or more even within a few kilometers of the tower demonstrating the importance of making regional measurements to map out methane emission spatial heterogeneity. Aircraft measurements of surface flux can play an important role in bridging the gap between ground-based measurements and regional measurements from remote sensing instruments and models.

  12. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    1990-11-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  13. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  14. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  15. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites

    NASA Astrophysics Data System (ADS)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura

    2016-07-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.

  16. Latent heat sink in soil heat flux measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  17. AmeriFlux Measurement Component (AMC) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichl, Ken; Biraud, Sebastien C.

    2016-04-01

    An AMC system was installed at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility North Slope of Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling photosynthetically active radiation (PAR) sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System.more » Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape.« less

  18. Evaluation of the DayCent model to predict carbon fluxes in French crop sites

    NASA Astrophysics Data System (ADS)

    Fujisaki, Kenji; Martin, Manuel P.; Zhang, Yao; Bernoux, Martial; Chapuis-Lardy, Lydie

    2017-04-01

    Croplands in temperate regions are an important component of the carbon balance and can act as a sink or a source of carbon, depending on pedoclimatic conditions and management practices. Therefore the evaluation of carbon fluxes in croplands by modelling approach is relevant in the context of global change. This study was part of the Comete-Global project funded by the multi-Partner call FACCE JPI. Carbon fluxes, net ecosystem exchange (NEE), leaf area index (LAI), biomass, and grain production were simulated at the site level in three French crop experiments from the CarboEurope project. Several crops were studied, like winter wheat, rapeseed, barley, maize, and sunflower. Daily NEE was measured with eddy covariance and could be partitioned between gross primary production (GPP) and total ecosystem respiration (TER). Measurements were compared to DayCent simulations, a process-based model predicting plant production and soil organic matter turnover at daily time step. We compared two versions of the model: the original one with a simplified plant module and a newer version that simulates LAI. Input data for modelling were soil properties, climate, and management practices. Simulations of grain yields and biomass production were acceptable when using optimized crop parameters. Simulation of NEE was also acceptable. GPP predictions were improved with the newer version of the model, eliminating temporal shifts that could be observed with the original model. TER was underestimated by the model. Predicted NEE was more sensitive to soil tillage and nitrogen applications than measured NEE. DayCent was therefore a relevant tool to predict carbon fluxes in French crops at the site level. The introduction of LAI in the model improved its performance.

  19. Measuring Convective Mass Fluxes Over Tropical Oceans

    NASA Astrophysics Data System (ADS)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  20. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  1. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    DOE PAGES

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; ...

    2016-07-29

    Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data andmore » (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange ( R 2 < 0.5), ecosystem respiration ( R 2 > 0.6), gross primary production ( R 2> 0.7), latent heat ( R 2 > 0.7), sensible heat ( R 2 > 0.7), and net radiation ( R 2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well ( R 2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted ( R 2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). Finally, the evaluated large ensemble of ML-based models will be the basis of new global flux products.« less

  2. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.

    Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data andmore » (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange ( R 2 < 0.5), ecosystem respiration ( R 2 > 0.6), gross primary production ( R 2> 0.7), latent heat ( R 2 > 0.7), sensible heat ( R 2 > 0.7), and net radiation ( R 2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well ( R 2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted ( R 2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). Finally, the evaluated large ensemble of ML-based models will be the basis of new global flux products.« less

  3. AmeriFlux US-NGB NGEE Barrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torn, Margaret

    This is the AmeriFlux version of the carbon flux data for the site US-NGB NGEE Barrow. Site Description - The ecosystem is an Arctic coastal tundra. This site measures greenhouse gasses and meteorological variables at the Barrow Environmental Observatory (BEO) as part of the Next-Generation Ecosystem Experiment - Arctic.

  4. BOREAS TGB-3 CH4 and CO2 Chamber Flux Data over NSA Upland Sites

    NASA Technical Reports Server (NTRS)

    Savage, Kathleen; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected methane and carbon dioxide (CH4, CO2) chamber flux measurements at the Northern Study Area (NSA) Fen, Old Black Spruce (OBS), Young Jack Pine (YJP), and auxiliary sites along Gillam Road and the 1989 burn site. Gas samples were extracted from chambers and analyzed at the NSA lab facility approximately every 7 days during May to September 1994 and June to October 1996. The data are provided in tabular ASCII files.

  5. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  6. AmeriFlux US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction

    DOE Data Explorer

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction. Site Description - The Delta Junction 1987 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Granite Creek fire burned ~20,000 ha of black spruce (Picea mariana) during 1987. Approximately half of the dead boles remained upright in 2004, while the other half had fallen over or had become entangled with other boles.

  7. AmeriFlux US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction

    DOE Data Explorer

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction. Site Description - The Delta Junction 1999 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Donnelly Flats fire burned ~7,600 ha of black spruce (Picea mariana) during June 1999. The boles of the black spruce remained standing 3 years after the fire. 70% of the surface was not covered by vascular plants.

  8. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  9. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  10. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  11. Flux measurements of benzene and toluene from landfill cover soils.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Vaselli, Orlando; Morandi, Andrea; Capecchiacci, Francesco; Nisi, Barbara

    2011-01-01

    Carbon dioxide and CH(4), C(6)H(6) and C(7)H(8) fluxes from the soil cover of Case Passerini landfill site (Florence, Italy) were measured using the accumulation and static closed chamber methods, respectively. Results show that the CH(4)/CO(2), CH(4)/C(6)H(6) and CH(4)/C(7)H(8) ratios of the flux values are relatively low when compared with those of the 'pristine' biogas produced by degradation processes acting on the solid waste material disposed in the landfill. This suggests that when biogas transits through the cover soil, CH(4) is affected by degradation processes activated by oxidizing bacteria at higher extent than both CO(2) and mono-aromatics. Among the investigated hydrocarbons, C(6)H(6) has shown the highest stability in a wide range of redox conditions. Toluene behaviour only partially resembles that of C(6)H(6), possibly because de-methylation processes require less energy than that necessary for the degradation of C(6)H(6), the latter likely occurring via benzoate at anaerobic conditions and/or through various aerobic metabolic pathways at relatively shallow depth in the cover soil where free oxygen is present. According to these considerations, aromatics are likely to play an important role in the environmental impact of biogas released into the atmosphere from such anthropogenic emission sites, usually only ascribed to CO(2) and CH(4). In this regard, flux measurements using accumulation and static closed chamber methods coupled with gas chromatography and gas chromatography-mass spectrometry analysis may properly be used to obtain a dataset for the estimation of the amount of volatile organic compounds dispersed from landfills.

  12. Combining in situ and laboratory measurements of soil-atmosphere carbonyl sulfide fluxes from four different biomes across Europe

    NASA Astrophysics Data System (ADS)

    Kitz, Florian; Gomez-Brandon, Maria; Hammerle, Albin; Spielmann, Felix M.; Insam, Heribert; Ibrom, Andreas; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg

    2017-04-01

    Flux partitioning, the quantification of photosynthesis and respiration, is a major uncertainty in modelling the carbon cycle and in times when robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive gross primary production (GPP) from measurements of the carbonyl sulfide (COS) flux, the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite for using COS as a proxy for photosynthesis is a robust estimation of all non-leaf sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on their properties like soil temperature and soil water content. In 2016 we conducted field campaigns in Austria (managed temperate mountain grassland), Spain (savannah), Denmark (temperate beech forest) and Estonia (hemiboreal forest) to estimate the soil-atmosphere COS fluxes under ambient conditions in different biomes. We used self-built fused silica soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. At the grassland sites (Austria, Spain) vegetation was removed below the chambers, therefor more radiation reached the soil surface compared to natural conditions. The grassland sites were characterized by highly positive COS fluxes during daytime and COS fluxes around zero during nighttime. In contrast, the soils at the forest sites (Denmark, Estonia), characterized by less radiation on the soil surface, acted as a sink for COS. The impact of other abiotic factors, like soil water content and soil temperature, varied between the ecosystems. In addition to the field measurements soil and litter samples were taken at the study sites and used to measure COS fluxes under controlled conditions in the lab. Results from the

  13. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    NASA Astrophysics Data System (ADS)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Vth) and epithermal neutron fluxes (Vepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Vth = (2.11 ± 0.05) × 103 n cm-2 s-1, Vepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Vth = (1.49 ± 0.04) × 103 n cm-2 s-1, Vepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  14. Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites.

    PubMed

    Minick, D James; Anderson, Kim A

    2017-09-01

    Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;36:2281-2289. © 2017 SETAC. © 2017 SETAC.

  15. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    PubMed Central

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-01-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes. PMID:27652775

  16. Heat-Flux Measurements from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2015-11-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude is used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer -Härm flux qSH = - κ∇Te and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    PubMed

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Inter-comparison of Flux-Gradient and Relaxed Eddy Accumulation Methods for Measuring Ammonia Flux Above a Corn Canopy in Central Illinois, USA

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Koloutsou-Vakakis, S.; Rood, M. J.; Lichiheb, N.; Heuer, M.; Myles, L.

    2017-12-01

    Ammonia (NH3) is a precursor to fine particulate matter (PM) in the ambient atmosphere. Agricultural activities represent over 80% of anthropogenic emissions of NH3 in the United States. The use of nitrogen-based fertilizers contribute > 50% of total NH3 emissions in central Illinois. The U.S. EPA Science Advisory Board has called for improved methods to measure, model, and report atmospheric NH3 concentrations and emissions from agriculture. High uncertainties in the temporal and spatial distribution of NH3 emissions contribute to poor performance of air quality models in predicting ambient PM concentrations. This study reports and compares NH­3 flux measurements of differing temporal resolution obtained with two methods: relaxed eddy accumulation (REA) and flux-gradient (FG). REA and FG systems were operated concurrently above a corn canopy at the University of Illinois at Urbana-Champaign (UIUC) Energy Biosciences Institute (EBI) Energy Farm during the 2014 corn-growing season. The REA system operated during daytime, providing average fluxes over four-hour sampling intervals, where time resolution was limited by detection limit of denuders. The FG system employed a cavity ring-down spectrometer, and was operated continuously, reporting 30 min flux averages. A flux-footprint evaluation was used for quality control, resulting in 1,178 qualified FG measurements, 82 of which were coincident with REA measurements. Similar emission trends were observed with both systems, with peak NH3 emission observed one week after fertilization. For all coincident samples, mean NH3 flux was 205 ± 300 ng-N-m2s-1 and 110 ± 256 ng-N-m2s-1 as measured with REA and FG, respectively, where positive flux indicates emission. This is the first reported inter-comparison of REA and FG methods as used for quantifying NH3 fluxes from cropland. Preliminary analysis indicates the improved temporal resolution and continuous sampling enabled by FG allow for the identification of emission pulses

  19. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    NASA Astrophysics Data System (ADS)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  20. Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program site synthesis

    NASA Astrophysics Data System (ADS)

    Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.; Ricciuto, Dan; Barr, Alan; Richardson, Andrew D.; Flanagan, Lawrence B.; Lafleur, Peter M.; Tian, Hanqin; Chen, Guangsheng; Grant, Robert F.; Poulter, Benjamin; Verbeeck, Hans; Ciais, Philippe; Ringeval, Bruno; Baker, Ian T.; Schaefer, Kevin; Luo, Yiqi; Weng, Ensheng

    2012-03-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor,sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated - observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.

  1. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    Eddy covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True eddy accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True Eddy Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The current study investigates merging principles of eddy accumulation and eddy covariance, which we here refer to as "true eddy accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true eddy accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three eddy covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical

  2. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  3. Eddy Correlation Flux Measurement System (ECOR) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  4. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method.

    PubMed

    Baldocchi, Dennis

    2014-12-01

    The application of the eddy covariance flux method to measure fluxes of trace gas and energy between ecosystems and the atmosphere has exploded over the past 25 years. This opinion paper provides a perspective on the contributions and future opportunities of the eddy covariance method. First, the paper discusses the pros and cons of this method relative to other methods used to measure the exchange of trace gases between ecosystems and the atmosphere. Second, it discusses how the use of eddy covariance method has grown and evolved. Today, more than 400 flux measurement sites are operating world-wide and the duration of the time series exceed a decade at dozens of sites. Networks of tower sites now enable scientists to ask scientific questions related to climatic and ecological gradients, disturbance, changes in land use, and management. The paper ends with discussions on where the field of flux measurement is heading. Topics discussed include role of open access data sharing and data mining, in this new era of big data, and opportunities new sensors that measure a variety of trace gases, like volatile organic carbon compounds, methane and nitrous oxide, and aerosols, may yield. © 2014 John Wiley & Sons Ltd.

  5. Scaling Properties of Turbulent Mixing for Scalars Measured at Arctic Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Grachev, A. A.; Uttal, T.; Persson, O. P. G.; Crepinsek, S.; Fairall, C. W.; Albee, R.; Makshtas, A.; Kustov, V. Y.; Repina, I.; Artamonov, A. Y.

    2014-12-01

    Measurements of atmospheric turbulence made at two different sites located near the coast of the Arctic Ocean at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) are used to study turbulent fluxes, scaling laws for turbulent mixing, dissipation rates, and structure parameters of various scalars (temperature, water vapour, and carbon dioxide). Turbulent fluxes along with other turbulent statistics and mean meteorological data were measured continuously throughout the year and reported hourly at various levels on 10-m (Eureka) and 20-m (Tiksi) flux towers. According to our data, strong upward sensible and latent heat fluxes are observed throughout the summer months indicating unstable stratification on average. During the Polar winter and cold seasons when the air temperature falls below freezing, the near-surface environment is generally stably stratified (downward sensible but upward latent heat fluxes). It is found that observed temporal variability of the carbon dioxide vertical flux for both sites was generally in phase with Monin-Obukhov stability parameter, z/L (L is the Obukhov length scale). On average the turbulent flux of carbon dioxide was mostly negative (uptake by the surface) for z/L < 0 and vice versa. Our study also analyses the similarity between the turbulent mixing of sensible heat, water vapour, and carbon dioxide with a specific focus on the difference between the similarity functions for the dissipation rates. The work is supported by the NOAA Climate Program Office, the U.S. National Science Foundation (NSF) with award ARC 11-07428, and by the U.S. Civilian Research & Development Foundation (CRDF) with award RUG1-2976-ST-10.

  6. Assessing Ecosystem Drought Response in CLM 4.5 Using Site-Level Flux and Carbon-Isotope Measurements: Results From a Pacific Northwest Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Duarte, H.; Raczka, B. M.; Koven, C. D.; Ricciuto, D. M.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    The frequency, extent, and severity of droughts are expected to increase in the western United States as climate changes occur. The combination of warmer temperature, larger vapor pressure deficit, reduced snowfall and snow pack, earlier snow melt, and extended growing seasons is expected to lead to an intensification of summer droughts, with a direct impact on ecosystem productivity and therefore on the carbon budget of the region. In this scenario, an accurate representation of ecosystem drought response in land models becomes fundamental, but the task is challenging, especially in regards to stomatal response to drought. In this study we used the most recent release of the Community Land Model (CLM 4.5), which now includes photosynthetic carbon isotope discrimination and revised photosynthesis and hydrology schemes, among an extensive list of updates. We evaluated the model's performance at a coniferous forest site in the Pacific northwest (Wind River AmeriFlux Site), characterized by a climate that has a strong winter precipitation component followed by a summer drought. We ran the model in offline mode (i.e., decoupled from an atmospheric model), forced by observed meteorological data, and used site observations (e.g., surface fluxes, biomass values, and carbon isotope data) to assess the model. Previous field observations indicated a significant negative correlation between soil water content and the carbon isotope ratio of ecosystem respiration (δ13CR), suggesting that δ13CR was closely related to the photosynthetic discrimination against 13CO2 as controlled by stomatal conductance. We used these observations and latent-heat flux measurements to assess the modeled stomatal conductance values and their responses to extended summer drought. We first present the model results, followed by a discussion of potential CLM model improvements in stomatal conductance responses and in the representation of soil water stress (parameter βt) that would more precisely

  7. AmeriFlux Measurement Component (AMC) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichl, K.; Biraud, S. C.

    An AMC system was installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling PAR sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depthsmore » (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape. The soil VWC and temperature sensors used at NSA C1 are the Campbell Scientific CS650L and the sensors at NSA M1 use the Campbell Scientific CS655. The two sensors are nearly identical in function, and vendor specifications are based on the CS650 unless otherwise stated.« less

  8. AmeriFlux US-Blo Blodgett Forest

    DOE Data Explorer

    Goldstein, Allen [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Blo Blodgett Forest. Site Description - The flux tower site at Blodgett Forest is on a 1200 ha parcel of land owned by Sierra Pacific Industries in the Sierra Nevada range near Georgetown, California. The field site was established in May 1997 with continuous operation since May 1999. The site is situated in a ponderosa pine plantation, mixed-evergreen coniferous forest, located adjacent to Blodgett Forest Research Station. The Mediterranean-type climate of California is characterized by a protracted summer drought, with precipitation occurring mainly from October through May. The infrastructure for the ecosystem scale flux measurements includes a walkup measurement tower, two temperature controlled instrument buildings, and an electrical generation system powered by a diesel generator. Typical wind patterns at the site include upslope flow during the day (from the west) and downslope flow at night (from the east). The plantation is relatively flat, and contains a homogenous mixture of evenly aged ponderosa pine with other trees and shrubs scattered throughout the ecosystem making up less than 30% of the biomass. The daytime fetch for the tower measurements extends approximately 200 m to the southwest of the tower (this region contributes ~90% of the daytime flux), thus remote sensing images to be used for modeling should probably be centered approximately 100 m from the tower at an angle of 225 deg.

  9. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole, E-mail: eoin.carley@obspm.fr

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration duringmore » the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.« less

  10. AmeriFlux CA-Ojp Saskatchewan - Western Boreal, Mature Jack Pine

    DOE Data Explorer

    Black, Andrew T. [University of British Columbia

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Ojp Saskatchewan - Western Boreal, Mature Jack Pine. Site Description - 53.91634° N, 104.69203° W, elavation of 579.27 m, BOREAS 1994, BERMS climate measurements began Mar. 1997 and flux measurements Aug. 1999

  11. Measurements of NO(x) and NO(y) concentrations and fluxes over Arctic tundra

    NASA Technical Reports Server (NTRS)

    Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao; Fitzjarrald, David R.

    1992-01-01

    Measurements of the atmospheric concentrations of NO, NO2, total NO(y), and O3 were made during the NASA Arctic Boundary Layer Expedition (ABLE 3A) at a remote location in a tundra bog ecosystem in southeastern Alaska during the growing season (July-August 1988). Concentrations of NO(x) and NO(y) were found to be very low compared to other remote continental sites, indicating that anthropogenic influences were small at this site during this time of year. The NO(y) emission rate from the soil were 0.13 +/- 0.05 x 10 exp 9 molecules/sq cm/s. Direct measurements of the flux of total NO(y) were made for the first time, indicating downward flux of NO(y) at all times of day, with maximum deposition of 2.5 +/- 0.9 x 10 exp 9 molecules/sq cm/s in the afternoon. Deposition of HNO3 appears to dominate the atmosphere/surface exchange of NO(y). The mean dry deposition rate of NO(y) to the tundra was 1.8 +/- 1.0 x 10 exp 9 molecules/sq cm/s.

  12. Eddy covariance measurements of NH3 fluxes over a natural grass land with an open-path quantum cascade laser-based sensor

    NASA Astrophysics Data System (ADS)

    Pan, D.; Benedict, K. B.; Ham, J. M.; Prenni, A. J.; Schichtel, B. A.; Collett, J. L., Jr.; Zondlo, M. A.

    2015-12-01

    NH3 is an important component of the bio-atmospheric N cycle with implications for regional air quality, human and ecosystem health degradation, and global climate change. However, measuring NH3 flux is challenging, requiring a sensor with high sensitivity (sub-ppbv), fast response time and the capability to account for NH3 adsorption effects. In this study, we address these issues with an open-path quantum-cascade-based sensor for eddy covariance (EC) measurements. Previously, our EC NH3 sensor was deployed over a feedlot in Colorado in 2013 and 2014, and the results showed the potential of the sensor to measure NH3 emissions from agricultural sources. In the summer of 2015, the sensor was installed at a remote monitoring site in Rocky Mountain National Park to measure NH3 flux over a natural grass land. During the deployment, the precision of the sensor was about 0.15 ppbv at 10 Hz, and the detection limit of the flux was estimated to be 0.7±0.5 ng NH3/s/m2. The cospectra of the NH3 flux closely resembled those of CO2 flux and sensible heat flux measured by a LI-7500 CO2 analyzer and a CSAT3 sonic anemometer. The ogive analyses indicated that the loss of NH3 fluxes due to various damping effects was about 15%. Examining initial results from a few days of measurement, the measured NH3 fluxes appear to have a strong diurnal pattern with local emissions during afternoon, a pattern not previously reported for remote grass land. The pattern is consistent with background NH3 concentration measured by PICARRO NH3 analyzer, although summertime afternoon concentration increases at the site have previously been associated with upslope transport from urban and agricultural regions to the east. The results demonstrate the sensor's capability to measure NH3 flux in low NH3 conditions and also show that more measurements are needed to investigate spatial and temporal variability of NH3 flux.

  13. AmeriFlux CA-Na1 New Brunswick - 1967 Balsam Fir - Nashwaak Lake Site 01 (Mature balsam fir forest)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourque, Charles P.-A.

    This is the AmeriFlux version of the carbon flux data for the site CA-Na1 New Brunswick - 1967 Balsam Fir - Nashwaak Lake Site 01 (Mature balsam fir forest). Site Description - immature balsam fir forest

  14. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  15. AmeriFlux CA-Obs Saskatchewan - Western Boreal, Mature Black Spruce

    DOE Data Explorer

    Black, T. Andrew [The University of British Columbia

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Obs Saskatchewan - Western Boreal, Mature Black Spruce. Site Description - 53.98717° N, 105.11779° W, elavation of 628.94 m, BOREAS 1994, 1996, BERMS climate measurements began Dec. 1996 and flux measurements in Apr. 1999

  16. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.

    2017-11-01

    This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures

  17. The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa

    NASA Astrophysics Data System (ADS)

    Conradie, E. H.; Van Zyl, P. G.; Pienaar, J. J.; Beukes, J. P.; Galy-Lacaux, C.; Venter, A. D.; Mkhatshwa, G. V.

    2016-12-01

    deposition measurements at the South African IDAF sites indicated increases in the wet deposition fluxes of S and N, and more wet deposition events with lower pH. This could be ascribed to a significant increase in anthropogenic activities and population growth in this part of South Africa with an associated increase in energy demand.

  18. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    NASA Astrophysics Data System (ADS)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  19. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  20. Airborne flux measurements of Biogenic Isoprene over California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misztal, P.; Karl, Thomas G.; Weber, Robin

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonlymore » between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  1. Estimation of water flux in urban area using eddy covariance measurements in Riverside, Southern California

    USDA-ARS?s Scientific Manuscript database

    Micrometeorological methods can direct measure the sensible and latent heat flux in specific sites and provide robust estimates of the evaporative fraction (EF), which is the fraction of available surface energy contained in latent heat. Across a vegetation coverage gradient in urban area, an empir...

  2. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    NASA Astrophysics Data System (ADS)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  3. Combined chamber-tower approach: Using eddy covariance measurements to cross-validate carbon fluxes modeled from manual chamber campaigns

    NASA Astrophysics Data System (ADS)

    Brümmer, C.; Moffat, A. M.; Huth, V.; Augustin, J.; Herbst, M.; Kutsch, W. L.

    2016-12-01

    Manual carbon dioxide flux measurements with closed chambers at scheduled campaigns are a versatile method to study management effects at small scales in multiple-plot experiments. The eddy covariance technique has the advantage of quasi-continuous measurements but requires large homogeneous areas of a few hectares. To evaluate the uncertainties associated with interpolating from individual campaigns to the whole vegetation period, we installed both techniques at an agricultural site in Northern Germany. The presented comparison covers two cropping seasons, winter oilseed rape in 2012/13 and winter wheat in 2013/14. Modeling half-hourly carbon fluxes from campaigns is commonly performed based on non-linear regressions for the light response and respiration. The daily averages of net CO2 modeled from chamber data deviated from eddy covariance measurements in the range of ± 5 g C m-2 day-1. To understand the observed differences and to disentangle the effects, we performed four additional setups (expert versus default settings of the non-linear regressions based algorithm, purely empirical modeling with artificial neural networks versus non-linear regressions, cross-validating using eddy covariance measurements as campaign fluxes, weekly versus monthly scheduling of campaigns) to model the half-hourly carbon fluxes for the whole vegetation period. The good agreement of the seasonal course of net CO2 at plot and field scale for our agricultural site demonstrates that both techniques are robust and yield consistent results at seasonal time scale even for a managed ecosystem with high temporal dynamics in the fluxes. This allows combining the respective advantages of factorial experiments at plot scale with dense time series data at field scale. Furthermore, the information from the quasi-continuous eddy covariance measurements can be used to derive vegetation proxies to support the interpolation of carbon fluxes in-between the manual chamber campaigns.

  4. Results from twelve years of continuous monitoring of the soil CO2 flux at the Ketzin CO2 storage pilot site, Germany

    NASA Astrophysics Data System (ADS)

    Szizybalski, Alexandra; Zimmer, Martin; Pilz, Peter; Liebscher, Axel

    2017-04-01

    Under the coordination of the GFZ German Research Centre for Geosciences the complete life-cycle of a geological storage site for CO2 has been investigated and studied in detail over the past 12 years at Ketzin near Berlin, Germany. The test site is located at the southern flank of an anticlinal structure. Beginning with an exploration phase in 2004, drilling of the first three wells took place in 2007. From June 2008 to August 2013 about 67 kt of CO2 were injected into Upper Triassic sandstones at a depth of 630 to 650 m overlain by more than 165 m of shaley cap rocks. A comprehensive operational and scientific monitoring program forms the central part of the Ketzin project targeting at the reservoir itself, its overburden or above-zone and the surface. The surface monitoring is done by continuous soil CO2 flux measurements. These already started in 2005, more than three years prior to the injection phase using a survey chamber from LI-COR Inc. Twenty sampling locations were selected in the area of the anticline covering about 3 x 3 km. In order to obtain information on seasonal trends, measurements are performed at least once a month. The data set obtained prior to the injection serves as a basis for comparison with all further measurements during the injection and storage operations [Zimmer et al., 2010]. To refine the monitoring network, eight automatic, permanent soil CO2 flux stations were additionally installed in 2011 in the direct vicinity of the boreholes. Using this system, the CO2 soil flux is measured on an hourly basis. Over the whole monitoring time, soil temperature and moisture are recorded simultaneously and soil samples down to 70 cm depth were studied for their structure, carbon and nitrogen content. ver the whole monitoring time. Both, diurnal and seasonal flux variations can be detected and hence, provide a basis for interpretation of the measured data. Detailed analysis of the long-term monitoring at each station clearly reveals the influence

  5. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    USGS Publications Warehouse

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  6. Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources

    NASA Astrophysics Data System (ADS)

    Felber, R.; Münger, A.; Neftel, A.; Ammann, C.

    2015-06-01

    Methane (CH4) from ruminants contributes one-third of global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analyzers, the instrumentation at many flux sites has been amended for these gases. However, the application of EC over pastures is challenging due to the spatially and temporally uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to 2 orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best estimate from this study) correspond well to animal respiration chamber measurements reported in the literature. However, a systematic effect of the distance between source and EC tower on cow emissions was found, which is attributed to the analytical footprint model used. We show that the EC method allows one to determine CH4 emissions of cows on a pasture if the data evaluation is adjusted for this purpose and if some cow distribution information is available.

  7. Eddy covariance methane flux measurements over a grazed pasture: effect of cows as moving point sources

    NASA Astrophysics Data System (ADS)

    Felber, R.; Münger, A.; Neftel, A.; Ammann, C.

    2015-02-01

    Methane (CH4) from ruminants contributes one third to global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analysers the instrumentation at many flux sites have been amended for these gases. However the application of EC over pastures is challenging due to the spatial and temporal uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to two orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best guess of this study) correspond well to animal respiration chamber measurements reported in the literature. However a systematic effect of the distance between source and EC tower on cow emissions was found which is attributed to the analytical footprint model used. We show that the EC method allows to determine CH4 emissions of grazing cows if the data evaluation is adjusted for this purpose and if some cow distribution information is available.

  8. AmeriFlux CA-Oas Saskatchewan - Western Boreal, Mature Aspen

    DOE Data Explorer

    Black, T. Andrew [The University of British Columbia

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Oas Saskatchewan - Western Boreal, Mature Aspen. Site Description - 53.62889° N, 106.19779° W, elabation of 600.63 m,BOREAS 1994, 1996, BERMS climate and flux measurements began Dec. 1996

  9. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  10. A gap-filling model for eddy covariance CO2 flux: Estimating carbon assimilated by a subtropical evergreen broad-leaved forest at the Lien-Hua-Chih flux observation site

    NASA Astrophysics Data System (ADS)

    Lan, C. Y.; Li, M. H.; Chen, Y. Y.

    2016-12-01

    Appropriate estimations of gaps appeared in eddy covariance (EC) flux observations are critical to the reliability of long-term EC applications. In this study we present a semi-parametric multivariate gap-filling model for tower-based measurement of CO2 flux. The raw EC data passing QC/QA was separated into two groups, clear sky, having net radiation greater than 50 W/m2, and nighttime/cloudy. For the clear sky conditions, the principle component analysis (PCA) was used to resolve the multicollinearity relationships among various environmental variables, including net radiation, wind speed, vapor pressure deficit, soil moisture deficit, leaf area index, and soil temperature, in association with CO2 assimilated by forest. After the principal domains were determined by the PCA, the relationships between CO2 fluxes and selected PCs (key factors) were built up by nonlinear interpolations to estimate the gap-filled CO2 flux. In view of limited photosynthesis at nighttime/cloudy conditions, respiration rate of the forest ecosystem was estimated by the Lloyd-Tylor equation. Artificial gaps were randomly selected to exam the applicability of our PCA approach. Based on tower-based measurement of CO2 flux at the Lien-Hua-Chih site, a total of 5.8 ton-C/ha/yr was assimilated in 2012.

  11. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  12. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    NASA Astrophysics Data System (ADS)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  13. BOREAS TE-6 NPP For The Tower Flux, Carbon Evaluation, and Auxiliary Sites

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Gower, Stith T.; Vogel, Jason G.

    2000-01-01

    The BOREAS TE-6 team collected several data sets to examine the influence of vegetation, climate, and their interactions on the major carbon fluxes for boreal forest species. This data set contains estimates of the biomass produced by the plant species at the TF, CEV, and AUX sites in the SSA and NSA for a given year. Temporally, the data cover the years of 1985 to 1995. The plant biomass production (i.e., aboveground, belowground, understory, litterfall), spatial coverage, and temporal nature of measurements varied between the TF, CEV, and AUX sites as deemed necessary by BOREAS principal investigators. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  14. Impact of surrounding environment evolution on long-term gas flux measurements in a temperate mixed forest

    NASA Astrophysics Data System (ADS)

    Hurdebise, Quentin; Rixen, Toma; De Ligne, Anne; Vincke, Caroline; Heinesch, Bernard; Aubinet, Marc

    2016-04-01

    With the development of eddy covariance networks like Fluxnet, ICOS or NEON, long-term data series of carbon dioxide, water vapor and other gas exchanges between terrestrial ecosystems and atmosphere will become more and more numerous. However, long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) where fluxes of momentum, carbon dioxide, latent and sensible heat have been continuously measured by eddy covariance during twenty years. VTO is an ICOS site installed in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardennes. A multidisciplinary approach was developed in order to investigate the spatial and temporal evolution of several site characteristics: -displacement height (d) and relative measurement height (z-d) were determined using a spectral approach that compared observed and theoretical cospectra; -turbulence statistics were analyzed in the context of Monin-Obukhov similarity theory; -tree height during the measurement period was obtained by combining tree height inventories, a LIDAR survey and tree growth models; -measurement footprint was determined by using a footprint model. A good agreement was found between the three first approaches. Results show notably that z-d was subjected to both temporal and spatial evolution. Temporal evolution resulted from continuous tree growth as well as from a tower raise, achieved in 2009. Spatial evolution, due to canopy heterogeneity, was also observed. The impacts of these changes on measurements are investigated. In particular, it was shown that they affect measurement footprint, flux spectral corrections and flux quality. All these effects must be taken into

  15. Measuring Subsurface Water Fluxes Using a Heat Pulse Sensor

    NASA Astrophysics Data System (ADS)

    Ochsner, T. E.; Wang, Q.; Horton, R.

    2001-12-01

    Subsurface water flux is an important parameter in studies of runoff, infiltration, groundwater recharge, and subsurface chemical transport. Heat pulse sensors have been proposed as promising tools for measuring subsurface water fluxes. Our heat pulse probe consists of three 4-cm stainless-steel needles embedded in a waterproof epoxy body. The needles contain resistance heaters and thermocouples. The probes are connected to an external datalogger and power supply and then installed in soil. To measure the water flux, a 15-s heat pulse is generated at the middle needle using the power supply and the resistance heater, and the temperature increases at the needles 6-mm upstream and downstream from the heater are recorded using the thermocouples and datalogger. To date, heat pulse methods have required cumbersome mathematical analysis to calculate soil water flux from this measured data. We present a new mathematical analysis showing that a simple relationship exists between water flux and the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the line heat source. The simplicity of this relationship makes heat pulse sensors a more attractive option for measuring subsurface water fluxes.

  16. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8

  17. BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; Way, JoBea; McDonald, Kyle; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    As part of its efforts to determine environmental and phenological states from radar imagery, the Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team collected in situ tree xylem flow measurements for one growing season on five Picea mariana (black spruce) trees. The data were collected to obtain information on the temporal and spatial variability in water uptake by trees in the Southern Study Area-Old Black Spruce (SSA-OBS) stand in the BOREAS SSA. Temporally, the data were collected in 30-minute intervals for 120 days from 31 May 1994 until 27 September 1994. The data are stored in tabular ASCII files. The xylem flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. Eddy Covariance Flux Measurements of Pollutant Gases in the Mexico City Urban Area: a Useful Technique to Evaluate Emissions inventories

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Grivicke, R.; Pressley, S.; Allwine, G.; Jobson, T.; Westberg, H.; Lamb, B.; Ramos, R.; Molina, L.

    2007-12-01

    Direct measurements of emissions of pollutant gases that include all major and minor emissions sources in urban areas are a missing requirement to improve and evaluate emissions inventories. The quality of an urban emissions inventory relies on the accuracy of the information of anthropogenic activities, which in many cases is not available, in particular in urban areas of developing countries. As part of the MCMA-2003 field campaign, we demonstrated the feasibility of using eddy covariance (EC) techniques coupled with fast-response sensors to measure fluxes of volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City. Those flux measurements demonstrated to be also a valuable tool to evaluate the emissions inventory used for air quality modeling. With the objective to confirm the representativeness of the 2003 flux measurements in terms of magnitude, composition and diurnal distribution, as well to evaluate the most recent emissions inventory, a second flux system was deployed in a different district of Mexico City during the 2006 MILAGRO field campaign. This system was located in a busy district surrounded by congested avenues close to the center of the city. In 2003 and 2006 fluxes of olefins and CO2 were measured by the EC technique using a Fast Isoprene Sensor calibrated with a propylene standard and an open path Infrared Gas Analyzer (IRGA), respectively. Fluxes of aromatic and oxygenated VOCs were analyzed by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique. In 2006 the number of VOCs was extended using a disjunct eddy accumulation (DEA) system. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site by gas chromatography / flame ionization detection (GC-FID). In both studies we found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns were similar, but the 2006 fluxes

  19. First UAV Measurements of Entrainment Layer Fluxes with Coupled Cloud Property Measurements

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Praveen, P. S.; Wilcox, E. M.; Pistone, K.; Bender, F.; Ramanathan, V.

    2012-12-01

    This study details entrainment flux measurements made from a lightweight unmanned aerial vehicle (UAV) containing turbulent water vapor flux instrumentation (Thomas et al., 2012). The system was flown for 26 flights during the Cloud, Aerosol, Radiative forcing, Dynamics EXperiment (CARDEX) in the Maldives in March 2012 to study interrelationships between entrainment, aerosols, water budget, cloud microphysics and radiative fluxes in a trade wind cumulus cloud regime. A major advantage of using this lightweight, precision autopiloted UAV system with scientific telemetry is the ability to target small-scale features in the boundary layer, such as an entrainment layer, with minimal aircraft induced disruption. Results are presented from two UAVs flown in stacked formation: one UAV situated in-cloud measuring cloud-droplet size distribution spectra and liquid water content, and another co-located 100m above measuring turbulent properties and entrainment latent heat flux (λEE). We also show latent heat flux and turbulence measurements routinely made at the entrainment layer base and altitudes from the surface up to 4kft. Ratios of λEE to corresponding surface tower values (λES) display a bimodal frequency distribution with ranges 0.22-0.53 and 0.79-1.5, with occasional events >7. Reasons for this distribution are discussed drawing upon boundary layer and free tropospheric dynamics and meteorology, turbulence length scales, surface conditions, and cloud interactions. Latent heat flux profiles are combined with in-cloud UAV Liquid Water Content (LWC) data and surface based Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) measurements to produce observationally constrained vertical water budgets, providing insights into diurnal coupling of λEE and λES. Observed λEE, λES, water budgets, and cloud microphysical responses to entrainment are then contextualized with respect to measured aerosol loading profiles and airmass history.

  20. A Preliminary Study of CO2 Flux Measurements by Lidar

    NASA Technical Reports Server (NTRS)

    Gibert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, T.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2008-01-01

    A mechanistic understanding of the global carbon cycle requires quantification of terrestrial ecosystem CO2 fluxes at regional scales. In this paper, we analyze the potential of a Doppler DIAL system to make flux measurements of atmospheric CO2 using the eddy-covariance and boundary layer budget methods and present results from a ground based experiment. The goal of this study is to put CO2 flux point measurements in a mesoscale context. In June 2007, a field experiment combining a 2-m Doppler Heterodyne Differential Absorption Lidar (HDIAL) and in-situ sensors of a 447-m tall tower (WLEF) took place in Wisconsin. The HDIAL measures simultaneously: 1) CO2 mixing ratio, 2) atmosphere structure via aerosol backscatter and 3) radial velocity. We demonstrate how to synthesize these data into regional flux estimates. Lidar-inferred fluxes are compared with eddy-covariance fluxes obtained in-situ at 396m AGL from the tower. In cases where the lidar was not yet able to measure the fluxes with acceptable precision, we discuss possible modifications to improve system performance.

  1. Long-term elemental dry deposition fluxes measured around Lake Michigan with an automated dry deposition sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahin, U. Yi, S.M.; Paode, R.D.; Holsen, T.M.

    2000-05-15

    Long-term measurements of mass and elemental dry deposition (MG, Al, V, Cr, Mn, Ni, Co, Cu, Zn, As, Sr, Mo, Cd, Sb, Ba, and Pb) were made with an automated dry deposition sampler (Eagle II) containing knife-edge surrogate surfaces during the Lake Michigan Mass Balance/Mass Budget Study. Measurements were made over a roughly 700-day period in Chicago, IL; in South Haven and Sleeping Bear Dunes, MI; and over Lake Michigan on the 68th Street drinking water intake cribs from December 1993 to October 1995. Average mass fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib weremore » 65, 10, 3.6, and 12 mg m{sup {minus}2} day{sup {minus}1}, respectively. Primarily crustal elemental fluxes were significantly smaller than the mass fluxes but higher than primarily anthropogenic elemental fluxes. For example, the average elemental flux of Al in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 1.0, 0.34, 0.074, and 0.34 mg m{sup {minus}2}day{sup {minus}1}, respectively. The average Pb fluxes in Chicago, South Haven, Sleeping Bear Dunes, and the 68th Street crib were 0.038, 0.023, 0.035, and 0.032 mg m{sup {minus}2}day{sup {minus}1}, respectively. The measured fluxes at the various sites were used to calculate the dry deposition loadings to the lake. These estimated fluxes were highest for Mg and lowest for Cd.« less

  2. CO2 flux response to precipitation events in Juniperus osteosperma and Artemisia tridentata ecosystems using eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Ivans, S.; Hipps, L. E.

    2003-04-01

    Eddy covariance measurements were used to determine the seasonal changes of net CO_2 flux, and the response to intermittent precipitation events in juniper (Juniperus osteosperma) and sagebrush (Artemisia tridentata) plant communities in a semi-arid region in the Great Basin of the United States over the entire growing seasons of 2001 and 2002. The net CO_2 fluxes were negative or downward in each community during the spring when soil water availability was largest. During this time, rain events resulted in large increases of net CO_2 uptake in juniper within 24 hours after the rain. The relative increases were larger in the dry spring of 2001 compared to the wetter conditions of 2002. Response of sage to rain events in the spring was smaller in magnitude. During the dry periods of summer and early fall net CO_2 flux was upward at each site in both years. In these periods the respiration of soil and vegetation apparently exceeded any assimilation by the plants. During these dry periods increases in CO_2 efflux were observed at both sites following rain events, presumably as a result of increases in soil respiration. The response of CO_2 fluxes to these events lasted generally 2 to 3 days. During late fall and early winter, no significant changes in CO_2 fluxes were observed at either site in response to rainfall because of significantly lower temperatures and plant dormancy in the year 2001. However in 2002, because of warmer weather, rainfall events triggered a temporary change in the flux direction at both sites from CO_2 efflux to CO_2 uptake, suggesting that the plants were actively photosynthesizing. Energy balance closure values for both sites ranged from 0.75--0.80 in the moist conditions of spring, and increased to 0.80--0.85 in the dry conditions of summer and fall. It is not yet clear why energy balance closure is dependent upon the relative sizes of sensible and latent heat fluxes. The issue of whether or not to force closure by adding to the fluxes

  3. Airborne Solar Radiant Flux Measurements During ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Jonsson, Haflidi

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. In the ACE 2 program the solar radiant fluxes were measured on the Pelican aircraft and the UK Met Office C130. This poster will show results from the measurements for the aerosol effects during the clear column days. We will compare the results with calculations of the radiant fluxes.

