Science.gov

Sample records for flux tube approximation

  1. Flux tube spectra from approximate integrability at low energies

    SciTech Connect

    Dubovsky, S. Flauger, R.; Gorbenko, V.

    2015-03-15

    We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The approximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in D = 3 + 1 and D = 2 + 1, and to k-strings in gluodynamics in D = 2 + 1. We identify a massive pseudoscalar resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar resonances on the worldsheet of k = 2.3 strings in SU(6) gluodynamics in D = 2 + 1.

  2. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    SciTech Connect

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  3. Collapse of flux tubes

    NASA Astrophysics Data System (ADS)

    Wilets, L.; Puff, R. D.

    1995-01-01

    The dynamics of an idealized, infinite, MIT-type flux tube is followed in time as the interior evolves from a pure gluon field to a q¯q plasma. We work in color U(1). q¯q pair formation is evaluated according to the Schwinger mechanism using the results of Brink and Pavel. The motion of the quarks toward the tube end caps is calculated by a Boltzmann equation including collisions. The tube undergoes damped radial oscillations until the electric field settles down to zero. The electric field stabilizes the tube against pinch instabilities; when the field vanishes, the tube disintegrates into mesons. There is only one free parameter in the problem, namely the initial flux tube radius, to which the results are very sensitive. Among various quantities calculated is the mean energy of the emitted pions.

  4. Magnetic flux tube tunneling

    SciTech Connect

    Dahlburg, R.B.; Antiochos, S.K.; Norton, D.

    1997-08-01

    We present numerical simulations of the collision and subsequent interaction of {ital orthogonal} magnetic flux tubes. The simulations were carried out using a parallelized spectral algorithm for compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the flux tubes can {open_quotes}tunnel{close_quotes} through each other, a behavior not previously seen in studies of either vortex tube or magnetic flux tube interactions. Two conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch {gt}1, and the Lundquist number must be somewhat large, {ge}2880. An examination of magnetic field lines suggests that tunneling is due to a double-reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections, and {open_quotes}pass{close_quotes} through each other. The implications of these results for solar and space plasmas are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  5. Magnetic flux tube tunneling

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Antiochos, S. K.; Norton, D.

    1997-08-01

    We present numerical simulations of the collision and subsequent interaction of orthogonal magnetic flux tubes. The simulations were carried out using a parallelized spectral algorithm for compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the flux tubes can ``tunnel'' through each other, a behavior not previously seen in studies of either vortex tube or magnetic flux tube interactions. Two conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch >>1, and the Lundquist number must be somewhat large, >=2880. An examination of magnetic field lines suggests that tunneling is due to a double-reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections, and ``pass'' through each other. The implications of these results for solar and space plasmas are discussed.

  6. Flux tubes at finite temperature

    NASA Astrophysics Data System (ADS)

    Cea, Paolo; Cosmai, Leonardo; Cuteri, Francesca; Papa, Alessandro

    2016-06-01

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU (3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm˜eq 1.6/√{σ } and the temperature is increased towards and above the deconfinement temperature T c , the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube "evaporation" above T c has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  7. Equilibrium model of thin magnetic flux tubes. [solar atmosphere

    NASA Technical Reports Server (NTRS)

    Bodo, G.; Ferrari, A.; Massaglia, S.; Kalkofen, W.; Rosner, R.

    1984-01-01

    The existence of a physically realizable domain in which approximations that lead to a self consistent solution for flux tube stratification in the solar atmosphere, without ad hoc hypotheses, is proved. The transfer equation is solved assuming that no energy transport other than radiative is present. Convective motions inside the tube are assumed to be suppressed by magnetic forces. Only one parameter, the plasma beta at tau = 0, must be specified, and this can be estimated from observations of spatially resolved flux tubes.

  8. Siphon flows in isolated magnetic flux tubes. IV - Critical flows with standing tube shocks

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1991-01-01

    Critical siphon flows in arched, isolated magnetic flux tubes are studied within the thin flux tube approximation, with a view toward applications to intense magnetic flux concentrations in the solar photosphere. The results of calculations of the strength and position of the standing tube shock in the supercritical downstream branch of a critical siphon flow are presented, as are calculations of the flow variables all along the flux tube and the equilibrium path of the flux tube in the surrounding atmosphere. It is suggested that arched magnetic flux tubes, with magnetic field strength increased by a siphon flow, may be associated with some of the intense, discrete magnetic elements observed in the solar photosphere.

  9. Siphon flows in isolated magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Thomas, John H.

    1988-01-01

    The paper considers steady siphon flows in isolated thin magnetic flux tubes surrounded by field-free gas, with plasma beta greater than or equal to 1, appropriate for conditions in the solar photosphere. The cross-sectional area of the flux tube varies along the tube in response to pressure changes induced by the siphon flow. Consideration is also given to steady isothermal siphon flows in arched magnetic flux tubes in a stratified atmosphere. Applications of the results to intense magnetic flux tubes in the solar photosphere and to the photospheric Evershed flow in a sunspot penumbra are addressed.

  10. Crossed Flux Tubes Magnetic Reconnection Experiment

    NASA Astrophysics Data System (ADS)

    Tobin, Zachary; Bellan, Paul

    2012-10-01

    The dynamics of arched, plasma-filled flux tubes have been studied in experiments at Caltech. These flux tubes expand, undergo kink instabilities, magnetically reconnect, and are subject to magnetohydrodynamic forces. An upgraded experiment will arrange for two of these flux tubes to cross over each other. It is expected then that the flux tubes will undergo magnetic reconnection at the crossover point, forming one long flux tube and one short flux tube. This reconnection should also result in a half-twist in the flux tubes at the crossover point, which will propagate along each tube as Alfv'en waves. The control circuitry requires two independent floating high energy capacitor power supplies to power the plasma loops, which will be put in series when the plasma loops reconnect. Coordinating these two power supplies requires the building of new systems for controlling plasma generation. Unlike with previous designs, all timing functions are contained on a single printed circuit board, allowing the design to be easily replicated for use with each independent capacitor involved. The control circuit sequencing has been tested successfully in generating a single flux tube. The plasma gun is currently under construction, with its installation pending completion of prior experiments.

  11. The equilibrium structure of thin magnetic flux tubes. I

    NASA Technical Reports Server (NTRS)

    Ferrari, A.; Massaglia, S.; Kalkofen, W.; Rosner, R.; Bodo, G.

    1985-01-01

    A model atmosphere within a thin magnetic flux tube that is embedded in an arbitrarily stratified medium is presently constructed by solving the radiative transfer equation in the two-stream approximation for gray opacity, under the assumption that the magnetic field is sufficiently strong to warrant the neglect of both thermal conduction and convective diffusion; energy inside the flux tube therefore being transported solely by radiation. The structure of the internal atmosphere is determined on the basis of the hydrostatic and radiative equilibrium conditions of the tube embedded in an external atmosphere. The gas temperature along the axis of the tube is computed, and the geometry of the flux tube is determined on the basis of magnetic flux conservation and total pressure equilibrium.

  12. Investigating the Dynamics of Canonical Flux Tubes

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; Carroll, Evan; Kamikawa, Yu; Lavine, Eric; Vereen, Keon; You, Setthivoine

    2013-10-01

    Canonical flux tubes are defined by tracing areas of constant magnetic and fluid vorticity flux. This poster will present the theory for canonical flux tubes and current progress in the construction of an experiment designed to observe their evolution. In the zero flow limit, canonical flux tubes are magnetic flux tubes, but in full form, present the distinct advantage of reconciling two-fluid plasma dynamics with familiar concepts of helicity, twists and linkages. The experiment and the DCON code will be used to investigate a new MHD stability criterion for sausage and kink modes in screw pinches that has been generalized to magnetic flux tubes with skin and core currents. Camera images and a 3D array of ˙ B probes will measure tube aspect-ratio and ratio of current-to-magnetic flux, respectively, to trace these flux tube parameters in a stability space. The experiment's triple electrode planar gun is designed to generate azimuthal and axial flows. These diagnostics together with a 3D vector tomographic reconstruction of ion Doppler spectroscopy will be used to verify the theory of canonical helicity transport. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  13. Magnetic merging in colliding flux tubes

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.; Rhoads, James E.

    1995-01-01

    We develop an analytical theory of reconnection between colliding, twisted magnetic flux tubes. Our analysis is restricted to direct collisions between parallel tubes and is based on the collision dynamics worked out by Bogdan (1984). We show that there is a range of collision velocities for which neutral point reconnection of the Parker-Sweet type can occur, and a smaller range for which reconnection leads to coalescence. Mean velocities within the solar convection zone are probably significantly greater than the upper limit for coalescence. This suggests that the majority of flux tube collisions do not result in merging, unless the frictional coupling of the tubes to the background flow is extremely strong.

  14. Effective string description of confining flux tubes

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Meineri, Marco

    2016-08-01

    We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research.

