Science.gov

Sample records for flux rates measured

  1. Passive flux sampler for measurement of formaldehyde emission rates

    NASA Astrophysics Data System (ADS)

    Shinohara, Naohide; Fujii, Minoru; Yamasaki, Akihiro; Yanagisawa, Yukio

    A new passive flux sampler (PFS) was developed to measure emission rates of formaldehyde and to determine emission sources in indoor environments. The sampler consisted of a glass Petri dish containing a 2,4-dinitrophenyl hydrazine (DNPH)-impregnated sheet. At the start of sampling, the PFS was placed with the open face of the dish on each of the indoor materials under investigation, such as flooring, walls, doors, closets, desks, beds, etc. Formaldehyde emitted from a source material diffused through the inside of the PFS and was adsorbed onto the DNPH sheet. The formaldehyde emission rates could be determined from the quantities adsorbed. The lower determination limits were 9.2 and 2.3 μg m -2 h -1 for 2- and 8-h sampling periods. The recovery rate and the precision of the PFS were 82.9% and 8.26%, respectively. The emission rates measured by PFS were in good agreement with the emission rates measured by the chamber method ( R2=0.963). This shows that it is possible to take measurements of the formaldehyde emission rates from sources in a room and to compare them. In addition, the sampler can be used to elucidate the emission characteristics of a source by carrying out emission measurements with different air-layer thicknesses inside the PFS and at different temperatures. The dependency of the emission rate on the thickness of the air layer inside the PFS indicated whether the internal mass transfer inside the source material or the diffusion in the gas-phase boundary layer controlled the formaldehyde emission rate from a material. In addition, as a pilot study, the formaldehyde emission rates were measured, and the largest emission source of formaldehyde could be identified from among several suspected materials in a model house by using the PFS.

  2. Refining Field Measurements of Methane Flux Rates from Abandoned Oil and Gas Wells

    NASA Astrophysics Data System (ADS)

    Lagron, C. S.; Kang, M.; Riqueros, N. S.; Jackson, R. B.

    2015-12-01

    Recent studies in Pennsylvania demonstrate the potential for significant methane emissions from abandoned oil and gas wells. A subset of tested wells was high emitting, with methane flux rates up to seven orders of magnitude greater than natural fluxes (up to 105 mg CH4/hour, or about 2.5LPM). These wells contribute disproportionately to the total methane emissions from abandoned oil and gas wells. The principles guiding the chamber design have been developed for lower flux rates, typically found in natural environments, and chamber design modifications may reduce uncertainty in flux rates associated with high-emitting wells. Kang et al. estimate errors of a factor of two in measured values based on previous studies. We conduct controlled releases of methane to refine error estimates and improve chamber design with a focus on high-emitters. Controlled releases of methane are conducted at 0.05 LPM, 0.50 LPM, 1.0 LPM, 2.0 LPM, 3.0 LPM, and 5.0 LPM, and at two chamber dimensions typically used in field measurements studies of abandoned wells. As most sources of error tabulated by Kang et al. tend to bias the results toward underreporting of methane emissions, a flux-targeted chamber design modification can reduce error margins and/or provide grounds for a potential upward revision of emission estimates.

  3. Relationship between neutron yield rate of tokamak plasmas and spectrometer measured flux for different sight lines

    SciTech Connect

    Gorini, G.; Kaellne, J.; Ognissanto, F.; Tardocchi, M.

    2011-03-15

    A parametric relationship between total neutron yield rate and collimated fluxes related to the brightness (B) of plasma chords ({lambda}) is developed for different emissivity distributions of tokamak plasmas. Specifically, the brightness was expressed as a function of chord coordinates of radial position using a simple model for the emissivity profiles of width parameter w. The functional brightness dependence B({lambda},w) was calculated to examine the relationship between measured flux and deduced yield rate, and its plasma profile dependence. The results were used to determine the chord range of minimum profile sensitivity in order to identify the preferred collimator sight for the determination of yield rate from neutron emission spectroscopy (YNES) measurements. The YNES method is discussed in comparison to conventional methods to determine the total neutron yield rates and related plasma fusion power relying on uncollimated flux measurements and a different calibration base for the flux-yield relationship. The results have a special bearing for tokamaks operating with both deuterium and deuterium-tritium plasmas and future high power machines such as for ITER, DEMO, and IGNITOR.

  4. FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements

    SciTech Connect

    Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  5. FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS

    SciTech Connect

    FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  6. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements

    NASA Astrophysics Data System (ADS)

    Drake, S. J.; Martin, M.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2015-07-01

    Understanding the rate of heat generation in a Li-ion cell is critical for safety and performance of Li-ion cells and systems. Cell performance, cycle life, and system safety all depend on temperature distribution in the cell, which, in turn, depends on heat generation rate within the cell and on heat removal rate at the cell surface. Despite the existence of a number of theoretical models to predict heat generation rate, there is not much literature on experimental measurement at high C-rates. This paper reports measurement of heat generation rate from a Li-ion cell at high discharge rates, up to 9.6C, using measurements of cell temperature and surface heat flux. As opposed to calorimetry-based approaches, this method can be applied in situ to yield measurements of heat generation rate in laboratory or field use provided that at least one a priori test is performed to measure the temperature gradient within a cell in the same ambient condition. This method is based on simultaneous determination of heat stored and heat lost from the cell through heat flux and temperature measurements. A novel method is established for measurement of the internal temperature of the cell. Heat generation measurements are shown to agree with well-established theoretical models. The effect of actively cooling the cell is briefly discussed.

  7. Dynamic flux chamber measurements of hydrogen sulfide emission rate from a quiescent surface--A computational evaluation.

    PubMed

    Prata, Ademir A; Santos, Jane M; Beghi, Sandra P; Fernandes, Isabella F; Vom Marttens, Lya L C; Pereira Neto, Leovegildo I; Martins, Ramon S; Reis, Neyval C; Stuetz, Richard M

    2016-03-01

    Enclosure devices have been studied and used for research purposes and practical applications in order to measure the emission rate of odorous pollutants from quiescent liquid surfaces to atmosphere. However, important questions remain about the interference of these measuring devices on the actual emission rate. The main concern regarding the use of a flux chamber is the fact that odorous compounds can accumulate into the chamber and yield gas-phase concentration increase inside the equipment, which causes a reduction of the emission rate during the measurement and thus gives an inaccurate local emission rate. Furthermore, the fluid flow inside the chamber does not reproduce the atmospheric boundary layer flow. This study applied the Computational Fluid Dynamics (CFD) technique in order to investigate the influence of the fluid flow features inside a flux chamber on the measured hydrogen sulfide emission rate at quiescent liquid surfaces. The flux chamber design and operational conditions are those supported by the United States Environmental Protection Agency (US EPA). The results show that the US EPA flux chamber presents a fairly well mixed air phase. However, a trend to stagnation and hydrogen sulfide accumulation near chamber walls was detected in the computational simulation, which also indicated that the positioning of the sampling tube in relation to the inlet orifices may lead to deviations in the measurement results. CFD results showed that the wall shear and concentration gradients spatially vary at the gas-liquid interface, and friction velocity inside the chamber does not match typical values of atmospheric flow. PMID:26741548

  8. Eddy covariance N2O flux measurements at low flux rates: results from the InGOS campaign in a Danish willow field.

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per

    2014-05-01

    rates. All three EC systems showed 30 min. flux values varying around zero nmol m-2 s-1. This noise was considerably lower in the EC systems that used QCL analysers. The maximum daily averages of the uncorrected fluxes from two of the EC systems reached 0.26 (ICOS/HS50) and 0.28 (QCL/R3) nmol m-2 s-1.Spectral correction increased the flux estimates up to, e.g., 180% equivalent to 0.54 nmol m-2 s-1. The flux estimates from the soil chambers were with one exception higher than the flux estimates obtained from the EC systems with highest daily averages ranging from 0.1 up to 2 nmol m-2 s-1. These large differences were unexpected, because at least two of the EC systems were shown to accurately measure fluxes at such higher levels at another InGOS campaign in a fertilised Scottish grazed meadow. We use spectral analysis to examine the raw data for the effects of sensor noise on the flux estimates and discuss strategies on how to correct or account for it. Furthermore possible causes for the observed differences between the observed EC and chamber flux estimates will be discussed.

  9. Seasonal measurements of total OH reactivity fluxes, total ozone loss rates and missing emissions from Norway spruce in 2011

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Bourtsoukidis, E.; Bonn, B.; Kesselmeier, J.; Lelieveld, J.; Williams, J.

    2012-10-01

    Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the Comparative Reactivity Method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel separate VOC emission rates were monitored by a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56-69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11-16%. At this time, a large missing fraction of the total OH reactivity emission rate (70-84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes. Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could

  10. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  11. Quantifying Methane Oxidation Rates and Flux During the Deepwater Horizon Oil Spill with Measurements of Methane Stable Isotopic Ratios and Concentrations

    NASA Astrophysics Data System (ADS)

    Du, M.; Kessler, J. D.; Sylva, S.

    2014-12-01

    Several independent techniques have been developed to measure the rate of methane oxidation and the source flux. However, none of these methods measure them concurrently. Here we present a stable isotope model incorporating measurements of methane stable isotopic ratios and concentrations, and current velocity, which can be used to determine methane oxidation rates, as well as the flux from the seafloor. This model was tested on 20 samples taken from 1 to 12 km from the wellhead from 11 June through 20 June 2010 during the Deepwater Horizon oil spill. Results suggest that rate of methane oxidation ranged from 22 to 844 nM d-1 in mid-June 2010 and that the flux from the seafloor was 8.4×107 moles d-1. Both estimated here are in agreement with previous estimates determined independently.

  12. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  13. Heat-Flux-Measuring Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1990-01-01

    Apparatus simulates conditions in turbine engines. Automated facility generates and measures transient and steady-state heat fluxes at flux densities from 0.3 to 6 MW/m(Sup2) and temperatures from 100 to 1,200 K. Positioning arm holds heat-flux gauge at focal point of arc lamp. Arm previously chilled gauge in liquid nitrogen in Dewar flask. Cooling water flows through lamp to heat exchanger. Used to develop heat-flux gauges for turbine blades and to test materials for durability under rapidly changing temperatures.

  14. Measuring surface fluxes in CAPE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; D-Shah, T.; Nie, Dalin

    1992-01-01

    Two stations (site 1612 and site 2008) were operated by the University of Georgia group from 6 July 1991 to 18 August 1991. The following data were collected continuously: surface energy fluxes (i.e., net radiation, soil heat fluxes, sensible heat flux and latent heat flux), air temperature, vapor pressure, soil temperature (at 1 cm depth), and precipitation. Canopy reflectance and light interception data were taken three times at each site between 6 July and 18 August. Soil moisture content was measured twice at each site.

  15. Radiative flux measurements in the troposphere

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.; Gore, W. J. Y.; Giver, L. P. M.

    1982-01-01

    A new airborne radiometric system with a time resolution as high as 60 msec has been designed for measuring radiative fluxes in the atmosphere. To verify the instrument performance, the solar constant at the top of the atmosphere has been calculated using the radiative flux densities measured in the troposphere, and the result obtained has been found to agree with the standard value to within 4%. Total heating rates of 0.175 and 0.377 K/h have been determined for hazy and foggy atmospheres, respectively, and aerosol heating rates of 0.065 and 0.235 K/h have been deduced from the total heating rates.

  16. A process-based model to estimate gas exchange and monoterpene emission rates in the mediterranean maquis - comparisons between modelled and measured fluxes at different scales

    NASA Astrophysics Data System (ADS)

    Vitale, M.; Matteucci, G.; Fares, S.; Davison, B.

    2009-02-01

    This paper concerns the application of a process-based model (MOCA, Modelling of Carbon Assessment) as an useful tool for estimating gas exchange, and integrating the empirical algorithms for calculation of monoterpene fluxes, in a Mediterranean maquis of central Italy (Castelporziano, Rome). Simulations were carried out for a range of hypothetical but realistic canopies of the evergreen Quercus ilex (holm oak), Arbutus unedo (strawberry tree) and Phillyrea latifolia. More, the dependence on total leaf area and leaf distribution of monoterpene fluxes at the canopy scale has been considered in the algorithms. Simulation of the gas exchange rates showed higher values for P. latifolia and A. unedo (2.39±0.30 and 3.12±0.27 gC m-2 d-1, respectively) with respect to Q. ilex (1.67±0.08 gC m-2 d-1) in the measuring campaign (May-June). Comparisons of the average Gross Primary Production (GPP) values with those measured by eddy covariance were well in accordance (7.98±0.20 and 6.00±1.46 gC m-2 d-1, respectively, in May-June), although some differences (of about 30%) were evident in a point-to-point comparison. These differences could be explained by considering the non uniformity of the measuring site where diurnal winds blown S-SW direction affecting thus calculations of CO2 and water fluxes. The introduction of some structural parameters in the algorithms for monoterpene calculation allowed to simulate monoterpene emission rates and fluxes which were in accord to those measured (6.50±2.25 vs. 9.39±4.5μg g-1DW h-1 for Q. ilex, and 0.63±0.207μg g-1DW h-1 vs. 0.98±0.30μg g-1DW h-1 for P. latifolia). Some constraints of the MOCA model are discussed, but it is demonstrated to be an useful tool to simulate physiological processes and BVOC fluxes in a very complicated plant distributions and environmental conditions, and necessitating also of a low number of input data.

  17. Monte Carlo simulations for high-rate fast neutron flux measurements made at the RAON neutron science facility by using MICROMEGAS

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Hee; Hong, Ser Gi; Kim, Jae Cheon; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    RAON is a Korean heavy-ion accelerator complex that is planned to be built by 2021. Deuterons (53 MeV) and protons (88 MeV) accelerated by using a low-energy driver linac (SCL1) are delivered to the neutron production target in the Neutron Science Facility (NSF) to produce high-energy neutrons in the interval from 1 to 88 MeV with high fluxes of the order of 1012 n/cm2-sec. The repetition rate of the neutron beam ranges from 1 kHz to 1 MHz, and the maximum beam current is ~12 μA at 1 MHz. The beam width is 1 ~ 2 ns. The high-energy and high-rate fast neutrons are used to estimate accurate neutron-induced cross sections for various nuclides at the NSF. A MICROMEGAS (MICRO Mesh Gaseous Structure), which is a gaseous detector initially developed for tracking in high-rate, high-energy physics experiments, is tentatively being considered as a neutron beam monitor. It can be used to measure both the energy distribution and the flux of the neutron beam. In this study, a MICROMEGAS detector for installation at the NSF was designed and investigated. 6Li, 10B, 235U and 238U targets are being considered as neutron/charged particle converters. For the low-energy region, 6Li(n,α)t and 10B(n,α)7Li are used in the energy range from thermal to 1 MeV. 235U(n,f) and 238U(n,f) reactions are used for high-energy region up to 90 MeV. All calculations are performed by using the GEANT4 toolkit.

  18. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    PubMed

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  19. Flux appearance and disappearance rates in the solar internetwork

    NASA Astrophysics Data System (ADS)

    Gosic, Milan; Bellot Rubio, Luis; Del Toro Iniesta, Jose Carlos; Orozco Suarez, David; Katsukawa, Yukio

    2016-05-01

    The solar internetwork contains weak and highly dynamic magnetic fields that are essential to understanding the solar magnetism at small spatial and temporal scales. Therefore, it is important to determine how these fields are maintained on the solar surface. Using unique Hinode observations, we follow the evolution of individual magnetic elements in the interior of two supergranular cells at the disk center. From up to 38 hr of continuous measurements, we show that magnetic flux appears in internetwork regions at a rate of 120±3 Mx cm-2 day-1 (3.7±0.4 × 1024 Mx day-1 over the entire solar surface). Flux disappears from the internetwork at a rate of 125±6 Mx cm-2 day-1 (3.9±0.5 × 1024 Mx day-1) through fading of magnetic elements, cancellation between opposite-polarity features, and interactions with network patches, which converts internetwork elements into network features. The removal of flux from supergranules occurs mainly through fading and interactions with network, at nearly the same rate of about 50 Mx cm-2 day-1. Our results demonstrate that the sources and sinks of internetwork magnetic flux are well balanced, reflecting the steady-state nature of the quiet Sun. Using the instantaneous flux appearance and disappearance rates, we successfully reproduce, for the first time, the temporal evolution of the total unsigned flux in the interior of supergranular cells.

  20. The Solar Internetwork. II. Flux Appearance and Disappearance Rates

    NASA Astrophysics Data System (ADS)

    Gošić, M.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Orozco Suárez, D.; Katsukawa, Y.

    2016-03-01

    Small-scale internetwork magnetic fields are important ingredients of the quiet Sun. In this paper we analyze how they appear and disappear on the solar surface. Using high resolution Hinode magnetograms, we follow the evolution of individual magnetic elements in the interior of two supergranular cells at the disk center. From up to 38 hr of continuous measurements, we show that magnetic flux appears in internetwork regions at a rate of 120 ± 3 Mx cm-2 day-1 (3.7 ± 0.4 × 1024 Mx day-1 over the entire solar surface). Flux disappears from the internetwork at a rate of 125 ± 6 Mx cm-2 day-1 (3.9 ± 0.5 × 1024 Mx day-1) through fading of magnetic elements, cancelation between opposite-polarity features, and interactions with network patches, which converts internetwork elements into network features. Most of the flux is lost through fading and interactions with the network, at nearly the same rate of about 50 Mx cm-2 day-1. Our results demonstrate that the sources and sinks of internetwork magnetic flux are well balanced. Using the instantaneous flux appearance and disappearance rates, we successfully reproduce the time evolution of the total unsigned flux in the two supergranular cells.

  1. Measuring and modeling C flux rates through the central metabolic pathways in microbial communities using position-specific 13C-labeled tracers

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.

    2012-12-01

    The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.

  2. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  3. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  4. Apparatus for measuring a flux of neutrons

    DOEpatents

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  5. Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees.

    PubMed Central

    Suarez, R K; Lighton, J R; Joos, B; Roberts, S P; Harrison, J F

    1996-01-01

    Honeybees rely primarily on the oxidation of hexose sugars to provide the energy required for flight. Measurement of VCO2 (equal to VO2, because VCO2/VO2 = 1.0 during carbohydrate oxidation) during flight allowed estimation of steady-state flux rates through pathways of flight muscle energy metabolism. Comparison of Vmax values for flight muscle hexokinase, phosphofructokinase, citrate synthase, and cytochrome c oxidase with rates of carbon and O2 flux during flight reveal that these enzymes operate closer to Vmax in the flight muscles of flying honeybees than in other muscles previously studied. Possible mechanistic and evolutionary implications of these findings are discussed. PMID:8901631

  6. Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements

    PubMed Central

    Mookerjee, Shona A.; Nicholls, David G.; Brand, Martin D.

    2016-01-01

    Measurements of glycolytic rate and maximum glycolytic capacity using extracellular flux analysis can give crucial information about cell status and phenotype during normal operation, development of pathology, differentiation, and malignant transformation. They are also of great use when assessing the effects of chemical or drug treatments. Here, we experimentally define maximum glycolytic capacity, demonstrate how it differs from glycolytic rate, and provide a protocol for determining the basal glycolytic rate and maximum glycolytic capacity in cells using extracellular flux measurements. The results illustrate the power of extracellular flux analysis to describe the energetics of adherent cells in culture in a fully quantitative way. PMID:27031845

  7. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  8. Quantifying the "chamber effect" in CO2 flux measurements

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan

    2014-05-01

    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  9. Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured using an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seong; An, Sung-Uk; Park, Young-Gyu; Kim, Eunsoo; Kim, Dongseon; Kwon, Jung No; Kang, Dong-Jin; Noh, Jae-Hoon

    2015-09-01

    We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) Belc II and Belp II. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge-slope-basin system in the East Sea.

  10. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  11. Diamagnetic flux measurement in Aditya tokamak

    SciTech Connect

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore

    2010-12-15

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  12. Calving fluxes and melt rates of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Depoorter, Mathieu A.; Griggs, Jennifer A.; Lenaerts, Jan T. M.; van den Broeke, Michiel R.; Bamber, Jonathan L.

    2013-04-01

    Iceberg calving has been assumed to be the dominant mass loss term for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 Gt yr-1. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. To date, however, no study has reliably quantified the volume of bottom (sub-shelf) melt (BM) and the calving flux (CF) for the whole of Antarctica. The distribution of freshwater in the Southern Ocean and its partitioning between liquid and solid phase is, therefore, poorly constrained. Here, we estimate the mass budget of Antarctic ice shelves using satellite measurements of calving flux, grounding line flux and modelled ice shelf accumulation rates. We obtain a total calving flux of 938 ± 109 Gt yr-1 and a total net bottom melt of 1,130 ± 241 Gt yr-1. Thus, about half of the ice sheet surface mass gain is lost through oceanic erosion before reaching the ice front and the calving flux is less than half the estimate derived from iceberg tracking. Calving is therefore not the most important term in the mass loss of the continent. In addition, the fraction of mass loss from bottom melt varies dramatically from ~10 to 90% between ice shelves. We find that ice shelves with high melt ratios correlate well with those experiencing thinning and enhanced discharge, suggesting that a high melt ratio may be a good indicator of ice shelf vulnerability to changes in ocean temperature.

  13. Calving fluxes and basal melt rates of Antarctic ice shelves.

    PubMed

    Depoorter, M A; Bamber, J L; Griggs, J A; Lenaerts, J T M; Ligtenberg, S R M; van den Broeke, M R; Moholdt, G

    2013-10-01

    Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-shelf base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing. PMID:24037377

  14. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  15. Measuring fast calcium fluxes in cardiomyocytes.

    PubMed

    Golebiewska, Urszula; Scarlata, Suzanne

    2011-01-01

    Cardiomyocytes have multiple Ca(2+) fluxes of varying duration that work together to optimize function (1,2). Changes in Ca(2+) activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gα(q;) pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine (3,4). We have recently found that plasma membrane protein domains called caveolae(5,6) can entrap activated Gα(q;)(7). This entrapment has the effect of stabilizing the activated state of Gα(q;) and resulting in prolonged Ca(2+) signals in cardiomyocytes and other cell types(8). We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca(2+) indicator. In our studies, we used Ca(2+) Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca(2+) responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca(2+) waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca(2+) waves

  16. Comparison of radon fluxes with gamma-radiation exposure rates and soil /sup 226/Ra concentrations

    SciTech Connect

    Young, J.A.; Thomas, V.W.

    1984-04-01

    Radon fluxes and contact gamma-radiation-exposure rates were measured at the grid points of rectangular grids on three properties in Edgemont, South Dakota that were known to have deposits of residual radioactivity relatively near to the surface. The coefficient of determination, r/sup 2/, between the radon fluxes and the contact gamma-radiation-exposure rates varied from 0.89 to 0.31 for the three properties. The property having the highest fluxes and residual radioactivity of relatively uniform depth showed the highest correlation between fluxes and exposure rates, and the property having residual radioactivity that varied considerably in depth showed the lowest. Correlations between fluxes and /sup 226/Ra concentrations measured in boreholes that varied in depth from 60 to 195 cm were lower than those between fluxes and exposure rates, indicating that exposure rates are better than /sup 226/Ra measurements for detecting elevated radon fluxes from near-surface deposits. Measurements made on one property at two different times indicated that if the average flux were determined from a large number (40) of measurements at one time, the average flux at a later time could be estimated from a few measurements using the assumption that the change in the flux at individual locations will be equal to the change in the average flux. Flux measurements around two buildings showing elevated indoor radon-daughter concentrations, but around which no residual radioactivity had been discovered by /sup 226/Ra and gamma-radiation measurements, provided no clear indication of the presence of such material, possibly because none was present.

  17. Experimental flux measurements on a network scale

    SciTech Connect

    Schwender, J.

    2011-10-11

    Metabolic flux is a fundamental property of living organisms. In recent years, methods for measuring metabolic flux in plants on a network scale have evolved further. One major challenge in studying flux in plants is the complexity of the plant's metabolism. In particular, in the presence of parallel pathways in multiple cellular compartments, the core of plant central metabolism constitutes a complex network. Hence, a common problem with the reliability of the contemporary results of {sup 13}C-Metabolic Flux Analysis in plants is the substantial reduction in complexity that must be included in the simulated networks; this omission partly is due to limitations in computational simulations. Here, I discuss recent emerging strategies that will better address these shortcomings.

  18. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  19. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  20. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  1. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  2. Measuring Response Of Propellant To Oscillatory Heat Flux

    NASA Technical Reports Server (NTRS)

    Strand, Leon D.; Schwartz, Ken; Burns, Shawn P.

    1990-01-01

    Apparatus for research in combustion of solid propellants measures oscillatory response of rate of burning to oscillating thermal radiation from modulated CO2 laser. Determines response to rate of burning to equivalent oscillation in pressure. Rod of propellant mounted in burner assembly including waveguide at one end and infrared window at other end. Microwave Doppler velocimeter measures motion of combustion front. Microwave, laser-current, and heat-flux signals processed into and recorded in forms useful in determining desired response of propellent.

  3. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  4. Instruments for measuring radiant thermal fluxes

    NASA Technical Reports Server (NTRS)

    Gerashenko, O. A.; Sazhina, S. A.

    1974-01-01

    An absolute two-sided radiometer, designed on the principle of replacing absorbed radiant energy with electrical energy, is described. The sensitive element of the detector is a thermoelectric transducer of thermal flux. The fabrication technology, methods of measurement, technical characteristics, and general operation of the instrument are presented.

  5. Interplanetary magnetic flux - Measurement and balance

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.

    1992-01-01

    A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.

  6. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  7. Fluid flow rate, temperature and heat flux at Mohns Ridge vent fields: evidence from isosampler measurements for phase separated hydrothermal circulation along the arctic ridge system

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Pedersen, R. B.; Thorseth, I. H.; Taylor, P.; Flynn, M.

    2005-12-01

    tips available aboard ship was 260 deg C (800 deg C-capable isosampler sensors will be available for the 2006 field season). At this depth the phase separation point of seawater is 263 deg C. An isosampler sensor was deployed directly atop an apparently phase-separated white smoker chimney. The sensor indicated 260 deg C before terminating measurement. This was repeated at another vent site, indicating that the fluids were venting at the point of phase separation. Indicated smoker plume flow rates were approximately 1/2 meter per second. A second field "Soria Moria" of high temperature vents was discovered. This field is ~100 m on a side, and is densely populated by active white smoker chimneys, also with evidence for phase-separated flow. These vent fields comprise the first ever arctic vent plume sources ever visited by ROV and measured directly at the source of emission. A return to this area, and exploration and measurement further north is anticipated for 2006. The planned work includes comprehensive Isosampler and bioreactor fluid flow, sampling, geochemical and biogeochemical sampling and incubation.

  8. Calorimeter probes for measuring high thermal flux. [in arc jets

    NASA Technical Reports Server (NTRS)

    Russell, L. D.

    1979-01-01

    Expendable, slug-type calorimeter probes were developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes were constructed with thin tungsten caps mounted on Teflon bodies. The temperature of the back surface of the tungsten cap is measured, and its time rate of change gives the steady-state absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. Design, construction, test, and performance data are presented.

  9. Aerosol flux measurements above a mixed forest at Borden, Ontario

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Staebler, R. M.; Liggio, J.; Vlasenko, A.; Li, S.-M.; Hayden, K.

    2010-10-01

    Aerosol fluxes were measured above a mixed forest by Eddy Covariance (EC) with a Fast Mobility Particle Sizer (FMPS) at the Borden Forest Research Station in Ontario, Canada between 13 July and 12 August 2009. The FMPS, mounted at a height of 33 m (approximately 10 m above the canopy top) and housed in a temperature controlled enclosure, measured size-resolved particle concentrations for 3 to 410 nm at a rate of 1 Hz. For the size range 20fluxes were upward. The exchange velocity is between -0.5 and 2.0 mm s-1, with median values near 0.5 mm s-1 for all sizes between 24 and 280 nm. The net production rate of particles is highest for 75 nm particles and is near 0.4×106 m-2 s-1. Results indicate a decoupling of the above and below canopy spaces, whereby particles are stored in the canopy space at night, and are then diluted with cleaner air above during the day. Chemically speciated flux measurements from a previous study at the same location using a Quadrupole Aerosol Mass Spectrometer (Q-AMS) demonstrate a tendency towards downward fluxes, which may be due to an organic particle component which can not be resolved by the flux mode of the Q-AMS.

  10. Micrometeorological flux measurements at a coastal site

    NASA Astrophysics Data System (ADS)

    Song, Guozheng; Meixner, Franz X.; Bruse, Michael; Mamtimin, Buhalqem

    2014-05-01

    The eddy covariance (EC) technique is the only direct measurement of the momentum, heat, and trace gas (e.g. water vapor, CO2 and ozone) fluxes. The measurements are expected to be most accurate over flat terrain where there is an extended homogenous surface upwind from the tower, and when the environmental conditions are steady. Additionally, the one dimensional approach assumes that vertical turbulent exchange is the dominant flux, whereas advective influences should be negligible. The application of EC method under non-ideal conditions, for example in complex terrain, has yet to be fully explored. To explore the possibilities and limitations of EC technique under non-ideal conditions, an EC system was set up at Selles beach, Crete, Greece (35.33°N, 25.71°E) in the beginning of July 2012. The dominant wind direction was west, parallel to the coast. The EC system consisted of a sonic anemometer (CSAT3 Campbell Scientific), an infrared open-path CO2/H2O gas analyzer (LI-7500, Li-COR Biosciences) and a fast chemiluminescence ozone analyzer (enviscope GmbH). All the signals of these fast response instruments were sampled at 10 Hz and the measurement height was 3 m. Besides, another gradient system was setup. Air temperature, relative humidity (HYGROMER MP 103 A), and wind speed (WMT700 Vaisala) were measured every 10 seconds at 3 heights (0.7, 1.45, 3 m). Air intakes were set up at 0.7m and 3m. A pump drew the air through a flow system and a telflon valve alternately switched between the two heights every 30 seconds. H2O, CO2 (LI-840A, Li-COR Biosciences) and ozone mixing ratio s (model 205, 2BTechnologies) were measured every 10 seconds. Momentum, heat, CO2 and ozone fluxes were evaluated by both EC and gradient technique. For the calculation of turbulent fluxes, TK3 algorithm (Department of Micrometeorology, University Bayreuth, Germany) was applied. We will present the measured fluxes of the two systems and assess the data quality under such non-ideal condition.

  11. Passive hyporheic flux meter - measuring nitrate flux to the reactive sites in the river bed

    NASA Astrophysics Data System (ADS)

    Kunz, Julia Vanessa; Borchardt, Dietrich; Rode, Michael; Annable, Michael

    2015-04-01

    Most European lowland rivers are afflicted by high nitrate loads, modified morphology and discharge regulations, resulting in restricted capacity to retain nitrate. In those nutrient saturated rivers, sediment bound denitrification is the only process by which nitrate is removed from the system. Despite the importance of the hyporheic zone in nutrient reduction we are lacking detailed information on the transport to and retention at those reactive sites. Passive flux meters have successfully been used to measure contaminant transport to aquifers (eg Cho and Annable 2007). Here we present how a modification of those samplers can be used to quantify nitrate flux to and intermediate storage patterns in the interstices of an agriculturally impacted river. Installed in the river bed sediments, water flux and nutrient quantities passing through the device are recorded. While the amount of water flux serves as an index for connectivity of the hyporheic zone (exchange surface-subsurface water) the nitrate flux through the device can be seen as the portion of nitrate subjected to denitrification. The generated data on solute behavior in hyporheic zones are the missing puzzle to in-stream nitrate dynamics. Complementing flume and tracer experiments our approach depicts how discharge, morphology and sediment characteristics control the denitrification rate via the connectivity of the hyporheic zone. Passive hyporheic flux meter are a novel method to directly asses the quantity of removed nitrate by an in situ experiment.

  12. Observational biases in flux magnification measurements

    NASA Astrophysics Data System (ADS)

    Hildebrandt, H.

    2016-02-01

    Flux magnification is an interesting complement to shear-based lensing measurements, especially at high redshift where sources are harder to resolve. One measures either changes in the source density (magnification bias) or in the shape of the flux distribution (e.g. magnitude shift). The interpretation of these measurements relies on theoretical estimates of how the observables change under magnification. Here, we present simulations to create multiband photometric mock catalogues of Lyman-break galaxies in a CFHTLenS (Canada France Hawaii Telescope Lensing Survey)-like survey that include several observational effects that can change these relations, making simple theoretical estimates unusable. In particular, we show how the magnification bias can be affected by photometric noise, colour selection, and dust extinction. We find that a simple measurement of the slope of the number-counts is not sufficient for the precise interpretation of virtually all observations of magnification bias. We also explore how sensitive the shift in the mean magnitude of a source sample in different photometric bands is to magnification including the same observational effects. Again we find significant deviations from simple analytical estimates. We also discover a wavelength-dependence of the magnitude-shift effect when applied to a colour-selected noisy source sample. Such an effect can mimic the reddening by dust in the lens. It has to be disentangled from the dust extinction before the magnitude shift/colour-excess can be used to measure the distribution of either dark matter or extragalactic dust. Using simulations like the ones presented here these observational effects can be studied and eventually removed from observations making precise measurements of flux magnification possible.

  13. Infrared Camera Diagnostic for Heat Flux Measurements on NSTX

    SciTech Connect

    D. Mastrovito; R. Maingi; H.W. Kugel; A.L. Roquemore

    2003-03-25

    An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to measure the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 {micro}m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat flux is derived with a classic one-dimensional conduction model. Preliminary results of heat flux scaling are reported.

  14. ACCURACY OF SOIL HEAT FLUX MEASUREMENTS MADE WITH FLUX PLATES OF CONTRASTING PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flux plate measurements of soil heat flux (G) may include significant errors unless the plates are carefully installed and known errors accounted for. The objective of this research was to quantify potential errors in G when using soil heat flux plates of contrasting designs. Five flux plates with...

  15. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  16. Measuring diffuse neutrino fluxes with IceCube

    NASA Astrophysics Data System (ADS)

    Kowalski, Marek

    2005-05-01

    In this paper the sensitivity of a future kilometre-sized neutrino detector to detect and measure the diffuse flux of high energy neutrinos is evaluated. Event rates in established detection channels, such as muon events from charged current νμ interactions or cascade events from νe and ντ interaction, are calculated using a detailed Monte Carlo simulation. Neutrino fluxes as expected from prompt charm decay in the atmosphere or from astrophysical sources such as Active Galactic Nuclei are modelled assuming power laws. The ability to measure the normalization and slope of these spectra is then analysed. It is found that the cascade channel generally has a high sensitivity for the detection and characterization of the diffuse flux, when compared to what is expected for the upgoing- and downgoing-muon channels. A flux at the level of the Waxman Bahcall upper bound should be detectable in all channels separately while a combination of the information of the different channels will allow detection of a flux more than one order of magnitude lower. Neutrinos from the prompt decay of charmed mesons in the atmosphere should be detectable in future measurements for all but the lowest predictions.

  17. Upper-Bound SEU Rates In Anisotropic Fluxes

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1993-01-01

    Upper bounds on rates of single-event upsets (SEU's) in digital integrated circuits and other electronic devices exposed to anisotropic fluxes of energetic ionizing particles computed by use of improved method. Derived from simplified, worst-case mathematical models of charge-collecting volumes and physical phenomena in electronic devices.

  18. Untangling Autophagy Measurements: All Fluxed Up

    PubMed Central

    Gottlieb, Roberta A.; Andres, Allen M.; Sin, Jon; Taylor, David

    2015-01-01

    Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly as the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to measure autophagy, selective mitochondrial autophagy (mitophagy), and autophagic flux. We will examine several published studies where confusion arose in in data interpretation, in order to illustrate the challenges. Finally we will discuss methods to assess autophagy in vivo and in patients. PMID:25634973

  19. A new disjunct eddy-covariance system for BVOC flux measurements - validation on CO2 and H2O fluxes

    NASA Astrophysics Data System (ADS)

    Baghi, R.; Durand, P.; Jambert, C.; Jarnot, C.; Delon, C.; Serça, D.; Striebig, N.; Ferlicoq, M.; Keravec, P.

    2012-12-01

    The disjunct eddy covariance (DEC) method is an interesting alternative to the conventional eddy covariance (EC) method because it allows the estimation of turbulent fluxes of species for which fast sensors are not available. We have developed and validated a new disjunct sampling system (called MEDEE). This system is built with chemically inert materials. Air samples are taken quickly and alternately in two cylindrical reservoirs, the internal pressures of which are regulated by a moving piston. The MEDEE system was designed to be operated either on the ground or aboard an aircraft. It is also compatible with most analysers since it transfers the air samples at a regulated pressure. To validate the system, DEC and EC measurements of CO2 and latent heat fluxes were performed concurrently during a field campaign. EC fluxes were first compared to simulated DEC (SDEC) fluxes and then to actual DEC fluxes. Both the simulated and actual DEC fluxes showed a good agreement with EC fluxes in terms of correlation. The determination coefficients (R2) were 0.93 and 0.91 for DEC and SDEC latent heat fluxes, respectively. For DEC and SDEC CO2 fluxes R2 was 0.69 in both cases. The conditions of low fluxes experienced during the campaign impaired the comparison of the different techniques especially for CO2 flux measurements. Linear regression analysis showed an 14% underestimation of DEC fluxes for both CO2 and latent heat compared to EC fluxes. A first field campaign, focusing on biogenic volatile organic compound (BVOC) emissions, was carried out to measure isoprene fluxes above a downy oak (Quercus Pubescens) forest in the south-east of France. The measured standard emission rate was in the lower range of reported values in earlier studies. Further analysis will be conducted through ground-based and airborne campaigns in the coming years.

  20. Flux measurements using the BATSE spectroscopic detectors

    NASA Technical Reports Server (NTRS)

    Mcnamara, Bernard

    1993-01-01

    Among the Compton Gama-Ray Observatory instruments, the BATSE Spectroscopic Detectors (SD) have the distinction of being able to detect photons of energies less than about 20 keV. This is an interesting energy range for the examination of low mass X-ray binaries (LMXB's). In fact, Sco X-1, the prototype LMXB, is easily seen even in the raw BATSE spectroscopic data. The all-sky coverage afforded by these detectors offers a unique opportunity to monitor this source over time periods never before possible. The aim of this investigation was to test a number of ways in which both continous and discrete flux measurements can be obtained using the BATSE spectroscopic datasets. A instrumental description of a SD can be found in the Compton Workshop of Apr. 1989, this report will deal only with methods which can be used to analyze its datasets. Many of the items discussed below, particularly in regard to the earth occultation technique, have been developed, refined, and applied by the BATSE team to the reduction of BATSE LAD data. Code written as part of this project utilizes portions of that work. The following discussions will first address issues related to the reduction of SD datasets using the earth occultation technique. It will then discuss methods for the recovery of the flux history of strong sources while they are above the earth's limb. The report will conclude with recommended reduction procedures.

  1. Aerosol flux measurements above a mixed forest at Borden, Ontario

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Staebler, R. M.; Liggio, J.; Vlasenko, A.; Li, S.-M.; Hayden, K.

    2011-07-01

    Aerosol fluxes were measured above a mixed forest by Eddy Covariance (EC) with a Fast Mobility Particle Sizer (FMPS) at the Borden Forest Research Station in Ontario, Canada between 13 July and 12 August 2009. Chemically speciated flux measurements were made at a height of 29 m at the same location between 19 July and 2 August, 2006 using a Quadrupole Aerosol Mass Spectrometer (Q-AMS). The Q-AMS measured an average sulphate deposition velocity of 0.3 mm s-1 and an average nitrate deposition velocity of 4.8 mm s-1. The FMPS, mounted at a height of 33 m (approximately 10 m above the canopy top) and housed in a temperature controlled enclosure, measured size-resolved particle concentrations from 3 to 410 nm diameter at a rate of 1 Hz. For the size range 18 < D < 452 nm, 60 % of fluxes were upward. The exchange velocity was between -0.5 and 2.0 mm s-1, with median values near 0.5 mm s-1 for all sizes between 22 and 310 nm. The size distribution of the apparent production rate of particles at 33 m peaked at a diameter of 75 nm. Results indicate a decoupling of the above and below canopy spaces, whereby particles are stored in the canopy space at night, and are then diluted with cleaner air above during the day.

  2. Rating Scale Instruments and Measurement

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.; Romanoski, Joseph T.

    2006-01-01

    The article examines theoretical issues associated with measurement in the human sciences and ensuring data from rating scale instruments are measures. An argument is made that using raw scores from rating scale instruments for subsequent arithmetic operations and applying linear statistics is less preferable than using measures. These theoretical…

  3. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  4. A Push-Pull Test to Measure Volatilization Fluxes of Organic Pollutants without Flux Chambers

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Jaffe, P. R.

    2011-12-01

    Volatilization of organic contaminants is a potentially significant removal mechanism from wetlands, but field measurements are scarce and the physiochemical controls on volatilization from wetland soils remain poorly understood. It has been established that volatilization rates of certain pollutants are enhanced by vegetation and are strongly correlated with evapotranspiration (ET). These observations rely on flux chambers measurements, which are characterized by significant uncertainty due the chamber's effects on the meteorological variables around the plant and consequent impact on the biophysical processes governing ET and plant uptake of soil contaminants. Here we present data from a mesocosm study using a modified single-well push-pull test to measure in-situ volatilization rates from inundated soils vegetated with the wetland macrophytes Scirpus acutus and Typha latifolia, as well as from unplanted soil. This new method uses a test solution containing the volatile tracers sulfur hexafluoride (SF6), helium (He), and dichlorodifluoromethane (CFC-12) to estimate first-order volatilization rates and examine the relationship between physiochemical properties and volatilization rates. The test also yields an estimate for the volume of subsurface gas bubbles, which is used to derive a retardation factor for the effect of interphase partitioning on the estimation of kinetic parameters. We evaluate models to partition observed fluxes into different pathways for plant-mediated volatilization: transpirational uptake and consequent volatilization, and gas-phase diffusion through porous root aerenchyma. Those models are then used to scale tracer-derived volatilization fluxes to priority organic pollutants including benzene, trichloroethylene, and vinyl chloride. We also discuss the implementation of this method at field scales to estimate volatilization as a component of phytoremediation applications.

  5. Large Area Lunar Dust Flux Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  6. Optimizing laboratory-based radon flux measurements for sediments.

    PubMed

    Chanyotha, Supitcha; Kranrod, Chutima; Kritsananuwat, Rawiwan; Lane-Smith, Derek; Burnett, William C

    2016-07-01

    Radon flux via diffusion from sediments and other materials may be determined in the laboratory by circulating air through the sample and a radon detector in a closed loop. However, this approach is complicated by the necessity of having to determine the total air volume in the system and accounting for any small air leaks that can arise if using extended measurement periods. We designed a simple open-loop configuration that includes a measured mass of wet sediment and water inside a gas-tight reaction flask connected to a drying system and a radon-in-air analyzer. Ambient air flows through two charcoal columns before entering the reaction vessel to eliminate incoming radon. After traveling through the reaction flask, the air passes the drier and the radon analyzer and is then vented. After some time, the radon activity will reach a steady state depending upon the airflow rate. With this approach, the radon flux via diffusion is simply the product of the steady-state radon activity (Bq/m(3)) multiplied by the airflow rate (mL/min). We demonstrated that this setup could produce good results for materials that produce relatively high radon fluxes. We also show that a modified closed system approach, including radon removal of the incoming air by charcoal filtration in a bypass, can produce very good results including samples with very low emission rates. PMID:27064564

  7. Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry.

    PubMed

    Stewart, Benjamin J; Navid, Ali; Turteltaub, Kenneth W; Bench, Graham

    2010-12-01

    Metabolic flux, the flow of metabolites through networks of enzymes, represents the dynamic productive output of cells. Improved understanding of intracellular metabolic fluxes will enable targeted manipulation of metabolic pathways of medical and industrial importance to a greater degree than is currently possible. Flux balance analysis (FBA) is a constraint-based approach to modeling metabolic fluxes, but its utility is limited by a lack of experimental measurements. Incorporation of experimentally measured fluxes as system constraints will significantly improve the overall accuracy of FBA. We applied a novel, two-tiered approach in the yeast Saccharomyces cerevisiae to measure nutrient consumption rates (extracellular fluxes) and a targeted intracellular flux using a (14)C-labeled precursor with HPLC separation and flux quantitation by accelerator mass spectrometry (AMS). The use of AMS to trace the intracellular fate of (14)C-glutamine allowed the calculation of intracellular metabolic flux through this pathway, with glutathione as the metabolic end point. Measured flux values provided global constraints for the yeast FBA model which reduced model uncertainty by more than 20%, proving the importance of additional constraints in improving the accuracy of model predictions and demonstrating the use of AMS to measure intracellular metabolic fluxes. Our results highlight the need to use intracellular fluxes to constrain the models. We show that inclusion of just one such measurement alone can reduce the average variability of model predicted fluxes by 10%. PMID:21062031

  8. An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations

    USGS Publications Warehouse

    Horowitz, A.J.

    2003-01-01

    In the absence of actual suspended sediment concentration (SSC) measurements, hydrologists have used sediment rating (sediment transport) curves to estimate (predict) SSCs for subsequent flux calculations. Various evaluations of the sediment rating-curve method were made using data from long-term, daily sediment-measuring sites within large (>1 000 000 km2), medium ( 1000 km2), and small (<1000 km2) river basins in the USA and Europe relative to the estimation of suspended sediment fluxes. The evaluations address such issues as the accuracy of flux estimations for various levels of temporal resolution as well as the impact of sampling frequency on the magnitude of flux estimation errors. The sediment rating-curve method tends to underpredict high, and overpredict low SSCs. As such, the range of errors associated with concomitant flux estimates for relatively short time-frames (e.g. daily, weekly) are likely to be substantially larger than those associated with longer time-frames (e.g. quarterly, annually) because the over- and underpredictions do not have sufficient time to balance each other. Hence, when error limits must be kept under ??20%, temporal resolution probably should be limited to quarterly or greater. The evaluations indicate that over periods of 20 or more years, errors of <1% can be achieved using a single sediment rating curve based on data spanning the entire period. However, somewhat better estimates for the entire period, and markedly better annual estimates within the period, can be obtained if individual annual sediment rating curves are used instead. Relatively accurate (errors fluxes can be obtained from hydrologically based monthly measurements/samples. For 5-year periods or longer, similar results can be obtained from measurements/samples collected once every 2 months. In either case, hydrologically based sampling, as opposed to calendar-based sampling is likely to limit the magnitude of flux estimation

  9. Radiative flux measurements in the stratosphere

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1990-01-01

    The objective is to determine how the stratospheric tropospheric exchange of water vapor is affected by the interaction of solar (visible) and planetary (infrared) radiation with tropical cumulonimbus anvils. This research involves field measurements from the ER-2 aircraft as well as radiative transfer modelling to determine heating and cooling rates and profiles that directly affect the exchange between the troposphere and the stratosphere.

  10. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  11. An Alpha-Gamma Counter for Absolute Neutron Flux Measurement

    NASA Astrophysics Data System (ADS)

    Yue, A.; Greene, G.; Dewey, M.; Gilliam, D.; Nico, J.; Laptev, A.

    2012-03-01

    An alpha-gamma counter was used to measure the absolute neutron flux of a monochromatic cold neutron beam to sub-0.1,% precision. Simultaneously, the counter was used to calibrate a thin neutron flux monitor based on neutron absorption on ^6Li to the same precision. This monitor was used in the most precise beam-based measurement of the neutron lifetime, where the limiting systematic effect was the uncertainty in the neutron counting efficiency (0.3,%). The counter uses a thick target of ^10B-enriched boron carbide to completely absorb the beam. The rate of absorbed neutrons is determined by counting 478 keV gamma rays from neutron capture on ^10B with calibrated high-purity germanium detectors. The calibration results and the implications for the neutron lifetime will be discussed.

  12. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    SciTech Connect

    Hatfield, Kirk

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under

  13. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  14. AmeriFlux Measurement Component (AMC) Handbook

    SciTech Connect

    Reichl, K.; Biraud, S. C.