  4. Measurement of a surface heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  5. Measurement of a surface heat flux and temperature

    NASA Technical Reports Server (NTRS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  6. AmeriFlux CA-Cha New Brunswick - Charlie Lake site 01 (immature balsam fir forest to be thinned in year 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourque, Charles

    This is the AmeriFlux version of the carbon flux data for the site CA-Cha New Brunswick - Charlie Lake site 01 (immature balsam fir forest to be thinned in year 3). Site Description - mature balsam fir forest

  7. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    the row width alternating between 1.50 m and 0.75 m, creating spatial differences in e.g. dry bulk density and soil organic carbon content. The soil CO2 flux data sets were split into four subsets each characterized by different environmental conditions, thus presenting different challenges for the measurement equipment, namely 1) daytime, calm conditions, 2) daytime, windy conditions, 3) nighttime, calm conditions, and 4) nighttime, windy conditions. In parallel to the chamber measurements, soil CO2 concentrations were manually measured in the topsoil. Soil CO2 fluxes calculated from this dataset were used as a reference range of soil CO2 fluxes at the field site. Funding support: ERC Advanced Grant agreement (# 233366) POPFULL under the EC 7th Framework Program (FP7/2007-2013), Flemish Hercules Foundation as Infrastructure contract # ZW09-06, and the Methusalem Program of the Flemish Government.

  8. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  9. Cosmological flux noise and measured noise power spectra in SQUIDs

    PubMed Central

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  10. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-06-20

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  11. Estimating Total Heliospheric Magnetic Flux from Single-Point in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Owens, M. J.; Arge, C. N.; Crooker, N. U.; Schwardron, N. A.; Horbury, T. S.

    2008-01-01

    A fraction of the total photospheric magnetic flux opens to the heliosphere to form the interplanetary magnetic field carried by the solar wind. While this open flux is critical to our understanding of the generation and evolution of the solar magnetic field, direct measurements are generally limited to single-point measurements taken in situ by heliospheric spacecraft. An observed latitude invariance in the radial component of the magnetic field suggests that extrapolation from such single-point measurements to total heliospheric magnetic flux is possible. In this study we test this assumption using estimates of total heliospheric flux from well-separated heliospheric spacecraft and conclude that single-point measurements are indeed adequate proxies for the total heliospheric magnetic flux, though care must be taken when comparing flux estimates from data collected at different heliocentric distances.

  12. An introduction to the Australian and New Zealand flux tower network - OzFlux

    NASA Astrophysics Data System (ADS)

    Beringer, Jason; Hutley, Lindsay B.; McHugh, Ian; Arndt, Stefan K.; Campbell, David; Cleugh, Helen A.; Cleverly, James; Resco de Dios, Víctor; Eamus, Derek; Evans, Bradley; Ewenz, Cacilia; Grace, Peter; Griebel, Anne; Haverd, Vanessa; Hinko-Najera, Nina; Huete, Alfredo; Isaac, Peter; Kanniah, Kasturi; Leuning, Ray; Liddell, Michael J.; Macfarlane, Craig; Meyer, Wayne; Moore, Caitlin; Pendall, Elise; Phillips, Alison; Phillips, Rebecca L.; Prober, Suzanne M.; Restrepo-Coupe, Natalia; Rutledge, Susanna; Schroder, Ivan; Silberstein, Richard; Southall, Patricia; Yee, Mei Sun; Tapper, Nigel J.; van Gorsel, Eva; Vote, Camilla; Walker, Jeff; Wardlaw, Tim

    2016-10-01

    OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m-2 yr-1) and the natural raised peat bog site having a very low GPP (820 gC m-2 yr-1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.

  13. The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots.

    PubMed

    Allen, Grant; Hollingsworth, Peter; Kabbabe, Khristopher; Pitt, Joseph R; Mead, Mohammed I; Illingworth, Samuel; Roberts, Gareth; Bourn, Mark; Shallcross, Dudley E; Percival, Carl J

    2018-01-09

    This paper describes the development of a new sampling and measurement method to infer methane flux using proxy measurements of CO 2 concentration and wind data recorded by Unmanned Aerial Systems (UAS). The flux method described and trialed here is appropriate to the spatial scale of landfill sites and analogous greenhouse gas emission hotspots, making it an important new method for low-cost and rapid case study quantification of fluxes from currently uncertain (but highly important) greenhouse gas sources. We present a case study using these UAS-based measurements to derive instantaneous methane fluxes from a test landfill site in the north of England using a mass balance model tailored for UAS sampling and co-emitted CO 2 concentration as a methane-emission proxy. Methane flux (and flux uncertainty) during two trials on 27 November 2014 and 5 March 2015, were found to be 0.140 kg s -1 (±61% at 1σ), and 0.050 kg s -1 (±54% at 1σ), respectively. Uncertainty contributing to the flux was dominated by ambient variability in the background (inflow) concentration (>40%) and wind speed (>10%); with instrumental error contributing only ∼1-2%. The approach described represents an important advance concerning the challenging problem of greenhouse gas hotspot flux calculation, and offers transferability to a wide range of analogous environments. This new measurement solution could add to a toolkit of approaches to better validate source-specific greenhouse emissions inventories - an important new requirement of the UNFCCC COP21 (Paris) climate change agreement. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, Robert V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

  15. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  16. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites: SURROGATE-BASED MCMC FOR CLM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan

    2016-07-04

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  17. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  18. Utilizing patch and site level greenhouse-gas concentration measurements in tandem with the prognostic model, ecosys

    NASA Astrophysics Data System (ADS)

    Morin, T. H.; Rey Sanchez, C.; Bohrer, G.; Riley, W. J.; Angle, J.; Mekonnen, Z. A.; Stefanik, K. C.; Wrighton, K. C.

    2016-12-01

    Estimates of wetland greenhouse gas (GHG) budgets currently have large uncertainties. While wetlands are the largest source of natural methane (CH4) emissions worldwide, they are also important carbon dioxide (CO2) sinks. Determining the GHG budget of a wetland is challenging, particularly because wetlands have intrinsically temporally and spatially heterogeneous land cover patterns and complex dynamics of CH4 production and emissions. These issues pose challenges to both measuring and modeling GHG budgets from wetlands. To improve wetland GHG flux predictability, we utilized the ecosys model to predict CH4 fluxes from a natural temperate estuarine wetland in northern Ohio. Multiple patches of terrain (that included Typha spp. and Nelumbo lutea) were represented as separate grid cells in the model. Cells were initialized with measured values but were allowed to dynamically evolve in response to meteorological, hydrological, and thermodynamic conditions. Trace gas surface emissions were predicted as the end result of microbial activity, physical transport, and plant processes. Corresponding to each model gridcell, measurements of dissolved gas concentrations were conducted with pore-water dialysis samplers (peepers). The peeper measurements were taken via a series of tubes, providing an undisturbed observation of the pore water concentrations of in situ dissolved gases along a vertical gradient. Non-steady state chambers and a flux tower provided both patch level and integrated site-level fluxes of CO2 and CH4. New Typha chambers were also developed to enclose entire plants and segregate the plant fluxes from soil/water fluxes. We expect ecosys to predict the seasonal and diurnal fluxes of CH4 from within each land cover type and to resolve where CH4 is generated within the soil column and its transmission mechanisms. We demonstrate the need for detailed information at both the patch and site level when using models to predict whole wetland ecosystem-scale GHG

  19. First flux surface measurements on W7-X

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Sunn; Otte, Matthias; Biedermann, Christoph; Bozhenkov, Sergey; Braeuer, Torsten; Lazerson, Samuel; W7-X Team

    2015-11-01

    Wendelstein 7-X is rapidly approaching first plasma operation. The full operational B-field of 2.5 T has been reached using the 70 superconducting coils. The first flux surface measurements have recently been successfully performed. This talk will describe the W7-X flux surface measurement system, and show and analyze the first results from this diagnostic, which, at the time of writing this abstract, can be summarized as follows: Confirmation of the existence of nested, closed flux surfaces, first measurements of iota, and detection of the expected internal 5/6 island chain of the OP1.1 configuration. The data obtained so far agree with expectations, and provide a first confirmation of the accuracy of the coil geometry and assembly, as well as diagnostic installation. They also confirm that, with respect to the magnetic topology, plasma operation can start. Plans for, and potentially first results of, measurements of any remnant field errors, will be reported separately at this meeting.

  20. Mapping AmeriFlux footprints: Towards knowing the flux source area across a network of towers

    NASA Astrophysics Data System (ADS)

    Menzer, O.; Pastorello, G.; Metzger, S.; Poindexter, C.; Agarwal, D.; Papale, D.

    2014-12-01

    The AmeriFlux network collects long-term carbon, water and energy flux measurements obtained with the eddy covariance method. In order to attribute fluxes to specific areas of the land surface, flux source calculations are essential. Consequently, footprint models can support flux up-scaling exercises to larger regions, often based on remote sensing data. However, flux footprints are not currently being routinely calculated; different approaches exist but have not been standardized. In part, this is due to varying instrumentation and data processing methods at the site level. The goal of this work is to map tower footprints for a future standardized AmeriFlux product to be generated at the network level. These footprints can be estimated by analytical models, Lagrangian simulations, and large-eddy simulations. However, for many sites, the datasets currently submitted to central databases generally do not include all variables required. The AmeriFlux network is moving to collection of raw data and expansion of the variables requested from sites, giving the possibility to calculate all parameters and variables needed to run most of the available footprint models. In this pilot study, we are applying state of the art footprint models across a subset of AmeriFlux sites, to evaluate the feasibility and merit of developing standardized footprint results. In addition to comparing outcomes from several footprint models, we will attempt to verify and validate the results in two ways: (i) Verification of our footprint calculations at sites where footprints have been experimentally estimated. (ii) Validation at towers situated in heterogeneous landscapes: here, variations in the observed fluxes are expected to correlate with spatiotemporal variations of the source area composition. Once implemented, the footprint results can be used as additional information within the AmeriFlux database that can support data interpretation and data assimilation. Lastly, we will explore the

  1. Passive flux meter measurement of water and nutrient flux in saturated porous media: bench-scale laboratory tests.

    PubMed

    Cho, Jaehyun; Annable, Michael D; Jawitz, James W; Hatfield, Kirk

    2007-01-01

    The passive nutrient flux meter (PNFM) is introduced for simultaneous measurement of both water and nutrient flux through saturated porous media. The PNFM comprises a porous sorbent pre-equilibrated with a suite of alcohol tracers, which have different partitioning coefficients. Water flux was estimated based on the loss of loaded resident tracers during deployment, while nutrient flux was quantified based on the nutrient solute mass captured on the sorbent. An anionic resin, Lewatit 6328 A, was used as a permeable sorbent and phosphate (PO4(3-)) was the nutrient studied. The phosphate sorption capacity of the resin was measured in batch equilibration tests as 56 mg PO4(3-) g(-1), which was determined to be adequate capacity to retain PO4(3-) loads intercepted over typical PNFM deployment periods in most natural systems. The PNFM design was validated with bench-scale laboratory tests for a range of 9.8 to 28.3 cm d(-1) Darcy velocities and 6 to 43 h deployment durations. Nutrient and water fluxes measured by the PNFM averaged within 6 and 12% of the applied values, respectively, indicating that the PNFM shows promise as a tool for simultaneous measurement of water and nutrient fluxes.

  2. Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components

    NASA Astrophysics Data System (ADS)

    Menzer, Olaf; McFadden, Joseph P.

    2017-12-01

    Eddy covariance flux measurements are increasingly used to quantify the net carbon dioxide exchange (FC) in urban areas. FC represents the sum of anthropogenic emissions, biogenic carbon release from plant and soil respiration, and carbon uptake by plant photosynthesis. When FC is measured in natural ecosystems, partitioning into respiration and photosynthesis is a well-established procedure. In contrast, few studies have partitioned FC at urban flux tower sites due to the difficulty of accounting for the temporal and spatial variability of the multiple sources and sinks. Here, we partitioned a three-year time series of flux measurements from a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. We segregated FC into one subset that captured fluxes from a residential neighborhood and into another subset that covered a golf course. For both land use types we modeled anthropogenic flux components based on winter data and extrapolated them to the growing season, to estimate gross primary production (GPP) and ecosystem respiration (Reco) at half-hourly, daily, monthly and annual scales. During the growing season, GPP had the largest magnitude (up to - 9.83 g C m-2 d-1) of any component CO2 flux, biogenic or anthropogenic, and both GPP and Reco were more dynamic seasonally than anthropogenic fluxes. Owing to the balancing of Reco against GPP, and the limitations of the growing season in a cold temperate climate zone, the net biogenic flux was only 1.5%-4.5% of the anthropogenic flux in the dominant residential land use type, and between 25%-31% of the anthropogenic flux in highly managed greenspace. Still, the vegetation sink at our site was stronger than net anthropogenic emissions on 16-20 days over the residential area and on 66-91 days over the recreational area. The reported carbon flux sums and dynamics are a critical step toward developing models of urban CO2 fluxes within and across cities that differ in vegetation cover.

  3. AmeriFlux US-PFa Park Falls/WLEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ankur

    This is the AmeriFlux version of the carbon flux data for the site US-PFa Park Falls/WLEF. Site Description - The flux footprint encompasses a highly heterogeneous landscape of upland forests and wetlands (forested and nonforested). The forests are mainly deciduous but also include substantial coniferous coverage. The upland/lowland variability occurs on spatial scales of a few hundred meters. This heterogeneous landscape is further complicated by a nonuniform, small scale mosaic of thinning and clearcutting of the forest. At larger scales (1 km or greater) the forest cover mosaic is quite homogeneous for many kilometers. The site was chosen not formore » study of a simple stand, but for upscaling experiments. The daytime fetch of flux measurements from the 396m level is on the order of 5-10 km, yielding a flux footprint roughly 100x the area of a typical stand-level flux tower. AC power (tower is a TV transmitter).« less

  4. Interplanetary magnetic flux - Measurement and balance

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.

    1992-01-01

    A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.

  5. AmeriFlux US-Prr Poker Flat Research Range Black Spruce Forest

    DOE Data Explorer

    Suzuki, Rikie [Japan Agency for Marine-Earth Science and Technology

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Prr Poker Flat Research Range Black Spruce Forest. Site Description - This site is located in a blackspruce forest within the property of the Poker Flat Research Range, University of Alaska, Fairbanks. Time-lapse image of the canopy is measured at the same time to relate flux data to satellite images.

  6. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    PubMed

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  7. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    NASA Astrophysics Data System (ADS)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2015-01-01

    of the same magnitude as the fluxes when N2O exchange was small at the measurement site. Both instruments based on continuous-wave quantum cascade laser, CW-TILDAS-CS and N2O / CO-23d, were able to determine the same sample of low N2O fluxes with a high mutual coefficient of determination at the 30 min averaging level and with minor systematic difference over the observation period of several months. This enables us to conclude that the new-generation instrumentation is capable of measuring small N2O exchange with high precision and accuracy at sites with low fluxes.

  8. Automatic solar image motion measurements. [electronic disk flux monitoring

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Moore, E. P.

    1975-01-01

    The solar seeing image motion has been monitored electronically and absolutely with a 25 cm telescope at three sites along the ridge at the southern end of the Magdalena Mountains west of Socorro, New Mexico. The uncorrelated component of the variations of the optical flux from two points at opposite limbs of the solar disk was continually monitored in 3 frequencies centered at 0.3, 3 and 30 Hz. The frequency band of maximum signal centered at 3 Hz showed the average absolute value of image motion to be somewhat less than 2sec. The observer estimates of combined blurring and image motion were well correlated with electronically measured image motion, but the observer estimates gave a factor 2 larger value.

  9. Using "snapshot" measurements of CH4 fluxes from peatlands to estimate annual budgets: interpolation vs. modelling.

    NASA Astrophysics Data System (ADS)

    Green, Sophie M.; Baird, Andy J.

    2016-04-01

    There is growing interest in estimating annual budgets of peatland-atmosphere carbon dioxide (CO2) and methane (CH4) exchanges. Such budgeting is required for calculating peatland carbon balance and the radiative forcing impact of peatlands on climate. There have been multiple approaches used to estimate CO2 budgets; however, there is a limited literature regarding the modelling of annual CH4 budgets. Using data collected from flux chamber tests in an area of blanket peatland in North Wales, we compared annual estimates of peatland-atmosphere CH4 emissions using an interpolation approach and an additive and multiplicative modelling approach. Flux-chamber measurements represent a snapshot of the conditions on a particular site. In contrast to CO2, most studies that have estimated the time-integrated flux of CH4 have not used models. Typically, linear interpolation is used to estimate CH4 fluxes during the time periods between flux-chamber measurements. It is unclear how much error is involved with such a simple integration method. CH4 fluxes generally show a rise followed by a fall through the growing season that may be captured reasonably well by interpolation, provided there are sufficiently frequent measurements. However, day-to-day and week-to-week variability is also often evident in CH4 flux data, and will not necessarily be properly represented by interpolation. Our fits of the CH4 flux models yielded r2 > 0.5 in 38 of the 48 models constructed, with 55% of these having a weighted rw2 > 0.4. Comparison of annualised CH4 fluxes estimated by interpolation and modelling reveals no correlation between the two data sets; indeed, in some cases even the sign of the flux differs. The difference between the methods seems also to be related to the size of the flux - for modest annual fluxes there is a fairly even scatter of points around the 1:1 line, whereas when the modelled fluxes are high, the corresponding interpolated fluxes tend to be low. We consider the

  10. Quantification of methane fluxes from hydrocarbon seeps to the ocean and atmosphere: Development of an in situ and online gas flux measuring system

    NASA Astrophysics Data System (ADS)

    Di, Pengfei; Chen, Qinghua; Chen, Duofu

    2017-06-01

    Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate change. To accurately quantify the methane flux from hydrocarbon seeps on the seafloor, a specialized in situ and online gas flux measuring (GFM) device was designed to obtain high-resolution time course gas fluxes using the process of equal volume exchange. The device consists of a 1.0-m diameter, 0.9-m tall, inverted conical tent and a GFM instrument that contains a solenoid valve, level transducer, and gas collection chamber. Rising gas bubbles from seeps were measured by laboratory-calibrated GFM instruments attached to the top of the tent. According to the experimental data, the optimal anti-shake time interval was 5 s. The measurement range of the device was 0-15 L min-1, and the relative error was ± 1.0%. The device was initially deployed at an active seep site in the Lingtou Promontory seep field in South China Sea. The amount of gas released from a single gas vent was 30.5 m3 during the measurement period, and the gas flow rate ranged from 22 to 72 L h-1, depending on tidal period, and was strongly negatively correlated with water depth. The measurement results strongly suggest that oceanic tides and swells had a significant forcing effect on gas flux. Low flow rates were associated with high tides and vice versa. The changes in gas volume escaping from the seafloor seeps could be attributed to the hydrostatic pressure induced by water depth. Our findings suggest that in the marine environment, especially in the shallow shelf area, sea level variation may play an important role in controlling methane release into the ocean. Such releases probably also affect atmospheric methane levels.

  11. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    NASA Astrophysics Data System (ADS)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0

  12. Measurement and simulation of thermal neutron flux distribution in the RTP core

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  13. The development and validation of an unmanned aerial system (UAS) for the measurement of methane flux

    NASA Astrophysics Data System (ADS)

    Allen, G.; Shah, A.; Williams, P. I.; Ricketts, H.; Hollingsworth, P.; Kabbabe, K.; Bourn, M.; Pitt, J. R.; Helmore, J.; Lowry, D.; Robinson, R. A.; Finlayson, A.

    2017-12-01

    Emission controls for CH4are a part of the Paris Agreement and other national emissions strategies. This work represents a new method for precise quantification of point-source and facility-level methane emissions flux rates to inform both the climate science community and policymakers. In this paper, we describe the development of an integrated Unmanned Aerial System (UAS) for the measurement of high-precision in-situ CH4 concentrations. We also describe the development of a mass balance flux calculation model tailored to UAS plume sampling downwind; and the validation of this method using a known emission flux from a controlled release facility. A validation field trial was conducted at the UK Met Office site in Cardington, UK, between 31 Oct and 4 Nov 2016 using the UK National Physical Laboratory's Controlled Release Facility (CRF). A modified DJI-S900 hexrotor UAS was tethered via an inlet to a ground-based Los Gatos Ultraportable Greenhouse Gas Analyser to record geospatially-referenced methane (and carbon dioxide) concentrations. Methane fluxes from the CRF were emitted at 5 kg/hr and 10 kg/hr in a series of blind trials (fluxes were not reported to the team prior to the calculation of UAS-derived flux) for a total of 7 UAS flights, which sampled 200 m downwind of source(s), each lasting around 20 minutes. The flux calculation method was adapted for sampling considerations downwind of an emission source that has not had sufficient time to develop a Gaussian morphology. The UAS-measured methane fluxes, and representative flux uncertainty (derived from an error propagation model), were found to compare well with the controlled CH4 emission rate. For the 7 experiments, the standard error between the measured and emitted CH4 flux was found to be +/-6% with a mean bias of +0.4 kg/hr. Limits of flux sensitivity (to within 25% uncertainty) were found to extend to as little as 0.12 kg/h. Further improvements to the accuracy of flux calculation could be made by

  14. New Measurement of the Flux of Atmospheric Muons

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Carlson, P.; Francke, T.; Weber, N.; Suffert, M.; Hof, M.; Menn, W.; Simon, M.; Stephens, S. A.; Bellotti, R.; Cafagna, F.; Castellano, M.; Circella, M.; de Marzo, C.; Grimani, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Ricci, M.; Casolino, M.; de Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Bravar, U.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Golden, R. L.; Stochaj, S. J.

    1999-06-01

    We report a new measurement of the momentum spectra of both positive and negative muons as a function of atmospheric depth in the momentum range 0.3-2 and 0.3-40 GeV/c, respectively. The measured flux values have been compared with the spectra obtained from simulations, which were carried out to interpret the atmospheric neutrino data. We find that our data disagree with the results from the simulations. The ratio of the flux of muons derived from simulations to that measured is at largest 1.8 and varies with atmospheric depth and muon momentum.

  15. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  16. Densitometric tomography using the measurement of muon flux

    NASA Astrophysics Data System (ADS)

    Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.

    2013-12-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.

  17. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.

    2017-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  18. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.

    2016-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  19. Reproducible nucleation sites for flux dendrites in MgB 2

    NASA Astrophysics Data System (ADS)

    Johansen, T. H.; Shantsev, D. V.; Olsen, Å. A. F.; Roussel, M.; Pan, A. V.; Dou, S. X.

    2007-12-01

    Magneto-optical imaging was used to study dendritic flux penetration in films of MgB 2. By repeating experiments under the same external conditions, reproducible features were seen in the pattern formation; dendrites tend to nucleate from fixed locations along the edge. However, their detailed structure deeper inside the film is never reproduced. The reproducibility in nucleation sites is explained as a result of edge roughness causing field hot spots.

  20. Technical Note: A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Schulz-Hanke, M.; Garcia Alba, J.; Jurisch, N.; Hagemann, U.; Sachs, T.; Sommer, M.; Augustin, J.

    2015-08-01

    Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. Thus, serious challenges are constitutes in terms of the mechanistic process understanding, the identification of potential environmental drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential environmental drivers. Flux separation is based on ebullition related sudden concentration changes during single measurements. A variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R-script, adjusted for the purpose of CH4 flux calculation. The algorithm was tested using flux measurement data (July to September 2013) from a former fen grassland site, converted into a shallow lake as a result of rewetting ebullition and diffusion contributed 46 and 55 %, respectively, to total CH4 emissions, which is comparable to those previously reported by literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period.

  1. Spatial Interpretation of Tower, Chamber and Modelled Terrestrial Fluxes in a Tropical Forest Plantation

    NASA Astrophysics Data System (ADS)

    Whidden, E.; Roulet, N.

    2003-04-01

    Interpretation of a site average terrestrial flux may be complicated in the presence of inhomogeneities. Inhomogeneity may invalidate the basic assumptions of aerodynamic flux measurement. Chamber measurement may miss or misinterpret important temporal or spatial anomalies. Models may smooth over important nonlinearities depending on the scale of application. Although inhomogeneity is usually seen as a design problem, many sites have spatial variance that may have a large impact on net flux, and in many cases a large homogeneous surface is unrealistic. The sensitivity and validity of a site average flux are investigated in the presence of an inhomogeneous site. Directional differences are used to evaluate the validity of aerodynamic methods and the computation of a site average tower flux. Empirical and modelling methods are used to interpret the spatial controls on flux. An ecosystem model, Ecosys, is used to assess spatial length scales appropriate to the ecophysiologic controls. A diffusion model is used to compare tower, chamber, and model data, by spatially weighting contributions within the tower footprint. Diffusion model weighting is also used to improve tower flux estimates by producing footprint averaged ecological parameters (soil moisture, soil temperature, etc.). Although uncertainty remains in the validity of measurement methods and the accuracy of diffusion models, a detailed spatial interpretation is required at an inhomogeneous site. Flux estimation between methods improves with spatial interpretation, showing the importance to an estimation of a site average flux. Small-scale temporal and spatial anomalies may be relatively unimportant to overall flux, but accounting for medium-scale differences in ecophysiological controls is necessary. A combination of measurements and modelling can be used to define the appropriate time and length scales of significant non-linearity due to inhomogeneity.

  2. The Use of a Mesoscale Climate Model to Validate the Nocturnal Carbon Flux over a Forested Site

    NASA Astrophysics Data System (ADS)

    Werth, D.; Parker, M.; Kurzeja, R.; Leclerc, M.; Watson, T.

    2007-12-01

    The Savannah River National Laboratory is initiating a comprehensive carbon dioxide monitoring and modeling program in collaboration with the University of Georgia and the Brookhaven National Laboratory. One of the primary goals is to study the dynamics of carbon dioxide in the stable nocturnal boundary layer (NBL) over a forested area of the Savannah River Site in southwest South Carolina. In the nocturnal boundary layer (NBL), eddy flux correlation is less effective in determining the release of CO2 due to respiration. Theoretically, however, the flux can be inferred by measuring the build up of CO2 in the stable layer throughout the night. This method of monitoring the flux will be validated and studied in more detail with both observations and the results of a high-resolution regional climate model. The experiment will involve two phases. First, an artificial tracer will be released into the forest boundary layer and observed through an array of sensors and at a flux tower. The event will be simulated with the RAMS climate model run at very high resolution. Ideally, the tracer will remain trapped within the stable layer and accumulate at rates which will allow us to infer the release rate, and this should compare well to the actual release rate. If an unknown mechanism allows the tracer to escape, the model simulation would be used to reveal it. In the second phase, carbon fluxes will be measured overnight through accumulation in the overlying layer. The RAMS model will be coupled with the SiB carbon model to simulate the nocturnal cycle of carbon dynamics, and this will be compared to the data collected during the night. As with the tracer study, the NBL method of flux measurement will be validated against the model. The RAMS-SiB coupled model has been run over the SRS at high-resolution to simulate the NBL, and results from simulations of both phases of the project will be presented.

  3. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    NASA Astrophysics Data System (ADS)

    Bingham, C. E.

    1991-12-01

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/sq cm). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6/sq cm) exit aperture, corresponding to a flux of about 2 kW/sq cm. This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/sq cm) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty.

  4. Modeling the impact of hydraulic redistribution on the carbon flux and storages using CLM4.5 at four AmeriFlux Sites

    NASA Astrophysics Data System (ADS)

    Fu, C.; Wang, G.; Cardon, Z. G.

    2015-12-01

    Effects of hydraulic redistribution (HR) on the hydrological cycle and ecosystem dynamics have been demonstrated in the field, but few modeling studies have compared HR's influences on the carbon cycle in different ecosystems and climate regions. The soil moisture changes associated with HR could influence plant carbon gain via two mechanisms: (1) improved plant water status supporting stomatal opening, and/or (2) enhanced nutrient availability to plants caused by enhanced soil microbial activity. In this study, using a modified version of the Community Land Model with Century-based soil carbon pool kinetics that includes the "Ryel et al. 2002" scheme for hydraulic redistribution (HR), the influence of HR on the carbon flux and storage is investigated at four Ameriflux sites where HR was detected from soil moisture measurements. The study sites include a Douglas-fir site (US-Wrc) in Washington State with a mediterranean climate, a savanna site (US-SRM) in Arizona with a semi-arid climate, an oak/pine forest site (US-SCf) in Southern California with a mediterranean climate, and an evergreen broadleaf forest site (BR-Sa1) with tropical monsoon climate. Simulations revealed that HR tended to enhance plant growth at all four sites, and incorporating HR into CLM4.5 reduces the temporal fluctuation of soil carbon storage at all four sites. Simulations with HR can capture the net carbon exchange between ecosystem and the atmosphere (NEE) at the US-Wrc, US-SRM, and BR-Sa1 sites over the annual cycle. Incorporation of HR into CLM4.5 clearly improved the weekly and sub-daily NEE simulation during dry periods at US-SCf and BR-Sa1 site. HR-induced increase in Net Primary Productivity (NPP) at the US-Wrc and US-SRM sites was driven approximately equally by the two distinct mechanisms we investigated: increased stomatal conductance and increased nutrient availability to plants.

  5. How to choose methods for lake greenhouse gas flux measurements?

    NASA Astrophysics Data System (ADS)

    Bastviken, David

    2017-04-01

    Lake greenhouse gas (GHG) fluxes are increasingly recognized as important for lake ecosystems as well as for large scale carbon and GHG budgets. However, many of our flux estimates are uncertain and it can be discussed if the presently available data is representative for the systems studied or not. Data are also very limited for some important flux pathways. Hence, many ongoing efforts try to better constrain fluxes and understand flux regulation. A fundamental challenge towards improved knowledge and when starting new studies is what methods to choose. A variety of approaches to measure aquatic GHG exchange is used and data from different methods and methodological approaches have often been treated as equally valid to create large datasets for extrapolations and syntheses. However, data from different approaches may cover different flux pathways or spatio-temporal domains and are thus not always comparable. Method inter-comparisons and critical method evaluations addressing these issues are rare. Emerging efforts to organize systematic multi-lake monitoring networks for GHG fluxes leads to method choices that may set the foundation for decades of data generation and therefore require fundamental evaluation of different approaches. The method choices do not only regard the equipment but also for example consideration of overall measurement design and field approaches, relevant spatial and temporal resolution for different flux components, and accessory variables to measure. In addition, consideration of how to design monitoring approaches being affordable, suitable for widespread (global) use, and comparable across regions is needed. Inspired by discussions with Prof. Dr. Cristian Blodau during the EGU General Assembly 2016, this presentation aims to (1) illustrate fundamental pros and cons for a number of common methods, (2) show how common methodological approaches originally adapted for other environments can be improved for lake flux measurements, (3) suggest

  6. Measurements of NO and NH3 soil fluxes at the Savé super site in Benin, West Africa, during the DACCIWA field campaign.

    NASA Astrophysics Data System (ADS)

    Pacifico, Federica; Delon, Claire; Jambert, Corinne; Durand, Pierre; Lohou, Fabienne; Reinares Martinez, Irene; Brilouet, Pierre-Etienne; Brosse, Fabien; Pedruzo Bagazgoitia, Xabier; Dione, Cheikh; Gabella, Omar

    2017-04-01

    In the next decades South West Africa will be subject to a strong increase in anthropogenic emissions due to a massive growth in population and urbanization. The impact of global climate change, local or regional land use changes, and the strong sensitivity to the West African monsoon lead to complex interactions between surface emissions and atmospheric dynamics and chemistry. Anthropogenic pollutants are transported northward from the mega cities located on the coast, and react with biogenic emissions, leading to enhanced ozone (O3) production outside urban areas, as well as secondary organic aerosols formation, with detrimental effects on humans, animals, natural vegetation and crops. Nitrogen oxide (NO) emissions from soils, among other sources, directly influence NOx concentrations. Changes in NO sources will consequently modify the rate of O3 production. The largest source of ammonia (NH3) emissions is agriculture, via the application of synthetic fertilizer. When released into the atmosphere, NH3 increases the level of air pollution. Once deposited in water and soils, it can potentially cause two major types of environmental damage, acidification and eutrophication, both of which can harm sensitive vegetation systems, biodiversity and water quality. We investigate the role of soil fluxes of NO and NH3 on atmospheric chemistry in West Africa, making use of the observations taken in June and July 2016 at the Savé super-site, Benin (8°02'03" N, 2°29'11″ E), during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field campaign, which took place in June-July 2016. These observations also include meteorological and soil parameters such as air temperature and humidity (at 2 m height), radiation, soil temperature and moisture at different depths (5 cm and 10 cm). The climate in Savé is typical of a wet Guinea savanna, and the wet season takes place from June to October. Soil fluxes of NO and NH3 were measured on: bare soil, grassland

  7. Uncertainties in Eddy Covariance fluxes due to post-field data processing: a multi-site, full factorial analysis

    NASA Astrophysics Data System (ADS)

    Sabbatini, S.; Fratini, G.; Arriga, N.; Papale, D.

    2012-04-01

    Eddy Covariance (EC) is the only technologically available direct method to measure carbon and energy fluxes between ecosystems and atmosphere. However, uncertainties related to this method have not been exhaustively assessed yet, including those deriving from post-field data processing. The latter arise because there is no exact processing sequence established for any given situation, and the sequence itself is long and complex, with many processing steps and options available. However, the consistency and inter-comparability of flux estimates may be largely affected by the adoption of different processing sequences. The goal of our work is to quantify the uncertainty introduced in each processing step by the fact that different options are available, and to study how the overall uncertainty propagates throughout the processing sequence. We propose an easy-to-use methodology to assign a confidence level to the calculated fluxes of energy and mass, based on the adopted processing sequence, and on available information such as the EC system type (e.g. open vs. closed path), the climate and the ecosystem type. The proposed methodology synthesizes the results of a massive full-factorial experiment. We use one year of raw data from 15 European flux stations and process them so as to cover all possible combinations of the available options across a selection of the most relevant processing steps. The 15 sites have been selected to be representative of different ecosystems (forests, croplands and grasslands), climates (mediterranean, nordic, arid and humid) and instrumental setup (e.g. open vs. closed path). The software used for this analysis is EddyPro™ 3.0 (www.licor.com/eddypro). The critical processing steps, selected on the basis of the different options commonly used in the FLUXNET community, are: angle of attack correction; coordinate rotation; trend removal; time lag compensation; low- and high- frequency spectral correction; correction for air density

  8. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  9. Measurement of the photoneutron flux density distribution from cylindrical targets

    NASA Astrophysics Data System (ADS)

    Golovkov, V. M.; Basina, T. N.; Yakovlev, M. R.

    1989-09-01

    Measurements are performed of the density of photoneutron fluxes from cylindrical targets of2H2O (diameter 64 and height 86 mm), Be (outer diameter 70, inner diameter 40, height 100mm), and238U (diameter 44.5 mm, height 50 mm) under the action of braking radiation from electrons with energies of 4 to 8 MeV in order to determine the effect of target form and orientation relative to the detector upon the recorded photoneutron level. The fluxes were measured by an “all-wave” neutron detector based on an SNM-11 counter in a paraffin retarder at an angle of 90‡ to the axis of the braking radiation beam for various target orientations relative to the detector. Measurement results are compared to calculations. Photoneutron fluxes from heavy water and beryllium targets of the indicated dimensions were also measured for angles of 90, 135, and 167‡. An isotropic nature was noted in the photoneutron fluxes from both targets.

  10. Eddy covariance fluxes of the NO-O3-NO2 triad above the forest canopy at the ATTO Site in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Tsokankunku, Anywhere; Wolff, Stefan; Sörgel, Matthias; Berger, Martina; Zelger, Michael; Dlugi, Ralf

    2017-04-01

    Nitrogen monoxide (NO) and nitrogen dioxide (NO2) (denoted together as NOx) determine the abundance of the tropospheric oxidants OH, O3 and NO3 that regulate atmospheric self-cleaning. The three reactive trace gases NO, NO2 and O3 undergo a series of interconnected photochemical reactions and are often referred to as the NO-O3-NO2 triad. Ozone deposition is mainly controlled by stomatal uptake, thus contributes to oxidative stress for the plants. Similarly, nitrogen dioxide from above or below the canopy is deposited to leaves through stomatal uptake. NO emissions from soils contribute to above canopy O3 formation and accelerate OH recycling. Therefore, quantification of the exchange fluxes of these species between the atmosphere and the biosphere are important for atmospheric chemistry and ecosystem research as well. The eddy covariance method is state of the art for direct measurements of ecosystem fluxes of trace gases. Eddy covariance measurements of NOx in pristine environments are rare because of lack of availability of instruments with the required precision to resolve concentrations characteristic of these environments. The Amazon Tall Tower Observatory (ATTO) is located in a pristine rainforest environment in the Amazon basin about 150 km northeast of the city of Manaus. It is the ideal site for studying the biosphere-atmosphere exchange of the NO-O3-NO2 triad, being largely undisturbed by anthropogenic sources. During an intensive measurement campaign in November 2015 at the ATTO site, measurements of NO, NO2 and O3 were carried out at 42 m above ground level on the 80 m walk-up tower with a fast (5 Hz) and sensitive (< 30 ppt) instrument (CLD790SR2, Eco Physics) for NO and NO2 and with 10 Hz for O3 (Enviscope). Additionally, measurements of turbulent and micrometeorological parameters were conducted with a profile of 3-dimensional sonic anemometers and meteorological sensors for temperature, humidity and radiation. Vertical concentration profile

  11. Flux measurements of volatile organic compounds from an urban landscape

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Lamb, B.; Pressley, S.; Allwine, E.; Westberg, H.; Jobson, B. T.; Alexander, M.; Prazeller, P.; Molina, L.; Molina, M.

    2005-10-01

    Direct measurements of volatile organic compound (VOC) emissions that include all sources in urban areas are a missing requirement to evaluate emission inventories and constrain current photochemical modelling practices. Here we demonstrate the use of micrometeorological techniques coupled with fast-response sensors to measure urban VOC fluxes from a neighbourhood of Mexico City, where the spatial variability of surface cover and roughness is high. Fluxes of olefins, methanol, acetone, toluene and C2-benzenes were measured and compared with the local gridded emissions inventory. VOC fluxes exhibited a clear diurnal pattern with a strong relationship to vehicular traffic. Recent photochemical modelling results suggest that VOC emissions are significantly underestimated in Mexico City, but for the olefin class, toluene, C2-benzenes, and acetone fluxes measured in this work, the results show general agreement with the gridded emissions inventory. While these measurements do not address the full suite of VOC emissions, the comparison with the inventory suggests that other explanations may be needed to explain the photochemical modelling results.

  12. Interactive Database of Pulsar Flux Density Measurements

    NASA Astrophysics Data System (ADS)

    Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.

    2012-12-01

    The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.

  13. Improved Measurement of Reactor Flux and Spectrum at Daya Bay

    NASA Astrophysics Data System (ADS)

    Zhan, Liang; Daya Bay Collaboration

    2017-09-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay experiment is reported. With a live time of 621 days, more than 1.2 million inverse beta decay (IBD) candidates were collected by eight antineutrino detectors (ADs) deployed in two near (560 m and 600 m flux-weighted baselines) and one far (16400 m flux-weighted baseline) underground experimental halls. The IBD yield was measured and the ratio to the predicted flux using the Huber+Mueller (ILL+Vogel) model was determined to be 0.946 ± 0.020 (0.992 ± 0.021). A 2.9 σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found with a local significance of 4.4 σ.

  14. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes shelf superfund site using polymeric passive samplers.

    PubMed

    Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; Burgess, Robert M

    2014-04-01

    Passive samplers were deployed to the seafloor at a marine Superfund site on the Palos Verdes Shelf, California, USA, and used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water. A model of Fickian diffusion across a thin water boundary layer at the sediment-water interface was used to calculate flux of contaminants due to molecular diffusion. Concentrations at four stations were used to calculate the flux of DDE, DDD, DDMU, and selected PCB congeners from sediments to the water column. Three passive sampling materials were compared: PE strips, POM strips, and SPME fibers. Performance reference compounds (PRCs) were used with PE and POM to correct for incomplete equilibration, and the resulting POP concentrations, determined by each material, agreed within 1 order of magnitude. SPME fibers, without PRC corrections, produced values that were generally much lower (1 to 2 orders of magnitude) than those measured using PE and POM, indicating that SPME may not have been fully equilibrated with waters being sampled. In addition, diffusive fluxes measured using PE strips at stations outside of a pilot remedial sand cap area were similar to those measured at a station inside the capped area: 240 to 260 ng cm(-2) y(-1) for p,p'-DDE. The largest diffusive fluxes of POPs were calculated at station 8C, the site where the highest sediment concentrations have been measured in the past, 1100 ng cm(-2) y(-1) for p,p'-DDE.

  15. Analysis of actinic flux profiles measured from an ozonesonde balloon

    NASA Astrophysics Data System (ADS)

    Wang, P.; Allaart, M.; Knap, W. H.; Stammes, P.

    2015-04-01

    A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling-Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.