  15. Dynamics of flux tubes in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, E. T.; Duncan, R. C.

    1994-01-01

    The study of magnetized plasmas in astrophysics is complicated by a number of factors, not the least of which is that in considering magnetic fields in stars or accretion disks, we are considering plasmas with densities well above those we can study in the laboratory. In particular, whereas laboratory plasmas are dominated by the confining magnetic field pressure, stars, and probably accretion disks, have magnetic fields whose beta (ratio of gas pressure to magnetic field pressure) is much greater than 1. Observations of the Sun suggest that under such circumstances the magnetic field breaks apart into discrete flux tubes with a small filling factor. On the other hand, theoretical treatments of MHD turbulence in high-beta plasmas tend to assume that the field is more or less homogeneously distributed throughout the plasma. Here we consider a simple model for the distribution of magnetic flux tubes in a turbulent medium. We discuss the mechanism by which small inhomogeneities evolve into discrete flux tubes and the size and distribution of such flux tubes. We then apply the model to accretion disks. We find that the fibrilation of the magnetic field does not enhance magnetic buoyancy. We also note that the evolution of an initially diffuse field in a turbulent medium, e.g., any uniform field in a shearing flow, will initially show exponential growth as the flux tubes form. This growth saturates when the flux tube formation is complete and cannot be used as the basis for a self-sustaining dynamo effect. Since the typical state of the magnetic field is a collection of intense flux tubes, this effect is of limited interest. However, it may be important early in the evolution of the galactic magnetic field, and it will play a large role in numerical simulations. Finally, we note that the formation of flux tubes is an essential ingredient in any successful dynamo model for stars or accretion disks.

  16. Casimir interactions between magnetic flux tubes in a dense lattice

    NASA Astrophysics Data System (ADS)

    Mazur, Dan; Heyl, Jeremy S.

    2015-03-01

    We use the worldline numerics technique to study a cylindrically symmetric model of magnetic flux tubes in a dense lattice and the nonlocal Casimir forces acting between regions of magnetic flux. Within a superconductor the magnetic field is constrained within magnetic flux tubes and if the background magnetic field is on the order the quantum critical field strength, Bk=m/2 e =4.4 ×1013 Gauss, the magnetic field is likely to vary rapidly on the scales where QED effects are important. In this paper, we construct a cylindrically symmetric toy model of a flux tube lattice in which the nonlocal influence of QED on neighboring flux tubes is taken into account. We compute the effective action densities using the worldline numerics technique. The numerics predict a greater effective energy density in the region of the flux tube, but a smaller energy density in the regions between the flux tubes compared to a locally constant-field approximation. We also compute the interaction energy between a flux tube and its neighbors as the lattice spacing is reduced from infinity. Because our flux tubes exhibit compact support, this energy is entirely nonlocal and predicted to be zero in local approximations such as the derivative expansion. This Casimir-Polder energy can take positive or negative values depending on the distance between the flux tubes, and it may cause the flux tubes in neutron stars to form bunches. In addition to the above results we also discuss two important subtleties of determining the statistical uncertainties within the worldline numerics technique. Firstly, the distributions generated by the worldline ensembles are highly non-Gaussian, and so the standard error in the mean is not a good measure of the statistical uncertainty. Secondly, because the same ensemble of worldlines is used to compute the Wilson loops at different values of T and xcm, the uncertainties associated with each computed value of the integrand are strongly correlated. We recommend a

  17. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  18. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinis, Benjamin

    1989-01-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  19. Flux tubes in the SU(3) vacuum

    NASA Astrophysics Data System (ADS)

    Cardaci, M. S.; Cea, P.; Cosmai, L.; Falcone, R.; Papa, A.

    We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the SU(3) vacuum. We find that the transverse profile of the flux tube resembles the dual version of the Abrikosov vortex field distribution and give an estimate of the London penetration length in the confined vacuum.

  20. NONLINEAR THREE-DIMENSIONAL MAGNETOCONVECTION AROUND MAGNETIC FLUX TUBES

    SciTech Connect

    Botha, G. J. J.; Rucklidge, A. M.; Hurlburt, N. E. E-mail: A.M.Rucklidge@leeds.ac.uk

    2011-04-20

    Magnetic flux in the solar photosphere forms concentrations from small scales, such as flux elements, to large scales, such as sunspots. This paper presents a study of the decay process of large magnetic flux tubes, such as sunspots, on a supergranular scale. Three-dimensional nonlinear resistive magnetohydrodynamic numerical simulations are performed in a cylindrical domain, initialized with axisymmetric solutions that consist of a well-defined central flux tube and an annular convection cell surrounding it. As the nonlinear convection evolves, the annular cell breaks up into many cells in the azimuthal direction, allowing magnetic flux to slip between cells away from the central flux tube (turbulent erosion). This lowers magnetic pressure in the central tube, and convection grows inside the tube, possibly becoming strong enough to push the tube apart. A remnant of the central flux tube persists with nonsymmetric perturbations caused by the convection surrounding it. Secondary flux concentrations form between convection cells away from the central tube. Tube decay is dependent on the convection around the tube. Convection cells forming inside the tube as time-dependent outflows will remove magnetic flux. (This is most pronounced for small tubes.) Flux is added to the tube when flux caught in the surrounding convection is pushed toward it. The tube persists when convection inside the tube is sufficiently suppressed by the remaining magnetic field. All examples of persistent tubes have the same effective magnetic field strength, consistent with the observation that pores and sunspot umbrae all have roughly the same magnetic field strength.

  1. NONLINEAR MULTISCALE SIMULATION OF TURBULENT FLUX TUBES

    SciTech Connect

    Ragot, B. R.

    2011-10-20

    A new method for the full nonlinear computation of sets of turbulent field lines has recently been introduced that allows inclusion of the equivalent of more than four decades of turbulent scales with a fully three-dimensional distribution of wavevectors. The integration scheme is here detailed, which, through transformation of the set of differential equations into mappings, compounds the efficiency and accuracy of the method. The potential of the method is then demonstrated with multiscale simulations of magnetic flux tubes ranging over nearly four decades of length scales both along and across the background field. Magnetic flux tubes of various sizes are computed for a turbulence spectrum typical of the quiet slow solar wind near 1 AU. Implications of the simulation results for the transport of energetic particles, and in particular, for the interpretation of impulsive solar-energetic-particle and upstream ion-event observations are discussed.

  2. Magnetic Flux Tube Interchange at the Heliopause

    NASA Astrophysics Data System (ADS)

    Florinski, V.

    2015-11-01

    The magnetic field measured by Voyager 1 prior to its heliocliff encounter on 2012.65 showed an unexpectedly complex transition from the primarily azimuthal inner-heliosheath field to the draped interstellar field tilted by some 20° to the nominal azimuthal direction. Most prominent were two regions of enhanced magnetic field strength depleted in energetic charged particles of heliospheric origin. These regions were interpreted as magnetic flux tubes connected to the outer heliosheath that provided a path for the particles to escape. Despite large increases in strength, the field’s direction did not change appreciably at the boundaries of these flux tubes. Rather, the field’s direction changed gradually over several months prior to the heliocliff crossing. It is shown theoretically that the heliopause, as a pressure equilibrium layer, can become unstable to interchange of magnetic fields between the inner and the outer heliosheaths. The curvature of magnetic field lines and the anti-sunward gradient in plasma kinetic pressure provide conditions favorable for an interchange. Magnetic shear between the heliosheath and the interstellar fields reduces the growth rates, but does not fully stabilize the heliopause against perturbations propagating in the latitudinal direction. The instability could create a transition layer permeated by magnetic flux tubes, oriented parallel to each other and alternately connected to the heliosheath or the interstellar regions.

  3. ON THE DISPERSION AND SCATTERING OF MAGNETOHYDRODYNAMIC WAVES BY LONGITUDINALLY STRATIFIED FLUX TUBES

    SciTech Connect

    Andries, J.; Cally, P. S. E-mail: paul.cally@monash.edu

    2011-12-20

    We provide a fairly general analytic theory for the dispersion and scattering of magnetohydrodynamic waves by longitudinally stratified flux tubes. The theory provides a common framework for, and synthesis of, many previous studies of flux tube oscillations that were carried out under various simplifying assumptions. The present theory focuses on making only a minimal number of assumptions. As a result it thus provides an analytical treatment of several generalizations of existing tube oscillation models. The most important practical cases are inclusion of plasma pressure and possibly buoyancy effects in models of straight non-diverging tubes as applied in coronal seismology, and relaxation of the 'thin tube' approximation in oscillation models of diverging tubes as applied both in the context of p-mode scattering and coronal seismology. In particular, it illustrates the unifying theoretical framework underlying both the description of waves scattered by flux tubes and the dispersion of waves carried along flux tubes.

  4. Generation of flux tube waves in stellar convection zones. 1: Longitudinal tube waves

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Rosner, R.; Ulmschneider, P.

    1987-01-01

    The source functions and the energy fluxes are derived for wave generation in magnetic flux tubes embedded in an otherwise magnetic- field free, turbulent, and compressible fluid. Specific results for the generation of longitudinal tube waves are presented.

  5. Magneto-Acoustic Waves in Compressible Magnetically Twisted Flux Tubes

    NASA Astrophysics Data System (ADS)

    Erdélyi, Robert; Fedun, Viktor

    2010-05-01

    The oscillatory modes of a magnetically twisted compressible flux tube embedded in a compressible magnetic environment are investigated in cylindrical geometry. Solutions to the governing equations to linear wave perturbations are derived in terms of Whittaker’s functions. A general dispersion equation is obtained in terms of Kummer’s functions for the approximation of weak and uniform internal twist, which is a good initial working model for flux tubes in solar applications. The sausage, kink and fluting modes are examined by means of the derived exact dispersion equation. The solutions of this general dispersion equation are found numerically under plasma conditions representative of the solar photosphere and corona. Solutions for the phase speed of the allowed eigenmodes are obtained for a range of wavenumbers and varying magnetic twist. Our results generalise previous classical and widely applied studies of MHD waves and oscillations in magnetic loops without a magnetic twist. Potential applications to solar magneto-seismology are discussed.