    2016-01-01

    An AMC system was installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling PAR sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape. The soil VWC and temperature sensors used at NSA C1 are the Campbell Scientific CS650L and the sensors at NSA M1 use the Campbell Scientific CS655. The two sensors are nearly identical in function, and vendor specifications are based on the CS650 unless otherwise stated.

  15. Deformational injection rate measuring method

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2002-09-01

    After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.

  16. In situ measurement of mesopelagic particle sinking rates and the control of carbon transfer to the ocean interior during the Vertical Flux in the Global Ocean (VERTIGO) voyages in the North Pacific

    NASA Astrophysics Data System (ADS)

    Trull, T. W.; Bray, S. G.; Buesseler, K. O.; Lamborg, C. H.; Manganini, S.; Moy, C.; Valdes, J.

    2008-07-01

    Among the parameters affecting carbon transfer to the ocean interior, particle sinking rates vary three orders of magnitude and thus more than primary production, f-ratios, or particle carbon contents [e.g., Boyd, P.W., Trull, T.W., 2006. Understanding the export of marine biogenic particles: is there consensus? Progress in Oceanography 4, 276-312, doi:10.1016/j.pocean.2006.10.007]. Very few data have been obtained from the mesopelagic zone where the majority of carbon remineralization occurs and the attenuation of the sinking flux is determined. Here, we report sinking rates from ˜300 m depth for the subtropical (station ALOHA, June 2004) and subarctic (station K2, July 2005) North Pacific Ocean, obtained from short (6.5 day) deployments of an indented rotating sphere (IRS) sediment trap operating as an in situ settling column [Peterson, M.L., Wakeham, S.G., Lee, C., Askea, M.A., Miquel, J.C., 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates. Limnology and Oceanography Methods 3, 520-532] to separate the flux into 11 sinking-rate fractions ranging from >820 to >2 m d -1 that are collected by a carousel for further analysis. Functioning of the IRS trap was tested using a novel programming sequence to check that all particles have cleared the settling column prior to the next delivery of particles by the 6-hourly rotation cycle of the IRS. There was some evidence (from the flux distribution among the cups and photomicroscopy of the collected particles) that very slow-sinking particles may have been under-collected because they were unable to penetrate the brine-filled collection cups, but good evidence for appropriate collection of fast-settling fractions. Approximately 50% of the particulate organic carbon (POC) flux was sinking at greater than 100 m d -1 at both stations. At ALOHA, more than 15% of the POC flux sank at >820 m d -1, but low fluxes make this uncertain, and precluded resolution of particles

  17. Field measurement of ventilation rates.

    PubMed

    Persily, A K

    2016-02-01

    Ventilation rates have significant impacts on building energy use and indoor contaminant concentrations, making them key parameters in building performance. Ventilation rates have been measured in buildings for many decades, and there are mature measurement approaches available to researchers and others who need to know actual ventilation rates in buildings. Despite the fact that ventilation rates are critical in interpreting indoor concentration measurements, it is disconcerting how few Indoor Air Quality field studies measure ventilation rates or otherwise characterize the ventilation design of the study building(s). This paper summarizes parameters of interest in characterizing building ventilation, available methods for quantifying these parameters, and challenges in applying these methods to different types of buildings and ventilation systems. These parameters include whole-building air change rates, system outdoor air intake rates, and building infiltration rates. Tracer gas methods are reviewed as well as system airflow rate measurements using, for example, duct traverses. Several field studies of ventilation rates conducted over the past 75 years are described to highlight the approaches employed and the findings obtained. PMID:25689218

  18. Measurement of Integrated Low Frequency Flux Noise in Superconducting Flux/Phase Qubits

    SciTech Connect

    Mao Bo; Qiu Wei; Han Siyuan

    2008-11-07

    We measured the integrated low frequency flux noise ({approx}1 m{phi}{sub 0}) of an rf SQUID as a flux qubit by fitting the resonant peaks from photon assistant tunneling (PAT). The energy relaxation time Tl between the ground and first excited states in the same potential well, measured directly in time domain, is 3 ns. From these results we identified low frequency flux noise as the dominant source of decoherence. In addition, we found that the measured values of integrated flux noise in three qubits of various sizes differ more than an order of magnitude.

  19. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    NASA Astrophysics Data System (ADS)

    Lee, A.; Schade, G. W.; Holzinger, R.; Goldstein, A. H.

    2005-02-01

    Many monoterpenes have been identified in forest emissions using gas chromatography (GC). Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS) coupled with the eddy covariance (EC) technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β-pinene, α-pinene, 3-carene, d-limonene, β-phellandrene, α-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID), coupled to a relaxed eddy accumulation system (REA). Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger mixing ratio discrepancies between the two techniques at night than during the day. Two unidentified peaks that correlated with β-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime mixing ratio difference to 20±2.9%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional terpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night.

  20. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    NASA Astrophysics Data System (ADS)

    Lee, A.; Schade, G. W.; Holzinger, R.; Goldstein, A. H.

    2004-12-01

    Many monoterpenes have been identified in forest emissions using gas chromatography (GC). Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS) coupled with the eddy covariance (EC) technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β-pinene, α-pinene, 3-carene, d-limonene, β-phellandrene, α-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID), coupled to a relaxed eddy accumulation system (REA). Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger differences at night than during the day. Four unidentified peaks that correlated with β-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime difference to 19±3.4%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional monoterpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night, and that must have been oxidized during the day before they escaped the forest canopy.

  1. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  2. Estimation of Particle Flux and Remineralization Rate from Radioactive Disequilibrium

    SciTech Connect

    Michael P. Bacon; Roger Francois

    2004-05-24

    Reactive radionuclides, such as the thorium isotopes, show measurable deficiencies in the oceanic water column because of their removal by chemical scavenging due to the particle flux. Measurement of the deficiency, coupled with measurement of the radionuclide concentration in particles, allows a determination of the effective particle sinking velocity. Results to date suggest that the effective particle sinking velocity is remarkably invariant with depth. This leads to the tentative suggestion that POC concentration profiles may, to a good approximation, be used directly to determine length scales for the remineralization of sinking organic matter. Further measurements are in progress to test this idea and to evaluate its limitations. Knowledge of the remineralization length scale is essential to an evaluation of the efficiency of the biological pump as a means for deep sequestering of carbon in the ocean.

  3. Photochemistry of solutes in/on ice: reaction rate dependence on sample orientation and photon flux

    NASA Astrophysics Data System (ADS)

    Hullar, T.; Anastasio, C.

    2015-12-01

    Particularly in polar regions, photochemical reactions in snowpacks can be an important mechanism for transforming organic and inorganic compounds. Chemicals within snow and ice are found in three different compartments: distributed in the bulk ice, concentrated in liquid-like regions (LLRs) within the ice matrix (such as at grain boundaries), or present in quasi-liquid layers (QLLs) at the air-ice interface. While some previous work suggested reaction rates may vary in these different compartments, our preliminary experiments found similar reaction rates in all three compartments, as well as in aqueous solution. Previous work also suggested reaction rate constants may be independent of photon flux under certain illumination conditions. Here, we extend our investigations to measure reaction rate constants in ice samples with different orientations to the illumination source, which our work thus far suggests may impact the measured rate constants. Polycyclic aromatic hydrocarbons (PAHs) are common pollutants in snow and ice. We first prepared aqueous solutions of a single PAH. We then froze these samples using various methods previously shown to segregate the solute into known locations in the ice matrix. With simulated polar sunlight, we illuminated these samples and measured photon flux (using 2-nitrobenzaldehyde as a chemical actinometer) and photodecay of the PAH. Using this information, we normalized the rate of PAH loss to the photon flux and calculated the rate constants for PAH photodegradation under various freezing conditions, photon fluxes, and sample orientations. We will report on the impact of these variables on PAH photodegradation as well as the effect of varying the photon flux.

  4. Sensor for Injection Rate Measurements

    PubMed Central

    Marcic, Milan

    2006-01-01

    A vast majority of the medium and high speed Diesel engines are equipped with multi-hole injection nozzles nowadays. Inaccuracies in workmanship and changing hydraulic conditions in the nozzles result in differences in injection rates between individual injection nozzle holes. The new deformational measuring method described in the paper allows injection rate measurement in each injection nozzle hole. The differences in injection rates lead to uneven thermal loads of Diesel engine combustion chambers. All today known measuring method, such as Bosch and Zeuch give accurate results of the injection rate in diesel single-hole nozzles. With multihole nozzles they tell us nothing about possible differences in injection rates between individual holes of the nozzle. At deformational measuring method, the criterion of the injected fuel is expressed by the deformation of membrane occurring due to the collision of the pressure wave against the membrane. The pressure wave is generated by the injection of the fuel into the measuring space. For each hole of the nozzle the measuring device must have a measuring space of its own into which fuel is injected as well as its measuring membrane and its own fuel outlet. During measurements procedure the measuring space must be filled with fuel to maintain an overpressure of 5 kPa. Fuel escaping from the measuring device is conducted into the graduated cylinders for measuring the volumetric flow through each hole of the nozzle.The membrane deformation is assessed by strain gauges. They are glued to the membrane and forming the full Wheatstone's bridge. We devoted special attention to the membrane shape and temperature compensation of the strain gauges.

  5. Evaluation of contaminant flux rates from sediments of Sinclair Inlet, WA, using a benthic flux sampling device. Final report

    SciTech Connect

    Chadwick, D.B.; Lieberman, S.H.; Reimers, C.E.; Young, D.

    1993-02-01

    A Benthic Flux Sampling Device (BFSD) was demonstrated on site to determine the mobility of contaminants in sediments off the Puget Sound Naval Shipyard (PSNS) in Sinclair Inlet, WA. Quantification of toxicant flux from the sediments will support ongoing assessment studies and facilitate the design of appropriate remediation strategies, if required. In general, where release of contaminants was found, the measured rates do not represent a significant source relative to other major inputs such as sewer discharges, nonpoint source runoff, and marinas. They may, however, represent an exposure pathway for benthic biota with a subsequent potential for toxicological effects and/or bioaccumulation. Environmental assessment, CIVAPP:Toxicity, CIVAPP:Marine chemistry, Hazardous waste.

  6. Soil Flux Chamber Measurements with Five Species CRDS and New Realtime Chamber Flux Processor

    NASA Astrophysics Data System (ADS)

    Saad, N.; Alstad, K. P.; Arata, C.; Franz, P.

    2014-12-01

    Continuous soil flux chamber measurements remains a key tool for determining production and sequestration of direct and indirect greenhouse gases. The Picarro G2508 Cavity Ring-down Spectrometer has radically simplified soil flux studies by providing simultaneous measurements of five gases: CO2, CH4, N2O, NH3, and H2O, and by lending itself to field deployment. Successful use of the Picarro G2508 for continuous soil flux measurements in a variety of ecosystem types has already been demonstrated. Most recently, Picarro is developing a real-time processing software to simplify chamber measurements of soil flux with the G2508 CRDS. The new Realtime Chamber Flux Processor is designed to work with all chamber types and sizes, and provides real-time flux values of N2O, CO2 & CH4. The software features include chamber sequence table, flexible data tagging feature, ceiling concentration measurement shut-off parameter, user-defined run-time interval, temperature/pressure input for field monitoring and volumetric conversion, and manual flux measurement start/stop override. Realtime Chamber Flux Processor GUI interface is presented, and results from a variety of sampling designs are demonstrated to emphasize program flexibility and field capability.

  7. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  8. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  9. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  10. Heat flux measurement in SSME turbine blade tester

    SciTech Connect

    Liebert, C.H.

    1990-11-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  11. Eddy covariance measurements in screenhouses: turbulence characteristics and flux gradients

    NASA Astrophysics Data System (ADS)

    Dicken, U.; Cohen, S.; Tanny, J.

    2012-04-01

    Shading banana and other orchard crops with screens is popular in arid and semi-arid regions for decreasing water use and increasing fruit quality. However, crop water use within this unique environment is much less studied than for canopies in the open. Previous studies of our research group have established the use of the Eddy Covariance (EC) technique for reliable evapotranspiration and sensible heat flux measurements within screenhouses. These studies focused on operating conditions of the system. The present paper is a comprehensive study which examined the performance of the EC system in different types of screenhouses (shading and insect-proof), different crops (banana and pepper) at different development stages (small and large plants) and different climatic regions in Israel. The main goal was to establish guidelines for optimal application of the EC technique in screenhouses. The research consisted of 6 field campaigns: in 3 campaigns two EC systems were simultaneously deployed either vertically or horizontally, and in 3 other campaigns a single EC system was deployed at one measurement height. EC systems were deployed at different normalized system heights, Zs, which define the relative measurement heights within the air gap between the canopy top and the horizontal screened roof. System performance was examined using quality tests like energy balance closure, flux variance similarity, friction velocity, footprint modeling, energy spectrum, turbulence intensity and vertical and horizontal flux gradient analyses. Resulting energy balance closure slopes averaged 0.81±0.08 and 0.91±0.08 for the smaller and larger plants, respectively. Turbulent flows were found to be marginally developed within the air gap between the top of the plants and the horizontal screened roof. Turbulence intensity, flux variance similarity test, energy spectrum decay rate and friction velocity were essentially independent of the measurement height and were within the common range

  12. Wind tunnels vs. flux chambers: Area source emission measurements and the necessity for VOC and odour correction factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC), odour, and ammonia (NH3) with little regard to air velocity or sweep air flow rates. As a result, flux measurements have been highly variable and scientists have been in disagreement as to the better...

  13. Non-contact heat flux measurement using a transparent sensor

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Spuckler, Charles M.

    1993-01-01

    A working non-contact heat flux sensor was demonstrated using a transparent material (sapphire) and a multiwavelength pyrometer. The pyrometer is used to measure the temperatures of the two surfaces of the sensor from the spectrum of radiation originating from them. The heat conducted through the material is determined from the temperature difference of the two surfaces and the thermal conductivity of the material. The measured heat flux is equal to the incident heat flux within experimental error indicating that no calibration would be necessary. A steady state heat flux of 100 kW/sq m was easily achieved.

  14. Dual physiological rate measurement instrument

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G. (Inventor)

    1990-01-01

    The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.

  15. The measurement of surface heat flux using the Peltier effect

    SciTech Connect

    Shewen, E.C. ); Hollands, K.G.T., Raithby, G.D. )

    1989-08-01

    Calorimetric methods for measuring surface heat flux use Joulean heating to keep the surface isothermal. This limits them to measuring the heat flux of surfaces that are hotter than their surroundings. Presented in this paper is a method whereby reversible Peltier effect heat transfer is used to maintain this isothermality, making it suitable for surfaces that are either hotter or colder than the surroundings. The paper outlines the theory for the method and describes physical models that have been constructed, calibrated, and tested. The tested physical models were found capable of measuring heat fluxes with an absolute accuracy of 1 percent over a wide range of temperature (5-50C) and heat flux (15-500 W/m{sup 2}), while maintaining isothermality to within 0.03 K. A drawback of the method is that it appears to be suited only for measuring the heat flux from thick metallic plates.

  16. Measurement of Flux Density of Cas A at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Patil, Ajinkya; Fisher, R.

    2012-01-01

    Cas A is used as a flux calibrator throughout the radio spectrum. Therefore it is important to know the spectral and secular variations in its flux density. Earlier observations by Scott et. al. (1969) and Baars et. al. (1972) suggested a secular decrease in flux density of Cas A at a rate of about 1% per year at all frequencies. However later observations by Erickson & Perley (1975) and Read (1977) indicated anomalously high flux from Cas A at 38 MHz. Also, these observations suggested that the original idea of faster decay of the flux density rate at low frequencies may be in error or that something more complex than simple decay is affecting the flux density at low frequencies. The source changes at 38 MHz still remains a mystery. We intend to present the results of follow up observations made from 1995 to 1998 with a three element interferometer in Green Bank operating in frequency range 30 to 120 MHz. We will discuss the problems at such low frequencies due to large beamwidth and unstable ionosphere. We will also discuss the strategies we have used so far to to find the flux density of Cas A by calculating the ratio of flux density of Cas A to that of Cyg A, assuming flux density of Cyg A to be constant. Above mentioned work was performed in summer student program sponsored by National Radio Astronomy Observatory.

  17. Sound power flux measurements in strongly exited ducts with flow.

    PubMed

    Holland, Keith R; Davies, Peter O A L; van der Walt, Danie C

    2002-12-01

    This contribution describes new robust procedures for the measurement of sound power flux at appropriate axial positions along a duct with flow, using pairs of flush wall mounted microphones, or pressure transducers. The technology includes the application of selective averaging, order tracking, and optimized sampling rate methods to identify the small fraction of the total fluctuating wave energy that is being propagated along the flow path in a reverberent, or highly reactive duct system. Such measurements can also be used to quantify the local acoustic characteristics that govern the generation, transfer, and propagation of wave energy in the system. Illustrative examples include the determination of the acoustic characteristics of individual silencing elements installed in IC engine intakes and exhausts both on the flow bench and during controlled acceleration or run down on a test bed, where the wave component spectral levels approached 170 dB. PMID:12509008

  18. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating. PMID:27250425

  19. Calibration system for measuring the radon flux density.

    PubMed

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm. PMID:25977351

  20. FLUX MEASUREMENTS FROM A TALL TOWER IN A COMPLEX LANDSCAPE

    SciTech Connect

    Kurzeja, R.; Weber, A.; Chiswell, S.; Parker, M.

    2010-07-22

    The accuracy and representativeness of flux measurements from a tall tower in a complex landscape was assessed by examining the vertical and sector variability of the ratio of wind speed to momentum flux and the ratio of vertical advective to eddy flux of heat. The 30-60 m ratios were consistent with theoretical predictions which indicate well mixed flux footprints. Some variation with sector was observed that were consistent with upstream roughness. Vertical advection was negligible compared with vertical flux except for a few sectors at night. This implies minor influence from internal boundary layers. Flux accuracy is a function of sector and stability but 30-60 m fluxes were found to be generally representative of the surrounding landscape. This paper will study flux data from a 300 m tower, with 4 levels of instruments, in a complex landscape. The surrounding landscape will be characterized in terms of the variation in the ratio of mean wind speed to momentum flux as a function of height and wind direction. The importance of local advection will be assessed by comparing vertical advection with eddy fluxes for momentum and heat.

  1. Measurements of the total ion flux from vacuum arc cathodespots

    SciTech Connect

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu; Savkin,Konstantin P.; Brown, Ian G.; Nikolaev, Alexey G.

    2005-05-25

    The ion flux from vacuum arc cathode spots was measured in two vacuum arc systems. The first was a vacuum arc ion source which was modified allowing us to collect ions from arc plasma streaming through an anode mesh. The second discharge system essentially consisted of a cathode placed near the center of a spherically shaped mesh anode. In both systems, the ion current streaming through the mesh was measured by a biased collector. The mesh anodes had geometric transmittances of 60 percent and 72 percent, respectively, which were taken into account as correction factors. The ion current from different cathode materials was measured for 50-500 A of arc current. The ion current normalized by the arc current was found to depend on the cathode material, with values in the range from 5 percent to 19 percent. The normalized ion current is generally greater for elements of low cohesive energy. The ion erosion rates were determined from values of ion current and ion charge states, which were previously measured in the same ion source. The absolute ion erosion rates range from 16-173 mu g/C.

  2. Footprint prediction of scalar fluxes - Reliability and implications for airborne flux measurements over the FIFE site

    NASA Technical Reports Server (NTRS)

    Schuepp, P. H.; Desjardins, R. L.; Macpherson, J. I.; Leclerc, M. Y.

    1990-01-01

    Estimates of the location and extension of the upwind ground area that affects flux observations most directly are examined to determine the reliability of airborne versus near-ground flux measurements. The theoretical issues regarding the 'footprint' are examined, and specific observations are analyzed by studying the data over a grid regarding sensible heat, latent heat, CO2, and greenness. The grid is footprint-corrected to correlate better with independently observed surface characteristics, and an optimized footprint is developed that satisfies the relationships between the observed variables. Optimized mapping of the surface flux is given which demonstrates the importance of considering local advection to correlate airborne and ground-based flux observations. The technique is particularly applicable to situations in which significant variations in the surface flux density exist.

  3. Spatially averaged heat flux and convergence measurements at the ARM regional flux experiment

    SciTech Connect

    Porch, W.; Barnes, F.; Buchwald, M.; Clements, W.; Cooper, D.; Hoard, D. ); Doran, C.; Hubbe, J.; Shaw, W. ); Coulter, R.; Martin, T. ); Kunkel, K. )

    1991-01-01

    Cloud formation and its relation to climate change is the greatest weakness in current numerical climate models. Surface heat flux in some cases causes clouds to form and in other to dissipate and the differences between these cases are subtle enough to make parameterization difficult in a numerical model. One of the goals of the DOE Atmospheric Radiation Measurement program is to make long term measurements at representative sites to improve radiation and cloud formation parameterization. This paper compares spatially averaged optical measurements of heat flux and convergence with a goal of determining how point measurements of heat fluxes scale up to the larger scale used for climate modeling. It was found that the various optical techniques used in this paper compared well with each other and with independent measurements. These results add confidence that spatially averaging optical techniques can be applied to transform point measurements to the larger scales needed for mesoscale and climate modeling. 10 refs., 6 figs. (MHB)

  4. Validating CERES Radiative Fluxes in the Arctic with Airborne Radiative Flux Measurements from the ARISE Campaign

    NASA Astrophysics Data System (ADS)

    Corbett, J.; Bucholtz, A.; Kato, S.; Rose, F. G.; Smith, W. L., Jr.

    2015-12-01

    The Clouds and the Earth's Radiant Energy System (CERES) instruments on board NASA's Terra, Aqua, and Soumi-NPP satellites provide the only measurements of reflected solar shortwave and emitted longwave radiative flux over the Arctic. Various methods have shown the uncertainty of CERES fluxes over sea ice to be higher than other scene types. However validation against an independent radiative flux measurement has never been attempted. We present here an attempt to better quantify the uncertainty of time-and-space averaged CERES flux measurements using airborne measurements from the Arctic Radiation - IceBridge Sea Ice Experiment (ARISE). The ARISE campaign took place during September of 2014 based out of Fairbanks, Alaska, with most of the measurements taken in the vicinity of the sea ice edge between 125°W and 150°W, and 71°N to 77°N. For six of the flights, measurements were taken in a lawnmower type pattern over either 100 x 200 km box regions at a constant altitude of >6 km, or 100 x 100 km box regions at an altitude of between 200 m to 500 m. They were designed to resemble the CERES Level 3 spatial averaging grids, and were located and timed to coincide with a high number of CERES overpasses. On board the aircraft were a set of upward and downward facing shortwave and longwave broadband radiometers (BBR), along with other instruments measuring meteorological conditions and cloud properties. We have compared the broadband radiative fluxes from BBR with those from CERES for the three days where the aircraft was flying the high altitude pattern. We use the Fu-Liou radiative transfer model to account for differences in the measurement altitude between BBR and CERES. We will present results of the comparisons between the computed fluxes and the measured longwave and shortwave radiative fluxes.

  5. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site

    NASA Astrophysics Data System (ADS)

    Bockelmann, Alexander; Ptak, Thomas; Teutsch, Georg

    2001-12-01

    A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day -1, whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day -1 were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds.

  6. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site.

    PubMed

    Bockelmann, A; Ptak, T; Teutsch, G

    2001-12-15

    A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day(-1) whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day(-1) were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds. PMID:11820481

  7. Measurements of EUV coronal holes and open magnetic flux

    SciTech Connect

    Lowder, C.; Qiu, J.; Leamon, R.; Liu, Y.

    2014-03-10

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10{sup 22} Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10{sup 22} Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  8. Design of a differential radiometer for atmospheric radiative flux measurements

    NASA Astrophysics Data System (ADS)

    LaDelfe, Peter C.; Weber, Paul G.; Rodriguez, C. William

    1995-02-01

    The hemispherical optimized net radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory as part of the Atmospheric Radiation measurements/Unmanned Aerospace Vehicles (ARM/UAV) program. HONER is a radiometer which will either measure directly the difference between the total upwelling and downwelling fluxes or the individual fluxes and will provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which only measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into the two relevant spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4 micrometers and the other covering the region from approximately 4 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We describe the basic design and operation of the sensor head and the on-board reference sources as well as the means of the initial deployment on a UAV. This instrument can also be used in ground-based, space, or other airborne applications.

  9. Upper bound SEU rate for devices in an isotropic or nonisotropic flux

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    A method for constructing upper bound estimates for device single event upset (SEU) rates is presented. A directional Heinrich flux, as a function of direction, must be known. A computer code, included, converts the directional Heinrich flux into an 'effective flux'. The effective flux provides a simple way to estimate upper bound SEU rates for devices with a known normal incident cross section versus LET curve.

  10. Upper-bound SEU rate for devices in an isotropic or nonisotropic flux

    SciTech Connect

    Edmonds, L.D.

    1991-08-01

    A method for constructing upper bound estimates for device single event upset (SEU) rates is presented. A directional Heinrich flux, as a function of direction, must be known. A computer code, included, converts the directional Heinrich flux into an 'effective flux'. The effective flux provides a simple way to estimate upper bound SEU rates for devices with a known normal incident cross section versus LET curve.

  11. Accurate measurement of poleward microtubule flux in the spindle of Drosophila S2 cells.

    PubMed

    Munzarova, Alina; Popova, Julia; Razuvaeva, Alena; Shloma, Victor; Gatti, Maurizio; Omelyanchuk, Leonid

    2016-09-01

    The spindle microtubule (MT) flux is the continuous translocation of MTs toward the spindle poles caused by MT polymerization at plus ends coupled to depolymerization at minus ends. Poleward flux is observed in both mitotic and meiotic spindles; it is evolutionarily conserved and contributes to the regulation of spindle length and anaphase chromosome movement. MT photobleaching is a tool frequently used to measure poleward flux. Spindles containing fluorescently tagged tubulin are photobleached to generate a non-fluorescent stripe, which moves toward the spindle poles allowing a measure of the flux. However, this method only permits rapid measurements of the flux, because the fluorescence of the bleached stripe recovers rapidly due to the spindle MT turnover. Here, we describe a modification of the current photobleaching-based method for flux measurement. We photobleached two large areas at the opposite sides of the metaphase plate in spindles of Drosophila S2 cells expressing Cherry-tagged tubulin, leaving unbleached only the area near the chromosomes. We then measured the speed with which the fluorescent MTs move toward the poles. We found that this method allows a measure of the flux over a two- to threefold longer time than the "single stripe" method, providing a reliable evaluation of the flux rate. PMID:27317357

  12. A Preliminary Study of CO2 Flux Measurements by Lidar

    NASA Technical Reports Server (NTRS)

    Gibert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, T.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2008-01-01

    A mechanistic understanding of the global carbon cycle requires quantification of terrestrial ecosystem CO2 fluxes at regional scales. In this paper, we analyze the potential of a Doppler DIAL system to make flux measurements of atmospheric CO2 using the eddy-covariance and boundary layer budget methods and present results from a ground based experiment. The goal of this study is to put CO2 flux point measurements in a mesoscale context. In June 2007, a field experiment combining a 2-m Doppler Heterodyne Differential Absorption Lidar (HDIAL) and in-situ sensors of a 447-m tall tower (WLEF) took place in Wisconsin. The HDIAL measures simultaneously: 1) CO2 mixing ratio, 2) atmosphere structure via aerosol backscatter and 3) radial velocity. We demonstrate how to synthesize these data into regional flux estimates. Lidar-inferred fluxes are compared with eddy-covariance fluxes obtained in-situ at 396m AGL from the tower. In cases where the lidar was not yet able to measure the fluxes with acceptable precision, we discuss possible modifications to improve system performance.

  13. Measurement of magnetic fluctuation-induced particle flux (invited)

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Yates, T. Y.

    2008-10-15

    Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial particle transport is achieved by combining various interferometry techniques, including Faraday rotation, conventional interferometry, and differential interferometry. It is observed that electron convective particle flux and its divergence exhibit a significant increase during a sawtooth crash. In this paper, we describe the basic techniques employed to determine the particle flux.

  14. "Influence Method" applied to measure a moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Rios, I. J.; Mayer, R. E.

    2016-01-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency. This method exploits the influence of the presence of one detector, in the count rate of another detector when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency. The method and its detailed mathematical description were recently published (Rios and Mayer, 2015 [1]). In this article we apply it to the measurement of the moderated neutron flux produced by an 241AmBe neutron source surrounded by a light water sphere, employing a pair of 3He detectors. For this purpose, the method is extended for its application where particles arriving at the detector obey a Poisson distribution and also, for the case when efficiency is not constant over the energy spectrum of interest. Experimental distributions and derived parameters are compared with theoretical predictions of the method and implications concerning the potential application to the absolute calibration of neutron sources are considered.

  15. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  16. Measuring Regional CO2 Fluxes Using a Lagrangian Approach

    NASA Astrophysics Data System (ADS)

    Martins, D. K.; Sweeney, C.; Stirm, B. H.; Shepson, P. B.

    2008-12-01

    The difficulty of measuring regional fluxes of CO2 has limited our understanding of the global carbon budget and the processes controlling carbon exchange across politically relevant spatial scales. A Lagrangian experiment was conducted over Iowa on June 19, 2007 as part of the North American Carbon Program's Mid-Continent Intensive using a light-weight, cost-effective aircraft to measure a net drawdown of CO2 concentration within the boundary layer. The drawdown is related to photosynthetic uptake when emission footprints are considered using a combination of emission inventories from the Vulcan project and HYSPLIT source contributions. Entrainment through the top of the boundary layer is measured directly using turbulence measurements from an onboard probe capable of measuring winds in 3-dimensions. Results show a total average CO2 flux of -5.3±0.7 μmol m-2 s-1. The average flux from fossil fuels over the measurement area is 2.8±0.4 μmol m-2 s-1. Thus, the CO2 flux attributable to the vegetation is -8.1±0.8 μmol m-2 s-1. The magnitude of the vegetative flux is comparable to other studies using the Lagrangian approach, but it is smaller than tower- based eddy covariance fluxes over the same period and measurement area. Sensitivities to analysis procedures and discrepancies between aircraft and tower-based measurements are discussed. We describe an aircraft Lagrangian experiment that offers direct, reliable, and cost-effective means for measuring CO2 fluxes at regional scales that can be used to compare to ecosystem models or to satellite measurements.

  17. Error Evaluation of Methyl Bromide Aerodynamic Flux Measurements

    USGS Publications Warehouse

    Majewski, M.S.

    1997-01-01

    Methyl bromide volatilization fluxes were calculated for a tarped and a nontarped field using 2 and 4 hour sampling periods. These field measurements were averaged in 8, 12, and 24 hour increments to simulate longer sampling periods. The daily flux profiles were progressively smoothed and the cumulative volatility losses increased by 20 to 30% with each longer sampling period. Error associated with the original flux measurements was determined from linear regressions of measured wind speed and air concentration as a function of height, and averaged approximately 50%. The high errors resulted from long application times, which resulted in a nonuniform source strength; and variable tarp permeability, which is influenced by temperature, moisture, and thickness. The increase in cumulative volatilization losses that resulted from longer sampling periods were within the experimental error of the flux determination method.

  18. Measurements of Urban Area-Wide CO2 and CH4 Fluxes as part of the Indianapolis Flux Experiment (INFLUX)

    NASA Astrophysics Data System (ADS)

    Shepson, P.; Callahan, B.; Cambaliza, M. L.; Davis, K. J.; Hardesty, R.; Iraci, L. T.; Gurney, K. R.; Karion, A.; Lauvaux, T.; McGowan, L. E.; Miles, N. L.; Moser, B.; Newberger, T.; Possolo, A.; Razlivanov, I. N.; Richardson, S.; Samarov, D. V.; Sarmiento, D.; Stirm, B.; Sweeney, C.; Turnbull, J. C.; Whetstone, J. R.

    2012-12-01

    CO2 flux. Measurement data using the range of approaches are then compared to the Hestia emissions model estimates, as well as to improve the Vulcan approaches. In the near future, we will add eddy covariance fluxes from several towers, and some limited eddy covariance flux measurements from the aircraft. Doppler lidar will be added at one site, to better constrain the boundary layer height, critically important to all flux measurement approaches. Here we discuss how the suite of measurement approaches are used to minimize and define the emissions uncertainties. We also will discuss our work on apportionment of fluxes of both CO2 and CH4 to individual point sources, and, where possible, compare to reported emission rates. Finally, we will discuss lessons learned, and how the INFLUX approaches might be best applied to megacities.

  19. A simple laboratory system for diffusive radon flux measurements

    NASA Astrophysics Data System (ADS)

    Kranrod, C.; Chanyotha, S.; Tonlublao, S.; Burnett, W. C.

    2015-05-01

    This study designed a simple, custom-made system to estimate the diffusive radon flux from solid materials (e.g., sediments, soils, building materials). Determination of the radon flux is based on the measurement of the radon activity in the air over time inside a closed loop system. For sediments, the system consists of wet sediment and water inside a gas-tight flask connected in a closed loop to a drying system and a radon analyzer (Durridge RAD7). The flux is determined based on an initial slope method in which the slope of radon activities vs. time plot during the first 12 h is evaluated. The slope is then multiplied by the total air volume and divided by the exposed sediment area to obtain the radon flux. The minimal thickness or mass of wet sediment should be about 4 cm or (equivalent to approximately 150 g of wet sediment) to obtain a reliable radon diffusive flux in this study.

  20. Contaminant discharge and uncertainty estimates from passive flux meter measurements

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk; GuimarãEs da Luz, Joana AngéLica; Annable, Michael D.; Newman, Mark; Cho, Jaehyun; Peacock, Aaron; Stucker, Valerie; Ranville, James; Cabaniss, Steven A.; Rao, P. S. C.

    2012-02-01

    The passive flux meter (PFM) measures local cumulative water and contaminant fluxes at an observation well. Conditional stochastic simulation accounting for both spatial correlation and data skewness is introduced to interpret passive flux meter observations in terms of probability distributions of discharges across control planes (transects) of wells. An estimator of the effective number of independent data is defined and applied in the development of two significantly simpler approximate methods for estimating discharge distributions. One method uses a transformation of the t statistic to account for data skewness and the other method is closely related to the classic bootstrap. The approaches are demonstrated with passive flux meter data from two field sites (a trichloroethylene [TCE] plume at Ft. Lewis, WA, and a uranium plume at Rifle, CO). All methods require that the flux heterogeneity is sufficiently represented by the data and maximum differences in discharge quantile estimates between methods are ˜7%.

  1. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  2. Design of a differential radiometer for atmospheric radiative flux measurements

    NASA Astrophysics Data System (ADS)

    Ladelfe, P. C.; Weber, P. G.; Rodriguez, C. W.

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  3. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  4. Real-time soil flux measurements and calculations with CRDS + Soil Flux Processor: comparison among flux algorithms and derivation of whole system error

    NASA Astrophysics Data System (ADS)

    Alstad, K. P.; Venterea, R. T.; Tan, S. M.; Saad, N.

    2015-12-01

    Understanding chamber-based soil flux model fitting and measurement error is key to scaling soils GHG emissions and resolving the primary uncertainties in climate and management feedbacks at regional scales. One key challenge is the selection of the correct empirical model applied to soil flux rate analysis in chamber-based experiments. Another challenge is the characterization of error in the chamber measurement. Traditionally, most chamber-based N2O and CH4 measurements and model derivations have used discrete sampling for GC analysis, and have been conducted using extended chamber deployment periods (DP) which are expected to result in substantial alteration of the pre-deployment flux. The development of high-precision, high-frequency CRDS analyzers has advanced the science of soil flux analysis by facilitating much shorter DP and, in theory, less chamber-induced suppression of the soil-atmosphere diffusion gradient. As well, a new software tool developed by Picarro (the "Soil Flux Processor" or "SFP") links the power of Cavity Ring-Down Spectroscopy (CRDS) technology with an easy-to-use interface that features flexible sample-ID and run-schemes, and provides real-time monitoring of chamber accumulations and environmental conditions. The SFP also includes a sophisticated flux analysis interface which offers a user-defined model selection, including three predominant fit algorithms as default, and an open-code interface for user-composed algorithms. The SFP is designed to couple with the Picarro G2508 system, an analyzer which simplifies soils flux studies by simultaneously measuring primary GHG species -- N2O, CH4, CO2 and H2O. In this study, Picarro partners with the ARS USDA Soil & Water Management Research Unit (R. Venterea, St. Paul), to examine the degree to which the high-precision, high-frequency Picarro analyzer allows for much shorter DPs periods in chamber-based flux analysis, and, in theory, less chamber-induced suppression of the soil

  5. Cosmological flux noise and measured noise power spectra in SQUIDs

    PubMed Central

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  6. Cosmological flux noise and measured noise power spectra in SQUIDs

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2016-06-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  7. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  8. Standardization of flux chamber and wind tunnel flux measurements for quantifying volatile organic compound and ammonia emissions from area sources at animal feeding operations

    NASA Astrophysics Data System (ADS)

    Parker, David; Ham, Jay; Woodbury, Bryan; Cai, Lingshuang; Spiehs, Mindy; Rhoades, Marty; Trabue, Steve; Casey, Ken; Todd, Rick; Cole, Andy

    2013-02-01

    A variety of portable wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC) and ammonia (NH3) at animal feeding operations (AFO). However, there has been little regard to the extreme variation and potential inaccuracies caused by air velocity or sweep air flow rates that are either too low or too high to simulate field conditions. There is a need for correction factors to standardize flux chamber and wind tunnel measurements. In this manuscript, we present results of water evaporative flux and VOC flux measurements with the EPA flux chamber and a small wind tunnel. In the EPA flux chamber, water evaporative flux was positively correlated with sweep air flow rate (SAFR) between 1 and 20 L min-1 (r2 = 0.981-0.999) and negatively correlated with sweep air relative humidity between 0 and 80% (r2 = 0.982-0.992). Emissions of gas-film controlled compounds like NH3 and VOC at AFOs were positively correlated with evaporation rates between 0.6 and 2.8 mm d-1. We demonstrate a simple methodology for standardizing and comparing different chamber types by measuring water evaporation within the chamber using a gravimetric mass balance approach under controlled laboratory conditions. A water evaporative flux ratio correction factor (EFRCF) was used to improve the accuracy of field-measured VOC and NH3 chamber flux measurements. In a field study, both the EPA flux chamber (SAFR = 5 L min-1) and small wind tunnel (SAFR = 1 L min-1) underestimated the true field emissions of VOC, with EFRCFs of 2.42 and 3.84, respectively. EFRCFs are recommended for all but the driest of soil and manure conditions.

  9. Measurement of thermal fluxes in power plant components

    SciTech Connect

    Stradomskii, M.V.; Fedorova, O.V.; Maksimov, E.A.

    1985-12-01

    The authors present a method of recovering the thermal flux acting on a sensing element with respect to measurements of sensing element signals. The solution of such problems is prompted by the need for information on the actual values of the energy density entering parts of various power plants. The dynamics of temperatures at the sensing element surfaces in a thermal flux data unit is shown during start up from cold of a power plant. The variation in time of the thermal flux density is also shown as calculated by the proposed method.

  10. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  11. Flux measurement and modeling in a typical mediterranean vineyard

    NASA Astrophysics Data System (ADS)

    Marras, Serena; Bellucco, Veronica; Pyles, David R.; Falk, Matthias; Sirca, Costantino; Duce, Pierpaolo; Snyder, Richard L.; Tha Paw U, Kyaw; Spano, Donatella

    2014-05-01

    Vineyard ecosystems are typical in the Mediterranean area, since wine is one of the most important economic sectors. Nevertheless, only a few studies have been conducted to investigate the interactions between this kind of vegetation and the atmosphere. These information are important both to understand the behaviour of such ecosystems in different environmental conditions, and are crucial to parameterize crop and flux simulation models. Combining direct measurements and modelling can obtain reliable estimates of surface fluxes and crop evapotranspiration. This study would contribute both to (1) directly measure energy fluxes and evapotranspiration in a typical Mediterranean vineyard, located in the South of Sardinia (Italy), through the application of the Eddy Covariance micrometeorological technique and to (2) evaluate the land surface model ACASA (Advanced-Canopy-Atmosphere-Soil Algorithm) in simulating energy fluxes and evapotranspiration over vineyard. Independent datasets of direct measurements were used to calibrate and validate model results during the growing period. Statistical analysis was performed to evaluate model performance and accuracy in predicting surface fluxes. Results will be showed as well as the model capability to be used for future studies to predict energy fluxes and crop water requirements under actual and future climate.

  12. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    USGS Publications Warehouse

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  13. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  14. Auroral Energy and Energy Flux Measurements using GUVI

    NASA Astrophysics Data System (ADS)

    Holley, K. E.; McHarg, M. G.; Paxton, L.; Zhang, Y.; Morrison, D.

    2003-12-01

    We present estimates of the average characteristic energy and energy flux of energetic precipitating auroral particles. These estimates are derived from irradiance data measured on the Global Ultraviolet Imager (GUVI) flying on the TIMED satellite. We will present both the average and standard deviation of global maps of the energy and energy flux during the first year of GUVI data. We will compare results of the GUVI derived measurements to previous estimates of Hardy who used in-situ particle measurements from the Defense Meteorological Support Satellite (DMSP) program.

  15. Uncertainties Associated with Flux Measurements Due to Heterogeneous Contaminant Distributions

    EPA Science Inventory

    Mass flux and mass discharge measurements at contaminated sites have been applied to assist with remedial management, and can be divided into two broad categories: point-scale measurement techniques and pumping methods. Extrapolation across un-sampled space is necessary when usi...

  16. New Method for Estimation of Aeolian Sand Transport Rate Using Ceramic Sand Flux Sensor (UD-101)

    PubMed Central

    Udo, Keiko

    2009-01-01

    In this study, a new method for the estimation of aeolian sand transport rate was developed; the method employs a ceramic sand flux sensor (UD-101). UD-101 detects wind-blown sand impacting on its surface. The method was devised by considering the results of wind tunnel experiments that were performed using a vertical sediment trap and the UD-101. Field measurements to evaluate the estimation accuracy during the prevalence of unsteady winds were performed on a flat backshore. The results showed that aeolian sand transport rates estimated using the developed method were of the same order as those estimated using the existing method for high transport rates, i.e., for transport rates greater than 0.01 kg m−1 s−1. PMID:22291553

  17. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    Eddy covariance (EC) is state-of-the-art in directly and continuously measuring turbulent fluxes of carbon dioxide and water vapor. However, low signal-to-noise ratios, high flow rates and missing or complex gas analyzers limit it's application to few scalars. True eddy accumulation, based on conditional sampling ideas by Desjardins in 1972, requires no fast response analyzers and is therefore potentially applicable to a wider range of scalars. Recently we showed possibly the first successful implementation of True Eddy Accumulation (TEA) measuring net ecosystem exchange of carbon dioxide of a grassland. However, most accumulation systems share the complexity of having to store discrete air samples in physical containers representing entire flux averaging intervals. The current study investigates merging principles of eddy accumulation and eddy covariance, which we here refer to as "true eddy accumulation in transient mode" (TEA-TM). This direct flux method TEA-TM combines true eddy accumulation with continuous sampling. The TEA-TM setup is simpler than discrete accumulation methods while avoiding the need for fast response gas analyzers and high flow rates required for EC. We implemented the proposed TEA-TM method and measured fluxes of carbon dioxide (CO2), methane (CH4) and water vapor (H2O) above a mixed beech forest at the Hainich Fluxnet and ICOS site, Germany, using a G2301 laser spectrometer (Picarro Inc., USA). We further simulated a TEA-TM sampling system using measured high frequency CO2 time series from an open-path gas analyzer. We operated TEA-TM side-by-side with open-, enclosed- and closed-path EC flux systems for CO2, H2O and CH4 (LI-7500, LI-7200, LI-6262, LI-7700, Licor, USA, and FGGA LGR, USA). First results show that TEA-TM CO2 fluxes were similar to EC fluxes. Remaining differences were similar to those between the three eddy covariance setups (open-, enclosed- and closed-path gas analyzers). Measured TEA-TM CO2 fluxes from our physical

  18. Monitoring of MNSR operation by measuring subcritical photoneutron flux.

    PubMed

    Haddad, Kh; Alsomel, N

    2011-03-01

    Passive nondestructive assay methods are used to monitor the reactor's operation. It is required for nuclear regulatory, calculation validation and safeguards purposes. So, it plays a vital role in the safety and security of the nuclear plants. The possibility of MNSR operation monitoring by measuring the subcritical state photoneutron flux were investigated in this work. The photoneutron flux is induced by the fuels hard gamma radiation in the beryllium reflector. Theoretical formulation and experimental tests were performed. The results show that within a specified cooling time range, the photoneutron flux is induced by a single dominant hard gamma emitter such as (117)Cd (activation product) and (140)Ba ((140)La fission product). This phenomenon was utilized to monitor the cooling time and the operation neutron flux during the last campaign. Thus a passive nondestructive assay method is proposed with regard to the reactor operation's monitoring. PMID:21168337

  19. Direct measurements of CO2 flux in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, Siv K.; McGillis, Wade R.; Bariteau, Ludovic; Fairall, C. W.; Johannessen, Truls; Olsen, Are; Zappa, Christopher J.

    2011-06-01

    During summer 2006 eddy correlation CO2 fluxes were measured in the Greenland Sea using a novel system set-up with two shrouded LICOR-7500 detectors. One detector was used exclusively to determine, and allow the removal of, the bias on CO2 fluxes due to sensor motion. A recently published correction method for the CO2-H2O cross-correlation was applied to the data set. We show that even with shrouded sensors the data require significant correction due to this cross-correlation. This correction adjusts the average CO2 flux by an order of magnitude from -6.7 × 10-2 mol m-2 day-1 to -0.61 × 10-2 mol m-2 day-1, making the corrected fluxes comparable to those calculated using established parameterizations for transfer velocity.

  20. Intercomparison of gas analyzers for methane flux measurements

    NASA Astrophysics Data System (ADS)

    Haapanala, S.; Rinne, J.; Vesala, T.

    2010-12-01

    Four gas analyzers, capable of measuring methane concentration at a response time necessary for eddy covariance flux measurements, were operated in parallel for about six months between March and August 2010. Their reliability, need of maintenance, user friendliness, data coverage, and data quality were evaluated. The primary aim of this campaign was to provide an instrumentation suggestion for the European Research Infrastructure ICOS (Integrated Carbon Observation System). The instruments used were TGA100A (Campbell Scientific Inc.), RMT-200 (Los Gatos Research Inc.) , G1301-f (Picarro Inc.), and LI-7700 (Li-Cor Inc.). The last one, LI-7700, was a prototype of a later commercialized open path analyzer. The other instruments were closed path analyzers. The measurement site is an oligotrophic open fen Siikaneva, located in southern Finland. The site provides spatially quite uniform methane flux within the footprint. The methane flux rises in the spring, peaks in early August and falls down during the autumn. This provides excellent opportunity to study the performance of the analyzers at different CH4 flux levels from near zero up to about 5 mg m-2 h-1. The preliminary results show great similarity among the instruments in both concentrations and fluxes. Detailed numbers of the measurement characteristics will be provided later. The reliability and need of maintenance are difficult to evaluate quantitatively during that short period.