  16. Validation of two innovative methods to measure contaminant mass flux in groundwater

    NASA Astrophysics Data System (ADS)

    Goltz, Mark N.; Close, Murray E.; Yoon, Hyouk; Huang, Junqi; Flintoft, Mark J.; Kim, Sehjong; Enfield, Carl

    2009-04-01

    The ability to quantify the mass flux of a groundwater contaminant that is leaching from a source area is critical to enable us to: (1) evaluate the risk posed by the contamination source and prioritize cleanup, (2) evaluate the effectiveness of source remediation technologies or natural attenuation processes, and (3) quantify a source term for use in models that may be applied to predict maximum contaminant concentrations in downstream wells. Recently, a number of new methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. However, none of these methods has been validated at larger than the laboratory-scale through a comparison of measured mass flux and a known flux that has been introduced into flowing groundwater. A couple of innovative flux measurement methods, the tandem circulation well (TCW) and modified integral pumping test (MIPT) methods, have recently been proposed. The TCW method can measure mass flux integrated over a large subsurface volume without extracting water. The TCW method may be implemented using two different techniques. One technique, the multi-dipole technique, is relatively simple and inexpensive, only requiring measurement of heads, while the second technique requires conducting a tracer test. The MIPT method is an easily implemented method of obtaining volume-integrated flux measurements. In the current study, flux measurements obtained using these two methods are compared with known mass fluxes in a three-dimensional, artificial aquifer. Experiments in the artificial aquifer show that the TCW multi-dipole and tracer test techniques accurately estimated flux, within 2% and 16%, respectively; although the good results obtained using the multi-dipole technique may be fortuitous. The MIPT method was not as accurate as the TCW method, underestimating flux by as much as 70%. MIPT method inaccuracies may be due to the fact that the method assumptions (two-dimensional steady

  17. Assimilating AmeriFlux Site Data into the Community Land Model with Carbon-Nitrogen Coupling via the Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Pettijohn, J. C.; Law, B. E.; Williams, M. D.; Stoeckli, R.; Thornton, P. E.; Hudiburg, T. M.; Thomas, C. K.; Martin, J.; Hill, T. C.

    2009-12-01

    The assimilation of terrestrial carbon, water and nutrient cycle measurements into land surface models of these processes is fundamental to improving our ability to predict how these ecosystems may respond to climate change. A combination of measurements and models, each with their own systematic biases, must be considered when constraining the nonlinear behavior of these coupled dynamics. As such, we use the sequential Ensemble Kalman Filter (EnKF) to assimilate eddy covariance (EC) and other site-level AmeriFlux measurements into the NCAR Community Land Model with Carbon-Nitrogen coupling (CLM-CN v3.5), run in single-column mode at a 30-minute time step, to improve estimates of relatively unconstrained model state variables and parameters. Specifically, we focus on a semi-arid ponderosa pine site (US-ME2) in the Pacific Northwest to identify the mechanisms by which this ecosystem responds to severe late summer drought. Our EnKF analysis includes water, carbon, energy and nitrogen state variables (e.g., 10 volumetric soil moisture levels (0-3.43 m), ponderosa pine and shrub evapotranspiration and net ecosystem exchange of carbon dioxide stocks and flux components, snow depth, etc.) and associated parameters (e.g., PFT-level rooting distribution parameters, maximum subsurface runoff coefficient, soil hydraulic conductivity decay factor, snow aging parameters, maximum canopy conductance, C:N ratios, etc.). The effectiveness of the EnKF in constraining state variables and associated parameters is sensitive to their relative frequencies, in that C-N state variables and parameters with long time constants require similarly long time series in the analysis. We apply the EnKF kernel perturbation routine to disrupt preliminary convergence of covariances, which has been found in recent studies to be a problem more characteristic of low frequency vegetation state variables and parameters than high frequency ones more heavily coupled with highly varying climate (e

  18. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2015-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of

  19. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET

    NASA Astrophysics Data System (ADS)

    Chu, Housen; Baldocchi, Dennis D.; John, Ranjeet; Wolf, Sebastian; Reichstein, Markus

    2017-02-01

    FLUXNET, the global network of eddy covariance flux towers, provides the largest synthesized data set of CO2, H2O, and energy fluxes. To achieve the ultimate goal of providing flux information "everywhere and all of the time," studies have attempted to address the representativeness issue, i.e., whether measurements taken in a set of given locations and measurement periods can be extrapolated to a space- and time-explicit extent (e.g., terrestrial globe, 1982-2013 climatological baseline). This study focuses on the temporal representativeness of FLUXNET and tests whether site-specific measurement periods are sufficient to capture the natural variability of climatological and biological conditions. FLUXNET is unevenly representative across sites in terms of the measurement lengths and potentials of extrapolation in time. Similarity of driver conditions among years generally enables the extrapolation of flux information beyond measurement periods. Yet such extrapolation potentials are further constrained by site-specific variability of driver conditions. Several driver variables such as air temperature, diurnal temperature range, potential evapotranspiration, and normalized difference vegetation index had detectable trends and/or breakpoints within the baseline period, and flux measurements generally covered similar and biased conditions in those drivers. About 38% and 60% of FLUXNET sites adequately sampled the mean conditions and interannual variability of all driver conditions, respectively. For long-record sites (≥15 years) the percentages increased to 59% and 69%, respectively. However, the justification of temporal representativeness should not rely solely on the lengths of measurements. Whenever possible, site-specific consideration (e.g., trend, breakpoint, and interannual variability in drivers) should be taken into account.

  20. Metabolic flux analysis using 13C peptide label measurements

    USDA-ARS?s Scientific Manuscript database

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  1. Using model analyses and surface-atmosphere exchange measurements from the Howland AmeriFlux Site in Maine, USA, to improve understanding of forest ecosystem C cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinger, David Y.; Davidson, Eric A.; Richardson, Andrew D.

    2013-03-25

    Summary of research carried out under Interagency Agreement DE-AI02-07ER64355 with the USDA Forest Service at the Howland Forest AmeriFlux site in central Maine. Includes a list of publications resulting in part or whole from this support.

  2. Self-potential monitoring of water flux at the HOBE agricultural site, Voulund, Denmark

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Linde, N.; Looms, M. C.

    2013-12-01

    The self-potential (SP) method is of interest in hydrology and environmental sciences because of its non-invasive nature and its sensitivity to flow and transport processes in the subsurface. The contribution to the SP signal by water flux is referred to as the streaming potential and is due to the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore, it gives rise to a streaming current and a resulting measurable electrical voltage between non-polarizable electrodes placed at different locations. This electrokinetic behavior is well understood in water saturated porous media, but the best way to model streaming currents under partial saturation is still under discussion. To better understand SP data within the vadose zone, we conducted field-based monitoring of the vertical distribution of the SP signal following different hydrologic events. The investigations were carried out at the Voulund agricultural test site that is part of the Danish hydrological observatory, HOBE, located in the Skjern river catchment (Denmark) in the middle of a cultivated area. It has been instrumented since 2010 to monitor suction, water content and temperature down to a depth of 3 m, together with meteorological variables and repeated geophysical campaigns (cross borehole electrical resistivity tomography and ground penetrating radar). In July 2011, we installed 15 non-polarizable electrodes at 10 depths within the vadose zone (from 0.25 to 3.10 m) and a reference electrode below the water table (7.30 m). More than 2 years of data acquired at a measurement period of 5 minutes are now available with periods indicative of various hydrologic events, such as natural infiltration, water table rises and a high salinity tracer test. We performed wavelet-based signal analysis and investigated the wavelet coherency of the SP data with other measurement variables. The wavelet coherency analysis displays an anti-correlation between SP and

  3. Methane eddy covariance flux measurements from a low flying aircraft: Bridging the scale gap between local and regional emissions estimates

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Anderson, J. G.

    2017-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. This makes upscaling from point source measurements such as small flux towers or chambers difficult. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date have only made measurements at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, nitrous oxide, water vapor and their isotopologues, flew over the North Slope of Alaska. During the six flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys flights of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types. We show examples of how we use the aircraft data to upscale from a eddy covariance tower and map spatial variability across different ecotopes.

  4. Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics [review article

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Stahl, H.; Gust, G.; Müller, V.; Arning, U.; Andersson, H.; Hall, P. O. J.

    2004-01-01

    The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u ∗) , and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u ∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u ∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u ∗ were found to correlate according to the following empirical formula: DBL=76.18(u ∗) -0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen

  5. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Diffusional flux of CO2 through snow: Spatial and temporal variability among alpine-subalpine sites

    Treesearch

    Richard A. Sommerfeld; William J. Massman; Robert C. Musselman

    1996-01-01

    Three alpine and three subalpine sites were monitored for up to 4 years to acquire data on the temporal and spatial variability of CO2 flux through snowpacks. We conclude that the snow formed a passive cap which controlled the concentration of CO2 at the snow-soil interface, while the flux of CO2 into the atmosphere was controlled by CO2 production in the soil....

  7. Development of a laser remote sensing instrument to measure sub-aerial volcanic CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Queisser, Manuel; Burton, Mike

    2016-04-01

    A thorough quantification of volcanic CO2 fluxes would lead to an enhanced understanding of the role of volcanoes in the geological carbon cycle. This would enable a more subtle understanding of human impact on that cycle. Furthermore, variations in volcanic CO2 emissions are a key to understanding volcanic processes such as eruption phenomenology. However, measuring fluxes of volcanic CO2 is challenging as volcanic CO2 concentrations are modest compared with the ambient CO2 concentration (~400 ppm) . Volcanic CO2 quickly dilutes with the background air. For Mt. Etna (Italy), for instance, 1000 m downwind from the crater, dispersion modelling yields a signal of ~4 ppm only. It is for this reason that many magmatic CO2 concentration measurements focus on in situ techniques, such as direct sampling Giggenbach bottles, chemical sensors, IR absorption spectrometers or mass spectrometers. However, emission rates are highly variable in time and space. Point measurements fail to account for this variability. Inferring 1-D or 2-D gas concentration profiles, necessary to estimate gas fluxes, from point measurements may thus lead to erroneous flux estimations. Moreover, in situ probing is time consuming and, since many volcanoes emit toxic gases and are dangerous as mountains, may raise safety concerns. In addition, degassing is often diffuse and spatially extended, which makes a measurement approach with spatial coverage desirable. There are techniques that allow to indirectly retrieve CO2 fluxes from correlated SO2 concentrations and fluxes. However, they still rely on point measurements of CO2 and are prone to errors of SO2 fluxes due to light dilution and depend on blue sky conditions. Here, we present a new remote sensing instrument, developed with the ERC project CO2Volc, which measures 1-D column amounts of CO2 in the atmosphere with sufficient sensitivity to reveal the contribution of magmatic CO2. Based on differential absorption LIDAR (DIAL) the instrument measures

  8. BOREAS TF-2 SSA-OA Tower Flux, Meteorological, and Precipitation Data

    NASA Technical Reports Server (NTRS)

    Neumann, Harold; Mickle, Robert; Staebler, Ralf; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux-2 (BOREAS TF-2) team collected energy, carbon dioxide, water vapor, and momentum flux data above the canopy and in profiles through the canopy, along with meteorological data at the BOREAS Southern Study Area-Old Aspen (SSA-OA) site. Above-canopy measurements began in early February and ran through mid-September of 1994. Measurements were collected over a longer period of 1994 than most BOREAS flux sites. Daily precipitation data from several gauges were also collected. The data are available in tabular ASCII files.

  9. Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian

    2017-04-01

    errors are effectively decreased by applying calibration parameters interpolated in time, and by an optimization of the sediment absorption coefficient. We further discuss practical aspects of residual flux determination in tidal environments and of measuring strategies in relation to site-specific tidal dynamics.

  10. Examination of factors dominating the sediment-water diffusion flux of DDT-related compounds measured by passive sampling in an urbanized estuarine bay.

    PubMed

    Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y

    2016-12-01

    The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field

  11. Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer

    NASA Astrophysics Data System (ADS)

    Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.

    2008-12-01

    Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and

  12. AmeriFlux CA-SJ2 Saskatchewan - Western Boreal, Jack Pine forest harvested in 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Alan; Black, Andrew T.

    This is the AmeriFlux version of the carbon flux data for the site CA-SJ2 Saskatchewan - Western Boreal, Jack Pine forest harvested in 2002. Site Description - 53.944737° N, 104.649340° W, BERMS flux and climate measurements to begin by Mar 2003

  13. The Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site - Part 1: Data acquisition and site record-keeping

    NASA Astrophysics Data System (ADS)

    Burns, Sean P.; Maclean, Gordon D.; Blanken, Peter D.; Oncley, Steven P.; Semmer, Steven R.; Monson, Russell K.

    2016-09-01

    The Niwot Ridge Subalpine Forest AmeriFlux site (US-NR1) has been measuring eddy-covariance ecosystem fluxes of carbon dioxide, heat, and water vapor since 1 November 1998. Throughout this 17-year period there have been changes to the instrumentation and improvements to the data acquisition system. Here, in Part 1 of this three-part series of papers, we describe the hardware and software used for data-collection and metadata documentation. We made changes to the data acquisition system that aimed to reduce the system complexity, increase redundancy, and be as independent as possible from any network outages. Changes to facilitate these improvements were (1) switching to a PC/104-based computer running the National Center for Atmospheric Research (NCAR) In-Situ Data Acquisition Software (NIDAS) that saves the high-frequency data locally and over the network, and (2) time-tagging individual 10 Hz serial data samples using network time protocol (NTP) coupled to a GPS-based clock, providing a network-independent, accurate time base. Since making these improvements almost 2 years ago, the successful capture of high-rate data has been better than 99.98 %. We also provide philosophical concepts that shaped our design of the data system and are applicable to many different types of environmental data collection.

  14. The truth is out there: measured, calculated and modelled benthic fluxes.

    NASA Astrophysics Data System (ADS)

    Pakhomova, Svetlana; Protsenko, Elizaveta

    2016-04-01

    In a modern Earth science there is a great importance of understanding the processes, forming the benthic fluxes as one of element sources or sinks to or from the water body, which affects the elements balance in the water system. There are several ways to assess benthic fluxes and here we try to compare the results obtained by chamber experiments, calculated from porewater distributions and simulated with model. Benthic fluxes of dissolved elements (oxygen, nitrogen species, phosphate, silicate, alkalinity, iron and manganese species) were studied in the Baltic and Black Seas from 2000 to 2005. Fluxes were measured in situ using chamber incubations (Jch) and at the same time sediment cores were collected to assess the porewater distribution at different depths to calculate diffusive fluxes (Jpw). Model study was carried out with benthic-pelagic biogeochemical model BROM (O-N-P-Si-C-S-Mn-Fe redox model). It was applied to simulate biogeochemical structure of the water column and upper sediment and to assess the vertical fluxes (Jmd). By the behaviour at the water-sediment interface all studied elements can be divided into three groups: (1) elements which benthic fluxes are determined by the concentrations gradient only (Si, Mn), (2) elements which fluxes depend on redox conditions in the bottom water (Fe, PO4, NH4), and (3) elements which fluxes are strongly connected with organic matter fate (O2, Alk, NH4). For the first group it was found that measured fluxes are always higher than calculated diffusive fluxes (1.5flux. In this case bioturbation, bioirrigation and advection should be taken into account. For the second group measured fluxes can be both much lower (practically absent) and much higher than calculated diffusive fluxes (0.01

  15. Improving mercury flux chamber measurements over water surface.

    PubMed

    Lanzillotra, E; Ceccarini, C; Ferrara, R

    2003-07-01

    A modified floating flux chamber was designed and used to measure mercury evasional fluxes in a coastal area of the Mediterranean Sea in different meteo-marine conditions during the hours of maximum insolation (PAR intensity 360-430 W m(-2)) in the summer season. The chamber has been modified providing a flap at the inlet port preventing the back-flow of air from the interior of the chamber. Results demonstrate that the modified flux chamber gives flux values noticeably higher both in rippled sea conditions (mean value 7.88 +/- 1.45 ng m(-2) h(-1)) and in rough sea conditions (mean value 21.71 +/- 2.17 ng m(-2) h(-1)) with respect to those obtained by using the unmodified chamber (respectively 5.23 +/- 0.67 and 14.15 +/- 1.03 ng m(-2) h(-1)).

  16. Progress in the measurement of SSME turbine heat flux with plug-type sensors

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1991-01-01

    Data reduction was completed for tests of plug-type heat flux sensors (gauges) in a turbine blade thermal cycling tester (TBT) that is located at NASA/Marshall Space Flight Center, and a typical gauge is illustrated. This is the first time that heat flux has been measured in a Space Shuttle Main Engine (SSME) Turbopump Turbine environment. The development of the concept for the gauge was performed in a heat flux measurement facility at Lewis. In this facility, transient and steady state absorbed surface heat flux information was obtained from transient temperature measurements taken at points within the gauge. A schematic of the TBT is presented, and plots of the absorbed surface heat flux measured on the three blades tested in the TBT are presented. High quality heat flux values were measured on all three blades. The experiments demonstrated that reliable and durable gauges can be repeatedly fabricated into the airfoils. The experiment heat flux data are being used for verification of SSME analytical stress, boundary layer, and heat transfer design models. Other experimental results and future plans are also presented.

  17. A digital wide range neutron flux measuring system for HL-2A

    NASA Astrophysics Data System (ADS)

    Yuan, Chen; Wu, Jun; Yin, Zejie

    2017-08-01

    To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.

  18. AmeriFlux CA-SJ1 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Alan

    This is the AmeriFlux version of the carbon flux data for the site CA-SJ1 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1994. Site Description - 53.908408° N, 104.655885° W, elavation of 580m, BERMS climate and flux measurements began in Spring 2001

  19. Measured and parameterized energy fluxes estimated for Atlantic transects of RV Polarstern

    NASA Astrophysics Data System (ADS)

    Bumke, Karl; Macke, Andreas; Kalisch, John; Kleta, Henry

    2013-04-01

    Even to date energy fluxes over the oceans are difficult to assess. As an example the relative paucity of evaporation observations and the uncertainties of currently employed empirical approaches lead to large uncertainties of evaporation products over the ocean (e.g. Large and Yeager, 2009). Within the frame of OCEANET (Macke et al., 2010) we performed such measurements on Atlantic transects between Bremerhaven (Germany) and Cape Town (South Africa) or Punta Arenas (Chile) onboard RV Polarstern during the recent years. The basic measurements of sensible and latent heat fluxes are inertial-dissipation (e.g. Dupuis et al., 1997) flux estimates and measurements of the bulk variables. Turbulence measurements included a sonic anemometer and an infrared hygrometer, both mounted on the crow's nest. Mean meteorological sensors were those of the ship's operational measurement system. The global radiation and the down terrestrial radiation were measured on the OCEANET container placed on the monkey island. At least about 1000 time series of 1 h length were analyzed to derive bulk transfer coefficients for the fluxes of sensible and latent heat. The bulk transfer coefficients were applied to the ship's meteorological data to derive the heat fluxes at the sea surface. The reflected solar radiation was estimated from measured global radiation. The up terrestrial radiation was derived from the skin temperature according to the Stefan-Boltzmann law. Parameterized heat fluxes were compared to the widely used COARE-parameterization (Fairall et al., 2003), the agreement is excellent. Measured and parameterized heat and radiation fluxes gave the total energy budget at the air sea interface. As expected the mean total flux is positive, but there are also areas, where it is negative, indicating an energy loss of the ocean. It could be shown that the variations in the energy budget are mainly due to insolation and evaporation. A comparison between the mean values of measured and

  20. MTR FAST NEUTRON FLUX MEASUREMENTS FOR CYCLE 146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, L D; Hogg, C H

    1962-03-20

    The fast neutron fluxes in selected positions of the MTR were measured for Cycle 146. The measurements were made at the beginning, throughout, and at the end of the cycle (564 Mwd). Vertical traverses for each position monitors are shown. (auth)

  1. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface.

    PubMed

    Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui

    2014-12-16

    Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes.

  2. Low-Power Dispersive Measurements of High-Coherence Flux Qubits

    NASA Astrophysics Data System (ADS)

    Hover, David; Sears, A. P.; Gudmundsen, T.; Kerman, A. J.; Welander, P. B.; Yoder, J. L.; Kamal, A.; Gustavsson, S.; Jin, X. Y.; Birenbaum, J.; Clarke, J.; Oliver, W. D.

    2014-03-01

    We report on progress towards nondestructive dispersive measurements of a high-coherence flux qubit. A capacitively shunted flux qubit that incorporates high-Q MBE aluminum will have longer relaxation and dephasing times when compared to a conventional flux qubit, while also maintaining the large anharmonicity necessary for complex gate operations. We numerically investigate the expected measurement fidelity of the improved qubit and present measurements that explore the boundary between destructive and nondestructive dispersive readout. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA); and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract number FA8721-05-C-0002. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government Present address: SLAC National Accelerator Laboratory, Menlo Park, CA.

  3. Quantitative comparison of in situ soil CO2 flux measurement methods

    Treesearch

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  4. High-frequency measurements of aeolian saltation flux: Field-based methodology and applications

    NASA Astrophysics Data System (ADS)

    Martin, Raleigh L.; Kok, Jasper F.; Hugenholtz, Chris H.; Barchyn, Thomas E.; Chamecki, Marcelo; Ellis, Jean T.

    2018-02-01

    Aeolian transport of sand and dust is driven by turbulent winds that fluctuate over a broad range of temporal and spatial scales. However, commonly used aeolian transport models do not explicitly account for such fluctuations, likely contributing to substantial discrepancies between models and measurements. Underlying this problem is the absence of accurate sand flux measurements at the short time scales at which wind speed fluctuates. Here, we draw on extensive field measurements of aeolian saltation to develop a methodology for generating high-frequency (up to 25 Hz) time series of total (vertically-integrated) saltation flux, namely by calibrating high-frequency (HF) particle counts to low-frequency (LF) flux measurements. The methodology follows four steps: (1) fit exponential curves to vertical profiles of saltation flux from LF saltation traps, (2) determine empirical calibration factors through comparison of LF exponential fits to HF number counts over concurrent time intervals, (3) apply these calibration factors to subsamples of the saltation count time series to obtain HF height-specific saltation fluxes, and (4) aggregate the calibrated HF height-specific saltation fluxes into estimates of total saltation fluxes. When coupled to high-frequency measurements of wind velocity, this methodology offers new opportunities for understanding how aeolian saltation dynamics respond to variability in driving winds over time scales from tens of milliseconds to days.

  5. Energy exchanges in a Central Business District - Interpretation of Eddy Covariance and radiation flux measurements (London UK)

    NASA Astrophysics Data System (ADS)

    Kotthaus, S.; Grimmond, S.

    2013-12-01

    Global urbanisation brings increasingly dense and complex urban structures. To manage cities sustainably and smartly, currently and into the future under changing climates, urban climate research needs to advance in areas such as Central Business Districts (CBD) where human interactions with the environment are particularly concentrated. Measurement and modelling approaches may be pushed to their limits in dense urban settings, but if urban climate research is to contribute to the challenges of real cities those limits have to be addressed. The climate of cities is strongly governed by surface-atmosphere exchanges of energy, moisture and momentum. Observations of the relevant fluxes provide important information for improvement and evaluation of modelling approaches. Due to the CBD's heterogeneity, a very careful analysis of observations is required to understand the relevant processes. Current approaches used to interpret observations and set them in a wider context may need to be adapted for use in these more complex areas. Here, we present long-term observations of the radiation balance components and turbulent fluxes of latent heat, sensible heat and momentum in the city centre of London. This is one of the first measurement studies in a CBD covering multiple years with analysis at temporal scales from days to seasons. Data gathered at two sites in close vicinity, but with different measurement heights, are analysed to investigate the influence of source area characteristics on long-term radiation and turbulent fluxes. Challenges of source area modelling and the critical aspect of siting in such a complex environment are considered. Outgoing long- and short-wave radiation are impacted by the anisotropic nature of the urban surface and the high reflectance materials increasingly being used as building materials. Results highlight the need to consider the source area of radiometers in terms of diffuse and direct irradiance. Sensible heat fluxes (QH) are positive

  6. Bichromatic Scintillometer Measurements of Sensible and Latent Heat Fluxes over a Boreal Forested Valley

    NASA Astrophysics Data System (ADS)

    Isabelle, P. E.; Nadeau, D.; Parent, A. C.; Rousseau, A. N.; Jutras, S.; Anctil, F.

    2017-12-01

    Boreal forest covers roughly 10% of the earth emerged surface, making it one of the world most common type of landscape. There is a large number of studies on the land-atmosphere exchanges of water and energy for this type of forested surfaces. However, few were located in complex terrain, and, to the best of our knowledge, none have looked at continuous regional scale fluxes. Scintillometry is a powerful tool that allows such measurements, but is usually used over flat homogeneous terrain due to its dependency on Monin-Obukhov Similarity Theory. However, some recent studies have applied this method over slopes, measuring fluxes comparable to those using the eddy covariance method. Still, more experiments are needed using scintillometry over sloped surfaces. This study presents bichromatic scintillometer measurements of sensible and latent heat fluxes over a boreal-forested valley. The field site is located in the Montmorency Forest, Québec, Canada (47°17'N; 71°10'W). The instrumented valley is surrounded by ridges at 900 m elevation, with the bottom stream at 785 m, and follows a 300-120° azimuth coinciding with the two main wind direction (up and down-valley, respectively). Vegetation mostly includes balsam firs 6-10 m tall, creating a rough but homogeneous surface. Scintillometer transmitters and receivers are installed on top of the ridges enclosing the valley, making the path 1.35 km long and its effective height 70-m tall. The setup includes a large aperture and a micro-wave scintillometer with crossing paths allowing the use of the bichromatic method. Measurement are taken continuously from August to October 2017. Scintillometer fluxes are compared with those measured by a 15-m eddy covariance tower located 100 m west of the measurement path, on the southern slope of the valley. Net radiation is also measured to assess energy budget closure over the valley. The setup allows us to test the limits of applicability of scintillometer measurements, especially

  7. Four-year measurement of methane flux over a temperate forest with a relaxed eddy accumulation method

    NASA Astrophysics Data System (ADS)

    Sakabe, A.; Kosugi, Y.; Ueyama, M.; Hamotani, K.; Takahashi, K.; Iwata, H.; Itoh, M.

    2013-12-01

    Forests are generally assumed to be an atmospheric methane (CH4) sink (Le Mer and Roger, 2001). However, under Asian monsoon climate, forests are subject to wide spatiotemporal range in soil water status, where forest soils often became water-saturated condition heterogeneously. In such warm and humid conditions, forests may act as a CH4 source and/or sink with considerable spatiotemporal variations. Micrometeorological methods such as eddy covariance (EC) method continuously measure spatially-representative flux at a canopy scale without artificial disturbance. In this study, we measured CH4 fluxes over a temperate forest during four-year period using a CH4 analyzer based on tunable diode laser spectroscopy detection with a relaxed eddy accumulation (REA) method (Hamotani et al., 1996, 2001). We revealed the amplitude and seasonal variations of canopy-scale CH4 fluxes. The REA method is the attractive alternative to the EC method to measure trace-gas flux because it allows the use of analyzers with an optimal integration time. We also conducted continuous chamber measurements on forest floor to reveal spatial variations in soil CH4 fluxes and its controlling processes. The observations were made in an evergreen coniferous forest in central Japan. The site has a warm temperate monsoon climate with wet summer. Some wetlands were located in riparian zones along streams within the flux footprint area. For the REA method, the sonic anemometer (SAT-550, Kaijo) was mounted on top of the 29-m-tall tower and air was sampled from just below the sonic anemometer to reservoirs according to the direction of vertical wind velocity (w). After accumulating air for 30 minutes, the air in the reservoirs was pulled into a CO2/H2O gas analyzer (LI-840, Li-Cor) and a CH4 analyzer (FMA-200, Los Gatos Research). Before entering the analyzers, the sampled air was dried using a gas dryer (PD-50 T-48; Perma Pure Inc.). The REA flux is obtained from the difference in the mean concentrations

  8. Effect of land use on methane flux from soil.

    PubMed

    Chan, A S; Parkin, T B

    2001-01-01

    The precise effects of natural and disturbed terrestrial systems on the atmospheric CH4 pool are uncertain. This study was conducted to quantify and compare CH4 fluxes from a variety of ecosystems in central Iowa. We investigated agricultural systems under different management practices, a hardwood forest site, native and restored prairies, and a municipal landfill. Flux measurements were obtained using a closed-chamber method, and measurements were compiled by sampling over the 1993 and 1994 growing seasons. In 1993, most of the agricultural sites were net CH4 producers with cumulative CH4 fluxes ranging from -0.02 to 3.19 g m(-2) over the 258-d sampling season, while the natural ecosystems were net CH4 consumers, with cumulative seasonal fluxes ranging from -0.27 to -0.07 g m-2 258 d(-1). In 1994, only the landfill and the agricultural site treated with broadcast liquid swine manure (LSM) were net CH4 producers, while the remainder of the natural and agricultural ecosystems were net CH4 consumers, with mean seasonal flux rates ranging from -0.43 to -0.008 g m(-2) 271 d(-1). We hypothesize that the differences in CH4 fluxes between the two years are due to differences in rainfall. To illustrate the integration between land use and CH4 flux, we computed an area-weighted soil CH4 flux for the state of Iowa. Our calculations yielded a net average soil CH4 flux of 139,000 Mg CH4 for 1993 and 1994.

  9. Field demonstration and evaluation of the Passive Flux Meter on a CAH groundwater plume.

    PubMed

    Verreydt, G; Annable, M D; Kaskassian, S; Van Keer, I; Bronders, J; Diels, L; Vanderauwera, P

    2013-07-01

    This study comprises the first application of the Passive Flux Meter (PFM) for the measurement of chlorinated aliphatic hydrocarbon (CAH) mass fluxes and Darcy water fluxes in groundwater at a European field site. The PFM was originally developed and applied to measurements near source zones. The focus of the PFM is extended from near source to plume zones. For this purpose, 48 PFMs of 1.4 m length were constructed and installed in eight different monitoring wells in the source and plume zone of a CAH-contaminated field site located in France. The PFMs were retrieved, sampled, and analyzed after 3 to 11 weeks of exposure time, depending on the expected contaminant flux. PFM evaluation criteria include analytical, technical, and practical aspects as well as conditions and applicability. PFM flux data were compared with so-called traditional soil and groundwater concentration data obtained using active sampling methods. The PFMs deliver reasonable results for source as well as plume zones. The limiting factor in the PFM applicability is the exposure time together with the groundwater flux. Measured groundwater velocities at the field site range from 2 to 41 cm/day. Measured contaminant flux data raise up to 13 g/m(2)/day for perchloroethylene in the plume zone. Calculated PFM flux averaged concentration data and traditional concentration data were of similar magnitude for most wells. However, both datasets need to be compared with reservation because of the different sampling nature and time. Two important issues are the PFM tracer loss during installation/extraction and the deviation of the groundwater flow field when passing the monitoring well and PFM. The demonstration of the PFM at a CAH-contaminated field site in Europe confirmed the efficiency of the flux measurement technique for source as well as plume zones. The PFM can be applied without concerns in monitoring wells with European standards. The acquired flux data are of great value for the purpose of site

  10. AmeriFlux US-Los Lost Creek

    DOE Data Explorer

    Desai, Ankur [University of Wisconsin

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Los Lost Creek. Site Description - Shrub wetland site, chosen to be representative of the wetlands within the WLEF tall tower flux footprint. This is a deciduous shrub wetland. Coniferous and grassy stands also exist within the WLEF flux footprint. Solar power. The site has excellent micrometeorological characteristics.

  11. Nitrous oxide flux following tropical land clearing

    NASA Technical Reports Server (NTRS)

    Luizao, Flavio; Luizao, Regina; Matson, Pamela; Livingston, Gerald; Vitousek, Peter

    1989-01-01

    The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.

  12. Nitrous oxide flux following tropical land clearing

    NASA Astrophysics Data System (ADS)

    LuizãO, FláVio; Matson, Pamela; Livingston, Gerald; LuizãO, Regina; Vitousek, Peter

    1989-09-01

    The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.

  13. BOREAS TF-3 Automated Chamber CO2 Flux Data from the NSA-OBS

    NASA Technical Reports Server (NTRS)

    Goulden, Michael L.; Crill, Patrick M.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOReal Ecosystem Atmosphere Study Tower Flux (BOREAS TF-3) and Trace Gas Biogeochemistry (TGB-1) teams collected automated CO2 chamber flux data in their efforts to fully describe the CO2 flux at the Northern Study Area-Old Black Spruce (NSA-OBS) site. This data set contains fluxes of CO2 at the NSA-OBS site measured using automated chambers. In addition to reporting the CO2 flux, it reports chamber air temperature, moss temperature, and light levels during each measurement. The data set covers the period from 23-Sep-1995 through 26-Oct-1995 and from 28-May-1996 through 21-Oct-1996. The data are stored in tabular ASCII files.

  14. Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.

    2009-01-01

    A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented

  15. Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation

    NASA Astrophysics Data System (ADS)

    Richard, E.; Okumura, K.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.; Akutsu, R.; Irvine, T.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.; Martin, J. F.; Konaka, A.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2016-09-01

    A comprehensive study of the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande (SK) water Cherenkov detector is presented in this paper. The energy and azimuthal spectra, and variation over time, of the atmospheric νe+ν¯ e and νμ+ν¯μ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the νe and νμ samples at 8.0 σ and 6.0 σ significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 σ level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is performed, and a weak preference for a correlation was seen at the 1.1 σ level, using SK-I-SK-IV data spanning a 20-year period. For several particularly strong solar activity periods, corresponding to Forbush decrease events, no theoretical prediction is available but a deviation below the typical neutrino event rate is seen at the 2.4 σ level. The seasonal modulation of the neutrino flux is also examined, but the change in flux at the SK site is predicted to be negligible, and, as expected, no evidence for a seasonal correlation is seen.

  16. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment

    NASA Astrophysics Data System (ADS)

    Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F. C.; van den Bulk, W. C. M.; Elbers, J. A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A. T.; Mammarella, I.

    2014-01-01

    The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimize the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m-2 s-1, provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ring-down spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O vapour concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias on the order of 0.1 g (CH4) m-2 (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro

  17. Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment

    NASA Astrophysics Data System (ADS)

    Peltola, O.; Hensen, A.; Helfter, C.; Belelli Marchesini, L.; Bosveld, F. C.; van den Bulk, W. C. M.; Elbers, J. A.; Haapanala, S.; Holst, J.; Laurila, T.; Lindroth, A.; Nemitz, E.; Röckmann, T.; Vermeulen, A. T.; Mammarella, I.

    2014-06-01

    The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m-2 s-1, provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ringdown spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias of the order of 0.1 g (CH4) m-2 (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro Inc

  18. Measurements of the Canonical Helicity Evolution of a Gyrating Kinked Flux Rope

    NASA Astrophysics Data System (ADS)

    von der Linden, J.; Sears, J.; Intrator, T.; You, S.

    2017-12-01

    Magnetic structures in the solar corona and planetary magnetospheres are often modelled as magnetic flux ropes governed by magnetohydrodynamics (MHD); however, inside these structures, as exhibited in reconnection, conversions between magnetic and kinetic energies occur over a wide range of scales. Flux ropes based on the flux of canonical momentum circulation extend the flux rope concept to include effects of finite particle momentum and present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This presentation shows the first visualization and analysis of the 3D dynamics of canonical flux ropes and their relative helicity evolution from laboratory measurements. Ion and electron canonical flux ropes are visualized from a dataset of Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked flux rope. The flux ropes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux ropes twist with opposite handedness and the ion flux ropes writhe around the electron flux ropes. The relative cross helicity between the magnetic and ion flow vorticity flux ropes dominates the relative ion canonical helicity and is anti-correlated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-735426

  19. CIMEL Measurements of Zenith Radiances at the ARM Site

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wiscombe, Warren; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Starting from October 1, 2001, Cimel at the ARM Central Facility in Oklahoma has been switched to a new "cloud mode." This mode allows taking measurements of zenith radiance when the Sun in blocked by clouds. In this case, every 13 min. Cimel points straight up and takes 10 measurements with 9 sec. time interval. The new Cimel's mode has four filters at 440, 670, 870 and 1020 nm. For cloudy conditions, the spectral contrast in surface albedo dominates over Rayleigh and aerosol effects; this makes normalized zenith radiances at 440 and 670 as well as for 870 and 1020 almost indistinguishable. We compare Cimel measurements with other ARM cart site instruments: Multi-Filter Rotating Shadowband Radiometer (MFRSR), Narrow Field of View (NFOV) sensor, and MicroWave Radiometer(MWR). Based on Cimel and MFRSR 670 and 870 nm channels, we build a normalized difference cloud index (NDCI) for radiances and fluxes, respectively. Radiance NDCI from Cimel and flux NDCI from MFRSR are compared between themselves as well as with cloud Liquid Water Path (LWP) retrieved from MWR. Based on our theoretical calculations and preliminary data analysis,there is a good correlation between NDCIs and LWP for cloudy sky above green vegetation. Based on this correlation, an algorithm to retrieve cloud optical depth from NDCI is proposed.

  20. Surface energy fluxes on four slope sites during FIFE 1988

    NASA Technical Reports Server (NTRS)

    Nie, D.; Demetriades-Shah, T.; Kanemasu, E. T.

    1992-01-01

    Four slopes (facing north, south, east, and west) in the Konza Prairie Research Natural Area were selected to study the effect of topography on surface energy balance and other micrometeorological variables. Energy fluxes, air temperature, and vapor pressure were measured on the slopes throughout the 1988 growing season. Net radiation was highest on the south facing slope and lowest on the north facing slope, and the difference was more than 150 W/sq m (20-30 percent) at solar noon. For daily averages the difference was about 25 W/sq m (15 percent) early in the season and increased to about 60 W/sq m (30-50 percent) in September. Soil heat fluxes were similar for all the slopes. The absolute values of sensible heat flux were consistently lower on the north facing slope compared with other slopes. The south facing slope had the greatest day-to-day fluctuation in latent heat flux as a result of the interaction of net radiation, soil moisture, and green leaf area. Differences were found in the partitioning of the available energy among the slopes, and the north facing slope had a higher percentage of energy dissipated into latent heat flux. The north facing slope had higher air temperatures during the day and higher vapor pressures both during the day and at night when the wind was from the south.

  1. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  2. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  3. Comparison of real-time BTEX flux measurements to reported emission inventories in the Upper Green River Basin, Wyoming.

    NASA Astrophysics Data System (ADS)

    Edie, R.; Robertson, A.; Murphy, S. M.; Soltis, J.; Field, R. A.; Zimmerle, D.; Bell, C.

    2017-12-01

    Other Test Method 33a (OTM-33a) is an EPA-developed near-source measurement technique that utilizes a Gaussian plume inversion to calculate the flux of a point source 20 to 200 meters away. In 2014, the University of Wyoming mobile laboratory—equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction Time of Flight Mass Spectrometer—measured methane and BTEX fluxes from oil and gas operations in the Upper Green River Basin (UGRB), Wyoming. In this study, OTM-33a BTEX flux measurements are compared to BTEX emissions reported by operators in the Wyoming Department of Environmental Quality (WY-DEQ) emission inventory. On average, OTM-33a measured BTEX fluxes are almost twice as high as those reported in the emission inventory. To further constrain errors in the OTM-33a method, methane test releases were performed at the Colorado State University Methane Emissions Test and Evaluation Center (METEC) in June of 2017. The METEC facility contains decommissioned oil and gas equipment arranged in realistic well pad layouts. Each piece of equipment has a multitude of possible emission points. A Gaussian fit of measurement error from these 29 test releases indicate the median OTM-33a measurement quantified 55% of the metered flowrate. BTEX results from the UGRB campaign and inventory analysis will be presented, along with a discussion of errors associated with the OTM-33a measurement technique. Real-time BTEX and methane mixing ratios at the measurement locations (which show a lack of correlation between VOC and methane sources in 20% of sites sampled) will also be discussed.

  4. Analysis of field measurements of carbon dioxide and water vapor fluxes

    NASA Technical Reports Server (NTRS)

    Verma, Shashi B.

    1991-01-01

    Analysis of the field measurements of carbon dioxide and water vapor fluxes is discussed. These data were examined in conjunction with reflectance obtained from helicopter mounted Modular Multiband Radiometer. These measurements are representative of the canopy scale (10 to 100 m)(exp 2) and provide a good basis for investigating the hypotheses/relationship potentially useful in remote sensing applications. All the micrometeorological data collected during FIFE-89 were processed and fluxes of CO2, water vapor, and sensible heat were calculated. Soil CO2 fluxes were also estimated. Employing these soil CO2 flux values, in conjunction with micrometeorological measurements, canopy photosynthesis is being estimated. A biochemical model of leaf photosynthesis was adapted to the prairie vegetation. The modeled leaf photosynthesis rates were scaled up to the canopy level. This model and a multiplicative stomatal conductance model are also used to calculate canopy conductance.

  5. Methane flux from Minnesota Peatlands

    NASA Astrophysics Data System (ADS)

    Crill, P. M.; Bartlett, K. B.; Harriss, R. C.; Gorham, E.; Verry, E. S.; Sebacher, D. I.; Madzar, L.; Sanner, W.

    1988-12-01

    Northern (>40°N) wetlands have been suggested as the largest natural source of methane (CH4) to the troposphere. To refine our estimates of source strengths from this region and to investigate climatic controls on the process, fluxes were measured from a variety of Minnesota peatlands during May, June, and August 1986. Sites included forested and unforested ombrotrophic bogs and minerotrophic fens in and near the U.S. Department of Agriculture Marcell Experimental Forest and the Red Lake peatlands. Late spring and summer fluxes ranged from 11 to 866 mg CH4 m-2 d-1, averaging 207 mg CH4 m-2 d-1 overall. At Marcell Forest, forested bogs and fen sites had lower fluxes (averages of 77 ± 21 mg CH4 m-2 d-1 and 142 ± 19 mg CH4 m-2 d-1) than open bogs (average of 294 ± 30 mg CH4 m-2 d-1). In the Red Lake peatland, circumneutral fens, with standing water above the peat surface, produced more methane than acid bog sites in which the water table was beneath the moss surface (325 ± 31 and 102 ± 13 mg CH4 m-2 d-1, respectively). Peat temperature was an important control. Methane flux increased in response to increasing soil temperature. For example, the open bog in the Marcell Forest with the highest CH4 flux exhibited a 74-fold increase in flux over a three-fold increase in temperature. We estimate that the methane flux from all peatlands north of 40° may be on the order of 70 to 90 Tg/yr though estimates of this sort are plagued by uncertainties in the areal extent of peatlands, length of the CH4 producing season, and the spatial and temporal variability of the flux.