  6. Vlasov simulations of auroral flux tubes

    NASA Astrophysics Data System (ADS)

    Gunell, Herbert; De Keyser, Johan; Mann, Ingrid

    2013-04-01

    Electric fields that are parallel to the earth's magnetic field are known to exist in the auroral zone, where they contribute to the acceleration of auroral electrons. Thus, parallel electric fields form an integral part of the auroral current circuit. Transverse electric fields at high altitude result in parallel electric fields as a consequence of the closure of the field-aligned currents through the conducting ionosphere (L. R. Lyons, JGR, vol. 85, 1724, 1980). These parallel electric fields can be supported by the magnetic mirror field (Alfvén and Fälthammar, Cosmical Electrodynamics, 2nd ed., 1963). The current-voltage characteristics of an auroral flux tube has been studied using stationary kinetic models (Knight, Planet. and Space Sci., vol. 21, 741-750, 1973). Observations have shown that field-aligned potential drops often are concentrated in electric double layers (e.g. Ergun, et al., Phys. Plasmas, vol. 9, 3685-3694, 2002). In the upward current region, 20-50% of the total potential drop has been identified as localised. How the rest of the potential is spread out as function of altitude is not yet known from observations (Ergun et al., J. Geophys. Res., vol. 109, A12220, doi:101.1029/2004JA010545, 2004). We have performed Vlasov simulations, using a model that is one-dimensional in configuration space and two-dimensional in velocity space. In the upward current region, most of the potential drop is found in a thin, stationary, double layer. The rest is in a region, which extends a few earth radii above it. The current-voltage characteristic approximately follows the Knight relation. The altitude of the double layer decreases with an increasing field-aligned potential drop. In the downward current region, the voltage is significantly lower than in the upward current region for the same value of the current. Double layers have been observed also in the downward current region (Andersson et al., Phys. Plasmas, vol. 9, 3600-3609, doi:10

  7. Method for limiting heat flux in double-wall tubes

    DOEpatents

    Hwang, Jaw-Yeu

    1982-01-01

    A method of limiting the heat flux in a portion of double-wall tubes including heat treating the tubes so that the walls separate when subjected to high heat flux and supplying an inert gas mixture to the gap at the interface of the double-wall tubes.

  8. Kink Wave Propagation in Thin Isothermal Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Lopin, I. P.; Nagorny, I. G.; Nippolainen, E.

    2014-08-01

    We investigated the propagation of kink waves in thin and isothermal expanding flux tubes in cylindrical geometry. By using the method of radial expansion for fluctuating variables we obtained a new kink wave equation. We show that including the radial component of the tube magnetic field leads to cutoff-free propagation of kink waves along thin flux tubes.

  9. Maximum allowable heat flux for a submerged horizontal tube bundle

    SciTech Connect

    McEligot, D.M.

    1995-08-14

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or {open_quotes}critical{close_quotes}) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration.

  10. Plasma-depleted Flux Tubes in the Saturnian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, H.; Russell, C. T.; Wei, H.; Jia, Y. D.; Dougherty, M. K.

    2015-12-01

    Similar to Io's mass loading in the jovian magnetosphere, Saturn's moon, Enceladus, provides 100s of kilograms of water group neutrals and plasma to the planet's magnetosphere every second. The newly added plasma, being accelerated and convecting outward due to the centrifugal force, is then lost through magnetic reconnection in the tail. To conserve the total magnetic flux established by the internal dynamo, the 'empty' reconnected magnetic flux must return from the tail back to the inner magnetosphere. At both Jupiter and Saturn, flux tubes with enhanced field strength relative to their surroundings have been detected and are believed to be taking the role of returning the magnetic flux. However, at Saturn, flux tubes with depressed field strength are also reported. To reveal the relationship between the two kinds of flux tubes, we have systematically surveyed all the available 1-sec magnetic field data measured by Cassini and studied their statistical properties. The spatial distributions show that enhanced-field flux tubes are concentrated near the equator and closer to the planet while depressed-field flux tubes are distributed in a larger latitudinal region and can be detected at larger distances. In addition, we find that for both types of flux tubes, their occurrence rates vary with the local time in the same pattern and their magnetic flux is in the same magnitude. Therefore, the two types of flux tubes are just different manifestations of the same phenomenon: near the equator with high ambient plasma density, the flux tubes convecting in from the tail are compressed, resulting in increased field strength; off the equator, these flux tubes expand slightly, resulting in decreased field strength. Here we also present the lifecycle of the enhanced-field flux tubes: they gradually break into smaller ones when convecting inward and become indistinguishable from the background inside an L-value of about 4.

  11. Equilibrium structure of solar magnetic flux tubes: Energy transport with multistream radiative transfer

    NASA Technical Reports Server (NTRS)

    Hasan, S. S.; Kalkofen, W.

    1994-01-01

    We examine the equilibrium structure of vertical intense magnetic flux tubes on the Sun. Assuming cylindrical geometry, we solve the magnetohydrostatic equations in the thin flux-tube approximation, allowing for energy transport by radiation and convection. The radiative transfer equation is solved in the six-stream approximation, assuming gray opacity and local thermodynamic equilibrium. This constitutes a significant improvement over a previous study, in which the transfer was solved using the multidimensional generalization of the Eddington approximation. Convection in the flux tube is treated using mixing-length theory, with an additional parameter alpha, characterizing the suppression of convective energy transport in the tube by the strong magnetic field. The equations are solved using the method of partial linearization. We present results for tubes with different values of the magnetic field strength and radius at a fixed depth in the atmosphere. In general, we find that, at equal geometric heights, the temperature on the tube axis, compared to the ambient medium, is higher in the photosphere and lower in the convection zone, with the difference becoming larger for thicker tubes. At equal optical depths the tubes are generally hotter than their surroundings. The results are comparatively insensitive to alpha but depend upon whether radiative and convective energy transport operate simultaneously or in separate layers. A comparison of our results with semiempirical models shows that the temperature and intensity contrast are in broad agreement. However, the field strengths of the flux-tube models are somewhat lower than the values inferred from observations.

  12. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  13. Emerging Flux Tube Geometry and Sunspot Proper Motions

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia

    As sunspots appear at the intersection of rising flux tubes with the photosphere, the observed proper motions of a bipolar sunspot pair is a good indicator of the geometry of the underlying emerging flux tube. An emerging bipole caused by a simple symmetric potential flux tube should display a symmetric divergence of the two spots in diametrically opposite directions, while the proper motions of bipolar spot-pairs belonging to tilted or/and twisted (non-potential) emerging flux tubes are more complicated: asymmetric, not diametrically opposite and may follow a curved pattern. Observation of such motions may help to prove that emerging flux tubes are tilted and frequently twisted, in good agreement with predictions by recent simulation studies.

  14. Vortices and flux tubes: The crossover

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Spiegel, E. A.

    2012-12-01

    The sun has magnetic flux tubes that cause sunspots by locally inhibiting convection near its surface. Jupiter has vortices that make the great red spot and other such blemishes. Why are there no similar vortices on the sun? How is the difference in the two kinds of system controlled by the magnetic Prandtl number? What happens at the crossover between the two behaviors? The transition between velocity and magnetically dominated regimes is the driving question of this work. It should occur somewhere in the enormous range in Prandtl number between the sun and planets like Jupiter. Objects that lie in between these vastly different extremes are Brown Dwarfs that have such low mass that they do not burn hydrogen in their cores. These objects are now being actively observed though there is as yet no direct evidence bearing on the present calculations. Other possibly interesting conditions may arise in certain disks around newborn stars where planetary systems are thought to be forming. These may be cool enough to place them in an interesting parameter range for the competition we describe. Using 2D calculations, we seek a quantitative measure of the relative importance of the two vector fields seen in the calculations, statistical or spectral, topological or structural.

  15. Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1990-01-01

    It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.

  16. Analytical Approximation of Spectrum for Pulse X-ray Tubes

    NASA Astrophysics Data System (ADS)

    Vavilov, S.; Koshkin, G.; Udod, V.; Fofanof, O.

    2016-01-01

    Among the main characteristics of the pulsed X-ray apparatuses the spectral energy characteristics are the most important ones: the spectral distribution of the photon energy, effective and maximum energy of quanta. Knowing the spectral characteristics of the radiation of pulse sources is very important for the practical use of them in non-destructive testing. We have attempted on the analytical approximation of the pulsed X-ray apparatuses spectra obtained in the different experimental papers. The results of the analytical approximation of energy spectrum for pulse X-ray tube are presented. Obtained formulas are adequate to experimental data and can be used by designing pulsed X-ray apparatuses.

  17. Benchmarking gyrokinetic simulations in a toroidal flux-tube

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Parker, S. E.; Wan, W.; Bravenec, R.

    2013-09-01

    A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementation shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v||-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.