  1. A direct passive method for measuring water and contaminant fluxes in porous media

    NASA Astrophysics Data System (ADS)

    Hatfield, Kirk; Annable, Michael; Cho, Jaehyun; Rao, P. S. C.; Klammler, Harald

    2004-12-01

    This paper introduces a new direct method for measuring water and contaminant fluxes in porous media. The method uses a passive flux meter (PFM), which is essentially a self-contained permeable unit properly sized to fit tightly in a screened well or boring. The meter is designed to accommodate a mixed medium of hydrophobic and/or hydrophilic permeable sorbents, which retain dissolved organic/inorganic contaminants present in the groundwater flowing passively through the meter. The contaminant mass intercepted and retained on the sorbent is used to quantify cumulative contaminant mass flux. The sorptive matrix is also impregnated with known amounts of one or more water soluble 'resident tracers'. These tracers are displaced from the sorbent at rates proportional to the groundwater flux; hence, in the current meter design, the resident tracers are used to quantify cumulative groundwater flux. Theory is presented and quantitative tools are developed to interpret the water flux from tracers possessing linear and nonlinear elution profiles. The same theory is extended to derive functional relationships useful for quantifying cumulative contaminant mass flux. To validate theory and demonstrate the passive flux meter, results of multiple box-aquifer experiments are presented and discussed. From these experiments, it is seen that accurate water flux measurements are obtained when the tracer used in calculations resides in the meter at levels representing 20 to 70 percent of the initial condition. 2,4-Dimethyl-3-pentanol (DMP) is used as a surrogate groundwater contaminant in the box aquifer experiments. Cumulative DMP fluxes are measured within 5% of known fluxes. The accuracy of these estimates generally increases with the total volume of water intercepted.

  2. Analysis of field measurements of carbon dioxide and water vapor fluxes

    NASA Technical Reports Server (NTRS)

    Verma, Shashi B.

    1991-01-01

    Analysis of the field measurements of carbon dioxide and water vapor fluxes is discussed. These data were examined in conjunction with reflectance obtained from helicopter mounted Modular Multiband Radiometer. These measurements are representative of the canopy scale (10 to 100 m)(exp 2) and provide a good basis for investigating the hypotheses/relationship potentially useful in remote sensing applications. All the micrometeorological data collected during FIFE-89 were processed and fluxes of CO2, water vapor, and sensible heat were calculated. Soil CO2 fluxes were also estimated. Employing these soil CO2 flux values, in conjunction with micrometeorological measurements, canopy photosynthesis is being estimated. A biochemical model of leaf photosynthesis was adapted to the prairie vegetation. The modeled leaf photosynthesis rates were scaled up to the canopy level. This model and a multiplicative stomatal conductance model are also used to calculate canopy conductance.

  3. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  4. Measurement of Decoherence Time in a Flux Qubit

    NASA Astrophysics Data System (ADS)

    Harrabi, K.; Yoshihara, F.; Nakamura, Y.; Tsai, J. S.

    2006-09-01

    We present a measurement of the relaxation and the dephasing times in a flux qubit. In order to improve coherence of the qubit, two external parameters were optimized: the applied flux through the qubit loop and the bias current of the SQUID which serves as a readout device of the qubit state. At the optimal point the dephasing time measured with spin-echo technique was twice longer than the energy relaxation time. By changing one of the two bias parameters while keeping the other at the optimal value, one can separate the contribution of the noise in each parameter to the decoherence of the qubit.

  5. Densitometric tomography using the measurement of muon flux

    NASA Astrophysics Data System (ADS)

    Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.

    2013-12-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.

  6. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGESBeta

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; et al

    2016-06-10

    In muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux frommore » 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  7. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  8. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells

    PubMed Central

    2011-01-01

    Background 13C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis. Results Metabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum) and a plant species (Brassica napus) for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed. Conclusion This consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a useful tool to complement 13C

  9. Measuring sand flux on Mars using HiRISE Images

    NASA Astrophysics Data System (ADS)

    Ayoub, F.; Bridges, N. T.; Avouac, J.; Leprince, S.; Lucas, A.; Mattson, S.

    2011-12-01

    As wind is the major agent of sediment transport on Mars, a quantitative estimate of aeolian processes is therefore essential to assess recent geological evolution and current climate. We adapted the Co-registration of Optically Sensed Image and Correlation (COSI-Corr) toolbox to the MRO HiRISE imager specifications to produce a dense map of the ripples migration on the surface of the Martian dunes on the Nili Patera area. The ripple migration rate, along with an estimate of the ripple height, were used to derive the sand flux, a key quantity that controls the style and rate of landscape evolution. Using the dunes shape, size, and height, which were extracted from a DEM of the dune field, we show that the dunes are near steady state, and we observe that dune migration rate varies inversely with size and position within the dune field. The time scale associated with the formation and evolution of the Nili Patera dune field, estimated from comparing the sand volume with the sand flux and the dunes migration rates with the length scale of the dune field, is on the order of 10s to 100s of thousands Earth years. However, sand fluxes at the dune crests are 0.7 - 4.8 m3 m-1 per Earth year, which is comparable to that of dunes in Victoria Valley, Antarctica. This implies that rates of landscape modification from aeolian abrasion on Mars may be comparable to that on Earth.

  10. Low Permafrost Methane Emissions from Arctic Airborne Flux Measurements

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale greenhouse gas release from Arctic permafrost areas. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of energy and matter. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this question. During the AIRMETH-2012 and AIRMETH-2013 campaigns aboard the research aircraft POLAR 5 we measured turbulent exchange of energy, methane, and (in 2013) carbon dioxide along thousands of kilometers covering the North Slope of Alaska and the Mackenzie Delta, Canada. Time-frequency (wavelet) analysis, footprint modeling, and machine learning techniques are used to (i) determine spatially resolved turbulence statistics, fluxes, and contributions of biophysical surface properties, and (ii) extract regionally valid functional relationships between environmental drivers and the observed fluxes. These environmental response functions (ERF) are used to explain spatial flux patterns and - if drivers are available in temporal resolution - allow for spatio-temporal scaling of the observations. This presentation will focus on 2012 methane fluxes on the North Slope of Alaska and the relevant processes on the regional scale and provide an updated 100 m resolution methane flux map of the North Slope of Alaska.

  11. Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.

    2009-01-01

    A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented

  12. Measurements of the atmospheric neutron leakage rate

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The atmospheric neutron leakage rate in the energy range from 0.01 to 10,000,000 eV has been measured as a function of latitude, altitude, and time with a neutron detector on board the Ogo 6 satellite. The latitude dependence of the neutron leakage is in reasonable agreement with that predicted by Lingenfelter (1963) and Light et al. (1973) if the neutron energy spectrum has the shape calculated by Newkirk (1963). The change in the neutron latitude dependence with the cosmic ray modulation agrees with the predictions of Lingenfelter and Light et al. For several solar proton events enhancements were observed in the neutron counting rates at lambda greater than or equal to 70 deg. Such events, however, provide an insignificant injection of protons at E less than or equal to 20 MeV into the radiation belts. An isotropic angular distribution of the neutron leakage in the energy range from 0.1 keV to 10 MeV best fits the observed altitude dependence of the neutron leakage flux.

  13. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  14. Factors affecting the measurement of mercury emissions from soils with flux chambers

    NASA Astrophysics Data System (ADS)

    WallschläGer, Dirk; Turner, Ralph R.; London, Jacqueline; Ebinghaus, Ralf; Kock, Hans H.; Sommar, Jonas; Xiao, Zifan

    1999-09-01

    Air-surface exchange of mercury (Hg) above an arid geothermal area was measured with three parallel flux chamber experiments. The different experimental designs were intercompared with each other, with regard to the magnitude of the measured Hg fluxes and their response to environmental changes. Qualitatively, the measured Hg fluxes agreed well throughout the diurnal cycle, and in their response to environmental events and experimental manipulations, but quantitatively, there were significant discrepancies between the individual flux results. On average, the three designs yielded Hg fluxes agreeing within a factor of 2, but even more pronounced differences were observed during midday high emission periods and during apparent nighttime deposition events. The chamber flushing rate appears to have a very significant impact on the measured fluxes and on the response behavior to environmental change. This study demonstrates that both experimental differences and small-scale regional variability introduce large uncertainty in the estimation of natural Hg air-surface exchange by different flux chamber techniques. Also, the impact of environmental parameters on Hg air-surface exchange was studied. Rain events led to a strong increase in the Hg emissions, even when the covered soil remained dry, suggesting that the apparent chamber footprint is larger than the actually covered area. Exclusion of sunlight led to decreases in Hg emissions. Statistical analysis revealed the strongest correlations between the measured Hg fluxes and radiation and wind speed. Weaker correlations were observed with air and soil temperature and wind direction (probably due to local Hg sources). Fluxes were also inversely correlated with relative humidity.

  15. A direct measurement of the energy flux density in plasma surface interaction

    NASA Astrophysics Data System (ADS)

    Dussart, Remi; Thomann, Anne-Lise; Semmar, Nadjib; Pichon, Laurianne; Bedra, Larbi; Mathias, Jacky; Tessier, Yves; Lefaucheux, Philippe

    2008-10-01

    The energy flux transferred from a plasma to a surface is a key issue for materials processing (sputtering, etching). We present direct measurements made with a Heat Flux Microsensor (HFM) in an Ar plasma interacting with the surface of the sensor. The HFM is a thermopile of about one thousand metal couples mounted in parallel. An Inductively Coupled Plasma in Argon was used to make the experiments. Langmuir probe and tuneable laser diode absorption measurements were carried out to estimate the contribution of ions, neutrals (conduction) and metastables. In order to evaluate the ability of the HFM to measure the part due to chemical reactions, a Si surface in contact with the HFM was submitted to an SF6 plasma. The direct measurements are in good agreement with the estimation we made knowing the etch rate and the enthalpy of the reaction. Finally, tests were performed on a sputtering reactor. Additional energy flux provided by condensing atoms (Pt) was also measured.

  16. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  17. IMPROVING EMISSION INVENTORIES USING DIRECT FLUX MEASUREMENTS AND MODELING

    EPA Science Inventory

    This project uses a novel approach to measure real-world pollutant fluxes on an extended spatial and temporal scale, and to infer from those the source-specific pollutant emissions needed for a comparison to and an improvement of current emissions inventories. Air pollutants a...

  18. Some Recent Secondary Production Measurements for Neutrino Flux Determination

    NASA Astrophysics Data System (ADS)

    Mills, Geoffrey B.

    2011-12-01

    Recent measurements of meson production in proton-nucleus interactions have made possible reliable neutrino flux determinations at modern neutrino experiments. This article discusses preliminary results from the HARP, MIP, and E910 are discussed along with some of their implications for the MINOS, K2K, and MiniBooNE neutrino experiments.

  19. Airborne flux measurements of Biogenic Isoprene over California

    SciTech Connect

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  20. Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?

    NASA Astrophysics Data System (ADS)

    Wilson, J. D.; Ridgwell, A.; Barker, S.

    2015-03-01

    The average depth in the ocean at which the majority of sinking organic matter particles remineralise is a fundamental parameter in the oceans role in regulating atmospheric CO2. Observed spatial patterns in sinking fluxes and relationships between the fluxes of different particles in the modern ocean have widely been used to invoke controlling mechanisms with important implications for CO2 regulation. However, such analyses are limited by the sparse spatial sampling of the available sediment trap data. Here we explore whether model ocean circulation rates, in the form of a transport matrix, can be used to derive remineralisation rates and sinking particle flux curves from the much more highly resolved observations of dissolved nutrient concentrations. Initially we use the Earth system model GENIE to generate a synthetic tracer dataset to explore the methods and its sensitivity to key sources of uncertainty arising from errors in the tracer observations and in the model circulation. We use a perturbed physics ensemble to generate 54 different estimates of circulation to explore errors associated with model transport rates. We find that reconstructed remineralisation rates are highly sensitive to both errors in observations and our ensemble uncertainty in model circulation rates such that a simple inversion does not provide a robust estimate of particulate flux profiles. Inferred remineralisation rates are particularly sensitive to differences between the "observed" and modelled transport fluxes because remineralisation rates are 3-4 magnitudes smaller than circulation rates. We also find that when inferring particle flux curves from remineralisation rates the cycling of dissolved organic matter also creates biases that have a similar magnitude and spatial variability to flux curves diagnosed using sediment trap data. We end with a discussion on the potential future directions and pitfalls of estimating remineralisation rates using model circulation schemes.

  1. Analysis of particles and carbon dioxide concentrations and fluxes in an urban area: Correlation with traffic rate and local micrometeorology

    NASA Astrophysics Data System (ADS)

    Contini, D.; Donateo, A.; Elefante, C.; Grasso, F. M.

    2012-01-01

    Number particle concentrations and fluxes were measured, synchronously with CO 2 concentrations and fluxes, in an urban area. Measurements were taken with an eddy-correlation station located near the busiest road of the town of Lecce (Italy). Upward fluxes dominate completely over deposition and the area behaved as a source of aerosol and CO 2 with an average particle flux F N = 71,100 #/cm 2 s (median 64,000 #/cm 2 s) and an average CO 2 flux F C = 0.76 mg/m 2 s (median 0.46 mg/m 2 s). Pronounced diurnal and weekly cycles of F N and F C were observed, well correlated with measured traffic rate, T R, indicating that traffic is the main source of CO 2 and particles in the area. Biogenic cycle on CO 2 fluxes and concentrations was also distinguishable, decreasing the correlation between F N and F C. The relationships between particle and CO 2 fluxes with T R, friction velocity and atmospheric stability were analysed. Measured F N/ T R increased when friction velocity increased and, correspondingly, number concentration decreased. Particle fluxes showed a dependence on the atmospheric stability. These dependencies were used to derive an empirical parameterisation of aerosol concentration and fluxes, based on T R and micrometeorological parameters, that could be used to estimate traffic emissions, in real operating conditions, for applications in dispersion and climate modelling. Measured F C/ T R showed a limited correlation with friction velocity and stability, because of the influence of the biogenic cycle, thereby micrometeorological parameters were not used in the parameterisation of F C.

  2. Ultra High Precision Laser Monitor for Oxygen Eddy Flux Measurements

    NASA Astrophysics Data System (ADS)

    Nelson, David; Herndon, Scott; McManus, Barry; Roscioli, Rob; Jervis, Dylan; Zahniser, Mark

    2016-04-01

    Atmospheric oxygen provides one of the most powerful tracers to study the carbon cycle through its close interaction with carbon dioxide. Keeling and co-workers demonstrated this at the global scale by using small variations in atmospheric oxygen content to disentangle oceanic and terrestrial carbon sinks. It would be very exciting to apply similar ideas at the ecosystem level to improve our understanding of biosphere-atmosphere exchange and our ability to predict the response of the biosphere and atmosphere to climate change. The eddy covariance technique is perhaps the most effective approach available to quantify the exchange of gases between these spheres. Therefore, eddy covariance flux measurements of oxygen would be extremely valuable. However, this requires a fast response (0.1 seconds), high relative precision (0.001% or 10 per meg) oxygen sensor. We report recent progress in developing such a sensor using a high resolution visible laser to probe the oxygen A-band electronic transition. We have demonstrated precision of 1 ppmv or 5 per meg for a 100 second measurement duration. This sensor will enable oxygen flux measurements using eddy covariance. In addition, we will incorporate a second laser in this instrument to simultaneously determine the fluxes of oxygen, carbon dioxide and water vapor within the same sampling cell. This will provide a direct, real time measurement of the ratio of the flux of oxygen to that of carbon dioxide. This ratio is expected to vary on short time scales and small spatial scales due to the differing stoichiometry of processes producing and consuming carbon dioxide. Thus measuring the variations in the ratio of oxygen and carbon dioxide fluxes will provide mechanistic information to improve our understanding of the crucial exchange of carbon between the atmosphere and biosphere.

  3. CO2-flux measurements above the Baltic Sea at two heights: flux gradients in the surface layer?

    NASA Astrophysics Data System (ADS)

    Lammert, A.; Ament, F.

    2015-11-01

    The estimation of CO2 exchange between the ocean and the atmosphere is essential to understand the global carbon cycle. The eddy-covariance technique offers a very direct approach to observe these fluxes. The turbulent CO2 flux is measured, as well as the sensible and latent heat flux and the momentum flux, a few meters above the ocean in the atmosphere. Assuming a constant-flux layer in the near-surface part of the atmospheric boundary layer, this flux equals the exchange flux between ocean and atmosphere. The purpose of this paper is the comparison of long-term flux measurements at two different heights above the Baltic Sea to investigate this assumption. The results are based on a 1.5-year record of quality-controlled eddy-covariance measurements. Concerning the flux of momentum and of sensible and latent heat, the constant-flux layer theory can be confirmed because flux differences between the two heights are insignificantly small more than 95 % of the time. In contrast, significant differences, which are larger than the measurement error, occur in the CO2 flux about 35 % of the time. Data used for this paper are published at http://doi.pangaea.de/10.1594/PANGAEA.808714.

  4. Automatic magnetic flux measurement of micro plastic-magnetic rotors

    NASA Astrophysics Data System (ADS)

    Wang, Qingdong; Lin, Mingxing; Song, Aiwei

    2015-07-01

    Micro plastic-magnetic rotors of various sizes and shapes are widely used in industry, their magnetic flux measurement is one of the most important links in the production process, and therefore some technologies should be adopted to improve the measurement precision and efficiency. In this paper, the automatic measurement principle of micro plastic-magnetic rotors is proposed and the integration time constant and the integrator drift’s suppression and compensation in the measurement circuit are analyzed. Two other factors influencing the measurement precision are also analyzed, including the relative angles between the rotor magnetic poles and the measurement coil, and the starting point of the rotors in the coil where the measurement begins. An instrument is designed to measure the magnetic flux of the rotors. Measurement results show that the measurement error is within  ±1%, which meets the basic requirements in industry application, and the measurement efficiency is increased by 10 times, which can cut down labor cost and management cost when compared with manual measurement.

  5. Thermal Accommodation Coefficients Based on Heat-Flux Measurements

    NASA Astrophysics Data System (ADS)

    Gallis, Michael A.; Trott, Wayne M.; Torczynski, John R.; Rader, Daniel J.

    2006-11-01

    A new method to determine the thermal accommodation coefficient of gases on solid surfaces based on heat-flux measurements is presented. An experimental chamber and supporting diagnostics have been developed that allow accurate heat-flux measurements between two parallel plates. The heat flux is inferred from temperature-difference measurements across the plates using precision thermistors, where the plate temperatures are set with two carefully controlled thermal baths. The resulting heat flux is used in a recently derived semi-empirical formula to determine the thermal accommodation coefficient. This formula has the advantage of eliminating the ˜8% discrepancy between molecular simulations and the predictions of the more approximate Sherman-Lees formula used in most studies. Nitrogen, argon, and helium on stainless steel with various finishes and on other silicon-based surfaces are examined. The thermal accommodation coefficients thus determined indicate that the Maxwell gas-surface interaction model can adequately represent all of the experimental observations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. High-Fidelity Measurements of Long-Lived Flux Qubits

    NASA Astrophysics Data System (ADS)

    Hover, David; Macklin, Chris; O'Brien, Kevin; Sears, Adam; Yoder, Jonilyn; Gudmundsen, Ted; Kerman, Jamie; Bolkhovsky, Vladimir; Tolpygo, Sergey; Fitch, George; Weir, Terry; Kamal, Archana; Gustavsson, Simon; Yan, Fei; Birenbaum, Jeff; Siddiqi, Irfan; Orlando, Terry; Clarke, John; Oliver, Will

    2015-03-01

    We report on high-fidelity dispersive measurements of a long-lived flux qubit using a Josephson superconducting traveling wave parametric amplifier (JTWPA). A capacitively shunted flux qubit that incorporates high-Q MBE aluminum will have longer relaxation and dephasing times when compared to a conventional flux qubit, while also maintaining the large anharmonicity necessary for complex gate operations. The JTWPA relies on a Josephson junction embedded transmission line to deliver broadband, nonreciprocal gain with large dynamic range. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA); and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract number FA8721-05-C-0002. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of

  7. Denitrification Rates, Nitrous Oxide, and Methane Fluxes Along Soil Moisture Gradients In Stormwater Control Structures.

    NASA Astrophysics Data System (ADS)

    Bettez, N. D.; Morse, J. L.; Groffman, P. M.

    2014-12-01

    Urbanization has significant impacts on the landscape resulting in increased volume and velocity of stormwater runoff following precipitation events. The primary method used to control stormwater discharge and prevent downstream erosion is the use of best management practices (BMP's) such as retention basins, detention basins and rain gardens. Although the BMP's were designed to mitigate hydrologic impacts associated with urban development they have the potential to remove nitrogen through denitrification. In this study we set up transects along moisture gradients in two BMP's in Baltimore MD, USA and measured denitrification rates using the Nitrogen Free Air Removal Method (N-FARM) method and monitored both soil conditions (oxygen, moisture and temperature measured hourly) and trace gas fluxes (methane, carbon dioxide, and nitrous oxide measured monthly) for 1 year.

  8. Reducing measurement scale mismatch to improve surface energy flux estimation

    NASA Astrophysics Data System (ADS)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2016-04-01

    Soil moisture importantly controls land surface processes such as energy and water partitioning. A good understanding of these controls is needed especially when recognizing the challenges in providing accurate hyper-resolution hydrometeorological simulations at sub-kilometre scales. Soil moisture controlling factors can, however, differ at distinct scales. In addition, some parameters in land surface models are still often prescribed based on observations obtained at another scale not necessarily employed by such models (e.g., soil properties obtained from lab samples used in regional simulations). To minimize such effects, parameters can be constrained with local data from Eddy-Covariance (EC) towers (i.e., latent and sensible heat fluxes) and Point Scale (PS) soil moisture observations (e.g., TDR). However, measurement scales represented by EC and PS still differ substantially. Here we use the fact that Cosmic-Ray Neutron Sensors (CRNS) estimate soil moisture at horizontal footprint similar to that of EC fluxes to help answer the following question: Does reduced observation scale mismatch yield better soil moisture - surface fluxes representation in land surface models? To answer this question we analysed soil moisture and surface fluxes measurements from twelve COSMOS-Ameriflux sites in the USA characterized by distinct climate, soils and vegetation types. We calibrated model parameters of the Joint UK Land Environment Simulator (JULES) against PS and CRNS soil moisture data, respectively. We analysed the improvement in soil moisture estimation compared to uncalibrated model simulations and then evaluated the degree of improvement in surface fluxes before and after calibration experiments. Preliminary results suggest that a more accurate representation of soil moisture dynamics is achieved when calibrating against observed soil moisture and further improvement obtained with CRNS relative to PS. However, our results also suggest that a more accurate

  9. Measurement of emission fluxes from Technical Area 54, Area G and L. Final report

    SciTech Connect

    Eklund, B.

    1995-03-15

    The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m{sup 2}-min to 9.69 x 10{sup 6} pCi/m{sup 2}-min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m{sup 2}-min. The measured emission fluxes of VOCs were < 100 {mu}g/m{sup 2}-min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report.

  10. Characterizing shallow secondary clarifier performance where conventional flux theory over-estimates allowable solids loading rate.

    PubMed

    Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A

    2016-01-01

    The performance characteristics of relatively shallow (3.3 and 3.7 m sidewater depth in 30.5 m diameter) activated sludge secondary clarifiers were extensively evaluated during a 2-year testing program at the City of Akron Water Reclamation Facility (WRF), Ohio, USA. Testing included hydraulic and solids loading stress tests, and measurement of sludge characteristics (zone settling velocity (ZSV), dispersed and flocculated total suspended solids), and the results were used to calibrate computational fluid dynamic (CFD) models of the various clarifiers tested. The results demonstrated that good performance could be sustained at surface overflow rates in excess of 3 m/h, as long as the clarifier influent mixed liquor suspended solids (MLSS) concentration was controlled to below critical values. The limiting solids loading rate (SLR) was significantly lower than the value predicted by conventional solids flux analysis based on the measured ZSV/MLSS relationship. CFD analysis suggested that this resulted because mixed liquor entering the clarifier was being directed into the settled sludge blanket, diluting it and also creating a 'thin' concentration sludge blanket that overlays the thicker concentration sludge blanket typically expected. These results indicate the need to determine the allowable SLR for shallow clarifiers using approaches other than traditional solids flux analysis. A combination of actual testing and CFD analyses are demonstrated here to be effective in doing so. PMID:27438236

  11. Biogenic silica fluxes and accumulation rates in the Gulf of California

    SciTech Connect

    Thunell, R.C.; Pride, C.J.; Tappa, E. ); Muller-Karger, F.E. )

    1994-04-01

    The Gulf of California, though small in size, plays an important role in the global silica cycle. The seasonal pattern of biogenic silica flux in the gulf is closely related to that of phytoplankton biomass levels and is controlled by changes in weather and hydrographic conditions. The highest opal fluxes ([approximately] 0.35 g[center dot]m[sup [minus]2][center dot]d[sup [minus]1]) occur during winter and spring, and they are comparable to those measured in some of the most productive ecosystems of the world. Approximately 15%-25% of the biogenic silica produced in surface waters is preserved in gulf sediments, a figure significantly higher than the average global ocean preservation rate. However, the flux of opal at 500 m water depth is less than 25% of that being produced at the surface, suggesting that most of the recycling of biogenic silica in the Gulf of California occurs in the upper water column. 28 refs., 3 figs.

  12. A mobile detector for measurements of the atmospheric muon flux

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Brancus, I. M.; Margineanu, R.; Petcu, M.; Dima, M.; Sima, O.; Haungs, A.; Rebel, H.; Petre, M.; Toma, G.; Saftoiu, A.; Apostu, A.

    2011-04-01

    Measurements of the underground atmospheric muon flux are important in order to determine accurately the overburden in mwe (meter water equivalent) of an underground laboratory for appreciating which kind of experiments are feasible for that location. Slanic- Prohava is one of the 7 possible locations for the European large underground experiment LAGUNA (Large Apparatus studying Grand Unification and Neutrino Astrophysics). A mobile device consisting of 2 scintillator plates (≍0.9 m2, each) one above the other and measuring in coincidence, was set-up for determining the muon flux. The detector it is installed on a van which facilitates measurements on different positions at the surface or in the underground and it is in operation since autumn 2009. The measurements of muon fluxes presented in this contribution have been performed in the underground salt mine Slanic-Prahova, Romania, where IFIN-HH has built a low radiation level laboratory, and at the surface on different sites of Romania, at different elevations from 0 m a.s.l up to 655 m a.s.l. Based on our measurements we can say that Slanic site is a feasible location for LAGUNA in Unirea salt mine at a water equivalent depth of 600 mwe. The results have been compared with Monte-Carlo simulations performed with the simulation codes CORSIKA and MUSIC.

  13. Luminous-flux measurements by an absolute integrating sphere

    NASA Astrophysics Data System (ADS)

    Rastello, Maria Luisa; Miraldi, Elio; Pisoni, Paolo

    1996-08-01

    We present an original implementation of the absolute-sphere method recently proposed by Ohno. The luminous-flux unit, the lumen, is realized by means of an integrating sphere with an opening calibrated by a luminous-intensity standard placed outside. The adapted experimental setup permits one to measure luminous-flux values between 5 and 2500 lm with a significant improvement with respect to the simulated performances reported in the literature. Traditionally, the luminous-flux unit, the lumen, is realized by goniophotometric techniques in which the luminous-intensity distribution is measured and integrated over the whole solid angle. Thus sphere results are compared with those obtained with the Istituto Elettrotecnico Nazionale goniophotometer. In particular, a set of standards, characterized by luminous-flux values of approximately 2000 lm, has been calibrated with both techniques. We highlight some of the problems encountered. Experimental results show that the agreement between the two methods is within the estimated uncertainty and suggest promising areas for future research.

  14. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  15. Airborne flux measurements of biogenic isoprene over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-10-01

    Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over 7400 km of flight paths focusing on areas of California predicted to have the largest emissions. The fast Fourier transform (FFT) approach was used to calculate fluxes of isoprene over long transects of more than 15 km, most commonly between 50 and 150 km. The continuous wavelet transformation (CWT) approach was used over the same transects to also calculate instantaneous isoprene fluxes with localization of both frequency and time independent of non-stationarities. Fluxes were generally measured by flying consistently at 400 m ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence determined in the racetrack-stacked profiles. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to basal emission factor (BEF) land-cover data sets used to drive BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. Even though the isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, observations at the Walnut Grove tower south of Sacramento demonstrate that isoprene oxidation products from the high emitting regions in the surrounding oak woodlands accumulate at night in

  16. Measurement of a surface heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  17. Measurement of a surface heat flux and temperature

    NASA Technical Reports Server (NTRS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  18. Automation of soil flux chamber measurements: potentials and pitfalls

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2016-03-01

    Recent technological advances have enabled the wider application of automated chambers for soil greenhouse gas (GHG) flux measurements, several of them commercially available. However, few studies addressed the challenges associated with operating these systems. In this contribution we compared two commercial soil GHG chamber systems - the LI-8100A Automated Soil CO2 Flux System and the greenhouse gas monitoring system AGPS. From April until August 2014, the two systems monitored in parallel soil respiration (SR) fluxes at a recently harvested poplar (Populus) plantation, which provided a bare field situation directly after the harvest as well as a closed canopy later on. For the bare field situation (15 April-30 June 2014), the cumulated average SR obtained from the unfiltered data sets of the LI-8100A and the AGPS were 520 and 433 g CO2 m-2 respectively. For the closed canopy phase (1 July-31 August 2014), which was characterized by a higher soil moisture content, the cumulated average SR estimates were not significantly different with 507 and 501 g CO2 m-2 for the AGPS and the LI-8100A respectively. Flux quality control and filtering did not significantly alter the results obtained by the LI-8100A, whereas the AGPS SR estimates were reduced by at least 20 %. The main reasons for the observed differences in the performance of the two systems were (i) a lower data coverage provided by the AGPS due to technical problems; (ii) incomplete headspace mixing in the AGPS chambers; (iii) lateral soil CO2 diffusion below the collars during AGPS chamber measurements; and (iv) a possible overestimation of nighttime SR fluxes by the LI-8100A. Additionally, increased root growth was observed within the LI-8100A collars but not within the AGPS collars, which might have also contributed to the observed differences. In contrast to the LI-8100A, the AGPS had the gas sample inlets installed inside the collars and not the chambers. This unique design feature enabled for the first

  19. Automation of soil flux chamber measurements: potentials and pitfalls

    NASA Astrophysics Data System (ADS)

    Görres, C.-M.; Kammann, C.; Ceulemans, R.

    2015-09-01

    Recent technological advances have enabled the wider application of automated chambers for soil greenhouse gas (GHG) flux measurements, several of them commercially available. However, only few studies addressed the difficulties and challenges associated with operating these systems. In this contribution we compared two commercial soil GHG chamber systems-the LI-8100A Automated Soil CO2 Flux System and the Greenhouse Gas Monitoring System AGPS. From April 2014 until August 2014, the two systems monitored in parallel soil respiration (SR) fluxes at a recently harvested poplar plantation, which provided a bare field situation directly after the harvest as well as a closed canopy later on. For the bare field situation (15 April-30 June 2014), the cumulated average SR obtained from the unfiltered datasets of the LI-8100A and the AGPS were 520 and 433 g CO2 m-2, respectively. For the closed canopy phase (01 July-31 August 2014), which was characterized by a higher soil moisture content, the cumulated average SR estimates were not significantly different with 507 and 501 g CO2 m-2 for the AGPS and the LI-8100A, respectively. Flux quality control and filtering did not significantly alter the results obtained by the LI-8100A, whereas the AGPS SR estimates were reduced by at least 20 %. The main reasons for the observed differences in the performance of the two systems were (i) a lower data coverage provided by the AGPS due to technical problems; (ii) incomplete headspace mixing in the AGPS chambers; (iii) lateral soil CO2 diffusion below the collars during AGPS chamber measurements; (iv) increased root growth within the LI-8100A collars; and (v) a possible overestimation of nighttime SR fluxes by the LI-8100A. In contrast to the LI-8100A, the AGPS had the gas sample inlets installed inside the collars and not the chambers. This unique design feature enabled for the first time the detection of disturbed chamber measurements during nights with a stratified atmosphere

  20. Quantum reaction rate from higher derivatives of the thermal flux-flux autocorrelation function at time zero.

    PubMed

    Ceotto, Michele; Yang, Sandy; Miller, William H

    2005-01-22

    A quantum theory of thermal reaction rates is presented which may be viewed as an extension of the recently developed "quantum instanton" (QI) model [W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003)]. It is based on using higher derivatives of the flux-flux autocorrelation function C(t) (as given by Miller, Schwartz, and Tromp) at t=0 to construct a short time approximation for C(t). Tests of this theory on 1d and collinear reactions, both symmetric and asymmetric, show it to be more accurate than the original QI model, giving rate constants to approximately 5% for a wide range of temperature. PMID:15740237

  1. Quantum reaction rate from higher derivatives of the thermal flux-flux autocorrelation function at time zero

    NASA Astrophysics Data System (ADS)

    Ceotto, Michele; Yang, Sandy; Miller, William H.

    2005-01-01

    A quantum theory of thermal reaction rates is presented which may be viewed as an extension of the recently developed "quantum instanton" (QI) model [W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys. 119, 1329 (2003)]. It is based on using higher derivatives of the flux-flux autocorrelation function C(t) (as given by Miller, Schwartz, and Tromp) at t=0 to construct a short time approximation for C(t). Tests of this theory on 1d and collinear reactions, both symmetric and asymmetric, show it to be more accurate than the original QI model, giving rate constants to ˜5% for a wide range of temperature.

  2. Resolution of the discrepancy between Balmer alpha emission rates, the solar Lyman beta flux, and models of geocoronal hydrogen concentration

    NASA Technical Reports Server (NTRS)

    Levasseur, A.-C.; Meier, R. R.; Tinsley, B. A.

    1976-01-01

    New satellite Balmer alpha measurements and solar Lyman beta flux and line profile measurements, together with new measurements of the zodiacal light intensity used in correcting both ground and satellite Balmer alpha measurements for the effects of the Fraunhofer line in the zodiacal light, have been used in a reevaluation of the long-standing discrepancy between ground-based Balmer alpha emission rates and other geocoronal hydrogen parameters. The solar Lyman beta line center flux is found to be (4.1 plus or minus 1.3) billion photons per sq cm per sec per angstrom at S(10.7) equals 110 and, together with a current hydrogen model which has 92,000 atoms per cu cm at 650 km for T(inf) equals 950 K, gives good agreement between calculated Balmer alpha emission rates and the ground-based and satellite measurements.

  3. CO2, CH4 and particles flux measurements in Florence, Italy

    NASA Astrophysics Data System (ADS)

    Gioli, Beniamino; Toscano, Piero; Zaldei, Alessandro; Fratini, Gerardo; Miglietta, Franco

    2013-04-01

    We report a synthesis of seven years of eddy covariance (EC) flux measurements in the city of Florence, Italy. The measurement site is located in a densely urbanized area in the central city area, where fluxes are governed by anthropogenic emissions, considering the lack of green-space in the flux footprint. EC flux measurements of CO2 are made long-term since seven years, while short-term campaigns have been aimed at measuring CH4 and particles fluxes. CO2 and CH4 densities are measured with fast open-path sensors, while particles in the range 0.32 - 7.00 µm optical diameter are measured with a custom-built optical counter. CO2 long-term fluxes are always a net source, with a small inter-annual variability associated with a high seasonality, ranging from 39 to 172% of the mean annual value in summer and winter respectively. CH4 fluxes to the atmosphere are relevant, representing about 8% of CO2-equivalent emissions, and do not exhibit any significant seasonality. Relative contributions of road traffic and domestic heating to observed emissions has been estimated through multi-variate analysis combined with inventorial data and emission proxies such as traffic counters and gas network flow rates, revealing that domestic heating accounts for more than 80% of observed CO2 fluxes. Heating and road traffic are instead responsible for only 14% of observed CH4 fluxes, while the major residual part is likely dominated by gas network leakages. Particles flux data show a smaller seasonal trend and a pronounced weekend decrease, highlighting that the contribution of heating to particle emissions is relatively small compared to road traffic. Dynamics at hourly time scales during week and week-end days allows the analysis of the coupled role of emission strength and atmospheric processes such as advection and entrainment in regulating atmospheric concentrations. This set of observations highlights the potential of urban EC flux measurements as a validation tool for

  4. Eddy correlation measurements of NO, NO{sub 2}, and O{sub 3} fluxes

    SciTech Connect

    Gao, W.; Wesely, M.L.; Cook, D.R.; martin, T.J.

    1996-06-01

    The micrometeorological technique of eddy correlation was used to measure the vertical fluxes of NO, NO{sub 2}, and ozone in rural North Carolian during spring 1995 as part of the Natural emission of Oxidant precurssors-Validation of techniques and Assessment (NOVA) field experiment. Net flux densities were measured at heights 5 and 10 m above an agricultural field with short corn plants and large amount of exposed bare soil between the rows. Large upward eddy fluxes of NO{sub 2} were seen, and strong NO emissions from the soil were measured by collaborators using environmental enclosures on the soil surface. Data indicate that about 50% of the nitrogen emitted from the soil as NO was converted into NO{sub 2} at 5 m. Rest of the emitted nitrogen may remain as NO flux and be returned back to the vegetation and soil by deposition. Divergence of the NO{sub 2} and O{sub 3} fluxes were detected between 5 and 10 m. This is consistent with likely net NO{sub 2} and O{sub 3} destruction rates. The data will be used to help develop parameterizations of the flux of nitrogen oxides into the lower troposphere.

  5. Measurement of the 8B Solar Neutrino Flux with KamLAND

    SciTech Connect

    Abe, S.; Furuno, K.; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kimura, W.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B.D.; Yabumoto, H.; Yonezawa, E.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; McKee, D.; Piepke, A.; Banks, T.I.; Bloxham, T.; Detwiler, J.A.; Freedman, S.J.; Fujikawa, B.K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H.M.; Winslow, L.A.; Dwyer, D.A.; Mauger, C.; McKeown, R.D.; Zhang, C.; Berger, B.E.; Lane, C.E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J.G.; Matsuno, S.; Pakvasa, S.; Sakai, M.; Horton-Smith, G.A.; Tang, A.; Downum, K.E.; Gratta, G.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Heeger, K.M.; Piquemal, F.; Ricol, J.-S.; Decowski, M.P.

    2011-06-04

    We report a measurement of the neutrino-electron elastic scattering rate from {sup 8}B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 {+-} 0.14(stat) {+-} 0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a {sup 8}B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77 {+-} 0.26(stat) {+-} 0.32(syst) x 10{sup 6} cm{sup -2}s{sup -1}. The analysis threshold is driven by {sup 208}Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic {sup 11}Be. The measured rate is consistent with existing measurements and with standard solar model predictions which include matter-enhanced neutrino oscillation.

  6. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    PubMed Central

    Dye, Stephen T.; Guillian, Eugene H.

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth. PMID:18172211

  7. MARIE Dose and Flux Measurements in Mars Orbit

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Cleghorn, T.; Cucinotta, F. A.; Saganti, P.; Andersen, V.; Lee, K. T.; Pinsky, L. S.; Turner, R.; Atwell, W.

    2004-01-01

    We present results from the Martian Radiation Environment Experiment (MARIE), aboard the 2001 Mars Odyssey spacecraft in orbit around Mars. MARIE operated successfully from March 2002 through October 2003. At the time of this writing, the instrument is off due to a loss of communications during an extremely intense Solar Particle Event. Efforts to revive MARIE are planned for Spring 2004, when Odyssey's role as a communications relay for the MER rovers is completed. During the period of successful operation, MARIE returned the first detailed energetic charged particle data from Mars. Due to limitations of the instrument, normalizing MARIE data to flux or dose is not straightforward - several large corrections are needed. Thus normalized results (like dose or flux) have large uncertainties and/or significant model-dependence. The problems in normalization are mainly due to inefficiency in detecting high-energy protons (signal-to-noise problems force the trigger threshold to be higher than optimal), to the excessively high gains employed in the signal processing electronics (many ions deposit energy sufficient to saturate the electronics, and dE/dx information is lost), and to artifacts associated with the two trigger detectors (incomplete registration of dE/dx). Despite these problems, MARIE is efficient for detecting helium ions with kinetic energies above about 30 MeV/nucleon, and for detecting high-energy ions (energies above about 400 MeV/nucleon) with charges from 5 to 10. Fluxes of these heavier ions can be compared to fluxes obtained from the ACE/CRIS instrument, providing at least one area of direct comparison between data obtained at Earth and at Mars; this analysis will be presented as a work in progress. We will also present dose-rate data, with a detailed explanation of the many sources of uncertainty in normalization. The results for both flux and dose will be compared to predictions of the HZETRN model of the GCR.

  8. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  9. Corrections of Heat Flux Measurements on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.

    2002-01-01

    Knowledge of aerothermally induced convective heat transfer is important in the design of thermal protection systems for launch vehicles. Aerothermal models are typically calibrated via the data from circular, in-flight, flush-mounted surface heat flux gauges exposed to the thermal and velocity boundary layers of the external flow. Typically, copper or aluminum Schmidt- Boelter gauges, which take advantage of the one-dimensional Fourier's law of heat conduction, are used to measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has a wall temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher than it would have been on the insulation had the calorimeter not been there. In addition, radial conductive heat transfer from the hotter insulation can cause the calorimeter to indicate heat fluxes higher than actual. An overview of an effort to develop and calibrate gauge correction techniques for both of these effects will be presented.

  10. A mobile detector for measurements of the atmospheric muon flux in underground sites

    NASA Astrophysics Data System (ADS)

    Mitrica, Bogdan; Margineanu, Romul; Stoica, Sabin; Petcu, Mirel; Brancus, Iliana; Jipa, Alexandru; Lazanu, Ionel; Sima, Octavian; Haungs, Andreas; Rebel, Heinigerd; Petre, Marian; Toma, Gabriel; Saftoiu, Alexandra; Stanca, Denis; Apostu, Ana; Gomoiu, Claudia

    2011-10-01

    Muons comprise an important contribution of the natural radiation dose in air (approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in underground sites even when the flux and relative contribution are significantly reduced. The flux of muons observed underground can be used as an estimator for the depth in mwe (meter water equivalent) of the underground site. The water equivalent depth is important information to devise physics experiments feasible for a specific site. A mobile detector for performing measurements of the muon flux was developed in IFIN-HH, Bucharest. Consisting of two scintillator plates (approx. 0.9 m2) which measure in coincidence, the detector is installed on a van which facilitates measurements at different locations at the surface or underground. The detector was used to determine muon fluxes at different sites in Romania. In particular, data were taken and the values of meter water equivalents were assessed for several locations at the salt mine in Slanic-Prahova, Romania. The measurements have been performed in two different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at the surface at different elevations were performed. The results were compared with predictions of Monte-Carlo simulations using the CORSIKA and MUSIC codes.

  11. Estimation of rainfall interception in grassland using eddy flux measurements

    NASA Astrophysics Data System (ADS)

    Maruyama, A.; Miyazawa, Y.; Inoue, A.

    2014-12-01

    Rainfall interception plays an important role in the water cycle in natural ecosystems. Interception by the forest canopies have been widely observed or estimated over various ecosystems, such as tropical rainforest, evergreen forest and deciduous forest. However interception by the short canopies, e.g. shrubby plant, grassland and crop, has been rarely observed since it has been difficult to obtain reliable precipitation measurements under the canopy. In this study, we estimated monthly and annual rainfall interception in grassland using evapotranspiration data of eddy flux measurements. Experiments were conducted in grassland (Italian ryegrass) from 2010 to 2012 growing season in Kumamoto, Japan. Evapotranspiration (latent heat flux) were observed throughout the year based on the eddy covariance technique. A three dimensional sonic anemometer and an open path CO2/H2O analyzer were used to calculate 30 min flux. Other meteorological factors, such as air temperature, humidity and solar radiation, were also observed. Rainfall interception was estimated as follows. 1) Using evapotranspiration data during dry period, environmental response of surface conductance (gc) was inversely calculated based on the big-leaf model. 2) Evapotranspiration without interception during precipitation period was estimated using above model and environmental response of gc. 3) Assuming that evaporation of intercepted rainfall is equal to the difference in evapotranspiration between above estimation and actual measurements, rainfall interception was estimated over experimental period. The account of rainfall interception in grassland using this technique will be presented at the meeting.

  12. ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes

    SciTech Connect

    Judd, J.L.

    1981-12-01

    The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.

  13. Methane fluxes measured by eddy covariance at a temperate upland forest

    NASA Astrophysics Data System (ADS)

    Wang, J.; Murphy, J. G.; Winsborough, C. L.; Basiliko, N.; Geddes, J. A.; Thomas, S.

    2012-12-01

    Methane flux measurements were carried out at a temperate upland forest in Central Ontario, Haliburton Forest and Wildlife Reserve (45.28° N, 78.55° W) using the eddy covariance (EC) method. An off-axis integrated cavity output spectrometer (OA-ICOS) Fast Greenhouse Gas Analyzer (FGGA from Los Gatos Research, Inc.) operated at a sampling rate of 10 Hz allowed for simultaneous measurement of methane (CH4), carbon dioxide (CO2), and water (H2O) over five months from June to October in 2011. Air was pulled from the top of a 32 m tower, 8 m above the forest canopy, to the bottom of the tower through 40 m of tubing to the instrument. A sonic anemometer and a LI-7500 open-path sensor were also used at the top of the tower to provide high frequency wind data and comparative open-path measurements of CO2 and H2O. A nearby soil station measured soil water content and soil temperature at 0, 3, and 10 cm below the surface. Observed methane fluxes showed net uptake of CH4 over the measurement period with an average uptake flux value (± standard deviation of the mean) of -2.7±0.13 nmol m-2 s-1. In early June when measurements commenced, the soil moisture was relatively high and CH4 flux values showed net emission. As the season advanced the soil became progressively drier, and there was an increasing trend in CH4 uptake, peaking in mid-September. There was also a diurnal trend in the CH4 flux, with increased uptake during the day, and decreased uptake between 0:00 and 08:00. The CH4 flux values correlated well with the horizontal wind speed measured within the forest canopy. We hypothesize that this may be due to a ventilation effect in which higher wind speed facilitates the introduction of CH4-rich air and removes CH4-depleted air near the methanotrophs in the soil. The measurements were made in an uneven-aged managed forest stand last harvested 15 years ago containing sandy and acidic soils (pH 4.0 - 5.0). Chamber flux measurements of CH4 were also performed at seven

  14. Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?

    NASA Astrophysics Data System (ADS)

    Wilson, J. D.; Ridgwell, A.; Barker, S.

    2015-09-01

    The average depth in the ocean at which the majority of sinking organic matter particles remineralise is a fundamental parameter in the ocean's role in regulating atmospheric CO2. Observed spatial patterns in sinking fluxes and relationships between the fluxes of different particles in the modern ocean have widely been used to invoke controlling mechanisms with important implications for CO2 regulation. However, such analyses are limited by the sparse spatial sampling of the available sediment trap data. Here we explore whether model ocean circulation rates, in the form of a transport matrix, can be used to derive remineralisation rates and infer sinking particle flux curves from the much more highly resolved observations of dissolved nutrient concentrations. Initially we show an example of the method using a transport matrix from the MITgcm model and demonstrate that there are a number of potential uncertainties associated with the method. We then use the Earth system model GENIE to generate a synthetic tracer data set to explore the method and its sensitivity to key sources of uncertainty arising from errors in the tracer observations and in the model circulation. We use a 54-member ensemble of different, but plausible, estimates of the modern circulation to explore errors associated with model transport rates. We find that reconstructed re-mineralisation rates are very sensitive to both errors in observations and model circulation rates, such that a simple inversion cannot provide a robust estimate of particulate flux profiles. Estimated remineralisation rates are particularly sensitive to differences between the "observed" and modelled circulation because remineralisation rates are 3-4 magnitudes smaller than transport rates. We highlight a potential method of constraining the uncertainty associated with using modelled circulation rates, although its success is limited by the observations currently available. Finally, we show that there are additional

  15. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies.