  6. AmeriFlux Network Data Activities: updates, progress and plans

    NASA Astrophysics Data System (ADS)

    Yang, B.; Boden, T.; Krassovski, M.; Song, X.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory serves as the long-term data repository for the AmeriFlux network. Datasets currently available include hourly or half-hourly meteorological and flux observations, biological measurement records, and synthesis data products. In this presentation, we provide an update of this network database including a comprehensive review and evaluation of the biological data from about 70 sites, development of a new product for flux uncertainty estimates, and re-formatting of Level-2 standard files. In 2013, we also provided data support to two synthesis studies --- 2012 drought synthesis and FACE synthesis. Issues related to data quality and solutions in compiling datasets for these synthesis studies will be discussed. We will also present our work plans in developing and producing other high-level products, such as derivation of phenology from the available measurements at flux sites.

  7. Measurement of Solar pp-neutrino flux with Borexino: results and implications

    NASA Astrophysics Data System (ADS)

    Smirnov, O. Yu; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, O.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    Measurement of the Solar pp-neutrino flux completed the measurement of Solar neutrino fluxes from the pp-chain of reactions in Borexino experiment. The result is in agreement with the prediction of the Standard Solar Model and the MSW/LMA oscillation scenario. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 105 years time scale, and sets a strong limit on the power production by the unknown energy sources in the Sun.

  8. Comparison of heat flux measurement techniques during the DIII-D metal ring campaign

    NASA Astrophysics Data System (ADS)

    Barton, J. L.; Nygren, R. E.; Unterberg, E. A.; Watkins, J. G.; Makowski, M. A.; Moser, A.; Rudakov, D. L.; Buchenauer, D.

    2017-12-01

    The heat fluxes expected in the ITER divertor raise concerns about the damage tolerances of tungsten, especially due to thermal transients caused by edge localized modes (ELMs) as well as frequent temperature cycling from high to low extremes. Therefore we are motivated to understand the heat flux conditions that can cause not only enhanced erosion but also bulk thermo-mechanical damage to a tungsten divertor. For the metal ring campaign in DIII-D, tungsten-coated TZM tile inserts were installed making two toroidal arrays of metal tile inserts in the lower divertor. This study examines the deposited heat flux on these rings with embedded thermocouples (TCs) sampling at 10 kHz and compares them to Langmuir probe (LP) and infrared thermography (IRTV) heat flux measurements. We see agreement of the TC, LP, and IRTV data within 20% of the heat flux averaged over the entire discharge, and that all three diagnostics suggest parallel heat flux at the OSP location increases linearly with input heating power. The TC and LP heat flux time traces during the discharge trend together during large changes to the average heat flux. By subtracting the LP measured inter-ELM heat flux from TC data, using a rectangular ELM energy pulse shape, and taking the relative size and duration of each ELM from {{D}}α measurements, we extract the ELM heat fluxes from TC data. This over-estimates the IRTV measured ELM heat fluxes by a factor of 1.9, and could be due to the simplicity of the TC heat flux model and the assumed ELM energy pulse shape. ELM heat fluxes deposited on the inserts are used to model tungsten erosion in this campaign. These TC ELM heat flux estimates are used in addition to IRTV, especially in cases where the IRTV view to the metal ring is obstructed. We observe that some metal inserts were deformed due to exposed leading edges. The thermal conditions on these inserts are investigated with the thermal modeling code ABAQUS using our heat flux measurements when these edges

  9. Drivers of surface moisture flux variations in northern terrestrial regions

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Walsh, J. E.

    2017-12-01

    The wetness of the high-latitude land surface is strongly dependent on the difference between precipitation (P) and evapotranspiration (ET). Variations of ET over daily, seasonal and interannual timescales are poorly documented, as are their relationships to key drivers. A combination of regional climate model output and eddy covariance measurements from five flux tower sites in Alaska are used to test the hypothesis that temperature is the key driver of ET in tundra regions underlain by permafrost, while precipitation plays a greater role in boreal forest areas. At the tundra sites, both the flux tower data and the model simulations show that daily and warm-season totals of ET are largely temperature driven, although daily ET also shows a negative correlation with P. At the boreal forest sites, P is the main driver of year-to-year variations of the seasonally integrated net moisture flux, although ET does not correlate strongly with either P or T. A short period of negative P-ET typically occurs during the warm season in the flux tower data. The model depicts a stronger hydrologic cycle (larger P, larger ET) relative to the measurements at all the sites.

  10. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  11. Flux Tower Eddy Covariance and Meteorological Measurements for Barrow, Alaska: 2012-2016

    DOE Data Explorer

    Dengel, Sigrid; Torn, Margaret; Billesbach, David

    2017-08-24

    The dataset contains half-hourly eddy covariance flux measurements and determinations, companion meteorological measurements, and ancillary data from the flux tower (US-NGB) on the Barrow Environmental Observatory at Barrow (Utqiagvik), Alaska for the period 2012 through 2016. Data have been processed using EddyPro software and screened by the contributor. The flux tower sits in an Arctic coastal tundra ecosystem. This dataset updates a previous dataset by reprocessing a longer period of record in the same manner. Related dataset "Eddy-Covariance and auxiliary measurements, NGEE-Barrow, 2012-2013" DOI:10.5440/1124200.

  12. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  13. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  14. Multi-spectra Cosmic Ray Flux Measurement

    NASA Astrophysics Data System (ADS)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  15. AmeriFlux US-SP4 Slashpine-Rayonier-mid-rot- 12yrs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Tim

    This is the AmeriFlux version of the carbon flux data for the site US-SP4 Slashpine-Rayonier-mid-rot- 12yrs. Site Description - Only active for one year, the Rayonier tract site was shutdown due to a stand replacing wild fire in 1998. The tower was relocated to the Donaldson tract. The characteristics between the two mid-rotation pine plantations are nearly indistinguishable, enabling the integration of measurements made at both towers. The site information provided below follows the convention that the two sites are nearly identical.

  16. Mean and turbulent mass flux measurements in an idealised street network.

    PubMed

    Carpentieri, Matteo; Robins, Alan G; Hayden, Paul; Santi, Edoardo

    2018-03-01

    Pollutant mass fluxes are rarely measured in the laboratory, especially their turbulent component. They play a major role in the dispersion of gases in urban areas and modern mathematical models often attempt some sort of parametrisation. An experimental technique to measure mean and turbulent fluxes in an idealised urban array was developed and applied to improve our understanding of how the fluxes are distributed in a dense street canyon network. As expected, horizontal advective scalar fluxes were found to be dominant compared with the turbulent components. This is an important result because it reduces the complexity in developing parametrisations for street network models. On the other hand, vertical mean and turbulent fluxes appear to be approximately of the same order of magnitude. Building height variability does not appear to affect the exchange process significantly, while the presence of isolated taller buildings upwind of the area of interest does. One of the most interesting results, again, is the fact that even very simple and regular geometries lead to complex advective patterns at intersections: parametrisations derived from measurements in simpler geometries are unlikely to capture the full complexity of a real urban area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Eddy covariance N2O flux measurements at low flux rates: results from the InGOS campaign in a Danish willow field.

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per

    2014-05-01

    Nitrous oxide (N2O) fluxes from soils are characterised by their high spatial and temporal variability. The fluxes depend on the availability of the substrates for nitrification and denitrification and soil physical and chemical conditions that control the metabolic microbial activity. The sporadic nature of the fluxes and their high sensitivity to alterations of the soil climate put very high demands on measurement approaches. Laser spectroscopy enables accurate and fast response detection of atmospheric N2O concentrations and is used for eddy covariance (EC) flux measurements. Alternatively N2O fluxes can be measured with chambers together with high precision analysers. Differences in the measurement approaches and system designs are expected to have a considerable influence on the accuracy of the flux estimation. This study investigates how three different eddy covariance systems perform in a situation of low N2O fluxes from a flat surface. Chamber flux measurements with differing chamber and analyser designs are used for comparison. In April 2013, the EU research infrastructure project InGOS (http://www.ingos-infrastructure.eu/) organised a campaign of N2O flux measurements in a willow plantation close to the Risø Campus of the Technical University of Denmark. The willow field was harvested in February 2013 and received mineral fertiliser equivalent to 120 kg N ha-1 before the campaign started. Three different eddy covariance systems took part in the campaign: two Aerodyne quantum cascade laser (QCL) based systems and one Los Gatos Research off-axis integrated-cavity-output spectroscopy (ICOS) system for N2O and CO. The sonic anemometers were all installed at 2 m height above the bare ground. Gill R3 type sonic anemometers were used with QCL systems and a Gil HS-50 with the ICOS system. The 10 Hz raw data were analysed with group specific softwares and procedures. The local conditions in the exceptionally cold and dry spring 2013 did not lead to large N2O flux

  18. Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site

    Treesearch

    Mark E. Fenn; Mark A. Poth; Joseph D. Terry; Timothy J. Blubaugh

    2005-01-01

    Net fluxes of nitrogen (N) mineralization and nitrification were measured in situ on a monthly basis for 3 years at a high (HN) and low (LN) N deposition site in the San Bernardino Mountains, California. Mean N mineralization fluxes in the forest floor and top 10 cm of mineral soil were 19.0 and 59.8 kg N·ha–1·year–1 at LN...

  19. Water vapour fluxes trends on different time scales and their relationship with weather and soil drivers: a case study from a dehesa site in South Spain

    NASA Astrophysics Data System (ADS)

    Polo, María José; Egüen, Marta; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; Patrocinio González-Dugo, María

    2017-04-01

    Water vapour fluxes between the soil surface and the atmosphere constitute one of the most important components of the water cycle in the continental areas. Their regime directly affect the availability of water to plants, water storage in surface bodies, air humidity in the boundary layer, snow persistence… among others, and the list of indirectly affected processes comprises a large number of components. Water potential or wetness gradients are some of the main drivers of water vapour fluxes to the atmosphere; soil humidity is usually monitored as key variable in many hydrological and environmental studies, and its estimated series are used to calibrate and validate the modelling of certain hydrological processes. However, such results may differ when water fluxes are used instead of water state variables, such as humidity. This work shows the analysis of high resolution water vapour fluxes series from a dehesa area in South Spain where a complete energy and water fluxes/variables monitoring site has been operating for the last four years. The results include pasture and tree vegetated control points. The daily water budget calculation on both types of sites has been performed from weather and energy fluxes measurements, and soil moisture measurements, and the results have been aggregated on a weekly, monthly and seasonal basis. Comparison between observed trends of soil moisture and calculated trends of water vapour fluxes is included to show the differences arising in terms of the regime of the dominant weather variables in this type of ecosystems. The results identify significant thresholds for each weather variable driver and highlight the importance of the wind regime, which is the somehow forgotten variable in future climate impacts on hydrology. Further work is being carried out to assess water cycle potential trends under future climate conditions and their impacts on the vegetation in dehesa ecosystems.

  20. Measurement of DDT fluxes from a historically treated agricultural soil in Canada.

    PubMed

    Kurt-Karakus, Perihan Binnur; Bidleman, Terry F; Staebler, Ralf M; Jones, Kevin C

    2006-08-01

    Organocohlorine pesticide (OCP) residues in agricultural soils are of concern due to the uptake of these compounds by crops, accumulation in the foodchain, and reemission from soils to the atmosphere. Although it has been about three decades since DDT was banned for agricultural uses in Canada, residues persist in soils of some agricultural areas. Emission of DDT compounds to the atmosphere from a historically treated field in southern Ontario was determined in fall 2004 and spring 2005. The sigmaDDTs concentration in the high organic matter (71%) soil was 19 +/- 4 microg g(-1) dry weight. Concentration gradients in the air were measured at 5, 20, 72, and 200 cm above soil using glass fiber filter-polyurethane foam cartridges. Air concentrations of sigmaDDTs averaged 5.7 +/- 5.1 ng m(-3) at 5 cm and decreased to 1.3 +/- 0.8 ng m(-3) at 200 cm and were 60-300 times higher than levels measured at a background site 30 km away. Soil-air fugacity fractions, fs/(fs + fa), of p,p'-DDE, p,p'-DDD, and p,p'-DDT ranged from 0.42 to 0.91 using air concentrations measured above the soil and > or = 0.99 using background air concentrations, indicating that the soil was a net source to the background air. Fractionation of DDT compounds during volatilization was predicted using either liquid-phase vapor pressures (PL) or octanol-air partition coefficients (KOA). Relative emissions of p,p'-DDE and p,p'-DDT were better described by PL than KOA, whereas either PL or KOA successfully accounted for the fractionation of p,p'-DDT and o,p'-DDT. Soil-to-air fluxes were calculated from air concentration gradients and turbulent exchange coefficients determined from micrometeorological measurements. Average fluxes of sigmaDDTs were 90 +/- 24 ng m(-2) h(-1) in fall and 660 +/- 370 ng m(-2) h(-1) in spring. Higher soil temperatures in spring accounted for the higher fluxes. A volatilization half-life of approximately 200 y was estimated for sigmaDDT in the upper 5 cm of the soil column, assuming

  1. Aerosol Fluxes over Amazon Rain Forest Measured with the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Nilsson, E. D.; Krejci, R.; Mårtensson, E. M.; Vogt, M.; Artaxo, P.

    2008-12-01

    We present measurements of vertical aerosol fluxes over the Amazon carried out on top of K34, a 50 meter high tower in the Cuieiras Reserve about 50 km north of Manaus in northern Brazil. The turbulent fluxes were measured with the eddy covariance method. The covariance of vertical wind speed from a sonic anemometer Gill Windmaster and total aerosol number concentration from a condensation particle counter (CPC) TSI 3010 provided the total number flux (diameter >0.01 μm). The covariance of vertical wind speed and size resolved number concentrations from an optical particle counter (OPC) Grimm 1.109 provided size resolved number fluxes in 15 bins from 0.25 μm to 2.5 μm diameter. Additionally fluxes of CO2 and H2O were derived from Li-7500 observations. The observational period, from early March to early August, includes both wet and dry season. OPC fluxes generally show net aerosol deposition both during wet and dry season with the largest downward fluxes during midday. CPC fluxes show different patterns in wet and dry season. During dry season, when number concentrations are higher, downward fluxes clearly dominate. In the wet season however, when number concentrations are lower, our data indicates that upward and downward fluxes are quite evenly distributed during course of a day. On average there is a peak in upward flux during late morning and another peak during the afternoon. Since the OPC fluxes in the same time show net deposition, there is an indication of net source of primary aerosol particles with diameters between 10 and 250 nm emitted from the rain forest. Future data analysis will hopefully shed light on origin and formation mechanism of these particles and thus provide a deeper insight in the rain forest - atmosphere interactions. The aerosol flux measurements were carried out as a part of the AMAZE project in collaboration with University of Sao Paulo, Brazil, and financial support was provided by Swedish International Development Cooperation

  2. AmeriFlux US-NC1 NC_Clearcut

    DOE Data Explorer

    Noormets, Asko [North Carolina State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-NC1 NC_Clearcut. Site Description - The North Carolina Clearcut site is located in a pine plantation amongst the mixed forests of the North Carolina lower coastal plain. Owned by the Weyerhaeuser Company, the plantation is managed for the purpose of commercial logging. In 2004, 70 ha of 75 year old native hardwoods was harvested. Following the clearcut, the stand was bedded and planted with loblolly pine seedlings. The only significant natural disturbances during the measurement period was a severe drought that lasted from summer of 2007 through 2008. Consequently, the 2007 total amount of precipitation was 486 mm below the 30-year norm.

  3. Corrections of Heat Flux Measurements on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.

    2002-01-01

    Knowledge of aerothermally induced convective heat transfer is important in the design of thermal protection systems for launch vehicles. Aerothermal models are typically calibrated via the data from circular, in-flight, flush-mounted surface heat flux gauges exposed to the thermal and velocity boundary layers of the external flow. Typically, copper or aluminum Schmidt- Boelter gauges, which take advantage of the one-dimensional Fourier's law of heat conduction, are used to measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has a wall temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher than it would have been on the insulation had the calorimeter not been there. In addition, radial conductive heat transfer from the hotter insulation can cause the calorimeter to indicate heat fluxes higher than actual. An overview of an effort to develop and calibrate gauge correction techniques for both of these effects will be presented.

  4. AmeriFlux US-Fwf Flagstaff - Wildfire

    DOE Data Explorer

    Dor, Sabina [Northern Arizona Univ., Flagstaff, AZ (United States); Kolb, Thomas [Northern Arizona Univ., Flagstaff, AZ (United States)

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Fwf Flagstaff - Wildfire. Site Description - Ponderosa pine forest subject to high severity stand replacing wild fire in 1996. Project webpage http://nau.edu/CEFNS/Forestry/Research/Carbon-Flux/Sites/.

  5. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  6. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix M.; Hammerle, Albin; Wohlfahrt, Georg

    2016-04-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing trace gas present in the troposphere at concentrations of around 500 ppt. Recent interest in COS by the ecosystem-physiological community has been sparked by the fact that COS co-diffuses into plant leaves pretty much the same way as carbon dioxide (CO2) does, but in contrast to CO2, COS is not known to be emitted by plants. Thus uptake of COS by vegetation has the potential to be used as a tracer for canopy gross photosynthesis, which cannot be measured directly, however represents a key term in the global carbon cycle. Since a few years, quantum cascade laser absorption spectrometers (QCLAS) are commercially available with the precision, sensitivity and time response suitable for eddy covariance (EC) flux measurements. While there exist a handful of published reports on EC flux measurements in the recent literature, no rigorous investigation of the applicability of QCLAS for EC COS flux measurements has been carried out so far, nor have been EC processing and QA/QC steps developed for carbon dioxide and water vapor flux measurements within FLUXNET been assessed for COS. The aim of this study is to close this knowledge gap, to discuss critical steps in the post-processing chain of COS EC flux measurements and to devise best-practice guidelines for COS EC flux data processing. To this end we collected EC COS (and CO2, H2O and CO) flux measurements above a temperate mountain grassland in Austria over the vegetation period 2015 with a commercially available QCLAS. We discuss various aspects of EC data post-processing, in particular issues with the time-lag estimation between sonic anemometer and QCLAS signals and QCLAS time series detrending, as well as QA/QC, in particular flux detection limits, random flux uncertainty, the interaction of various processing steps with common EC QA/QC filters (e.g. detrending and stationarity tests), u*-filtering, etc.

  7. Measuring Fast Calcium Fluxes in Cardiomyocytes

    PubMed Central

    Golebiewska, Urszula; Scarlata, Suzanne

    2011-01-01

    Cardiomyocytes have multiple Ca2+ fluxes of varying duration that work together to optimize function 1,2. Changes in Ca2+ activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gαq pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine 3,4. We have recently found that plasma membrane protein domains called caveolae5,6 can entrap activated Gαq7. This entrapment has the effect of stabilizing the activated state of Gαq and resulting in prolonged Ca2+ signals in cardiomyocytes and other cell types8. We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca2+ indicator. In our studies, we used Ca2+ Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca2+ responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca2+ waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca2+ waves show binned data with a broad

  8. Measuring fast calcium fluxes in cardiomyocytes.

    PubMed

    Golebiewska, Urszula; Scarlata, Suzanne

    2011-11-29

    Cardiomyocytes have multiple Ca(2+) fluxes of varying duration that work together to optimize function (1,2). Changes in Ca(2+) activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gα(q;) pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine (3,4). We have recently found that plasma membrane protein domains called caveolae(5,6) can entrap activated Gα(q;)(7). This entrapment has the effect of stabilizing the activated state of Gα(q;) and resulting in prolonged Ca(2+) signals in cardiomyocytes and other cell types(8). We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca(2+) indicator. In our studies, we used Ca(2+) Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca(2+) responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca(2+) waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca(2+) waves

  9. Verification of flux measurements made with in situ benthic chambers

    NASA Astrophysics Data System (ADS)

    Devol, Allan H.

    1987-06-01

    Exchange of solutes between the sediments and overlying water was measured in situ at two locations where the overlying waters were devoid of dissolved oxygen (Skan Bay, Alaska and the Tres Marias depression on the Mexican continental shelf). Measurements were made with a tripod capable of collecting eight sequential samples for analysis of dissolved gases and ions. The tripod also permitted tracer injection and the retrieval of sediments underlying the flux chambers. Because of the absence of oxygen, sediments from these areas did not contain benthic faunal populations, and it was possible to compare the benthic fluxes measured with the tripod with those calculated from pore water profiles. For solutes for which exchange was not limited by resistance in the diffuse sublayer (alkalinity, Si(OH) 4+, NH 4+, and PO 43-), tje 11 tirpod-measured fluxes agreed with those calculated from pore water gradients to within 25%. Benthic boundary layer thickness within the chambers as calculated from the initial rate of radiotracer uptake (tritiated water) varied from 405 to 605 μm in stirred chambers. Measured rates of NO 3- uptake were concordant with a boundary layer thickness of 600 μm.

  10. Sediment Transport and Dust Flux in Disturbed and Undisturbed Dryland Ecosystems: From Site Specific Estimates to Trends Across Gradients of Woody Plant Cover

    NASA Astrophysics Data System (ADS)

    Field, J. P.; Breshears, D. D.; Whicker, J. J.; Zou, C. B.; Allen, C. D.

    2007-12-01

    Aeolian sediment transport and associated dust flux are important processes in dryland ecosystems where vegetation cover is inherently sparse relative to more mesic ecosystems. Aeolian processes in dryland ecosystems are strongly influenced by the spatial density of roughness elements, which is largely determined by woody plant height and spacing. Despite the global extent of dryland ecosystems, relatively few measurements of aeolian sediment transport have been made within these systems, and these few existing measurements have not been systematically evaluated with respect to gradients of woody plant cover. We report measured aeolian sediment transport in an undisturbed and disturbed semiarid grasslands in southern Arizona. To place our estimate in a broader context, we compared our site-specific findings to other recently published measurements of aeolian sediment transport in disturbed and undisturbed dryland ecosystems. We propose a new conceptual framework for dryland aeolian sediment transport and dust flux as a function of woody plant cover that integrates our site-specific data with the broader literature base. Our findings suggest that for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport and associated dust flux than grasslands, woodlands and forests due to wake interference flow associated with the height and spacing of woody roughness elements. Furthermore, the proposed framework suggests that for disturbed ecosystems, the upper bound for aeolian sediment transport increases as a function of decreasing woody plant cover. As a result, aeolian sediment transport spans a relatively small range in woodlands and forests, an intermediate range in shrublands, and the largest range in grasslands. Our framework is applicable both within locations and across broad gradients

  11. Annual sediment flux estimates in a tidal strait using surrogate measurements

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights

  12. Variability of Kelvin wave momentum flux from high-resolution radiosonde and radio occultation data

    NASA Astrophysics Data System (ADS)

    Sjoberg, J. P.; Zeng, Z.; Ho, S. P.; Birner, T.; Anthes, R. A.; Johnson, R. H.

    2017-12-01

    Direct measurement of momentum flux from Kelvin waves in the stratosphere remains challenging. Constraining this flux from observations is an important step towards constraining the flux from models. Here we present results from analyses using linear theory to estimate the Kelvin wave amplitudes and momentum fluxes from both high-resolution radiosondes and from radio occultation (RO) data. These radiosonde data are from a contiguous 11-year span of soundings performed at two Department of Energy Atmospheric Radiation Measurement sites, while the RO data span 14 years from multiple satellite missions. Daily time series of the flux from both sources are found to be in quantitative agreement with previous studies. Climatological analyses of these data reveal the expected seasonal cycle and variability associated with the quasi-biennial oscillation. Though both data sets provide measurements on distinct spatial and temporal scales, the estimated flux from each provides insight into separate but complimentary aspects of how the Kelvin waves affect the stratosphere. Namely, flux derived from radiosonde sites provide details on the regional Kelvin wave variability, while the flux from RO data are zonal mean estimates.

  13. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    NASA Astrophysics Data System (ADS)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  14. Oxyanion flux characterization using passive flux meters: development and field testing of surfactant-modified granular activated carbon.

    PubMed

    Lee, Jimi; Rao, P S C; Poyer, Irene C; Toole, Robyn M; Annable, M D; Hatfield, K

    2007-07-17

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate>chromate>selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (approximately 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of approximately 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field

  15. Temporal dynamics of direct N2O fluxes from agro-ecosystems in cold climates: importance of year-round measurements in multiple cropping systems

    NASA Astrophysics Data System (ADS)

    Wagner-Riddle, C.; Tenuta, M.

    2014-12-01

    Soil N2O fluxes (direct emissions) are highly variable in time and space due to soil, weather and management drivers. In cold climates, freeze/thaw cycles and short growing seasons can enhance soil N2O production contributing to the temporal variability of fluxes. Year-round measurements of N2O fluxes in multiple cropping systems are needed to decrease the uncertainty of annual emission estimates and to devise mitigation practices for emission reduction in cold climates. We have deployed a micrometeorological flux-gradient approach coupled to a tunable diode laser absorption spectroscopy system at two long-term sites in Canada: Elora, Ontario (2000-2014) and Glenlea, Manitoba (2006-2014). Quasi-simultaneous half-hourly flux measurements on four 4-ha fields within a level and aerodynamically homogeneous landscape were obtained allowing for comparison of crop type and/or management practices within and between years. Annual crops such as corn, soybeans, wheat, and barley received typical inorganic fertilizer and/or manure applications, and best management practices such as timing of application and reduced tillage were studied. Perennial grass-alfalfa hayfields were compared to annual crops during selected time periods. Here we synthesize the long-term datasets from these two sites, and quantify the overall contribution of non-growing season (mainly freeze/thaw cycles) and growing season (mainly nitrogen application) to annual emission totals. Uncertainties of regional estimates for cold-climates will be assessed using these long-term datasets.

  16. New ground-based lidar enables volcanic CO2 flux measurements.

    PubMed

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-09-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (<30%). The ability of this lidar to remotely sense volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.

  17. Significance of multidimensional radiative transfer effects measured in surface fluxes at an Antarctic coastline

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Ricchiazzi, Paul; Payton, Allison; Gautier, Catherine

    2002-10-01

    At a coastal high-latitude site, multiple reflection of photons between the high albedo surface and an overlying cloud can enhance the downwelling shortwave flux out over the adjacent open water to a distance of several kilometers. This coastal albedo effect has been predicted by theoretical radiative transfer studies and has also been measured under ideal conditions. In this study, three multispectral solar ultraviolet radiometers were deployed in the vicinity of Palmer Station, Antarctica (64° 46'S, 64° 04'W) to determine the prevalence of the coastal albedo effect under the region's natural variability in cloud cover. One radiometer was deployed near the base of a glacier, and the other two radiometers were deployed on Janus Island and Outcast Island, islets ˜2.8 km (1.5 nautical miles) and 5.6 km (3 nautical miles) distant from Palmer Station, respectively. The radiometers were operated simultaneously for 16 days during late December 1999 and January 2000. Under all cloudy sky conditions sampled by this experiment the coastal albedo effect is seen in the data 60% of the time, in the form of a decreasing gradient in surface flux from Palmer Station through Janus and Outcast Islands. During the other 40% of the cloudy sky measurements, local cloud inhomogeneity obscured the coastal albedo effect. The effect is more apparent under overcast layers that appear spatially uniform and occurs 86% of the time under the low overcast decks sampled. The presence of stratus fractus of bad weather, under higher overcast layers, obscures the coastal albedo effect such that it occurs only 43% of the time. A wavelength dependence is noted in the data under optically thin cloud cover: the ratio of a flux measured at an islet to that measured at the station increases with wavelength. This wavelength dependence can be explained by plane-parallel radiative transfer theory.

  18. Standardized Automated CO2/H2O Flux Systems for Individual Research Groups and Flux Networks

    NASA Astrophysics Data System (ADS)

    Burba, George; Begashaw, Israel; Fratini, Gerardo; Griessbaum, Frank; Kathilankal, James; Xu, Liukang; Franz, Daniela; Joseph, Everette; Larmanou, Eric; Miller, Scott; Papale, Dario; Sabbatini, Simone; Sachs, Torsten; Sakai, Ricardo; McDermitt, Dayle

    2017-04-01

    models, and the improvements focused on increased stability in the presence of contamination, refining temperature control and compensation, and providing more accurate fast gas concentration measurements. In terms of the flux calculations, improvements focused on automating the on-site flux calculations using EddyPro® software run by a weatherized fully digital microcomputer, SmartFlux2. In terms of site management and data sharing, the development focused on web-based software, FluxSuite, which allows real-time station monitoring and data access by multiple users. The presentation will describe details for the key developments and will include results from field tests of the RS gas analyzer models in comparison with older models and control reference instruments.

  19. AmeriFlux US-SCw Southern California Climate Gradient - Pinyon/Juniper Woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulden, Mike

    This is the AmeriFlux version of the carbon flux data for the site US-SCw Southern California Climate Gradient - Pinyon/Juniper Woodland. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a Pinyon Juniper woodland with trees that are at least 150 years old, and ephemeral herbaceous cover following winter or spring rains. The site has experienced repeated drought during the record and roughly 50% Pinyon mortality over the last decade. Amore » nearby tower site (US-SCc) burned in a 1994 wildfire; comparisons between US-SCw and US-SCc provide a measure of the effects of the 1994 on land-atmosphere exchange.« less

  20. Research on effects of baffle position in an integrating sphere on the luminous flux measurement

    NASA Astrophysics Data System (ADS)

    Lin, Fangsheng; Li, Tiecheng; Yin, Dejin; Lai, Lei; Xia, Ming

    2016-09-01

    In the field of optical metrology, luminous flux is an important index to characterize the quality of electric light source. Currently, the majority of luminous flux measurement is based on the integrating sphere method, so measurement accuracy of integrating sphere is the key factor. There are plenty of factors affecting the measurement accuracy, such as coating, power and the position of light source. However, the baffle which is a key part of integrating sphere has important effects on the measurement results. The paper analyzes in detail the principle of an ideal integrating sphere. We use moving rail to change the relative position of baffle and light source inside the sphere. By experiments, measured luminous flux values at different distances between the light source and baffle are obtained, which we used to take analysis of the effects of different baffle position on the measurement. By theoretical calculation, computer simulation and experiment, we obtain the optimum position of baffle for luminous flux measurements. Based on the whole luminous flux measurement error analysis, we develop the methods and apparatus to improve the luminous flux measurement accuracy and reliability. It makes our unifying and transferring work of the luminous flux more accurate in East China and provides effective protection for our traceability system.

  1. Portable chamber measurements of evapotranspiration at the Amargosa Desert Research Site near Beatty, Nye County, Nevada, 2003-06

    USGS Publications Warehouse

    Garcia, C. Amanda; Johnson, Michael J.; Andraski, Brian J.; Halford, Keith J.; Mayers, C. Justin

    2008-01-01

    Portable chamber measurements of evapotranspiration (ET) were made at the U.S. Geological Survey's Amargosa Desert Research Site in southern Nevada to help quantify component- and landscape-scale contributions to ET in an arid environment. Evapotranspiration data were collected approximately every 3 months from 2003 to 2006. Chamber measurements of ET were partitioned into bare-soil evaporation and mixed-species transpiration components. The component-scale ET fluxes from native shrubs typically surpassed those from bare soil by as much as a factor of four. Component-scale ET fluxes were extrapolated to landscape-scale ET using a one-layer, multi-component canopy model. Landscape-scale ET fluxes predominantly were controlled by bare-soil evaporation. Bare soil covered 94 percent of the landscape on average and contributed about 70 percent of the landscape-scale vapor flux. Creosote bush, an evergreen shrub, accounted for about 90 percent of transpiration on average due to its dominance across the landscape (80 percent of the 6 percent shrub cover) and evergreen character.

  2. Chambers versus Relaxed Eddy Accumulation: an intercomparison study of two methods for short-term measurements of biogenic CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Chmura, Lukasz; Necki, Jaroslaw

    2014-05-01

    The presented work is a part of comprehensive study aimed at thorough characterization of carbon cycle in the urban environment of Krakow, southern Poland. In the framework of this study two independent methods were employed to quantify biogenic CO2 flux in the city: (i) closed chambers, and (ii) Relaxed Eddy Accumulation (REA). The results of a three-day intensive intercomparison campaign performed in July 2013 and utilizing both measurement methods are reported here. The chamber method is a widely used approach for measurements of gas exchange between the soil and the atmosphere. The system implemented in this study consisted of a single chamber operating in a closed-dynamic mode, combined with Vaisala CarboCAP infrared CO2 sensor in a mobile setup. An alternative flux measurement method, covering larger area is represented by REA, which is a modification of the eddy covariance method. It consists of a 3D anemometer (Gill Windmaster Pro) and the system collecting updraft and downdraft samples to 5-litre Tedlar bags. The CO2 mixing ratios in the collected samples are measured by Picarro G2101i analyzer. The setup consists of two sets of bags so that the sampling can be performed continuously with 15-min temporal resolution. A 48-hectares open meadow located close the city center was chosen as a test site for comparison of the two methods of CO2 flux measurements outlined above. In the middle of the meadow a 3-metre high tripod was installed with the anemometer and REA inlet system. For a period of 46 hours the system was measuring net CO2 flux from the surrounding area. A meteorological conditions and intensity of photosynthetically active radiation (PAR) were also recorded. In the same time, CO2 flux from several points around the REA inlet was measured with the chamber system, resulting in 93 values for both respiration and net CO2 flux. Chamber results show rather homogenous distribution of the soil CO2 flux (the mean value equal to 40.9 ± 2.2 mmol/m2h), with

  3. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    NASA Astrophysics Data System (ADS)

    Acton, W. Joe F.; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Tillmann, Ralf; Tomlinson, Sam J.; Dragosits, Ulrike; Gianelle, Damiano; Hewitt, C. Nicholas; Nemitz, Eiko

    2016-06-01

    This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  4. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    NASA Astrophysics Data System (ADS)

    Acton, W. J. F.; Schallhart, S.; Langford, B.; Valach, A.; Rantala, P.; Fares, S.; Carriero, G.; Tillmann, R.; Tomlinson, S. J.; Dragosits, U.; Gianelle, D.; Hewitt, C. N.; Nemitz, E.

    2015-10-01

    This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton transfer reaction-mass spectrometer (PTR-MS) and a proton transfer reaction-time of flight-mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (PTR-MS) and eddy covariance (PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean day-time flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28 day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the MEGAN isoprene emissions algorithms (Guenther et al., 2006). A detailed tree species distribution map for the site enabled the leaf-level emissions of isoprene and monoterpenes recorded using GC-MS to be scaled up to produce a "bottom-up" canopy-scale flux. This was compared with the "top-down" canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  5. Ecosystem CO2 Exchange Across Semiarid Southwestern North America: A Synthesis of Multi-Year Flux Site Observations and its Comparison with Estimates from Terrestrial Biome Models and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Scott, R. L.; Goulden, M.; Litvak, M. E.; Kolb, T.; Yepez, E. A.; Garatuza, J.; Oechel, W. C.; Krofcheck, D. J.; Ponce-Campos, G. E.; Bowling, D. R.; Meyers, T. P.; Maurer, G.

    2016-12-01

    Global carbon cycle studies reveal that semiarid ecosystems dominate the increasing trend and interannual variability of the land CO2 sink. However, the regional terrestrial biome models (TBM) and remote sensing products (RSP) used in large-scale analyses are poorly constrained by ecosystem flux measurements in semiarid regions, which are under-represented in global flux datasets. Here we present eddy covariance measurements from 25 diverse ecosystems in semiarid southwestern North America with ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (150 site-years in total). We identified seven subregions with unique seasonal dynamics in climate and ecosystem-atmosphere exchange, including net and gross CO2 exchange (photosynthesis and respiration) and evapotranspiration (ET), and we evaluated how well measured dynamics were captured by satellite-based greenness observations of the Enhanced Vegetation Index (EVI). Annual flux integrals were calculated based on site-appropriate ecohydrologic years. Net ecosystem production (NEP) varied between -550 and + 420 g C m-2, highlighting the wide range of regional sink/source function. Annual photosynthesis and respiration were positively related to water availability but were suppressed in warmer years at a given site and at climatically warmer sites, in contrast to positive temperature responses at wetter sites. When precipitation anomalies were spatially coherent across sites (e.g. related to El Niño Southern Oscillation), we found large regional annual anomalies in net and gross CO2 uptake. TBM and RSP were less effective in capturing spatial gradients in mean ET and CO2 exchange across this semiarid region as compared to wetter regions. Measured interannual variability of ET and gross CO2 exchange was 3 - 5 times larger than estimates from TBM or RSP. These results suggest that semiarid regions play an even larger role in regulating interannual variability

  6. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  7. Cross-system comparisons of soil nitrogen transformations and nitrous oxide flux in tropical forest ecosystems

    NASA Technical Reports Server (NTRS)

    Matson, Pamela A.; Vitousek, Peter M.

    1987-01-01

    Soil nitrogen transformations and nitrous oxide flux across the soil-air interface have been measured in a variety of tropical forest sites and correlated with patterns of nitrogen circulation. Nitrogen mineralizaton and nitrification potentials were found to be high in the relatively fertile Costa Rica sites and the Amazonian oxisol/ultisols, intermediate in Amazonian white sand soils, and low in the Hawaiian montane sites. Nitrous oxide fluxes ranged from 0 to 6.2 ng/sq cm per h, and the mean flux per site was shown to be highly correlated with mean nitrogen mineralization.

  8. Going beyond the stationary flux towers to assess the interactions of land use and climate

    NASA Astrophysics Data System (ADS)

    Yakir, Dan; Rohatyn, shani; Ramati, Efrat; Tatrinov, Fedor; Rotenberg, Eyal

    2017-04-01

    Networks of permanent, stationary flux towers that allows continuous canopy-scale measurements over annual time-scales have revolutionized the study of the contemporary carbon cycle over the past two decades. However, this approach is limited in addressing questions related to dynamic changes in land use, vegetation types, disturbance, and their interactions with variations in environmental conditions. Using mobile laboratory for measuring CO2, water, energy, COS, and VOC fluxes, permitted us to extend our stationary flux tower measurements across many sites, but also limited measurements to short-time campaigns (days to weeks). To overcome this limitation, we adopted an empirical approach (often used in remote sensing) and used state of the art campaign-based ecosystem flux measurements to 'calibrate' local meteorological data available on continuous basis, to estimate annual-scale carbon, water, and energy budgets. Using this approach, we investigated the interactions of land use change (afforestation) and climate (humid Mediterranean to semi-arid, 730 to 300 mm in annual precipitation) on the ecosystem fluxes. The results showed that across this climatic range, afforestation increased ET markedly more in the wet (+200 mm yr-1 or 30% of P) than in the dry end (+58 mm yr-1 or 19% of P). Similarly, increase in carbon sequestration (NEE) associated with forestation was greater in the wet sites (+460 gC m-2 yr-1) than in the dry sites (+30 gC m-2 yr-1). In contrast, ecosystem net-radiation (Rn) and sensible heat flux (H) increased due to afforestation much more in the dry sites than in the wet sites ( 47 vs. 27 and 49 vs. 17 Wm-2, respectively). COS and VOC fluxes were also measured but reported separately. The results provided quantitative assessment of shifts in the tradeoffs associated with afforestation in this region, between the hydrological and energy-budget 'costs', vs. carbon sequestration and other ecosystem services, (e.g, surface cooling, erosion

  9. Nitrous oxide flux and nitrogen transformations across a landscape gradient in Amazonia

    NASA Technical Reports Server (NTRS)

    Livingston, Gerald P.; Vitousek, Peter M.; Matson, Pamela A.

    1988-01-01

    Nitrous oxide flux and nitrogen turnover were measured in three types of Amazonian forest ecosystems within Reserva Florestal Ducke near Manaus, Brazil. Nitrogen mineralization and nitrate production measured during 10-day laboratory incubations were 3-4 times higher in clay soils associated with 'terra firme' forests on ridge-top and slope positions than in 'campinarana' forests on bottomland sand soils. In contrast, nitrous oxide fluxes did not differ significantly among sites, but were highly variable in space and time. The observed frequency distribution of flux was positively skewed, with a mean overall sites and all sampling times of 1.3 ng N2O-N/sq cm per hr. Overall, the flux estimates were comparable to or greater than those of temperature forests, but less than others reported for Amazoonia. Results from a field fertilization experiment suggest that most nitrous oxide flux was associated with denitrification of soil nitrate.

  10. A method for obtaining distributed surface flux measurements in complex terrain

    NASA Astrophysics Data System (ADS)

    Daniels, M. H.; Pardyjak, E.; Nadeau, D. F.; Barrenetxea, G.; Brutsaert, W. H.; Parlange, M. B.

    2011-12-01

    Sonic anemometers and gas analyzers can be used to measure fluxes of momentum, heat, and moisture over flat terrain, and with the proper corrections, over sloping terrain as well. While this method of obtaining fluxes is currently the most accurate available, the instruments themselves are costly, making installation of many stations impossible for most campaign budgets. Small, commercial automatic weather stations (Sensorscope) are available at a fraction of the cost of sonic anemometers or gas analyzers. Sensorscope stations use slow-response instruments to measure standard meteorological variables, including wind speed and direction, air temperature, humidity, surface skin temperature, and incoming solar radiation. The method presented here makes use of one sonic anemometer and one gas analyzer along with a dozen Sensorscope stations installed throughout the Val Ferret catchment in southern Switzerland in the summers of 2009, 2010 and 2011. Daytime fluxes are calculated using Monin-Obukhov similarity theory in conjunction with the surface energy balance at each Sensorscope station as well as at the location of the sonic anemometer and gas analyzer, where a suite of additional slow-response instruments were co-located. Corrections related to slope angle were made for wind speeds and incoming shortwave radiation measured by the horizontally-mounted cup anemometers and incoming solar radiation sensors respectively. A temperature correction was also applied to account for daytime heating inside the radiation shield on the slow-response temperature/humidity sensors. With these corrections, we find a correlation coefficient of 0.77 between u* derived using Monin-Obukhov similarity theory and that of the sonic anemometer. Calculated versus measured heat fluxes also compare well and local patterns of latent heat flux and measured surface soil moisture are correlated.

  11. Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland

    NASA Astrophysics Data System (ADS)

    Osterwalder, S.; Sommar, J.; Åkerblom, S.; Jocher, G.; Fritsche, J.; Nilsson, M. B.; Bishop, K.; Alewell, C.