  18. Benchmarking gyrokinetic simulations in a toroidal flux-tube

    SciTech Connect

    Chen, Y.; Parker, S. E.; Wan, W.; Bravenec, R.

    2013-09-15

    A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementation shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.

  19. Acoustic emission from magnetic flux tubes in the solar network

    NASA Astrophysics Data System (ADS)

    Vigeesh, G.; Hasan, S. S.

    2013-06-01

    We present the results of three-dimensional numerical simulations to investigate the excitation of waves in the magnetic network of the Sun due to footpoint motions of a magnetic flux tube. We consider motions that typically mimic granular buffeting and vortex flows and implement them as driving motions at the base of the flux tube. The driving motions generates various MHD modes within the flux tube and acoustic waves in the ambient medium. The response of the upper atmosphere to the underlying photospheric motion and the role of the flux tube in channeling the waves is investigated. We compute the acoustic energy flux in the various wave modes across different boundary layers defined by the plasma and magnetic field parameters and examine the observational implications for chromospheric and coronal heating.

  20. TWISTED MAGNETIC FLUX TUBES IN THE SOLAR WIND

    SciTech Connect

    Zaqarashvili, Teimuraz V.; Vörös, Zoltán; Narita, Yasuhito; Bruno, Roberto

    2014-03-01

    Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted due to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through the observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of the isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 70°, but the angle can further decrease due to the motion of the tube with respect to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably cannot reach 1 AU.

  1. Sausage Mode Propagation in a Thick Magnetic Flux Tube

    NASA Astrophysics Data System (ADS)

    Pardi, A.; Ballai, I.; Marcu, A.; Orza, B.

    2014-04-01

    The aim of this paper is to model the propagation of slow magnetohydrodynamic (MHD) sausage waves in a thick expanding magnetic flux tube in the context of the quiescent (VAL-C) solar atmosphere. The propagation of these waves is found to be described by the Klein-Gordon equation. Using the governing MHD equations and the VAL-C atmosphere model we study the variation of the cut-off frequency along and across the magnetic tube guiding the waves. Due to the radial variation of the cut-off frequency the flux tubes act as low frequency filters for the waves.

  2. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and

  3. Observations of reconnected flux tubes within the midaltitude cusp

    SciTech Connect

    Saflekos, N.A. ); Burch, J.L. ); Sugiura, M. ); Gurnett, D.A. ); Horwitz, J.L. )

    1990-06-01

    Dynamics Explorer 1 observations within the midaltitude polar cusp provide indirect evidence of reconnected flux tubes (RFT) envisioned to be extensions of the flux transfer events reportedly found near the magnetopause. In this study, low-energy plasma, high-energy plasma, magnetic fields, and electric fields were used to identify the signatures of reconnected flux tubes in the midaltitude cusp. Inside isolated flux tubes, low-energy plasma was observed to be transferred from the magnetosheath to the magnetosphere, and relatively hot plasma was observed to be transferred from the magnetosphere to the magnetosheath. The cool magnetosheath plasma and the relatively hot magnetospheric plasma shared the same magnetic flux tube. The RFT signature is most easily identified in electron and ion energy fluxes plotted versus time for all pitch angles. The characteristics of spatial scale, time duration, and frequency of occurrence between flux transfer events and midaltitude cusp reconnected flux tubes are consistent, although they differ in the direction of motion. However, the merging cell topology and the interplanetary magnetic field B{sub y} effect can explain this difference. Larger-scale (space and time) events can be explained by motion of the cusp resulting from a quasi-steady reconnection process. The field-aligned currents associated with reconnected flux tubes are midaltitudes within the cusp are consistent with twisting of magnetic field lines and with closure by Pedersen currents. It is possible that what appear to be field-aligned currents closing by Pedersen ionospheric currents may also be interpreted as currents carried by Alfven waves.

  4. Pseudocompressible approximation and statistical turbulence modeling: application to shock tube flows.

    PubMed

    Soulard, Olivier; Griffond, Jérôme; Souffland, Denis

    2012-02-01

    In this work, a pseudocompressible approximation relevant for turbulent mixing flows encountered in shock tubes is derived. The asymptotic analysis used for this purpose puts forward the role played by four dimensionless numbers on the flow compressibility, namely, the turbulent, deformation, stratification, and buoyancy force Mach numbers. The existence of rapid distortion and diffusion-dissipation regimes is also accounted for in the analysis. Some consequences of the derived pseudocompressible approximation on statistical turbulence models are discussed. In particular, the evolutions of the density variance and flux are examined, as well as the turbulent transport of energy. The different aspects of this study are assessed by performing a direct numerical simulation of a shock tube flow configuration. PMID:22463317

  5. Electronic Flux Density beyond the Born-Oppenheimer Approximation.

    PubMed

    Schild, Axel; Agostini, Federica; Gross, E K U

    2016-05-19

    In the Born-Oppenheimer approximation, the electronic wave function is typically real-valued and hence the electronic flux density (current density) seems to vanish. This is unfortunate for chemistry, because it precludes the possibility to monitor the electronic motion associated with the nuclear motion during chemical rearrangements from a Born-Oppenheimer simulation of the process. We study an electronic flux density obtained from a correction to the electronic wave function. This correction is derived via nuclear velocity perturbation theory applied in the framework of the exact factorization of electrons and nuclei. To compute the correction, only the ground state potential energy surface and the electronic wave function are needed. For a model system, we demonstrate that this electronic flux density approximates the true one very well, for coherent tunneling dynamics as well as for over-the-barrier scattering, and already for mass ratios between electrons and nuclei that are much larger than the true mass ratios. PMID:26878256

  6. SHOCKS AND THERMAL CONDUCTION FRONTS IN RETRACTING RECONNECTED FLUX TUBES

    SciTech Connect

    Guidoni, S. E.; Longcope, D. W.

    2010-08-01

    We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfvenic speeds from the reconnection site. Heating occurs in gas-dynamic shocks (GDSs) which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature-dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong GDSs generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the tube, rendering the diffusive processes dominant. They determine the thickness of the shock that evolves up to a steady state value, although this condition may not be reached in the short times involved in a flare. For realistic solar coronal parameters, this steady state shock thickness might be as long as the entire flux tube. For strong shocks at low Prandtl numbers, typical of the solar corona, the GDS consists of an isothermal sub-shock where all the compression and cooling occur, preceded by a thermal front where the temperature increases and most of the heating occurs. We estimate the length of each of these sub-regions and the speed of their propagation.

  7. Visualising Plasma Flow in Current-carrying Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; Bellan, Paul M.

    2003-10-01

    Laboratory experiments at Caltech [1], designed to study the formation and dynamics of spheromaks, solar prominences [2] and astrophysical jets, have motivated a theory for plasma flow within current-carrying magnetic flux tubes [3]. The spheromak and jet plasmas studied are formed by the merging of several plasma-filled magnetic flux tubes. These flux tubes ingest gas puffed in by pulsed gas valves and have current driven along a bias field. The apparatus is now being modified to permit injection of two different gas species into the same flux tube from different ports, corresponding to opposite footpoints of the flux tube. The new gas delivery system allows for simultaneous injection of various combinations of gas species (H, D, He, N, Ne, Ar, Kr) through various gas nozzle locations (inner or outer gun electrodes, left hand side or right hand side series). During the discharge, the multi-species plasmas are to be imaged with high speed, single- and multiple-frame, intensified CCD cameras and will be differentiated by narrow band optical filters. Other diagnostics include a magnetic probe array, soft x-ray diodes and an optical multichannel analyser to monitor the magnetic field evolution, particle velocities and energies. [1] S. C. Hsu and P. M. Bellan, Mon. Not. R. Astron. Soc., 334, 257-261 (2000). [2] J. F. Hansen and P. M. Bellan, Astrophys. J., 563, L183-L186, (2001). [3] P. M. Bellan, Phys. Plasmas, 10, 1999-2008 (2003).

  8. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    SciTech Connect

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-08-20

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma {beta} changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  9. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    SciTech Connect

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.

  10. Magnetic field characters of returning flux tubes in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, Hairong; Russell, Christopher; Jia, Yingdong; Wei, Hanying

    2016-04-01

    Deep in the Saturnian magnetosphere, water-group neutrals are ionized after being released from the plume of Enceladus at 4 RS. This forms a plasma disk from 2.5 to 8 RS around Saturn and the typical source rate is 12~250 kg/s. Such plasma addition must be shed to the solar wind ultimately to maintain the plasma density in the magnetosphere in long term average. In this plasma transfer process, the magnetic flux also convects outward. To conserve the total magnetic flux imposed on the magnetosphere by the planet's internal dynamo, the magnetic flux has to return to the inner magnetosphere. Flux tubes are found to be the major form of such return. Determining such flux tubes is essential in understanding the breathing of Saturn magnetosphere. We investigated 10 years of Cassini magnetometer data to identify over six hundred flux-returning events between 4 and 18 in L. Statistical properties are presented, to constrain the origin, transport and evolution of these flux tubes.