    PubMed

    Moran, Jonathan A; Hawkins, Barbara J; Gowen, Brent E; Robbins, Samantha L

    2010-03-01

    Nepenthes pitcher plant species differ in their prey capture strategies, prey capture rates, and pitcher longevity. In this study, it is investigated whether or not interspecific differences in nutrient sequestration strategy are reflected in the physiology and microstructure of the pitchers themselves. Using a non-invasive technique (MIFE), ion fluxes in pitchers of Nepenthes ampullaria Jack, Nepenthes bicalcarata Hook.f., and Nepenthes rafflesiana Jack were measured. Scanning electron microscopy was also used to characterize the distribution of glandular and other structures on the inner pitcher walls. The results demonstrate that nutrient sequestration strategy is indeed mirrored in pitcher physiology and microstructure. Species producing long-lived pitchers with low prey capture rates (N. ampullaria, N. bicalcarata) showed lower rates of NH(4)(+) uptake than N. rafflesiana, a species producing short-lived pitchers with high capture rates. Crucially, species dependent upon aquatic commensals (N. ampullaria, N. bicalcarata) actively manipulated H(+) fluxes to maintain less acid pitcher fluid than found in 'typical' species; in addition, these species lacked the lunate cells and epicuticular waxes characteristic of 'typical' insectivorous congeners. An unexpected finding was that ion fluxes occurred in the wax-covered, non-glandular zones in N. rafflesiana. The only candidates for active transport of aqueous ions in these zones appear to be the epidermal cells lying beneath the lunate cells, as these are the only sites not visibly coated with epicuticular waxes. PMID:20150519

  16. Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies

    PubMed Central

    Moran, Jonathan A.; Hawkins, Barbara J.; Gowen, Brent E.; Robbins, Samantha L.

    2010-01-01

    Nepenthes pitcher plant species differ in their prey capture strategies, prey capture rates, and pitcher longevity. In this study, it is investigated whether or not interspecific differences in nutrient sequestration strategy are reflected in the physiology and microstructure of the pitchers themselves. Using a non-invasive technique (MIFE), ion fluxes in pitchers of Nepenthes ampullaria Jack, Nepenthes bicalcarata Hook.f., and Nepenthes rafflesiana Jack were measured. Scanning electron microscopy was also used to characterize the distribution of glandular and other structures on the inner pitcher walls. The results demonstrate that nutrient sequestration strategy is indeed mirrored in pitcher physiology and microstructure. Species producing long-lived pitchers with low prey capture rates (N. ampullaria, N. bicalcarata) showed lower rates of NH4+ uptake than N. rafflesiana, a species producing short-lived pitchers with high capture rates. Crucially, species dependent upon aquatic commensals (N. ampullaria, N. bicalcarata) actively manipulated H+ fluxes to maintain less acid pitcher fluid than found in ‘typical’ species; in addition, these species lacked the lunate cells and epicuticular waxes characteristic of ‘typical’ insectivorous congeners. An unexpected finding was that ion fluxes occurred in the wax-covered, non-glandular zones in N. rafflesiana. The only candidates for active transport of aqueous ions in these zones appear to be the epidermal cells lying beneath the lunate cells, as these are the only sites not visibly coated with epicuticular waxes. PMID:20150519

  17. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    SciTech Connect

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  18. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    DOE PAGESBeta

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; et al

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis ofmore » the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be

  19. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    PubMed Central

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-01-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich

  20. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-01-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich

  1. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  2. EISCAT observations of pump-enhanced plasma temperature and optical emission excitation rate as a function of power flux

    NASA Astrophysics Data System (ADS)

    Bryers, C. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.

    2012-09-01

    We analyze optical emissions and enhanced electron temperatures induced by high power HF radio waves as a function of power flux using the EISCAT heater with a range of effective radiated powers. The UHF radar was used to measure the electron temperatures and densities. The Digital All Sky Imager was used to record the 630.0 nm optical emission intensities. We quantify the HF flux loss due to self-absorption in the D-region (typically 3-11 dB) and refraction in the F-region to determine the flux which reaches the upper-hybrid resonance height. We find a quasi-linear relationship between the HF flux and both the temperature enhancement and the optical emission excitation rate with a threshold at ˜37.5 μWm-2. On average ˜70% of the HF flux at the upper-hybrid resonance height goes in to heating the electrons for fluxes above the threshold compared to ˜40% for fluxes below the threshold.

  3. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  4. Momentum Flux Measuring Instrument for Neutral and Charged Particle Flows

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)

    2002-01-01

    An instrument to measure the momentum flux (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have measured forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain measurements can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force measurements correspond directly to momentum flux and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force measurements may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum flux measurements of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.

  5. Doppler lidar measurement of profiles of turbulence and momentum flux

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Cupp, Richard E.; Healy, Kathleen R.

    1989-01-01

    A short-pulse CO2 Doppler lidar with 150-m range resolution measured vertical profiles of turbulence and momentum flux. Example measurements are reported of a daytime mixed layer with strong mechanical mixing caused by a wind speed of 15 m/sec, which exceeded the speed above the capping inversion. The lidar adapted an azimuth scanning technique previously demonstrated by radar. Scans alternating between two elevation angles allow determination of mean U-squared, V-squared, and W-squared. Expressions were derived to estimate the uncertainty in the turbulence parameters. A new processing method, partial Fourier decomposition, has less uncertainty than the filtering used earlier.

  6. Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Hijazi, H.; Bannister, M. E.; Unocic, K. A.; Garrison, L. M.; Parish, C. M.

    2016-02-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces at UHV conditions over a wide energy range using real-time sample imaging of tungsten target emissivity change to monitor the spatial extent of nano-fuzz growth, corroborated by ex situ SEM and FIB/SEM analysis, in conjunction with accurate ion-flux profile measurements. The measurements were carried out at the multicharged ion research facility (MIRF) at energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. To understand the energy dependence of the observed flux thresholds, the energy dependence of three contributing factors: ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were (2-4) × 1023 m-2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. The role of trapping at C impurity sites is discussed.

  7. A measurement of the antiproton flux in the cosmic rays

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Schindler, S. M.

    1981-01-01

    A balloon-borne instrument has been used to detect cosmic-ray antiprotons. These are identified topologically by the appearance of annihilation prongs in a thick lead-plate spark chamber. The initial recording of the data is enriched in potential antimatter events by a selective trigger. After a small subtraction for background, 14 identified antiprotons yield a flux of 1.7 plus or minus 0.00005 antiproton/(sq m ster sec MeV) between 130 and 320 MeV at the top of the atmosphere. When combined with higher energy antiproton flux measurements, this result indicates that the antiprotons have a spectrum whose shape is the same as that of the protons, but with a magnitude reduced by a factor of 1/3000.

  8. Momentum Flux Measurements Using an Impact Thrust Stand

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Breizman, Boris; Bengtson, Roger

    2004-01-01

    A device has been developed to measure the force caused by a beam of charged and neutral particles impacting a target plate. This device, an impact thrust stand, was developed to allow thrusters, during early stages of development, to be quickly and easily exhausted and compared to other thrusters. Since some thruster concepts are tested using laboratory equipment that is heavy and cumbersome, measuring the momentum flux of the particles in the plume can be much simpler than placing the entire thruster on a thrust stand. Conservation of momentum requires the momentum flux measured in the plume to be related to the thrust produced by the thruster. The impact thrust stand was designed to be placed in the plume of an electric thruster and has been tested and compared to the thrust measured from a Hall thruster placed on a pendulum thrust stand. Force measurements taken at several axial locations in the magnetic nozzle region of the Variable Specific Impulse Magnetoplasma Rocket will be presented.

  9. Momentum flux measurements using an impact thrust stand

    NASA Astrophysics Data System (ADS)

    Chavers, Greg; Chang-Diaz, Franklin; Breizman, Boris; Bengtson, Roger

    2004-11-01

    A device has been developed to measure the force caused by a beam of charged and neutral particles impacting a target plate. This device, an impact thrust stand, was developed to allow thrusters, during early stages of development, to be quickly and easily evaluated and compared to other thrusters. Since some thruster concepts are tested using laboratory equipment that is heavy and cumbersome, measuring the momentum flux of the particles in the plume can be much simpler than placing the entire thruster on a thrust stand. Conservation of momentum requires the momentum flux measured in the plume to be related to the thrust produced by the thruster. The impact thrust stand was designed to be placed in the plume of an electric thruster and has been tested and compared to the thrust measured from a Hall thruster placed on a pendulum thrust stand. Force measurements taken at several axial locations in the magnetic nozzle region of the Variable Specific Impulse Magnetoplasma Rocket will be presented.

  10. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    NASA Astrophysics Data System (ADS)

    Ponomarev, Konstantin; Orlova, Evgeniya; Feoktistov, Dmitry

    2016-02-01

    This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass). A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  11. Simple, stable, and affordable: Towards long-term ecosystem scale flux measurements of VOCs

    NASA Astrophysics Data System (ADS)

    Rinne, J.; Karl, T.; Guenther, A.

    2016-04-01

    Biogenic volatile organic compounds (BVOC) are key players in atmospheric chemistry and climate, yet our understanding of their emission dynamics is very limited. They dominate global emissions of volatile organic compounds (VOC) with estimated rates that are an order of magnitude higher than the anthropogenic VOC emissions. Since the publication of the first global BVOC emission inventories there have been efforts to develop more realistic and process-based models of BVOC emissions. However, there are only a few ecosystem-scale BVOC flux data for evaluation and improvement of these models. Thus a reliable network of observations is urgently needed. Surface layer flux measurements by micrometeorological methods provide the most suitable data for this purpose but there are some hindrances preventing the implementation of a long-term flux measurement network.

  12. FT-IR measurements of emissivity and temperature during high flux solar processing

    SciTech Connect

    Markham, J.R.; Smith, W.W.; Haigis, J.R.

    1996-02-01

    The experimental capability to generate and utilize concentrated solar flux has been demonstrated at a number of facilities in the US. To advance this research area, the National Renewable Energy Laboratory (NREL) has designed and constructed a versatile High Flux Solar Furnace (HFSF). Research is ongoing in areas of material processing, high temperature and UV enhanced detoxification, chemical synthesis, high flux optics, solar pumped lasers, and high heating rate processes. Surface modifications via concentrated solar flux, however, are currently performed without the means to accurately monitor the temperature of the surface of interest. Thermoelectric and pyrometric devices are not accurate due to limitations in surface contact and knowledge of surface emissivity, respectively, as well as interference contributed by the solar flux. In this article, the authors present a noncontact optical technique that simultaneously measures the directional spectral emissivity, and temperature of the surface during solar processing. A Fourier Transform Infrared (FT-IR) spectrometer is coupled to a processing chamber at NREL`s HFSF with a fiber-optic radiation transfer assembly. The system measures directional emission and hemispherical-directional reflectance in a spectral region that lacks contribution from solar flux. From these radiative property measurements during solar processing, the spectral emittance and temperature at the measurement point can be obtained. The methodology, validation measurements, and in-situ measurements during solar processing of materials are presented. Knowledge of surface temperature during solar processing is an important parameter for process control. Based on validation measurements for spectral emittance, the temperature error associated with the novel instrument is less than {+-} 5% for surfaces of mid-range emittance.

  13. First measurement of the flux of solar neutrinos from the sun at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wittich, Peter

    2000-12-01

    The Sudbury Neutrino Observatory (SNO) is a second generation solar neutrino detector. SNO is the first experiment that is able to measure both the electron neutrino flux and a flavor-blind flux of all active neutrino types, allowing a model-independent determination if the deficit of solar neutrinos known as the solar neutrino problem is due to neutrino oscillation. The Sudbury Neutrino Observatory started taking production data in November, 1999. A measurement of the charged current rate will be the first indication if SNO too sees a suppression of the solar neutrino signal relative to the theoretical predictions. Such a confirmation is the first step in SNO's ambitious science program. In this thesis, we present evidence that SNO is seeing solar neutrinos and a preliminary ratio of the measured vs predicted rate of electrons as induced by 8B neutrinos in the νe, + d --> p + p + e charged-current (CC) reaction.

  14. Assessment of CO2 flux measurements in different soil types

    NASA Astrophysics Data System (ADS)

    Xia, L.; Szlavecz, K.; Musaloiu, R.; Cupchup, J.; Pitz, S.

    2008-12-01

    Accurate measurements of soil CO2 efflux are extraordinarily challenging due to the very properties of CO2 transport in a porous medium of soil. The most commonly used method today is the chamber method, which provides direct measurements of CO2 efflux at the soil surface, but it can not measure the soil CO2 flux continuously. In order to develop new measurement methods in soil CO2 efflux, small solid-state CO2 sensors have been used to continuously to monitor soil CO2 profiles by burying these sensors at different soil depths. Using this method we compared soil CO2 efflux of four different soil types: forests soil, grassland soil (collected in Maryland) commercial potting soil and pure sand as control. CO2 concentration varied between 500 ppm in sand and 8000 ppm in forest soil at depth 12 cm. CO2 flux had the following order: Forest (0.3~0.4 mg CO2 m-2 s-1), potting soil (0.1~0.14 mg CO2 m-2 s-1 ), grassland (0.03~0.05 mg CO2 m-2 s-1), sand ( 0 mg CO2 m-2 s-1 ). Exponential relationship between temperature and CO2 flux was established for forest soil and potting soil only. Leaf litter, often thick layer in many terrestrial ecosystems and a significant source of CO2 production, is not part of the of the diffusivity models. We are currently conducting experiments which include the effect of leaf litter and soil invertebrates into soil respiration.

  15. Progress on a Rayleigh Scattering Mass Flux Measurement Technique

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.

    2010-01-01

    A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.

  16. Are far-IR fluxes good measures of cloud mass?

    NASA Astrophysics Data System (ADS)

    Wagle, Gururaj; Ferland, G. J.; Troland, T. H.; Abel, N.

    2014-01-01

    It is commonly assumed that the Herschel far-IR fluxes are a measure of column density, hence, mass of interstellar clouds. The Polaris Flare, a high galactic latitude cirrus cloud, with several starless molecular cores, has been previously observed with the Herschel Space Telescope. We used Cloudy version 13.02 to model a molecular cloud MCLD 123.5+24.9, one of the denser regions of the Polaris Flare. These models include a detailed calculation of far-IR grain opacities, subject to various assumptions about grain composition, and predict far-IR fluxes. The models suggest that the observed fluxes reflect the incident stellar UV radiation field rather than the column density, if N(H) > a few times 1021 cm2 (AV > 1). For higher column densities, the models show that dust temperatures decline rapidly into the cloud. Therefore, the cloud interiors contribute very little additional far-IR flux, and column densities based upon far-IR fluxes can be significantly underestimated. The Polaris Flare, 150 pc distant, is well within the Galactic disc. There are no nearby hot stars. Therefore, the stellar UV radiation field incident on the cloud should be close to the mean interstellar radiation field (ISRF). In addition, the calculated grain opacities required to reproduce the far-IR fluxes in the Cloudy models are a few factors larger than that calculated for standard ISM graphite and silicate grains. This result suggests that the grains in dense regions are coated with water and ammonia ices, increasing their sizes and opacities. The Cloudy models also predict mm-wavelength CO line strengths for comparison with published observations at the IRAM 30-m telescope. In order to reproduce the observed CO line strengths for cores in MCLD 123.5+24.9, the models require that CO molecules be partially frozen out onto the grains. This result places age constraints upon the cores. We have also modeled CO emission from inter-core regions in MCLD 123.5+24.9. For these regions, the models

  17. Geomorphic Flux From Himalayan Flashflood Equates to 1000 yrs Average Erosion Rate

    NASA Astrophysics Data System (ADS)

    Sinclair, Hugh; Mudd, Simon; LeDivellec, Tom; Dallas, Kirsten; Andy, Hein

    2016-04-01

    Extreme flood events are increasingly reported from the western Himalaya; we use geomorphic analyses to reconstruct both the spatial distribution and approximate the recurrence interval for these events. During the summer of 2010, an enhanced monsoon resulted in extensive flooding of the Indus Valley of Pakistan. An unusual aspect of this event was the intense precipitation in the arid upper reaches of the Indus River in Ladakh. On August 5th, a mesoscale convective system caused intense, short-lived precipitation, with estimates of 75-100 mm falling in approximately 30 minutes. The short-lived convective nature of the rainfall meant TRMM data was unable to locate the main event. However, a geomorphic reconstruction of river discharge and hillslope activity demonstrates that the precipitation was limited to a 3 to 6 km wide band on the southward facing slopes of the Ladakh Range, and that this can be traced approximately 120 km along the strike of the range. In addition to mapping out the extent of the event, we also reconstruct the total flux mobilised on selected hillslopes by debris flows; this was achieved by measuring width/depth ratios across a range of scales, and then assigning a stream order to the debris flows which are then mapped over selected sub-catchments. This process provided a volume of mass flux which was then compared to background erosion rates derived from detrital cosmogenic 10Be measurements. This comparison reveals that the Ladakh event mobilised the equivalent of 800-1200 yrs of the mean background erosion rate in these catchments. Repeat 10Be measurements from the same catchments before and after the event record a reduction in concentrations which are explored in terms of the scale of debris flows principally responsible for the flux. Two years after the Ladakh event, another major flood event occurred in Uttarakhand, resulting in >5700 deaths. Initial investigations of the erosion of dated moraines and the deposition of new terraces

  18. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  19. Development of a Passive Sensor for Measuring Water and Solute Mass Flux in the Hyporheic Zone

    NASA Astrophysics Data System (ADS)

    Annable, Michael D.; Layton, Leif; Hatfield, Kirk; Newman, Mark C.; Cho, Jaehyun; Klammler, Harald

    2014-05-01

    Measuring water, pollutant and nutrient exchange at the groundwater-surface water interface is challenging due to the dynamic nature of the hyporheic zone. Quantifying the exchange is critical to understanding mass balance across this interface. Technologies currently exist to identify groundwater discharge zones and infer estimates of contaminant mass flux based on total contaminant concentration in bulk sediment, though it is generally accepted that freely dissolved concentration in pore water is a better measure of potential exposure. Laboratory and preliminary field testing has been completed to demonstrate a new tool with potential to provide more accurate characterization of water, pollutant and nutrient flux at the groundwater-surface water interface through direct in-situ measurement. The sediment bed passive flux meter (SBPFM) was designed for passively and directly providing in-situ measurements of volumetric water flux and solute mass flux vertically through the upper surface sediment layer and into the overlying water column. The SBPFM consists of an internal permeable sorbent which is impregnated with one or more water soluble tracers (typically alcohols) and is contained in a dedicated drive-point with upper and lower screened openings for fluid intake and exhaust. This configuration generates water flow through the device proportional to the vertical gradient between the sediment bed and the water column. Once the SBPFM has been deployed, the tracers are displaced from the sorbent at rates proportional to the average vertical specific discharge. The mass loss of tracers during deployment can be used to calculate the cumulative water flux. Similarly, the cumulative mass of sorbed pollutants or nutrients provide a direct measurement of the vertical mass flux during deployment. The SBPFM prototype has been tested in controlled laboratory sediment interface models. The results show good agreement between the SBPFM calculated and the applied water and

  20. Design and measurement of improved capacitively-shunted flux qubits

    NASA Astrophysics Data System (ADS)

    Sears, Adam; Birenbaum, Jeffrey; Hover, David; Gudmundsen, Theodore; Kerman, Andrew; Welander, Paul; Yoder, Jonilyn L.; Gustavsson, Simon; Jin, Xiaoyue; Kamal, Archana; Clarke, John; Oliver, William

    2014-03-01

    The addition of a capacitive or inductive shunt across one of the junctions can alter the coherence properties of a classic flux or RF-SQUID qubit. We have studied the performance of capacitively shunted flux qubits fabricated with MBE aluminum, starting from a 2D coplanar waveguide geometry used in similar high-performance transmon qubits, and measured dispersively. We will detail the importance of design parameters that preserve the flux qubit's anharmonicity and discuss conclusions about materials quality based on calculations of the participation of junction, dielectric, and superconductor components. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA); and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract number FA8721-05-C-0002. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government Present address: SLAC National Accelerator Laboratory, Menlo Park, CA.

  1. Long-term micrometeorological measurements of nitrous oxide fluxes from agro-ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Wagner-Riddle, C.; Brown, S.; Snider, D.

    2013-12-01

    Year-round measurements of nitrous oxide fluxes are needed in order to better characterize emissions from agro-ecosystems, and devise mitigation strategies for emission reduction. This is particularly the case for agroecosystems in cold regions where freezing and thawing of soil often results in enhanced fluxes. In addition, nitrogen fertilizer application at crop planting in the spring will also result in emission events with high temporal variability. Micrometeorological methods do not interfere with soil conditions and hence, can be used quasi-continuously (at hourly to half-hourly intervals) to capture the highly intermittent nature of N2O emission episodes. Simultaneous flux measurements on multiple plots is desirable so that the effect of soil management practices on N2O emissions can be characterized. We have conducted several studies deploying the flux-gradient technique to measure surface N2O fluxes at a long-term in Elora, ON, Canada, a site established in 2000 with the objective of improving our understanding of how management affects N2O emissions. The experimental area consists of four 1.5-4 ha plots within a level and aerodynamically homogeneous 30-ha area, and half-hourly flux is measured sequentially providing up to 12 values per plot per day. A total of 521 monthly N2O emission rates were measured over the 2000-2013 period for a range of crops (e.g. soybeans, corn, wheat) and management (e.g. no-tillage, conventional). The aggregated analysis shows that extreme flux events tend to be concentrated in February/March and May/Jun/Jul (Fig. 1). The main thaw events tend to occur in February and March, and they events contribute on average 30% to the annual nitrous oxide emission total. Timely rains after fertilizer application at crop planting in May provide high soil water content for denitrification to take place and also lead to high emission events. Sixty-six percent of the annual emission occurred from Jan to Jun on average at this site. Emissions

  2. The plasma flux and oxidation rate of ornithine adaptively decline with restricted arginine intake.

    PubMed Central

    Castillo, L; Sánchez, M; Chapman, T E; Ajami, A; Burke, J F; Young, V R

    1994-01-01

    We hypothesized recently that arginine homeostasis is achieved in humans largely by modulating the rate of arginine degradation. We have tested this hypothesis further by measuring in vivo the whole body rate of conversion of arginine to ornithine and ornithine oxidation in six healthy young adults. Subjects received for 6 days an L-amino acid-based diet supplying an arginine-rich or arginine-free intake and on day 7, following an overnight fast, an 8-h tracer protocol (first 3 h, fast state; next 5 h, fed state) was conducted; L-[guanidino-15N2; 5,5-2H]arginine and L-[5-13C]ornithine were given as primed, constant intravenous tracers; measurements of the abundances of various isotopologs of arginine, ornithine, and citrulline in plasma were made, and from these the various kinetic parameters of the metabolism of these amino acids were derived. Arginine and ornithine fluxes were significantly (P < 0.001) reduced in the fed state with arginine-free feeding. The rates of conversion (mumol.kg-1.h-1; mean +/- SD) of plasma arginine to ornithine for arginine-rich were 12.9 +/- 2.6 and 24.7 +/- 4.8 for fast and fed states. These values were 11.1 +/- 3.5 and 9.6 +/- 1.2 (P > 0.05 and P < 0.001), respectively, with an arginine-free diet. [13C]Ornithine oxidation was reduced (P < 0.001) by 46% during the fed state when the arginine-free diet was given. The findings strengthen our hypothesis that homeostasis of arginine metabolism in the human host depends importantly upon a regulation in the rate of arginine degradation with, perhaps, little involvement in the de novo net rate of arginine synthesis. PMID:8022794

  3. Characteristics of CIGS photovoltaic devices co-evaporated with various Se flux rates at low temperatures

    NASA Astrophysics Data System (ADS)

    Huang, Chia-Hua; Lin, Chun-Ping; Jan, Yueh-Lin

    2016-08-01

    Cu(In,Ga)Se2 (CIGS) films were prepared by a single-stage co-evaporation process at Se flux rates of 10 Å s‑1, 20 Å s‑1, and 30 Å s‑1 and substrate temperatures ranging from 400 °C to 500 °C. The flux rates of the Cu, In, Ga, and Se were kept constant throughout each deposition of the films. The grain sizes, surface morphologies, and crystallinity of the CIGS films improved with increasing substrate temperatures or Se flux rates. The causes of the formation of voids on the surface of CIGS films deposited with a low Se flux rate of 10 Å s‑1 at substrate temperatures of 475 °C and 500 °C were addressed. The higher Se flux rates of 20 Å s‑1 and 30 Å s‑1 repressed the formation of voids for the CIGS films deposited at the relatively higher substrate temperatures of 475 °C and 500 °C. The conversion efficiencies of CIGS solar cells were significantly improved by increasing the substrate temperatures or the Se flux rates, largely contributed from the enhancement of the open-circuit voltage and fill factor because of the restraint of the carrier recombination. The short-circuit current densities were slightly enhanced by the increment of the substrate temperatures or the Se flux rates, resulting from the improved crystalline quality of the CIGS films. Moreover, the EQE results suggest that the effective carrier-diffusion lengths of the films deposited at the relatively high substrate temperatures were increased, leading to the enhancement of the short-circuit current density. The efficiencies of CIGS solar cells prepared with a Se flux rate of 10 Å s‑1 improved from 10% to 12.4% when the substrate temperatures increased from 400 °C to 500 °C. The efficiencies of cells deposited at the substrate temperature of 500 °C improved to 15.4% as the Se flux rates increased from 10 Å s‑1 to 30 Å s‑1.

  4. System having unmodulated flux locked loop for measuring magnetic fields

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  5. Wind tunnel measurements of pollutant turbulent fluxes in urban intersections

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Hayden, Paul; Robins, Alan G.

    2012-01-01

    Wind tunnel experiments have been carried out at the EnFlo laboratory to measure mean and turbulent tracer fluxes in geometries of real street canyon intersections. The work was part of the major DAPPLE project, focussing on the area surrounding the intersection between Marylebone Road and Gloucester Place in Central London, UK. Understanding flow and dispersion in urban streets is a very important issue for air quality management and planning, and turbulent mass exchange processes are important phenomena that are very often neglected in urban modelling studies. The adopted methodology involved the combined use of laser Doppler anemometry and tracer concentration measurements. This methodology was applied to quantify the mean and turbulent flow and dispersion fields within several street canyon intersections. Vertical profiles of turbulent tracer flux were also measured. The technique, despite a number of limitations, proved reliable and allowed tracer balance calculations to be undertaken in the selected street canyon intersections. The experience gained in this work will enable much more precise studies in the future as issues affecting the accuracy of the experimental technique have been identified and resolved.

  6. Performance measurements at the fast flux test facility

    SciTech Connect

    Baumhardt, R.J.; Newland, D.J.; Praetorius, P.R.

    1987-01-01

    In 1984, Fast Flux Test Facility (FFTF) management recognized the need to develop a measurement system that would quantify the operational performance of the FFTF and the human resources needed to operate it. Driven by declining budgets and the need to safely manage a manpower rampdown at FFTF, an early warning system was developed. Although the initiating event for the early warning system was the need to safely manage a manpower rampdown, many related uses have evolved. The initial desired objective for the FFTF performance measurements was to ensure safety and control of key performance trends. However, the early warning system has provided a more quantitative, supportable basis upon which to make decisions. From this initial narrow focus, efforts in the FFTF plant and supporting organizations are leading to measurement of and, subsequently, improvements in productivity. Pilot projects utilizing statistical process control have started with longer range productivity improvement.

  7. Measurement of autophagy flux in the nervous system in vivo

    PubMed Central

    Castillo, K; Valenzuela, V; Matus, S; Nassif, M; Oñate, M; Fuentealba, Y; Encina, G; Irrazabal, T; Parsons, G; Court, F A; Schneider, B L; Armentano, D; Hetz, C

    2013-01-01

    Accurate methods to measure autophagic activity in vivo in neurons are not available, and most of the studies are based on correlative and static measurements of autophagy markers, leading to conflicting interpretations. Autophagy is an essential homeostatic process involved in the degradation of diverse cellular components including organelles and protein aggregates. Autophagy impairment is emerging as a relevant factor driving neurodegeneration in many diseases. Moreover, strategies to modulate autophagy have been shown to provide protection against neurodegeneration. Here we describe a novel and simple strategy to express an autophagy flux reporter in the nervous system of adult animals by the intraventricular delivery of adeno-associated viruses (AAV) into newborn mice. Using this approach we efficiently expressed a monomeric tandem mCherry-GFP-LC3 construct in neurons of the peripheral and central nervous system, allowing the measurement of autophagy activity in pharmacological and disease settings. PMID:24232093

  8. The AmeriFlux Network of Long-Term CO{sub 2} Flux Measurement Stations: Methodology and Intercomparability

    SciTech Connect

    Hollinger, D. Y.; Evans, R. S.

    2003-05-20

    A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.

  9. Ozone flux of an urban orange grove: multiple scaled measurements and model comparisons

    NASA Astrophysics Data System (ADS)

    Alstad, K. P.; Grulke, N. E.; Jenerette, D. G.; Schilling, S.; Marrett, K.

    2009-12-01

    There is significant uncertainty about the ozone sink properties of the phytosphere due to a complexity of interactions and feedbacks with biotic and abiotic factors. Improved understanding of the controls on ozone fluxes is critical to estimating and regulating the total ozone budget. Ozone exchanges of an orange orchard within the city of Riverside, CA were examined using a multiple-scaled approach. We access the carbon, water, and energy budgets at the stand- to leaf- level to elucidate the mechanisms controlling the variability in ozone fluxes of this agro-ecosystem. The two initial goals of the study were 1. To consider variations and controls on the ozone fluxes within the canopy; and, 2. To examine different modeling and scaling approaches for totaling the ozone fluxes of this orchard. Current understanding of the total ozone flux between the atmosphere near ground and the phytosphere (F-total) include consideration of a fraction which is absorbed by vegetation through stomatal uptake (F-absorb), and fractional components of deposition on external, non-stomatal, surfaces of the vegetation (F-external) and soil (F-soil). Multiplicative stomatal-conductance models have been commonly used to estimate F-absorb, since this flux cannot be measured directly. We approach F-absorb estimates for this orange orchard using chamber measurement of leaf stomatal-conductance, as well as non-chamber sap-conductance collected on branches of varied aspect and sun/shade conditions within the canopy. We use two approaches to measure the F-total of this stand. Gradient flux profiles were measured using slow-response ozone sensors collecting within and above the canopy (4.6 m), and at the top of the tower (8.5 m). In addition, an eddy-covariance system fitted with a high-frequency chemiluminescence ozone system will be deployed (8.5 m). Preliminary ozone gradient flux profiles demonstrate a substantial ozone sink strength of this orchard, with diurnal concentration differentials

  10. Quantifying Representation and Using Representation Weights to Interpolate Flux Tower Measurements across the United States

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Hoffman, F. M.

    2003-12-01

    We are using a new multivariate statistical technique to quantitatively divide the lower 48 United States into a series of flux-relevant ecoregions. On the basis of these flux-relevant ecoregions, we will quantify the representativeness of the existing network of AmeriFlux towers, showing how well each ecoregion is represented by the current stations in the AmeriFlux network. Quantifying AmeriFlux representation will indicate the best locations where additional AmeriFlux towers should be placed. Using a "paint-by-number" approach, we are attempting to use the flux ecoregions as the statistical basis for extrapolating measurements made at the 52 actively-reporting AmeriFlux towers into a continuous 1-km grid across the United States seasonally. We will use the similarity of the suite of flux-relevant ecosystem characteristics to modify existing flux measurements and estimate fluxes within unmeasured flux ecoregions. Weights calculated for each environmental gradient will allow us to mix new "paint-by-number" colors, extending the process beyond the palette of existing flux measurements. The map of 2000 to 5000 flux ecoregions will produce a highly-resolved national map of estimated fluxes, and will be equivalent to creating thousands of new "virtual" flux towers across the nation. Once flux ecoregions and representation weights have been determined, it may be possible to use them to obtain an interpolated grid of the estimated flux at any point in time across the United States.

  11. Automated Soil Flux Chamber Measurements with Five Species Cavity Ring-Down Spectroscopy and New Realtime Soil Flux Processor

    NASA Astrophysics Data System (ADS)

    Alstad, Karrin; Saad, Nabil; Tan, Sze

    2015-04-01

    Continuous soil flux chamber measurements remains a key tool for determining production and sequestration of direct and indirect greenhouse gases. Cavity Ring-Down Spectroscopy has radically simplified soil flux studies by providing simultaneous measurements of five gases: CO2, CH4, N2O, NH3, and H2O in one analyzer (Picarro G2508) and by lending itself to field deployment. Successful use of the Picarro G2508 for continuous soil flux measurements in a variety of ecosystem types has already been demonstrated. Most recently, we have developed a real-time processing software to simplify chamber measurements and calculations of soil flux with the G2508 CRDS analyzer. The new Realtime Soil Flux Processor is designed to work with all chamber types and sizes, and provides a multi-option for real-time flux curve mathematical fitting and generation of flux values of N2O, CO2 & CH4 in addition to NH3 and H2O. The software features include: Sequence table Flexible data tagging feature Ceiling concentration shut-off parameter Set run-time interval Temperature/pressure input for field monitoring and volumetric conversion Manual start/stop override The Realtime Soil Flux Processor GUI interface and functionalities are presented, and results from a variety of sampling designs are demonstrated to emphasize program flexibility and field capability.

  12. Standardization of flux chamber and wind tunnel flux measurements for quantifying emissions from area sources at animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC) and ammonia (NH3) at animal feeding operations (AFO). However, there has been little regard to the extreme variation and inaccuracy caused by inappropriate air velocity or sweep air flow...

  13. The effect of sparging rate on transmembrane pressure and critical flux in an AnMBR.

    PubMed

    Fox, R A; Stuckey, D C

    2015-03-15

    Anaerobic membrane bioreactors (AnMBRs) have been shown to be successful units for the treatment of low strength wastewaters, however, the issue of membrane fouling is still a major problem in terms of economic viability. Biogas sparging has been shown to reduce fouling substantially, and hence this study monitored the effect of biogas sparging rate on an AnMBR. The critical flux under a sparging rate of 6 l per minute (LPM) was found to be 11.8 l m(-2) h(-1) (LMH), however, membrane hysteresis was found to have an effect on the critical flux, and where the AnMBR had previously been operated with a 2 LPM sparging rate, the critical flux fell to 7.2 LMH. The existence of a "critical sparging rate" was also investigated under the condition that 'there exists a sparging rate beyond which any further decrease in sparging rate will cause a dramatic rise in TMP'. For an AnMBR operating at a flux of 7.2 LMH the critical sparging rate was found to be 4 LPM. PMID:25577705

  14. Development of a laser remote sensing instrument to measure sub-aerial volcanic CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Queisser, Manuel; Burton, Mike

    2016-04-01

    A thorough quantification of volcanic CO2 fluxes would lead to an enhanced understanding of the role of volcanoes in the geological carbon cycle. This would enable a more subtle understanding of human impact on that cycle. Furthermore, variations in volcanic CO2 emissions are a key to understanding volcanic processes such as eruption phenomenology. However, measuring fluxes of volcanic CO2 is challenging as volcanic CO2 concentrations are modest compared with the ambient CO2 concentration (~400 ppm) . Volcanic CO2 quickly dilutes with the background air. For Mt. Etna (Italy), for instance, 1000 m downwind from the crater, dispersion modelling yields a signal of ~4 ppm only. It is for this reason that many magmatic CO2 concentration measurements focus on in situ techniques, such as direct sampling Giggenbach bottles, chemical sensors, IR absorption spectrometers or mass spectrometers. However, emission rates are highly variable in time and space. Point measurements fail to account for this variability. Inferring 1-D or 2-D gas concentration profiles, necessary to estimate gas fluxes, from point measurements may thus lead to erroneous flux estimations. Moreover, in situ probing is time consuming and, since many volcanoes emit toxic gases and are dangerous as mountains, may raise safety concerns. In addition, degassing is often diffuse and spatially extended, which makes a measurement approach with spatial coverage desirable. There are techniques that allow to indirectly retrieve CO2 fluxes from correlated SO2 concentrations and fluxes. However, they still rely on point measurements of CO2 and are prone to errors of SO2 fluxes due to light dilution and depend on blue sky conditions. Here, we present a new remote sensing instrument, developed with the ERC project CO2Volc, which measures 1-D column amounts of CO2 in the atmosphere with sufficient sensitivity to reveal the contribution of magmatic CO2. Based on differential absorption LIDAR (DIAL) the instrument measures

  15. Measurement of Urban fluxes of CO2 and water

    NASA Astrophysics Data System (ADS)

    Grimmond, S.; Crawford, B.; Offerle, B.; Hom, J.

    2006-05-01

    Measurements of surface-atmosphere fluxes of carbon dioxide (FCO2) and latent heat in urban environments are rare even though cities are a major source of atmospheric CO2 and users of water. In this paper, an overview of urban FCO2 measurements will be presented to illustrate how and where such measurements are being conducted and emerging results to date. Most of these studies have been conducted over short periods of time; few studies have considered annual sources/sinks. More investigations have been conducted, and are planned, in European cities than elsewhere, most commonly in areas of medium density urban development. The most dense urban sites are significant net sources of carbon. However, in areas where there is large amounts of vegetation present, there is a net sink of carbon during the summertime. In the second part of the presentation, more detailed attention will be directed to an ongoing measurement program in Baltimore, MD (part of the Baltimore Ecosystem Study). Eddy covariance instrumentation mounted on a tall-tower at 41.2 m has continuously measured local-scale fluxes of carbon dioxide from a suburban environment since 2001. Several features make this particular study unique: 1) for an urban area, the study site is extensively vegetated, 2) the period of record (2001-2005) is among the longest available for urban FCO2 measurements, 3) both closed-path and open-path infrared gas analyzers are used for observations, and 4) several unique data quality control and gap-filling methods have been developed for use in an urban environment. Additionally, detailed surface datasets and GIS software are used to perform flux source area analysis. Results from Baltimore indicate that FCO2 is very dependent on source area land-cover characteristics, particularly the proportion of vegetated and built surfaces. Over the course of a year, the urban surface is a strong net source of CO2, though there is considerable inter-annual variability depending on

  16. Heat flux measurements for use in physiological and clothing research

    NASA Astrophysics Data System (ADS)

    Niedermann, R.; Psikuta, A.; Rossi, R. M.

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.

  17. Heat flux measurements for use in physiological and clothing research.

    PubMed

    Niedermann, R; Psikuta, A; Rossi, R M

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies. PMID:23824222

  18. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect

    Veselinović, N. Dragić, A. Maletić, D. Joković, D. Savić, M. Banjanac, R. Udovičić, V. Aničin, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  19. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  20. Measurement of geothermal flux through poorly consolidated sediments

    USGS Publications Warehouse

    Sass, J.H.; Munroe, R.J.; Lachenbruch, A.H.

    1968-01-01

    In many regions, crystalline rocks are covered by hundreds of meters of unconsolidated and poorly consolidated sediments. Estimates of heat flux within these sediments using standard continental techniques (temperature and conductivity measurements at intervals of 10 to 30 meters) are unreliable, mainly because of the difficulty in obtaining and preserving representative lengths of core. However, it is sometimes feasible to use what amounts to an oceanographic technique by making closely spaced temperature and conductivity measurements within short cored intervals. This is demonstrated in a borehole at Menlo Park, California (37??27???N, 122??10???W, elevation 16 meters), where heat flows determined over 12 separate 1-meter intervls al lie within 10% of their mean value; 2.2 ??cal/cm2 sec. ?? 1968.

  1. COMPTEL measurements of the omnidirectional high-energy neutron flux in near-earth orbit.

    PubMed

    Morris, D J; Aarts, H; Bennett, K; Lockwood, J A; McConnell, M L; Ryan, J M; Schonfelder, V; Steinle, H; Weidenspointner, G

    1998-01-01

    On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (> 12.8 MeV) neutron flux near an altitude of 450 km. The D1 modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo. PMID:11542901

  2. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  3. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  4. Eddy covariance measurements of methane fluxes over grazed native and improved prairies in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although several studies have reported eddy covariance (EC) measurements at several tallgrass prairie sites to investigate the dynamics of carbon and water vapor fluxes, the EC measurements of methane (CH4) fluxes over grazed tallgrass prairie sites are lacking. CH4 fluxes were measured during the 2...

  5. Signal-to-noise issues in measuring nitrous oxide fluxes by the eddy covariance method

    NASA Astrophysics Data System (ADS)

    Cowan, Nicholas; Levy, Peter; Langford, Ben; Skiba, Ute

    2016-04-01

    Recently-developed fast-response gas analysers capable of measuring atmospheric N2O with high precision (< 50 ppt) at a rate of 10 Hz are becoming more widely available. These instruments are capable of measuring N2O fluxes using the eddy covariance method, with significantly less effort and uncertainty than previous instruments have allowed. However, there are still many issues to overcome in order to obtain accurate and reliable flux data. The signal-to-noise ratio of N2O measured using these instruments is still two to three orders of magnitude smaller than that of CO2. The low signal-to-noise ratio can lead to systematic uncertainties, in the eddy covariance method, the most significant being in the calculation of the time lag between gas analyser and anemometer by maximisation of covariance (Langford et al., 2015). When signal-to-noise ratio is relatively low, as it is with many N2O measurements, the maximisation of covariance method can systematically overestimate fluxes. However, if constant time lags are assumed, then fluxes will be underestimated. This presents a major issue for N2O eddy covariance measurements. In this presentation we will focus on the signal to noise ratio for an Aerodyne quantum cascade laser (QCL). Eddy covariance flux measurements from multiple agricultural sites across the UK were investigated for potential uncertainties. Our presentation highlights some of these uncertainties when analysing eddy covariance data and offers suggestions as to how these issues may be minimised. Langford, B., Acton, W., Ammann, C., Valach, A. and Nemitz, E.: Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection, Atmos Meas Tech, 8(10), 4197-4213, doi:10.5194/amt-8-4197-2015, 2015.

  6. Experimental neutron flux measurements with a diamond detector at the QUINTA setup

    NASA Astrophysics Data System (ADS)

    Berlev, A. I.; Rodionov, N. B.; Tyutyunnikov, S. I.; Amosov, V. N.; Meshchaninov, S. A.; Yudin, I. P.

    2016-05-01

    The operational capability of a diamond detector used to measure the neutron spectrum by the response function on the QUINTA setup [1] installed at the proton beam of the phasotron [2] (Laboratory of Nuclear Problems, Joint Institute for Nuclear Research) was demonstrated in the energy interval of 2.1-20 MeV. The neutron-flux count rate was measured. The energy of neutrons was estimated at 7.4-25.7 MeV based on the diamond-detector response spectrum. The dependence of the diamond-detector response spectra on the angle between the proton beam and the line going through the detector and the center of the QUINTA setup was investigated. The angular anisotropy of the neutron flux was demonstrated. Measurements at different distances from the detector to the QUINTA setup were performed.

  7. Electrochemical noise measurement for determining corrosion rates

    SciTech Connect

    Reichert, D.L.

    1996-12-31

    Electrochemical noise measurements (ENM), linear polarization tests and mass loss measurements were performed in sulfuric acid, acetic acid and other solutions. The ENM data were converted to corrosion rates by calculating the noise resistance, R{sub n} = {sigma}V/{sigma}I where {sigma}V and {sigma}I are the standard deviations of the potential and current. Good correlation among the three methods was obtained for low to moderate corrosion rates, but poor correlation was observed for high rates. ENM has proven valuable for determining corrosion rates in low-conductivity solutions, which are not suitable for linear polarization resistance (LPR) testing, and for measuring very low corrosion rates in which mass loss tests would have required at least 30 days exposure to provide meaningful results.

  8. Improvements to measuring water flux in the vadose zone.

    PubMed

    Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M

    2004-01-01

    Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix. PMID:15224955

  9. Measurements for the JASPER Program Flux Monitor Experiment

    SciTech Connect

    Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T.; Hull, J.L.; Shono, A.

    1993-02-01

    The Flux Monitor Experiment was conducted at the Oak Ridge National Laboratory (ORNL) Tower Shielding Facility (TSF) during the months of May and June 1992, as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) program that was started in 1986. This series of experiments was designed to examine shielding concerns and radiation transport effects pertaining to in-vessel flux monitoring systems (FMS) in current reactor shield designs proposed for both the Advanced Liquid Metal Reactor (ALMR) design and the Japanese loop-type design. The program is a cooperative effort between the United States Department of Energy (US DOE) and the Japanese Power Reactor and Nuclear Fuel Development Corporation (PNC). The Tower Shielding Reactor H (TSR-II) neutron source was altered by the spectrum modifier (SM) used previously in the Axial Shield Experiment, and part of the Japanese Removable Radial Shield (RRS) before reaching the axial shield. In the axial shield were placed six homogeneous boron carbide (B{sub 4}C) hexagons around a center hexagon of aluminum used to represent sodium. Shield designs to be studied were placed beyond the axial shield, each design forming a void directly behind the axial shield. Measurements were made in the void and behind each slab as successive slabs were added.

  10. Glass dissolution rate measurement and calculation revisited

    NASA Astrophysics Data System (ADS)

    Fournier, Maxime; Ull, Aurélien; Nicoleau, Elodie; Inagaki, Yaohiro; Odorico, Michaël; Frugier, Pierre; Gin, Stéphane

    2016-08-01

    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (Sgeo) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (SBET) may be due to small physical features at the atomic scale-contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a SBET/Sgeo ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to Sgeo should be divided by 1.3 and rates normalized to SBET should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%.

  11. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    NASA Astrophysics Data System (ADS)

    Gruel, A.; Di Salvo, J.; Roche, A.; Girard, J.-M.; Philibert, H.; Bonora, J.; Ledoux, J.-F.; Morel, C.; Lecluze, A.; Foucras, A.; Vaglio-Gaudard, C.; Colombier, A.-C.

    2016-02-01

    Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm), and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the "hafnium" configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations). Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  12. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    NASA Astrophysics Data System (ADS)

    Laubach, J.; Barthel, M.; Fraser, A.; Hunt, J. E.; Griffith, D. W. T.

    2015-09-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier-transform infrared spectrometer (FTIR), measuring the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently-emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 60 % of days at one site and 77 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for one year at the unfertilised, winter-grazed site were 8.2 (± 0.91) nmol CH4 m-2 s-1 and 0.40 (± 0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally-grazed site were 7.0 (± 0.89) nmol CH4 m-2 s-1 and 0.57 (± 0.019) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.19 (± 0.15) % of the

  13. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    NASA Astrophysics Data System (ADS)

    Laubach, Johannes; Barthel, Matti; Fraser, Anitra; Hunt, John E.; Griffith, David W. T.

    2016-03-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier transform infrared (FTIR) spectrometer, which measured the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 56 % of days at one site and 73 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for 1 year at the unfertilised, winter-grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.38 (±0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.58 (±0.020) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.21 (±0.15) % of the nitrogen

  14. Heat flux measurements in stagnation point methane/air flames with thermographic phosphors

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed; Staude, Susanne; Bergmann, Ulf; Atakan, Burak

    2010-10-01

    Light-induced phosphorescence from thermographic phosphors was used to study the wall temperatures and heat fluxes from nearly one-dimensional flat premixed flames. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with equivalence ratios of φ = 1, φ = 0.75 and φ = 1.25 at ambient pressure. The flames were burning in a stagnation point arrangement against a water-cooled plate. The central part of this plate was an alumina ceramic plate coated from both sides with chromium-doped alumina (ruby) and excited with a Nd:YAG laser or a green light-emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 to 1.2 m/s. The burner to plate distance (H) ranged from 0.5 to 2 times the burner exit diameter ( d = 30 mm). The measured heat flux rates indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one-dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, gas phase temperatures were measured by OH-LIF for a stoichiometric stagnation point flame. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high mass fluxes. This geometry may be well suited for further studies of the elementary flame wall interaction.