    2018-01-01

    Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon® dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 ± 8 ng g-1, average ± SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, α = 0.05). Even though the correlation between the Teflon® DFC and Aero-DFC was significant (r = 0.76, p < 0.05) the cumulative flux of the Aero-DFC was a factor of three larger. The average flux of the Aero-DFC (1.9 ng m-2 h-1) and REA (2 ng m-2 h-1) were in good agreement. The results indicate that the novel REA design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers (<0.2 m2) makes for large coefficients of variation. Thus many chamber measurement replications

  12. Magnitude and directional measures of water and Cr(VI) fluxes by passive flux meter.

    PubMed

    Campbell, Timothy J; Hatfield, Kirk; Klammler, Harald; Annable, Michael D; Rao, P S C

    2006-10-15

    A new configuration of the passive fluxmeter (PFM) is presented that provides for simultaneous measurements of both the magnitude and the direction of ambient groundwater specific discharge qo and Cr(VI) mass flux J(Cr). The PFM is configured as a cylindrical unit with an interior divided into a center section and three outer sectors, each packed with a granular anion exchange resin having high sorption capacity for the Cr(VI) oxyanions CrO4(2-) and HCrO4-. The sorbent in the center section is preloaded with benzoate as the "resident" tracer. Laboratory experiments were conducted in which PFMs were placed in porous packed bed columns, through which was passed a measured volume of synthetic groundwater containing Cr(VI). During the deployment period, some of the resident tracer is depleted while the Cr(VI) is sorbed. The resin was then removed from the four sectors separately and extracted to determine the "captured" mass of Cr(VI) and the residual mass of the resident tracer in each. Cumulative specific discharge, q0t, values were assessed using the residual mass of benzoate retained in the center section. The direction of this discharge theta was ascertained from the mass distribution of benzoate intercepted and retained in the outer three sections of the PFM. Cumulative chromium fluxes, J(Cr)t, were quantified using the total Cr(VI) mass intercepted and retained on the PFM. Experiments produced an average measurement error for direction theta of 3 degrees +/- 14 degrees, while the average measurement errors for q0 and J(Cr) were, respectively, -8% +/- 15% and -12% +/- 23%. Results demonstrate the potential utility of the new PFM configuration for characterizing groundwater and contaminant fluxes.

  13. A direct passive method for measuring water and contaminant fluxes in porous media

    NASA Astrophysics Data System (ADS)

    Hatfield, Kirk; Annable, Michael; Cho, Jaehyun; Rao, P. S. C.; Klammler, Harald

    2004-12-01

    This paper introduces a new direct method for measuring water and contaminant fluxes in porous media. The method uses a passive flux meter (PFM), which is essentially a self-contained permeable unit properly sized to fit tightly in a screened well or boring. The meter is designed to accommodate a mixed medium of hydrophobic and/or hydrophilic permeable sorbents, which retain dissolved organic/inorganic contaminants present in the groundwater flowing passively through the meter. The contaminant mass intercepted and retained on the sorbent is used to quantify cumulative contaminant mass flux. The sorptive matrix is also impregnated with known amounts of one or more water soluble 'resident tracers'. These tracers are displaced from the sorbent at rates proportional to the groundwater flux; hence, in the current meter design, the resident tracers are used to quantify cumulative groundwater flux. Theory is presented and quantitative tools are developed to interpret the water flux from tracers possessing linear and nonlinear elution profiles. The same theory is extended to derive functional relationships useful for quantifying cumulative contaminant mass flux. To validate theory and demonstrate the passive flux meter, results of multiple box-aquifer experiments are presented and discussed. From these experiments, it is seen that accurate water flux measurements are obtained when the tracer used in calculations resides in the meter at levels representing 20 to 70 percent of the initial condition. 2,4-Dimethyl-3-pentanol (DMP) is used as a surrogate groundwater contaminant in the box aquifer experiments. Cumulative DMP fluxes are measured within 5% of known fluxes. The accuracy of these estimates generally increases with the total volume of water intercepted.

  14. Tests of a robust eddy correlation system for sensible heat flux

    NASA Astrophysics Data System (ADS)

    Blanford, J. H.; Gay, L. W.

    1992-03-01

    Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.

  15. A flux footprint analysis to understand ecosystem fluxes in an intensively managed landscape

    NASA Astrophysics Data System (ADS)

    Hernandez Rodriguez, L. C.; Goodwell, A. E.; Kumar, P.

    2017-12-01

    Flux tower studies in agricultural sites have mainly been done at plot scale, where the footprint of the instruments is small such that the data reveals the behaviour of the nearby crop on which the study is focused. In the Midwestern United States, the agricultural ecosystem and its associated drainage, evapotranspiration, and nutrient dynamics are dominant influences on interactions between the soil, land, and atmosphere. In this study, we address large-scale ecohydrologic fluxes and states in an intensively managed landscape based on data from a 25m high eddy covariance flux tower. We show the calculated upwind distance and flux footprint for a flux tower located in Central Illinois as part of the Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). In addition, we calculate the daily energy balance during the summer of 2016 from the flux tower measurements and compare with the modelled energy balance from a representative corn crop located in the flux tower footprint using the Multi-Layer Canopy model, MLCan. The changes in flux footprint over the course of hours, days, and the growing season have significant implications for the measured fluxes of carbon and energy at the flux tower. We use MLCan to simulate these fluxes under land covers of corn and soybeans. Our results demonstrate how the instrument heights impact the footprint of the captured eddy covariance fluxes, and we explore the implication for hydrological analysis. The convective turbulent atmosphere during the daytime shows a wide footprint of more than 10 km2, which reaches 3km length for the 90% contribution, where buoyancy is the dominant mechanism driving turbulence. In contrast, the stable atmosphere during the night-time shows a narrower footprint that goes beyond 8km2 and grows in the direction of the prevalent wind, which exceeds 4 km in length. This study improves our understanding of agricultural ecosystem behaviour in terms of the magnitude and variability of fluxes and

  16. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    DOE PAGES

    An, F. P.; Balantekin, A. B.; Band, H. R.; ...

    2017-01-01

    Here, a new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW th nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946 ± 0.020 (0.992more » ± 0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4$-$6 MeV was found in the measured spectrum, with a local significance of 4.4σ. Finally, a reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.« less

  17. Vertical divergence of fogwater fluxes above a spruce forest

    NASA Astrophysics Data System (ADS)

    Burkard, R.; Eugster, W.; Wrzesinsky, T.; Klemm, O.

    Two almost identical eddy covariance measurement setups were used to measure the fogwater fluxes to a forest ecosystem in the "Fichtelgebirge" mountains (Waldstein research site, 786 m a.s.l.) in Germany. During the first experiment, an intercomparison was carried out with both setups running simultaneously at the same measuring height on a meteorological tower, 12.5 m above the forest canopy. The results confirmed a close agreement of the turbulent fluxes between the two setups, and allowed to intercalibrate liquid water content (LWC) and gravitational fluxes. During the second experiment, the setups were mounted at a height of 12.5 and 3 m above the canopy, respectively. For the 22 fog events, a persistent negative flux divergence was observed with a greater downward flux at the upper level. To extrapolate the turbulent liquid water fluxes measured at height z to the canopy of height hc, a conversion factor 1/[1+0.116( z- hc)] was determined. For the fluxes of nonvolatile ions, no such correction is necessary since the net evaporation of the fog droplets appears to be the primary cause of the vertical flux divergence. Although the net evaporation reduces the liquid water flux reaching the canopy, it is not expected to change the absolute amount of ions dissolved in fogwater.

  18. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    NASA Astrophysics Data System (ADS)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  19. Long-lived neutral-kaon flux measurement for the KOTO experiment

    DOE PAGES

    Masuda, T.; Ahn, J. K.; Banno, S.; ...

    2016-01-24

    The KOTO(K 0 at Tokai) experiment aims to observe the CP-violating rare decay K L → π 0νν¯ over bar by using a long-lived neutral-kaon beam produced by the 30 GeV proton beam at the Japan Proton Accelerator Research Complex. The K L flux is an essential parameter for the measurement of the branching fraction. Three K L neutral decay modes, K L → 3 π 0, K L → 2 π 0, and K L → 2γ, were used to measure the K L flux in the beam line in the 2013 KOTO engineering run. A Monte Carlo simulationmore » was used to estimate the detector acceptance for these decays. Agreement was found between the simulation model and the experimental data, and the remaining systematic uncertainty was estimated at the 1.4% level. Here, the K L flux was measured as (4.183 ± 0.017 stat. ± 0.059 sys.) x 10 7 K L per 2 x 10 14 protons on a 66-mm-long Au target.« less

  20. Multiple Flux Footprints, Flux Divergences and Boundary Layer Mixing Ratios: Studies of Ecosystem-Atmosphere CO2 Exchange Using the WLEF Tall Tower.

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Bakwin, P. S.; Yi, C.; Cook, B. D.; Wang, W.; Denning, A. S.; Teclaw, R.; Isebrands, J. G.

    2001-05-01

    Long-term, tower-based measurements using the eddy-covariance method have revealed a wealth of detail about the temporal dynamics of netecosystem-atmosphere exchange (NEE) of CO2. The data also provide a measure of the annual net CO2 exchange. The area represented by these flux measurements, however, is limited, and doubts remain about possible systematic errors that may bias the annual net exchange measurements. Flux and mixing ratio measurements conducted at the WLEF tall tower as part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS) allow for unique assessment of the uncertainties in NEE of CO2. The synergy between flux and mixing ratio observations shows the potential for comparing inverse and eddy-covariance methods of estimating NEE of CO2. Such comparisons may strengthen confidence in both results and begin to bridge the huge gap in spatial scales (at least 3 orders of magnitude) between continental or hemispheric scale inverse studies and kilometer-scale eddy covariance flux measurements. Data from WLEF and Willow Creek, another ChEAS tower, are used to estimate random and systematic errors in NEE of CO2. Random uncertainty in seasonal exchange rates and the annual integrated NEE, including both turbulent sampling errors and variability in enviromental conditions, is small. Systematic errors are identified by examining changes in flux as a function of atmospheric stability and wind direction, and by comparing the multiple level flux measurements on the WLEF tower. Nighttime drainage is modest but evident. Systematic horizontal advection occurs during the morning turbulence transition. The potential total systematic error appears to be larger than random uncertainty, but still modest. The total systematic error, however, is difficult to assess. It appears that the WLEF region ecosystems were a small net sink of CO2 in 1997. It is clear that the summer uptake rate at WLEF is much smaller than that at most deciduous forest sites, including the nearby

  1. Nitrous oxide fluxes from cultivated areas and rangeland: U.S. High Plains

    USGS Publications Warehouse

    Weeks, Edwin P.; McMahon, Peter B.

    2007-01-01

    Concentration profiles of N2O, a greenhouse gas, and the conservative trace gases SF6 and the chlorofluorocarbons CFC-11, CFC-12, CFC-113, and were measured periodically through thick vadose zones at nine sites in the U.S. High Plains. The CFC and SF6 measurements were used to calibrate a one-dimensional gas diffusion model, using the parameter identification program UCODE. The calibrated model was used with N2O measurements to estimate average annual N2O flux from both the root zone and the deep vadose zone to the atmosphere. Estimates of root-zone N 2O fluxes from three rangeland sites ranged from near 0 to about 0.2 kg N2O-N ha-1 yr-1, values near the low end of the ranges determined for native grass from other studies. Estimates of root-zone N2O fluxes from two fields planted to corn (Zea mays L.) of about 2 to 6 kg N2O-N ha-1 yr-1 are similar to those determined for corn in other studies. Estimates of N2O flux from Conservation Reserve grassland converted from irrigated corn indicate that production of N2O is substantially reduced following conversion from cropland. Small N2O fluxes from the water table or from deep in the vadose zone occurred at three sites, ranging from 0.004 to 0.02 kg N 2O-N ha-1 yr-1. Our estimates of N2O flux represent space- and time-averaged values that should be useful to more fully evaluate the significance of instantaneous point flux measurements. ?? Soil Science Society of America.

  2. BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.

  3. AmeriFlux US-Fmf Flagstaff - Managed Forest

    DOE Data Explorer

    Dor, Sabina [Northern Arizona Univ., Flagstaff, AZ (United States); Kolb, Thomas [Northern Arizona Univ., Flagstaff, AZ (United States)

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Fmf Flagstaff - Managed Forest. Site Description - Ponderosa pine forest subject to thinning in September 2006. Project webpage http://nau.edu/CEFNS/Forestry/Research/Carbon-Flux/Sites/

  4. AmeriFlux US-Fuf Flagstaff - Unmanaged Forest

    DOE Data Explorer

    Dor, Sabina [Northern Arizona Univ., Flagstaff, AZ (United States); Kolb, Thomas [Northern Arizona Univ., Flagstaff, AZ (United States)

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Fuf Flagstaff - Unmanaged Forest. Site Description - Ponderosa pine forest not subject to disturbance in the last decades. Project webpage http://nau.edu/CEFNS/Forestry/Research/Carbon-Flux/Sites/.

  5. A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality across 20 AmeriFlux Flux Tower Sites

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.