  11. Signature of the Fragmentation of a Color Flux Tube

    DOE PAGESBeta

    Wong, Cheuk-Yin

    2015-10-07

    The production of quark-antiquark pairs along a color flux tube precedes the fragmentation of the tube. Because of the local conservation of momentum and charge, the production of amore » $q$-$$\\bar q$$ pair will lead to correlations of adjacently produced mesons (mostly pions). Adjacently produced pions however can be signalled by the their rapidity difference $$\\Delta y$$ falling within the window of $$|\\Delta y | < 1/(dN_\\pi/dy)$$, on account of the space-time-rapidity ordering of produced pions in a flux tube fragmentation. Therefore, the local conservation of momentum will lead to a suppression of azimuthal two-pion correlation $$dN/(d\\Delta \\phi\\, d\\Delta y)$$ on the near side at $$(\\Delta \\phi, \\Delta y) \\sim 0$$, but an enhanced azimuthal correlation on the back-to-back, away side at $$(\\Delta \\phi$$$$\\sim$$$$ \\pi,\\Delta y$$$$\\sim$$0). Similarly, in a flux tube fragmentation, the local conservation of charge will forbid the production of like charge pions within $$|\\Delta y | < 1/(dN_\\pi/dy)$$, but there is no such prohibition for $$|\\Delta y| >1/(dN_\\pi/dy)$$. These properties may be used as the signature for the fragmentation of a color flux tube.« less

  12. Signature of the Fragmentation of a Color Flux Tube

    SciTech Connect

    Wong, Cheuk-Yin

    2015-10-07

    The production of quark-antiquark pairs along a color flux tube precedes the fragmentation of the tube. Because of the local conservation of momentum and charge, the production of a $q$-$\\bar q$ pair will lead to correlations of adjacently produced mesons (mostly pions). Adjacently produced pions however can be signalled by the their rapidity difference $\\Delta y$ falling within the window of $|\\Delta y | < 1/(dN_\\pi/dy)$, on account of the space-time-rapidity ordering of produced pions in a flux tube fragmentation. Therefore, the local conservation of momentum will lead to a suppression of azimuthal two-pion correlation $dN/(d\\Delta \\phi\\, d\\Delta y)$ on the near side at $(\\Delta \\phi, \\Delta y) \\sim 0$, but an enhanced azimuthal correlation on the back-to-back, away side at $(\\Delta \\phi$$\\sim$$ \\pi,\\Delta y$$\\sim$0). Similarly, in a flux tube fragmentation, the local conservation of charge will forbid the production of like charge pions within $|\\Delta y | < 1/(dN_\\pi/dy)$, but there is no such prohibition for $|\\Delta y| >1/(dN_\\pi/dy)$. These properties may be used as the signature for the fragmentation of a color flux tube.

  13. Explosive instability and erupting flux tubes in a magnetized plasma

    PubMed Central

    Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.

    2015-01-01

    The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193

  14. Nature of the Vacuum inside the Color Flux Tube

    NASA Astrophysics Data System (ADS)

    Gliozzi, F.; Vinti, S.

    1997-02-01

    The interior of the color flux tube joining a quark pair can be probed by evaluating the correlator of pair of Polyakov loops in a vacuum modified by another Polyakov pair, in order to check the dual superconductivity conjecture, which predicts a deconfined, hot core. We also point out that at the critical point of any 3 D gauge theories with a continuous deconfining transition the Svetitsky-Yaffe conjecture provides us with an analytic expression of the Polyakov correlator as a function of the location of the probe inside the flux tube. Both these predictions are compared with numerical results in 3 DZ2 gauge model, finding complete agreement.

  15. Observations of reconnected flux tubes within the midaltitude cusp

    NASA Technical Reports Server (NTRS)

    Saflekos, N. A.; Burch, J. L.; Sugiura, M.; Gurnett, D. A.; Horwitz, J. L.

    1990-01-01

    The paper presents three events interpreted as reconnected flux tubes that correspond to the extensions of FTEs which have penetrated deep into the magnetosphere down to the midaltitudes of the polar cusp. Low-energy plasma, high-energy plasma, magnetic fields, and electric fields are used to identify the signatures of reconnected flux tubes. Characteristics of spatial scale, time duration, and frequency of occurrence between flux transfer events and midaltitude cusp reconnected flux tubes are shown to be consistent, although they differ in the direction of motion. However, the merging cell topology and the interplanetary magnetic field effect can explain this difference. Larger-scale events can be explained by motion of the cusp resulting from a quasi-steady reconnection process. The field-aligned currents associated with reconnected flux tubes at midaltitudes within the cusp are shown to be consistent with twisting of magnetic field lines and with closure by Pedersen currents. It is considered possible that what appears to be field-aligned currents closing by Pedersen ionospheric currents may also be interpreted as currents carried by Alfven waves.

  16. Flux limiters. [for shock tube flow computation

    NASA Technical Reports Server (NTRS)

    Sweby, P. K.

    1985-01-01

    It is well known that first order accurate difference schemes for the numerical solution of conservation laws produce results which suffer from excessive numerical diffusion, classical second order schemes, although giving better resolution, suffer from spurious oscillations. Recently much effect has been put into achieving high resolution without these oscillations, using a variety of techniques. Here one class of such methods, that of flux limiting, is outlined together with the TVD constraint used to ensure oscillation free solutions. Brief numerical comparisons of different limiting functions are also presented.

  17. Reconnection Between Twisted Flux Tubes - Implications for Coronal Heating

    NASA Astrophysics Data System (ADS)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.; Klimchuk, J. A.; Wyper, P. F.

    2015-12-01

    The nature of the heating of the Sun's corona has been a long-standing unanswered problem in solar physics. Beginning with the work of Parker (1972), many authors have argued that the corona is continuously heated through numerous small-scale reconnection events known as nanoflares. In these nanoflare models, stressing of magnetic flux tubes by photospheric motions causes the field to become misaligned, producing current sheets in the corona. These current sheets then reconnect, converting the free energy stored in the magnetic field into heat. In this work, we use the Adaptively Refined MHD Solver (ARMS) to perform 3D MHD simulations that dynamically resolve regions of strong current to study the reconnection between twisted flux tubes in a plane-parallel Parker configuration. We investigate the energetics of the process, and show that the flux tubes accumulate stress gradually before undergoing impulsive reconnection. We study the motion of the individual field lines during reconnection, and demonstrate that the connectivity of the configuration becomes extremely complex, with multiple current sheets being formed, which could lead to enhanced heating. In addition, we show that there is considerable interaction between the twisted flux tubes and the surrounding untwisted field, which contributes further to the formation of current sheets. The implications for observations will be discussed. This work was funded by a NASA Earth and Space Science Fellowship, and by the NASA TR&T Program.

  18. Emergence of undulatory magnetic flux tubes by small scale reconnections

    NASA Astrophysics Data System (ADS)

    Pariat, E.; Aulanier, G.; Schmieder, B.; Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.

    With Flare Genesis Experiment (FGE), a balloon borne observatory launched in Antarctica on January 2000, series of high spatial resolution vector magnetograms, Dopplergrams, and Hα filtergrams have been obtained in an emerging active region (AR 8844). Previous analyses of this data revealed the occurence of many short-lived and small-scale Hα brightenings called 'Ellerman bombs' (EBs) within the AR. We performed an extrapolation of the field above the photosphere using the linear force-free field approximation. The analysis of the magnetic topology reveals a close connexion between the loci of EBs and the existence of ``Bald patches'' regions (BPs are regions where the vector magnetic field is tangential to the photosphere). Among 47 identified EBs, we found that 23 are co-spatial with a BP, while 19 are located at the footpoint of very flat separatrix field lines passing throught a distant BP. We reveal for the first time that some of these EBs/BPs are magneticaly connected by low-lying lines, presenting a 'sea-serpent' shape. This results leads us to conjecture that arch filament systems and active regions coronal loops do not result from the smooth emergence of large scale Ω loops, but rather from the rise of flat undulatory flux tubes which get released from their photospheric anchorage by reconnection at BPs, whose observational signature is Ellerman bombs.

  19. Emergence of undulatory magnetic flux tubes by small scale reconnections

    NASA Astrophysics Data System (ADS)

    Pariat, E.; Aulanier, G.; Schmieder, B.; Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.

    2006-01-01

    With Flare Genesis Experiment (FGE), a balloon borne observatory launched in Antarctica on January 2000, series of high spatial resolution vector magnetograms, Dopplergrams, and Hα filtergrams have been obtained in an emerging active region (AR 8844). Previous analyses of this data revealed the occurence of many short-lived and small-scale H α brightenings called 'Ellerman bombs' (EBs) within the AR. We performed an extrapolation of the field above the photosphere using the linear force-free field approximation. The analysis of the magnetic topology reveals a close connexion between the loci of EBs and the existence of "Bald patches" (BP) regions (BPs are regions where the vector magnetic field is tangential to the photosphere). Some of these EBs/BPs are magnetically connected by low-lying field lines, presenting a serpentine shape. This results leads us to conjecture that arch filament systems and active regions coronal loops do not result from the smooth emergence of large scale Ω-loops, but rather from the rise of flat undulatory flux tubes which get released from their photospheric anchorage by reconnection at BPs, which observational signature is Ellerman bombs.