  15. Comparing computational models of slug rise at Stromboli with UV camera measurements of SO2 flux

    NASA Astrophysics Data System (ADS)

    Pering, Tom D.; McGonigle, Andrew J. S.; James, Mike R.; Tamburello, Giancarlo; Aiuppa, Alessandro

    2015-04-01

    Strombolian eruptions, particularly those at the archetypal Stromboli Volcano (Aeolian Islands, Italy) are generally accepted to be caused by the burst of gas slugs. Using computational fluid dynamic models implemented in Ansys Fluent®, with a range of conduit, magma and gas properties appropriate for current observations at Stromboli volcano, we simulate the rise of such gas slugs and demonstrate that during their ascent there is the potential for daughter bubble production from the slug base. These are bubbles which can detach from the influence of a slug to rise and burst at the surface independently. Within the models we can then estimate the amount and temporal pattern of gas released during and following individual slug burst events. This is achieved by integrating gas released near the magma surface. After correcting for atmospheric entrainment and diffusion we can then compare our modelled gas flux to our ultra-violet (UV) camera measurements of SO2 flux at Stromboli (i.e. UV measurement of gas flux is performed at least ≈ 50 m above point of slug rupture at the magma surface). The UV camera measurements identify a broad range of degassing patterns following bursts, typifying the dynamic nature and the complexities of the system at Stromboli, including a previously identified coda in gas flux spanning tens of seconds to minutes (e.g. Tamburello et al. 2012). Whilst our models only analyse a narrow range of events at Stromboli, they highlight the possibility that the production of daughter bubbles could contribute to the gas flux observed at Stromboli. In some instances, the gas flux created by bursting daughter bubbles following a burst event is of a similar time span and could explain the observed gas flux coda. It is also possible that well documented puffing events could be explained by the bursting of daughter bubbles. Indeed, the larger modelled daughter bubbles, which are apparent as well-defined peaks in gas flux within both the UV camera record

  16. Calorimeter probes for measuring high thermal flux. [in electric-arc jet facilities for planetary entry heating simulation

    NASA Technical Reports Server (NTRS)

    Russell, L. D.

    1979-01-01

    The paper describes expendable, slug-type calorimeter probes developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes are constructed with thin tungsten caps mounted on Teflon bodies; the temperature of the back surface of the tungsten cap is measured, and its rate of change gives the steady-state, absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. It is concluded that the simple construction of these probes allows them to be expendable and heated to destruction to obtain a measurable temperature slope at high heating rates.

  17. Measurement of particulate matter emission fluxes from a beef cattle feedlot using Flux-gradient technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data on air emissions from open-lot beef cattle feedlots are limited. This research was conducted to determine PM10 emission fluxes from a commercial beef cattle feedlot in Kansas using the flux-gradient technique, a widely-used micrometeorological method for gaseous emissions from open sources. V...

  18. Angular-Rate Estimation Using Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  19. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  20. Initiation of methane turbulent flux measurements over a grazed grassland in Belgium

    NASA Astrophysics Data System (ADS)

    Dumortier, Pierre; Aubinet, Marc; Chopin, Henri; Debacq, Alain; Jérome, Elisabeth; Beckers, Yves; Heinesch, Bernard

    2013-04-01

    Methane fluxes emitted by a grazed meadow were measured continuously during the 2012 grazing season at the Dorinne Terrestrial Observatory (50° 18' 44" N; 4° 58' 07" E; 248 m asl.) in Belgium. Measurements were made with the eddy covariance technique, using a fast CH4 analyzer (Picarro G2311-f). Carbon dioxide fluxes (LI-7000) and various micro-meteorological and soil variables, biomass growth and stocking rate evolution were also measured at the site. The site is an intensively pastured meadow of 4.2 ha managed according to the regional usual practices where up to 30 cows are grazing simultaneously. N2O emissions are currently measured through dynamic closed chambers (Beekkerk van Ruth et al., Geophysical Research Abstracts. Vol. 15, EGU2013-3211, 2013) and the carbon budget of the site has already been investigated (Jerome et al. Geophysical Research Abstracts, Vol. 15, EGU2013-6989, 2013). As no CH4 measurements were available, CH4 fluxes were estimated on the basis of dry matter intake by the cows and a conversion factor obtained from a literature review. We want to improve this estimation by measuring CH4 fluxes, identifying their main environmental drivers and understanding diurnal and annual exchange patterns. Methane emissions were found strongly related with cattle stocking rate with a slope of 7.34±0.78 mol CH4 day-1 LSU-1. Up to now, no methane absorption has been observed, the meadow behaving as a methane emitter, even in the absence of cows. In the absence of cows, no significant relation can be established up to now between methane emissions and environmental parameters. No clear diurnal evolution is observed, neither during grazing periods nor during cow free periods. During cow presence periods, fluxes are highly variable, probably due to cow movements in and out the measurement footprint and cow digestion rhythm. Further developments are ongoing in order to improve cattle geo-localization through individual home-made GPS devices and infra

  1. Observing the Arctic Carbon Feedback: Regional scale methane flux measurements over the Alaskan North Slope using airplane flux observations and in situ measurements of δ13CH4.

    NASA Astrophysics Data System (ADS)

    Healy, C. E.; Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Munster, J. B.; Kochendorfer, J.; Wilkerson, J.; Baker, B.; Dubey, M. K.; Anderson, J. G.

    2015-12-01

    One of the most powerful positive feedback mechanisms to anthropogenic climate change postulated is the increase in carbon emissions from polar-regions. Warmer temperatures at the poles is predicted to increase the rate of methanogensesis in thawing permafrost soils as well as destabilize the network of arctic marine and terrestrial methane hydrates. Recent estimates put the quantity of organic carbon stored in soils in the northern permafrost zone around 1,700 Pg of C, which is well in excess of the maximum carbon emissions necessary to limit global average temperature increase to only 2 C° (260-410 Pg of C between 2011 and 2100 as CO2). However, many climate models used to forecast changes in average global temperature and inform policy decisions do not take into account arctic carbon feedback. This is largely due in part to the daunting observational challenge presented by observing methane fluxes in the Arctic. An ideal measurement system must be able to distinguish between biological and anthropogenic methane sources, have the ability to cover large spatial ranges, and have the sensitivity to distinguish changes from season to season, and year to year. The FOCAL platform has been engineered to address these challenges and help bridge the gap in spatial coverage between ground based and inverse modelling studies. It consists of a small aircraft equipped with the best atmospheric turbulence (BAT) probe, and gas sensors for in situ measurements of CH4, CO2, δ13CH4, δ13CO2 to make regional scale surface eddy-covariance flux measurements of methane and carbon dioxide as well as their stable isotopologues. We will present data from the initial FOCAL flight series in August 2013 based out of Deadhorse, AK, including CH4 concentration and running flux data, as well as in situ δ13CH4 observations to gain mechanistic insight. With the FOCAL platform we were able to dramatically extend regional coverage of methane flux observations beyond what can normally be observe

  2. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  3. Ambrym Basaltic Volcano (Vanuatu Arc): Volatile Fluxes, Magma Degassing Rate and Chamber Depth

    NASA Astrophysics Data System (ADS)

    Allard, P.; Aiuppa, A.; Bani, P.; Metrich, N.; Bertagnini, A.; Gauthier, P. G.; Parello, F.; Sawyer, G. M.; Shinohara, H.; Bagnato, E.; Mariet, C.; Garaebiti, E.; Pelletier, B.

    2009-12-01

    Basaltic magma continuously erupts and degases during lava lake and/or Strombolian explosive activity at Marum and Benbow cones, the two active vents of Ambrym arc volcano in Vanuatu (800 m asl), generating a huge volcanic plume. Here we report the first complete budget for the volatile emissions of major, trace and radioactive species, as well as the first data for dissolved volatiles in the erupted basalt (Fo83-74 olivine-hosted melt inclusions, MIs), which allows us to assess the depth and degassing rate of the magma reservoir feeding Ambrym volcano. Real-time multi-gas measurements, coupled with lab analysis of filtered-pack plume samples, demonstrate that gas emissions from Marum and Benbow cones are uniform in their water content (90 mol%), SO2/HCl (5), SO2/HF (11) and trace metals/SO2 ratios but differ in their CO2/SO2 ratio (5.6 and 1.0, respectively), suggesting a deeper (CO2-enriched) gas derivation at Marum. Airborne measurements of SO2 flux (8000 tons/day) and the bulk plume CO2/SO2 ratio (3.7) verify that Marum cone produces 60% of the overall emissions, while Benbow only 40%. Ambrym ranks among the strongest volcanic emitters on Earth not only for SO2 (this work and a), but also for H2O, CO2, HCl, HF and HBr (2x105, 2x104, 800, 180 and 7 tons/day, respectively), for several volatile to mildly-volatile trace elements (Se, As, Sn, Tl, Cu, Pb, Rb, Cd, Ag) and for radioactive 210Po (~8.5% of the global volcanic flux). The aphyric nature of the basalt and the quite low dissolved wt% of H2O (≤1.5), CO2 (≤0.1) and S (≤0.15) in MIs of Fo83-olivine point to shallow melt entrapment in a gas-rich magma reservoir emplaced at ~3.6 km depth beneath the caldera. This depth is in good agreement with inference from available VLPT-seismic data (b). The magma degassing rate - from 2.7x108 kg/d (based on S data) to 1.3x109 kg/d (using the Pb’s output, melt content and vapour-melt partition coefficient) - largely exceeds the production of ash (~106 kg/d) and

  4. Careful Measurements and Energy Balance Closure - The Case of Soil Heat Flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An area of persistent concern in micrometeorological measurements is the failure to close the energy balance at surface flux stations. While most attention has focused on corrections associated with the eddy fluxes, none of the energy balance terms are measured without error. The flux plate method i...

  5. Using passive capillary lysimeter water flux measurements to improve flow predictions in variably saturated soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive capillary lysimeters (PCLs) are uniquely suited for measuring water fluxes in variably-saturated soils. The objective of this work was to compare PCL flux measurements with simulated fluxes obtained with a calibrated unsaturated flow model. The Richards equation-based model was calibrated us...

  6. Standardization of flux chambers and wind tunnels for area source emission measurements at animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used many varied designs of wind tunnels and flux chambers to measure the flux of volatile organic compounds, odor, and ammonia from area sources at animal feeding operations. The measured fluxes are used to estimate emission factors or compare treatments. We sho...

  7. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  8. Measuring Fluxes of Mineral Nutrients and Toxicants in Plants with Radioactive Tracers

    PubMed Central

    Coskun, Devrim; Britto, Dev T.; Hamam, Ahmed M.; Kronzucker, Herbert J.

    2014-01-01

    Unidirectional influx and efflux of nutrients and toxicants, and their resultant net fluxes, are central to the nutrition and toxicology of plants. Radioisotope tracing is a major technique used to measure such fluxes, both within plants, and between plants and their environments. Flux data obtained with radiotracer protocols can help elucidate the capacity, mechanism, regulation, and energetics of transport systems for specific mineral nutrients or toxicants, and can provide insight into compartmentation and turnover rates of subcellular mineral and metabolite pools. Here, we describe two major radioisotope protocols used in plant biology: direct influx (DI) and compartmental analysis by tracer efflux (CATE). We focus on flux measurement of potassium (K+) as a nutrient, and ammonia/ammonium (NH3/NH4+) as a toxicant, in intact seedlings of the model species barley (Hordeum vulgare L.). These protocols can be readily adapted to other experimental systems (e.g., different species, excised plant material, and other nutrients/toxicants). Advantages and limitations of these protocols are discussed. PMID:25177829

  9. Comparative soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Lewicki, J.L.; Bergfeld, D.; Cardellini, C.; Chiodini, G.; Granieri, D.; Varley, N.; Werner, C.

    2005-01-01

    We present a comparative study of soil CO2 flux (FCO2) measured by five groups (Groups 1-5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1-5 measured (FCO2) using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1-3 during an afternoon (PM) period. Measured (FCO2 ranged from 218 to 14,719 g m-2 day-1. The variability of the five measurements made at each grid point ranged from ??5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ??22%. All three groups that made PM measurements reported an 8-19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial FCO2 distribution, we compared six geostatistical methods: Arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ??4.4%, the FCO2 maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of FCO2, but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research. ?? Springer-Verlag 2005.

  10. The BESS-Polar Proton & Helium flux measurements

    NASA Astrophysics Data System (ADS)

    Hams, T.; Yamamoto, A.; Mitchell, J.W.; Abe, K.; Fuke, H.; Haino, S.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K.C.; Kumazawal, T.; Lee, M.H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Matsumoto, K.; Moiseev, A.A.; Meyers, Z.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J.F.; Sakai, K.; Sasaki, M.; Seo, E.S.; Shikaze, Y.; Shinoda, R.; Streitmatter, R.E.; Suzuki, J.; Takasugi, Y.; Takeuchi, K.; Tanaka, K.; Thakur, N.; Yamagami, T.; Yoshida, T.; Yoshimura, K.

    The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) instrument pro-vides precise measurements of the elemental and isotopic composition of the light Galactic cosmic radiation (GCR) component. The ability to determine the charge sign of incident par-ticles enables the instrument to search for GCR antimatter, which is a major objective of the BESS program. Since 1993, the US-Japan BESS collaboration has conducted 11 successful balloon flights, nine northern-latitude flights of 1-day duration and most recently two long-duration balloon flights (8.5 days in 2004 & 24.5 days in 2007/2008), with the BESS-Polar instrument. The BESS-Polar instrument is the current effort of BESS program specifically designed for long-duration, low-geomagnetic cutoff Antarctic flights with significantly increased transparency for incident CR particle allowing to study anti/proton down to 100 MeV and a faster data acquisition enables processing of all CR events without event selection. The first BESS-Polar flight was launched on Dec 13, 2004 from Williams Field, near McMurdo Station in Antarctica. The instrument recorded data for 8.5 days, limited by the cryogenic life time of the superconducting magnet. During this flight the BESS-Polar instrument recorded 0.9 x 109 CR events. In this paper, we present the absolute proton and helium flux for the first BESS-Polar flight as well as the time variation of the fluxes due to solar activity.

  11. Effect of radiator position and mass flux on the dryer room heat transfer rate

    NASA Astrophysics Data System (ADS)

    Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.

    A room radiator as usually used in cold countries, is actually able to be used as a heat source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass flux on heat transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass flux. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was heated water flowing inside the radiator and air circulating naturally inside the prototype room. The nominal mass fluxes employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial air temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass flux on the forced and free convection heat transfer rate is insignificant but the radiator position strongly affects the heat transfer rate for both forced and free convection.

  12. Energetic ion diagnostics using neutron flux measurements during pellet injection

    SciTech Connect

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  13. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone

    NASA Astrophysics Data System (ADS)

    McDonnell, A. M. P.; Boyd, P. W.; Buesseler, K. O.

    2015-02-01

    The attenuation of sinking particle fluxes through the mesopelagic zone is an important process that controls the sequestration of carbon and the distribution of other elements throughout the oceans. Case studies at two contrasting sites, the oligotrophic regime of the Bermuda Atlantic Time-series Study (BATS) and the mesotrophic waters of the west Antarctic Peninsula (WAP) sector of the Southern Ocean, revealed large differences in the rates of particle-attached microbial respiration and the average sinking velocities of marine particles, two parameters that affect the transfer efficiency of particulate matter from the base of the euphotic zone into the deep ocean. Rapid average sinking velocities of 270 ± 150 m d-1 were observed along the WAP, whereas the average velocity was 49 ± 25 m d-1 at the BATS site. Respiration rates of particle-attached microbes were measured using novel RESPIRE (REspiration of Sinking Particles In the subsuRface ocEan) sediment traps that first intercepts sinking particles then incubates them in situ. RESPIRE experiments yielded flux-normalized respiration rates of 0.4 ± 0.1 day-1 at BATS when excluding an outlier of 1.52 day-1, while these rates were undetectable along the WAP (0.01 ± 0.02 day-1). At BATS, flux-normalized respiration rates decreased exponentially with respect to depth below the euphotic zone with a 75% reduction between the 150 and 500 m depths. These findings provide quantitative and mechanistic insights into the processes that control the transfer efficiency of particle flux through the mesopelagic and its variability throughout the global oceans.

  14. Evidence for electron neutrino flavor change through measurement of the (8)B solar neutrino flux at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Neubauer, Mark Stephen

    2001-11-01

    The Sudbury Neutrino Observatory (SNO) is a water Cerenkov detector designed to study solar neutrinos. Using 1 kiloton of heavy water as the target and detection medium, SNO is able to separately determine the flux of electron neutrinos (νe) and the flux of all active neutrinos from the Sun by measuring the rate of charged current (CC) and neutral current (NC) interactions with deuterons. A comparison of these interaction rates allows for direct observation of solar neutrino oscillations. SNO can also search for oscillations by comparing the rate of CC and neutrino- electron elastic scattering (ES) events, since ES has both charged current and neutral current sensitivity. In this thesis, we present measurement of the 8B solar ν e flux of 1.78+0.13-0.14 (stat+syst) × 106cm-2s -1 (35% BP2000 SSM) through measurement of the CC rate over 169.3 days of livetime. We have also measured the 8B flux from the ES reaction to be 2.56+0.48-0.45 (stat+syst), consistent with measurements by previous water Cerenkov experiments. A flavor analysis comparing the CC measured flux with that determined through ES by SuperKamiokande yields a non- νe active neutrino flux from 8B of 3.62+1.06-1.08 × 106cm-2s-1 , providing evidence for νe --> ν μ,τ oscillations as a solution to the solar neutrino problem. This result excludes pure solar νe --> ν s oscillations at greater than the 99.7% C.I. The total active 8B neutrino flux has been measured to be 5.39+1.07-1.09 × 106cm-2s-1 , consistent with BP2000 SSM predictions. First analyses of the CC (NHit) spectrum and hep flux in SNO are presented. The CC spectrum is found to be a good fit to expectations from an undistorted 8B spectrum, and global best fit vacuum oscillation solutions are disfavored over the other solutions by the data. Through observations near the 8B endpoint with consideration of energy systematics, hep flux limits of 4.1 (90% C.I.) and 6.9 (99% C.I.) times SSM expectations are obtained. A statistical fit for the

  15. Direct Measurement of CO2 Fluxes in Marine Whitings

    SciTech Connect

    Lisa L. Robbins; Kimberly K. Yates

    2001-07-05

    Clean, affordable energy is a requisite for the United States in the 21st Century Scientists continue to debate over whether increases in CO{sub 2} emissions to the atmosphere from anthropogenic sources, including electricity generation, transportation and building systems may be altering the Earth's climate. While global climate change continues to be debated, it is likely that significant cuts in net CO{sub 2} emissions will be mandated over the next 50-100 years. To this end, a number of viable means of CO{sub 2} sequestration need to be identified and implemented. One potential mechanism for CO{sub 2} sequestration is the use of naturally-occurring biological processes. Biosequestration of CO{sub 2} remains one of the most poorly understood processes, yet environmentally safe means for trapping and storing CO{sub 2}. Our investigation focused on the biogeochemical cycling of carbon in microbial precipitations of CaCO{sub 3}. Specifically, we investigated modern whitings (microbially-induced precipitates of the stable mineral calcium carbonate) as a potential, natural mechanism for CO{sub 2} abatement. This process is driven by photosynthetic metabolism of cyanobacteria and microalgae. We analyzed net air: sea CO{sub 2} fluxes, net calcification and photosynthetic rates in whitings. Both field and laboratory investigations have demonstrated that atmospheric CO{sub 2}decreases during the process of microbial calcification.

  16. Measurement of momentum flux using two meteor radars in Indonesia

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoki; Shinbori, Atsuki; Riggin, Dennis M.; Tsuda, Toshitaka

    2016-03-01

    Two nearly identical meteor radars were operated at Koto Tabang (0.20° S, 100.32° E), West Sumatra, and Biak (1.17° S, 136.10° E), West Papua, in Indonesia, separated by approximately 4000 km in longitude on the Equator. The zonal and meridional momentum flux, u'w' and v'w', where u, v, and w are the eastward, northward, and vertical wind velocity components, respectively, were estimated at 86 to 94 km altitudes using the meteor radar data by applying a method proposed by Hocking (2005). The observed u'w' at the two sites agreed reasonably well at 86, 90, and 94 km during the observation periods when the data acquisition rate was sufficiently large enough. Variations in v'w' were consistent between 86, 90, and 94 km altitudes at both sites. The climatological variation in the monthly averaged u'w' and v'w' was investigated using the long-term radar data at Koto Tabang from November 2002 to November 2013. The seasonal variations in u'w' and v'w' showed a repeatable semiannual and annual cycles, respectively. u'w' showed eastward values in February-April and July-September and v'w' was northward in June to August at 90-94 km, both of which were generally anti-phase with the mean zonal and meridional winds, having the same periodicity. Our results suggest the usefulness of the Hocking method.

  17. A Summary of Mass Flux Measurements in Solid 4He

    NASA Astrophysics Data System (ADS)

    Hallock, R. B.; Ray, M. W.; Vekhov, Y.

    2012-11-01

    Here we provide a summary and brief review of some of the work done with solid 4He at the University of Massachusetts Amherst below a sample pressure of 28 bar. The motivation for the work has been to attempt to pass 4He atoms through solid 4He without directly applying mechanical pressure to the solid itself. The specific technique chosen is limited to pressures near the melting curve and was initially designed to provide a yes/no answer to the question of whether or not it might be possible to observe such a mass flux. The thermo-mechanical effect and direct mass injection have been separately used to create chemical potential differences between two reservoirs of superfluid 4He connected to each other through superfluid-filled Vycor rods in series with solid 4He, which is in the hcp region of the phase diagram. The thermo-mechanical effect is a more versatile approach. And, in a particular symmetric application it is designed to provide a mass flux with little or no net increase in the density of the solid. Our observations, off but near the melting curve, have included: (1) the presence of an increasing DC flux of atoms through the solid-filled cell with decreasing temperature below ≈650 mK and no flux above this temperature; (2) the presence of a flux minimum and flux instability in the vicinity of 75-80 mK, with a flux increase at lower temperatures; (3) the temperature dependence of the flux above 100 mK and the dependence of the flux on the net driving chemical potential difference provide interesting insights on the possible mechanism that leads to the flux above 100 mK. The most recent data suggest that whatever is responsible for the flux in solid 4He, at least for T>100 mK, may be an example of a Bosonic Luttinger liquid.

  18. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  19. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  20. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    NASA Astrophysics Data System (ADS)

    West, Michael D.; Charles, Christine; Boswell, Rod W.

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5mN with a resolution of 15μN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  1. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    SciTech Connect

    West, Michael D.; Charles, Christine; Boswell, Rod W.

    2009-05-15

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 {mu}N. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  2. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    PubMed

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments. PMID:19485509

  3. A comparison of methane flux rates from the margins of a permanent wetland and an ephemeral wetland in southern Minnesota

    NASA Astrophysics Data System (ADS)

    Nelson, L. C.; Kannenberg, S.; Ludwig, S.; Rich, H.; Spawn, S.; Porterfield, J.; Schade, J. D.

    2012-12-01

    The degree of expansion and contraction of wetlands is likely to change as climate change alters drought and precipitation events. As wetland size becomes more dynamic, the extent and duration of inundation of soils on their margins will change. The amount of methane released from wetlands will also change since methanogens thrive in anoxic, saturated soils. It is critical to study the factors that influence methane emissions from wetlands because methane is 20 times more effective at trapping heat in the atmosphere than carbon dioxide. The objective of our research was to compare methane flux rates from the margins of a permanent wetland and an ephemeral wetland. We also assessed the impact of Reed Canary Grass (Phalaris arundinacea) on transport of methane from the soil to the atmosphere. Methane flux emissions were measured using portable gas flux chambers at Bakko Pond (a permanent wetland) and East Coyote Pond (an ephemeral wetland) on the St. Olaf College Natural Lands in southern Minnesota. At each wetland, we measured methane emissions from plots of clipped and unclipped Reed Canary Grass. We found no statistical difference between clipped and unclipped plots, suggesting that a diffusive gas transport system rather than a coupling of a diffusive and convective gas transport emits methane. We also found that the average rate of methane flux was higher at East Coyote Pond at both the wet Reed Canary Grass and dry Reed Canary Grass sites, when compared to the dry Reed Canary Grass site at Bakko Pond. Higher methane emission rates at East Coyote Pond is consistent with the characteristics of a wetland with a shallow bank where marginal soil is frequently inundated with water, creating a favorable anoxic environment for active methanogens. In contrast, Bakko Pond has a steep embankment, reducing soil saturation. We also found that soil moisture was strongly correlated with methane flux rates between the sites and over time within a site. Overall, our results

  4. SIERRA-Flux: measuring regional surface fluxes of carbon dioxide, methane, and water vapor from an unmanned aircraft system

    NASA Astrophysics Data System (ADS)

    Fladeland, M. M.; Yates, E. L.; Bui, T. P.; Dean-Day, J. M.; Kolyer, R.; Schiro, K.; Berthold, R.; Iraci, L. T.; Loewenstein, M.

    2011-12-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the more frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft. In a series of flights in June of 2011, the NASA SIERRA carried a payload consisting of the NASA Ames Meteorological Measurement System (MMS) and a fast response (10Hz) CO2, CH4, and H2O vapor analyzer in order to demonstrate the feasibility of measuring fluxes from unmanned aircraft and to characterize accuracy and precision based upon ground measurements. The flights were conducted in Railroad Valley, NV in order to provide a simple model for understanding biases and uncertainties. This paper describes the system specifications, provides preliminary data compared against coincident ground measurements, and discusses future applications of the system.

  5. Renyi entropy measures of heart rate Gaussianity.

    PubMed

    Lake, Douglas E

    2006-01-01

    Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors. PMID:16402599

  6. A scintillating fission detector for neutron flux measurements

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Burgett, Eric A; May, Iain; Muenchausen, Ross E; Taw, Felicia; Tovesson, Fredrik K

    2010-01-01

    Neutron flux monitors are commonly used for a variety of nuclear physics applications. A scintillating neutron detector, consisting of a liquid scintillator loaded with fissionable material, has been developed, characterized, and tested in the beam line at the Los Alamos Neutron Science Center, and shows a significant improvement in neutron sensitivity compared with a conventional fission chamber. Recent research on nanocomposite-based scintillators for gamma-ray detection indicates that this approach can be extended to load nanoparticles of fissionable material into a scintillating matrix, with up to three orders of magnitude higher loading than typical fission chambers. This will result in a rugged, cost-efficient detector with high efficiency, a short signal rise time, and the ability to be used in low neutron-flux environments. Initial efforts to utilize the luminescence of uranyl oxide to eliminate the need for wavelength-shifting dyes were unsuccessful. Excitation of uranyl compounds has been reported at wavelengths ranging from 266 nm to 532 nm. However, neither the 300 nm emission of toluene, nor the 350 nm emission of PPO, nor the 410 nm emission of POPOP resulted in significant excitation of and emission by uranyl oxide. As indicated by UV/visible spectroscopy, light emitted at these wavelengths was absorbed by the colored solution. {sup 235}U remains the most attractive candidate for a fissionable scintillator, due to its high fission cross-section and lack of a threshold fission energy, but all solutions containing molecular uranium compounds will be colored, most more highly than the U{sup 6+} compounds used here. Research is therefore continuing toward the fabrication of uranium nanoparticles, in which, due to Rayleigh scattering, the coloration should be less pronounced. The characterization of the thorium-loaded liquid scintillator and the fabrication of the 100 mL detectors for use at LANSCE demonstrated the feasibility of loading fissionable

  7. 31P magnetization transfer measurements of Pi→ATP flux in exercising human muscle

    PubMed Central

    Savage, David B.; Williams, Guy B.; Porter, David; Carpenter, T. Adrian; Brindle, Kevin M.; Kemp, Graham J.

    2016-01-01

    Fundamental criticisms have been made over the use of 31P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (Pi)→ATP flux (VPi-ATP) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of VPi-ATP is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure VPi-ATP in human exercising muscle for the first time. Steady-state VPi-ATP was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (VATP). We define a surplus Pi→ATP flux as the difference between VPi-ATP and VATP. The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and Pi in some systems and have been suggested to be responsible for this surplus flux. Surplus VPi-ATP did not change between rest and exercise, even though the concentrations of Pi and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus Pi→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the 31P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and Pi catalyzed by GAPDH and PGK. PMID:26744504

  8. The effect of cumulus cloud field anisotropy on solar radiative fluxes and atmospheric heating rates

    NASA Astrophysics Data System (ADS)

    Hinkelman, Laura M.

    The effect of fair-weather cumulus cloud field anisotropy on domain average surface fluxes and atmospheric heating profiles was studied. Causes of anisotropy were investigated using a large-eddy simulation (LES) model. Cloud formation under a variety of environmental conditions was simulated and the degree of anisotropy in the output fields was calculated. Wind shear was found to be the single greatest factor in the development of both vertically tilted and horizontally stretched cloud structures. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of the LES cloud scenes. Progressively greater degrees of tilt and stretching were imposed on each of these scenes, so that an ensemble of scenes were produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. For nearly all solar geometries, domain-averaged fluxes and atmospheric heating rate profiles calculated using the Independent Pixel Approximation differed substantially from the corresponding three-dimensional Monte Carlo results.

  9. Potential Landscape and Flux of p53-Mdm2 Oscillator Mediated by Mdm2 Degradation Rate

    NASA Astrophysics Data System (ADS)

    Bi, Yuanhong; Yang, Zhuoqin

    The dynamics of the tumor suppressor p53 can play a crucial role in deciding cell fate after DNA damage. In this paper, we explore the dynamics and stability of p53 mediated by Mdm2 degradation rate in p53-Mdm2 oscillator through bifurcation, the potential landscape and flux. Based on the investigation of the bifurcation, we find that p53 can exhibit rich dynamics including monostability, bistability of two stable steady states and oscillation behaviors as well as bistability between a stable steady state and an oscillatory state. The stability of these states are further validated by the potential landscape. In addition, oscillatory behaviors of p53 are explored by means of the negative gradient of the potential landscape and the probability flux. It is shown that the negative gradient of the potential landscape can attract the system towards the oscillatory path and the flux can drive oscillation along the path. Moreover, the quicker the flux runs, the smaller the period is. Besides, stability and sensitivity of the system are explored by the barrier height and the entropy production rate in a single cell level, and we further compare the potential landscapes at single and population cell levels. Our results may be useful for understanding the regulation of p53 signaling pathways in response to DNA damage.

  10. Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials

    SciTech Connect

    Young, J. A.; Thomas, V. W.; Jackson, P. O.

    1983-03-01

    This report recommends instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two month measurement methodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

  11. A highly portable, rapidly deployable system for eddy covariance measurements of CO2 fluxes

    SciTech Connect

    Billesbach, David P.; Fischer, Marc L.; Torn, Margaret S.; Berry, Joe A.

    2001-09-19

    To facilitate the study of flux heterogeneity within a region, the authors have designed, built, and field-tested a highly portable, rapidly deployable, eddy covariance CO{sub 2} flux measurement system. The system is built from off-the-shelf parts and was assembled at a minimal cost. The unique combination of features of this system allow for a very rapid deployment with a minimal number of field personnel. The system is capable of making high precision, unattended measurements of turbulent CO{sub 2} fluxes, latent heat (LE) fluxes, sensible heat fluxes (H), and momentum transfer fluxes. In addition, many of the meteorological and ecosystem variables necessary for quality control of the fluxes and for running ecosystem models are measured. A side-by-side field comparison of the system at a pair of established AmeriFlux sites has verified that, for single measurements, the system is capable of CO{sub 2} flux accuracy of about {+-} 1.2 {micro}mole/m{sup 2}/sec, LE flux accuracy of about {+-} 15 Watts/m{sup 2}, H flux accuracy of about {+-} 7 Watts/m{sup 2}, and momentum transfer flux accuracy of about {+-} 11 gm-m/sec/sec. System deployment time is between 2 and 4 hours by a single person. The system was measured to draw between 30 and 35 Watts of power and may be run from available line power, storage batteries, or solar panels.

  12. Heart rate detection from plantar bioimpedance measurements.

    PubMed

    González Landaeta, R; Casas, O; Pallàs-Areny, R

    2006-01-01

    The heart rate is a basic health indicator, useful in both clinical measurements and home health care. Current home care systems often require the attachment of electrodes or other sensors to the body, which can be cumbersome to the patient. Moreover, some measurements are sensitive to movement artifacts, are not user-friendly and require a specialized supervision. In this paper, a novel technique for heart rate measurement for a standing subject is proposed, which is based on plantar bioimpedance measurements, such as those performed by some bathroom weighting scales for body composition analysis. Because of the low level of heart-related impedance variations, the measurement system has a gain of 1400. We have implemented a fully differential AC amplifier with a common-mode rejection ratio (CMRR) of 105 dB at 10 kHz. Coherent demodulation based on synchronous sampling yields a signal-to-noise ratio (SNR) of 55 dB. The system has a sensitivity of 1.9 V/Omega. The technique has been demonstrated on 18 volunteers, whose bioimpedance signal and ECG were simultaneously measured to validate the results. The average cross-correlation coefficient between the heart rates determined from these two signals was 0.998 (std. dev. 0.001). PMID:17946677

  13. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    SciTech Connect

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nunez, M.; Tropea, S. E.

    2008-01-21

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  14. Vacuum test fixture improves leakage rate measurements

    NASA Technical Reports Server (NTRS)

    Maier, H.; Marx, H.

    1966-01-01

    Cylindrical chamber, consisting of two matching halves, forms a vacuum test fixture for measuring leakage rates of individual connections, brazed joints, and entrance ports used in closed fluid flow line systems. Once the chamber has been sufficiently evacuated, atmospheric pressure holds the two halves together.

  15. Dynamic heart rate measurements from video sequences

    PubMed Central

    Yu, Yong-Poh; Raveendran, P.; Lim, Chern-Loon

    2015-01-01

    This paper shows how dynamic heart rate measurements that are typically obtained from sensors mounted near to the heart can also be obtained from video sequences. In this study, two experiments are carried out where a video camera captures the facial images of the seven subjects. The first experiment involves the measurement of subjects’ increasing heart rates (79 to 150 beats per minute (BPM)) while cycling whereas the second involves falling heart beats (153 to 88 BPM). In this study, independent component analysis (ICA) is combined with mutual information to ensure accuracy is not compromised in the use of short video duration. While both experiments are going on measures of heartbeat using the Polar heart rate monitor is also taken to compare with the findings of the proposed method. Overall experimental results show the proposed method can be used to measure dynamic heart rates where the root mean square error (RMSE) and the correlation coefficient are 1.88 BPM and 0.99 respectively. PMID:26203374

  16. On the constancy of solar particle fluxes from track, thermoluminescence and solar wind measurements in lunar rocks

    NASA Technical Reports Server (NTRS)

    Zinner, E.

    1980-01-01

    Evidence contained within lunar rocks concerning possible variations in solar activity over the last 1 to 2 million years is reviewed. The effects of solar wind particles, which are implanted at shallow depths, solar flare protons, which produce thermoluminescence as well as stable and radionuclides, and solar flare heavy nuclei, which produce tracks, are considered, and the quality and limitations of nuclear tracks measurements as indicators of solar flare flux histories are discussed. Methods used for the determination of the solar flare track production rate, which must be known in order to measure lunar rock surface exposure times, are compared, and it is concluded that most of the evidence favors the rate obtained by Blanford et al. (1975). Information on the constancy of the solar flare particle flux obtained by comparison of the effects of different surface phenomena with solar particle effects is then illustrated for the cases of comparisons between solar flare tracks and microcrater densities, solar flare particle fluxes measured over different periods, and comparisons of the solar flare track production rate with the solar wind flux and microcratering rate. It is noted that these studies provide no evidence for a change in solar particle flux by more than a factor of two over the last 10,000 to 1 million years, or for a change in the solar flare Fe/H ratio in the last 2 million years.

  17. Continuous monitoring of fluid flow rate and contemporaneous biogeochemical fluxes in the sub-seafloor; the Mosquito flux meter

    NASA Astrophysics Data System (ADS)

    Culling, D. P.; Solomon, E. A.; Kastner, M.; Berg, R. D.

    2013-12-01

    Fluid flow through marine sediments and oceanic crust impacts seawater chemistry as well as diagenetic, thermal, seismic, and magmatic processes at plate boundaries, creates ore and gas hydrate deposits at and below seafloor, and establishes and maintains deep microbial ecosystems. However, steady-state fluid flow rates, as well as the temporal and spatial variability of fluid flow and composition are poorly constrained in many marine environments. A new, low-cost instrument deployable by ROV or submersible, named the Mosquito, was recently developed to provide continuous, long-term and campaign style monitoring of fluid flow rate and contemporaneous solute fluxes at multiple depths below the sea floor. The Mosquito consists of a frame that houses several osmotic pumps (Osmo-Samplers [OS]) connected to coils of tubing that terminate with an attachment to long thin titanium (Ti) needles, all of which are mounted to a release plate. The OS's consist of an acrylic housing which contains a brine chamber (BC) and a distilled water chamber (DWC) separated by semi permeable membranes. The osmotic gradient between the chambers drives the flow of distilled water into the BC. The DWC is connected to the Teflon tubing coil and a Ti needle, both of which are also filled with distilled water, thus the OS pulls fluid from the base of the needle through the tubing coil. One central Ti needle is attached to a custom-made tracer injection assembly, filled with a known volume of tracer, which is triggered, injecting a point source in the sediment. On a typical Mosquito, 4 needles are mounted vertically at varying depths with respect to the tracer injection needle, and 4 needles are mounted at equal depth but set at variable horizontal distances away from the tracer injection. Once the Mosquito has been placed on the seafloor, the release plate is manually triggered pushing the Ti needles into the sediment, then the tracer injection assembly is actuated. As the tracer is advected

  18. Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We measured CO2 and evapotranspiration (ET) fluxes above a Chihuahuan desert grassland from 1996 through 2001. Averaged across six years, this ecosystem was a source (positive flux)of CO2 in every month. Over that period, sustained periods of carbon uptake (negative flux)were rare. Averaged across a...

  19. Improving surface energy balance closure by reducing errors in soil heat flux measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flux plate method is the most commonly employed method for measuring soil heat flux (G) in surface energy balance studies. Although relatively simple to use, the flux plate method is susceptible to significant errors. Two of the most common errors are heat flow divergence around the plate and fa...

  20. Flow rate measurement in aggressive conductive fluids

    NASA Astrophysics Data System (ADS)

    Dubovikova, Nataliia; Kolesnikov, Yuri; Karcher, Christian

    2014-03-01

    Two non-contact experimental methods of flow rate measurements for aggressive conductive liquids are described. The techniques are based on electromagnetic forces and Faraday's law: Lorentz force is induced inside moving conductive liquid under influence of variable magnetic field of permanent magnets. They are mounted along a liquid metal channel or (in case of the second method) inserted into rotated metal wheels. The force acts in the opposite of fluids' velocity direction and hence it is possible to measure reaction force of it that takes place according to Newton's law on magnetic field source - permanent magnets. And by knowing the force, which linearly depends on velocity, one can calculate mean flow rate of liquid. In addition experimental "dry" calibration and its results are described for one of the measurements' techniques.

  1. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  2. MAVEN Measurements of the Ion Escape Rate from Mars

    NASA Astrophysics Data System (ADS)

    Brain, Dave; Dong, Yaxue; Fortier, Kier; Fang, Xiaohua; McFadden, James; Halekas, Jasper; Connerney, Jack; Eparvier, Frank; Dong, Chuanfei; Bougher, Stephen; Ma, Yingjuan; Modolo, Ronan; Lillis, Rob; Luhmann, Janet; Curry, Shannon; Seki, Kanako; Jakosky, Bruce

    2015-04-01

    The loss of atmospheric particles (neutral atoms, neutral molecules, ions) to space is thought to have played a role in the evolution of Martian climate over the past ~4 billion years. Due to the lack of a global magnetic field on Mars, the solar wind has direct access to the upper layers of the Martian atmosphere, and can drive non-thermal escape of charged particles (ions) from the atmosphere. Two spacecraft (Phobos 2 and Mars Express) have previously measured escaping ions at Mars. The recently arrived MAVEN spacecraft is equipped with instruments to measure escaping ions with high time cadence and high energy and mass resolution, as well as instruments to provide contextual information about what controls the variation in escape rates. We report on the total escape rate of heavy planetary ions from the Martian atmosphere measured by MAVEN. Heavy ions are identified in data from the SupraThermal And Thermal Ion Composition (STATIC) instrument. Rudimentary estimates of ion escape rate are obtained by summing the measured ion fluxes over a surface downstream from Mars with respect to the solar wind flow. This estimate can then be refined to account for the limited field of view of the instrument (investigation of measured particle distributions) and the limited spatial coverage of the spacecraft orbit trajectory. Variability in measured escape rates can also be grouped according to upstream conditions and the orientation of Mars (and its crustal magnetic fields) with respect to the solar wind. Important upstream drivers include the solar Extreme Ultraviolet (EUV) flux, solar wind pressure, and the interplanetary magnetic field strength and direction. These drivers are measured directly by MAVEN's EUV, SWIA, and MAG instruments. We will provide an initial estimate of ion escape rates based on the first several months of MAVEN data. We will then report on progress to refine these estimates to correct for instrument field of view and spacecraft coverage effects, as

  3. The variation of methane flux rates from boreal tree species at the beginning of the growing season

    NASA Astrophysics Data System (ADS)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2016-04-01

    Boreal forests are considered as net sink for atmospheric methane (CH4) because of the CH4 oxidizing bacteria in the aerobic soil layer. However, within the last decades it has become more evident that trees play an important role in the global CH4 budget by offering pathways for anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may also act as independent sources of CH4. To confirm magnitude, variability and the origin of the tree mediated CH4 emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured tree stem and shoot CH4 exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in southern Finland (61° 51'N, 24° 17'E, 181 asl). The fluxes were measured from silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation and forest structure by using the static chamber technique. Scaffold towers were used for measurements at multiple stem heights and shoots. The aim was to study the vertical profile of CH4 fluxes at stem and shoot level and compare these fluxes among the studied species, and to observe temporal changes in CH4 flux over the beginning of the growing season. We found that all the trees emitted CH4 from their stems and shoots. Overall, the birches showed higher emissions compared to the spruces. The emission rates were considerably larger in the lower parts of the birch stems than upper parts, and these emissions increased during the growing season. The spruces had more variation in the stem CH4 flux, but the emission rates of the upper parts of the stem exceeded the birch emissions at the same height. The shoot fluxes of all the studied trees indicated variable CH4 emissions without a clear pattern regarding the vertical profile and

  4. Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

    SciTech Connect

    Ekpe, Samuel D.; Jimenez, Francisco J.; Field, David J.; Davis, Martin J.; Dew, Steven K.

    2009-11-15

    Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly.

  5. Mass Flux Measurements of Arsenic in Groundwater (Battelle Conference)

    EPA Science Inventory

    Concentration trends of arsenic are typically used to evaluate the performance of remediation efforts designed to mitigate arsenic contamination in groundwater. A complementary approach would be to track changes in mass flux of the contaminant through the subsurface, for exampl...

  6. Design and operation - Surface flux measurements in FIFE

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Verma, Shashi B.; Fritschen, L. J.; Gurney, R. J.; Hsu, A. T.

    1990-01-01

    A general overview of the structure, technology, and methodology of the investigation of surface flux is presented for the First International Satellite Land-Surface Climatology Project Field Experiment. The paper examines the placement of stations, choice of constants, instruments, and micrometeorological techniques, the information system, and comparisons between the data from the sensors and data from different sites. The differences between sites are generally small, and a similarity is noted in the magnitude of fluxes across all sites.

  7. Measurement of total ion flux in vacuum Arc discharges

    SciTech Connect

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu.; Brown, Ian G.

    2004-04-12

    A vacuum arc ion source was modified allowing us to collections from arc plasma streaming through an anode mesh. The mesh had ageometric transmittance of 60 percent, which was taken into account as acorrection factor. The ion current from twenty-two cathode materials wasmeasured at an arc current of 100 A. The ion current normalized by thearc current was found to depend on the cathode material, with valuesinthe range from 5 percent to 11 percent. The normalized ion current isgenerally greater for light elements than for heavy elements. The ionerosion rates were determined fromvalues of ion currentand ion chargestates, which were previously measured in the same experimental system.The ion erosion rates range from 12-94 mu g/C.

  8. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    SciTech Connect

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  9. In situ measurements of saltwater flux through tidal passes of Lake Pontchartrain estuary by Hurricanes Gustav and Ike in September 2008

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Weeks, Eddie; Rego, Joao L.

    2009-10-01

    Storm surge induced saltwater flux through multiple inlets has never been documented. This article reports in situ measurements of saltwater flux through major tidal passes by two consecutive storm surges impacting Lake Pontchartrain estuary in Louisiana during the first two weeks in September 2008. The main peak of inward saltwater flux lasted for 1.9 days during the flood, followed by more than 8 days of outward salt flux. The salt flux rate reached close to 200 tons/sec through the northern channel and 16 tons/sec through the southern channel. Outward flux of salt during Gustav amounted to more than 16 million tons during the receding stage, more than twice of that measured for the flux into the lake. Apparently, overland inundation, which was not measured, caused this biased estimate of influx of salt. Hurricane Ike, however, did not cause such a dramatic difference in influx and outflux of salt.

  10. Airborne Flux Measurements of Volatile Organic Compounds and NOx over a European megacity

    NASA Astrophysics Data System (ADS)

    Shaw, Marvin; Lee, James; Davison, Brian; Misztal, Pawel; Karl, Thomas; Hewitt, Nick; Lewis, Alistair

    2014-05-01

    Ground level ozone (O3) and nitrogen dioxide (NO2) are priority pollutants whose concentrations are closely regulated by European Union Air Quality Directive 2008/50/EC. O3 is a secondary pollutant, produced from a complex chemical interplay between oxides of nitrogen (NOx = NO + NO2) and volatile organic compounds (VOCs). Whilst the basic atmospheric chemistry leading to O3 formation is generally well understood, there are substantial uncertainties associated with the magnitude of emissions of both VOCs and NOx. At present our knowledge of O3 precursor emissions in the UK is primarily derived from National Atmospheric Emission inventories (NAEI) that provide spatially disaggregated estimates at 1x1km resolution, and these are not routinely tested at city or regional scales. Uncertainties in emissions propagate through into uncertainties in predictions of air quality in the future, and hence the likely effectiveness of control policies on both background and peak O3 and NO2 concentrations in the UK. The Ozone Precursor Fluxes in the Urban Environment (OPFUE) project aims to quantify emission rates for NOx and selected VOCs in and around the megacity of London using airborne eddy covariance (AEC). The mathematical foundation for AEC has been extensively reviewed and AEC measurements of ozone, dimethyl sulphide, CO2 and VOCs have been previously reported. During the summer of 2013, approximately 30 hours of airborne flux measurements of toluene, benzene, NO and NO2 were obtained from the NERC Airborne Research and Survey Facility's (ARSF) Dornier-228 aircraft. Over SE England, flights involved repeated south west to north east transects of ~50 km each over Greater London and it's surrounding suburbs and rural areas, flying at the aircraft's minimum operating flight altitude and airspeed (~300m, 80m/s). Mixing ratios of benzene and toluene were acquired at 2Hz using a proton transfer reaction mass spectrometer (PTR-MS) and compared to twice hourly whole air canister

  11. Tall tower landscape scale N2O flux measurements in a Danish agricultural and urban, coastal area

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Lequy, Émeline; Loubet, Benjamin; Pilegaard, Kim; Ambus, Per

    2015-04-01

    Both technical and natural processes emit the greenhouse gas nitrous oxide (N2O) into the atmosphere. The abundant use of nitrogen (N) as fertiliser increases the concentration of reactive nitrogen (Nr) in the atmosphere, the hydrosphere and in the biosphere, i.e. in terrestrial and aquatic ecosystems. Surplus Nr is distributed across linkages to other spheres until most of it is emitted to the atmosphere as NO, N2O or N2. A complete estimate of the effects from human activities on N2O emissions must therefore include all emissions, the direct emissions and the indirect emissions that happen in interlinked spheres. For this it is necessary to assess the fluxes at least at the landscape scale. The episodic nature and the large spatial variability make it difficult to estimate the direct and indirect emissions in a landscape. Modelling requires not only to include the highly variable microbial processes in the ecosystems that produce N2O but as well the accurate simulation of lateral Nr fluxes and their effects on N2O fluxes in places remote from the primary Nr sources. In this context tall tower N2O flux measurements are particularly useful as they integrate over larger areas and can be run, continuously without disturbing the fluxes. On the other hand these measurements can be difficult to interpret due to difficulties to measure the small concentration fluctuations in the atmosphere at small flux rates and to accurately attribute the measured flux at the tower to the area that generates the flux, i.e. the source area. The Technical University of Denmark (DTU) has established eddy covariance N2O flux measurements on a 125 m tall tower at its Risø Campus as part of the EU research infrastructure project the 'Integrated non-CO2 Greenhouse gas Observing System' (InGOS). The eddy covariance system consisted of a N2O/CO quantum cascade laser, Los Gatos, Mountain View, CA, USA and a 3D sonic anemometer (USA-1), Metek, Elmshorn, Germany. The Risø peninsula lies at the

  12. Neutron and Gamma Fluxes and dpa Rates for HFIR Vessel Beltline Region (Present and Upgrade Designs)

    SciTech Connect

    Blakeman, E.D.