    2017-10-01

    Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.Plain Language SummaryAs diffuse radiation can increase canopy light use efficiency (LUE), there is a need to differentiate the effects of direct and diffuse radiation in simulating terrestrial gross primary production (GPP). A novel diffuse-fraction (Df)-based two leaf GPP model (DTEC) developed by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/35420','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/35420"><span>LBA-ECO TG-07 Soil CO2 <span class="hlt">Flux</span> by Automated Chamber, Para, Brazil: 2001-2003</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R.K. Varner; M.M. Keller</p> <p>2009-01-01</p> <p><span class="hlt">Measurements</span> of the soil-atmosphere <span class="hlt">flux</span> of CO2 were made at the km 67 <span class="hlt">flux</span> tower <span class="hlt">site</span> in the Tapajos National Forest, Santarem, Para, Brazil. Eight chambers were set up to <span class="hlt">measure</span> trace gas exchange between the soil and atmosphere about 5 times a day (during daylight and night) at this undisturbed forest <span class="hlt">site</span> from April 2001 to April 2003. CO2 soil efflux data are...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8957M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8957M"><span>Concentrations and <span class="hlt">flux</span> <span class="hlt">measurements</span> of volatile organic compounds (VOC) in boreal forest soil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana</p> <p>2017-04-01</p> <p>Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been <span class="hlt">measured</span> in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC <span class="hlt">fluxes</span> and concentrations of different horizons from boreal forest soil. The VOC concentrations and <span class="hlt">fluxes</span> were <span class="hlt">measured</span> from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC <span class="hlt">fluxes</span> were <span class="hlt">measured</span> using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also <span class="hlt">measured</span> in each location from four different soil horizons with the <span class="hlt">measurement</span> depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and <span class="hlt">fluxes</span> of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were <span class="hlt">measured</span>. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC <span class="hlt">fluxes</span> and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC <span class="hlt">fluxes</span> on the soil surface were <span class="hlt">measured</span> in October, whereas the monoterpene concentrations in organic soil were highest in July</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23376521','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23376521"><span>Forest floor leachate <span class="hlt">fluxes</span> under six different tree species on a metal contaminated <span class="hlt">site</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van Nevel, Lotte; Mertens, Jan; De Schrijver, An; Baeten, Lander; De Neve, Stefaan; Tack, Filip M G; Meers, Erik; Verheyen, Kris</p> <p>2013-03-01</p> <p>Trees play an important role in the biogeochemical cycling of metals, although the influence of different tree species on the mobilization of metals is not yet clear. This study examined effects of six tree species on <span class="hlt">fluxes</span> of Cd, Zn, DOC, H(+) and base cations in forest floor leachates on a metal polluted <span class="hlt">site</span> in Belgium. Forest floor leachates were sampled with zero-tension lysimeters in a 12-year-old post-agricultural forest on a sandy soil. The tree species included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We show that total Cd <span class="hlt">fluxes</span> in forest floor leachate under aspen were slightly higher than those in the other species' leachates, yet the relative differences between the species were considerably smaller when looking at dissolved Cd <span class="hlt">fluxes</span>. The latter was probably caused by extremely low H(+) amounts leaching from aspen's forest floor. No tree species effect was found for Zn leachate <span class="hlt">fluxes</span>. We expected higher metal leachate <span class="hlt">fluxes</span> under aspen as its leaf litter was significantly contaminated with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen's forest floor were possibly caused by high activity of soil biota, for example burrowing earthworms. Furthermore, our results reveal that Scots pine and oak were characterized by high H(+) and DOC <span class="hlt">fluxes</span> as well as low base cation <span class="hlt">fluxes</span> in their forest floor leachates, implying that those species might enhance metal mobilization in the soil profile and thus bear a potential risk for belowground metal dispersion. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246059','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246059"><span>Ameri<span class="hlt">Flux</span> US-Ha1 Harvard Forest EMS Tower (HFR1)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Munger, J. William [Harvard University</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Ha1 Harvard Forest EMS Tower (HFR1). <span class="hlt">Site</span> Description - The Harvard Forest tower is on land owned by Harvard University. The <span class="hlt">site</span> is designated as an LTER <span class="hlt">site</span>. Most of the surrounding area was cleared for agrigulture during European settlement in 1600-1700. The <span class="hlt">site</span> has been regrowing since before 1900 (based on tree ring chronologies) and is now predominantly red oak and red maple, with patches of mature hemlock stand and individual white pine. Overstory trees were uprooted by hurricane in 1938. Climate <span class="hlt">measurements</span> have been made at Harvard Forest since 1964.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1340509-measurement-high-energy-neutron-flux-above-ground-utilizing-spallation-based-multiplicity-technique','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1340509-measurement-high-energy-neutron-flux-above-ground-utilizing-spallation-based-multiplicity-technique"><span><span class="hlt">Measurement</span> of high-energy neutron <span class="hlt">flux</span> above ground utilizing a spallation based multiplicity technique</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Roecker, Caleb; Bernstein, Adam; Marleau, Peter; ...</p> <p>2016-11-14</p> <p>Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly <span class="hlt">measured</span> background. Above ground the high-energy neutron energy-dependent <span class="hlt">flux</span> has been <span class="hlt">measured</span>, with significantly varying results. Below ground, high-energy neutron <span class="hlt">fluxes</span> are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent <span class="hlt">flux</span> <span class="hlt">measured</span> using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new <span class="hlt">measurement</span> of the above ground high-energy neutron energy-dependent <span class="hlt">flux</span> with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the <span class="hlt">measurement</span> statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron <span class="hlt">flux</span> between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere <span class="hlt">measurements</span>. Over the total energy regime <span class="hlt">measured</span>, the MARS result are located within the span of previous <span class="hlt">measurements</span>. Lastly, these results demonstrate the feasibility of future below ground <span class="hlt">measurements</span> with MARS.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1340509','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1340509"><span><span class="hlt">Measurement</span> of high-energy neutron <span class="hlt">flux</span> above ground utilizing a spallation based multiplicity technique</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roecker, Caleb; Bernstein, Adam; Marleau, Peter</p> <p></p> <p>Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly <span class="hlt">measured</span> background. Above ground the high-energy neutron energy-dependent <span class="hlt">flux</span> has been <span class="hlt">measured</span>, with significantly varying results. Below ground, high-energy neutron <span class="hlt">fluxes</span> are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent <span class="hlt">flux</span> <span class="hlt">measured</span> using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new <span class="hlt">measurement</span> of the above ground high-energy neutron energy-dependent <span class="hlt">flux</span> with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the <span class="hlt">measurement</span> statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron <span class="hlt">flux</span> between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere <span class="hlt">measurements</span>. Over the total energy regime <span class="hlt">measured</span>, the MARS result are located within the span of previous <span class="hlt">measurements</span>. Lastly, these results demonstrate the feasibility of future below ground <span class="hlt">measurements</span> with MARS.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246067','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246067"><span>Ameri<span class="hlt">Flux</span> US-Ivo Ivotuk</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Oechel, Walter [San Diego State University; Zona, Donatella [San Diego State University</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Ivo Ivotuk. <span class="hlt">Site</span> Description - This <span class="hlt">site</span> is 300 km south of Barrow and is located at the foothill of the Brooks Range and is classified as tussock sedge, dwarf-shrub, moss tundra.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246029','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246029"><span>Ameri<span class="hlt">Flux</span> US-Atq Atqasuk</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Oechel, Walt [San Diego State University; Zona, Donatella [San Diego State University</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Atq Atqasuk. <span class="hlt">Site</span> Description - This <span class="hlt">site</span> is 100 km south of Barrow, Alaska, Variety of moist-wet coastal sedge tundra, and moist-tussock tundra surfaces in the more well-drained upland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21055851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21055851"><span>Direct comparison of 210Po, 234Th and POC particle-size distributions and export <span class="hlt">fluxes</span> at the Bermuda Atlantic Time-series Study (BATS) <span class="hlt">site</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stewart, Gillian; Moran, S Bradley; Lomas, Michael W; Kelly, Roger P</p> <p>2011-05-01</p> <p>Particle-reactive, naturally occurring radionuclides are useful tracers of the sinking <span class="hlt">flux</span> of organic matter from the surface to the deep ocean. Since the Joint Global Ocean <span class="hlt">Flux</span> Study (JGOFS) began in 1987, the disequilibrium between (234)Th and its parent (238)U has become widely used as a technique to <span class="hlt">measure</span> particle export <span class="hlt">fluxes</span> from surface ocean waters. Another radionuclide pair, (210)Po and (210)Pb, can be used for the same purpose but has not been as widely adopted due to difficulty with accurately constraining the (210)Po/(210)Pb radiochemical balance in the ocean and because of the more time-consuming radiochemical procedures. Direct comparison of particle <span class="hlt">flux</span> estimated in different ocean regions using these short-lived radionuclides is important in evaluating their utility and accuracy as tracers of particle <span class="hlt">flux</span>. In this paper, we present paired (234)Th/(238)U and (210)Po/(210)Pb data from oligotrophic surface waters of the subtropical Northwest Atlantic and discuss their advantages and limitations. Vertical profiles of total and particle size-fractionated (210)Po and (234)Th activities, together with particulate organic carbon (POC) concentrations, were <span class="hlt">measured</span> during three seasons at the Bermuda Atlantic Time-series Study (BATS) <span class="hlt">site</span>. Both (210)Po and (234)Th reasonably predict sinking POC <span class="hlt">flux</span> caught in sediment traps, and each tracer provides unique information about the magnitude and efficiency of the ocean's biological pump. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950056392&hterms=harp&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dharp','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950056392&hterms=harp&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dharp"><span>Nightside electron <span class="hlt">flux</span> <span class="hlt">measurements</span> at Mars by the Phobos-2 HARP instrument</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shutte, N.; Gringauz, K.; Kiraly, P.; Kotova, G.; Nagy, A. F.; Rosenbauer, H.; Szego, K.; Verigin, M.</p> <p>1995-01-01</p> <p>All the available nightside electron data obtained during circular orbits at Mars from the Phobos-2 Hyperbolic Retarded Potential Analyzer (HARP) instrument have been examined in detail and are summarized in this paper. An electron <span class="hlt">flux</span> component with energies exceeding that of the unperturbed solar wind was observed inside the magnetosheath, indicating the presence of acceleration mechanism(s). The character of the electron <span class="hlt">fluxes</span> <span class="hlt">measured</span> in the magnetotail cannot be classified in any simple manner, however, there is a correlation between the electron <span class="hlt">fluxes</span> <span class="hlt">measured</span> well inside this region and the unperturbed solar wind ram pressure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ameriflux.lbl.gov','SCIGOVWS'); return false;" href="http://ameriflux.lbl.gov"><span>Ameri<span class="hlt">Flux</span>: <span class="hlt">Measuring</span> carbon, water and energy <span class="hlt">flux</span> across the Americas.</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Sign In × Welcome Close POSTCARDS Register for the 2018 Ameri<span class="hlt">Flux</span> <em>Synthesis</em> Workshop! US-UMB Ameri<span class="hlt">Flux</span> tower, located at the University of Michigan Biological Station (UMBS) Decadal <em>Synthesis</em> Survey POSTCARDS Register for the 2018 Ameri<span class="hlt">Flux</span> <em>Synthesis</em> Workshop! Apr 2 2018 Decadal <em>Synthesis</em> Survey: Insights</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A21A..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A21A..04P"><span>Motion-Correlated Flow Distortion and Wave-Induced Biases in Air-Sea <span class="hlt">Flux</span> <span class="hlt">Measurements</span> From Ships</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.</p> <p>2016-02-01</p> <p>Direct <span class="hlt">measurements</span> of the turbulent air-sea <span class="hlt">fluxes</span> of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind <span class="hlt">measurements</span> are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the <span class="hlt">flux</span> <span class="hlt">measurements</span>. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar <span class="hlt">measurements</span> have previously been published but their application to momentum <span class="hlt">flux</span> <span class="hlt">measurements</span> remains controversial. Here we use eddy covariance momentum <span class="hlt">flux</span> <span class="hlt">measurements</span> obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous <span class="hlt">measurements</span> using the autonomous Auto<span class="hlt">Flux</span> system (Yelland et al., 2009). <span class="hlt">Measurements</span> were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the <span class="hlt">measured</span> motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the <span class="hlt">measured</span> momentum <span class="hlt">flux</span> on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: Auto<span class="hlt">Flux</span>: an autonomous system for the direct <span class="hlt">measurement</span> of the air-sea <span class="hlt">fluxes</span> of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.B51D1000C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.B51D1000C"><span>FLUXNET: A Global Network of Eddy-Covariance <span class="hlt">Flux</span> Towers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, R. B.; Holladay, S. K.; Margle, S. M.; Olsen, L. M.; Gu, L.; Heinsch, F.; Baldocchi, D.</p> <p>2003-12-01</p> <p>The FLUXNET global network was established to aid in understanding the mechanisms controlling the exchanges of carbon dioxide, water vapor, and energy across a variety of terrestrial ecosystems. <span class="hlt">Flux</span> tower data are also being used to validate ecosystem model outputs and to provide information for validating remote sensing based products, including surface temperature, reflectance, albedo, vegetation indices, leaf area index, photosynthetically active radiation, and photosynthesis derived from MODIS sensors on the Terra and Aqua satellites. The global FLUXNET database provides consistent and complete <span class="hlt">flux</span> data to support global carbon cycle science. Currently FLUXNET consists of over 210 <span class="hlt">sites</span>, with most <span class="hlt">flux</span> towers operating continuously for 4 years or longer. Gap-filled data are available for 53 <span class="hlt">sites</span>. The FLUXNET database contains carbon, water vapor, sensible heat, momentum, and radiation <span class="hlt">flux</span> <span class="hlt">measurements</span> with associated ancillary and value-added data products. Towers are located in temperate conifer and broadleaf forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra on five continents. Selected MODIS Land products in the immediate vicinity of the <span class="hlt">flux</span> tower are subsetted and posted on the FLUXNET Web <span class="hlt">site</span> for 169 <span class="hlt">flux</span>-towers. The MODIS subsets are prepared in ASCII format for 8-day periods for an area 7 x 7 km around the tower.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713084S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713084S"><span>Turbulent <span class="hlt">fluxes</span> by "Conditional Eddy Sampling"</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas</p> <p>2015-04-01</p> <p> for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include <span class="hlt">fluxes</span> of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the <span class="hlt">flux</span> accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific <span class="hlt">measurement</span> errors. This comparison uses real <span class="hlt">measurements</span> of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' <span class="hlt">flux</span> tower <span class="hlt">site</span> 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich <span class="hlt">site</span> from 30 April to 3 November 2014 and real instrument performance suggest that the maximum <span class="hlt">flux</span> estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true <span class="hlt">flux</span> is 1.3% and 10%, respectively for monthly net <span class="hlt">fluxes</span>, 1.6% and 7%, respectively for daily net <span class="hlt">fluxes</span> and 8% and 35%, respectively for 30-minute CO2 <span class="hlt">flux</span> estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include <span class="hlt">flux</span> time series from the EC, CES and REA approaches from 30-min to annual resolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A53B0215T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A53B0215T"><span><span class="hlt">Measurement</span> of Turbulent Water Vapor <span class="hlt">Fluxes</span> from Lightweight Unmanned Aircraft Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.</p> <p>2010-12-01</p> <p>Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for <span class="hlt">measurements</span> of radiation <span class="hlt">fluxes</span>, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to <span class="hlt">measure</span> water vapor <span class="hlt">fluxes</span> using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent <span class="hlt">flux</span> system to incorporate high-frequency water vapor <span class="hlt">measurements</span>. The driving aim of the water vapor <span class="hlt">flux</span> system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a <span class="hlt">flux</span> system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial <span class="hlt">Measurement</span> Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. <span class="hlt">Measurements</span> of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat <span class="hlt">fluxes</span> (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the <span class="hlt">flux</span> profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE <span class="hlt">measured</span> by NOAA from a surface tower using standard <span class="hlt">flux</span> techniques. The system performance during the Dryden test, as well as subsequent</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010092160&hterms=Skylight&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSkylight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010092160&hterms=Skylight&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSkylight"><span>Shortwave Radiative <span class="hlt">Fluxes</span>, Solar-Beam Transmissions, and Aerosol Properties: TARFOX and ACE-2 Find More Absorption from <span class="hlt">Flux</span> Radiometry than from Other <span class="hlt">Measurements</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)</p> <p>2001-01-01</p> <p>The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous <span class="hlt">measurements</span> of shortwave radiative <span class="hlt">fluxes</span>, solar-beam transmissions, and the aerosols affecting those <span class="hlt">fluxes</span> and transmissions. Besides the <span class="hlt">measured</span> <span class="hlt">fluxes</span> and transmissions, other obtained properties include aerosol scattering and absorption <span class="hlt">measured</span> in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These <span class="hlt">measurements</span> of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote <span class="hlt">measurements</span> of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ <span class="hlt">measurements</span>; 2) More extinction derived from transmission <span class="hlt">measurements</span> than from in situ <span class="hlt">measurements</span>; (3) Larger aerosol absorption inferred from <span class="hlt">flux</span> radiometry than from other <span class="hlt">measurements</span>. When the <span class="hlt">measured</span> relationships between downwelling <span class="hlt">flux</span> and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the <span class="hlt">flux</span>-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190698','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190698"><span>Delta-<span class="hlt">Flux</span>: An eddy covariance network for a climate-smart Lower Mississippi Basin</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Runkle, Benjamin R. K.; Rigby, James R.; Reba, Michele L.; Anapalli, Saseendran S.; Bhattacharjee, Joydeep; Krauss, Ken W.; Liang, Lu; Locke, Martin A.; Novick, Kimberly A.; Sui, Ruixiu; Suvočarev, Kosana; White, Paul M.</p> <p>2017-01-01</p> <p>Networks of remotely monitored research <span class="hlt">sites</span> are increasingly the tool used to study regional agricultural impacts on carbon and water <span class="hlt">fluxes</span>. However, key national networks such as the National Ecological Observatory Network and Ameri<span class="hlt">Flux</span> lack contributions from the Lower Mississippi River Basin (LMRB), a highly productive agricultural area with opportunities for soil carbon sequestration through conservation practices. The authors describe the rationale to create the new Delta-<span class="hlt">Flux</span> network, which will coordinate efforts to quantify carbon and water budgets at seventeen eddy covariance <span class="hlt">flux</span> tower <span class="hlt">sites</span> in the LMRB. The network structure will facilitate climate-smart management strategies based on production-scale and continuous <span class="hlt">measurements</span> of carbon and water <span class="hlt">fluxes</span> from the landscape to the atmosphere under different soil and water management conditions. The seventeen instrumented field <span class="hlt">sites</span> are expected to monitor <span class="hlt">fluxes</span> within the most characteristic landscapes of the target area: row-crop fields, pasture, grasslands, forests, and marshes. The network participants are committed to open collaboration and efficient regionalization of <span class="hlt">site</span>-level findings to support sustainable agricultural and forestry management and conservation of natural resources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1327433-niwot-ridge-subalpine-forest-us-nr1-ameriflux-site-part-nbsp-data-acquisition-site-record-keeping','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1327433-niwot-ridge-subalpine-forest-us-nr1-ameriflux-site-part-nbsp-data-acquisition-site-record-keeping"><span>The Niwot Ridge Subalpine Forest US-NR1 Ameri<span class="hlt">Flux</span> <span class="hlt">site</span> – Part 1: Data acquisition and <span class="hlt">site</span> record-keeping</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Burns, Sean P.; Maclean, Gordon D.; Blanken, Peter D.; ...</p> <p>2016-09-29</p> <p>The Niwot Ridge Subalpine Forest Ameri<span class="hlt">Flux</span> <span class="hlt">site</span> (US-NR1) has been <span class="hlt">measuring</span> eddy-covariance ecosystem <span class="hlt">fluxes</span> of carbon dioxide, heat, and water vapor since 1 November 1998. Throughout this 17-year period there have been changes to the instrumentation and improvements to the data acquisition system. Here, in Part 1 of this three-part series of papers, we describe the hardware and software used for data-collection and metadata documentation. We made changes to the data acquisition system that aimed to reduce the system complexity, increase redundancy, and be as independent as possible from any network outages. Changes to facilitate these improvements were (1) switching to a PC/104-based computer runningmore » the National Center for Atmospheric Research (NCAR) In-Situ Data Acquisition Software (NIDAS) that saves the high-frequency data locally and over the network, and (2) time-tagging individual 10 Hz serial data samples using network time protocol (NTP) coupled to a GPS-based clock, providing a network-independent, accurate time base. Since making these improvements almost 2 years ago, the successful capture of high-rate data has been better than 99.98 %. Here, we also provide philosophical concepts that shaped our design of the data system and are applicable to many different types of environmental data collection.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1327433-niwot-ridge-subalpine-forest-us-nr1-ameriflux-site-part1-data-acquisition-site-record-keeping','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1327433-niwot-ridge-subalpine-forest-us-nr1-ameriflux-site-part1-data-acquisition-site-record-keeping"><span>The Niwot Ridge Subalpine Forest US-NR1 Ameri<span class="hlt">Flux</span> <span class="hlt">site</span> – Part 1: Data acquisition and <span class="hlt">site</span> record-keeping</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Burns, Sean P.; Maclean, Gordon D.; Blanken, Peter D.</p> <p></p> <p>The Niwot Ridge Subalpine Forest Ameri<span class="hlt">Flux</span> <span class="hlt">site</span> (US-NR1) has been <span class="hlt">measuring</span> eddy-covariance ecosystem <span class="hlt">fluxes</span> of carbon dioxide, heat, and water vapor since 1 November 1998. Throughout this 17-year period there have been changes to the instrumentation and improvements to the data acquisition system. Here, in Part 1 of this three-part series of papers, we describe the hardware and software used for data-collection and metadata documentation. We made changes to the data acquisition system that aimed to reduce the system complexity, increase redundancy, and be as independent as possible from any network outages. Changes to facilitate these improvements were (1) switching to a PC/104-based computer runningmore » the National Center for Atmospheric Research (NCAR) In-Situ Data Acquisition Software (NIDAS) that saves the high-frequency data locally and over the network, and (2) time-tagging individual 10 Hz serial data samples using network time protocol (NTP) coupled to a GPS-based clock, providing a network-independent, accurate time base. Since making these improvements almost 2 years ago, the successful capture of high-rate data has been better than 99.98 %. Here, we also provide philosophical concepts that shaped our design of the data system and are applicable to many different types of environmental data collection.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=18041&keyword=soil+AND+layers&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=18041&keyword=soil+AND+layers&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CARBON MONOXIDE <span class="hlt">FLUXES</span> OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Dark or low-light carbon monoxide <span class="hlt">fluxes</span> at upland Canadian boreal forest <span class="hlt">sites</span> were <span class="hlt">measured</span> on-<span class="hlt">site</span> with static chambers and with a laboratory incubation technique using cores from different depths at the same <span class="hlt">sites</span>. Three different upland black spruce <span class="hlt">sites</span>, burned in 1987,199...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=267926','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=267926"><span>Using passive capillary lysimeter water <span class="hlt">flux</span> <span class="hlt">measurements</span> to improve flow predictions in variably saturated soils.</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Passive capillary lysimeters (PCLs) are uniquely suited for <span class="hlt">measuring</span> water <span class="hlt">fluxes</span> in variably-saturated soils. The objective of this work was to compare PCL <span class="hlt">flux</span> <span class="hlt">measurements</span> with simulated <span class="hlt">fluxes</span> obtained with a calibrated unsaturated flow model. The Richards equation-based model was calibrated us...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246146','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246146"><span>Ameri<span class="hlt">Flux</span> US-Dia Diablo</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Wharton, Sonia [Lawrence Livermore National Laboratory</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Dia Diablo. <span class="hlt">Site</span> Description - The <span class="hlt">site</span> is on land owned by Lawrence Livermore National Laboratory (<span class="hlt">Site</span> 300) and has no grazing or management history since the 1950's except for summer-time burning of selected acres for fire management (not included in the tower footprint).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1436322','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1436322"><span>Ameri<span class="hlt">Flux</span> CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Barr, Alan</p> <p></p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> CA-SJ3 Saskatchewan - Western Boreal, Jack Pine forest harvested in 1975 (BOREAS Young Jack Pine). <span class="hlt">Site</span> Description - 53.87581° N, 104.64529° W, BOREAS 1994, 1996, BERMS climate and <span class="hlt">flux</span> <span class="hlt">measurements</span> to begin Spring 2003</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AMT.....9.5509Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AMT.....9.5509Y"><span>Comparison of two closed-path cavity-based spectrometers for <span class="hlt">measuring</span> air-water CO2 and CH4 <span class="hlt">fluxes</span> by eddy covariance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Mingxi; Prytherch, John; Kozlova, Elena; Yelland, Margaret J.; Parenkat Mony, Deepulal; Bell, Thomas G.</p> <p>2016-11-01</p> <p>In recent years several commercialised closed-path cavity-based spectroscopic instruments designed for eddy covariance <span class="hlt">flux</span> <span class="hlt">measurements</span> of carbon dioxide (CO2), methane (CH4), and water vapour (H2O) have become available. Here we compare the performance of two leading models - the Picarro G2311-f and the Los Gatos Research (LGR) Fast Greenhouse Gas Analyzer (FGGA) at a coastal <span class="hlt">site</span>. Both instruments can compute dry mixing ratios of CO2 and CH4 based on concurrently <span class="hlt">measured</span> H2O, temperature, and pressure. Additionally, we used a high throughput Nafion dryer to physically remove H2O from the Picarro airstream. Observed air-sea CO2 and CH4 <span class="hlt">fluxes</span> from these two analysers, averaging about 12 and 0.12 mmol m-2 day-1 respectively, agree within the <span class="hlt">measurement</span> uncertainties. For the purpose of quantifying dry CO2 and CH4 <span class="hlt">fluxes</span> downstream of a long inlet, the numerical H2O corrections appear to be reasonably effective and lead to results that are comparable to physical removal of H2O with a Nafion dryer in the mean. We estimate the high-frequency attenuation of <span class="hlt">fluxes</span> in our closed-path set-up, which was relatively small ( ≤ 10 %) for CO2 and CH4 but very large for the more polar H2O. The Picarro showed significantly lower noise and <span class="hlt">flux</span> detection limits than the LGR. The hourly <span class="hlt">flux</span> detection limit for the Picarro was about 2 mmol m-2 day-1 for CO2 and 0.02 mmol m-2 day-1 for CH4. For the LGR these detection limits were about 8 and 0.05 mmol m-2 day-1. Using global maps of monthly mean air-sea CO2 <span class="hlt">flux</span> as reference, we estimate that the Picarro and LGR can resolve hourly CO2 <span class="hlt">fluxes</span> from roughly 40 and 4 % of the world's oceans respectively. Averaging over longer timescales would be required in regions with smaller <span class="hlt">fluxes</span>. Hourly <span class="hlt">flux</span> detection limits of CH4 from both instruments are generally higher than the expected emissions from the open ocean, though the signal to noise of this <span class="hlt">measurement</span> may improve closer to the coast.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPBO7015H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPBO7015H"><span>Heat-<span class="hlt">Flux</span> <span class="hlt">Measurements</span> in Laser-Produced Plasmas Using Thomson Scattering from Electron Plasma Waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henchen, R. J.; Goncharov, V. N.; Cao, D.; Katz, J.; Froula, D. H.; Rozmus, W.</p> <p>2017-10-01</p> <p>An experiment was designed to <span class="hlt">measure</span> heat <span class="hlt">flux</span> in coronal plasmas using collective Thomson scattering. Adjustments to the electron distribution function resulting from heat <span class="hlt">flux</span> affect the shape of the collective Thomson scattering features through wave-particle resonance. The amplitude of the Spitzer-Härm electron distribution function correction term (f1) was varied to match the data and determines the value of the heat <span class="hlt">flux</span>. Independent <span class="hlt">measurements</span> of temperature and density obtained from Thomson scattering were used to infer the classical heat <span class="hlt">flux</span> (q = - κ∇Te) . Time-resolved Thomson-scattering data were obtained at five locations in the corona along the target normal in a blowoff plasma formed from a planar Al target with 1.5 kJ of 351-nm laser light in a 2-ns square pulse. The <span class="hlt">flux</span> <span class="hlt">measured</span> through the Thomson-scattering spectra is a factor of 5 less than the κ∇Te <span class="hlt">measurements</span>. The lack of collisions of heat-carrying electrons suggests a nonlocal model is needed to accurately describe the heat <span class="hlt">flux</span>. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6052G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6052G"><span>Comparing Noah-MP simulations of energy and water <span class="hlt">fluxes</span> in the soil-vegetation-atmosphere continuum with plot scale <span class="hlt">measurements</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gayler, Sebastian; Wöhling, Thomas; Högy, Petra; Ingwersen, Joachim; Wizemann, Hans-Dieter; Wulfmeyer, Volker; Streck, Thilo</p> <p>2013-04-01</p> <p>During the last years, land-surface models have proven to perform well in several studies that compared simulated <span class="hlt">fluxes</span> of water and energy from the land surface to the atmosphere against <span class="hlt">measured</span> <span class="hlt">fluxes</span> at the plot-scale. In contrast, considerable deficits of land-surface models have been identified to simulate soil water <span class="hlt">fluxes</span> and vertical soil moisture distribution. For example, Gayler et al. (2013) showed that simplifications in the representation of root water uptake can result in insufficient simulations of the vertical distribution of soil moisture and its dynamics. However, in coupled simulations of the terrestrial water cycle, both sub-systems, the atmosphere and the subsurface hydrogeo-system, must fit together and models are needed, which are able to adequately simulate soil moisture, latent heat <span class="hlt">flux</span>, and their interrelationship. Consequently, land-surface models must be further improved, e.g. by incorporation of advanced biogeophysics models. To improve the conceptual realism in biophysical and hydrological processes in the community land surface model Noah, this model was recently enhanced to Noah-MP by a multi-options framework to parameterize individual processes (Niu et al., 2011). Thus, in Noah-MP the user can choose from several alternative models for vegetation and hydrology processes that can be applied in different combinations. In this study, we evaluate the performance of different Noah-MP model settings to simulate water and energy <span class="hlt">fluxes</span> across the land surface at two contrasting field <span class="hlt">sites</span> in South-West Germany. The evaluation is done in 1D offline-mode, i.e. without coupling to an atmospheric model. The atmospheric forcing is provided by <span class="hlt">measured</span> time series of the relevant variables. Simulation results are compared with eddy covariance <span class="hlt">measurements</span> of turbulent <span class="hlt">fluxes</span> and <span class="hlt">measured</span> time series of soil moisture at different depths. The aims of the study are i) to carve out the most appropriate combination of process parameterizations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JInst...9P8010K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JInst...9P8010K"><span>Cosmic muon <span class="hlt">flux</span> <span class="hlt">measurements</span> at the Kimballton Underground Research Facility</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.</p> <p>2014-08-01</p> <p>In this article, the results from a series of muon <span class="hlt">flux</span> <span class="hlt">measurements</span> conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon <span class="hlt">flux</span> inside the mine as a function of the overburden. The results are in good agreement with muon <span class="hlt">flux</span> calculations based on analytical models and MUSIC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvL.116f1801A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvL.116f1801A"><span><span class="hlt">Measurement</span> of the Reactor Antineutrino <span class="hlt">Flux</span> and Spectrum at Daya Bay</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dove, J.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration</p> <p>2016-02-01</p> <p>This Letter reports a <span class="hlt">measurement</span> of the <span class="hlt">flux</span> and energy spectrum of electron antineutrinos from six 2.9 GWt h nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The <span class="hlt">measured</span> IBD yield is (1.55 ±0.04 ) ×10-18 cm2 GW-1 day-1 or (5.92 ±0.14 ) ×10-43 cm2 fission-1 . This <span class="hlt">flux</span> <span class="hlt">measurement</span> is consistent with previous short-baseline reactor antineutrino experiments and is 0.946 ±0.022 (0.991 ±0.023 ) relative to the <span class="hlt">flux</span> predicted with the Huber -Mueller (ILL -Vogel ) fissile antineutrino model. The <span class="hlt">measured</span> IBD positron energy spectrum deviates from both spectral predictions by more than 2 σ over the full energy range with a local significance of up to ˜4 σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the <span class="hlt">measured</span> positron energy spectrum for model-independent predictions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6984481-radiation-fluxes-fife-site-final-report-january-july','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6984481-radiation-fluxes-fife-site-final-report-january-july"><span>Radiation <span class="hlt">fluxes</span> at the FIFE <span class="hlt">site</span>. Final report, 1 January 1991-31 July 1992</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walter-Shea, E.A.; Blad, B.L.; Zara, P.</p> <p>1993-01-01</p> <p>The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions'. The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE <span class="hlt">site</span> must be understood before the radiation observed by satellites can be used tomore » quantify surface processes. Our last report (Walter-Shea et al.) focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989. We report here on the final analysis of the slope data as well as results from thermal radiation studies conducted during the FIFE experiment. The specific areas reported are the following: (1) analysis of slope effects on <span class="hlt">measured</span> reflectance values and estimates of surface albedo; (2) using remotely-<span class="hlt">measured</span> surface temperatures as a means of estimating sensible heat <span class="hlt">flux</span> from the Konza Prairie; (3) extracting canopy temperatures from remotely-<span class="hlt">measured</span> composite surface temperatures; (4) modeling the <span class="hlt">measured</span> composite temperature of partially vegetated surfaces; and (5) estimating gap distribution in partially vegetated surfaces from reflectance <span class="hlt">measurements</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/984359','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/984359"><span>A Continuous <span class="hlt">Measure</span> of Gross Primary Production for the Conterminous U.S. Derived from MODIS and Ameri<span class="hlt">Flux</span> Data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.</p> <p></p> <p>The quantification of carbon <span class="hlt">fluxes</span> between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance <span class="hlt">flux</span> towers provide continuous <span class="hlt">measurements</span> of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these <span class="hlt">measurements</span> only represent the <span class="hlt">fluxes</span> at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance <span class="hlt">flux</span> towers to the continental scale. We first combined GPP and MODIS data for 42 Ameri<span class="hlt">Flux</span> towers encompassing a wide rangemore » of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the <span class="hlt">site</span> level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous <span class="hlt">measure</span> of gross primary production for the U.S. that is a highly constrained by eddy covariance <span class="hlt">flux</span> data. Our study demonstrated that our empirical approach is effective for upscaling eddy <span class="hlt">flux</span> GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22775202','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22775202"><span><span class="hlt">Measurement</span> of air and VOC vapor <span class="hlt">fluxes</span> during gas-driven soil remediation: bench-scale experiments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D</p> <p>2012-09-04</p> <p>In this laboratory study, an experimental method was developed for the quantitative analyses of gas <span class="hlt">fluxes</span> in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air <span class="hlt">flux</span> <span class="hlt">measurement</span>, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air <span class="hlt">flux</span> was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The <span class="hlt">measured</span> air <span class="hlt">fluxes</span> are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air <span class="hlt">flux</span> at the soil surface was <span class="hlt">measured</span>. The distribution of the air <span class="hlt">flux</span> was found to be affected by the depth of the saturated zone. The <span class="hlt">flux</span> and <span class="hlt">flux</span> distribution of a volatile contaminant (perchloroethene) was also <span class="hlt">measured</span> by using the two-dimensional model. Quantitative information of both air and contaminant <span class="hlt">flux</span> may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.B23C0448W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.B23C0448W"><span><span class="hlt">Measuring</span> hourly 18O and 2H <span class="hlt">fluxes</span> in a mixed hardwood forest using an integrated cavity output spectrometer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, L.; Caylor, K.; Dragoni, D.</p> <p>2008-12-01</p> <p>The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H <span class="hlt">fluxes</span> in landscapes is a 'Keeling Plot' approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large <span class="hlt">measurement</span> uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous <span class="hlt">measurements</span>. Over the last 3-4 years a few groups have developed continuous approaches for <span class="hlt">measuring</span> δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field <span class="hlt">sites</span>. In this research, we tested out a new LAS--based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a <span class="hlt">flux</span> gradient system. The WVIA was calibrated bi- weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower <span class="hlt">site</span> (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H <span class="hlt">fluxes</span> data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvL.117i1103A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvL.117i1103A"><span>Antiproton <span class="hlt">Flux</span>, Antiproton-to-Proton <span class="hlt">Flux</span> Ratio, and Properties of Elementary Particle <span class="hlt">Fluxes</span> in Primary Cosmic Rays <span class="hlt">Measured</span> with the Alpha Magnetic Spectrometer on the International Space Station</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Willenbrock, M.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration</p> <p>2016-08-01</p> <p>A precision <span class="hlt">measurement</span> by AMS of the antiproton <span class="hlt">flux</span> and the antiproton-to-proton <span class="hlt">flux</span> ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 ×1 05 antiproton events and 2.42 ×1 09 proton events. The <span class="hlt">fluxes</span> and <span class="hlt">flux</span> ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ˜60 to ˜500 GV , the antiproton p ¯, proton p , and positron e+ <span class="hlt">fluxes</span> are found to have nearly identical rigidity dependence and the electron e- <span class="hlt">flux</span> exhibits a different rigidity dependence. Below 60 GV, the (p ¯/p ), (p ¯/e+), and (p /e+) <span class="hlt">flux</span> ratios each reaches a maximum. From ˜60 to ˜500 GV , the (p ¯/p ), (p ¯/e+), and (p /e+) <span class="hlt">flux</span> ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A52D..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A52D..06T"><span>Eddy Covariance <span class="hlt">Fluxes</span> of the NO-O3-NO2 Triad above the Forest Canopy at the ATTO <span class="hlt">Site</span> in the Amazon Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsokankunku, A.; Wolff, S.; Berger, M.; Zelger, M.; Dlugi, R. J. W.; Andreae, M. O.; Sörgel, M.</p> <p>2017-12-01</p> <p>Nitrogen monoxide (NO) and nitrogen dioxide (NO2) (denoted together as NOx) determine the abundance of the tropospheric oxidants OH, O3 and NO3 that regulate atmospheric self-cleaning. The three reactive trace gases NO, NO2 and O3 undergo a series of interconnected photochemical reactions and are therefore often referred to as the NO-O3-NO2 triad. Ozone deposition is mainly controlled by stomatal uptake, therefore resulting in oxidative stress for the plants. Similarly, nitrogen dioxide from above or below the canopy is deposited to leaves through stomatal uptake. NO emissions from soils contribute to above canopy O3 formation and accelerate OH recycling. Therefore, quantification of the biosphere-atmosphere exchange <span class="hlt">fluxes</span> of these species is important for atmospheric chemistry and ecosystem research. The eddy covariance method is state of the art for direct <span class="hlt">measurements</span> of ecosystem <span class="hlt">fluxes</span> of trace gases. Eddy covariance <span class="hlt">measurements</span> of NOx in pristine environments are rare because of lack of availability of instruments with the required precision to resolve concentrations characteristic of these environments with the required high time resolution. The Amazon Tall Tower Observatory (ATTO) is located in a pristine rainforest environment in the Amazon basin about 150 km northeast of the city of Manaus. It is the ideal <span class="hlt">site</span> for studying the biosphere-atmosphere exchange of the NO-O3-NO2 triad, because of the absence of nearby anthropogenic sources. During an intensive <span class="hlt">measurement</span> campaign in November 2015 at the ATTO <span class="hlt">site</span>, <span class="hlt">measurements</span> of NO, NO2 and O3 were carried out at 42 m above ground level on the 80 m walk-up tower with a fast (5 Hz) and sensitive (< 30 ppt) instrument (CLD790SR2, Eco Physics) for NO and NO2 and with 10 Hz for O3 (Enviscope GmbH). Additionally, a suite of micrometeorological instruments was installed, including a profile of 3-dimensional sonic anemometers and meteorological sensors. Vertical concentration profile <span class="hlt">measurements</span> of NO, NO2 and O</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.B34A..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.B34A..03B"><span>Simulating Energy, Water and Carbon <span class="hlt">Fluxes</span> at the Shortgrass Steppe Long Term Ecological Research (LTER) <span class="hlt">Site</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.</p> <p>2005-12-01</p> <p>Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon <span class="hlt">fluxes</span> over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe <span class="hlt">site</span>. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat <span class="hlt">flux</span>. Simulated energy and CO2 <span class="hlt">fluxes</span> are compared to observations collected using Bowen ratio <span class="hlt">flux</span> towers during two growing seasons. Seasonality of the <span class="hlt">fluxes</span> reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122..661P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122..661P"><span>Estimation of Community Land Model parameters for an improved assessment of net carbon <span class="hlt">fluxes</span> at European <span class="hlt">sites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan</p> <p>2017-03-01</p> <p>The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual <span class="hlt">sites</span>. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European <span class="hlt">sites</span> with different plant functional types (PFTs). The posterior CLM parameter distributions of each <span class="hlt">site</span> were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET <span class="hlt">sites</span> at 600 km distance to the original <span class="hlt">sites</span>. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the <span class="hlt">measured</span> NEE data of each <span class="hlt">site</span>. The seasonal parameter values reduced with more than 50% (averaged over all <span class="hlt">sites</span>) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop <span class="hlt">sites</span>, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and <span class="hlt">fluxes</span> require careful consideration of uncertain ecological parameters and initial states.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134734','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134734"><span>PAH and OPAH <span class="hlt">Flux</span> during the Deepwater Horizon Incident</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tidwell, Lane G.; Allan, Sarah E.; O'Connell, Steven G.; Hobbie, Kevin A.; Smith, Brian W.; Anderson, Kim A.</p> <p>2016-01-01</p> <p>Passive sampling devices were used to <span class="hlt">measure</span> air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal <span class="hlt">sites</span> prior to, during and after shoreline oiling from the Deepwater Horizon oil spill (DWH). <span class="hlt">Measurements</span> were taken at each <span class="hlt">site</span> over a 13 month period, and <span class="hlt">flux</span> across the water-air boundary was determined. This is the first report of vapor phase and diffusive <span class="hlt">flux</span> of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 6.6 and 210 ng/m3 and 0.02 and 34 ng/m3 respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water <span class="hlt">flux</span> of 13 individual PAHs was shown to be at least partially influenced by the DWH incident. The largest PAH volatilizations occurred at the <span class="hlt">sites</span> in Alabama and Mississippi at nominal rates of 56,000 and 42,000 ng/m2/day in the summer. Naphthalene was the PAH with the highest observed volatilization rate of 52,000 ng/m2/day in June 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical <span class="hlt">flux</span> determinations with passive sampling technology. PMID:27391856</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B24C..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B24C..08M"><span>Methane and Carbon Dioxide Concentrations and <span class="hlt">Fluxes</span> in Amazon Floodplains</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.</p> <p>2016-12-01</p> <p>Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine <span class="hlt">measurements</span> of methane and carbon dioxide concentrations and <span class="hlt">fluxes</span> to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to <span class="hlt">measure</span> <span class="hlt">fluxes</span>. To further understand <span class="hlt">fluxes</span>, we <span class="hlt">measured</span> turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide <span class="hlt">fluxes</span> varied as a function of season, habitat and water depth. High CO2 <span class="hlt">fluxes</span> at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 <span class="hlt">fluxes</span> are highest at turbulent open water <span class="hlt">sites</span>, and pCO2 is highest in macrophyte beds. <span class="hlt">Fluxes</span> and pCH4 are high in macrophyte beds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B33H..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B33H..03B"><span>Quantifying Fast and Slow Responses of Terrestrial Carbon Exchange across a Water Availability Gradient in North American <span class="hlt">Flux</span> <span class="hlt">Sites</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biederman, J. A.; Scott, R. L.; Goulden, M.</p> <p>2014-12-01</p> <p>Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare <span class="hlt">site</span>-level temporal sensitivity of annual carbon <span class="hlt">fluxes</span> to interannual variations in water availability against cross-<span class="hlt">site</span> spatial patterns over a network of 19 eddy covariance <span class="hlt">flux</span> <span class="hlt">sites</span>. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals <span class="hlt">site</span>-specific patterns not identifiable in prior syntheses that pooled <span class="hlt">sites</span>. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-<span class="hlt">site</span> spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest <span class="hlt">sites</span> than desert ecosystems. <span class="hlt">Site</span>-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across <span class="hlt">sites</span> as previously shown, but our <span class="hlt">site</span>-level analysis reveals surprisingly consistent linear relationships between these <span class="hlt">fluxes</span> in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1123503','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1123503"><span>Application of Crunch-Flow Routines to Constrain Present and Past Carbon <span class="hlt">Fluxes</span> at Gas-Hydrate Bearing <span class="hlt">Sites</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Torres, Marta</p> <p>2014-01-31</p> <p>In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon <span class="hlt">fluxes</span> at gas-hydrate bearing <span class="hlt">sites</span>. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several <span class="hlt">sites</span> drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling effortsmore » that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled <span class="hlt">sites</span> in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane <span class="hlt">flux</span>) and non-chimney <span class="hlt">sites</span> (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane <span class="hlt">flux</span> in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several <span class="hlt">sites</span> drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney <span class="hlt">sites</span>, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21096099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21096099"><span>Theoretical simulation of the dual-heat-<span class="hlt">flux</span> method in deep body temperature <span class="hlt">measurements</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Ming; Chen, Wenxi</p> <p>2010-01-01</p> <p>Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-<span class="hlt">flux</span> method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of <span class="hlt">measurement</span> accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-<span class="hlt">flux</span> probe in deep body temperature <span class="hlt">measurements</span> to validate the fundamental principles of the dual-heat-<span class="hlt">flux</span> method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-<span class="hlt">flux</span> probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-<span class="hlt">flux</span> probe. Insights in improving the performance of the dual-heat-<span class="hlt">flux</span> method were discussed for further studies of dual-heat-<span class="hlt">flux</span> probes, taking into account structural and geometric considerations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA583176','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA583176"><span>Nanoengineered Surfaces for High <span class="hlt">Flux</span> Thin Film Evaporation</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-07-15</p> <p>for a variety of heat transfer and resource conserving applications. References 1. Mudawar , I., Assessment of high-heat-<span class="hlt">flux</span> thermal...M.B. and I. Mudawar , High-<span class="hlt">flux</span> boiling in low-flow rate, low-pressure drop mini- channel and microchannel heat sinks. International Journal of Heat...pressure drop elements and fabricated nucleation <span class="hlt">sites</span>. Journal of Heat Transfer, 2006. 128(4): p. 389-396. 7. Qu, W. and I. Mudawar , <span class="hlt">Measurement</span> and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=337427','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=337427"><span>Surface renewal application and examination over different Ameri<span class="hlt">Flux</span> landscapes</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Some growing canopy or patchy forest <span class="hlt">sites</span> may preclude optimal use of eddy covariance (EC) because their characteristics prevent consistent <span class="hlt">measurements</span> in the inertial sublayer. Therefore, alternative <span class="hlt">flux</span> <span class="hlt">measurement</span> methods with the potential to <span class="hlt">measure</span> in roughness sublayer are desirable. The s...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246041','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246041"><span>Ameri<span class="hlt">Flux</span> US-Brw Barrow</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Oechel, Walt [San Diego State University; Zona, Donatella [San Diego State University</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Brw Barrow. <span class="hlt">Site</span> Description - The local landscape surrounding the Barrow <span class="hlt">site</span> has a history absent of any disturbances. The terrain was not heavily glaciated during the last period of glaciation. The vegetation is mature in an unmanaged and undisturbed Arctic tundra.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A44A..06N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A44A..06N"><span>Imposing strong constraints on tropical terrestrial CO2 <span class="hlt">fluxes</span> using passenger aircraft based <span class="hlt">measurements</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niwa, Y.; Machida, T.; Sawa, Y.; Matsueda, H.; Schuck, T. J.; Brenninkmeijer, C. A.; Imasu, R.; Satoh, M.</p> <p>2011-12-01</p> <p>Better understanding of the global and regional carbon budget is needed to perform a reliable prediction of future climate with an earth system model. However, the reliability of CO2 source/sink estimation by inverse modeling, which is one of the promising methods to estimate regional carbon budget, is limited because of sparse observational data coverage. Very few observational data are available in tropics. Therefore, especially the reconstruction of tropical terrestrial <span class="hlt">fluxes</span> has considerable uncertainties. In this study, regional CO2 <span class="hlt">fluxes</span> for 2006-2008 are estimated by inverse modeling using the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) in addition to the surface <span class="hlt">measurement</span> dataset of GLOBALVIEW-CO2. CONTRAIL is a recently established CO2 <span class="hlt">measurement</span> network using in-situ <span class="hlt">measurement</span> instruments on board commercial aircraft. Five CONTRAIL aircraft travel back and forth between Japan and many areas: Europe, North America, Southeast Asia, South Asia, and Australia. The Bayesian synthesis approach is used to estimate monthly <span class="hlt">fluxes</span> for 42 regions using NICAM-TM simulations with existing CO2 <span class="hlt">flux</span> datasets and monthly mean observational data. It is demonstrated that the aircraft data have great impact on estimated tropical terrestrial <span class="hlt">fluxes</span>. By adding the aircraft data to the surface data, the analyzed uncertainty of tropical <span class="hlt">fluxes</span> has been reduced by 15 % and more than 30 % uncertainty reduction rate is found in Southeast and South Asia. Specifically, for annual net CO2 <span class="hlt">fluxes</span>, nearly neutral <span class="hlt">fluxes</span> of Indonesia, which is estimated using the surface dataset alone, turn to positive <span class="hlt">fluxes</span>, i.e. carbon sources. In Indonesia, a remarkable carbon release during the severe drought period of October-December in 2006 is estimated, which suggests that biosphere respiration or biomass burning was larger than the prior <span class="hlt">fluxes</span>. Comparison of the optimized atmospheric CO2 with independent aircraft <span class="hlt">measurements</span> of CARIBIC tends to validate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960026760','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960026760"><span>Development of airborne eddy-correlation <span class="hlt">flux</span> <span class="hlt">measurement</span> capabilities for reactive oxides of nitrogen</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bradshaw, John (Principal Investigator); Zheng, Xiaonan; Sandholm, Scott T.