  20. Sunspots and the physics of magnetic flux tubes. I - The general nature of the sunspot. II - Aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    Analysis of the dynamical stability of a large flux tube suggests that the field of a sunspot must divide into many separate tubes within the first 1000 km below the surface. Buoyancy of the Wilson depression at the visible surface and probably also a downdraft beneath the sunspot hold the separate tubes in a loose cluster. Convective generation of Alfven waves, which are emitted preferentially downward, cools the tubes. Aerodynamic drag on a slender flux tube stretched vertically across a convective cell is also studied. Since the drag is approximately proportional to the local kinetic energy density, the density stratification weights the drag in favor of the upper layers. Horizontal motions concentrated in the bottom of the convective cell may reverse this density effect. A downdraft of about two km/sec through the flux tubes beneath the sunspot is hypothesized.

  1. Doppler displacements in kink MHD waves in solar flux tubes

    NASA Astrophysics Data System (ADS)

    Goossens, Marcel; Van Doorsselaere, Tom; Terradas, Jaume; Verth, Gary; Soler, Roberto

    Doppler displacements in kink MHD waves in solar flux tubes Presenting author: M. Goossens Co-authors: R. Soler, J. Terradas, T. Van Doorsselaere, G. Verth The standard interpretation of the transverse MHD waves observed in the solar atmosphere is that they are non-axisymmetric kink m=1) waves on magnetic flux tubes. This interpretation is based on the fact that axisymmetric and non-axisymmetric fluting waves do not displace the axis of the loop and the loop as a whole while kink waves indeed do so. A uniform transverse motion produces a Doppler displacement that is constant across the magnetic flux tube. A recent development is the observation of Doppler displacements that vary across the loop. The aim of the present contribution is to show that spatial variations of the Doppler displacements across the loop can be caused by kink waves. The motion associated with a kink wave is purely transverse only when the flux tube is uniform and sufficiently thin. Only in that case do the radial and azimuthal components of displacement have the same amplitude and is the azimuthal component a quarter of a period ahead of the radial component. This results in a unidirectional or transverse displacement. When the flux tube is non-uniform and has a non-zero radius the conditions for the generation of a purely transverse motion are not any longer met. In that case the motion in a kink wave is the sum of a transverse motion and a non-axisymmetric rotational motion that depends on the azimuthal angle. It can produce complicated variations of the Doppler displacement across the loop. I shall discuss the various cases of possible Doppler displacenents that can occur depending on the relative sizes of the amplitudes of the radial and azimuthal components of the displacement in the kink wave and on the orientation of the line of sight.

  2. Resonant Absorption of Axisymmetric Modes in Twisted Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Goossens, M.; Verth, G.; Fedun, V.; Van Doorsselaere, T.

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  3. Achieving Zero Current for Polar Wind Outflow on Open Flux Tubes Subjected to Large Photoelectron Fluxes

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.; Khazanov, G.; Horwitz, J. L.

    1997-01-01

    In this study we investigate how the condition of zero current on open flux tubes with polar wind outflow, subjected to large photoelectron fluxes, can be achieved. We employ a steady state collisionless semikinetic model to determine the density profiles of O(+), H(+), thermal electrons and photoelectrons coming from the ionosphere along with H(+), ions and electrons coming from the magnetosphere. The model solution attains a potential distribution which both satisfies the condition of charge neutrality and zero current. For the range of parameters considered in this study we find that a 45-60 volt discontinuous potential drop may develop to reflect most of the photoelectrons back toward the ionosphere. This develops because the downward flux of electrons from the magnetosphere to the ionosphere on typical open flux tubes (e.g. the polar rain) appears to be insufficient to balance the photoelectron flux from the ionosphere.

  4. Low thermal flux glass-fiber tubing for cryogenic service.

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Pharo, T. J., Jr.; Phillips, J. M.

    1972-01-01

    Study of thin metallic liners which provide leak-free service in cryogenic propulsion plumbing systems and are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The composite tube is lightweight, strong, and has a very low thermal flux. The resultant reduced boiloff of stored cryogenic propellants yields a substantial weight savings for long-term missions (seven days or greater). Twelve styles of tubing ranging from 1/2 to 5 in. in diameter were fabricated and tested with excellent results for most of the concepts at operating temperatures from +70 to -423 F and operating pressures up to 3000 psi.

  5. Statistical Study of Plasma-depleted Flux Tubes in Saturnian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.; Wei, H. Y.; Dougherty, M. K.; Jia, Y. D.

    2015-10-01

    We have surveyed the occurrence of flux tubes with both enhanced and depressed field strength relative to their surroundings as observed in Cassini magnetometer data. Consistent with earlier studies, enhanced field flux tubes are concentrated near the equator while depressed field flux tubes are distributed in a larger latitudinal region. For both types of flux tubes, their occurrence rates vary with the local time in the same pattern and they contain the same magnetic flux. Therefore, we suggest that those two types of tubes are just different manifestations of the same phenomenon. Near the equator with high ambient plasma density, the flux tubes convecting in from the tail are compressed, resulting in increased field strength. Off the equator,these flux tubes expand slightly, resulting in decreased field strength. The enhanced flux tubes gradually break into smaller ones as they convect inward. Inside an L value of about 5, they become indistinguishable from the background.

  6. Deformed flux tubes produce azimuthal anisotropy in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Pirner, H. J.; Reygers, K.; Kopeliovich, B. Z.

    2016-03-01

    We investigate the azimuthal anisotropy v2 of particle production in nucleus-nucleus collisions in the maximum entropy approach. This necessitates two new phenomenological input parameters δ and λ2 compared with integrated multiplicity distributions. The parameter δ describes the deformation of a flux tube and can be theoretically calculated in a bag model with a bag constant which depends on the density of surrounding flux tubes. The parameter λ2 defines the anisotropy of the particle distribution in momentum space and can be connected to δ via the uncertainty relation. In this framework we compute the anisotropy v2 as a function of centrality, transverse momentum, and rapidity in qualitative agreement with Large Hadron Collider data.

  7. Pair creation in an electric flux tube and chiral anomaly

    SciTech Connect

    Iwazaki, Aiichi

    2009-11-15

    Using the chiral anomaly, we discuss the pair creation of massless fermions under the effect of a magnetic field B-vector when an electric flux tube E-vector parallel to B-vector is switched on. The tube is axially symmetric and infinitely long. For the constraint B>>E, we can analytically obtain the spatial and temporal behaviors of the number density of the fermions, the azimuthal magnetic field generated by the fermions, and so on. We find that the lifetime t{sub c} of the electric field becomes shorter as the width of the tube becomes narrower. Applying it to the plasma in high-energy heavy-ion collisions, we find that the color electric field decays quickly such that t{sub c}{approx_equal}Q{sub s}{sup -1}, in which Q{sub s} is the saturation momentum.

  8. Dyonic Flux Tube Structure of Nonperturbative QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Pandey, H. C.

    We study the flux tube structure of the nonperturbative QCD vacuum in terms of its dyonic excitations by using an infrared effective Lagrangian and show that the dyonic condensation of QCD vacuum has a close connection with the process of color confinement. Using the fiber bundle formulation of QCD, the magnetic symmetry condition is presented in a gauge covariant form and the gauge potential has been constructed in terms of the magnetic vectors on global sections. The dynamical breaking of the magnetic symmetry has been shown to lead the dyonic condensation of QCD vacuum in the infrared energy sector. Deriving the asymptotic solutions of the field equations in the dynamically broken phase, the dyonic flux tube structure of QCD vacuum is explored which has been shown to lead the confinement parameters in terms of the vector and scalar mass modes of the condensed vacuum. Evaluating the charge quantum numbers and energy associated with the dyonic flux tube solutions, the effect of electric excitation of monopole is analyzed using the Regge slope parameter (as an input parameter) and an enhancement in the dyonic pair correlations and the confining properties of QCD vacuum in its dyonically condensed mode has been demonstrated.

  9. Energetic particles, tangential discontinuities, and solar flux tubes

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.; Giacalone, J.

    2015-10-01

    This study examines the probable sources of sharp changes in the flux of energetic particles (EPs) in the solar wind. Data acquired by the ACE Low Energy Magnetic Spectrometer sensors during 1999 were used to identify EP boundaries that were not located at interplanetary shocks or caused by intermittent connection to the Earth's bow shock. It was found that at least 68%, and probably 80%, of such boundaries occur at significant changes in the plasma and magnetic field in the solar wind. Those changes are consistent with crossing preexisting tangential discontinuities or flux tube boundaries rather than by local MHD turbulence or time-dependent bursts of acceleration. Because some of the EP boundaries would not have been detected by Borovsky's (2008) analysis of flux tube boundaries, it is concluded that such boundaries in the solar wind are at least 30% more prevalent than previously suggested. The result can also be used to explain some observations of localized variations in EP flux both ahead of and behind the interplanetary shocks where particle acceleration occurred without requiring local acceleration.