    2001-01-11

    The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) is currently undergoing an upgrading program, a part of which is to increase the diameters of two of the four radiation beam tubes (HB-2 and HB-4). This change will cause increased neutron and gamma radiation dose rates at and near locations where the tubes penetrate the vessel wall. Consequently, the rate of radiation damage to the reactor vessel wall at those locations will also increase. This report summarizes calculations of the neutron and gamma flux (particles/cm{sup 2}/s) and the dpa rate (displacements/atom/s) in iron at critical locations in the vessel wall. The calculated dpa rate values have been recently incorporated into statistical damage evaluation codes used in the assessment of radiation induced embrittlement. Calculations were performed using models based on the discrete ordinates methodology and utilizing ORNL two-dimensional and three-dimensional discrete ordinates codes. Models for present and proposed beam tube designs are shown and their results are compared. Results show that for HB-2, the dpa rate in the vessel wall where the tube penetrates the vessel will be increased by {approximately}10 by the proposed enlargement. For HB-4, a smaller increase of {approximately}2.6 is calculated.

  13. Wireless Measurement of Rotation and Displacement Rate

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2007-01-01

    A magnetic field response sensor is designed to measure displacement or rotation rate without a physical connection to a power source, microprocessor, data acquisition equipment, or electrical circuitry. The sensor works with the magnetic field response recorder, which was described in Magnetic-Field-Response Measurement-Acquisition System, NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. These sensors are wirelessly powered and interrogated, and the measurement acquisition system and sensors are extremely lightweight.The response recorder uses oscillating magnetic fields to power the sensors. Once powered, the sensors respond with their own magnetic field. For displacement/ rotation measurements, the response recorder uses the sensor s response amplitude, which is dependent on the distance from the antenna. The recorder s antenna orientation and position are kept fixed, and the sampling period is constant.

  14. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  15. Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central ontario, Canada

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Murphy, J. G.; Geddes, J. A.; Winsborough, C. L.; Basiliko, N.; Thomas, S. C.

    2012-12-01

    Methane flux measurements were carried out at a temperate forest (Haliburton Forest and Wildlife Reserve) in central Ontario (45°17´11´´ N, 78°32´19´´ W) from June-October, 2011. Continuous measurements were made by an off-axis integrated cavity output spectrometer Fast Greenhouse Gas Analyzer (FGGA) from Los Gatos Research Inc. that measures methane (CH4) at 10 Hz sampling rates. Fluxes were calculated from the gas measurements in conjunction with wind data collected by a 3-D sonic anemometer using the eddy covariance (EC) method. Observed methane fluxes showed net uptake of CH4 over the measurement period with an average uptake flux (± standard deviation of the mean) of -2.7 ± 0.13 nmol m-2 s-1. Methane fluxes showed a seasonal progression with average rates of uptake increasing from June through September and remaining high in October. This pattern was consistent with a decreasing trend in soil moisture content at the monthly time scale. On the diurnal timescale, there was evidence of increased uptake during the day, when the mid-canopy wind speed was at a maximum. These patterns suggest that substrate supply of CH4 and oxygen to methanotrophs, and in certain cases hypoxic soil conditions supporting methanogenesis in low-slope areas, drive the observed variability in fluxes. A network of soil static chambers used at the tower site showed close agreement with the eddy covariance flux measurements. This suggests that soil-level microbial processes, and not abiological leaf-level CH4 production, drive overall CH4 dynamics in temperate forest ecosystems such as Haliburton Forest.

  16. Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Bolinius, Damien Johann; Jahnke, Annika; MacLeod, Matthew

    2016-04-01

    Semi-volatile persistent organic pollutants (POPs) cycle between the atmosphere and terrestrial surfaces; however measuring fluxes of POPs between the atmosphere and other media is challenging. Sampling times of hours to days are required to accurately measure trace concentrations of POPs in the atmosphere, which rules out the use of eddy covariance techniques that are used to measure gas fluxes of major air pollutants. An alternative, the modified Bowen ratio (MBR) method, has been used instead. In this study we used data from FLUXNET for CO2 and water vapor (H2O) to compare fluxes measured by eddy covariance to fluxes measured with the MBR method using vertical concentration gradients in air derived from averaged data that simulate the long sampling times typically required to measure POPs. When concentration gradients are strong and fluxes are unidirectional, the MBR method and the eddy covariance method agree within a factor of 3 for CO2, and within a factor of 10 for H2O. To remain within the range of applicability of the MBR method, field studies should be carried out under conditions such that the direction of net flux does not change during the sampling period. If that condition is met, then the performance of the MBR method is neither strongly affected by the length of sample duration nor the use of a fixed value for the transfer coefficient.

  17. Ultrasonic rate measurement of multiphase flow

    SciTech Connect

    Dannert, D.A.; Horne, R.N.

    1993-01-01

    On of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow, regime. Spinner tools are inaccurate at extremely high or low, flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether gas/ oil, gas/water or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. This goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter. It has many advantages besides the ones previously mentioned and is in full in that chapter.

  18. Ultrasonic rate measurement of multiphase flow

    NASA Astrophysics Data System (ADS)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  19. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  20. Solid He: Progress, Status, and Outlook for Mass Flux Measurements

    NASA Astrophysics Data System (ADS)

    Hallock, R. B.

    2015-07-01

    After a brief introduction, what is provided there is brief summary of work with solid He done at the University of Massachusetts Amherst and an outlook for future work. What is presented here is based on a presentation made at the Quantum Gases Fluids and Solids Workshop in Sao Paulo, Brazil in August of 2014. Our work with solid He is aimed at the question: Can a sample cell filled with solid He support a mass flux through the cell? The answer, as will be shown here, is yes. Evidence for this from several types of experiments will be reviewed. There will be an emphasis on more recent work, work that explores how the flux observed depends on temperature and on the He impurity level. The behavior observed suggests that solid He may be an example of a material that demonstrates Bosonic Luttinger liquid behavior. The normalized He flux has a universal temperature dependence. The presence of He at different impurity levels shows that the He blocks the flux at a characteristic temperature. The behavior appears to be consistent with the cores of dislocations as the entity that carries the flux, but it is clear that more work needs to be done to fully understand solid He.

  1. Radiative flux measurements during the Airborne Tropical Tropopause Experiment (ATTREX) Guam Deployment.

    NASA Astrophysics Data System (ADS)

    Kindel, B. C.; Pilewskie, P.; Schmidt, S.

    2015-12-01

    The Airborne Tropical Tropopause Experiment was a field program utilizing the NASA Global Hawk aircraft, to make extensive measurements of tropical tropopause layer (TTL) over the Pacific Ocean. In February and March of 2014, the NASA Global Hawk was deployed to Guam and flew six long duration science flights. The aircraft was outfitted with a suite of instruments to study the composition of the TTL. Measurements included: water vapor amount, cloud particle size and shape, various gaseous species (e.g. CO, CH4, CO2, O3), and radiation measurements. The radiation measurements were comprised of the Solar Spectral Flux Radiometer (SSFR) that made spectrally resolved measurements of upwelling and downwelling solar irradiance from 350 to 2200 nm and thermal broadband (4μm to 42 μm) upwelling and downwelling irradiance. Once airborne, the Global Hawk made numerous vertical profiles (14 - 18 km) through the TTL. In this work we present results of combined solar spectral irradiance and broadband thermal irradiance measurements. Solar spectral measurements are correlated, wavelength-by-wavelength, with broadband thermal measurements. The radiative impact in the TTL of water vapor and cirrus clouds are examined both in the solar and thermal wavelengths from both upwelling and downwelling irradiances. The spectral measurements are used in an attempt to attribute physical mechanisms to the thermal (spectrally integrated) measurements. Measurements of heating rates are also presented, highlighting the difficultly in obtaining reliable results from aircraft measurements.

  2. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    SciTech Connect

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-05-10

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to {approx}10{sup -13} M{sub sun}yr{sup -1} for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of {approx}3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10{sup -12} M {sub sun} yr{sup -1} onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the H{alpha} flux.

  3. Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, D.A.; Harden, J.W.

    2005-01-01

    Although long-term changes in solid-state compositions of soil chronosequences have been extensively investigated, this study presents the first detailed description of the concurrent hydrochemical evolution and contemporary weathering rates in such sequences. The most direct linkage between weathering and hydrology over 3 million years of soil development in the Merced chronosequence in Central California relates decreasing permeability and increasing hydrologic heterogeneity to the development of secondary argillic horizons and silica duripans. In a highly permeable, younger soil (40 kyr old), pore water solutes reflect seasonal to decadal-scale variations in rainfall and evapotranspiration (ET). This climate signal is strongly damped in less permeable older soils (250 to 600 kyr old) where solutes increasingly reflect weathering inputs modified by heterogeneous flow. Elemental balances in the soils are described in terms of solid state, exchange and pore water reservoirs and input/output fluxes from precipitation, ET, biomass, solute discharge and weathering. Solute mineral nutrients are strongly dependent on biomass variations as evidenced by an apparent negative K weathering flux reflecting aggradation by grassland plants. The ratios of solute Na to other base cations progressively increase with soil age. Discharge fluxes of Na and Si, when integrated over geologic time, are comparable to solid-state mass losses in the soils, implying similar past weathering conditions. Similarities in solute and sorbed Ca/Mg ratios reflect short-term equilibrium with the exchange reservoir. Long-term consistency in solute ratios, when contrasted against progressive decreases in solid-state Ca/Mg, requires an additional Ca source, probably from dry deposition. Amorphous silica precipitates from thermodynamically-saturated pore waters during periods of high evapotranspiration and result in the formation of duripans in the oldest soils. The degree of feldspar and secondary

  4. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  5. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Hubbard, Kenneth G.; Verma, Shashi B.; Starks, Patrick; Norman, John M.; Walter-Shea, Elizabeth

    1987-01-01

    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning.

  6. Sparking rates measured on the CRITS RFQ

    SciTech Connect

    Balleyguier, P.

    1998-05-28

    During the test of the LEDA injector on the CRITS RFQ, an automatic data acquisition system has been implemented. The purpose was to measure the sparking rate of this CW RFQ. The RF level has some influences on vacuum, but there is no evidence of any reciprocal effect. The raw sparking rate is very difficult to interpret, since burst of sparks bias the statistics. A more convenient and useful interpretation is the number of sparking seconds. At the nominal field level (1.75 Kilp), the sparking-second rate is 0.5 per minute without beam. It strongly depends on the field, with a logarithmic law: 4.5 decade/Kilp. With beam, the sparking rate jumps to 3.0 per minute. As far as tested, it depends neither on the beam current (20 to 80 mA) nor on the field (1.5 to 1.7 Kilp tested). With sparking rates as measured here, one could not hope to build an RFQ that would be free of sparks over a several months continuous operation. Such a requirement, based on an extrapolation of the curves presented here, would lead to a maximal electric field much lower than the Kilpatrick value, an unreasonable requirement for a functional RFQ. A conclusion is that a sparkless RFQ is hopeless, even with a very carefully conditioned cavity. It will probably be necessary to deal with a few sparks per day, and the linac must be able to restart automatically after a short beam interruption.

  7. New technique of the local heat flux measurement in combustion chambers of steam boilers

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Taler, Dawid; Sobota, Tomasz; Dzierwa, Piotr

    2011-12-01

    A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.

  8. Airborne eddy correlation gas flux measurements - Design criteria for optical techniques

    NASA Technical Reports Server (NTRS)

    Ritter, John A.; Sachse, Glen W.; Anderson, Bruce E.

    1993-01-01

    Although several methods exist for the determination of the flux of an atmospheric species, the airborne eddy correlation method has the advantage of providing direct flux measurements that are representative of regional spatial domains. The design criteria pertinent to the construction of chemical instrumentation suitable for use in airborne eddy correlation flux measurements are discussed. A brief overview of the advantages and limitations of the current instrumentation used to obtain flux measurements for CO, CH4, O3, CO2, and water vapor are given. The intended height of the measurement within the convective boundary layer is also shown to be an important design criteria. The sensitivity, or resolution, which is required in the measurement of a scalar species to obtain an adequate species flux measurement is discussed. The relationship between the species flux resolution and the more commonly stated instrumental resolution is developed and it is shown that the standard error of the flux estimate is a complicated function of the atmospheric variability and the averaging time that is used. The use of the recently proposed intermittent sampling method to determine the species flux is examined. The application of this technique may provide an opportunity to expand the suite of trace gases for which direct flux measurements are possible.

  9. Use of CMOS imagers to measure high fluxes of charged particles

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Tucceri, P.

    2016-03-01

    The measurement of high flux charged particle beams, specifically at medical accelerators and with small fields, poses several challenges. In this work we propose a single particle counting method based on CMOS imagers optimized for visible light collection, exploiting their very high spatial segmentation (> 3 106 pixels/cm2) and almost full efficiency detection capability. An algorithm to measure the charged particle flux with a precision of ~ 1% for fluxes up to 40 MHz/cm2 has been developed, using a non-linear calibration algorithm, and several CMOS imagers with different characteristics have been compared to find their limits on flux measurement.

  10. Heat flux measurement from vertical temperature profile and thermal infrared imagery in low-flux fumarolic zones

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Finizola, Anthony; Beauducel, François; Brothelande, Elodie; Allemand, Pascal; Delacourt, Christophe; Delcher, Eric; Peltier, Aline

    2014-05-01

    Hydrothermal systems are associated to most of the dormant volcanoes. Heat is transported by steam from the hot magma body in the connected porosity and the fissures of the rock to the surface. If the flux is low enough (<500 W/m²), the steam mainly condensates in the soil close to surface, and a significant proportion of the heat is transported to the surface by conduction, producing a gradient of temperature and a thermal anomaly detectable at the surface. Detecting and monitoring these fluxes is crucial for hazard management, since it reflects the state of the magma body in depth. In order to quantify this flux two methods are considered. First, a vertical profile of temperature is measured by a series of thermocouples, and the conducted flux is estimated thanks to the Fourier law. Secondly, a more recent method uses the thermal infrared imagery to monitor the surface temperature anomaly (STA) between the studied zone and an equivalent zone not affected by the geothermal flux. The heat flux from the soil to the atmosphere is computed as the sum of (1) the radiative flux, (2) the sensible flux and (3) the residual steam flux. These two methods are complementary and have an equivalent uncertainty of approximately 20%, which would allow to track the major changes in the hydrothermal system. However, the surface and sub-surface temperatures are strongly influenced by the climate. For instance, it has been widely demonstrated that the surface temperature dramatically decreases after a rainfall. In order to estimate the reliability of the measurements, a numerical model simulating the evolution of the subsurface temperature in low flux fumarolic zone has been built. In depth, the heat can be transported either by conduction, or by the rising steam, or by condensed water. In surface, both the radiative flux and the sensible flux (convection of the atmosphere) are taken into account. This model allows to estimate the changes of temperature due to a variation of solar

  11. Thermal flux measurements in hypersonic flows: A review

    NASA Astrophysics Data System (ADS)

    Wendt, J. F.; Balageas, D.; Neumann, R. D.

    1993-04-01

    This contribution reviews the papers presented in the Session on 'Heat Flux' and 'Thermography' at a NATO Advanced Research Workshop entitled 'New Trends in Instrumentation for Hypersonic Research', 27 April-1 May, 1992, Le Fauga, France. The present status and problem areas associated with specific methods are discussed and recommendations for future research and development are presented.

  12. DYNAMIC FLUX CHAMBER SYSTEMS FOR FUMIGANT EMISSION MEASUREMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of effective field practices on emission reductions from soil fumigation relies on continuous and reliable emission data. Dynamic (flow through) flux chambers can provide continuous sampling for fumigants volatilized from the soil surface. The objective of this project was to design and c...

  13. Mild solutions to a measure-valued mass evolution problem with flux boundary conditions

    NASA Astrophysics Data System (ADS)

    Evers, Joep H. M.; Hille, Sander C.; Muntean, Adrian

    2015-08-01

    We investigate the well-posedness and approximation of mild solutions to a class of linear transport equations on the unit interval [ 0, 1 ] endowed with a linear discontinuous production term, formulated in the space M ([ 0, 1 ]) of finite Borel measures. Our working technique includes a detailed boundary layer analysis in terms of a semigroup representation of solutions in spaces of measures able to cope with the passage to the singular limit where thickness of the layer vanishes. We obtain not only a suitable concept of solutions to the chosen measure-valued evolution problem, but also derive convergence rates for the approximation procedure and get insight in the structure of flux boundary conditions for the limit problem.

  14. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    PubMed

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-01

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  15. Solids flow rate measurement in dense slurries

    SciTech Connect

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  16. Measurements of NO(x) and NO(y) concentrations and fluxes over Arctic tundra

    NASA Technical Reports Server (NTRS)

    Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao; Fitzjarrald, David R.

    1992-01-01

    Measurements of the atmospheric concentrations of NO, NO2, total NO(y), and O3 were made during the NASA Arctic Boundary Layer Expedition (ABLE 3A) at a remote location in a tundra bog ecosystem in southeastern Alaska during the growing season (July-August 1988). Concentrations of NO(x) and NO(y) were found to be very low compared to other remote continental sites, indicating that anthropogenic influences were small at this site during this time of year. The NO(y) emission rate from the soil were 0.13 +/- 0.05 x 10 exp 9 molecules/sq cm/s. Direct measurements of the flux of total NO(y) were made for the first time, indicating downward flux of NO(y) at all times of day, with maximum deposition of 2.5 +/- 0.9 x 10 exp 9 molecules/sq cm/s in the afternoon. Deposition of HNO3 appears to dominate the atmosphere/surface exchange of NO(y). The mean dry deposition rate of NO(y) to the tundra was 1.8 +/- 1.0 x 10 exp 9 molecules/sq cm/s.

  17. The altitude variation of the ionospheric photoelectron flux A comparison of theory and measurement

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.

    1985-01-01

    The 145 to 300-km altitude variation of the measured photoelectron flux in the 13 to 18 eV, 28 to 34 eV, and 50 to 55 eV energy regions are compared with the variations expected from theory. There is a strong linear relationship between the measured photoelectron flux and the attenuation of the solar EUV flux at these energies. Therefore, the photoelectron flux is sensitive to changes in the solar zenith angle, neutral density scale height, and total neutral density. However, contrary to previous assertions, the photoelectron flux at most energies is not sensitive to the relative densities of the neutral constituents. In addition, good agreement between theory and measurement is obtained. By using the concept of photoelectron production frequencies, the usually complex evaluation of the local equilibrium photoelectron flux is reduced to a trivial calculation so that the steps in the calculation can be readily verified.

  18. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  19. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  20. Water flux and drainage from soil measured with automated passive capillary wick samplers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various soil water samplers are used to monitor measure and estimate drainage water, fluxes and solute transport in the soil vadose zone. Passive capillary samplers (PCAPs) have shown potential to provide better measurements and estimates of soil water drainage and fluxes than other lysimeters.Twelv...

  1. LEAF, BRANCH, STAND & LANDSCAPE SCALE MEASUREMENTS OF VOLATILE ORGANIC COMPOUND FLUXES FROM U.S. WOODLANDS

    EPA Science Inventory

    Natural volatile organic compounds (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were us...

  2. Calculating the detection limits of chamber-based greenhouse gas flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chamber-based measurement of greenhouse gas emissions from soil is a common technique. However, when changes in chamber headspace gas concentrations are small over time, determination of the flux can be problematic. Several factors contribute to the reliability of measured fluxes, including: samplin...

  3. Arrangement Analysis of Leaves Optimized on Photon Flux Density or Photosynthetic Rate

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Tanno, Itaru

    By clarifying a plant evolutive process, useful information may be obtained on engineering. Consequently, an analysis algorithm that investigates the optimal arrangement of plant leaves was developed. In the developed algorithm, the Monte Carlo method is introduced and sunlight is simulated. Moreover, the arrangement optimization of leaves is analyzed using a Genetic Algorithm (GA). The number of light quanta (photon flux density) that reaches leaves, or the average photosynthetic rate of the same was set as the objective function, and leaf models of a dogwood and a ginkgo tree were analyzed. The number of leaf models was set between two to four, and the position of the leaf was expressed in terms of the angle of direction, elevation angle, rotation angle, and the representative length of the branch of a leaf. The chromosome model introduced into GA consists of information concerning the position of the leaf. Based on the analysis results, the characteristics of the leaf of an actual plant could be simulated by ensuring the algorithm had multiple constrained conditions. The optimal arrangement of leaves differs in maximization of the photon flux density, and that of the average value of a photosynthetic rate. Furthermore, the leaf form affecting the optimal arrangement of leave and also having a significant influence also on a photosynthetic rate was shown.

  4. Theory of scan plane flux anisotropies. [in spacecraft detector measurements of planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Thomsen, M. F.

    1980-01-01

    When a spacecraft detector measures particle flux as a function of look direction in a plane (the scan plane), anisotropy is often seen. This anisotropy is caused by spatial gradients, by E x B particle drift, and by various spectral and geometric effects. This paper treats all of these effects systematically, starting from the nonrelativistic Vlasov equation. The general analysis is applied to a simple model of an anisotropic distribution to give a relation between the E x B drift, the gradient and the experimentally observed first, second, and third harmonics of the flux as a function of angle in the scan plane. Even with an assumed model, anisotropy observations in one plane alone do not suffice to determine the E x B drift velocity and the spatial gradient independently. If the E x B velocity is assumed (e.g., the corotational velocity in a rotating planetary magnetosphere), the spatial gradient may be deduced, and from it the time rate of change of flux in a nonrotating frame of reference.

  5. Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms.

    PubMed

    Zarecki, Raphy; Oberhardt, Matthew A; Yizhak, Keren; Wagner, Allon; Shtifman Segal, Ella; Freilich, Shiri; Henry, Christopher S; Gophna, Uri; Ruppin, Eytan

    2014-01-01

    Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth. PMID:24866123

  6. A bottom-up perspective of the net land methanol flux: synthesis of global eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Amelynck, Crist; Ammann, Christof; Arneth, Almut; Bamberger, Ines; Goldstein, Allen; Hansel, Armin; Heinesch, Bernhard; Holst, Thomas; Hörtnagl, Lukas; Karl, Thomas; Neftel, Albrecht; McKinney, Karena; Munger, William; Schade, Gunnar; Schoon, Niels

    2014-05-01

    Methanol (CH3OH) is, after methane, the second most abundant VOC in the troposphere and globally represents nearly 20% of the total biospheric VOC emissions. With typical concentrations of 1-10 ppb in the continental boundary layer, methanol plays a crucial role in atmospheric chemistry, which needs to be evaluated in the light of ongoing changes in land use and climate. Previous global methanol budgets have approached the net land flux by summing up the various emission terms (namely primary biogenic and anthropogenic emissions, plant decay and biomass burning) and by subtracting dry and wet deposition, resulting in a net land flux in the range of 75-245 Tg y-1. The data underlying these budget calculations largely stem from small-scale leaf gas exchange measurements and while recently column-integrated remotely sensed methanol concentrations have become available for constraining budget calculations, there have been few attempts to contrast model calculations with direct net ecosystem-scale methanol flux measurements. Here we use eddy covariance methanol flux measurements from 8 sites in Europe and North America to study the magnitude of and controls on the diurnal and seasonal variability in the net ecosystem methanol flux. In correspondence with leaf-level literature, our data show that methanol emission and its strong environmental and biotic control (by temperature and stomatal conductance) prevailed at the more productive (agricultural) sites and at a perturbed forest site. In contrast, at more natural, less productive sites substantial deposition of methanol occurred, in particular during periods of surface wetness. These deposition processes are poorly represented by currently available temperature/light and/or production-driven modelling algorithms. A new framework for modelling the bi-directional land-atmosphere methanol exchange is proposed which accounts for the production of methanol in leaves, the regulation of leaf methanol emission by stomatal

  7. Element transformation rates and fluxes across the sediment-water interface of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Lipka, Marko; Wegwerth, Antje; Dellwig, Olaf; Al-Raei, Abdul M.; Schoster, Frank; Böttcher, Michael E.

    2014-05-01

    Organic matter is mineralized in brackish-marine sediments by microbial activity using predominantly oxygen, sulfate, and metal oxides as electron acceptors. This leads to a reflux of carbon dioxide into the bottom waters. Under anoxic bottom water conditions, sulfate reduction dominates. Under specific conditions, shallow methane may be oxidized. Pore water profiles reflect biogeochemical processes, transformation rates and fluxes of dissolved species across the sediment-water interface. They are controlled by different factors like microbial activity, bottom water redox conditions, and availability of electron acceptors/donors. Microbial activity in the sediment leads to changes in redox conditions, formation of metabolites and may lead to the formation of authigenic minerals. As an example, organic matter mineralization and reduction of iron oxyhydroxides both may lead to the liberation of dissolved phosphate thereby leading to a reflux into the bottom waters. Hypoxic conditions will enhance this process. We present the results of a detailed biogeochemical investigation of interstitial waters from shallow sediments to study the biogeochemical processes in recent sediments and associated element fluxes at the sediment-water-interface in different areas of the Baltic Sea. Pore water and sediment samples were retrieved from short sediment cores that were collected with multicoring devices in key regions of the Baltic Sea. Pore waters were taken in sufficient depth resolution and analyzed for main and trace element concentrations (e.g., Mn, SO4, HS, PO4, DIC) to allow a modelling of steady-state transformation volumetric rates and element fluxes. A quantitative interpretation of vertical concentration profiles in the pore waters was performed using a diffusion-based modelling approach. Element fluxes across the sediment-water interface show for the Baltic Sea a dependence from bottom water redox conditions, sedimentology, organic contents, and formation conditions

  8. Flux Measurements of Trace Gases, Aerosols and Energy from the Urban Core of Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Molina, L.; Lamb, B.; Pressley, S.; Grivicke, R.; Westberg, H.; Jobson, T.; Allwine, E.; Coons, T.; Jimenez, J.; Nemitz, E.; Alexander, L. M.; Worsnop, D.; Ramos, R.

    2007-05-01

    As part of the MILAGRO field campaign in March 2006 we deployed a flux system in a busy district of Mexico City surrounded by congested avenues. The flux system consisted of a tall tower instrumented with fast-response sensors coupled with eddy covariance (EC) techniques to measure fluxes of volatile organic compounds (VOCs), CO2, CO, aerosols and energy. The measured fluxes represent direct measurements of emissions that include all major and minor emission sources from a typical residential and commercial district. In a previous study we demonstrated that the EC techniques are valuable tools to evaluate emissions inventories in urban areas, and understand better the atmospheric chemistry and the role that megacities play in global change. We measured fluxes of olefins using a Fast Olefin Sensor (FOS) and the EC technique, fluxes of aromatic and oxygenated VOCs by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique, fluxes of CO2 and H2O with an open path Infrared Gas Analyzer (IRGA) and the EC technique, fluxes of CO using a modified gradient method and a commercial CO instrument, and fluxes of aerosols (organics, nitrates and sulfates) using an Aerodyne Aerosol Mass Spectrometer (AMS) and the EC technique. In addition we used a disjunct eddy accumulation (DEA) system to extend the number of VOCs. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site using gas chromatography / flame ionization detection (GC-FID). We also measured fluxes of sensible and latent heat by EC and the radiation components with a net radiometer. Overall, these flux measurements confirm the results of our previous flux measurements in Mexico City in terms of the magnitude, composition, and distribution. We found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns show clear anthropogenic signatures, with important contributions from

  9. Measurements with the high flux lead slowing-down spectrometer at LANL

    NASA Astrophysics Data System (ADS)

    Danon, Y.; Romano, C.; Thompson, J.; Watson, T.; Haight, R. C.; Wender, S. A.; Vieira, D. J.; Bond, E.; Wilhelmy, J. B.; O'Donnell, J. M.; Michaudon, A.; Bredeweg, T. A.; Schurman, T.; Rochman, D.; Granier, T.; Ethvignot, T.; Taieb, J.; Becker, J. A.

    2007-08-01

    A Lead Slowing-Down Spectrometer (LSDS) was recently installed at LANL [D. Rochman, R.C. Haight, J.M. O'Donnell, A. Michaudon, S.A. Wender, D.J. Vieira, E.M. Bond, T.A. Bredeweg, A. Kronenberg, J.B. Wilhelmy, T. Ethvignot, T. Granier, M. Petit, Y. Danon, Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator, Nucl. Instr. and Meth. A 550 (2005) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutron source in its center. The LSDS is driven by 800 MeV protons with a time-averaged current of up to 1 μA, pulse widths of 0.05-0.25 μs and a repetition rate of 20-40 Hz. Spallation neutrons are created by directing the proton beam into an air-cooled tungsten target in the center of the lead cube. The neutrons slow down by scattering interactions with the lead and thus enable measurements of neutron-induced reaction rates as a function of the slowing-down time, which correlates to neutron energy. The advantage of an LSDS as a neutron spectrometer is that the neutron flux is 3-4 orders of magnitude higher than a standard time-of-flight experiment at the equivalent flight path, 5.6 m. The effective energy range is 0.1 eV to 100 keV with a typical energy resolution of 30% from 1 eV to 10 keV. The average neutron flux between 1 and 10 keV is about 1.7 × 109 n/cm2/s/μA. This high flux makes the LSDS an important tool for neutron-induced cross section measurements of ultra-small samples (nanograms) or of samples with very low cross sections. The LSDS at LANL was initially built in order to measure the fission cross section of the short-lived metastable isotope of U-235, however it can also be used to measure (n, α) and (n, p) reactions. Fission cross section measurements were made with samples of 235U, 236U, 238U and 239Pu. The smallest sample measured was 10 ng of 239Pu. Measurement of (n, α) cross section with 760 ng of Li-6 was also demonstrated. Possible future cross section measurements

  10. Flux measurements in a nuclear research reactor by using an aluminum nitride detector

    NASA Astrophysics Data System (ADS)

    Moon, B. S.; Yoo, D. S.; Hwang, I. K.; Chung, C. E.; Holcomb, D. E.

    2007-08-01

    A small polycrystalline aluminium nitride detector with a thickness of 381 μm was used to measure a 200,000 Ci Co 60 source and to measure the flux in a research reactor where the neutron flux is about 10 14/cm 2 s, which is nearly the same order as in the commercial power plant. If the applied voltage is greater than or equal to 2000 V and if the measurements are done in a short period of time so that the heat energy does not build up in the aluminium nitride, then the measured electric current is linearly proportional to the input flux. It is assumed of course that the energy spectrum of the input flux remains constant. This linearity relation is illustrated by the results of a measurement in which the reactor power has been controlled so that the flux becomes a step function.

  11. SkyLine and SkyGas: Novel automated technologies for automatic GHG flux measurements

    NASA Astrophysics Data System (ADS)

    Ineson, Philip; Stockdale, James

    2014-05-01

    1. Concerns for the future of the Earth's climate centre around the anthropogenically-driven continuing increases in atmospheric concentrations of the major 'greenhouse gases' (GHGs) which include CO2, CH4 and N2O. A major component of the global budgets for all three of these gases is the flux between the atmosphere and terrestrial ecosystems. 2. Currently, these fluxes are poorly quantified, largely due to technical limitations associated with making these flux measurements. Whilst eddy covariance systems have greatly improved such measurements at the ecosystem scale, flux measurements at the plot scale are commonly made using labour intensive traditional 'cover box' approaches; technical limitations have frequently been a bottle-neck in producing adequate and appropriate GHG flux data necessary for making land management decisions. For example, there are almost no night time flux data for N2O fluxes, and frequently such data are only measured over bare soil patches. 3. We have been addressing the design of novel field equipment for the automation of GHG flux measurements at the chamber and plot scale and will present here some of the technical solutions we have developed. These solutions include the development of the SkyLine and SkyGas approaches which resolve many of the common problems associated with making high frequency, sufficiently replicated GHG flux measurements under field conditions. 4. Unlike most other automated systems, these technologies 'fly' a single chamber to the measurement site, rather than have multiple replicated chambers and analysers. We will present data showing how such systems can deliver high time and spatial resolution flux data, with a minimum of operator intervention and, potentially, at relatively low per plot cost. We will also show how such measurements can be extended to monitoring fluxes from freshwater features in the landscape.

  12. Measuring Mars Sand Flux Seasonality from a Time Series of Hirise Images

    NASA Astrophysics Data System (ADS)

    Ayoub, F.; Avouac, J.; Bridges, N. T.; Leprince, S.; Lucas, A.

    2012-12-01

    The volumetric transport rate of sand, or flux, is a fundamental quantity that relates to the rate of landscape evolution through surface deposition and erosion. Measuring this quantity on Mars is particularly relevant as wind is the dominant geomorphic agent active at present on the planet. Measuring sand flux on Mars has been made possible thanks to the availability of times series of high resolution images acquired by the High Resolution Imaging Science Experiment (HiRISE) and precise image registration and correlation methods which permits the quantification of movement to sub-pixel precision. In this study, focused on the Nili Patera dune field, we first measured the migration rate of sand ripples and dune lee fronts over 105 days, using a pair of HiRISE images acquired in 2007, correlated and co-registered with COSI-Corr. From these measurements and the estimation of the ripple and dune heights, we derived the reptation and saltation sand fluxes. We next applied the same methodology to a time-series of eight images acquired in 2010-2011 covering one Mars year. Pairs of sequential images, were processed with COSI-Corr yielding a times series of 8 displacement maps. A Principal Component Analysis (PCA) was applied to the time-series to quantify more robustly the time evolution of the signal and filter out noise, in particular due to misalignment of CCDs. Using the first two components, which account for 84% of the variance, the seasonal variation of the ripple migration rate was estimated. We clearly observe continuously active migration throughout the year with a strong seasonal quasi-sinusoidal variation which peaks at perihelion. Ripple displacement orientation is stable in time, toward ~N115°E. The wind direction is thus relatively constant in this area, a finding consistent with the barchan morphology and orientation of the dunes. The dataset require that sand moving winds must occur daily to weekly throughout the year. The amplitude of the seasonal

  13. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  14. Estimation of hydrocarbon biodegradation rates in gasoline-contaminated sediment from measured respiration rates

    USGS Publications Warehouse

    Baker, R.J.; Baehr, A.L.; Lahvis, M.A.

    2000-01-01

    An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the

  15. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  16. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, Robert V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

  17. Characteristics of microbial volatile organic compound flux rates from soil and plant litter

    NASA Astrophysics Data System (ADS)

    Gray, C. M.; Fierer, N.

    2013-12-01

    Our knowledge of microbial production and consumption of volatile organic compounds (VOCs) from soil and litter, as well as which microorganisms are involved, is relatively limited compared to what we know about VOC emissions from terrestrial plants. With climate change expecting to alter plant community composition, nitrogen (N) deposition rates, mean annual temperatures, precipitation patterns, and atmospheric VOC concentrations, it is unknown how microbial production and consumption of VOCs from litter and soil will respond. We have spent the last 5 years quantifying VOC flux rates in decaying plant litter, mineral soils and from a subalpine field site using a proton transfer reaction mass spectrometer (PTR-MS). Microbial production, relative to abiotic sources, accounted for 78% to 99% of the total VOC emissions from decomposing litter, highlighting the importance of microbial metabolisms in these systems. Litter chemistry correlated with the types of VOCs emitted, of which, methanol was emitted at the highest rates from all studies. The net emissions of carbon as VOCs was found to be up to 88% of that emitted as CO2 suggesting that VOCs likely represent an important component of the carbon cycle in many terrestrial systems. Nitrogen additions drastically reduced VOC emissions from litter to near zero, though it is still not understood whether this was due to an increase in consumption or a decrease in production. In the field, the root system contributed to 53% of the carbon that was emitted as VOCs from the soil with increasing air temperatures correlating to an increase in VOC flux rates from the soil system. Finally, we are currently utilizing next generation sequencing techniques (Illumina MiSeq) along with varying concentrations of isoprene, the third most abundant VOC in the atmosphere behind methane and methanol, above soils in a laboratory incubation to determine consumption rates and the microorganisms (bacteria, archaea and fungi) associated with the

  18. Remote Measurement of Heat Flux from Power Plant Cooling Lakes

    SciTech Connect

    Garrett, Alfred J.; Kurzeja, Robert J.; Villa-Aleman, Eliel; Bollinger, James S.; Pendergast, Malcolm M.

    2013-06-01

    Laboratory experiments have demonstrated a correlation between the rate of heat loss q" from an experimental fluid to the air above and the standard deviation σ of the thermal variability in images of the fluid surface. These experimental results imply that q" can be derived directly from thermal imagery by computing σ. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q" and σ when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- and helicopter-based imagery collections had correlation coefficients between σ and q" of 0.45 and 0.76, respectively. Values of q" computed from a function of σ and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q" (0.84 and 0.89). Finally, this research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.

  19. Measuring the energy flux at the substrate position during magnetron sputter deposition processes

    SciTech Connect

    Cormier, P.-A.; Thomann, A.-L.; Dussart, R.; Semmar, N.; Mathias, J.; Balhamri, A.; Snyders, R.; Konstantinidis, S.

    2013-01-07

    In this work, the energetic conditions at the substrate were investigated in dc magnetron sputtering (DCMS), pulsed dc magnetron sputtering (pDCMS), and high power impulse magnetron sputtering (HiPIMS) discharges by means of an energy flux diagnostic based on a thermopile sensor, the probe being set at the substrate position. Measurements were performed in front of a titanium target for a highly unbalanced magnetic field configuration. The average power was always kept to 400 W and the probe was at the floating potential. Variation of the energy flux against the pulse peak power in HiPIMS was first investigated. It was demonstrated that the energy per deposited titanium atom is the highest for short pulses (5 {mu}s) high pulse peak power (39 kW), as in this case, the ion production is efficient and the deposition rate is reduced by self-sputtering. As the argon pressure is increased, the energy deposition is reduced as the probability of scattering in the gas phase is increased. In the case of the HiPIMS discharge run at moderate peak power density (10 kW), the energy per deposited atom was found to be lower than the one measured for DCMS and pDCMS discharges. In these conditions, the HiPIMS discharge could be characterized as soft and close to a pulsed DCMS discharge run at very low duty cycle. For the sake of comparison, measurements were also carried out in DCMS mode with a balanced magnetron cathode, in the same working conditions of pressure and power. The energy flux at the substrate is significantly increased as the discharge is generated in an unbalanced field.

  20. Anthropogenic and Biogenic Features of Long-Term Measured CO Flux in North Downtown Houston, Texas.

    PubMed

    Park, Changhyoun; Schade, Gunnar W

    2016-01-01

    Long-term urban carbon cycle studies remain rare despite the importance of carbon for energy, air quality, and climate change. To study spatial and temporal variations of energy and carbon fluxes in a subtropical urban environment, eddy covariance flux measurements were conducted north of downtown Houston, TX, using a tall radio-tower installation. The results of the first 2 yr of measurements show that both concentrations and fluxes of CO display typical seasonal and diurnal variations in urban areas. The seasonal variation of net CO flux is driven by steady anthropogenic emissions dominated by car traffic and human respiration, moderated by the local deciduous tree foliage. Weekday-weekend differences were observed in carbon fluxes, but not concentrations, while diurnal changes were dominated by rush-hour peaks from traffic and vegetation influences. Interestingly, CO and CO concentrations, but not CO flux, exhibited long-term declines, especially comparing pre- and post-Hurricane Ike periods. A directional analysis of CO fluxes revealed that the highest fluxes typically occurred from northwest directions, most likely due to emissions from small industrial sources. Car traffic as carbon source was revealed via correlations of CO with CO during the morning rush hours, and of CO flux with traffic counts during winter time. The influence of urban vegetation on net CO fluxes was identified via correlations with daytime photosynthetically active radiation due to photosynthesis, and with nighttime temperatures due to ecosystem respiration. The study site is a net source of CO throughout all seasons. PMID:26828181

  1. The home-made in situ passive flux sampler for the measurement of monoterpene emission flux: preliminary studies.

    PubMed

    Marć, Mariusz; Namieśnik, Jacek; Zabiegała, Bożena

    2015-09-01

    The paper presents the construction and metrological characteristics of the home-made in situ passive flux sampler, an analytical tool representing small-scale emission chambers working in situ and passively sampling analytes from the gaseous phase. The sorption element was a cylindrical container made of stainless steel net, packed with a carbon sorbent bed-graphitized charcoal, Carbograph 4 (35/50 mesh). The recommended working/exposure time of the constructed passive device was determined by carrying out model tests in the laboratory. In addition, a preliminary study was conducted to determine the rate of the emission flux of selected monoterpenes released from the surface of wood-based indoor materials (laminated chipboard) used in residential areas. PMID:26116240

  2. Rn-222 tracing and stable isotope measurements of biogenic gas fluxes from methane saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Green, C. D.; Blair, Neal; Chanton, J. P.

    1985-01-01

    Transport of reduced biogenic gases from anoxic sediments and soils to the atmosphere can be quantitatively studied through measurement of radon-222/radium-226 disequilibrium. In previous work, seasonal variations in biogenic gas transport mechanisms, net fluxes and overall composition were documented. Now presented are direct field measurements of radon-222 activity in gases exiting organic rich sediments which show their usefulness for tracing of the stripping of dissolved biogenic gases from within the sediment column and transport via bubble ebullition. Methane is depleted in deuterium during the summer as compared with winter months and is in general lighter than in most marine sediments signaling the probable importance of acetate as an important precursor molecule. The significant seasonal isotopic variations observed illustrate the importance of understanding mechanisms and rates of biogenic gas production in order to interpret observed tropospheric isotopic data.

  3. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    SciTech Connect

    Wohlfahrt, G.; Amelynck, C.; Ammann, Christof; Arneth, A.; Bamberger, Ines; Goldstein, Allen H.; Gu, Lianhong; Guenther, Alex B.; Hansel, A.; Heinesch, B.; Holst, Thomas; Hortnagl, Lukas; Karl, T.; Laffineur, Q.; Neftel, Albrecht; McKinney, Karena; Munger, William; Pallardy, Stephen G.; Schade, Gunner W.; Seco, Roger; Schoon, N.

    2015-07-09

    We present field observations made in June 2011 downwind of Dallas-Fort Worth, TX, and evaluate the role of stabilized Criegee radicals (sCIs) in gaseous sulfuric acid (H2SO4) production. Zero-dimensional model calculations show that sCI from BVOCs composed the majority of the sCIs. The main uncertainty associated with an evaluation of H2SO4 production from the sCI reaction channel is the lack of experimentally determined reaction rates for sCIs formed from isoprene ozonolysis with SO2. In general, the maximum of H2SO4 production from the sCI channel is found in the late afternoon as ozone increases towards the late afternoon. The sCI channel, however, contributes minor H2SO4 production compared with the conventional OH channel. Finally, The production and the loss rates of H2SO4 are compared. The application of the recommended mass accommodation coefficient causes significant overestimation of H2SO4 loss rates compared with H2SO4 production rates. On the other hand, the application of a lower experimental value for the mass accommodation coefficient provides good agreement between the loss and production rates of H2SO4. The results suggest that the recommended coefficient for the H2O surface may not be suitable for this relatively dry environment.

  4. Hydroacoustic and spatial analysis of sediment fluxes and accumulation rates in two Virginia reservoirs, USA.

    PubMed

    Clark, E V; Odhiambo, B K; Yoon, S; Pilati, L

    2015-06-01

    Watershed sediment fluxes and reservoir sediment accumulation rates were analyzed in two contrasting reservoir systems in central and western Virginia. Lake Pelham, located in the Piedmont geologic province, is a human-impacted reservoir with a watershed dominated by agricultural, residential and industrial land uses. Conversely, Lake Moomaw has a largely undeveloped watershed characterized by very steep slopes and forested land use located in the Valley and Ridge province. The Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratios (SDRs) were used to estimate soil losses in the two watersheds. Bathymetric and sediment accumulation surveys of the two reservoirs were also conducted using a multi-frequency hydroacoustic surveying system. The RUSLE/SDR erosion model estimates 2150 kg ha(-1) year(-1) for Lake Pelham and 2720 kg ha(-1) year(-1) for Lake Moomaw, a 410 and 13 % increase from assumed pristine (100 % forested) land use for the respective basins. Mean sediment accumulation rates of 1.51 and 0.60 cm year(-1) were estimated from the hydroacoustic survey of Lake Pelham and Lake Moomaw, respectively. Overall, Lake Moomaw has relatively low sediment accumulation rates; however, the reservoir is vulnerable to increases in sediment fluxes with further human development due to the steep slopes and highly erodible colluvial soils that characterize the basin. Higher erosion and sediment accumulation rates in Lake Pelham are most likely reflecting the impact of human development on sedimentation processes, where the loss of vegetal buffers and increase in impervious surfaces exacerbates both the surficial soil losses as well as intrinsic stream sediment production leading to the current annual reservoir capacity loss of 0.4 %. PMID:25563837

  5. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    NASA Astrophysics Data System (ADS)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2015-01-01

    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring until winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinacea, L.), a perennial bioenergy crop in eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O / CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emissions, lasting for about 2 weeks after fertilization in late May, was characterized by an up to 2 orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.01 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O / CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced the cumulatively highest N2O estimates (with 29% higher values during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reasons for systematic differences were not identified, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and any other factors that can systematically affect the accuracy of flux measurements. The instrument CW-TILDAS-CS was characterized by the lowest noise level (with a standard deviation of around 0.12 ppb at 10 Hz sampling rate) as compared to N2O / CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). We identified that for all instruments except CW-TILDAS-CS the random error due to instrumental noise was an important source of uncertainty at the 30 min averaging level and the total stochastic error was frequently

  6. Evaluation and gap-filling of soil NO flux dataset measured at a Hungarian semi-arid grassland

    NASA Astrophysics Data System (ADS)

    Horvath, Laszlo; Hidy, Dora; Weidinger, Tamas

    2015-04-01

    An Integrated Project ÉCLAIRE (http://www.eclaire-fp7.eu/) started in 2011 among others to study the effect of climate change on air pollution impacts. One of the main measurement tasks of this project was the continuous monitoring of soil NO emission at different kinds of lands (forest, arable, grass). Among the tree grass stations Bugacpuszta (central part of Hungary between the Danube and the Tisza) was selected to monitor and report soil NO fluxes continuously for 17 months on hourly basis. The climate is semi-arid temperate continental, the mean annual temperature is 10.7 ° C, and the average annual precipitation is around 550 mm. Nitric oxide soil emission flux was measured by 2-2 parallel manual and auto dynamic chambers on hourly basis above a semi-arid, sandy grassland between August 2012 and January 2014. Each chamber was sampled for 10 minutes at a flow rate of 2 L min-1 in sequence each hour all together for 40 minutes; in the remaining 20 minutes concentration gradients were measured by a mast at two heights. Soil temperature and moisture were measured a few meters apart from the chambers. A computer controlled valve system was switched the different channels in turn. The output concentrations of nitric oxide and ozone were measured by HORIBA gas monitors through Teflon tubing. Micrometeorological measurements (energy budget components, CO2 and O3 fluxes) were also provided. The initial NO flux datasets covered 43-85% of time period depending on chambers. Measured flux data ranges within 0-6 nmol m-2 s-1. We applied a gap-filling method based on multivariable analysis (Sigma Plot) combined with maximum likelihood method using the soil temperature and moisture data. Trend of gap-filled flux dataset shows large peaks mostly in summer and early fall. When soil parameters are far from the optimum (dry, warm conditions) the fluxes are negligible. Application of manual chambers closed for longer period results in substantial positive bias in flux

  7. Combined FTIR-micrometeorological techniques for long term measurements of greenhouse gas fluxes from agriculture

    NASA Astrophysics Data System (ADS)

    Petersen, A. K.; Griffith, D.; Harvey, M.; Naylor, T.; Smith, M.