</p> <p>1996-01-01</p> <p>This research is aimed at producing a fundamental new research tool for characterizing the source strength of the most important compound controlling the hemispheric and global scale distribution of tropospheric ozone. Specifically, this effort seeks to demonstrate the proof-of-concept of a new general purpose laser-induced fluorescence based spectrometer for making airborne eddy-correlation <span class="hlt">flux</span> <span class="hlt">measurements</span> of nitric oxide (NO) and other reactive nitrogen compounds. The new all solid-state laser technology being used in this advanced sensor will produce a forerunner of the type of sensor technology that should eventually result in highly compact operational systems. The proof-of-concept sensor being developed will have over two orders-of-magnitude greater sensitivity than present-day instruments. In addition, this sensor will offer the possibility of eventual extension to airborne eddy-correlation <span class="hlt">flux</span> <span class="hlt">measurements</span> of nitrogen dioxide (NO2) and possibly other compounds, such as ammonia (NH3), peroxyradicals (HO2), nitrateradicals (NO3) and several iodine compounds (e.g., I and IO). Demonstration of the new sensor's ability to <span class="hlt">measure</span> NO <span class="hlt">fluxes</span> will occur through a series of laboratory and field tests. This proof-of-concept demonstration will show that not only can airborne <span class="hlt">fluxes</span> of important ultra-trace compounds be made at the few parts-per-trillion level, but that the high accuracy/precision <span class="hlt">measurements</span> currently needed for predictive models can also. These <span class="hlt">measurement</span> capabilities will greatly enhance our current ability to quantify the <span class="hlt">fluxes</span> of reactive nitrogen into the troposphere and significantly impact upon the accuracy of predictive capabilities to model O3's distribution within the remote troposphere. This development effort also offers a timely approach for producing the reactive nitrogen <span class="hlt">flux</span> <span class="hlt">measurement</span> capabilities that will be needed by future research programs such as NASA's planned 1999 Amazon Biogeochemistry and Atmospheric Chemistry</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27064564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27064564"><span>Optimizing laboratory-based radon <span class="hlt">flux</span> <span class="hlt">measurements</span> for sediments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chanyotha, Supitcha; Kranrod, Chutima; Kritsananuwat, Rawiwan; Lane-Smith, Derek; Burnett, William C</p> <p>2016-07-01</p> <p>Radon <span class="hlt">flux</span> via diffusion from sediments and other materials may be determined in the laboratory by circulating air through the sample and a radon detector in a closed loop. However, this approach is complicated by the necessity of having to determine the total air volume in the system and accounting for any small air leaks that can arise if using extended <span class="hlt">measurement</span> periods. We designed a simple open-loop configuration that includes a <span class="hlt">measured</span> mass of wet sediment and water inside a gas-tight reaction flask connected to a drying system and a radon-in-air analyzer. Ambient air flows through two charcoal columns before entering the reaction vessel to eliminate incoming radon. After traveling through the reaction flask, the air passes the drier and the radon analyzer and is then vented. After some time, the radon activity will reach a steady state depending upon the airflow rate. With this approach, the radon <span class="hlt">flux</span> via diffusion is simply the product of the steady-state radon activity (Bq/m(3)) multiplied by the airflow rate (mL/min). We demonstrated that this setup could produce good results for materials that produce relatively high radon <span class="hlt">fluxes</span>. We also show that a modified closed system approach, including radon removal of the incoming air by charcoal filtration in a bypass, can produce very good results including samples with very low emission rates. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800035608&hterms=churchill&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dchurchill','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800035608&hterms=churchill&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dchurchill"><span><span class="hlt">Measurements</span> of particle emission from discharge <span class="hlt">sites</span> in Teflon irradiated by high energy electron beams</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hazelton, R. C.; Churchill, R. J.; Yadlowsky, E. J.</p> <p>1979-01-01</p> <p>Anomalous behavior of synchronous orbit satellites manifested by overall degradation of system performance and reduced operating life is associated with electrical discharges resulting from differential charging of the spacecraft surface by <span class="hlt">fluxes</span> of high energy electrons. During a laboratory simulation silver-backed Teflon samples have been irradiated by electron beams having energies in the range 16-26 keV. Charged particles emitted from the resultant electrical discharges have been <span class="hlt">measured</span> with a biased Faraday cup and retarding potential analyser. <span class="hlt">Measurements</span> indicate the presence of two distinct <span class="hlt">fluxes</span> of particles, the first being an early pulse (0-600ns) of high energy (about 7keV) electrons, while the second is a late pulse (1-5 microseconds) of low energy electrons (less than 1eV) and ions (70eV) leaving the discharge <span class="hlt">site</span> as a quasi plasma. Calculations indicate an electrostatic field as the dominant accelerating mechanism for charged particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=88096&Lab=NRMRL&keyword=film&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=88096&Lab=NRMRL&keyword=film&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>USING A HEAT PULSE TO <span class="hlt">MEASURE</span> THE <span class="hlt">FLUX</span> BETWEEN GROUNDWATER AND SURFACE WATER</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>EPA estimates that 10 percent of the sediments under the surface waters of the United States are contaminated and approximately 20 percent of the superfund <span class="hlt">sites</span> include contaminated sediments. The risk associated with these contaminated sediments is directly related to the <span class="hlt">flux</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235879-measurement-reactor-antineutrino-flux-spectrum-daya-bay','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235879-measurement-reactor-antineutrino-flux-spectrum-daya-bay"><span><span class="hlt">Measurement</span> of the reactor antineutrino <span class="hlt">flux</span> and spectrum at Daya Bay</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>D. E. Jaffe; Bishai, M; Diwan, M.; ...</p> <p>2016-02-12</p> <p>This Letter reports a <span class="hlt">measurement</span> of the <span class="hlt">flux</span> and energy spectrum of electron antineutrinos from six 2.9~GW th nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The <span class="hlt">measured</span> IBD yield is (1.55 ± 0.04) × 10 –18 cm 2/GW/day or (5.92 ± 0.14) × 10 –43 cm 2/fission. This <span class="hlt">flux</span> <span class="hlt">measurement</span> is consistent with previous short-baseline reactor antineutrino experimentsmore » and is 0.946 ± 0.022 (0.991 ± 0.023) relative to the <span class="hlt">flux</span> predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The <span class="hlt">measured</span> IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ~4σ between 4-6 MeV. Furthermore, a reactor antineutrino spectrum of IBD reactions is extracted from the <span class="hlt">measured</span> positron energy spectrum for model-independent predictions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.5861S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.5861S"><span>Gradient <span class="hlt">flux</span> <span class="hlt">measurements</span> of sea-air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.</p> <p>2018-04-01</p> <p>Direct <span class="hlt">measurements</span> of marine dimethylsulfide (DMS) <span class="hlt">fluxes</span> are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and <span class="hlt">flux</span> of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. <span class="hlt">Measurements</span> of DMS <span class="hlt">fluxes</span> were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient <span class="hlt">flux</span> (GF) technique from an autonomous catamaran platform. Catamaran <span class="hlt">flux</span> <span class="hlt">measurements</span> are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. <span class="hlt">Flux</span> <span class="hlt">measurements</span> were complemented by near-surface hydrographic <span class="hlt">measurements</span> to elucidate physical factors influencing DMS emission. Individual DMS <span class="hlt">fluxes</span> derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two <span class="hlt">flux</span> methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat <span class="hlt">flux</span> enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence <span class="hlt">measurements</span> on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF <span class="hlt">fluxes</span> of DMS provides confidence in compilation of <span class="hlt">flux</span> estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/813610','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/813610"><span>Infrared Camera Diagnostic for Heat <span class="hlt">Flux</span> <span class="hlt">Measurements</span> on NSTX</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>D. Mastrovito; R. Maingi; H.W. Kugel</p> <p>2003-03-25</p> <p>An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to <span class="hlt">measure</span> the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 {micro}m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat <span class="hlt">flux</span> is derived with a classic one-dimensional conduction model. Preliminary results of heat <span class="hlt">flux</span> scaling are reported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17415384','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17415384"><span>Double-cavity radiometer for high-<span class="hlt">flux</span> density solar radiation <span class="hlt">measurements</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parretta, A; Antonini, A; Armani, M; Nenna, G; Flaminio, G; Pellegrino, M</p> <p>2007-04-20</p> <p>A radiometric method has been developed, suitable for both total power and <span class="hlt">flux</span> density profile <span class="hlt">measurement</span> of concentrated solar radiation. The high-<span class="hlt">flux</span> density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is <span class="hlt">measured</span> by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/22875','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/22875"><span>Scaling-up of CO2 <span class="hlt">fluxes</span> to assess carbon sequestration in rangelands of Central Asia</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Bruce K. Wylie; Tagir G. Gilmanov; Douglas A. Johnson; Nicanor Z. Saliendra; Larry L. Tieszen; Ruth Anne F. Doyle; Emilio A. Laca</p> <p>2006-01-01</p> <p><span class="hlt">Flux</span> towers provide temporal quantification of local carbon dynamics at specific <span class="hlt">sites</span>. The number and distribution of <span class="hlt">flux</span> towers, however, are generally inadequate to quantify carbon <span class="hlt">fluxes</span> across a landscape or ecoregion. Thus, scaling up of <span class="hlt">flux</span> tower <span class="hlt">measurements</span> through use of algorithms developed from remote sensing and GIS data is needed for spatial...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1286/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1286/"><span>Benthic <span class="hlt">flux</span> of nutrients and trace metals in the northern component of San Francisco Bay, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kuwabara, James S.; Topping, Brent R.; Parcheso, Francis; Engelstad, Anita C.; Greene, Valerie E.</p> <p>2009-01-01</p> <p>Two sets of sampling trips were coordinated in late summer 2008 (weeks of July 8 and August 6) to sample the interstitial and overlying bottom waters at 10 shallow locations (9 <span class="hlt">sites</span> <3 meters in depth) within the northern component of the San Francisco Bay/Delta (herein referred to as North Bay). The work was performed to better understand sources of biologically reactive solutes (namely, dissolved macronutrients and trace metals) that may affect the base of the food web in this part of the estuary. A nonmetallic pore-water profiler was used to obtain the first centimeter-scale estimates of the vertical solute-concentration gradients for diffusive-<span class="hlt">flux</span> determinations. This study, performed in collaboration with scientists from San Francisco State University?s Romberg Tiburon Center for Environmental Studies, provides information to assist in developing and refining management strategies for the Bay/Delta system and supports efforts to monitor changes in food-web structure associated with regional habitat modifications directed by the California Bay-Delta Authority. On July 7, 2008, and August 5, 2008, pore-water profilers were successfully deployed at six North Bay <span class="hlt">sites</span> per trip to <span class="hlt">measure</span> the concentration gradient of dissolved macronutrients and trace metals near the sediment-water interface. Only two of the <span class="hlt">sites</span> (433 and SSB009 within Honker Bay) were sampled in both series of profiler deployments. At each sampling <span class="hlt">site</span>, profilers were deployed in triplicate, while discrete samples and dataloggers were used to collect ancillary data from both the water column and benthos to help interpret diffusive-<span class="hlt">flux</span> <span class="hlt">measurements</span>. Benthic <span class="hlt">flux</span> of dissolved (0.2-micron filtered) inorganic phosphate (that is, soluble reactive phosphorus (SRP)) ranged from negligible levels (-0.003?0.005 millimole per square meter per day (mmole m-2d-1) at <span class="hlt">Site</span> 4.1 outside Honker Bay) to 0.060?0.006 mmole m-2d-1 near the northern coast of Brown?s Island. Except for the elevated <span class="hlt">flux</span> at Browns</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27610839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27610839"><span>Antiproton <span class="hlt">Flux</span>, Antiproton-to-Proton <span class="hlt">Flux</span> Ratio, and Properties of Elementary Particle <span class="hlt">Fluxes</span> in Primary Cosmic Rays <span class="hlt">Measured</span> with the Alpha Magnetic Spectrometer on the International Space Station.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aguilar, M; Ali Cavasonza, L; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P</p> <p>2016-08-26</p> <p>A precision <span class="hlt">measurement</span> by AMS of the antiproton <span class="hlt">flux</span> and the antiproton-to-proton <span class="hlt">flux</span> ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The <span class="hlt">fluxes</span> and <span class="hlt">flux</span> ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p[over ¯], proton p, and positron e^{+} <span class="hlt">fluxes</span> are found to have nearly identical rigidity dependence and the electron e^{-} <span class="hlt">flux</span> exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) <span class="hlt">flux</span> ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) <span class="hlt">flux</span> ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1328926','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1328926"><span>Surface Meteorological Station - ANL 10m, (1) Sonic, Physics <span class="hlt">site</span>-9 - Raw Data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Muradyan, Paytsar</p> <p>2017-10-23</p> <p>Sonic anemometers from Physics <span class="hlt">Site</span>-3 and <span class="hlt">Site</span>-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics <span class="hlt">site</span>-3 provides <span class="hlt">measurements</span> of the surface <span class="hlt">fluxes</span> of latent and sensible heat, net radiation, and surface soil heat <span class="hlt">flux</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1425894','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1425894"><span>Surface Meteorological Station - ANL 10m, (1) Sonic, Physics <span class="hlt">site</span>-9 - Reviewed Data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Muradyan, Paytsar</p> <p>2018-03-14</p> <p>Sonic anemometers from Physics <span class="hlt">Site</span>-3 and <span class="hlt">Site</span>-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics <span class="hlt">site</span>-3 provides <span class="hlt">measurements</span> of the surface <span class="hlt">fluxes</span> of latent and sensible heat, net radiation, and surface soil heat <span class="hlt">flux</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26599393','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26599393"><span>New Constraints on Terrestrial Surface-Atmosphere <span class="hlt">Fluxes</span> of Gaseous Elemental Mercury Using a Global Database.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel</p> <p>2016-01-19</p> <p>Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported <span class="hlt">fluxes</span> from more than 200,000 individual <span class="hlt">measurements</span>, into a database to statistically examine <span class="hlt">flux</span> magnitudes and controls. We found that <span class="hlt">fluxes</span> were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched <span class="hlt">sites</span>, daytime and summertime <span class="hlt">measurements</span>. <span class="hlt">Fluxes</span> at Hg-enriched <span class="hlt">sites</span> were positively correlated with substrate concentrations, but this was absent at background <span class="hlt">sites</span>. Median <span class="hlt">fluxes</span> over litter- and snow-covered soils were lower than over bare soils, and chamber <span class="hlt">measurements</span> showed higher emission compared to micrometeorological <span class="hlt">measurements</span>. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) <span class="hlt">fluxes</span> stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem <span class="hlt">fluxes</span> and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=185344&keyword=planes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=185344&keyword=planes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">FLUX</span>-BASED METHODS FOR DNAPL REMEDIATION DESIGN AND ASSESSMENT</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>One tool that has been investigated for use in DNAPL <span class="hlt">site</span> characterization and remediation is mass <span class="hlt">flux</span> (mass per unit area per unit time) and mass discharge (mass per unit time) <span class="hlt">measurements</span>. These <span class="hlt">measurements</span>, when collected across one or more control planes located down grad...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246105','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246105"><span>Ameri<span class="hlt">Flux</span> US-Skr Shark River Slough (Tower SRS-6) Everglades</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Barr, Jordan G. [Everglades National Park; Fuentes, Jose [Pennsylvania State University</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Skr Shark River Slough (Tower SRS-6) Everglades. <span class="hlt">Site</span> Description - The Florida Everglades Shark River Slough Mangrove Forest <span class="hlt">site</span> is located along the Shark River in the western region of Everglades National Park. Also referred to as <span class="hlt">site</span> SRS6 of the Florida Coastal Everglades LTER program, freshwater in the mangrove riverine floods the forest floor under a meter of water twice per day. Transgressive discharge of freshwater from the Shark river follows annual rainfall distributions between the wet and dry seasons. Hurricane Wilma struck the <span class="hlt">site</span> in October of 2005 causing significant damage. The tower was offline until the following October in order to continue temporally consistent <span class="hlt">measurements</span>. In post-hurricane conditions, ecosystem respiration rates and solar irradiance transfer increased. 2007- 2008 <span class="hlt">measurements</span> indicate that these factors led to an decline in both annual -NEE and daily NEE from pre-hurricane conditions in 2004-2005.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110011454&hterms=Koch&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DKoch','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110011454&hterms=Koch&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DKoch"><span>Can CO2 Turbulent <span class="hlt">Flux</span> Be <span class="hlt">Measured</span> by Lidar? A Preliminary Study</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.</p> <p>2011-01-01</p> <p>The vertical profiling ofCO2 turbulent <span class="hlt">fluxes</span> in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity <span class="hlt">measurements</span>. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent <span class="hlt">fluxes</span> and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 <span class="hlt">fluxes</span>. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors <span class="hlt">measurements</span>. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 <span class="hlt">fluxes</span> using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28063826','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28063826"><span>Evaluation of Heat <span class="hlt">Flux</span> <span class="hlt">Measurement</span> as a New Process Analytical Technology Monitoring Tool in Freeze Drying.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard</p> <p>2017-05-01</p> <p>This study investigates the suitability of heat <span class="hlt">flux</span> <span class="hlt">measurement</span> as a new technique for monitoring product temperature and critical end points during freeze drying. The heat <span class="hlt">flux</span> sensor is tightly mounted on the shelf and <span class="hlt">measures</span> non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat <span class="hlt">flux</span> data were compared to comparative pressure <span class="hlt">measurement</span>, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct <span class="hlt">measurement</span> of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat <span class="hlt">flux</span> data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat <span class="hlt">flux</span> <span class="hlt">measurements</span> was in accordance with the one defined by thermocouples. During secondary drying, heat <span class="hlt">flux</span> <span class="hlt">measurements</span> could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat <span class="hlt">flux</span> <span class="hlt">measurements</span> are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011MeScT..22j5402O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011MeScT..22j5402O"><span>High-resolution hot-film <span class="hlt">measurement</span> of surface heat <span class="hlt">flux</span> to an impinging jet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Donovan, T. S.; Persoons, T.; Murray, D. B.</p> <p>2011-10-01</p> <p>To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to <span class="hlt">measure</span> the surface heat <span class="hlt">flux</span> at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can <span class="hlt">measure</span> fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer <span class="hlt">measurement</span> techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of <span class="hlt">measuring</span> point surface heat <span class="hlt">flux</span> with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat <span class="hlt">flux</span> <span class="hlt">measurement</span> techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat <span class="hlt">flux</span> to the fluid air flow. The technique is validated experimentally using a more established surface heat <span class="hlt">flux</span> <span class="hlt">measurement</span> technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the <span class="hlt">measurement</span> technique accurately <span class="hlt">measures</span> the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1850o0005T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1850o0005T"><span>A high-resolution optical <span class="hlt">measurement</span> system for rapid acquisition of radiation <span class="hlt">flux</span> density maps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thelen, Martin; Raeder, Christian; Willsch, Christian; Dibowski, Gerd</p> <p>2017-06-01</p> <p>To identify the power and <span class="hlt">flux</span> density of concentrated solar radiation the Institute of Solar Research at the German Aerospace Center (DLR - Deutsches Zentrum für Luft-und Raumfahrt e. V.) has used the camera-based <span class="hlt">measurement</span> system FATMES (<span class="hlt">Flux</span> and Temperature <span class="hlt">Measurement</span> System) since 1995. The disadvantages of low resolution, difficult handling and poor computing power required a revision of the existing <span class="hlt">measurement</span> system. The <span class="hlt">measurement</span> system FMAS (<span class="hlt">Flux</span> Mapping Acquisition system) is equipped with state-of-the-art-hardware, is compatible with computers off-the-shelf and is programmed in LabView. The expenditure of time for an image evaluation is reduced by the factor 60 compared to FATMES. The new <span class="hlt">measurement</span> system is no longer associated with the facilities Solar Furnace and High <span class="hlt">Flux</span> Solar Simulator at the DLR in Cologne but is also applicable as a mobile system. The data and the algorithms are transparent throughout the complete process. The <span class="hlt">measurement</span> accuracy of FMAS is determined to at most ±3 % until now. The error of <span class="hlt">measurement</span> of FATMES is at least 2 % higher according to the conducted comparison tests.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51D0442R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51D0442R"><span>Winter <span class="hlt">fluxes</span> from Eastern Arkansas Rice-Waterfowl Habitats</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reba, M. L.; Fong, B.; Runkle, B.; Suvocarev, K.; Adviento-Borbe, A.</p> <p>2016-12-01</p> <p>Seasonal flooding of rice fields in the mid-South for migratory birds during the winter months (December- January) has occurred for years. This practice can impact total annual greenhouse gas (GHG) emissions and <span class="hlt">fluxes</span> during the production season (June-August). Over 75% of US rice production occurs in the mid-South, but limited research has analyzed the winter <span class="hlt">fluxes</span> of methane and carbon dioxide in this rice-waterfowl habitat. Usually rice fields are flooded from June to August for the production season, and again December to January for migratory birds. In addition to hunting revenue, added benefits of winter flooding include weed control and prevention of soil oxidation and subsidence. Eddy covariance systems <span class="hlt">measuring</span> carbon dioxide, water vapor and methane <span class="hlt">fluxes</span> were installed at two <span class="hlt">sites</span> in northeastern and east central Arkansas. Each <span class="hlt">site</span> had two systems on neighboring fields with one flooded and the other not flooded. Seasonal variability in <span class="hlt">fluxes</span> were compared and contrasted during the 2015-2016 winter. Both carbon dioxide and methane <span class="hlt">fluxes</span> were positively related to temperatures. These findings will improve the understanding of seasonal greenhouse gas emissions at a field scale under typical mid-South rice production practices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.5571L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.5571L"><span>Isoprene emission potentials from European oak forests derived from canopy <span class="hlt">flux</span> <span class="hlt">measurements</span>: an assessment of uncertainties and inter-algorithm variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langford, Ben; Cash, James; Acton, W. Joe F.; Valach, Amy C.; Hewitt, C. Nicholas; Fares, Silvano; Goded, Ignacio; Gruening, Carsten; House, Emily; Kalogridis, Athina-Cerise; Gros, Valérie; Schafers, Richard; Thomas, Rick; Broadmeadow, Mark; Nemitz, Eiko</p> <p>2017-12-01</p> <p>Biogenic emission algorithms predict that oak forests account for ˜ 70 % of the total European isoprene budget. Yet the isoprene emission potentials (IEPs) that underpin these model estimates are calculated from a very limited number of leaf-level observations and hence are highly uncertain. Increasingly, micrometeorological techniques such as eddy covariance are used to <span class="hlt">measure</span> whole-canopy <span class="hlt">fluxes</span> directly, from which isoprene emission potentials can be calculated. Here, we review five observational datasets of isoprene <span class="hlt">fluxes</span> from a range of oak forests in the UK, Italy and France. We outline procedures to correct the <span class="hlt">measured</span> net <span class="hlt">fluxes</span> for losses from deposition and chemical <span class="hlt">flux</span> divergence, which were found to be on the order of 5-8 and 4-5 %, respectively. The corrected observational data were used to derive isoprene emission potentials at each <span class="hlt">site</span> in a two-step process. Firstly, six commonly used emission algorithms were inverted to back out time series of isoprene emission potential, and then an <q>average</q> isoprene emission potential was calculated for each <span class="hlt">site</span> with an associated uncertainty. We used these data to assess how the derived emission potentials change depending upon the specific emission algorithm used and, importantly, on the particular approach adopted to derive an average <span class="hlt">site</span>-specific emission potential. Our results show that isoprene emission potentials can vary by up to a factor of 4 depending on the specific algorithm used and whether or not it is used in a <q>big-leaf</q> or <q>canopy environment (CE) model</q> format. When using the same algorithm, the calculated average isoprene emission potential was found to vary by as much as 34 % depending on how the average was derived. Using a consistent approach with version 2.1 of the Model for Emissions of Gases and Aerosols from Nature (MEGAN), we derive new ecosystem-scale isoprene emission potentials for the five <span class="hlt">measurement</span> <span class="hlt">sites</span>: Alice Holt, UK (10 500 ± 2500 µg m-2 h-1); Bosco</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010022797','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010022797"><span>BOREAS TGB-1 NSA SF6 Chamber <span class="hlt">Flux</span> Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)</p> <p>2000-01-01</p> <p>The BOREAS TGB-1 team made several chamber and tower <span class="hlt">measurements</span> of trace gases at <span class="hlt">sites</span> in the BOREAS NSA. This data set contains sulfur hexafluoride (SF6) dark chamber <span class="hlt">flux</span> <span class="hlt">measurements</span> at the NSA-OJP and NSA-YJP <span class="hlt">sites</span> from 16-May through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1260266-measurement-neutrino-flux-from-neutrino-electron-elastic-scattering','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1260266-measurement-neutrino-flux-from-neutrino-electron-elastic-scattering"><span><span class="hlt">Measurement</span> of neutrino <span class="hlt">flux</span> from neutrino-electron elastic scattering</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Park, J.; Aliaga, L.; Altinok, O.; ...</p> <p>2016-06-10</p> <p>Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a <span class="hlt">measurement</span> of this process in an accelerator-based ν μ beam can improve the knowledge of the absolute neutrino <span class="hlt">flux</span> impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI ν μ fluxmore » from 9% to 6%. Finally, our <span class="hlt">measurement</span> provides a <span class="hlt">flux</span> constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51G1566S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51G1566S"><span>Aspect as a Driver of Soil Carbon and Water <span class="hlt">Fluxes</span> in Desert Environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.</p> <p>2016-12-01</p> <p>Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon <span class="hlt">flux</span> dynamics? We made parallel <span class="hlt">measurements</span> across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water <span class="hlt">flux</span> rates within a low elevation, desert <span class="hlt">site</span> in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed <span class="hlt">measurements</span> at a single point in time with diel patterns of soil <span class="hlt">fluxes</span> at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon <span class="hlt">flux</span> on the south-facing slope two weeks post rain, despite higher daily <span class="hlt">flux</span> values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season <span class="hlt">measurements</span> will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water <span class="hlt">flux</span> budget of this <span class="hlt">site</span> by <span class="hlt">measuring</span> throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil <span class="hlt">fluxes</span>. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these <span class="hlt">flux</span> is necessary to understand concerning vertical carbon and water exchange and storage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336693&keyword=ecosystems&subject=ecosystems%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=08/12/2012&dateendpublishedpresented=08/12/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336693&keyword=ecosystems&subject=ecosystems%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=08/12/2012&dateendpublishedpresented=08/12/2017&sortby=pubdateyear"><span>Carbon storage and greenhouse gas <span class="hlt">fluxes</span> in the San Juan ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s San Juan Bay Estuary, mangrove wetlands are characterized by anthropogenic impacts, particularly tidal restriction due to infilling of the Martin Pena Canal and eutrophication. The objective of our research is to <span class="hlt">measure</span> carbon sequestration and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) <span class="hlt">fluxes</span> in the San Juan Bay Estuary to understand the sustainability and role in global climate of this urban mangrove ecosystem. Cores for C sequestration <span class="hlt">measurements</span> were collected and GHG <span class="hlt">fluxes</span> were <span class="hlt">measured</span> during rainy and dry seasons at 5 <span class="hlt">sites</span> along a gradient of development and nitrogen loading in the San Juan Bay Estuary. At each <span class="hlt">site</span>, paired GHG <span class="hlt">flux</span> <span class="hlt">measurements</span> were performed for mangrove wetland soil and estuarine water using static and floating chambers. Our results suggest a positive relationship between urban development and CH4 and N2O emissions, and demonstrate that in this system, estuarine waters are a major methane source. In addition to providing characterization of GHG <span class="hlt">fluxes</span> in an urban subtropical estuary, these data provide a baseline against which future states of the estuary (after planned hydrological restoration has been implemented) may be compared. Thi</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19117762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19117762"><span>Calculations of the thermal and fast neutron <span class="hlt">fluxes</span> in the Syrian miniature neutron source reactor using the MCNP-4C code.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khattab, K; Sulieman, I</p> <p>2009-04-01</p> <p>The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron <span class="hlt">fluxes</span> in the inner and outer irradiation <span class="hlt">sites</span> of MNSR. The thermal <span class="hlt">fluxes</span> in the MNSR inner irradiation <span class="hlt">sites</span> were also <span class="hlt">measured</span> experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation <span class="hlt">sites</span> to <span class="hlt">measure</span> the thermal neutron <span class="hlt">flux</span> and the epithermal index in each <span class="hlt">site</span>. The calculated and <span class="hlt">measured</span> results agree well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B51L..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B51L..01T"><span>NACP Synthesis: Evaluating modeled carbon state and <span class="hlt">flux</span> variables against multiple observational constraints (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thornton, P. E.; Nacp Site Synthesis Participants</p> <p>2010-12-01</p> <p>The North American Carbon Program (NACP) synthesis effort includes an extensive intercomparison of modeled and observed ecosystem states and <span class="hlt">fluxes</span> preformed with multiple models across multiple <span class="hlt">sites</span>. The participating models span a range of complexity and intended application, while the participating <span class="hlt">sites</span> cover a broad range of natural and managed ecosystems in North America, from the subtropics to arctic tundra, and coastal to interior climates. A unique characteristic of this collaborative effort is that multiple independent observations are available at all <span class="hlt">sites</span>: <span class="hlt">fluxes</span> are <span class="hlt">measured</span> with the eddy covariance technique, and standard biometric and field sampling methods provide estimates of standing stock and annual production in multiple categories. In addition, multiple modeling approaches are employed to make predictions at each <span class="hlt">site</span>, varying, for example, in the use of diagnostic vs. prognostic leaf area index. Given multiple independent observational constraints and multiple classes of model, we evaluate the internal consistency of observations at each <span class="hlt">site</span>, and use this information to extend previously derived estimates of uncertainty in the <span class="hlt">flux</span> observations. Model results are then compared with all available observations and models are ranked according to their consistency with each type of observation (high frequency <span class="hlt">flux</span> <span class="hlt">measurement</span>, carbon stock, annual production). We demonstrate a range of internal consistency across the <span class="hlt">sites</span>, and show that some models which perform well against one observational metric perform poorly against others. We use this analysis to construct a hypothesis for combining eddy covariance, biometrics, and other standard physiological and ecological <span class="hlt">measurements</span> which, as data collection proceeded over several years, would present an increasingly challenging target for next generation models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930004477','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930004477"><span>Heat <span class="hlt">flux</span> microsensor <span class="hlt">measurements</span> and calibrations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.</p> <p>1992-01-01</p> <p>A new thin-film heat <span class="hlt">flux</span> gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat <span class="hlt">flux</span> range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat <span class="hlt">flux</span> with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat <span class="hlt">flux</span> and temperature output is available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....13.5697F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....13.5697F"><span>Estimating regional methane surface <span class="hlt">fluxes</span>: the relative importance of surface and GOSAT mole fraction <span class="hlt">measurements</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fraser, A.; Palmer, P. I.; Feng, L.; Boesch, H.; Cogan, A.; Parker, R.; Dlugokencky, E. J.; Fraser, P. J.; Krummel, P. B.; Langenfelds, R. L.; O'Doherty, S.; Prinn, R. G.; Steele, L. P.; van der Schoot, M.; Weiss, R. F.</p> <p>2013-06-01</p> <p>We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) <span class="hlt">fluxes</span> for the period June 2009-December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction <span class="hlt">measurements</span>. Global posterior estimates using GOSAT and/or surface <span class="hlt">measurements</span> are between 510-516 Tg yr-1, which is less than, though within the uncertainty of, the prior global <span class="hlt">flux</span> of 529 ± 25 Tg yr-1. We find larger differences between regional prior and posterior <span class="hlt">fluxes</span>, with the largest changes in monthly emissions (75 Tg yr-1) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes <span class="hlt">fluxes</span> on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane <span class="hlt">flux</span> estimates from surface mole fraction data and show similar resulting <span class="hlt">fluxes</span>, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior <span class="hlt">flux</span> error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky <span class="hlt">measurements</span> can theoretically reproduce <span class="hlt">fluxes</span> within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of <span class="hlt">measurements</span> because of clouds and aerosols, <span class="hlt">fluxes</span> are within 15% of true <span class="hlt">fluxes</span>. We evaluate our posterior methane</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ACPD...1230989F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ACPD...1230989F"><span>Estimating regional methane surface <span class="hlt">fluxes</span>: the relative importance of surface and GOSAT mole fraction <span class="hlt">measurements</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fraser, A.; Palmer, P. I.; Feng, L.; Boesch, H.; Cogan, A.; Parker, R.; Dlugokencky, E. J.; Fraser, P. J.; Krummel, P. B.; Langenfelds, R. L.; O'Doherty, S.; Prinn, R. G.; Steele, L. P.; van der Schoot, M.; Weiss, R. F.</p> <p>2012-12-01</p> <p>We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) <span class="hlt">fluxes</span> for the period June 2009-December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction <span class="hlt">measurements</span>. Global posterior estimates using GOSAT and/or surface <span class="hlt">measurements</span> are between 510-516 Tg yr-1, which is less than, though within the uncertainty of, the prior global <span class="hlt">flux</span> of 529 ± 25 Tg yr-1. We find larger differences between regional prior and posterior <span class="hlt">fluxes</span>, with the largest changes (75 Tg yr-1) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes > 60° associated with a data filter and over Europe where the surface network adequately describes <span class="hlt">fluxes</span> on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane <span class="hlt">flux</span> estimates from surface mole fraction data and show similar resulting <span class="hlt">fluxes</span>, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior <span class="hlt">flux</span> error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky <span class="hlt">measurements</span> can theoretically reproduce <span class="hlt">fluxes</span> within 5% of true values, with the exception of South Africa and Tropical South America where, due to a large seasonal cycle in the number of <span class="hlt">measurements</span> because of clouds and aerosols, <span class="hlt">fluxes</span> are within 17% and 19% of true <span class="hlt">fluxes</span>, respectively. We evaluate our</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..11711303N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..11711303N"><span>Imposing strong constraints on tropical terrestrial CO2 <span class="hlt">fluxes</span> using passenger aircraft based <span class="hlt">measurements</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Matsueda, Hidekazu; Schuck, Tanja J.; Brenninkmeijer, Carl A. M.; Imasu, Ryoichi; Satoh, Masaki</p> <p>2012-06-01</p> <p>Because very few <span class="hlt">measurements</span> of atmospheric carbon dioxide (CO2) are available in the tropics, estimates of surface CO2 <span class="hlt">fluxes</span> in tropical regions are beset with considerable uncertainties. To improve estimates of tropical terrestrial <span class="hlt">fluxes</span>, atmospheric CO2 inversion was performed using passenger aircraft based <span class="hlt">measurements</span> of the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project in addition to the surface <span class="hlt">measurement</span> data set of GLOBALVIEW-CO2. Regional monthly <span class="hlt">fluxes</span> at the earth's surface were estimated using the Bayesian synthesis approach focusing on the period 2006-2008 using the Nonhydrostatic Icosahedral Atmospheric Model-based Transport Model (NICAM-TM). By adding the aircraft to the surface data, the posterior <span class="hlt">flux</span> errors were greatly reduced; specifically, error reductions of up to 64% were found for tropical Asia regions. This strong impact is closely related to efficient vertical transport in the tropics. The optimized surface <span class="hlt">fluxes</span> using the CONTRAIL data were evaluated by comparing the simulated atmospheric CO2 distributions with independent aircraft <span class="hlt">measurements</span> of the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) project. The inversion with the CONTRAIL data yields the global carbon sequestration rates of 2.22 ± 0.28 Pg C yr-1 for the terrestrial biosphere and 2.24 ± 0.27 Pg C yr-1 for the oceans (the both are adjusted by riverine input of CO2). For the first time the CONTRAIL CO2 <span class="hlt">measurements</span> were used in an inversion system to identify the areas of greatest impact in terms of reducing <span class="hlt">flux</span> uncertainties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B53A0156C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B53A0156C"><span>Maintaining High Quality Data and Consistency Across a Diverse <span class="hlt">Flux</span> Network: The Ameriflux QA/QC Technical Team</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chan, S.; Billesbach, D. P.; Hanson, C. V.; Biraud, S.</p> <p>2014-12-01</p> <p>The Ameri<span class="hlt">Flux</span> quality assurance and quality control (QA/QC) technical team conducts short term (<2 weeks) intercomparisons using a portable eddy covariance system (PECS) to maintain high quality data observations and data consistency across the Ameri<span class="hlt">Flux</span> network (http://ameriflux.lbl.gov/). <span class="hlt">Site</span> intercomparisons identify discrepancies between the in situ and portable <span class="hlt">measurements</span> and calculated <span class="hlt">fluxes</span>. Findings are jointly discussed by the <span class="hlt">site</span> staff and the QA/QC team to improve in the situ observations. Despite the relatively short duration of an individual <span class="hlt">site</span> intercomparison, the accumulated record of all <span class="hlt">site</span> visits (numbering over 100 since 2002) is a unique dataset. The ability to deploy redundant sensors provides a rare opportunity to identify, quantify, and understand uncertainties in eddy covariance and ancillary <span class="hlt">measurements</span>. We present a few specific case studies from QA/QC <span class="hlt">site</span> visits to highlight and share new and relevant findings related to eddy covariance instrumentation and operation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246150','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1246150"><span>Ameri<span class="hlt">Flux</span> US-CPk Chimney Park</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ewers, Brent; Pendall, Elise</p> <p></p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-CPk Chimney Park. <span class="hlt">Site</span> Description - High elevation, primarily lodge-pole pine forest with high amounts of Mountain Pine Bark Beetle mortality</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JCHyd.189...27O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JCHyd.189...27O"><span>Evaluation of deep vadose zone contaminant <span class="hlt">flux</span> into groundwater: Approach and case study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oostrom, M.; Truex, M. J.; Last, G. V.; Strickland, C. E.; Tartakovsky, G. D.</p> <p>2016-06-01</p> <p>For <span class="hlt">sites</span> with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant <span class="hlt">flux</span> from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly <span class="hlt">measure</span> contaminant <span class="hlt">flux</span>. An integrated assessment approach, supported by <span class="hlt">site</span> characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant <span class="hlt">flux</span> to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford <span class="hlt">Site</span> (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the <span class="hlt">site</span>. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that <span class="hlt">site</span> recharge is the most important <span class="hlt">flux</span>-controlling process for future contaminant <span class="hlt">flux</span>. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant <span class="hlt">flux</span> into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant <span class="hlt">flux</span> to groundwater using existing <span class="hlt">site</span> data and has elements that are relevant to other disposal <span class="hlt">sites</span> with a thick vadose zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1254579-evaluation-deep-vadose-zone-contaminant-flux-groundwater-approach-case-study','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1254579-evaluation-deep-vadose-zone-contaminant-flux-groundwater-approach-case-study"><span>Evaluation of Deep Vadose Zone Contaminant <span class="hlt">Flux</span> into Groundwater: Approach and Case Study</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oostrom, Martinus; Truex, Michael J.; Last, George V.</p> <p></p> <p>For <span class="hlt">sites</span> with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant <span class="hlt">flux</span> from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly <span class="hlt">measure</span> contaminant <span class="hlt">flux</span>. An integrated assessment approach, supported by <span class="hlt">site</span> characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant <span class="hlt">flux</span> to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford <span class="hlt">Site</span> (WA, USA) SX Tank Farm was used as a casemore » study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the <span class="hlt">site</span>. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that <span class="hlt">site</span> recharge is the most important <span class="hlt">flux</span>-controlling process for future contaminant <span class="hlt">flux</span>. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant <span class="hlt">flux</span> into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant <span class="hlt">flux</span> to groundwater using existing <span class="hlt">site</span> data and has elements that are relevant to other disposal <span class="hlt">sites</span> with a thick vadose zone.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010023281','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010023281"><span>BOREAS TF-11 CO2 and CH4 <span class="hlt">Flux</span> Data from the SSA-Fen</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Valentine, David W.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)</p> <p>2000-01-01</p> <p>The BOREAS TF-11 team collected several data sets in its efforts to fully describe the <span class="hlt">flux</span> and <span class="hlt">site</span> characteristics at the SSA-Fen <span class="hlt">site</span>. This data set contains <span class="hlt">fluxes</span> of methane and carbon dioxide at the SSA-Fen <span class="hlt">site</span> <span class="hlt">measured</span> using static chambers. The <span class="hlt">measurements</span> were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitrogen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. In addition to <span class="hlt">siting</span> and treatment variables, it reports air temperature and water table height relative to the average peat surface during each <span class="hlt">measurement</span>. The data set covers the period from the first week of June 1994 through the second week of September 1994. The data are stored in tabular ASCII files.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C31A0309E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C31A0309E"><span>Variations in Below Canopy Turbulent <span class="hlt">Flux</span> From Snow in North American Mountain Environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Essery, R.; Marks, D.; Pomeroy, J.; Grangere, R.; Reba, M.; Hedstrom, N.; Link, T.; Winstral, A.</p> <p>2004-12-01</p> <p>Sensible and latent heat and mass <span class="hlt">fluxes</span> from the snow surface are modulated by <span class="hlt">site</span> canopy density and structure. Forest and shrub canopies reduce wind speeds and alter the radiation and thermal environment which will alter the below canopy energetics that control the magnitude of turbulent <span class="hlt">fluxes</span> between the snow surface and the atmosphere. In this study eddy covariance (EC) systems were located in three experimental catchments along a mountain transect through the North American Cordillera. Within each catchment, a variety of <span class="hlt">sites</span> representing the local range of climate, weather, and canopy conditions were selected for <span class="hlt">measurement</span> of sensible and latent heat and mass <span class="hlt">flux</span> from the snow surface. EC <span class="hlt">measurements</span> were made 1) below a uniform pine canopy (2745m) in the Fraser Experimental Forest in Colorado from February through June melt-out in 2003; 2) at an open, unforested <span class="hlt">site</span> (2100m), and below an Aspen canopy (2055m) within a small headwater catchment in the Reynolds Creek Experimental Watershed, Owyhee Mts., Idaho from October, 2003, through June melt-out, 2004; and 3) at five <span class="hlt">sites</span>, representing a range of conditions: a) below a dense spruce forest (750m); b) a north-facing shrub-tundra slope (1383m); c) a south-facing shrub-tundra slope; d) the valley bottom between b) and c) (1363m); and e) a tundra <span class="hlt">site</span> (1402m) in the Wolf Creek Research Basin (WCRB) in the Yukon, Canada during the 2001 and 2002 snow seasons. Summary data from all <span class="hlt">sites</span> are presented and compared including the relative significance of sublimation losses at each <span class="hlt">site</span>, the importance of interception losses to the snowcover mass balance, and the occurrence of condensation events. <span class="hlt">Site</span> and weather conditions that inhibit or enhance <span class="hlt">flux</span> from the snow surface are discussed. This research will improve snow modeling by allowing better representation of turbulent <span class="hlt">fluxes</span> from snow in forested regions, and improved simulation of the snowcover mass balance over low deposition, high latitude <span class="hlt">sites</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B31E0447B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B31E0447B"><span>Assessing the impact of urban land cover composition on CO2 <span class="hlt">flux</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, K.; Hinkle, C.</p> <p>2013-12-01</p> <p>Urbanization is an ever increasing trend in global land use change, and has been identified as a key driver of CO2 emissions. Therefore, understanding how urbanization affects CO2 <span class="hlt">flux</span> across a range of climatic zones and development patterns is critical to projecting the impact of future land use on CO2 <span class="hlt">flux</span> dynamics. A growing number of studies are applying the eddy covariance method to urban areas to quantify the CO2 <span class="hlt">flux</span> dynamics of these systems. However, interpretation of eddy covariance data in these urban systems presents a challenge, particularly in areas with high heterogeneity due to a mixing of built and green space. Here we present a study aimed at establishing a relationship between land cover composition and CO2 <span class="hlt">flux</span> for a heterogeneous urban area of Orlando, FL. CO2 <span class="hlt">flux</span> has been <span class="hlt">measured</span> at this <span class="hlt">site</span> for > 4 years using an open path eddy covariance system. Land cover at this <span class="hlt">site</span> was classified into built and green space, and relative weight of both land covers were calculated for each 30 min CO2 <span class="hlt">flux</span> <span class="hlt">measurement</span> using the Schuepp model and a source area based on +/- one standard deviation of wind direction. The results of this analysis established a relationship between built land cover and CO2 <span class="hlt">flux</span> within the <span class="hlt">measured</span> footprint of this urban area. These results, in combination with future projected land use data, will be a valuable resource for providing insight into the impact of future urbanization on CO2 <span class="hlt">flux</span> dynamics in this region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.5143C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.5143C"><span>Carbon stocks and <span class="hlt">fluxes</span> in the high latitudes: using <span class="hlt">site</span>-level data to evaluate Earth system models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.</p> <p>2017-11-01</p> <p>It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and <span class="hlt">fluxes</span> in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a <span class="hlt">site</span>-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and <span class="hlt">measured</span> physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon <span class="hlt">fluxes</span>. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between <span class="hlt">sites</span>, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited <span class="hlt">sites</span>. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 <span class="hlt">flux</span> in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3352249','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3352249"><span>Wind Tunnel <span class="hlt">Measurement</span> of Turbulent and Advective Scalar <span class="hlt">Fluxes</span>: A Case Study on Intersection Ventilation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk</p> <p>2012-01-01</p> <p>The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel <span class="hlt">measurement</span> of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar <span class="hlt">fluxes</span> are computed from averaged <span class="hlt">measured</span> velocity and concentration data within the street intersection. Vertical advective and turbulent scalar <span class="hlt">fluxes</span> are computed from synchronized velocity and concentration signals <span class="hlt">measured</span> in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent <span class="hlt">fluxes</span> is determined. The contribution of the advective and turbulent <span class="hlt">flux</span> to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum <span class="hlt">flux</span> and turbulent scalar <span class="hlt">flux</span>. PMID:22649290</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22649290','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22649290"><span>Wind tunnel <span class="hlt">measurement</span> of turbulent and advective scalar <span class="hlt">fluxes</span>: a case study on intersection ventilation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk</p> <p>2012-01-01</p> <p>The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel <span class="hlt">measurement</span> of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar <span class="hlt">fluxes</span> are computed from averaged <span class="hlt">measured</span> velocity and concentration data within the street intersection. Vertical advective and turbulent scalar <span class="hlt">fluxes</span> are computed from synchronized velocity and concentration signals <span class="hlt">measured</span> in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent <span class="hlt">fluxes</span> is determined. The contribution of the advective and turbulent <span class="hlt">flux</span> to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum <span class="hlt">flux</span> and turbulent scalar <span class="hlt">flux</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246040','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246040"><span>Ameri<span class="hlt">Flux</span> US-Bkg Brookings</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Meyers, Tilden [NOAA/ARL</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Bkg Brookings. <span class="hlt">Site</span> Description - The Brookings <span class="hlt">site</span> is located in a private pasture, consisting of a mixture of C3 and C4 species actively used for grazing. Belonging to the Northern Great Plains Rangelands, the grassland is representative of many in the north central United States, with seasonal winter conditions and a wet growing season.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AtmEn..62..540H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AtmEn..62..540H"><span>Wet deposition of mercury at a remote <span class="hlt">site</span> in the Tibetan Plateau: Concentrations, speciation, and <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Jie; Kang, Shichang; Zhang, Qianggong; Yan, Haiyu; Guo, Junming; Jenkins, Matt G.; Zhang, Guoshuai; Wang, Kang</p> <p>2012-12-01</p> <p>Precipitation samples collected at a remote high elevation <span class="hlt">site</span> (i.e., Nam Co Station, 4730 m a.s.l.) in the southern Tibetan Plateau were analyzed for total mercury (HgT) between July 2009 and 2011, particulate-bound mercury (HgP) between July 2010 and 2011 and methylmercury (MeHg) from July through August of 2009. The volume-weighted mean (VWM) concentrations and wet deposition <span class="hlt">fluxes</span> of HgT and MeHg in precipitation were 4.8 ng L-1 and 1.75 μg m-2 yr-1, 0.031 ng L-1 and 0.01 μg m-2 yr-1, respectively. VWM HgT concentration was approximately two times higher during the non-monsoon season than during the monsoon season, while 83% of the HgT wet deposition <span class="hlt">fluxes</span> occurred during the monsoon season. The HgT and MeHg concentrations are comparable to the reported data for some of the most remote alpine and polar regions worldwide (e.g., Churchill), but the wet deposition <span class="hlt">fluxes</span> of HgT and MeHg were among the lowest in the world. Analysis of Hg speciation has presented that HgP and MeHg concentrations are high, making up 71.2% and 1.82% of the HgT on average (VWM), respectively. The high HgP%, as well as a significantly positive between HgT and HgP (R2 = 0.91; n = 44; p < 0.001), confirmed that atmospheric deposition of Hg in the Tibetan Plateau was occurring in the form of HgP. A decreasing trend in HgT concentrations with increasing amount of precipitation (R2 = 0.08; N = 101; p < 0.005) was found at Nam Co Station, indicative that scavenging of HgP from the atmosphere was an important mechanism contributing Hg to precipitation. The precipitation amount, rather than HgT concentration, was found to be the governing factor affecting HgT wet deposition <span class="hlt">flux</span>. Moreover, a comparison between <span class="hlt">measured</span> wet deposition <span class="hlt">flux</span> of Hg at Nam Co Station and the estimates from environmental records indicated that both snowpits and lake sediments appear to be reliable archives for estimating historical Hg accumulation rates over the Tibetan Plateau.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..DPPTP9069B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..DPPTP9069B"><span><span class="hlt">Measurements</span> of plasma sheath heat <span class="hlt">flux</span> in the Alcator C-Mod divertor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunner, Dan; Labombard, Brian; Terry, Jim; Reinke, Matt</p> <p>2010-11-01</p> <p>Heat <span class="hlt">flux</span> is one of the most important parameters controlling the lifetime of first-wall components in fusion experiments and reactors. The sheath heat <span class="hlt">flux</span> coefficient (γ) is a parameter relating heat <span class="hlt">flux</span> (from a plasma to a material surface) to the electron temperature and ion saturation current. Being such a simple expression for a kinetic process, it is of great interest to plasma edge fluid modelers. Under the assumptions of equal ion and electron temperatures, no secondary electron emission, and no net current to the surface the value of γ is approximately 7 [1]. Alcator C-Mod provides a unique opportunity among today's experiments to <span class="hlt">measure</span> reactor-relevant heat <span class="hlt">fluxes</span> (100's of MW/m^2 parallel to the magnetic field) in reactor-like divertor geometry. Motivated by the DoE 2010 joint milestone to <span class="hlt">measure</span> heat <span class="hlt">flux</span> footprints, the lower outer divertor of Alcator has been instrumented with a suite of Langmuir probes, novel surface thermocouples, and calorimeters in tiles purposefully ramped to eliminate shadowing; all within view of an IR camera. Initial results indicate that the experimentally inferred values of γ are found to agree with simple theory in the sheath limited regime and diverges to lower values as the density increases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=321804','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=321804"><span>Evapotranspiration: Mass balance <span class="hlt">measurements</span> compared with <span class="hlt">flux</span> estimation methods</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Evapotranspiration (ET) may be <span class="hlt">measured</span> by mass balance methods and estimated by <span class="hlt">flux</span> sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=275782','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=275782"><span>Comparison of buried soil sensors, surface chambers and above ground <span class="hlt">measurements</span> of carbon dioxide <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Soil carbon dioxide (CO2) <span class="hlt">flux</span> is an important component of the terrestrial carbon cycle. Accurate <span class="hlt">measurements</span> of soil CO2 <span class="hlt">flux</span> aids determinations of carbon budgets. In this study, we investigated soil CO2 <span class="hlt">fluxes</span> with time and depth and above ground CO2 <span class="hlt">fluxes</span> in a bare field. CO2 concentrations w...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29257063','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29257063"><span>3D-Printed Detector Band for Magnetic Off-Plane <span class="hlt">Flux</span> <span class="hlt">Measurements</span> in Laminated Machine Cores.