  10. A multiscale two-point flux-approximation method

    SciTech Connect

    Møyner, Olav Lie, Knut-Andreas

    2014-10-15

    A large number of multiscale finite-volume methods have been developed over the past decade to compute conservative approximations to multiphase flow problems in heterogeneous porous media. In particular, several iterative and algebraic multiscale frameworks that seek to reduce the fine-scale residual towards machine precision have been presented. Common for all such methods is that they rely on a compatible primal–dual coarse partition, which makes it challenging to extend them to stratigraphic and unstructured grids. Herein, we propose a general idea for how one can formulate multiscale finite-volume methods using only a primal coarse partition. To this end, we use two key ingredients that are computed numerically: (i) elementary functions that correspond to flow solutions used in transmissibility upscaling, and (ii) partition-of-unity functions used to combine elementary functions into basis functions. We exemplify the idea by deriving a multiscale two-point flux-approximation (MsTPFA) method, which is robust with regards to strong heterogeneities in the permeability field and can easily handle general grids with unstructured fine- and coarse-scale connections. The method can easily be adapted to arbitrary levels of coarsening, and can be used both as a standalone solver and as a preconditioner. Several numerical experiments are presented to demonstrate that the MsTPFA method can be used to solve elliptic pressure problems on a wide variety of geological models in a robust and efficient manner.

  11. The equilibrium structure of thin magnetic flux tubes. II. [in sun and late stars

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Rosner, R.; Ferrari, A.; Massaglia, S.

    1986-01-01

    The thermal structure of the medium inside thin, vertical magnetic flux tubes embedded in a given external atmosphere is investigated, assuming cylindrical symmetry and a depth-independent plasma beta. The variation with tube radius of the temperature on the tube axis is computed and the temperature on the tube wall is estimated. The temperature variation across the flux tube is found to be due to the depth variation of the intensity and to the density stratification of the atmosphere. Since the temperature difference between the axis and the wall is small in thin flux tubes (of the order of 10 percent), the horizontal temperature gradient may often be neglected and the temperature in a tube of given radius may be described by a single function of depth. Thus, a more detailed numerical treatment of the radiative transfer within thin flux tubes can be substantially simplified by neglecting horizontal temperature differences within the flux tube proper.

  12. Flux tubes and coherence length in the SU(3) vacuum

    NASA Astrophysics Data System (ADS)

    Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A.

    An estimate of the London penetration and coherence lengths in the vacuum of the SU(3) pure gauge theory is given downstream an analysis of the transverse profile of the chromoelectric flux tubes. Within ordinary superconductivity, a simple variational model for the magnitude of the normalized order parameter of an isolated vortex produces an analytic expression for magnetic field and supercurrent density. In the picture of SU(3) vacuum as dual superconductor, this expression provides us with the function that fits the chromoelectric field data. The smearing procedure is used in order to reduce noise.

  13. Quantifying the dynamic evolution of individual arched magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Bellan, P. M.

    2012-12-01

    Highly dynamic arched ‘loops’ of plasma were created in the laboratory with a magnetized plasma gun. The magnetic structure of the loops was found to be consistent with that of an expanding flux tube subject to a kink instability. High-speed flows were found to transport plasma along the loop axis, from both footpoints toward the apex of the arched loop. Two complementary MHD models were used to explain the expansion and axial flows, both of which scale in proportion to a ‘toroidal Alfven speed’.

  14. Investigating the Dynamics of Canonical Flux Tubes in Jet Geometry

    NASA Astrophysics Data System (ADS)

    Lavine, Eric; You, Setthivoine

    2014-10-01

    Highly collimated plasma jets are frequently observed at galactic, stellar, and laboratory scales. Some models suppose these jets are magnetohydrodynamically-driven magnetic flux tubes filled with flowing plasma, but they do not agree on a collimation process. Some evidence supporting a universal MHD pumping mechanism has been obtained from planar electrode experiments with aspect ratios of ~10:1 however, these jets are subject to kink instabilities beyond a certain length and are unable to replicate the remarkable aspect ratios (10-1000:1) seen in astrophysical systems. Other models suppose these jets are flowing Z-pinch plasmas and experiments that use stabilizing shear flows have achieved aspect ratios of ~30:1, but are line tied at both ends. Can both collimation and stabilization mechanisms work together to produce long jets without kink instabilities and only one end tied to the central object? This question is evaluated from the point of view of canonical flux tubes and canonical helicity transport, indicating that jets can become long and collimated due to a combination of strong helical shear flows and conversion of magnetic helicity into kinetic helicity. The MOCHI LabJet experiment is designed to study this in the laboratory. Supported by US DoE Early Career Grant DE-SC0010340.

  15. Modeling Evaporative Upflows Through a Flux Tube of Nonconstant Area

    NASA Astrophysics Data System (ADS)

    Unverferth, John E.; Longcope, Dana

    2016-05-01

    Chromospheric evaporation is a long studied part of solar flares. Spectroscopic observations of flares typically show subsonic upflows. This contrasts with simulations which consistently predict supersonic evaporation flows. One possible explanation is that the actual flows occur though flux tubes which expand from confined photospheric sources to volume-filling coronal field. Very few flare simulations to date have accounted for this geometry, and run instead with flare loops of uniform cross section. It is well known that transonic flows are dramatically affected by their geoemetry, and can exhibit shocks under certain circumstances.To investigate this we created a simple model of the canopy of magnetic field. This exhibited the expected expansion but also showed some cases of over-expansion followed by constriction. The flow through those flux tubes will encounter a kind of chamber. We then used a one-dimensional isothermal hydrodynamics to model the flow of plasma through such a chamber. According to this simulation, there exists a set of inflow parameters that will generate a standing shock inside the chamber. This solution results in a sonic outflow from a supersonic inflow.

  16. Measurements of absorbed heat flux and water-side heat transfer coefficient in water wall tubes

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Taler, Dawid; Kowal, Andrzej

    2011-04-01

    The tubular type instrument (flux tube) was developed to identify boundary conditions in water wall tubes of steam boilers. The meter is constructed from a short length of eccentric tube containing four thermocouples on the fire side below the inner and outer surfaces of the tube. The fifth thermocouple is located at the rear of the tube on the casing side of the water-wall tube. The boundary conditions on the outer and inner surfaces of the water flux-tube are determined based on temperature measurements at the interior locations. Four K-type sheathed thermocouples of 1 mm in diameter, are inserted into holes, which are parallel to the tube axis. The non-linear least squares problem is solved numerically using the Levenberg-Marquardt method. The heat transfer conditions in adjacent boiler tubes have no impact on the temperature distribution in the flux tubes.

  17. Scattering from a two-dimensional array of flux tubes: A study of the validity of mean field theory

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Weiss, Nathan

    1994-02-01

    Mean field theory has been extensively used in the study of systems of anyons in two spatial dimensions. In this paper we study the physical grounds for the validity of this approximatoion by considering the quantum mechanical scattering of a charged particle from a two-dimensional array of magnetic flux tubes. The flux tubes are arranged on a regular lattice which is infinitely long in the y direction but which has a (small) finite number of columns in the x direction. Their physical size is assumed to be infinitesimally small. We develop a method for computing the scattering angle as well as the reflection and transmission coefficients to lowest order in the Aharonov-Bohm interaction. The results of our calculation are compared to the scattering of the same particle from a region of constant magnetic field whose magnitude is equal to the mean field of all the flux tubes. For an incident plane wave, the mean field approximation is shown to be valid provided the flux in each tube is much less than a single flux quantum. This is precisely the regime in which mean field theory for anyons is expected to be valid. When the flux per tube becomes of order 1, mean field theory is no longer valid.

  18. Nonlinear fast sausage waves in homogeneous magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, Badma B.; Ruderman, Michael S.

    2015-12-01

    > We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.

  19. Bound oscillations on thin magnetic flux tubes - Convective instability and umbral oscillations

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.; Roberts, B.

    1981-01-01

    The possibility that 'tube waves' can be trapped on slender solar magnetic flux tubes is investigated. For rigid isothermal flux tubes, it is found that the flux tube geometry can by itself lead to waves which are trapped on the part of the tube that expands with height. Some geometries lead to trapped modes with eigenperiods near 180 s, if parameters appropriate to sunspot umbrae are chosen. It is possible that the umbral oscillations are a manifestation of such trapped waves, if sunspot umbrae consist of an assembly of slender flux tubes, as in the spaghetti model of Parker (1979). For flux tubes which have a constant ratio of Alfven speed to sound speed, it is found that it is primarily the variation of temperature with height which determines whether trapped waves can exist. Certain temperature profiles lead to disturbances for which omega squared is less than zero, corresponding to convective instability or Rayleigh-Taylor instability.

  20. Bound oscillations on thin magnetic flux tubes: Convective instability and umbral oscillations

    SciTech Connect

    Hollweg, J.V.; Roberts, B.

    1981-11-01

    The possibility that ''tube waves'' can be trapped on slender solar magnetic flux tubes is investigated. For rigid isothermal flux tubes, we find that the flux tube geometry can by itself lead to waves which are trapped on the part of the tube that expands with height. Some geometries lead to trapped modes with eigenperiods near 180 s, if parameters appropriate to sunspot umbrae are chosen. It is possible that the umbral oscillations are a manifestation of such trapped waves, if sunspot umbrae consist of an assembly of slender flux tubes, as in the spaghetti model of Parker. For flux tubes which have a constant ratio of Alfven speed to sound speed, we find that it is primarily the variation of temperature with height which determines whether trapped waves can exist. Certain temperature profiles lead to disturbances for which ..omega../sup 2/<0, corresponding to convective instability or Rayleigh-Taylor instability.