    2009-04-01

    The exchange of trace gases between the biosphere and the atmosphere affects the atmospheric concentrations of gases such as methane, carbon dioxide, nitrous oxide, carbon monoxide, ammonia, volatile organic compounds, nitrogen dioxide and others. The quantification of the exchange between a biogenic system and the atmosphere is necessary for the evaluation of the impact of these interactions. This is of special interest for agricultural systems which can be sources or sinks of trace gases, and the measurement of the fluxes is necessary when evaluating both the environmental impact of agricultural activities and the impact of atmospheric pollution on agricultural production and sustainability. With the exception of CO2, micrometeorological measurements of the fluxes of greenhouse gases from agricultural activities are still mostly possible only in campaign mode due to the complexity and logistical requirements of the existing measurement techniques. This limitation precludes studies of fluxes which run for longer periods, for example over full seasonal or growing cycles for both animal- and crop-based agriculture. We have developed an instrument system for long-term flux measurements through a combination of micrometeorological flux measurement techniques such as Relaxed Eddy Accumulation (REA) and Flux-Gradient (FG) with the high precision multi-species detection capabilities of FTIR spectroscopy. The combined technique is capable of simultaneous flux measurements of N2O, CH4 and CO2 at paddock to regional scales continuously, over longer terms (months, seasonal cycles, years). The system was tested on a 3 weeks field campaign in NSW, Australia on a flat, homogeneous circular grass paddock with grazing cattle. The flux of the atmospheric trace gas CO2 was measured with three different micrometeorological techniques: Relaxed Eddy Accumulation, Flux-Gradient, and Eddy Correlation. Simultaneously, fluxes of CH4 and N2O were measured by REA and FG technique.

  8. A comparison of methods for deriving solute flux rates using long-term data from streams in the mirror lake watershed

    USGS Publications Warehouse

    Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.

    1998-01-01

    Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.

  9. Satellite Angular Rate Estimation From Vector Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    1996-01-01

    This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.

  10. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    NASA Astrophysics Data System (ADS)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2014-08-01

    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring till winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinaceae, L.), a perennial bioenergy crop in Eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O/CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emission, lasting for about two weeks after fertilization in late May, was characterised by an up to two orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.1 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O/CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced cumulatively highest N2O estimates (with 29% higher value during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reason for these episodic higher and lower estimates by the two instruments is not currently known, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and, in particular, simultaneous accurate determination of water vapour concentration due to its large impact on small N2O fluxes through spectroscopic and dilution corrections. The instrument CW-TILDAS-CS was characterised by the lowest noise level (std around 0.12 ppb at 10 Hz sampling rate), as compared to N2O/CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). Both instruments based on Continuous-Wave Quantum Cascade Lasers, CW-TILDAS-CS and N2O/CO-23d, were able to determine

  11. Soil Greenhouse Gas Flux Measurements in a Pacific Northwestern Douglas-fir Forest

    NASA Astrophysics Data System (ADS)

    Hawthorne, I.; Johnson, M. S.; Jassal, R.; Black, T. A.; Webster, C.

    2012-04-01

    Forests and forest soils are dynamic sources and sinks for greenhouse gases (GHG). Climate and management practices can impact the GHG balance of a forest. Motivated by the contemporary scientific understanding of climate change, carbon (C) cycle studies to date have largely been concerned with carbon dioxide (CO2) fluxes. Methane (CH4) and nitrous oxide (N2O) are less abundant trace gases, but with large greenhouse warming potentials and differing lifetimes in the atmosphere, CH4 and N2O are also significant global warming contributors, warranting careful consideration when trying to determine complete GHG balances. Soil fluxes of CO2, CH4 and N2O were measured at a Pacific Northwestern Douglas-fir forest on Vancouver Island, BC, Canada (49o 52' N, 125o 20' W). Samples were syringe collected (0, 3, 10, 20, 30 min) and transferred to pre-evacuated 12-ml vials (Exetainers, Labco Limited, Buckinghamshire, UK) once a month (Oct-Dec, 2011) from each of 16 closed-chambers in order to determine soil GHG flux rates. Samples were analysed using an Agilent 7890A Gas Chromatography (GC) system for CO2 and CH4 using a Flame Ionisation Detector (FID) with methanizer, and for N2O using an Electron Capture Detector (ECD). Resulting data were analysed using the HMR package implemented with the R language for statistical computing to determine the best fit for flux estimation considering linear and non-linear Hutchinson and Mosier models. The presence of outliers and questionable features in the data resulted in the need for careful data screening. Initial results suggest that the CH4sink strength of these soils decrease during the cooling and increasingly wet autumn to winter months (3.6-2.6 μmol m-2hr-1). Low concentrations of N2O made it difficult to quantify any emissions (0.15-0.05 μmol m-2hr-1), while CO2 was emitted to the atmosphere (2.05-0.75 μmol m-2s-1). Monthly results for Jan-Mar 2012 will be included. Results of CO2 fluxes measured by GC using the closed

  12. Measured and simulated nitrogen fluxes after field application of food-processing and municipal organic wastes.

    PubMed

    Parnaudeau, V; Génermont, S; Hénault, C; Farrugia, A; Robert, P; Nicolardot, B

    2009-01-01

    The aims of this study were to (i) assess N fluxes (mineralization, volatilization, denitrification, leaching) caused by spreading various organic wastes from food-processing industries during a field experiment, and (ii) to identify the main factors affecting N transformation processes after field spreading. Experimental treatments including the spreading of six types of waste and a control soil were set up in August 2000 and studied for 22 mo under bare soil conditions. Ammonia and nitrous oxide emissions, and nitrogen mineralization were measured in experimental devices and extrapolated to field conditions or computed in calculation models. The ammonia emissions varied from 80 to 580 g kg(-1) NH4+-N applied, representing 0 to 90 g N kg(-1) total N applied. Under these meteorologically favorable conditions (dry and warm weather), waste pH was the main factor affecting volatilization rates. Cumulated N2O-N fluxes were estimated at 2 to 5 g kg(-1) total N applied, which was quite low due to the low soil water content during the experimental period; water-filled pore space (WFPS) was confirmed as the main factor affecting N2O fluxes. Nitrogen mineralization from wastes represented 126 to 723 g N kg(-1) organic N added from the incorporation date to 14 May 2001 and was not related to the organic C to organic N ratio of wastes. Nitrogen lost by leaching during the equivalent period ranged from 30 to 890 g kg(-1) total N applied. The highest values were obtained for wastes having the highest inorganic N content and mineralization rates. PMID:19141817

  13. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  14. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    SciTech Connect

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  15. Comparative soil CO2 flux measurements and geostatisticalestimation methods on masaya volcano, nicaragua

    SciTech Connect

    Lewicki, J.L.; Bergfeld, D.; Cardellini, C.; Chiodini, G.; Granieri, D.; Varley, N.; Werner, C.

    2004-04-27

    We present a comparative study of soil CO{sub 2} flux (F{sub CO2}) measured by five groups (Groups 1-5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1-5 measured F{sub CO2} using the accumulation chamber method at 5-m spacing within a 900 m{sup 2} grid during a morning (AM) period. These measurements were repeated by Groups 1-3 during an afternoon (PM) period. All measured F{sub CO2} ranged from 218 to 14,719 g m{sup -2}d{sup -1}. Arithmetic means and associated CO{sub 2} emission rate estimates for the AM data sets varied between groups by {+-}22%. The variability of the five measurements made at each grid point ranged from {+-}5 to 167% and increased with the arithmetic mean. Based on a comparison of measurements made by Groups 1-3 during AM and PM times, this variability is likely due in large part to natural temporal variability of gas flow, rather than to measurement error. We compared six geostatistical methods (arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods) to estimate the mean and associated CO{sub 2} emission rate of one data set and to map the spatial F{sub CO2} distribution. While the CO{sub 2} emission rates estimated using the different techniques only varied by {+-}1.1%, the F{sub CO2} maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of F{sub CO2} and is most appropriate for volcano monitoring applications.

  16. Demonstration of HNO3 Eddy Flux Measurements at the Boulder Atmospheric Observatory Using Active Passivation

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Herndon, S. C.; Zahniser, M. S.; Nelson, D. D.; Zaragoza, J.; Pollack, I. B.; Fischer, E. V.

    2015-12-01

    Eddy flux measurements of "sticky" molecules have historically proven difficult due to strong interactions with instrument surfaces. A novel approach has been developed to improve these response times, enabling flux measurements of nitric acid (HNO3) and and ammonia (NH3). Deliberate addition of the vapor of perfluorinated acids and bases into a sample stream serves to eject existing surface-bound sample molecules and passivate instrument surfaces. HNO3 response times for an Aerodyne quantum cascade laser absorption spectrometer (QCLAS) improve by a factor of 60-fold when actively passivating. This approach was used during field measurements of HNO3 fluxes at the Boulder Atmospheric Observatory, where an actively passivated inertial inlet at 8 m height yielded HNO3 deposition fluxes of 0.5 - 2 nmol/m2/sec. The dependence of the deposition flux upon urban vs rural outflow is discussed.

  17. A comparison of six methods for measuring soil-surface carbon dioxide fluxes

    USGS Publications Warehouse

    Norman, J.M.; Kucharik, C.J.; Gower, S.T.; Baldocchi, D.D.; Crill, P.M.; Rayment, M.; Savage, K.; Striegl, R.G.

    1997-01-01

    Measurements of soil-surface CO2 fluxes are important for characterizing the carbon budget of boreal forests because these fluxes can be the second largest component of the budget. Several methods for measuring soil-surface CO2 fluxes are available: (1) closed-dynamic-chamber systems, (2) closed-static-chamber systems, (3) open-chamber systems, and (4) eddy covariance systems. This paper presents a field comparison of six individual systems for measuring soil-surface CO2 fluxes with each of the four basic system types represented. A single system is used as a reference and compared to each of the other systems individually in black spruce (Picea mariana), jack pine (Pinus banksiana), or aspen (Populus tremuloides) forests. Fluxes vary from 1 to 10 ??mol CO2 m-2 s-1. Adjustment factors to bring all of the systems into agreement vary from 0.93 to 1.45 with an uncertainty of about 10-15%.

  18. Sensible heat bias in open-path eddy covariance carbon dioxide flux measurements

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Helbig, M.; Karoline, W.; Humphreys, E.; Quinton, W. L.; Bogoev, I.

    2015-12-01

    The widely observed differences between net carbon dioxide (CO2) flux estimates derived from eddy covariance systems deploying open- and closed-path infrared gas analyzers (IRGAs) pose a major challenge for site intercomparison studies. Our limited knowledge about potential systematic biases in the derivation of CO2 flux estimates by these two types of systems hampers our ability to detect significant differences in CO2 flux measurements made at contrasting ecosystems. Here we explore potential systematic biases in CO2 fluxes measured with two open-path IRGAs. Comparison of fluxes from open- (EC150 & IRGASON, Campbell Scientific Inc.) and (en)closed-path IRGAs (LI7000 & LI7200, LI-COR Biosciences) at a northern peatland and a northern boreal forest site revealed consistent differences in CO2 flux estimates across a wide range of environmental conditions. These differences directly scaled with the magnitude of the sensible heat flux indicating a selectively systematic bias in open-path CO2 flux measurements due to the temperature sensitivity of the CO2 density measurements. We present two empirical correction procedures: the "direct" approach requires data from a limited period of concurrent CO2 flux measurements by open- and closed-path IRGA-based eddy covariance systems, whereas the second approach only requires wintertime CO2 flux data from the open-path IRGA. The "direct" approach effectively removes the bias in the open-path CO2 flux measurements and results in remaining differences with the closed-path CO2 fluxes smaller than 0.5 µmol m-2 s-1. In contrast, the "wintertime" approach seems to overcompensate for the sensible heat effects with differences remaining between 0.9 µmol m-2 s-1 and 1.8 µmol m-2 s-1. When a high-frequency air temperature is used to compensate for the temperature sensitivity of the CO2 density measurements, open- and closed-path CO2 flux agree within ±0.5 µmol m-2 s-1, similar to the "direct" post-processing correction. These

  19. Time and Space Resolved Wall Temperature Measurements during Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Yerramilli, Vamsee K.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work is to acquire time and space resolved temperature distributions under nucleate bubbles on a constant heat flux surface. This was performed using a microheater array with 100 micron resolution that allowed effectively simultaneous measurements of surface temperature while supplying a constant dissipative heat flux. This data is then correlated with high speed (> 1000Hz) visual recordings of the bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that a significant source of energy during bubble nucleation and initial growth is the superheated layer around the bubble. Bubble coalescence was not observed to decrease surface temperature as significantly as bubble departure from the surface. Since bubble departure is typically followed by a sharp increase in the heater surface temperature, it is surmised that the departing bubble effectively removes the superheated layer, allowing a high local heat transfer rate with the bulk fluid through transient conduction/micro-convection during rewetting.

  20. Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory

    SciTech Connect

    Richardson, Jeremy O. Thoss, Michael

    2014-08-21

    There is currently much interest in the development of improved trajectory-based methods for the simulation of nonadiabatic processes in complex systems. An important goal for such methods is the accurate calculation of the rate constant over a wide range of electronic coupling strengths and it is often the nonadiabatic, weak-coupling limit, which being far from the Born-Oppenheimer regime, provides the greatest challenge to current methods. We show that in this limit there is an inherent sign problem impeding further development which originates from the use of the usual quantum flux correlation functions, which can be very oscillatory at short times. From linear response theory, we derive a modified flux correlation function for the calculation of nonadiabatic reaction rates, which still rigorously gives the correct result in the long-time limit regardless of electronic coupling strength, but unlike the usual formalism is not oscillatory in the weak-coupling regime. In particular, a trajectory simulation of the modified correlation function is naturally initialized in a region localized about the crossing of the potential energy surfaces. In the weak-coupling limit, a simple link can be found between the dynamics initialized from this transition-state region and an generalized quantum golden-rule transition-state theory, which is equivalent to Marcus theory in the classical harmonic limit. This new correlation function formalism thus provides a platform on which a wide variety of dynamical simulation methods can be built aiding the development of accurate nonadiabatic rate theories applicable to complex systems.

  1. Increasing fluxes of S5 1044+71 measured with RATAN-600 radio telescope

    NASA Astrophysics Data System (ADS)

    Trushkin, S. T.; Mingaliev, M. G.; Sotnikova, Yu. V.; Erkenov, A.; Udovitskij, R. Yu.; Mufakharov, T. V.

    2014-02-01

    We report about the growing fluxes of the quasar S5 1044+71, identified with the FERMI source 2FGL J1048.3+714, since detection of the high state in the rest of January 2014 (ATEL #5792). We continue measurements and again detect the increase of the flux densities at frequencies 8.2-21.7 GHz in February.

  2. Balloon-borne measurements of the ultraviolet flux in the Arctic stratosphere during winter

    NASA Technical Reports Server (NTRS)

    Schiller, Cornelius; Mueller, Martin; Klein, Erich; Schmidt, Ulrich; Roeth, Ernst-Peter

    1994-01-01

    Filter radiometers sensitive from 280 to 320 nm and from 280 to 400 nm, respectively, were used for measurements of the actinic flux in the stratosphere. Since the instruments are calibrated for absolute spectral sensitivity the data can be compared with model calculations of the actinic flux. Data were obtained during seven balloon flights during the European Arctic Stratospheric Ozone Experiment (EASOE).

  3. A comparison of measured and modeled turbulent fluxes over snow based on site characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensible and latent heat and mass flux represent a significant component of the snowcover energy and mass balance in mountain environments. Though these fluxes are computed in energy balance snow models, limited measurements exist for comparison or validation in complex, mountainous sites. Sensibl...

  4. An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snow-covered complex terrain is an extremely important runoff generating landscape in high altitude and latitude environments, yet is often considered non-viable for eddy covariance measurements of turbulent fluxes. Turbulent flux data are useful for evaluating the coupled snow cover mass and energ...

  5. Enhancing the precision and accuracy within and among AmeriFlux site measurements

    SciTech Connect

    Law, Bev

    2013-11-25

    This is the final report for AmeriFlux QA/QC at Oregon State University. The major objective of this project is to contribute to the AmeriFlux network by continuing to build consistency in AmeriFlux measurements by addressing objectives stated in the AmeriFlux strategic plan and self evaluation, the North American Carbon Program, and the US Carbon Cycle Science Program. The project directly contributes to NACP and CCSP goals to establish an integrated, near-real time network of observations to inform climate change science.

  6. Absolute beam flux measurement at NDCX-I using gold-melting calorimetry technique

    SciTech Connect

    Ni, P.A.; Bieniosek, F.M.; Lidia, S.M.; Welch, J.

    2011-04-01

    We report on an alternative way to measure the absolute beam flux at the NDCX-I, LBNL linear accelerator. Up to date, the beam flux is determined from the analysis of the beam-induced optical emission from a ceramic scintilator (Al-Si). The new approach is based on calorimetric technique, where energy flux is deduced from the melting dynamics of a gold foil. We estimate an average 260 kW/cm2 beam flux over 5 {micro}s, which is consistent with values provided by the other methods. Described technique can be applied to various ion species and energies.

  7. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    PubMed

    Singh, Ajay V; Gollner, Michael J

    2016-01-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827

  8. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames

    PubMed Central

    Singh, Ajay V.; Gollner, Michael J.

    2016-01-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827

  9. Measuring Methane Emissions from Industrial and Waste Processing Sites Using the Dual Tracer Flux Ratio Method

    NASA Astrophysics Data System (ADS)

    Herndon, S.; Floerchinger, C.; Roscioli, J. R.; Yacovitch, T.; Franklin, J. P.; Shorter, J. H.; Kolb, C. E.; Subramanian, R.; Robinson, A. L.; Molina, L. T.; Allen, D.

    2013-12-01

    In order to directly quantify facility scale methane emissions during recent multi-state measurement campaigns we have deployed novel tracer release emission characterization approaches to investigate a wide variety of facility types. The development and application of a dual tracer flux ratio methodology will be discussed. Using known release rates of two (or more) inert tracer species, downwind methane plume measurements can be used to quantify and evaluate the uncertainty in known releases and unknown emissions of methane. Results from experiments designed to challenge the experimental methodology will be presented, which determined that for downwind sampling distances in excess of ~200 m, the dual tracer release method is quite robust (<20% emission rate error) under many atmospheric conditions and landscape variations. At downwind distances less than ~200 m, the assumption of equivalent dispersion between spatially separated release points can break down. For some facilities, this can be used to distinguish and estimate the magnitude of methane emissions taking place at different spatial points within the facility. Measured emissions for selected facilities will be presented and, where possible, the accurate quantification of the episodic releases during specific activities, as well as continuous fugitive emissions are identified and will be discussed . Collaboration with on-site operators allows these measurements to inform the design and implementation of effective mitigation strategies.

  10. Measurement of the Magnetic Flux Noise Spectrum in Superconducting Xmon Transmon Quantum Bits

    NASA Astrophysics Data System (ADS)

    Chiaro, Ben; Sank, D.; Kelly, J.; Chen, Z.; Campbell, B.; Dunsworth, A.; O'Malley, P.; Neill, C.; Quintana, C.; Vainsencher, A.; Wenner, J.; Barends, R.; Chen, Y.; Fowler, A.; Jeffrey, E.; Migrant, A.; Mutus, J.; Roushan, P.; White, T.; Martinis, J. M.

    Dephasing induced by magnetic flux noise limits the performance of modern superconducting quantum processors. We measure the flux noise power spectrum in planar, frequency-tunable, Xmon transmon quantum bits (qubits), with several SQUID loop geometries. We extend the Ramsey Tomography Oscilloscope (RTO) technique by rapid sampling up to 1 MHz, without state reset, to measure the flux noise power spectrum between 10-2 and 105 Hz. The RTO measurements are combined with idle gate randomized benchmarking and Ramsey decay to give a more complete picture of dephasing in SQUID-based devices.

  11. Measuring eddy covariance fluxes of ozone with a slow-response analyser

    PubMed Central

    Wohlfahrt, Georg; Hörtnagl, Lukas; Hammerle, Albin; Graus, Martin; Hansel, Armin

    2013-01-01

    Ozone (O3) fluxes above a temperate mountain grassland were measured by means of the eddy covariance (EC) method using a slow-response O3 analyser. The resultant flux loss was corrected for by a series of transfer functions which model the various sources of high- and, in particular, low-pass filtering. The resulting correction factors varied on average between 1.7 and 3.5 during night and day time, respectively. A cospectral analysis confirmed the accuracy of this approach. O3 fluxes were characterised by a comparatively large random uncertainty, which during daytime typically amounted to 60 %. EC O3 fluxes were compared against O3 flux measurements made concurrently with the flux-gradient (FG) method. The two methods generally agreed well, except for a period between sun rise and early afternoon, when the FG method was suspected of being affected by the presence of photochemical sources/sinks. O3 flux magnitudes and deposition velocities determined with the EC method compared nicely with the available literature from grassland studies. We conclude that our understanding of the causes and consequences of various sources of flux loss (associated with any EC system) has sufficiently matured so that also less-than-ideal instrumentation may be used in EC flux applications, albeit at the cost of relatively large empirical corrections. PMID:24348085

  12. Tropical Controls on the CO2 Atmospheric Growth Rate 2010-2011 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Lee, M.; Menemenlis, D.; Gierach, M. M.; Brix, H.; Gurney, K. R.; Collatz, G. J.; Bousserez, N.; Henze, D. K.

    2014-12-01

    Interannual variations in the atmospheric growth rate of CO2 have been attributed to the tropical regions and the controls are correlated with temperature anomalies. We investigate the spatial drivers of the atmospheric growth rate and the processes controlling them over the exceptional period of 2010-2011. This period was marked by a marked shift from an El Nino to La Nina period resulting in historically high sea surface temperature anomalies in the tropical Atlantic leading to serious droughts in the Amazon. However, in 2011, unusual precipitation in Australia was linked to gross primary productivity anomalies in semi-arid regions. We use satellite observations of CO2, CO, and solar induced fluorescence assimilated into the NASA Carbon Monitoring System Project (CMS-Flux) to attribute the atmospheric growth rate to global, spatially resolved fluxes. This system is based upon observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2­-Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model. The system is used to compute regional tropical and extra-tropical fluxes and quantify the role of biomass burning and gross primary productivity in controlling those fluxes.

  13. Eddy-covariance methane flux measurements over a European beech forest

    NASA Astrophysics Data System (ADS)

    Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander

    2015-04-01

    The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our

  14. Up-scaling methods of greenhouse gas fluxes between the soil and the atmosphere using a measuring tunnel as well as open-path measurement techniques for the flux-gradient method

    NASA Astrophysics Data System (ADS)

    Schäfer, K.; Jahn, C.; Emeis, S.; Wiwiorra, M.; von der Heide, C.; Böttcher, J.; Deurer, M.; Weymann, D.; Schleichardt, A.; Raabe, A.

    2009-09-01

    For up-scaling the emissions of N2O, CO2 and CH4 (GHG) from arable field soils a measuring tunnel for controlled enrichment of released gases was installed at the soil surface covering an area of 495 or 306 m2. The concentrations of GHG and humidity were measured by the path-averaging, multi-component Fourier Transform Infrared (FTIR) absorption spectrometry at an open path of 100 m length across the whole measuring tunnel. During a 2-years-time frame the N2O fluxes between the soil and the atmosphere at the agricultural field varied between 1.0 and 21 µg N2O-N m-2 h-1. These results were compared with N2O emission rates that were simultaneously measured with a conventional closed chamber technique. The resulting N2O fluxes between the soil and the atmosphere of both methods had the same order of magnitude. However, we found an extreme spatial variability of N2O fluxes at the scale of the closed chambers. The hypothesis that an enlargement of the measured soil surface area is an appropriate measure to avoid the problems of up-scaling results of small scale chamber measurements was confirmed by the results obtained with the measuring tunnel. Currently, a non-intrusive emission and flux measurement method at a scale from 100 m up to. 27.000 m2 on the basis of the flux-gradient method (0.50 and 2.70 m height above surface) is developed and tested by means of open-path multi-component measurement methods (FTIR, GHG) and area averaging meteorological measurements (determination of horizontal winds, friction velocity using acoustic tomography). Two campaigns in October 2007 and June 2008 were performed with this new methodology when wind speeds were low. Due to the very low wind speeds and insufficient turbulence for the application of the usual flux-gradient method a new concept introducing the viscosity instead of stability corrections was developed. It requires a direct measurement of the friction velocity and the vertical gradient of the horizontal wind speeds by

  15. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis.

    PubMed

    Cline, Gary W; Pongratz, Rebecca L; Zhao, Xiaojian; Papas, Klearchos K

    2011-11-11

    Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with (31)P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by (13)C NMR isotopomer analysis of the fate of [U-(13)C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media. PMID:22008547

  16. A framework to utilize turbulent flux measurements for mesoscale models and remote sensing applications

    NASA Astrophysics Data System (ADS)

    Babel, W.; Huneke, S.; Foken, T.

    2011-05-01

    Meteorologically measured fluxes of energy and matter between the surface and the atmosphere originate from a source area of certain extent, located in the upwind sector of the device. The spatial representativeness of such measurements is strongly influenced by the heterogeneity of the landscape. The footprint concept is capable of linking observed data with spatial heterogeneity. This study aims at upscaling eddy covariance derived fluxes to a grid size of 1 km edge length, which is typical for mesoscale models or low resolution remote sensing data. Here an upscaling strategy is presented, utilizing footprint modelling and SVAT modelling as well as observations from a target land-use area. The general idea of this scheme is to model fluxes from adjacent land-use types and combine them with the measured flux data to yield a grid representative flux according to the land-use distribution within the grid cell. The performance of the upscaling routine is evaluated with real datasets, which are considered to be land-use specific fluxes in a grid cell. The measurements above rye and maize fields stem from the LITFASS experiment 2003 in Lindenberg, Germany and the respective modelled timeseries were derived by the SVAT model SEWAB. Contributions from each land-use type to the observations are estimated using a forward lagrangian stochastic model. A representation error is defined as the error in flux estimates made when accepting the measurements unchanged as grid representative flux and ignoring flux contributions from other land-use types within the respective grid cell. Results show that this representation error can be reduced up to 56 % when applying the spatial integration. This shows the potential for further application of this strategy, although the absolute differences between flux observations from rye and maize were so small, that the spatial integration would be rejected in a real situation. Corresponding thresholds for this decision have been estimated as

  17. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix M.; Hammerle, Albin; Wohlfahrt, Georg

    2016-04-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing trace gas present in the troposphere at concentrations of around 500 ppt. Recent interest in COS by the ecosystem-physiological community has been sparked by the fact that COS co-diffuses into plant leaves pretty much the same way as carbon dioxide (CO2) does, but in contrast to CO2, COS is not known to be emitted by plants. Thus uptake of COS by vegetation has the potential to be used as a tracer for canopy gross photosynthesis, which cannot be measured directly, however represents a key term in the global carbon cycle. Since a few years, quantum cascade laser absorption spectrometers (QCLAS) are commercially available with the precision, sensitivity and time response suitable for eddy covariance (EC) flux measurements. While there exist a handful of published reports on EC flux measurements in the recent literature, no rigorous investigation of the applicability of QCLAS for EC COS flux measurements has been carried out so far, nor have been EC processing and QA/QC steps developed for carbon dioxide and water vapor flux measurements within FLUXNET been assessed for COS. The aim of this study is to close this knowledge gap, to discuss critical steps in the post-processing chain of COS EC flux measurements and to devise best-practice guidelines for COS EC flux data processing. To this end we collected EC COS (and CO2, H2O and CO) flux measurements above a temperate mountain grassland in Austria over the vegetation period 2015 with a commercially available QCLAS. We discuss various aspects of EC data post-processing, in particular issues with the time-lag estimation between sonic anemometer and QCLAS signals and QCLAS time series detrending, as well as QA/QC, in particular flux detection limits, random flux uncertainty, the interaction of various processing steps with common EC QA/QC filters (e.g. detrending and stationarity tests), u*-filtering, etc.

  18. High slew rate 'channel equalized' DC SQUID flux-locked loop - Concept and simulation

    NASA Astrophysics Data System (ADS)

    Gershenson, Meir; McDonald, Robert J.

    1993-03-01

    The concept of improving conventional dc SQUID flux-locked loop (FLL) performance by applying a channel equalization circuit after the pre-amp, but prior to the demodulation process in order to compensate for bandwidth limitations imposed by conventional dc SQUID impedance matching networks is discussed. The equalization circuit is a bandlimited inverse filter which corrects for the phase and amplitude distortion caused primarily by the dc SQUID impedance matching network. Improvements in the FLL performance were verified with analog circuit simulations in both the time and frequency domains. Using an analog circuit simulator the various subcircuits of the FLL were modeled, and a comparison between a conventional FLL and an equalized one was performed. Computer simulations for the open and closed loop cases were used to quantify the increase in slew rate for the equalized FLL system.

  19. An inter-comparison of surface energy flux measurement systems used during FIFE, 1987

    NASA Technical Reports Server (NTRS)

    Nie, D.; Kanemasu, E. T.; Fritschen, L. J.; Weaver, H.; Smith, E. A.; Verma, S. B.; Field, R. T.; Kustas, W.; Stewart, J. B.

    1990-01-01

    During the first International Satellite Land Surface Climatology Program Field Experiment (FIFE-87), surface energy fluxes were measured at 22 flux sites by nine groups of scientists using different measuring systems. A rover Bowen ratio station was taken to nearly all the flux stations to serve as a reference for estimating the instrument related differences. The rover system was installed within a few meters from the host instrument of a site. Net radiation, Bowen ratio, and latent heat fluxes were compared between the rover and the host for the stations visited. Linear regression analysis was used to examine the relationship between rover measurements and host measurements. These inter-comparisons are needed to examine the influence of instrumentation on measurement uncertainty. Highly significant effects of instrument type were detected from these comparisons. Instruments of the same type showed average differences of less than 5 percent for net radiation, 10 percent for Bowen ratio, and 6 percent for latent heat flux. The corresponding average differences for different types of instruments can be up to 10, 30, and 20 percent respectively. The Didcot net radiometer gave higher net radiation while the Swissteco type showed lower values, as compared to the corrected REBS model. The 4-way components methed and the Thornswaite type give similar values to the REBS. The SERBS type Bowen ratio systems exhibit slightly lower Bowen ratios and thus higher latent heat fluxes, compared to the AZET systems. Eddy correlation systems showed slightly lower latent heat flux in comparison to the Bowen ratio systems.

  20. Measurement of LNAPL flux using single-well intermittent mixing tracer dilution tests.

    PubMed

    Smith, Tim; Sale, Tom; Lyverse, Mark

    2012-01-01

    The stability of subsurface Light Nonaqueous Phase Liquids (LNAPLs) is a key factor driving expectations for remedial measures at LNAPL sites. The conventional approach to resolving LNAPL stability has been to apply Darcy's Equation. This paper explores an alternative approach wherein single-well tracer dilution tests with intermittent mixing are used to resolve LNAPL stability. As a first step, an implicit solution for single-well intermittent mixing tracer dilution tests is derived. This includes key assumptions and limits on the allowable time between intermittent mixing events. Second, single-well tracer dilution tests with intermittent mixing are conducted under conditions of known LNAPL flux. This includes a laboratory sand tank study and two field tests at active LNAPL recovery wells. Results from the sand tank studies indicate that LNAPL fluxes in wells can be transformed into formation fluxes using corrections for (1) LNAPL thicknesses in the well and formation and (2) convergence of flow to the well. Using the apparent convergence factor from the sand tank experiment, the average error between the known and measured LNAPL fluxes is 4%. Results from the field studies show nearly identical known and measured LNAPL fluxes at one well. At the second well the measured fluxes appear to exceed the known value by a factor of two. Agreement between the known and measured LNAPL fluxes, within a factor of two, indicates that single-well tracer dilution tests with intermittent mixing can be a viable means of resolving LNAPL stability. PMID:22489832

  1. Flux threshold measurements of nano-fuzz formation by He-ion beam impact on hot tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Hijazi, H.; Bannnister, M. E.; Garrison, L. M.; Parish, C. M.; Unocic, K. A.

    2015-11-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces using real-time sample imaging of tungsten target emissivity change together with accurate ion-beam flux-profile measurements. The measurements were carried out at the Multicharged Ion Research Facility (MIRF) at ion energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. The energy dependence of three factors contributing to the overall energy dependence, ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were 2-4x1023/m2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. Additional measurements at 100 and 200 keV, using beams from the MIRF HV-platform-based ECR source will be presented. Research sponsored by the LDRD program at ORNL, managed by UT-Battelle for the USDOE, and by the DOE OFES.

  2. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  3. Very narrow band model calculations of atmospheric fluxes and cooling rates

    SciTech Connect

    Bernstein, L.S.; Berk, A.; Acharya, P.K.; Robertson, D.C.

    1996-10-15

    A new very narrow band model (VNBM) approach has been developed and incorporated into the MODTRAN atmospheric transmittance-radiance code. The VNBM includes a computational spectral resolution of 1 cm{sup {minus}1}, a single-line Voigt equivalent width formalism that is based on the Rodgers-Williams approximation and accounts for the finite spectral width of the interval, explicit consideration of line tails, a statistical line overlap correction, a new sublayer integration approach that treats the effect of the sublayer temperature gradient on the path radiance, and the Curtis-Godson (CG) approximation for inhomogeneous paths. A modified procedure for determining the line density parameter 1/d is introduced, which reduces its magnitude. This results in a partial correction of the VNBM tendency to overestimate the interval equivalent widths. The standard two parameter CG approximation is used for H{sub 2}O and CO{sub 2}, while the Goody three parameter CG approximation is used for O{sub 3}. Atmospheric flux and cooling rate predictions using a research version of MODTRAN, MODR, are presented for H{sub 2}O (with and without the continuum), CO{sub 2}, and O{sub 3} for several model atmospheres. The effect of doubling the CO{sub 2} concentration is also considered. These calculations are compared to line-by-line (LBL) model calculations using the AER, GLA, GFDL, and GISS codes. The MODR predictions fall within the spread of the LBL results. The effects of decreasing the band model spectral resolution are illustrated using CO{sub 2} cooling rate and flux calculations. 36 refs., 18 figs., 1 tab.

  4. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    NASA Astrophysics Data System (ADS)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  5. Bedload Transport Rates and Flux Patterns in a Steep Montane Tropical River - Rio Pacuare, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lind, P.; Fonstad, M. A.; McDowell, P. F.

    2015-12-01

    Humid tropical montane rivers convey large magnitude floods that have the potential to mobilize boulder-sized bed material multiple times during a year. In the montane reaches of the Rio Pacuare active boulder deposits with surface areas of up to 300 x 75 meters influence channel form throughout this otherwise hillslope/bedrock confined river. Therefore, rate of bedload sediment flux occurring within and between river segments and reaches provides insight into the geomorphic sensitivity of the system. The study area (78 km) is divided into five river segments based on channel slope and form. The intense discharge regimes of the Rio Pacuare are off-set by the plentiful sediment inputs sourced from upstream, tributaries, and hillslopes, resulting in a system that is predominantly transport-limited. This research presents bedload sediment transport rates and annual yields calculated at seven representative field sites distributed throughout the study area. Results indicate that the D50 and D84 grain-size fractions are mobilized frequently (annual rate is dependent on timing and frequency of precipitation events). Results also indicate that connectivity between river segments ranges from moderate to high, depending most directly on channel slope. This work utilized a unique mix of traditional grain-size analysis and sediment transport models combined with repeat photogrammetric Structure from Motion (SfM) surveys done pre and post flood event to verify grain size mobilization through high-resolution, 3-D modeling.

  6. Eddy covariance flux measurements of pollutant gases in urban Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Pressley, S.; Grivicke, R.; Allwine, E.; Coons, T.; Foster, W.; Jobson, B. T.; Westberg, H.; Ramos, R.; Hernández, F.; Molina, L. T.; Lamb, B.

    2009-10-01

    Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric chemistry and the role that cities play in regional and global chemical cycles. As part of the MCMA-2003 study, we demonstrated the feasibility of using eddy covariance techniques to measure fluxes of selected volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City (Velasco et al., 2005a, b). During the MILAGRO/MCMA-2006 field campaign, a second flux measurement study was conducted in a different district of Mexico City to corroborate the 2003 flux measurements, to expand the number of species measured, and to obtain additional data for evaluation of the local emissions inventory. Fluxes of CO2 and olefins were measured by the conventional EC technique using an open path CO2 sensor and a Fast Isoprene Sensor calibrated with a propylene standard. In addition, fluxes of toluene, benzene, methanol and C2-benzenes were measured using a virtual disjunct EC method with a Proton Transfer Reaction Mass Spectrometer. The flux measurements were analyzed in terms of diurnal patterns and vehicular activity and were compared with the most recent gridded local emissions inventory. In both studies, the results showed that the urban surface of Mexico City is a net source of CO2 and VOCs with significant contributions from vehicular traffic. Evaporative emissions from commercial and other anthropogenic activities were significant sources of toluene and methanol. The results show that the emissions inventory is in reasonable agreement with measured olefin and CO2 fluxes, while C2-benzenes and toluene emissions from evaporative sources are overestimated in the inventory. It appears that methanol emissions from mobile sources occur, but are not reported in the mobile emissions inventory.

  7. Eddy covariance flux measurements of pollutant gases in urban Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Pressley, S.; Grivicke, R.; Allwine, E.; Coons, T.; Foster, W.; Jobson, T.; Westberg, H.; Ramos, R.; Hernández, F.; Molina, L. T.; Lamb, B.

    2009-03-01

    Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric chemistry and the role that cities play in regional and global chemical cycles. As part of the MCMA-2003 study, we demonstrated the feasibility of using eddy covariance techniques to measure fluxes of selected volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City (Velasco et al., 2005a, b). During the MILAGRO/MCMA-2006 field campaign, a second flux measurement study was conducted in a different district of Mexico City to corroborate the 2003 flux measurements, to expand the number of species measured, and to obtain additional data for evaluation of the local emissions inventory. Fluxes of CO2 and olefins were measured by the conventional EC technique using an open path CO2 sensor and a Fast Isoprene Sensor calibrated with a propylene standard. In addition, fluxes of toluene, benzene, methanol and C2-benzenes were measured using a virtual disjunct EC method with a Proton Transfer Reaction Mass Spectrometer. The flux measurements were analyzed in terms of diurnal patterns and vehicular activity and were compared with the most recent gridded emissions inventory. In both studies, the results showed that the urban surface of Mexico City is a net source of CO2 and VOCs with significant contributions from vehicular traffic. Evaporative emissions from commercial and other anthropogenic activities were significant sources of toluene and methanol. The data show that the emissions inventory is in reasonable agreement with measured olefin and CO2 fluxes, while C2-benzenes and toluene emissions from evaporative sources are overestimated in the inventory. It appears that methanol emissions from mobile sources occur, but are not present in the mobile emissions inventory.

  8. Apparatus for measuring high-flux heat transfer in radiatively heated compact exchangers

    NASA Technical Reports Server (NTRS)

    Olson, Douglas A.

    1989-01-01

    An apparatus is described which can deliver uniform heat flux densities of up to 80 W/sq cm over an area 7.8 cm x 15.2 cm for use in measuring the heat transfer and pressure drop in thin (6 mm or less), compact heat exchangers. Helium gas at flow rates of 0 to 40 kg/h and pressures to 6.9 MPa (1000 psi) is the working fluid. The instrumentation used in the apparatus and the methods for analyzing the data is described. The apparatus will be used initially to test the performance of prototype cooling jackets for the engine struts of the National Aerospace Plane (NASP).

  9. The Thermal Conductivity Measurements of Solid Samples by Heat Flux Differantial Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Kök, M.; Aydoǧdu, Y.

    2007-04-01

    The thermal conductivity of polyvinylchloride (PVC), polysytrene (PS) and polypropylene (PP) were measured by heat flux DSC. Our results are in good agreement with the results observed by different methods.

  10. Measurement of NOx fluxes by eddy covariance from the BT tower, London during the ClearfLo project

    NASA Astrophysics Data System (ADS)

    Lee, James; Helfter, Carole; Nemitz, Eiko; Tremper, Anja; Stocker, Jenny; Carruthers, David

    2014-05-01

    The vast majority of air pollutants are emitted directly into the atmosphere from activities occurring at the Earth's surface. One of the key anthropogenic pollutants is NOx (defined as the sum of NO and NO2), which is emitted as a result of most anthropogenic combustion processes. Whilst the chemical reactions and atmospheric processing of NOx are reasonably well understood, and can be modelled with some skill, large uncertainties arise in models due to uncertainty associated with the rate of emissions. In recent years it has become clear that measured trends in certain pollutants, for example NO2, have not followed trends predicted by inventories. Continued exceedances of certain air pollution targets are of significant concern to governments, who have identified reducing this uncertainty associated with emissions as key evidence need. As part of the UK Natural Environment Research Council (NERC) Clean Air for London (ClearfLo) project, concentrations and fluxes of NOx were measured from the top of the BT tower, which is a 188m high telecommunications tower, situated in central London (51o31'17.4'N; 0o8'20.04W). The tower is surrounded by a mixture of commercial and residential buildings with an average height of 15 m. The typical daytime flux footprint of the tower is dominated by commercial/residential buildings and roads (82%) but also includes urban parkland (13%) and impervious ground (5%). High time resolution (10 Hz) chemiluminescence measurements of NO and NO2 (photolytic conversion to NO followed by chemiluminescence) were combined with fast turbulence measurements from a sonic anemometer to calculate fluxes using the eddy covariance technique. In brief, NOx fluxes per notional half-hourly averaging period were obtained by maximising the covariance between instantaneous (i.e. mean for the averaging period subtracted from each 10 Hz data point) fluctuations of NOx mixing ratio and vertical wind velocity. 24 hour NOx flux measurements were made on 36 days

  11. Temperature measurements during high flux ion beam irradiations.

    PubMed

    Crespillo, M L; Graham, J T; Zhang, Y; Weber, W J

    2016-02-01

    A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au(3+) ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10(12) cm(-2) s(-1). Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect. PMID:26931879

  12. Temperature measurements during high flux ion beam irradiations

    DOE PAGESBeta

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; Weber, William J.

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm–2 s–1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggestsmore » that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.« less

  13. Temperature measurements during high flux ion beam irradiations

    NASA Astrophysics Data System (ADS)

    Crespillo, M. L.; Graham, J. T.; Zhang, Y.; Weber, W. J.

    2016-02-01

    A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm-2 s-1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.

  14. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  15. Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana

    NASA Astrophysics Data System (ADS)

    Greenberg, J. P.; Guenther, A.; Harley, P.; Otter, L.; Veenendaal, E. M.; Hewitt, C. N.; James, A. E.; Owen, S. M.

    2003-07-01

    Biogenic volatile organic compound (BVOC) emissions were measured in a mopane woodland near Maun, Botswana in January-February 2001 as part of SAFARI 2000. This landscape is comprised of more than 95% of one woody plant species, Colophospermum mopane (Caesalpinaceae). Mopane woodlands extend over a broad area of southern Africa. A leaf cuvette technique was used to determine the emission capacities of the major vegetation and the temperature and light dependence of the emissions. In addition, relaxed eddy accumulation (REA) measurements of BVOC fluxes were made on a flux tower, where net CO2 emissions were also measured simultaneously. Large light-dependent emissions of terpenes (mostly α-pinene and D-limonene) were observed from the mopane woodland. The diurnal BVOC emissions were integrated and compared with the CO2 flux. Monoterpene flux exceeded 3000 μg C m-2 h-1 during the daytime period, comparable to isoprene fluxes and much higher than terpene fluxes measured in most areas. The terpene flux constituted approximately 25% of the diurnal net carbon exchange (CO2) during the experimental period. Other BVOC emissions may also contribute to the carbon exchange.

  16. Impact of drought on the CO2 atmospheric growth rate 2010-2012 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Jiang, Z.; Bloom, A. A.; Lee, M.; Menemenlis, D.; Gierach, M.; Collatz, G. J.; Gurney, K. R.

    2015-12-01

    The La Nina between 2011-2012 led to significant droughts in the US and Northeastern Brazil while the historic drought in Amazon in 2010 was caused in part by the historic central Pacific El Nino. In order to investigate the role of drought on the atmospheric CO2 growth rate, we use satellite observations of CO2 and CO to infer spatially resolved carbon fluxes and attribute those fluxes to combustion sources correlated with drought conditions. Solar induced fluorescence in turn is used to estimate the impact of drought on productivity and its relationship to total flux. Preliminary results indicate that carbon losses in Mexico are comparable to the total fossil fuel production for that region. These in turn played an important role in the acceleration of the atmospheric growth rate from 2011-2012. These results were enabled using the NASA Carbon Monitoring System Project (CMS-Flux), which is based upon a 4D-variational assimilation system that incorporates observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2-­Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model.

  17. Annual sediment flux estimates in a tidal strait using surrogate measurements

    NASA Astrophysics Data System (ADS)

    Ganju, Neil K.; Schoellhamer, David H.

    2006-08-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large.

  18. Annual sediment flux estimates in a tidal strait using surrogate measurements

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights

  19. Measurement of Solar pp-neutrino flux with Borexino: results and implications

    NASA Astrophysics Data System (ADS)

    Smirnov, O. Yu; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, O.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    Measurement of the Solar pp-neutrino flux completed the measurement of Solar neutrino fluxes from the pp-chain of reactions in Borexino experiment. The result is in agreement with the prediction of the Standard Solar Model and the MSW/LMA oscillation scenario. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 105 years time scale, and sets a strong limit on the power production by the unknown energy sources in the Sun.

  20. Nightside electron flux measurements at Mars by the Phobos-2 HARP instrument

    NASA Technical Reports Server (NTRS)

    Shutte, N.; Gringauz, K.; Kiraly, P.; Kotova, G.; Nagy, A. F.; Rosenbauer, H.; Szego, K.; Verigin, M.

    1995-01-01

    All the available nightside electron data obtained during circular orbits at Mars from the Phobos-2 Hyperbolic Retarded Potential Analyzer (HARP) instrument have been examined in detail and are summarized in this paper. An electron flux component with energies exceeding that of the unperturbed solar wind was observed inside the magnetosheath, indicating the presence of acceleration mechanism(s). The character of the electron fluxes measured in the magnetotail cannot be classified in any simple manner, however, there is a correlation between the electron fluxes measured well inside this region and the unperturbed solar wind ram pressure.

  1. Differential radiometry for measuring the net radiative flux in the earth`s atmosphere

    SciTech Connect

    La Delfe, P.C.; Love, S.P.; Weber, P.G.

    1996-11-01

    The Hemispheric Optimized NEt Radiometer (HONER) is very briefly described. HONER was developed to resolve technical issues impeding the accurate measurement of atmospheric radiative flux. HONER uses differential radiometry, chopping the signal from upwelling and downwelling fluxes onto a single AC detector system, allowing true optical differencing as well as measurements of the individual fluxes. Wavelength coverage encompasses ultraviolet to more than 50 micrometers. HONER has been used in a ground-based version and will be tested on the Perseus B Unmanned Aerospace Vehicle.

  2. How Well Can We Measure the Vertical Wind Speed? Implications for Fluxes of Energy and Mass

    NASA Astrophysics Data System (ADS)

    Kochendorfer, John; Meyers, Tilden P.; Frank, John; Massman, William J.; Heuer, Mark W.

    2012-11-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10-50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from -5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.

  3. Eddy Covariance Measurements of Methane Fluxes over Arable Land in Southern Ontario

    NASA Astrophysics Data System (ADS)

    Brown, S. E.; Wagner-Riddle, C.