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shilyashki, Georgi; Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus</p> <p>2017-12-19</p> <p>Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D <span class="hlt">flux</span> distributions with pronounced normal <span class="hlt">fluxes</span> (off-plane <span class="hlt">fluxes</span>), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane <span class="hlt">fluxes</span> tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane <span class="hlt">flux</span> <span class="hlt">measurements</span> tend to be either of high thickness, influencing the <span class="hlt">measured</span> <span class="hlt">fluxes</span> significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane <span class="hlt">flux</span> detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246127','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246127"><span>Ameri<span class="hlt">Flux</span> US-SRC Santa Rita Creosote</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Kurc, Shirley [University of Arizona</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-SRC Santa Rita Creosote. <span class="hlt">Site</span> Description - Part of the Santa Rita Experimental Range since 1901; <span class="hlt">Site</span> vegetation has been dominated by Creosote bush since at least 1934</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920018134','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920018134"><span>Turbulent heat <span class="hlt">flux</span> <span class="hlt">measurements</span> in a transitional boundary layer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sohn, K. H.; Zaman, K. B. M. Q.; Reshotko, E.</p> <p>1992-01-01</p> <p>During an experimental investigation of the transitional boundary layer over a heated flat plate, an unexpected result was encountered for the turbulent heat <span class="hlt">flux</span> (bar-v't'). This quantity, representing the correlation between the fluctuating normal velocity and the temperature, was <span class="hlt">measured</span> to be negative near the wall under certain conditions. The result was unexpected as it implied a counter-gradient heat transfer by the turbulent fluctuations. Possible reasons for this anomalous result were further investigated. The possible causes considered for this negative bar-v't' were: (1) plausible <span class="hlt">measurement</span> error and peculiarity of the flow facility, (2) large probe size effect, (3) 'streaky structure' in the near wall boundary layer, and (4) contributions from other terms usually assumed negligible in the energy equation including the Reynolds heat <span class="hlt">flux</span> in the streamwise direction (bar-u't'). Even though the energy balance has remained inconclusive, none of the items (1) to (3) appear to be contributing directly to the anomaly.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89f3502X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89f3502X"><span>Application of the space-resolving <span class="hlt">flux</span> detector for radiation <span class="hlt">measurements</span> from an octahedral-aperture spherical hohlraum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Xufei; Du, Huabing; Chen, Jinwen; Liu, Shenye; Li, Zhichao; Yang, Dong; Huang, Yunbao; Ren, Kuan; Hou, Lifei; Li, Sanwei; Guo, Liang; Jiang, Xiaohua; Huo, Wenyi; Chen, Yaohua; Ren, Guoli; Lan, Ke; Wang, Feng; Jiang, Shaoen; Ding, Yongkun</p> <p>2018-06-01</p> <p>Space-resolving <span class="hlt">flux</span> detection is an important technique for the diagnostic of the radiation field within the hohlraum in inertial confinement fusion, especially for the radiation field diagnostic in the novel spherical hohlraum with octahedral six laser entrance holes (LEHs), where localized <span class="hlt">measurements</span> are necessary for the discrimination of the radiation <span class="hlt">flux</span> from different LEHs. A novel space-resolving <span class="hlt">flux</span> detector (SRFD) is developed at the SG-III laser facility for the radiation <span class="hlt">flux</span> <span class="hlt">measurement</span> in the first campaign of the octahedral spherical hohlraum energetics experiment. The principle and configuration of the SRFD system is introduced. The radiation <span class="hlt">flux</span> from the wall of a gas-filled octahedral spherical hohlraum is <span class="hlt">measured</span> for the first time by placing the SRFD system at the equatorial position of the SG-III laser facility, aiming at the hohlraum wall through one of the six LEHs. The absolute radiation <span class="hlt">flux</span> from the re-emission area on the hohlraum wall is <span class="hlt">measured</span>, and good consistency is found between the experimental data and the calculated data from a three-dimensional view factor analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020048669','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020048669"><span>Momentum <span class="hlt">Flux</span> <span class="hlt">Measuring</span> Instrument for Neutral and Charged Particle Flows</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)</p> <p>2002-01-01</p> <p>An instrument to <span class="hlt">measure</span> the momentum <span class="hlt">flux</span> (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have <span class="hlt">measured</span> forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain <span class="hlt">measurements</span> can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force <span class="hlt">measurements</span> correspond directly to momentum <span class="hlt">flux</span> and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force <span class="hlt">measurements</span> may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum <span class="hlt">flux</span> <span class="hlt">measurements</span> of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=90550&keyword=Branches+AND+science&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=90550&keyword=Branches+AND+science&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>LEAF, BRANCH, STAND & LANDSCAPE SCALE <span class="hlt">MEASUREMENTS</span> OF VOLATILE ORGANIC COMPOUND <span class="hlt">FLUXES</span> FROM U.S. WOODLANDS</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Natural volatile organic compounds (VOC) <span class="hlt">fluxes</span> were <span class="hlt">measured</span> in three U.S. woodlands in summer 1993. <span class="hlt">Fluxes</span> from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient <span class="hlt">measurements</span> were us...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019470','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019470"><span>Large-scale variability of wind erosion mass <span class="hlt">flux</span> rates at Owens Lake 1. Vertical profiles of horizontal mass <span class="hlt">fluxes</span> of wind-eroded particles with diameter greater than 50 μm</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gillette, Dale A.; Fryrear, D.W.; Xiao, Jing Bing; Stockton, Paul; Ono, Duane; Helm, Paula J.; Gill, Thomas E; Ley, Trevor</p> <p>1997-01-01</p> <p>A field experiment at Owens (dry) Lake, California, tested whether and how the relative profiles of airborne horizontal mass <span class="hlt">fluxes</span> for >50-μm wind-eroded particles changed with friction velocity. The horizontal mass <span class="hlt">flux</span> at almost all <span class="hlt">measured</span> heights increased proportionally to the cube of friction velocity above an apparent threshold friction velocity for all sediment tested and increased with height except at one coarse-sand <span class="hlt">site</span> where the relative horizontal mass <span class="hlt">flux</span> profile did not change with friction velocity. Size distributions for long-time-averaged horizontal mass <span class="hlt">flux</span> samples showed a saltation layer from the surface to a height between 30 and 50 cm, above which suspended particles dominate. <span class="hlt">Measurements</span> from a large dust source area on a line parallel to the wind showed that even though the saltation <span class="hlt">flux</span> reached equilibrium ∼650 m downwind of the starting point of erosion, weakly suspended particles were still input into the atmosphere 1567 m downwind of the starting point; thus the saltating fraction of the total mass <span class="hlt">flux</span> decreased after 650 m. The scale length difference and ratio of 70/30 suspended mass <span class="hlt">flux</span> to saltation mass <span class="hlt">flux</span> at the farthest down wind sampling <span class="hlt">site</span> confirm that suspended particles are very important for mass budgets in large source areas and that saltation mass <span class="hlt">flux</span> can be a variable fraction of total horizontal mass <span class="hlt">flux</span> for soils with a substantial fraction of <100-μm particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B21F2028S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B21F2028S"><span>Regional comparison of tundra carbon budget response over the Alaska North Slope to varying environmental conditions as informed by in situ and <span class="hlt">flux</span> tower <span class="hlt">measurements</span>, remote sensing and biophysical modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shirley, S.; Watts, J. D.; Kimball, J. S.; Zhang, Z.; Poulter, B.; Klene, A. E.; Jones, L. A.; Kim, Y.; Oechel, W. C.; Zona, D.; Euskirchen, E. S.</p> <p>2017-12-01</p> <p>A warming Arctic climate is contributing to shifts in landscape moisture and temperature regimes, a shortening of the non-frozen season, and increases in the depth of annual active layer. The changing environmental conditions make it difficult to determine whether tundra ecosystems are a carbon sink or source. At present, eddy covariance <span class="hlt">flux</span> towers and biophysical <span class="hlt">measurements</span> within the tower footprint provide the most direct assessment of change to the tundra carbon balance. However, these <span class="hlt">measurements</span> have a limited spatial footprint and exist over relatively short timescales. Thus, terrestrial ecosystem models are needed to provide an improved understanding of how changes in landscape environmental conditions impact regional carbon <span class="hlt">fluxes</span>. This study examines the primary drivers thought to affect the magnitude and variability of tundra-atmosphere CO2 and CH4 <span class="hlt">fluxes</span> over the Alaska North Slope. Also investigated is the ability of biophysical models to capture seasonal <span class="hlt">flux</span> characteristics over the 9 tundra tower <span class="hlt">sites</span> examined. First, we apply a regression tree approach to ascertain which remotely sensed environmental variables best explain observed variability in the tower <span class="hlt">fluxes</span>. Next, we compare <span class="hlt">flux</span> estimates obtained from multiple process models including Terrestrial Carbon <span class="hlt">Flux</span> (TCF) and the Lund-Potsdam-Jena Wald Schnee und Landschaft (LPJ-wsl), and Soil Moisture Active Passive Level 4 Carbon (SMAP L4_C) products. Our results indicate that out of 7 variables examined vegetation greenness, temperature, and moisture are more significant predictors of carbon <span class="hlt">flux</span> magnitude over the tundra tower <span class="hlt">sites</span>. This study found that satellite data-driven models, due to the ability of remote sensing instruments to capture the physical principles and processes driving tundra carbon <span class="hlt">flux</span>, are more effective at estimating the magnitude and spatiotemporal variability of CO2 and CH4 <span class="hlt">fluxes</span> in northern high latitude ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....4712602S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....4712602S"><span>Effects of <span class="hlt">measurement</span> resolution on the analysis of temperature time series for stream-aquifer <span class="hlt">flux</span> estimation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soto-López, Carlos D.; Meixner, Thomas; Ferré, Ty P. A.</p> <p>2011-12-01</p> <p>From its inception in the mid-1960s, the use of temperature time series (thermographs) to estimate vertical <span class="hlt">fluxes</span> has found increasing use in the hydrologic community. Beginning in 2000, researchers have examined the impacts of <span class="hlt">measurement</span> and parameter uncertainty on the estimates of vertical <span class="hlt">fluxes</span>. To date, the effects of temperature <span class="hlt">measurement</span> discretization (resolution), a characteristic of all digital temperature loggers, on the determination of vertical <span class="hlt">fluxes</span> has not been considered. In this technical note we expand the analysis of recently published work to include the effects of temperature <span class="hlt">measurement</span> resolution on estimates of vertical <span class="hlt">fluxes</span> using temperature amplitude and phase shift information. We show that errors in thermal front velocity estimation introduced by discretizing thermographs differ when amplitude or phase shift data are used to estimate vertical <span class="hlt">fluxes</span>. We also show that under similar circumstances sensor resolution limits the range over which vertical velocities are accurately reproduced more than uncertainty in temperature <span class="hlt">measurements</span>, uncertainty in sensor separation distance, and uncertainty in the thermal diffusivity combined. These effects represent the baseline error present and thus the best-case scenario when discrete temperature <span class="hlt">measurements</span> are used to infer vertical <span class="hlt">fluxes</span>. The errors associated with <span class="hlt">measurement</span> resolution can be minimized by using the highest-resolution sensors available. But thoughtful experimental design could allow users to select the most cost-effective temperature sensors to fit their <span class="hlt">measurement</span> needs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710714B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710714B"><span>Eddy covariance and lysimeter <span class="hlt">measurements</span> of moisture <span class="hlt">fluxes</span> over supraglacial debris</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brock, Benjamin</p> <p>2015-04-01</p> <p>Supraglacial debris covers have the potential to evaporate large quantities of water derived from either sub-debris ice melt or precipitation. Currently, knowledge of evaporation and condensation rates in supraglacial debris is limited due to the difficulty of making direct <span class="hlt">measurements</span>. This paper presents eddy covariance and lysimeter <span class="hlt">measurements</span> of moisture <span class="hlt">fluxes</span> made over a 0.2 m debris layer at Miage debris covered glacier, Italian Alps, during the 2013 ablation season. The meteorological data are complimented by reflectometer <span class="hlt">measurements</span> of volumetric water fraction in the saturated and vadose zones of the debris layer. The lysimeters were designed specifically to mimic the debris cover and were embedded within the debris matrix, level with the surface. Over the ablation season, the latent heat <span class="hlt">flux</span> is dominated by evaporation, and the <span class="hlt">flux</span> magnitude closely follows the daily cycle of daytime solar heating and night time radiative cooling of debris. Mean <span class="hlt">flux</span> values are of the order of 1 kg m-2 day-1, but often higher for short periods following rainfall. Condensation rates are relatively small and restricted to night time and humid conditions when the debris-atmosphere vapour pressure gradient reverses due to relatively warm air overlying cold debris. The reflectometer <span class="hlt">measurements</span> provide evidence of vertical water movement through capillary rise in the upper part of the fine-grained debris layer, just above the saturated horizon, and demonstrate how debris bulk water content increases after rainfall. The latent heat <span class="hlt">flux</span> responds directly to changes in wind speed, indicating that atmospheric turbulence can penetrate porous upper debris layers to the saturated horizon. Hence, vertical sorting of debris sediments and antecedent rainfall are important in determining evaporation rates, in addition to current meteorological conditions. Comparison of lysimeter <span class="hlt">measurements</span> with rainfall data provides an estimate that between 45% and 89% of rainfall is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246139','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246139"><span>Ameri<span class="hlt">Flux</span> US-Myb Mayberry Wetland</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Baldocchi, Dennis [University of California, Berkeley</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Myb Mayberry Wetland. <span class="hlt">Site</span> Description - The Mayberry Wetland <span class="hlt">site</span> is a 300-acre restored wetland on Sherman Island, north of Mayberry Slough, that is on the property of Mayberry Farms and managed by the California Department of Water Resources and Ducks Unlimited. During Summer 2010, the <span class="hlt">site</span> was restored from a pepperweed and annual grassland pasture to a wetland through a project managed by Bryan Brock (bpbrock@water.ca.gov). A <span class="hlt">flux</span> tower equipped to analyze energy, H2O, CO2, and CH4 <span class="hlt">fluxes</span> was installed on October 14, 2010. At the time of installation, flooding of the <span class="hlt">site</span> had only recently begun after extensive reconstruction of the wetland bathymetry conducted during the summer. Although some small patches of tules remain within the <span class="hlt">site</span>, the <span class="hlt">site</span> is a patchwork of deep and shallow open water with some remaining vegetation. Currently, there is an intention to flood-to-kill the current pepperweed and upland grasses and let the wetland plants propagate naturally, so no additional plant manipulation will occur.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1348218','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1348218"><span>Dual-stage trapped-<span class="hlt">flux</span> magnet cryostat for <span class="hlt">measurements</span> at high magnetic fields</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Islam, Zahirul; Das, Ritesh K.; Weinstein, Roy</p> <p>2015-04-14</p> <p>A method and a dual-stage trapped-<span class="hlt">flux</span> magnet cryostat apparatus are provided for implementing enhanced <span class="hlt">measurements</span> at high magnetic fields. The dual-stage trapped-<span class="hlt">flux</span> magnet cryostat system includes a trapped-<span class="hlt">flux</span> magnet (TFM). A sample, for example, a single crystal, is adjustably positioned proximate to the surface of the TFM, using a translation stage such that the distance between the sample and the surface is selectively adjusted. A cryostat is provided with a first separate thermal stage provided for cooling the TFM and with a second separate thermal stage provided for cooling sample.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246031','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246031"><span>Ameri<span class="hlt">Flux</span> US-Blk Black Hills</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Meyers, Tilden [NOAA/ARL</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Blk Black Hills. <span class="hlt">Site</span> Description - The Black Hills tower was established by the Institute for Atmospheric Studies of the South Dakota School of Mines and Technology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=133666&keyword=use+AND+force&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=133666&keyword=use+AND+force&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">MEASUREMENT</span> AND USE OF CONTAMINANT <span class="hlt">FLUX</span> AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most <span class="hlt">sites</span>, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant <span class="hlt">flux</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10325125D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10325125D"><span>Comparison of sea surface <span class="hlt">flux</span> <span class="hlt">measured</span> by instrumented aircraft and ship during SOFIA and SEMAPHORE experiments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durand, Pierre; Dupuis, HéLèNe; Lambert, Dominique; BéNech, Bruno; Druilhet, Aimé; Katsaros, Kristina; Taylor, Peter K.; Weill, Alain</p> <p>1998-10-01</p> <p>Two major campaigns (Surface of the Oceans, <span class="hlt">Fluxes</span> and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE)) devoted to the study of ocean-atmosphere interaction were conducted in 1992 and 1993, respectively, in the Azores region. Among the various platforms deployed, instrumented aircraft and ship allowed the <span class="hlt">measurement</span> of the turbulent <span class="hlt">flux</span> of sensible heat, latent heat, and momentum. From coordinated missions we can evaluate the sea surface <span class="hlt">fluxes</span> from (1) bulk relations and mean <span class="hlt">measurements</span> performed aboard the ship in the atmospheric surface layer and (2) turbulence <span class="hlt">measurements</span> aboard aircraft, which allowed the <span class="hlt">flux</span> profiles to be estimated through the whole atmospheric boundary layer and therefore to be extrapolated toward the sea surface level. Continuous ship <span class="hlt">fluxes</span> were calculated with bulk coefficients deduced from inertial-dissipation <span class="hlt">measurements</span> in the same experiments, whereas aircraft <span class="hlt">fluxes</span> were calculated with eddy-correlation technique. We present a comparison between these two estimations. Although momentum <span class="hlt">flux</span> agrees quite well, aircraft estimations of sensible and latent heat <span class="hlt">flux</span> are lower than those of the ship. This result is surprising, since aircraft momentum <span class="hlt">flux</span> estimates are often considered as much less accurate than scalar <span class="hlt">flux</span> estimates. The various sources of errors on the aircraft and ship <span class="hlt">flux</span> estimates are discussed. For sensible and latent heat <span class="hlt">flux</span>, random errors on aircraft estimates, as well as variability of ship <span class="hlt">flux</span> estimates, are lower than the discrepancy between the two platforms, whereas the momentum <span class="hlt">flux</span> estimates cannot be considered as significantly different. Furthermore, the consequence of the high-pass filtering of the aircraft signals on the <span class="hlt">flux</span> values is analyzed; it is weak at the lowest altitudes flown and cannot therefore explain the discrepancies between the two platforms but becomes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FrEaS...3...58B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FrEaS...3...58B"><span>CUES - A Study <span class="hlt">Site</span> for <span class="hlt">Measuring</span> Snowpack Energy Balance in the Sierra Nevada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran</p> <p>2015-09-01</p> <p>Accurate <span class="hlt">measurement</span> and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based <span class="hlt">measurements</span> of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study <span class="hlt">site</span> (CRREL/UCSB Energy <span class="hlt">Site</span>, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific <span class="hlt">measurements</span>, and encourage future collaborative research. Snow <span class="hlt">measurements</span> began near the current CUES <span class="hlt">site</span> for ski area operations in 1969. In the 1970s, researchers began taking scientific <span class="hlt">measurements</span>. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 <span class="hlt">measurements</span> from more than 50 instruments each minute. CUES is one of only five high altitude mountain <span class="hlt">sites</span> in the Western US where a full suite of energy balance components are <span class="hlt">measured</span>. In addition to <span class="hlt">measuring</span> snow on the ground at multiple locations, extensive radiometric and meteorological <span class="hlt">measurements</span> are recorded. Some of the more novel <span class="hlt">measurements</span> include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, <span class="hlt">fluxes</span> from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA549369','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA549369"><span>Physics-Based Modeling and <span class="hlt">Measurement</span> of High-<span class="hlt">Flux</span> Condensation Heat Transfer</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-01</p> <p>TRANSFER (Contract No. N000140811139) by Prof. Issam Mudawar Sung-Min Kim Joseph Kim Boiling and Two-Phase Flow Laboratory School of...Final 01-10-2008 to 30-09-2011 Physics-Based Modeling and <span class="hlt">Measurement</span> of High-<span class="hlt">Flux</span> Condensation Heat Transfer NA N00014-08-1-1139 NA NA NA NA Mudawar ...respectively. phase change, condensation, electronics cooling, micro-channel, high-<span class="hlt">flux</span> U U U UU 107 Mudawar , Issam 765-494-5705 Reset PHYSICS-BASED</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS31B..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS31B..08M"><span>Continuous In Situ <span class="hlt">Measurements</span> of Near Bottom Chemistry and Sediment-Water <span class="hlt">Fluxes</span> with the Chimney Sampler Array (CSA)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.</p> <p>2011-12-01</p> <p>The Chimney Sampler Array (CSA) was designed to <span class="hlt">measure</span> in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical <span class="hlt">fluxes</span> at upper slope <span class="hlt">sites</span> in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water <span class="hlt">fluxes</span>. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to <span class="hlt">measure</span> temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core <span class="hlt">measurements</span> and <span class="hlt">measured</span> temporal variability in oxygen and methane sediment-water <span class="hlt">fluxes</span> at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic <span class="hlt">flux</span> events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246030','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246030"><span>Ameri<span class="hlt">Flux</span> US-Bar Bartlett Experimental Forest</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Richardson, Andrew [Harvard University</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Bar Bartlett Experimental Forest. <span class="hlt">Site</span> Description - The Bartlett Experimental Forest (448170 N, 71830 W) is located within the White Mountains National Forest in north-central New Hampshire, USA. The 1050 ha forest extends across an elevational range from 200 to 900 m a.s.l. It was established in 1931 and is managed by the USDA Forest Service Northeastern Research Station in Durham, NH. The climate is humid continental with short, cool summers (mean July temperature, 19.8C) and long, cold winters (mean January temperature, 9.8C). Annual precipitation averages 130 cm and is distributed evenly throughout the year. Soils are developed from glacial till and are predominantly shallow, well-drained spodosols. At lowto mid-elevation, vegetation is dominated by northern hardwoods (American beech, Fagus grandifolia; sugar maple, Acer saccharum; yellow birch, Betula alleghaniensis; with some red maple, Acer rubrum and paper birch, Betula papyrifera). Conifers (eastern hemlock, Tsuga canadensis; eastern white pine, Pinus strobus; red spruce, Picea rubens) are occasionally found intermixed with the more abundant deciduous species but are generally confined to the highest (red spruce) and lowest (hemlock and pine) elevations. In 2003, the <span class="hlt">site</span> was adopted as a NASA North American Carbon Program (NACP) Tier-2 field research and validation <span class="hlt">site</span>. A 26.5 m high tower was installed in a low-elevation northern hardwood stand in November, 2003, for the purpose of making eddy covariance <span class="hlt">measurements</span> of the forest–atmosphere exchange of CO2, H2O and radiant energy. Continuous <span class="hlt">flux</span> and meteorological <span class="hlt">measurements</span> began in January, 2004, and are ongoing. Average canopy height in the vicinity of the tower is approximately 20–22 m. In the tower footprint, the forest is predominantly classified into red maple, sugar maple, and American beech forest types. Leaf area index in the vicinity of the tower is 3.6 as <span class="hlt">measured</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816601S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816601S"><span>Methane <span class="hlt">fluxes</span> above the Hainich forest by True Eddy Accumulation and Eddy Covariance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander</p> <p>2016-04-01</p> <p>Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane <span class="hlt">fluxes</span> remain scarce. Here we <span class="hlt">measured</span> turbulent <span class="hlt">fluxes</span> of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different <span class="hlt">measurement</span> approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich <span class="hlt">flux</span> tower is a long-term Fluxnet and ICOS <span class="hlt">site</span> with turbulent <span class="hlt">fluxes</span> and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the <span class="hlt">measurement</span> of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small <span class="hlt">fluxes</span> of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation <span class="hlt">measurements</span> in September 2015. First results comparing TEA to EC CO2 <span class="hlt">fluxes</span> suggest that True Eddy Accumulation is a valid option for turbulent <span class="hlt">flux</span> quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when <span class="hlt">measuring</span> methane <span class="hlt">fluxes</span> over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4313387','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4313387"><span>Untangling Autophagy <span class="hlt">Measurements</span>: All <span class="hlt">Fluxed</span> Up</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gottlieb, Roberta A.; Andres, Allen M.; Sin, Jon; Taylor, David</p> <p>2015-01-01</p> <p>Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly as the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to <span class="hlt">measure</span> autophagy, selective mitochondrial autophagy (mitophagy), and autophagic <span class="hlt">flux</span>. We will examine several published studies where confusion arose in in data interpretation, in order to illustrate the challenges. Finally we will discuss methods to assess autophagy in vivo and in patients. PMID:25634973</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11.1583B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11.1583B"><span>Evaluation of a lower-powered analyzer and sampling system for eddy-covariance <span class="hlt">measurements</span> of nitrous oxide <span class="hlt">fluxes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Shannon E.; Sargent, Steve; Wagner-Riddle, Claudia</p> <p>2018-03-01</p> <p>.05 Hz), using shorter tubing and no dryer, that was also collocated at the <span class="hlt">site</span>. Values of the N2O <span class="hlt">fluxes</span> were similar between the two spectrometer systems (slope = 1.01, r2 = 0.96); CO2 <span class="hlt">fluxes</span> as <span class="hlt">measured</span> by the short-tubed eddy-covariance system and the two spectrometer systems correlated well (slope = 1.03, r2 = 0.998). The new lower-powered tunable diode laser absorption spectrometer configuration with the filterless intake and single-tube dryer showed promise for deployment in remote areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25097180','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25097180"><span>Optimization of magnetic <span class="hlt">flux</span> density <span class="hlt">measurement</span> using multiple RF receiver coils and multi-echo in MREIT.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je</p> <p>2014-09-07</p> <p>Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via <span class="hlt">measurements</span> of magnetic <span class="hlt">flux</span> density signals. The MREIT <span class="hlt">measures</span> only the z-component of the induced magnetic <span class="hlt">flux</span> density B = (Bx, By, Bz) by external current injection. The <span class="hlt">measured</span> noise of Bz complicates recovery of magnetic <span class="hlt">flux</span> density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate <span class="hlt">measurement</span> of the spatial gradient of the magnetic <span class="hlt">flux</span> density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the <span class="hlt">measured</span> magnetic <span class="hlt">flux</span> density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic <span class="hlt">flux</span> density gradient from multiple receiver coils by using a weighted combination and by denoising the <span class="hlt">measured</span> noisy data. The second step is to optimize the magnetic <span class="hlt">flux</span> density gradient by using multi-echo magnetic <span class="hlt">flux</span> densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the <span class="hlt">measured</span> magnetic <span class="hlt">flux</span> density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B33K0619W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B33K0619W"><span>Chamber and Diffusive Based Carbon <span class="hlt">Flux</span> <span class="hlt">Measurements</span> in an Alaskan Arctic Ecosystem</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkman, E.; Oechel, W. C.; Zona, D.</p> <p>2013-12-01</p> <p>Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil <span class="hlt">flux</span> work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil <span class="hlt">Flux</span> System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 <span class="hlt">fluxes</span> from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and <span class="hlt">fluxes</span> of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, <span class="hlt">measuring</span> soil gas concentration over a diffusive gradient in this way allows one to separate both net production and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7685S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7685S"><span>Concurrent CO2 and COS <span class="hlt">fluxes</span> across major biomes in Europe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Ibrom, Andreas; Kolle, Olaf; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg</p> <p>2017-04-01</p> <p>The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like carbon dioxide (CO2). It is then catalyzed by the enzyme carbonic anhydrase in a one-way reaction to hydrogen sulfide and CO2. This one-way <span class="hlt">flux</span> into the leaf makes COS a promising tracer for the GPP. However, this approach assumes that the ratio of the deposition velocities between COS and CO2 is constant, which must be determined in field experiments covering a wide variety of ecosystems. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS and CO2 and thus, to test for the potential of COS to be used as a universal tracer for the plant canopy CO2 exchange. Between spring 2015 and summer 2016 we set up our quantum cascade laser at different field <span class="hlt">sites</span> across Europe. These <span class="hlt">sites</span> included a managed temperate mountain grassland (AUT), a savanna (ESP), a temperate beech forest (DEN) and a hemiboreal forest (EST). On each of these <span class="hlt">sites</span>, we conducted ecosystem scale eddy covariance and soil chamber <span class="hlt">measurements</span>. Since the soil COS <span class="hlt">flux</span> contribution, especially in grass dominated ecosystems, could not be neglected, we had to derive the actual canopy COS <span class="hlt">fluxes</span> for all the <span class="hlt">measurement</span> <span class="hlt">sites</span>. Using these <span class="hlt">fluxes</span> we compared the ecosystem relative uptake (ERU) of the <span class="hlt">sites</span> and searched for factors affecting its variability. We then used the influential factors to scale the ERU to be comparable under different field <span class="hlt">sites</span> and conditions. Furthermore we also calculated the GPP using conventional CO2 <span class="hlt">flux</span> partitioning and compared the results with the approach of using the leaf relative uptake.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11C0384L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11C0384L"><span>Integrating Carbon <span class="hlt">Flux</span> <span class="hlt">Measurements</span> with Hydrologic and Thermal Responses in a Low Centered Ice-Wedge Polygon near Prudhoe Bay, AK</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larson, T.; Young, M.; Caldwell, T. G.; Abolt, C.</p> <p>2014-12-01</p> <p>Substantial attention is being devoted to soil organic carbon (SOC) dynamics in Polar Regions, given the potential impacts of CO2 and methane (CH4) release into the atmosphere. In this study, which is part of a broader effort to quantify carbon loss pathways in patterned Arctic permafrost soils, CH4 and CO2 <span class="hlt">flux</span> <span class="hlt">measurements</span> were recorded from a <span class="hlt">site</span> approximately 30 km south of Deadhorse, Alaska and 1 km west of the Dalton Highway. Samples were collected in late July, 2014 using six static <span class="hlt">flux</span> chambers that were located within a single low-centered ice-wedge polygon. Three <span class="hlt">flux</span> chambers were co-located (within a 1 m triangle of each other) near the center of the polygon and three were co-located (along a 1.5 m line) on the ridge adjacent to a trough. Soil in the center of the polygon was 100% water saturated, whereas water saturation <span class="hlt">measured</span> on the ridge ranged between 25-50%. Depth to ice table was approximately 50 cm near the center of the polygon and 40 cm at the ridge. Temperature depth probes were installed within the center and ridge of the polygon. Nine gas <span class="hlt">measurements</span> were collected from each chamber over a 24 h period, stored in helium-purged Exetainer vials, shipped to a laboratory, and analyzed using gas chromatography. <span class="hlt">Measured</span> cumulative methane <span class="hlt">fluxes</span> were linear over the 24 h period demonstrating constant methane production, but considerable spatial variability in <span class="hlt">flux</span> was observed (0.1 to 4.7 mg hr-1 m-2 in polygon center, and 0.003 to 0.36 mg hr-1m-2 on polygon ridge). Shallow soil temperatures varied between 1.3 and 9.8oC in the center and 0.6 to 7.5oC in the rim of the polygon. Air temperatures varied between 1.3 and 4.6oC. CO2 <span class="hlt">fluxes</span> were greater than methane <span class="hlt">fluxes</span> and more consistent at each co-location; ranging from 21.7 to 36.6 mg hr-1 m-2 near the polygon centers and 3.5 to 29.1 mg hr-1 m-2 in the drier polygon ridge. Results are consistent with previous observations that methanogenesis is favored in a water saturated active layer. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28237095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28237095"><span>Renilla Luciferase-LC3 Based Reporter Assay for <span class="hlt">Measuring</span> Autophagic <span class="hlt">Flux</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Farkas, T; Jäättelä, M</p> <p>2017-01-01</p> <p>Macroautophagy (autophagy) is a dynamic intracellular degradation pathway. Monitoring the <span class="hlt">flux</span> through the autophagy pathway is experimentally challenging but obviously a prerequisite for the proper investigation of the process. Here, we present an indirect autophagy <span class="hlt">flux</span> assay based on monitoring the degradation of an autophagosome-associated fusion protein Rluc-LC3 by luminescence detection. The method is suitable for screening purposes with a high number of parallel samples and can be used for <span class="hlt">measurements</span> in cell lysates as well as in living cells. The Rluc-LC3 assay has proven useful for the identification of genes, miRNAs, and small molecules that regulate autophagy <span class="hlt">flux</span> in mammalian cells. © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H43B1445B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H43B1445B"><span>A cross-<span class="hlt">site</span> comparison of factors controlling streamwater carbon <span class="hlt">flux</span> in western North American catchments (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooks, P. D.; Biederman, J. A.; Condon, K.; Chorover, J.; McIntosh, J. C.; Meixner, T.; Perdrial, J. N.</p> <p>2013-12-01</p> <p>Increasing variability in climate is expected to alter the amount and form of terrestrial carbon in stream water both directly, through changes in the magnitude and timing of discharge, and indirectly through changes in land cover following disturbance (e.g. drought, fire, or insect driven mortality). Predicting how these changes will impact individual stream-catchment ecosystems however, is hampered by a lack of concurrent observations on both dissolved and particulate carbon <span class="hlt">flux</span> across a range of spatial, temporal, and discharge scales. Because carbon is strongly coupled to most biogeochemical reactions within both aquatic and terrestrial ecosystems, this represents a critical unknown in predicting the response of catchment-ecosystems to concurrent changes in climate and land cover. This presentation will address this issue using a meta-analysis of dissolved organic, dissolved inorganic, and particulate organic carbon <span class="hlt">fluxes</span> from multiple locations, including undisturbed <span class="hlt">sites</span> along a climate gradient from desert rivers to seasonally snow-covered, forested mountain catchments, and <span class="hlt">sites</span> disturbed by both fire and extensive, insect driven mortality. Initial analyses suggest that dissolved (organic and inorganic) and particulate <span class="hlt">fluxes</span> respond differently to various types of disturbance and depend on interactions between changes in size of mobile carbon pools and changes in hydrologic routing of carbon to streamwater. Anomalously large <span class="hlt">fluxes</span> of both dissolved and particulate organic matter are associated with episodic changes in hydrologic routing (e.g. storm floods; snowmelt) that connect normally hydrologically isolated carbon pools (e.g. surficial hillslope soils) with surface water. These events are often of short duration as the supply of mobile carbon is exhausted in short term flushing response. In contrast, disturbances that increase the size of the mobile carbon pool (e.g. widespread vegetation mortality) result smaller proportional increases in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246148','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246148"><span>Ameri<span class="hlt">Flux</span> US-Tw2 Twitchell Corn</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Baldocchi, Dennis [University of California, Berkeley</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Tw2 Twitchell Corn. <span class="hlt">Site</span> Description - The Twitchell Corn <span class="hlt">site</span> is a corn field on peat soil. The tower was installed on May 17, 2012 and was equipped to analyze energy, H2O and CO2 <span class="hlt">fluxes</span>. The field was planted in early May 2012 and harvested in early November 2012. The field was fallow during the non-growing season. The variety of corn used was ES-7477 hybrid corn commercialized by Eureka seeds. The <span class="hlt">site</span> is near US-Tw1, US-Tw3 and US-Twt <span class="hlt">sites</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246132','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246132"><span>Ameri<span class="hlt">Flux</span> US-KFS Kansas Field Station</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Brunsell, Nathaniel [Kansas University</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-KFS Kansas Field Station. <span class="hlt">Site</span> Description - The study is an abandoned grassland at the Kansas Field Station and Ecological Reserves. The <span class="hlt">site</span> is located within the tallgrass prairie-deciduous forest ecotonal area. The <span class="hlt">site</span> was subjected to intensive agriculture from the 1940s through the late 1960s. In the mid-1970s, the <span class="hlt">site</span> was planted with the cool-season grass Bromus inermis and used as a hay meadow until 1987. Then, mowing and burning approximately every five years maintained it as a grassland until 2007, when the eddy <span class="hlt">flux</span> tower was installed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1328894','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1328894"><span>Surface Meteorological Station - ANL 10m, (1) Sonics, (1) EBBR, Physics <span class="hlt">site</span>-3 - Raw Data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Muradyan, Paytsar</p> <p>2017-10-23</p> <p>Sonic anemometers from Physics <span class="hlt">Site</span>-3 and <span class="hlt">Site</span>-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics <span class="hlt">site</span>-3 provides <span class="hlt">measurements</span> of the surface <span class="hlt">fluxes</span> of latent and sensible heat, net radiation, and surface soil heat <span class="hlt">flux</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1425895','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1425895"><span>Surface Meteorological Station - ANL 10m, (1) Sonics, (1) EBBR, Physics <span class="hlt">site</span>-3 - Reviewed Data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Muradyan, Paytsar</p> <p>2018-03-14</p> <p>Sonic anemometers from Physics <span class="hlt">Site</span>-3 and <span class="hlt">Site</span>-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics <span class="hlt">site</span>-3 provides <span class="hlt">measurements</span> of the surface <span class="hlt">fluxes</span> of latent and sensible heat, net radiation, and surface soil heat <span class="hlt">flux</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GBioC..21.1004V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GBioC..21.1004V"><span>Estimating the greenhouse gas <span class="hlt">fluxes</span> of European grasslands with a process-based model: 1. Model evaluation from in situ <span class="hlt">measurements</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vuichard, Nicolas; Soussana, Jean-FrançOis; Ciais, Philippe; Viovy, Nicolas; Ammann, Christof; Calanca, Pierluigi; Clifton-Brown, John; Fuhrer, Jürg; Jones, Mike; Martin, CéCile</p> <p>2007-03-01</p> <p>We improved a process-oriented biogeochemical model of carbon and nitrogen cycling in grasslands and tested it against in situ <span class="hlt">measurements</span> of biomass and CO2 and CH4 <span class="hlt">fluxes</span> at five European grassland <span class="hlt">sites</span>. The new version of the model (PASIM) calculates the growth and senescence of aboveground vegetation biomass accounting for sporadic removals when the grassland is cut and for continuous removals when it is grazed. Limitations induced by high leaf area index (LAI), soil water deficits and aging of leaves are also included. We added to this a simple empirical formulation to account for the detrimental impact on vegetation of trampling and excreta by grazing animals. Finally, a more realistic methane emission module than is currently used was introduced on the basis of the quality of the animals' diet. Evaluation of this improved version of PASIM is performed at (1) Laqueuille, France, on grassland continuously grazed by cattle with two plots of intensive and extensive grazing intensities, (2) Oensingen, Switzerland, on cut grassland with two fertilized and nonfertilized plots, and (3) Carlow, Ireland, on grassland that is both cut and grazed by cattle during the growing season. In addition, we compared the modeled animal CH4 emissions with in situ <span class="hlt">measurements</span> on cattle for two grazing intensities at the grazed grassland <span class="hlt">site</span> of Laqueuille. Altogether, when all improvements to the PASIM model are included, we found that the new parameterizations resulted into a better fit to the observed seasonal cycle of biomass and of <span class="hlt">measured</span> CO2 and CH4 <span class="hlt">fluxes</span>. However, the large uncertainties in <span class="hlt">measurements</span> of biomass and LAI make simulation of biomass dynamics difficult to make. Also simulations for cut grassland are better than for grazed swards. This work paves the way for simulating greenhouse gas <span class="hlt">fluxes</span> over grasslands in a spatially explicit manner, in order to quantify and understand the past, present and future role of grasslands in the greenhouse gas budget of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246109','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1246109"><span>Ameri<span class="hlt">Flux</span> US-WBW Walker Branch Watershed</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meyers, Tilden</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-WBW Walker Branch Watershed. <span class="hlt">Site</span> Description - The stand is over 50 years old, having regenerated from agricultural land.This <span class="hlt">site</span> is located near Oak Ridge, Tennessee near the Walker Branch Watershed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010022518','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010022518"><span>BOREAS TGB-5 CO2, CH4 and CO Chamber <span class="hlt">Flux</span> Data Over the NSA</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burke, Roger; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Zepp, Richard</p> <p>2000-01-01</p> <p>The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected a variety of trace gas concentration and <span class="hlt">flux</span> <span class="hlt">measurements</span> at several NSA <span class="hlt">sites</span>. This data set contains carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) chamber <span class="hlt">flux</span> <span class="hlt">measurements</span> conducted in 1994 at upland forest <span class="hlt">sites</span> that experienced stand-replacement fires. These <span class="hlt">measurements</span> were acquired to understand the impact of fires on soil biogeochemistry and related changes in trace gas exchange in boreal forest soils. Relevant ancillary data, including data concerning the soil temperature, solar irradiance, and information from nearby un-burned control <span class="hlt">sites</span>, are included to provide a basis for modeling the regional impacts of fire and climate changes on trace gas biogeochemistry. The data are provided in tabular ASCII files.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060009303&hterms=Electric+current&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DElectric%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060009303&hterms=Electric+current&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DElectric%2Bcurrent"><span>Cluster electric current density <span class="hlt">measurements</span> within a magnetic <span class="hlt">flux</span> rope in the plasma sheet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.</p> <p>2003-01-01</p> <p>On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic <span class="hlt">flux</span> rope in the tail. The <span class="hlt">flux</span> rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the <span class="hlt">flux</span> rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the <span class="hlt">flux</span> rope moved over the spacecraft is in close agreement with the Cluster plasma <span class="hlt">measurements</span>. The magnetic field profiles <span class="hlt">measured</span> at each spacecraft were first modeled separately using the Lepping-Burlaga force-free <span class="hlt">flux</span> rope model. The results indicated that the center of the <span class="hlt">flux</span> rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the <span class="hlt">flux</span> rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field <span class="hlt">measurements</span> provide a second means to determine the electric current density without any assumption regarding <span class="hlt">flux</span> rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the <span class="hlt">flux</span> rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting <span class="hlt">flux</span> rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN13B0074H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN13B0074H"><span>Comparisons of a Quantum Annealing and Classical Computer Neural Net Approach for Inferring Global Annual CO2 <span class="hlt">Fluxes</span> over Land</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halem, M.; Radov, A.; Singh, D.</p> <p>2017-12-01</p> <p>Investigations of mid to high latitude atmospheric CO2 show growing amplitudes in seasonal variations over the past several decades. Recent high-resolution satellite <span class="hlt">measurements</span> of CO2 concentration are now available for three years from the Orbiting Carbon Observatory-2. The Atmospheric Radiation <span class="hlt">Measurement</span> (ARM) program of DOE has been making long-term CO2-<span class="hlt">flux</span> <span class="hlt">measurements</span> (in addition to CO2 concentration and an array of other meteorological quantities) at several towers and mobile <span class="hlt">sites</span> located around the globe at half-hour frequencies. Recent papers have shown CO2 <span class="hlt">fluxes</span> inferred by assimilating CO2 observations into ecosystem models are largely inconsistent with station observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. Thus, new approaches for calculating CO2-<span class="hlt">flux</span> for assimilation into land surface models are necessary for improving the prediction of annual carbon uptake. In this study, we calculate and compare the predicted CO2 <span class="hlt">fluxes</span> results employing a Feed Forward Backward Propagation Neural Network model on two architectures, (i) an IBM Minsky Computer node and (ii) a hybrid version of the ARC D-Wave quantum annealing computer. We compare the neural net results of predictions of CO2 <span class="hlt">flux</span> from ARM station data for three different DOE ecosystem <span class="hlt">sites</span>; an arid plains near Oklahoma City, a northern arctic <span class="hlt">site</span> at Barrows AL, and a tropical rainforest <span class="hlt">site</span> in the Amazon. Training times and predictive results for the calculating annual CO2 <span class="hlt">flux</span> for the two architectures for each of the three <span class="hlt">sites</span> are presented. Comparative results of predictions as <span class="hlt">measured</span> by RMSE and MAE are discussed. Plots and correlations of observed vs predicted CO2 <span class="hlt">flux</span> are also presented for all three <span class="hlt">sites</span>. We show the estimated training times for quantum and classical calculations when extended to calculating global annual Carbon Uptake over land. We also</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031263&hterms=ecosystem+tundra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Decosystem%2Btundra','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031263&hterms=ecosystem+tundra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Decosystem%2Btundra"><span>Carbon dioxide <span class="hlt">fluxes</span> over a raised open bog at the Kinosheo Lake tower <span class="hlt">site</span> during the Northern Wetlands Study (NOWES)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Neumann, H. H.; Den Hartog, G.; King, K. M.; Chipanshi, A. C.</p> <p>1994-01-01</p> <p><span class="hlt">Measurements</span> of carbon dioxide concentration and <span class="hlt">flux</span> were made above a raised open bog at Lake Kinosheo in the southern Hudson Bay lowlands during the Northern Wetlands Study (NOWES) experiment in 1990. The <span class="hlt">flux</span> <span class="hlt">measurements</span> were made using micrometeorological techniques. They provide the first nondisturbing, larger-scale CO2 <span class="hlt">flux</span> <span class="hlt">measurements</span> for this ecosystem and are the first to integrate the exchange over the whole 24 hours of the day. Continuous concentration <span class="hlt">measurements</span> by infrared gas analyzers (IRGA) and spot flask samples were taken over the period July 1 to July 29. Afternoon CO2 values were only 5 to 7 parts per million by volume (ppmv) lower than <span class="hlt">measurements</span> over the same period at Canadian background monitoring stations. This suggested that there was little draw-down by local photosynthetic sinks. CO2 <span class="hlt">fluxes</span> were <span class="hlt">measured</span> at 8 and 18 m by Bowen ratio and eddy correlation methods, respectively. The methods produced comparable results on averaged data but often diverged considerably on individual half-hour results. <span class="hlt">Fluxes</span> were small. Daytime values averaged to -0.068 mg/sq m/s by eddy correlation and -0.077 mg/sq m/s by Bowen ratio over the period June 25 to July 28 (negative denotes downward <span class="hlt">flux</span>), while at night, <span class="hlt">flux</span> densities were +0.062 mg/sq m/s and +0.085 mg/sq m/s. Integration of the mean diurnal curve gave a net <span class="hlt">flux</span> of -1.7 g/sq m/d. Comparable data for this type of ecosystem were not found. However, Coyne and Kelley (1975), <span class="hlt">measuring</span> near Barrow, Alaska, over wet meadow tundra dominated by sedges and grasses, found net <span class="hlt">fluxes</span> of -7.2 g/sq m/d. Typical net CO2 <span class="hlt">fluxes</span> from other active temperature ecosystems have been found to be -10 to -20 g/sq m/d (Monteith, 1976). Mean half hourly <span class="hlt">fluxes</span> were almost constant at +0.06 mg/sq m/s through the nighttime hours. About one half-hour after sunrise the <span class="hlt">flux</span> reversed direction. Uptake peaked about 0900 eastern daylight time (EDT) and then gradually declined but remained downward until near sunset</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27107320','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27107320"><span>Evaluation of deep vadose zone contaminant <span class="hlt">flux</span> into groundwater: Approach and case study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oostrom, M; Truex, M J; Last, G V; Strickland, C E; Tartakovsky, G D</p> <p>2016-06-01</p> <p>For <span class="hlt">sites</span> with a contaminant source located in the vadose zone, the nature and extent of groundwater contaminant plumes are a function of the contaminant <span class="hlt">flux</span> from the vadose zone to groundwater. Especially for thick vadose zones, transport may be relatively slow making it difficult to directly <span class="hlt">measure</span> contaminant <span class="hlt">flux</span>. An integrated assessment approach, supported by <span class="hlt">site</span> characterization and monitoring data, is presented to explain current vadose zone contaminant distributions and to estimate future contaminant <span class="hlt">flux</span> to groundwater in support of remediation decisions. The U.S. Department of Energy Hanford <span class="hlt">Site</span> (WA, USA) SX Tank Farm was used as a case study because of a large existing contaminant inventory in its deep vadose zone, the presence of a limited-extent groundwater plume, and the relatively large amount of available data for the <span class="hlt">site</span>. A predictive quantitative analysis was applied to refine a baseline conceptual model through the completion of a series of targeted simulations. The analysis revealed that <span class="hlt">site</span> recharge is the most important <span class="hlt">flux</span>-controlling process for future contaminant <span class="hlt">flux</span>. Tank leak characteristics and subsurface heterogeneities appear to have a limited effect on long-term contaminant <span class="hlt">flux</span> into groundwater. The occurrence of the current technetium-99 groundwater plume was explained by taking into account a considerable historical water-line leak adjacent to one of the tanks. The analysis further indicates that the vast majority of technetium-99 is expected to migrate into the groundwater during the next century. The approach provides a template for use in evaluating contaminant <span class="hlt">flux</span> to groundwater using existing <span class="hlt">site</span> data and has elements that are relevant to other disposal <span class="hlt">sites</span> with a thick vadose zone. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060035721&hterms=Clustering&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DClustering','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060035721&hterms=Clustering&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DClustering"><span>Clustering of Emerging <span class="hlt">Flux</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruzmaikin, A.</p> <p>1997-01-01</p> <p>Observations show that newly emerging <span class="hlt">flux</span> tends to appear on the Solar surface at <span class="hlt">sites</span> where there is <span class="hlt">flux</span> already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27098421','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27098421"><span>Spatially resolved <span class="hlt">flux</span> <span class="hlt">measurements</span> of NOx from London suggest significantly higher emissions than predicted by inventories.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vaughan, Adam R; Lee, James D; Misztal, Pawel K; Metzger, Stefan; Shaw, Marvin D; Lewis, Alastair C; Purvis, Ruth M; Carslaw, David C; Goldstein, Allen H; Hewitt, C Nicholas; Davison, Brian; Beevers, Sean D; Karl, Thomas G</p> <p>2016-07-18</p> <p>To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct <span class="hlt">measurement</span> of pollutant <span class="hlt">fluxes</span> from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. <span class="hlt">Fluxes</span> of NOx were <span class="hlt">measured</span> using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest <span class="hlt">fluxes</span> were observed over central London, with lower <span class="hlt">fluxes</span> <span class="hlt">measured</span> in suburban areas. A footprint model was used to estimate the spatial area from which the <span class="hlt">measured</span> emissions occurred. This allowed comparison of the <span class="hlt">flux</span> <span class="hlt">measurements</span> to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the <span class="hlt">measurement</span>. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road <span class="hlt">measurement</span> data taken from the London Atmospheric Emissions Inventory (LAEI). The <span class="hlt">measurement</span> to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with <span class="hlt">flux</span> <span class="hlt">measurements</span>, suggesting significant improvements are still required in the NOx emissions inventory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246091','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1246091"><span>Ameri<span class="hlt">Flux</span> US-Pon Ponca City</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Verma, Shashi [University of Nebraska - Lincoln</p> <p>2016-01-01</p> <p>This is the Ameri<span class="hlt">Flux</span> version of the carbon <span class="hlt">flux</span> data for the <span class="hlt">site</span> US-Pon Ponca City. <span class="hlt">Site</span> Description - The Ponca Winter Wheat <span class="hlt">site</span> is a 65 ha rainfed wheat field in north central Oklahoma. Planting of winter wheat takes place annually in mid-fall. By late May, most of the wheat reaches maturity, allowing for mid-summer harvest.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.3916I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.3916I"><span>Regional variability of grassland CO2 <span class="hlt">fluxes</span> in Tyrol/Austria</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irschick, Christoph; Hammerle, Albin; Haslwanter, Alois; Wohlfahrt, Georg</p> <p>2010-05-01</p> <p>The FLUXNET project [1] aims at quantifying the magnitude and controls on the CO2, H2O and energy exchange of terrestrial ecosystems. Ideally, the various biomes of the Earth would be sampled in proportion to their spatial extent - in reality, however, study <span class="hlt">site</span> selection is usually based on other (more practical) criteria so that a bias exists towards certain biomes and ecosystem types. This may be problematic because FLUXNET data are used to calibrate/parameterize models at various scales - if certain ecosystems are poorly replicated this may bias model predictions. Here we present data from a project in Tyrol/Austria where we have been investigating the CO2, H2O and energy exchange of five grassland <span class="hlt">sites</span> during 2005-2007. The five permanent grassland <span class="hlt">sites</span> were exposed to similar climate, but differed slightly in management. In a FLUXNET style approach, any of these <span class="hlt">sites</span> might have been selected for making long-term <span class="hlt">flux</span> <span class="hlt">measurements</span> - the aim of this project was to examine the representativeness of these <span class="hlt">sites</span> and, if evident, elucidate the causes for and controls on differences between <span class="hlt">sites</span>. To this end we conducted continuous eddy covariance <span class="hlt">flux</span> <span class="hlt">measurements</span> at one (anchor) <span class="hlt">site</span> [2, 3], and episodic, month long <span class="hlt">flux</span> <span class="hlt">measurements</span> at the four additional <span class="hlt">sites</span> using a roving eddy covariance tower. These data were complemented by <span class="hlt">measurements</span> of environmental drivers, the amount of above ground phytomass and basic data on vegetation and soil type, as well as management. Data are subject to a rigorous statistical analysis in order to quantify significant differences in the CO2, H2O and energy exchange between the <span class="hlt">sites</span> and to identify the factors which are responsible for these differences. In the present contribution we report results on CO2 <span class="hlt">fluxes</span>. Our major findings are that (i) <span class="hlt">site</span>-identity of the surveyed grassland ecosystems was a significant factor for the net ecosystem CO2 exchange (NEE), somewhat less for gross primary production (GPP) and not for</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>