    2013-12-01

    Aerobic soils are the only biological sink for atmospheric methane. Although the sinks are relatively small (~ -1 to -5 ng/m2s), this can translate to a significant quantity of methane consumption over large areas. The degree of sink strength can vary over time and space with changing soil moisture and texture, as well as variations in agricultural practices. Chamber measurements currently provide the majority of information on methane flux values for arable land. Improvements in high-frequency trace gas instrumentation allows for easier eddy covariance flux measurements for methane, thus providing the opportunity for flux measurements over a larger integrated area than chambers. A Picarro G2311-f gas analyzer was recently acquired to measure CH4 and CO2 fluxes for a corn field in Southern Ontario treated with manure. The analyzer employs cavity ring-down spectroscopy to measure gas concentrations and integrates sonic anemometry for eddy covariance measurements. Since methane flux values are small for agricultural soils, noise tests assessed the detection limits of the Picarro system in order to differentiate between instrument noise and fluxes close to zero. A spectral response test characterized the analyzer's capacity to resolve flux values by using a random noise generator to simulate different sized eddies passing by an eddy covariance system. Measurements of CH4 and CO2 commenced in spring of 2013 and continued throughout the growing season and post-harvest. Models will be developed to gap-fill the time series to calculate the net CO2 and CH4 budgets for the corn field. Results from the instrument characterization tests and preliminary results from the flux measurements will be presented.

  4. Mathematical Modeling and In-Situ Measurements of Soil CO2/O2 Flux Dynamics

    NASA Astrophysics Data System (ADS)

    Turcu, V. E.; Or, D.

    2002-12-01

    Gaseous exchange between soil and atmosphere consist primarily of CO2 and O2 fluxes induced by concentration gradients resulting from respiration within the soil profile. Despite their crucial role in the biosphere, dynamics of CO2/O2 concentrations in soil and surface fluxes are rarely measured continuously. A new gradient-based method for continuous monitoring of soil CO2/O2 concentrations was tested in the laboratory and in the field and compared to closed-chamber measurements. In situ measurements were made in different plant communities within a semi-arid ecosystem. A one-dimensional vertical model for soil CO2/O2 fluxes that considers bio-geo-chemical and environmental factors within the basic governing equations for gaseous transport in porous media was developed. Comparisons between model simulations and continuous in-situ measurements of CO2 and O2 concentrations (and fluxes) were in reasonable agreement. Simultaneous measurements of soil CO2 and O2 concentrations provide insights on soil respiration characteristics such as the respiratory quotient (CO2/O2) that ranged from 0.7 to 1.2 and tended to remain remarkably stable under particular experimental conditions. Conversion of measured concentration gradients into surface fluxes was critically dependent on proper estimation of water content profile that affects soil diffusion coefficients. Continuous monitoring in the soil is particularly important following rainfall events where spatial (vertical) and temporal patterns of gaseous fluxes are complex and are unobservable by common surface chamber methods.

  5. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  6. Soil erosion rates (particulate and dissolved fluxes) variations in a temperate river basin

    NASA Astrophysics Data System (ADS)

    Cerdan, Olivier; Gay, Aurore; Négrel, Philippe; Pételet-Giraud, Emmanuelle; Salvador Blanes, Sébastien; Degan, Francesca

    2015-04-01

    -term data are required to provide mean SY values representative of the catchment functioning. From our calculations, 18 complete years of data are required to obtain a mean sediment yield value with less than 10% of variation on average around the mean. The specific dissolved fluxes vary from 13.7 to 199.9 t.km-2. t yr-1. Contrary to particulate matters, the impact of the lithology is illustrated by higher total dissolved solid fluxes on limestone catchments compared with graniteous or schisteous catchments. Nitrates and ammonium are indicators of anthropogenic perturbation and their fluxes vary respectively from 0.4 to 31.4 t.km-2. yr-1 and from 7.8*10-3 to 7.7 t.km-2. yr-1 and evolve differently according to land uses: nitrates fluxes are lower in the upstream Loire and higher downstream in the region where agricultural pressure is higher. The analysis of these datasets at different spatial and temporal scales permits to identify some of the dominant processes, and also to distinguish natural from anthropogenic influences. Concerning upland physical soil surface erosion rates, we find that the average travel distance of eroded particles may be limited, implying a strong decrease in physical erosion rates when moving from the local scale (m²) to the river basin scale (> 103 km²). Chemical erosion rates are less sensitive to scale and can either decrease or increase with increasing area in function of lithology, land management and topography. The results also highlight the predominant role of surface connectivity to characterize the fraction of sediment exported out of river drainage areas by physical soil surface erosion. For the export of dissolved sediment originating from weathering processes, the catchment physiography and connectivity does no longer play the dominant role. A direct link between soil production rates and exported dissolved fluxes tends to show that, contrary to the suspended particles, which are transport-limited, the dissolved matter seems to be

  7. Elemental weathering fluxes and saprolite production rate in a Central African lateritic terrain (Nsimi, South Cameroon)

    NASA Astrophysics Data System (ADS)

    Braun, Jean-Jacques; Marechal, Jean-Christophe; Riotte, Jean; Boeglin, Jean-Loup; Bedimo Bedimo, Jean-Pierre; Ndam Ngoupayou, Jules Remy; Nyeck, Brunot; Robain, Henri; Sekhar, M.; Audry, Stéphane; Viers, Jérôme

    2012-12-01

    The comparison between contemporary and long-term weathering has been carried out in the Small Experimental Watershed (SEW) of Nsimi, South Cameroon in order to quantify the export fluxes of major and trace elements and the residence time of the lateritic weathering cover. We focus on the hillside system composed of a thick lateritic weathering cover topped by a soil layer. This study is built on the recent improvements of the hillside hydrological functioning and on the analyses of major and trace elements. The mass balance calculation at the weathering horizon scale performed with the parent rock as reference indicates (i) strong depletion profiles for alkalis (Na, K, Rb) and alkaline earths (Mg, Ca, Sr, Ba), (ii) moderate depletion profiles for Si, P, Cd, Cu, Zn, Ni and Co, (iii) depletion/enrichment profiles for Al, Ga, Ge, Sn, Pb, LREE, HREE, Y, U, Fe, V, Cr, Mn. It is noteworthy that (i) Mn and Ce are not significantly redistributed according to oxidative processes as it is the case for Fe, V and Cr, and (ii) Ge is fractionated compared to silica with enrichment in Fe-rich horizons. The calculations performed for the topsoil with iron crust as parent material reference reveal that the degradation of the iron crust is accompanied by the loss of most of the constituting elements, among which are those specifically accumulated as the redox sensitive elements (Fe, V, Cr) and iron oxide related elements like Th. The overall current elemental fluxes from the hillside system at the springs and the seepage zones are extremely low due to the inert lateritic mineralogy. Ninety-four percent of the whole Na flux generated from the hillside corrected from atmospheric deposits (77 mol/ha/yr) represents the current weathering rates of plagioclase (oligoclase) in the system, the other remaining 6% may be attributed to the dissolution of hornblende. The silica hillside flux is 300 mol/ha/yr and can be mostly attributed to the plagioclase and kaolinite dissolution. Al and Ga

  8. Using "snapshot" measurements of CH4 fluxes from peatlands to estimate annual budgets: interpolation vs. modelling.

    NASA Astrophysics Data System (ADS)

    Green, Sophie M.; Baird, Andy J.

    2016-04-01

    There is growing interest in estimating annual budgets of peatland-atmosphere carbon dioxide (CO2) and methane (CH4) exchanges. Such budgeting is required for calculating peatland carbon balance and the radiative forcing impact of peatlands on climate. There have been multiple approaches used to estimate CO2 budgets; however, there is a limited literature regarding the modelling of annual CH4 budgets. Using data collected from flux chamber tests in an area of blanket peatland in North Wales, we compared annual estimates of peatland-atmosphere CH4 emissions using an interpolation approach and an additive and multiplicative modelling approach. Flux-chamber measurements represent a snapshot of the conditions on a particular site. In contrast to CO2, most studies that have estimated the time-integrated flux of CH4 have not used models. Typically, linear interpolation is used to estimate CH4 fluxes during the time periods between flux-chamber measurements. It is unclear how much error is involved with such a simple integration method. CH4 fluxes generally show a rise followed by a fall through the growing season that may be captured reasonably well by interpolation, provided there are sufficiently frequent measurements. However, day-to-day and week-to-week variability is also often evident in CH4 flux data, and will not necessarily be properly represented by interpolation. Our fits of the CH4 flux models yielded r2 > 0.5 in 38 of the 48 models constructed, with 55% of these having a weighted rw2 > 0.4. Comparison of annualised CH4 fluxes estimated by interpolation and modelling reveals no correlation between the two data sets; indeed, in some cases even the sign of the flux differs. The difference between the methods seems also to be related to the size of the flux - for modest annual fluxes there is a fairly even scatter of points around the 1:1 line, whereas when the modelled fluxes are high, the corresponding interpolated fluxes tend to be low. We consider the

  9. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Verma, Shashi B.; Hubbard, Kenneth G.; Starks, Patrick; Hays, Cynthia; Norman, John M.; Waltershea, Elizabeth

    1988-01-01

    The primary objectives of the 1985 study were to test the feasibility of using radio frequency receivers to collect data from automated weather stations and to evaluate the use of the data collected by the automated weather stations for modeling the fluxes of latent heat, sensible heat, and radiation over wheat. The model Cupid was used to calculate these fluxes which were compared with fluxes of these entities measured using micrometeorological techniques. The primary objectives of the 1986 study were to measure and model reflected and emitted radiation streams at a few locations within the First International Satellite Land-Surface Climatology Project Field Experiment (FIFE) site and to compare modeled and measured latent heat and sensible heat fluxes from the prairie vegetation.

  10. Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Canfield, L. R.

    1990-01-01

    A newly developed stable and high quantum efficiency silicon photodiode was used to obtain an accurate measurement of the integrated absolute magnitude of the solar extreme UV photon flux in the spectral region between 50 and 800 A. The adjusted daily 10.7-cm solar radio flux and sunspot number were 168.4 and 121, respectively. The unattenuated absolute value of the solar EUV flux at 1 AU in the specified wavelength region was 6.81 x 10 to the 10th photons/sq cm per s. Based on a nominal probable error of 7 percent for National Institute of Standards and Technology detector efficiency measurements in the 50- to 500-A region (5 percent on longer wavelength measurements between 500 and 1216 A), and based on experimental errors associated with the present rocket instrumentation and analysis, a conservative total error estimate of about 14 percent is assigned to the absolute integral solar flux obtained.

  11. Ir Thermographic Measurements of Temperatures and Heat Fluxes in Hypersonic Plasma Flow

    NASA Astrophysics Data System (ADS)

    Cardone, G.; Tortora, G.; del Vecchio, A.

    2005-02-01

    The technological development achieved in instruments and methodology concerning both flights and ground hypersonic experiment (employed in space plane planning) goes towards an updating and a standardization of the heat flux technical measurements. In fact, the possibility to simulate high enthalpy flow relative to reentry condition by hypersonic arc-jet facility needs devoted methods to measure heat fluxes. Aim of this work is to develop an experimental numerical technique for the evaluation of heat fluxes over Thermal Protection System (TPS) by means of InfraRed (IR) thermographic temperature measurements and a new heat flux sensor (IR-HFS). We tackle the numerical validation of IR-HFS, apply the same one to the Hyflex nose cap model and compare the obtained results with others ones obtained by others methodology.

  12. Flux measurements of CA II H and K emission. [from stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Vaughan, A. H.; Preston, G. W.; Wilson, O. C.

    1978-01-01

    A four-channel photon-counting spectrophotometer (designated HKP-2) is described which is designed for measuring stellar chromospheric calcium emission. The HKP-2 is calibrated, and its performance and accuracy evaluated, by observing 63 of Wilson's (1968) program stars on the same nights with both the HKP-2 and a coude scanner designated HKP-1. The results of the observations are discussed in terms of the calibration of mean H-K flux indices, variations in individual stellar fluxes, the flux ratio for H and K, and the instrument color index. It is shown that the HKP-2 provides satisfactory performance in the measurement of stellar chromospheric emission in a manner closely analogous to the method of Wilson and that a single observation yields a color index as well as flux indices for H and K that can be calibrated and transferred unambiguously to Wilson's system of measurement.

  13. Evapotranspiration components determined by eddy covariance and sap flux measurements in oil palm plantations in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Meijide, Ana; Röll, Alexander; Niu, Furong; June, Tania; Hölscher, Dirk; Knohl, Alexander

    2015-04-01

    The expansion of oil palm cultivation fueled by the increasing global demand for palm oil is leading to massive land transformations in tropical areas, particularly in South-East Asia. Conversions of forest land to oil palm plantations likely affect ecosystem water fluxes. However, there is a lack of information on water fluxes from oil palm plantations as well as on the partitioning of these fluxes into its different components such as transpiration and evaporation. It is expected that water fluxes from oil palm plantations vary temporally, both long-term, i.e. between different age-classes of plantations, and short-term, i.e. from day to day within a certain plantation (e.g. during or after periods of rainfall). A proper evaluation of water fluxes from oil palm plantations thus requires an experimental design encompassing these types of variability. To assess evapotranspiration (ET) rates, an eddy covariance tower was installed in a 2-year-old oil palm plantation in the lowlands of Jambi, Sumatra; it was subsequently moved to a 12-year-old oil palm plantation located in the same region. In parallel to the ET, sap flux density was measured on 16 leaf petioles on four oil palms; stand transpiration rates were derived from these measurements with stand inventory data. The parallel measurements ran for several weeks in both plantations. Preliminary results for our period of study show that the average ET rate of the 2-year-old oil palm plantation was 5.2 mm day-1; values up to 7.0 mm day-1 were observed on dry, sunny days with non-limiting soil moisture. Stand transpiration (T) by the young oil palms was very low, 0.3 mm day-1on average, and only showed a small variation between days. Under optimal environmental conditions, the ratio of T to total ET was up to 0.08 in the young plantation, while in the mature, 12-year-old plantation, it was significantly higher and reached 0.5. Transpiration rates in the mature oil palm plantation were about six- to seven-fold higher

  14. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface.

    PubMed

    Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui

    2014-12-16

    Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes. PMID:25377990

  15. A new method for simultaneous measurement of convective and radiative heat flux in car underhood applications

    NASA Astrophysics Data System (ADS)

    Khaled, M.; Garnier, B.; Harambat, F.; Peerhossaini, H.

    2010-02-01

    A new experimental technique is presented that allows simultaneous measurement of convective and radiative heat flux in the underhood. The goal is to devise an easily implemented and accurate experimental method for application in the vehicle underhood compartment. The new method is based on a technique for heat-flux measurement developed by the authors (Heat flow (flux) sensors for measurement of convection, conduction and radiation heat flow 27036-2, © Rhopoint Components Ltd, Hurst Green, Oxted, RH8 9AX, UK) that uses several thermocouples in the thickness of a thermal resistive layer (foil heat-flux sensor). The method proposed here uses a pair of these thermocouples with different radiative properties. Measurements validating this novel technique are carried out on a flat plate with a prescribed constant temperature in both natural- and forced-convection flow regimes. The test flat plate is instrumented by this new technique, and also with a different technique that is intrusive but very accurate, used as reference here (Bardon J P and Jarny Y 1994 Procédé et dispositif de mesure transitoire de température et flux surfacique Brevet n°94.011996, 22 February). Discrepancies between the measurements by the two techniques are less than 10% for both convective and radiative heat flux. Error identification and sensitivity analysis of the new method are also presented.

  16. Flux correction for closed-path laser spectrometers without internal water vapor measurements

    NASA Astrophysics Data System (ADS)

    Hiller, R. V.; Zellweger, C.; Knohl, A.; Eugster, W.

    2012-01-01

    Recently, instruments became available on the market that provide the possibility to perform eddy covariance flux measurements of CH4 and many other trace gases, including the traditional CO2 and H2O. Most of these instruments employ laser spectroscopy, where a cross-sensitivity to H2O is frequently observed leading to an increased dilution effect. Additionally, sorption processes at the intake tube walls modify and delay the observed H2O signal in closed-path systems more strongly than the signal of the sampled trace gas. Thereby, a phase shift between the trace gas and H2O fluctuations is introduced that dampens the H2O flux observed in the sampling cell. For instruments that do not provide direct H2O measurement in the sampling cell, transfer functions from externally measured H2O fluxes are needed to estimate the effect of H2O on trace gas flux measurements. The effects of cross-sensitivity and the damping are shown for an eddy covariance setup with the Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Research Inc.) that measures CO2, CH4, and H2O fluxes. This instrument is technically identical with the Fast Methane Analyzer (FMA, Los Gatos Research Inc.) that does not measure H2O concentrations. Hence, we used measurements from a FGGA to derive a modified correction for the FMA accounting for dilution as well as phase shift effects in our instrumental setup. With our specific setup for eddy covariance flux measurements, the cross-sensitivity counteracts the damping effects, which compensate each other. Hence, the new correction only deviates very slightly from the traditional Webb, Pearman, and Leuning density correction, which is calculated from separate measurements of the atmospheric water vapor flux.

  17. On Using CO2 Concentration Measurements at Mountain top and Valley Locations in Regional Flux Studies.

    NASA Astrophysics Data System (ADS)

    de Wekker, S. F.; Song, G.; Stephens, B. B.

    2007-12-01

    Data from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) are used to investigate atmospheric controls on temporal and spatial variability of CO2 in mountainous terrain and the usefulness of mountain top and valley measurement for the estimation of regional CO2 fluxes. Rocky RACCOON consists of four sites installed in fall of 2005 and spring of 2006: Niwot Ridge, near Ward, Colorado; Storm Peak Laboratory near Steamboat Springs, Colorado; Fraser Experimental Forest, near Fraser Colorado; and Hidden Peak, near Snowbird, Utah. The network uses the NCAR-developed Autonomous Inexpensive Robust CO2 Analyzer. These units measure CO2 concentrations at three levels on a tower, producing individual measurements every 2.5 minutes precise to 0.1 ppm CO2 and closely tied to the WMO CO2 scale. Three of the sites are located on a mountain top while one site is located in a valley. Initial analyses show interesting relationships between CO2 concentration and atmospheric parameters, such as wind speed and direction, temperature, and incoming solar radiation. The nature of these relationships is further investigated with an atmospheric mesoscale model. Idealized and realistic simulations are able to capture the observed behavior of spatial and temporal CO2 variability and reveal the responsible physical processes. The implications of the results and the value of the measurements for providing information on local to regional scale respiration and photosynthesis rates in the Rockies are discussed.

  18. Testing the Need for Replication of Eddy Covariance Carbon Dioxide Flux Measurements over Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Taylor, A. M.; Amiro, B. D.; Gervais, M.

    2015-12-01

    The eddy covariance method directly measures carbon dioxide (CO2) fluxes for long periods of time and with footprints up to hundreds of meters in size. Any ecosystem process that alters how gases and energy move between the atmosphere and soil/vegetation can affect these fluxes. Eddy covariance is vulnerable to systematic errors and uncertainy, particular through relying on assumptions about surface characteristics. Additionally, spatial variation within a site can cause more uncertainty in these measurements and lack of replication in many eddy covariance studies makes statistical analysis of carbon fluxes challenging. We tested if there are significant differences between co-located and simultaneous CO2 flux measurements over a uniform crop surface, and if the differences increase if we measure different flux footprint areas over the same field. During the summer of 2014, three matched instrumented 2.5-m high towers were co-located and then periodically separated by moving at 50 m intervals along a north-south transect on an alfalfa/trefoil field and a spring wheat field in Southern Manitoba, Canada to compare CO­2 fluxes. Georeferenced leaf area index measurements were taken in 50 m grid of each field to establish uniformity of the source/sink within a footprint. Diurnal differences of similar magnitude in the CO2 ­fluxes were found in both the co-located experiment and the spatially separated intervals. Despite rigorous calibration during the experiment, some differences were caused by the measurement systems rather than by variation within the field. Interpretation of the spatial variation in leaf area index is being used to determine the contribution caused by difference in source/sink contributions to the flux footprint areas when the towers were spatially separated.

  19. The truth is out there: measured, calculated and modelled benthic fluxes.

    NASA Astrophysics Data System (ADS)

    Pakhomova, Svetlana; Protsenko, Elizaveta

    2016-04-01

    In a modern Earth science there is a great importance of understanding the processes, forming the benthic fluxes as one of element sources or sinks to or from the water body, which affects the elements balance in the water system. There are several ways to assess benthic fluxes and here we try to compare the results obtained by chamber experiments, calculated from porewater distributions and simulated with model. Benthic fluxes of dissolved elements (oxygen, nitrogen species, phosphate, silicate, alkalinity, iron and manganese species) were studied in the Baltic and Black Seas from 2000 to 2005. Fluxes were measured in situ using chamber incubations (Jch) and at the same time sediment cores were collected to assess the porewater distribution at different depths to calculate diffusive fluxes (Jpw). Model study was carried out with benthic-pelagic biogeochemical model BROM (O-N-P-Si-C-S-Mn-Fe redox model). It was applied to simulate biogeochemical structure of the water column and upper sediment and to assess the vertical fluxes (Jmd). By the behaviour at the water-sediment interface all studied elements can be divided into three groups: (1) elements which benthic fluxes are determined by the concentrations gradient only (Si, Mn), (2) elements which fluxes depend on redox conditions in the bottom water (Fe, PO4, NH4), and (3) elements which fluxes are strongly connected with organic matter fate (O2, Alk, NH4). For the first group it was found that measured fluxes are always higher than calculated diffusive fluxes (1.5flux. In this case bioturbation, bioirrigation and advection should be taken into account. For the second group measured fluxes can be both much lower (practically absent) and much higher than calculated diffusive fluxes (0.01

  20. Lidar Based Particulate Flux Measurements of Agricultural Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-wavelength portable scanning lidar system was developed to derive information on particulate spatial aerosol distribution over remote distances. The lidar system and retrieval approach has been tested during several field campaigns measuring agricultural emissions from a swine feeding operat...

  1. Flow rate measuring devices for gas flows

    NASA Astrophysics Data System (ADS)

    Bonfig, K. W.

    1985-07-01

    Flowrate measuring devices are described: volume meter with fixed or mobile walls; turbine meter; throttling procedure; ultrasonic and Doppler methods; vortex method; rotary flowmeter; and swinging body flow measuring procedure. Flowrate can also be measured from the force exerted on bodies immersed in a fluid or based on thermodynamical principles. The characteristics and operating envelope of each device/method are given.

  2. Precision measurement of the 7Be solar neutrino flux and its day-night asymmetry with Borexino

    NASA Astrophysics Data System (ADS)

    Caccianiga, Barbara; Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Cavalcante, P.; Chavarria, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, P.; Lombardi, L.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Quirk, J.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.; Borexino Collaboration

    2012-07-01

    Borexino measures the 7Be solar neutrino flux on 740 live days of data-taking to be 46±1.5+1.6-1.5 events/(day · 100 tons) which corresponds to an equivalent unoscillated flux on Earth of (3.11±0.10+0.11-0.10)·109sec -1 cm-2. This result excludes the no-oscillation hypothesis at 5 σ and provides a precise measurement of the survival probability Pee in the vacuum dominated oscillation regime Pee = 0.51±0.07. Borexino also measures the day-night asymmetry of the 7Be neutrino rate with a total error of 1.4% and finds it to be consistent with zero. This result is in agreement with the MSW-LMA hypothesis and disfavours at more than 8.5 σ the so-called LOW region of the oscillation parameter space.

  3. Measurement of erosion rate by absorption spectroscopy in a Hall thruster

    SciTech Connect

    Yamamoto, Naoji; Yokota, Shigeru; Matsui, Makoto; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2005-08-15

    The erosion rate of a Hall thruster was estimated with the objective of building a real-time erosion rate monitoring system using a 1 kW class anode layer type Hall thruster. This system aids the understanding of the tradeoff between lifetime and performance. To estimate the flux of the sputtered wall material, the number density of the sputtered iron was measured by laser absorption spectroscopy using an absorption line from ground atomic iron at 371.9935 nm. An ultravioletAl{sub x}In{sub y}Ga{sub (1-x-y)}N diode laser was used as the probe. The estimated number density of iron was 1.1x10{sup 16} m{sup -3}, which is reasonable when compared with that measured by duration erosion tests. The relation between estimated erosion rate and magnetic flux density also agreed with that measured by duration erosion tests.

  4. A comparison of two nitrification inhibitors used to measure nitrification rates in estuarine sediments

    USGS Publications Warehouse

    Caffrey, J.M.; Miller, L.G.

    1995-01-01

    Nitrification rates were measured using intact sediment cores from South San Francisco Bay and two different nitrification inhibitors: acetylene and methyl fluoride. Sediment oxygen consumption and ammonium and nitrate fluxes were also measured in these cores. Four experiments were conducted in the spring, and one in the fall of 1993. There was no significant difference in nitrification rates measured using the two inhibitors, which suggests that methyl fluoride can be used as an effective inhibitor of nitrification. Nitrification was positively correlated with sediment oxygen consumption and numbers of macrofauna. This suggests that bioturbation by macrofauna is an important control of nitrification rates. Irrigation by the tube-dwelling polychaete, Asychis elongata, which dominates the benthic biomass at this location, appears particularly important. Ammonium fluxes out of the sediment were greatest about one week after the spring bloom, while nitrification peaked about one month later.

  5. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    PubMed

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively. PMID:11543145

  6. Automated modeling of ecosystem CO2 fluxes based on closed chamber measurements: A standardized conceptual and practical approach

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Albiac Borraz, Elisa; Hagemann, Ulrike; Sommer, Michael; Augustin, Jürgen

    2015-04-01

    Closed chamber measurements are widely used for determining the CO2 exchange of small-scale or heterogeneous ecosystems. Among the chamber design and operational handling, the data processing procedure is a considerable source of uncertainty of obtained results. We developed a standardized automatic data processing algorithm, based on the language and statistical computing environment R© to (i) calculate measured CO2 flux rates, (ii) parameterize ecosystem respiration (Reco) and gross primary production (GPP) models, (iii) optionally compute an adaptive temperature model, (iv) model Reco, GPP and net ecosystem exchange (NEE), and (v) evaluate model uncertainty (calibration, validation and uncertainty prediction). The algorithm was tested for different manual and automatic chamber measurement systems (such as e.g. automated NEE-chambers and the LI-8100A soil CO2 Flux system) and ecosystems. Our study shows that even minor changes within the modelling approach may result in considerable differences of calculated flux rates, derived photosynthetic active radiation and temperature dependencies and subsequently modeled Reco, GPP and NEE balance of up to 25%. Thus, certain modeling implications will be given, since automated and standardized data processing procedures, based on clearly defined criteria, such as statistical parameters and thresholds are a prerequisite and highly desirable to guarantee the reproducibility, traceability of modelling results and encourage a better comparability between closed chamber based CO2 measurements.

  7. Contribution of the finite volume point dilution method for measurement of groundwater fluxes in a fractured aquifer.

    PubMed

    Jamin, P; Goderniaux, P; Bour, O; Le Borgne, T; Englert, A; Longuevergne, L; Brouyère, S

    2015-11-01

    Measurement of groundwater fluxes is the basis of all hydrogeological study, from hydraulic characterization to the most advanced reactive transport modeling. Usual groundwater flux estimation with Darcy's law may lead to cumulated errors on spatial variability, especially in fractured aquifers where local direct measurement of groundwater fluxes becomes necessary. In the present study, both classical point dilution method (PDM) and finite volume point dilution method (FVPDM) are compared on the fractured crystalline aquifer of Ploemeur, France. The manipulation includes the first use of the FVPDM in a fractured aquifer using a double packer. This configuration limits the vertical extent of the tested zone to target a precise fracture zone of the aquifer. The result of this experiment is a continuous monitoring of groundwater fluxes that lasted for more than 4 days. Measurements of groundwater flow rate in the fracture (Q(t)) by PDM provide good estimates only if the mixing volume (V(w)) (volume of water in which the tracer is mixed) is precisely known. Conversely, the FVPDM allows for an independent estimation of V(w) and Q(t), leading to better precision in case of complex experimental setup such as the one used. The precision of a PDM does not rely on the duration of the experiment while a FVPDM may require long experimental duration to guarantees a good precision. Classical PDM should then be used for rapid estimation of groundwater flux using simple experimental setup. On the other hand, the FVPDM is a more precise method that has a great potential for development but may require longer duration experiment to achieve a good precision if the groundwater fluxes investigated are low and/or the mixing volume is large. PMID:26519822

  8. VOC flux measurements using a novel Relaxed Eddy Accumulation GC-FID system in urban Houston, Texas

    NASA Astrophysics Data System (ADS)

    Park, C.; Schade, G.; Boedeker, I.

    2008-12-01

    Houston experiences higher ozone production rates than most other major cities in the US, which is related to high anthropogenic VOC emissions from both area/mobile sources (car traffic) and a large number of petrochemical facilities. The EPA forecasts that Houston is likely to still violate the new 8-h NAAQS in 2020. To monitor neighborhood scale pollutant fluxes, we established a tall flux tower installation a few kilometers north of downtown Houston. We measure energy and trace gas fluxes, including VOCs from both anthropogenic and biogenic emission sources in the urban surface layer using eddy covariance and related techniques. Here, we describe a Relaxed Eddy Accumulation (REA) system combined with a dual-channel GC-FID used for VOC flux measurements, including first results. Ambient air is sampled at approximately 15 L min-1 through a 9.5 mm OD PFA line from 60 m above ground next to a sonic anemometer. Subsamples of this air stream are extracted through an ozone scrubber and pushed into two Teflon bag reservoirs, from which they are transferred to the GC pre-concentration units consisting of carbon-based adsorption traps encapsulated in heater blocks for thermal desorption. We discuss the performance of our system and selected measurement results from the 2008 spring and summer seasons in Houston. We present diurnal variations of the fluxes of the traffic tracers benzene, toluene, ethylbenzene, and xylenes (BTEX) during different study periods. Typical BTEX fluxes ranged from -0.36 to 3.10 mg m-2 h-1 for benzene, and -0.47 to 5.04 mg m-2 h-1 for toluene, and exhibited diurnal cycles with two dominant peaks related to rush-hour traffic. A footprint analysis overlaid onto a geographic information system (GIS) will be presented to reveal the dominant emission sources and patterns in the study area.

  9. Contribution of the finite volume point dilution method for measurement of groundwater fluxes in a fractured aquifer

    NASA Astrophysics Data System (ADS)

    Jamin, P.; Goderniaux, P.; Bour, O.; Le Borgne, T.; Englert, A.; Longuevergne, L.; Brouyère, S.

    2015-11-01

    Measurement of groundwater fluxes is the basis of all hydrogeological study, from hydraulic characterization to the most advanced reactive transport modeling. Usual groundwater flux estimation with Darcy's law may lead to cumulated errors on spatial variability, especially in fractured aquifers where local direct measurement of groundwater fluxes becomes necessary. In the present study, both classical point dilution method (PDM) and finite volume point dilution method (FVPDM) are compared on the fractured crystalline aquifer of Ploemeur, France. The manipulation includes the first use of the FVPDM in a fractured aquifer using a double packer. This configuration limits the vertical extent of the tested zone to target a precise fracture zone of the aquifer. The result of this experiment is a continuous monitoring of groundwater fluxes that lasted for more than 4 days. Measurements of groundwater flow rate in the fracture (Qt) by PDM provide good estimates only if the mixing volume (Vw) (volume of water in which the tracer is mixed) is precisely known. Conversely, the FVPDM allows for an independent estimation of Vw and Qt, leading to better precision in case of complex experimental setup such as the one used. The precision of a PDM does not rely on the duration of the experiment while a FVPDM may require long experimental duration to guarantees a good precision. Classical PDM should then be used for rapid estimation of groundwater flux using simple experimental setup. On the other hand, the FVPDM is a more precise method that has a great potential for development but may require longer duration experiment to achieve a good precision if the groundwater fluxes investigated are low and/or the mixing volume is large.

  10. Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.

    2013-06-01

    Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analyzers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and season-long performance were not assessed. The open-path gas analyzer is a practical choice for measurement sites in remote locations due to its low power demand, whereas for G1301-f methane measurements interference from water vapor is straightforward to correct since the instrument measures both gases simultaneously. In any case, if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyzer is needed.

  11. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  12. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  13. Aerosol Fluxes over Amazon Rain Forest Measured with the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Nilsson, E. D.; Krejci, R.; Mårtensson, E. M.; Vogt, M.; Artaxo, P.

    2008-12-01

    We present measurements of vertical aerosol fluxes over the Amazon carried out on top of K34, a 50 meter high tower in the Cuieiras Reserve about 50 km north of Manaus in northern Brazil. The turbulent fluxes were measured with the eddy covariance method. The covariance of vertical wind speed from a sonic anemometer Gill Windmaster and total aerosol number concentration from a condensation particle counter (CPC) TSI 3010 provided the total number flux (diameter >0.01 μm). The covariance of vertical wind speed and size resolved number concentrations from an optical particle counter (OPC) Grimm 1.109 provided size resolved number fluxes in 15 bins from 0.25 μm to 2.5 μm diameter. Additionally fluxes of CO2 and H2O were derived from Li-7500 observations. The observational period, from early March to early August, includes both wet and dry season. OPC fluxes generally show net aerosol deposition both during wet and dry season with the largest downward fluxes during midday. CPC fluxes show different patterns in wet and dry season. During dry season, when number concentrations are higher, downward fluxes clearly dominate. In the wet season however, when number concentrations are lower, our data indicates that upward and downward fluxes are quite evenly distributed during course of a day. On average there is a peak in upward flux during late morning and another peak during the afternoon. Since the OPC fluxes in the same time show net deposition, there is an indication of net source of primary aerosol particles with diameters between 10 and 250 nm emitted from the rain forest. Future data analysis will hopefully shed light on origin and formation mechanism of these particles and thus provide a deeper insight in the rain forest - atmosphere interactions. The aerosol flux measurements were carried out as a part of the AMAZE project in collaboration with University of Sao Paulo, Brazil, and financial support was provided by Swedish International Development Cooperation

  14. CO{sub 2} flux measurements across portions of the Dixie Valley geothermal system, Nevada

    SciTech Connect

    Bergfeld, D.; Goff, F.; Janik, C.J.; Johnson, S.D.

    1998-12-31

    A map of the CO{sub 2} flux across a newly formed area of plant kill in the NW part of the Dixie Valley geothermal system was constructed to monitor potential growth of a fumarole field. Flux measurements were recorded using a LI-COR infrared analyzer. Sample locations were restricted to areas within and near the dead zone. The data delineate two areas of high CO{sub 2} flux in different topographic settings. Older fumaroles along the Stillwater range front produce large volumes of CO{sub 2} at high temperatures. High CO{sub 2} flux values were also recorded at sites along a series of recently formed ground fractures at the base of the dead zone. The two areas are connected by a zone of partial plant kill and moderate flux on an alluvial fan. Results from this study indicate a close association between the range front fumaroles and the dead zone fractures. The goals of this study are to characterize recharge to the geothermal system, provide geochemical monitoring of reservoir fluids and to examine the temporal and spatial distribution of the CO{sub 2} flux in the dead zone. This paper reports the results of the initial CO{sub 2} flux measurements taken in October, 1997.

  15. Measuring and modeling near surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Norman, John M.; Walter-Shea, Elizabeth; Starks, Patrick; Vining, Roel; Hays, Cynthia

    1988-01-01

    Research was conducted during the four Intensive Field Campaigns (IFC) of the FIFE project in 1987. The research was done on a tall grass prairie with specific measurement sites on and near the Konza Prairie in Kansas. Measurements were made to help meet the following objectives: determination of the variability in reflected and emitted radiation fluxes in selected spectral wavebands as a function of topography and vegetative community; development of techniques to account for slope and sun angle effects on the radiation fluxes; estimation of shortwave albedo and net radiation fluxes using the reflected and emitted spectral measurements described; estimation of leaf and canopy spectral properties from calculated normalized differences coupled with off-nadir measurements using inversion techniques; estimation of plant water status at several locations with indices utilizing plant temperature and other environmental parameters; and determination of relationships between estimated plant water status and measured soil water content. Results are discussed.

  16. Constraint-Free Measurement of Metabolic Rate

    NASA Technical Reports Server (NTRS)

    Koester, K. L.

    1982-01-01

    By using hardware and software originally developed for manned spacecraft, metabolism is now measured while subject wears a loose-fitting mask. This more comfortable, less-restrictive measurement technique uses speed, accuracy and control capabilities of a microcomputer. Because mask imposes minimum interference to subject undergoing testing, it can be used to measure respiratory responses to such activities as treadmill exercise. Mask can be worn for long periods with little discomfort.

  17. High flux rates of ignimbrite and stratocone growth at Atitlan Caldera, Guatemala

    NASA Astrophysics Data System (ADS)

    Cunningham, H. S.; Jicha, B.; Singer, B. S.

    2010-12-01

    To understand the factors that govern the development of different volcanic edifices, recent studies have quantified eruptive volume, repose interval and crustal thickness among other parameters. Atitlan Caldera, Guatemala provides a compelling locality to contrast the age, volume and repose of several ignimbrite eruptions over the past 160 kyr including the 300 km3 Los Chocoyos ignimbrite, as well as, prolific mafic volcanism from three intracaldera stratocones. Since the caldera-forming eruption 84 kyr, 117 km3 of basaltic andesitic to dacitic lavas have been erupted from stratocones San Pedro, Toliman and Atitlan, resulting in a combined eruption rate of 1.46km3/kyr. These eruption rates are considered minimum values as preliminary 40Ar/39Ar age data suggest the cones are much younger than 84 kyr. Inclusion of the Los Chocoyos eruption increases eruption rates to 4.77 km3/kyr. Average eruption rates of the Atitlan system are an order of magnitude greater than most frontal arc complexes that are commonly characterized by cone growth due to large punctuated silicic eruptions. Although a minor proportion (<5%) of lavas erupted from San Pedro and Toliman are dacitic, the vast majority of stratocone growth occurred due to small lava flows of basaltic andesite and andesite or pyroclastic eruptions. Geochemically the lavas from stratocones San Pedro, Toliman and Atitlan are similar to four stratocones that formed prior to the Los Chocoyos and may have erupted another several hundred km3 of lava. In addition to the large volumes of mafic lava generated, three large ignimbrite eruptions that are geochemically similar to each other have occurred spaced 10s kyr apart. A large geochemical gap exists that suggests the ignimbrite is not related to the stratocone lavas by fractional crystallization. Finally, lavas must traverse ~45 km of continental crust at a very high flux rate to build large stratocones in the Atitlan system over a relatively short geologic time interval

  18. Radon flux measurements on Gardinier and Royster phosphogypsum piles near Tampa and Mulberry, Florida

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.

    1986-01-01

    As part of the planned Environmental Protection Agency (EPA) radon flux monitoring program for the Florida phosphogypsum piles, Pacific Northwest Laboratory (PNL), under contract to the EPA, constructed 50 large-area passive radon collection devices and demonstrated their use at two phosphogypsum piles near Tampa and Mulberry, Florida. The passive devices were also compared to the PNL large-area flow-through system. The main objectives of the field tests were to demonstrate the use of the large-area passive radon collection devices to EPA and PEI personnel and to determine the number of radon flux measurement locations needed to estimate the average radon flux from a phosphogypsum pile. This report presents the results of the field test, provides recommendations for long-term monitoring, and includes a procedure for making the radon flux measurements.

  19. Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.

    2011-01-01

    The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.

  20. Combined FTIR-micrometeorological techniques for long term flux measurements of greenhouse gases and their applicability for 13CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Warneke, Thorsten; Caldow, Chris; Griffith, David

    2010-05-01

    Fourier Transform InfraRed (FTIR) spectrometry has been deployed for continuous long term flux measurements on a flat, homogeneous circular grass paddock in New South Wales, Australia. The rationale for using FTIR spectrometry is its capability to measure many species simultaneously. The flux measurement techniques combined with FTIR - spectrometry in this study were Disjunct Eddy Accumulation (DEA) and Flux-Gradient (FG). The fluxes of CO2 derived from the FTIR-DEA and FTIR-FG measurements agree well and have been validated by Eddy Covariance Licor measurements. Variations in the observed fluxes could be attributed to temperature increase and water availability over the 5 months measurement period. In addition to CO2, CH4, CO and N2O FTIR-spectrometry is also capable to measure 13CO2. The isotopic fluxes of CO2 allow to separate net ecosystem exchange of CO2 into its gross one-way component fluxes, ecosystem respiration and photosynthesis. It has been shown that it is possible to measure the isoflux of CO2.

  1. Simultaneous Flux Measurements of CO2, its Stable Isotope Ratios and Trace Gases Based on Eddy Accumulation Technique for Flux Partitioning

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hirata, R.

    2007-12-01

    For the purpose of determining the CO2 uptake by terrestrial ecosystem, eddy covariance method (EC) is commonly used in the tower-flux measurements. The flux measured by this method is called 'enet ecosystem exchange (NEE)'. NEE has the meaning of difference between two component fluxes, photosynthetic uptake and respiratory release of CO2. Magnitude of both the component fluxes is far larger than NEE. Both the component fluxes have difference in response function against changes in environmental factors, such as temperature and water. Therefore it is important to evaluate the characteristics of variations in the comporent fluxes individually in the future prediction of CO2 uptake by terrestrial ecosystem. Separation of NEE into the componet fluxes is usually done by using an approximate temperature expression of respiratory flux. This approximate expression is based on the assumption that the NEE observed at nighttime equals to the respiratory flux. The photosynthetic uptake of CO2 is defined as difference between the observed NEE and 'respiration' approximated as a temperature-function. Because of its technical simplicity, this approach has provided useful information about climatology of the gross CO2 fluxes. However, the temperature expression of respiratory flux has several limitations in its application. We are now developing a flux-partitioning method using chemical tracers (e.g. stable isotopes of CO2 and carbonyl sulfide) as additional constraints. The flux partitioning using stable isotopes of CO2 is based on the imbalance of net flux of the CO2 isotopes between 'respiration' and 'photosynthesis'. On the other hand, because of this similarity in the control factors for uptake ratio, the net flux of carbonyl sulfide (COS) is regarded as a possible constraint for the functioning of variations in photosynthetic CO2 uptake by terrestrial ecosystem. Field observation of fluxes of those chemical tracers by EC method is difficult due to stringent requirements

  2. Interfacial flux in wetlands predicted using surface divergence measurements

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina; Variano, Evan A.

    2012-11-01

    Surface divergence has been shown to be a robust predictor of the air-water gas transfer velocity, k. We used this surface divergence model to investigate the effects of wind on k in wetlands with emergent vegetation. We used fluoropolymer tubes to represent plant stems in a laboratory tank equipped with a wind tunnel. The fluoropolymer material provided optical access to the water flows directly around the ``stems'' for PIV. The k values predicted by the surface divergence model from PIV-derived near surface divergence fields in the tank matched directly-measured k values in the tank. The surface divergence fields also illustrated a mechanism for wind-induced gas transfer in wetlands with emergent vegetation. We observed an area of high surface divergence surrounding each stem and order of magnitude lower surface divergence in areas away from any stems. Thus we expect a nearly linear relationship between stem density and k (if average wind speed in the emergent canopy is held constant). The agreement between modeled and measured k values in this low-Reynolds-number, obstructed flow provides further support for the universality of the surface divergence model for k. The results also permit improved prediction of k in wetlands.

  3. Measuring Change with the Rating Scale Model.

    ERIC Educational Resources Information Center

    Ludlow, Larry H.; And Others

    The Rehabilitation Research and Development Laboratory at the United States Veterans Administration Hines Hospital is engaged in a long-term evaluation of blind rehabilitation. One aspect of the evaluation project focuses on the measurement of attitudes toward blindness. Our aim is to measure changes in attitudes toward blindness from…

  4. Pool size measurements facilitate the determination of fluxes at branching points in non-stationary metabolic flux analysis: the case of Arabidopsis thaliana

    PubMed Central

    Heise, Robert; Fernie, Alisdair R.; Stitt, Mark; Nikoloski, Zoran

    2015-01-01

    Pool size measurements are important for the estimation of absolute intracellular fluxes in particular scenarios based on data from heavy carbon isotope experiments. Recently, steady-state fluxes estimates were obtained for central carbon metabolism in an intact illuminated rosette of Arabidopsis thaliana grown photoautotrophically (Szecowka et al., 2013; Heise et al., 2014). Fluxes were estimated therein by integrating mass-spectrometric data of the dynamics of the unlabeled metabolic fraction, data on metabolic pool sizes, partitioning of metabolic pools between cellular compartments and estimates of photosynthetically inactive pools, with a simplified model of plant central carbon metabolism. However, the fluxes were determined by treating the pool sizes as fixed parameters. Here we investigated whether and, if so, to what extent the treatment of pool sizes as parameters to be optimized in three scenarios may affect the flux estimates. The results are discussed in terms of benchmark values for canonical pathways and reactions, including starch and sucrose synthesis as well as the ribulose-1,5-bisphosphate carboxylation and oxygenation reactions. In addition, we discuss pathways emerging from a divergent branch point for which pool sizes are required for flux estimation, irrespective of the computational approach used for the simulation of the observable labeling pattern. Therefore, our findings indicate the necessity for development of techniques for accurate pool size measurements to improve the quality of flux estimates from non-stationary flux estimates in intact plant cells in the absence of alternative flux measurements. PMID:26082786

  5. Direct rate measurements of eruption plumes at Augustine volcano: A problem of scaling and uncontrolled variables

    SciTech Connect

    Rose, W.I.; Heiken, G.; Wohletz, K.; Eppler, D.; Barr, S.; Miller, T.; Chuan, R.L.; Symonds, R.B.

    1988-05-10

    The March--April 1986 eruption of Augustine Volcano, Alaska, provided an opportunity to directly measure the flux of gas, aerosol, and ash particles during explosive eruption. Most previous direct measurements of volcanic emission rates are on plumes from fuming volcanoes or on very small eruption clouds. Direct measurements during explosive activity are needed to understand the scale relationships between passive degassing or small eruption plumes and highly explosive events. Conditions on April 3, 1986 were ideal: high winds, clear visibility, moderate activity. Three measurements were made: (1) an airborne correlation spectrometer (Cospec) provided mass flux rates of SO/sub 2/; (2) treated filter samples chemically characteized the plume and (3) a quartz crystal microcascade impactor provided particle size distribution. Atmospheric conditions on April 3 caused the development of a lee wave plume, which allowed us to constrain a model of plume dispersion leading to a forecast map of concentrations of SO/sub 2/ at greater distances from the vent.

  6. CO2 Flux Measurement Uncertainty Estimates for NACP

    NASA Astrophysics Data System (ADS)

    Barr, A.; Hollinger, D.; Richardson, A. D.

    2009-12-01

    We evaluated the uncertainties in eddy-covariance net ecosystem exchange NEE, total ecosystem respiration RE and gross primary production GPP associated with (a) random measurement error and (b) uncertainties in the u* (friction velocity) threshold u*Th for all site-years in the NACP site-level synthesis. The analyses required automated evaluation of the u*Th filter used to identify and reject bad NEE measurements during low-turbulence periods at night. The u*Th detection algorithm was adapted from Papale et al. (2006), modified to use a standard change-point detection algorithm. Uncertainty in the u*Th was estimated by bootstrapping, conducted annually with 1,000 draws per site-year, then pooling all years and calculating the lower and upper 95% confidence intervals from the median and 2.5 and 97.5 percentiles of the pooled u*Th values. Random uncertainties in NEE, RE and GPP were estimated following Richardson et al. (2007). The NEE random uncertainty characteristic curve, which characterizes random uncertainty in NEE as a function of NEE, was estimated for each site-year based on the differences between the measured data and the output of a simple and robust gap-filling model. The estimation procedure began with synthetic NEE data generated by the gap-filling model, introduced gaps (as in the measured data after u*Th filtering), added synthetic noise (defined by the NEE random uncertainty characteristic curve using a Monte-Carlo approach), then filled the gaps in the noisy, gappy synthetic data. The process was repeated 1,000 times for each site-year, and the random uncertainty was estimated from median and the 2.5 and 97.5 percentiles of the gap-filled data. The uncertainties in NEE, RE and GPP associated with uncertainties in the u*Th were evaluated by running the gap-filling routine at 1,000 u*Th values, drawn randomly from the pooled annual bootstrapping estimates. This produced 1,000 realizations of the gap-filled NEE, RE and GPP time series. The

  7. Automated Speech Rate Measurement in Dysarthria

    ERIC Educational Resources Informatio