  1. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  2. A magnetohydrodynamic simulation of the formation of magnetic flux tubes at the earth's dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1989-01-01

    Dayside magnetic reconnection was studied by using a three-dimensional global magnetohydrodynamic simulation of the interaction between the solar wind and the magnetosphere. Two different mechanisms were found for the formation of magnetic flux tubes at the dayside magnetopause, which depend on the orientation of the interplanetary magnetic field (IMF). The dayside magnetic flux tubes occur only when the IMF has a southward component. A strongly twisted and localized magnetic flux tube similar to magnetic flux ropes appears at the subsolar magnetopause when the IMF has a large B(y) component. When the B(y) component is small, twin flux tubes appear at the dayside magnetopause. Both types of magnetic flux tube are consistent with several observational features of flux transfer events and are generated by antiparallel magnetic reconnection.

  3. Limited Streamer Tubes for the Babar Instrumented Flux Return Upgrade

    NASA Astrophysics Data System (ADS)

    Lu, Changguo

    2005-04-01

    Starting from the very beginning of their operation the efficiency of the RPC chambers in the BaBar Instrumented Flux Return (IFR) has suffered serious degradation. After intensive investigation, various remediation efforts had been carried out, but without success. As a result the BaBar collaboration decided to replace the dying barrel RFC chambers about two years ago. To study the feasibility of using the Limited Streamer Tube (LST) as the replacement of RPC we carried out an R&D program that has resulted in BaBar's deciding to replace the barrel RPC's with LST's. In this report we summarize the major detector R&D results, and leave other issues of the IFR system upgrade to the future publications.

  4. Baryon kinetic energy loss in the color flux tube model

    NASA Astrophysics Data System (ADS)

    Lyakhov, K. A.; Lee, H. J.

    2011-11-01

    One possible scenario of chromofield decay in its initial stage of evolution is Schwinger's mechanism in restricted volume. It is assumed that initial chromofield energy can be represented as a collection of color flux tubes (CFT) stretched between receding nuclei. CFT expands up to some length until its breakup followed by the production of soft partons. A new formula for initial chromofield energy density is derived from the MacLerran-Venugopalan model to calculate CFT tension. It considers two possible ansatzes for saturation momentum. Color charge screening by produced partons is taken into account as well. A new formula for evolution of produced parton multiplicities based on the Wigner representation of the phase-space density of probability is also derived.

  5. Flux tube train model for local turbulence simulation of toroidal plasmas

    SciTech Connect

    Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.

    2015-02-15

    A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.

  6. AN ESTIMATE OF THE DETECTABILITY OF RISING FLUX TUBES

    SciTech Connect

    Birch, A. C.; Braun, D. C.; Fan, Y.

    2010-11-10

    The physics of the formation of magnetic active regions (ARs) is one of the most important problems in solar physics. One main class of theories suggests that ARs are the result of magnetic flux that rises from the tachocline. Time-distance helioseismology, which is based on measurements of wave propagation, promises to allow the study of the subsurface behavior of this magnetic flux. Here, we use a model for a buoyant magnetic flux concentration together with the ray approximation to show that the dominant effect on the wave propagation is expected to be from the roughly 100 m s{sup -1} retrograde flow associated with the rising flux. Using a B-spline-based method for carrying out inversions of wave travel times for flows in spherical geometry, we show that at 3 days before emergence the detection of this retrograde flow at a depth of 30 Mm should be possible with a signal-to-noise level of about 8 with a sample of 150 emerging ARs.

  7. Riemannian geometry of twisted magnetic flux tubes in almost helical plasma flows

    SciTech Connect

    Garcia de Andrade, L.C.

    2006-02-15

    Riemannian geometry of curves applied recently by Ricca [Fluid Dyn. Res 36, 319 (2005)] in the case of inflectional disequilibrium of twisted magnetic flux tubes is used here to compute the magnetic helicity force-free field case. Here the application of Lorentz force-free to the magnetic flux tube in tokamaks allows one to obtain an equation that generalizes the cylindrical tokamak equation by a term that contains the curvature of the magnetic flux tube. Another example of the use of the magnetic flux tube is done by taking the electron magnetohydrodynamics (MHD) fluid model (EMHD) of plasma physics that allows one to compute the velocity of the fluid in helical and almost helical flows in terms of the Frenet torsion of thin magnetic flux tubes. The cases of straight and curved twisted tubes are examined. Second-order effects on the Frenet torsion arise on the poloidal component of the magnetic field, while curvature effects appear in the toroidal component. The magnetic fields are computed in terms of the penetration depth used in superconductors. The ratio between poloidal and toroidal components of the magnetic field depends on the torsion and curvature of the magnetic flux tube. It is shown that the rotation of the almost helical plasma flow contributes to the twist of the magnetic flux tube through the total Frenet torsion along the tube.

  8. SU(3) flux tubes in a model of the stochastic vacuum

    NASA Astrophysics Data System (ADS)

    Rueter, Michael; Guenter Dosch, Hans

    1995-03-01

    We calculate the squared gluon field strengths of a heavy q-bar q-pair in the model of the stochastic vacuum. We observe that with increasing separation a chromoelectric flux tube is built. The properties of the emerging flux tube are investigated.

  9. Magnetohydrostatic equilibrium. II. Three-dimensional multiple open magnetic flux tubes in the stratified solar atmosphere

    SciTech Connect

    Gent, F. A.; Erdélyi, R.; Fedun, V.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  10. On the area expansion of magnetic flux tubes in solar active regions

    SciTech Connect

    Dudík, Jaroslav; Dzifčáková, Elena; Cirtain, Jonathan W. E-mail: elena@asu.cas.cz

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  11. Linear multispecies gyrokinetic flux tube benchmarks in shaped tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Merlo, G.; Sauter, O.; Brunner, S.; Burckel, A.; Camenen, Y.; Casson, F. J.; Dorland, W.; Fable, E.; Görler, T.; Jenko, F.; Peeters, A. G.; Told, D.; Villard, L.

    2016-03-01

    Verification is the fundamental step that any turbulence simulation code has to be submitted in order to assess the proper implementation of the underlying equations. We have carried out a cross comparison of three flux tube gyrokinetic codes, GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)], GKW [A. G. Peeters et al., Comput. Phys. Commun. 180, 2650 (2009)], and GS2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)], focusing our attention on the effect of realistic geometries described by a series of MHD equilibria with increasing shaping complexity. To simplify the effort, the benchmark has been limited to the electrostatic collisionless linear behaviour of the system. A fully gyrokinetic model has been used to describe the dynamics of both ions and electrons. Several tests have been carried out looking at linear stability at ion and electron scales, where for the assumed profiles Ion Temperature Gradient (ITG)/Trapped Electron Modes and Electron Temperature Gradient modes are unstable. The capability of the codes to handle a non-zero ballooning angle has been successfully benchmarked in the ITG regime. Finally, the standard Rosenbluth-Hinton test has been successfully carried out looking at the effect of shaping on Zonal Flows (ZFs) and Geodesic Acoustic Modes (GAMs). Inter-code comparison as well as validation of simulation results against analytical estimates has been accomplished. All the performed tests confirm that plasma elongation strongly stabilizes plasma instabilities as well as leads to a strong increase in ZF residual and GAM damping.

  12. Sausage Instabilities on top of Kinking Lengthening Current-Carrying Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; You, Setthivoine

    2015-11-01

    Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments involve fast topological change beyond MHD reconnection. Recent experiments suggest that hierarchies of instabilities coupling disparate plasma scales could be responsible for this fast topological change by accessing two-fluid and kinetic scales. This study will explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Current driven flux tubes evolve over a wide range of aspect ratios k and current to magnetic flux ratios λ . An analytical stability criterion and numerical investigations, based on applying Newcomb's variational approach to idealized magnetic flux tubes with core and skin currents, indicate a dependence of the stability boundaries on current profiles and overlapping kink and sausage unstable regions in the k - λ trajectory of the flux tubes. A triple electrode planar plasma gun (Mochi.LabJet) is designed to generate flux tubes with discrete core and skin currents. Measurements from a fast-framing camera and a high resolution magnetic probe are being assembled into stability maps of the k - λ space of flux tubes. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  13. Low thermal flux glass-fiber tubing for cryogenic service

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Spond, D. E.

    1977-01-01

    This paper describes analytical techniques, fabrication development, and test results for composite tubing that has many applications in aerospace and commercial cryogenic installations. Metal liner fabrication is discussed in detail with attention given to resistance-welded liners, fusion-welded liners, chem-milled tubing liners, joining tube liners and end fittings, heat treatment and leak checks. Composite overwrapping, a second method of tubing fabrication, is also discussed. Test programs and analytical correlation are considered along with composite tubing advantages such as minimum weight, thermal efficiency and safety and reliability.

  14. THE BEHAVIOR OF TRANSVERSE WAVES IN NONUNIFORM SOLAR FLUX TUBES. I. COMPARISON OF IDEAL AND RESISTIVE RESULTS

    SciTech Connect

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2013-11-10

    Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvén modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences.

  15. Why helicity injection causes coronal flux tubes to develop an axially invariant cross-section

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.

    It is shown that electric current flowing along an axially non-uniform magnetic flux tube produces an associated non-linear, non-conservative axial MHD force which pumps plasma from regions where the flux tube diameter is small to regions where it is large. In particular, this force will ingest plasma into the ends of a fat, initially potential flux tube and then pump the ingested plasma towards the middle bulge, thereby causing mass accumulation at the bulge.The ingested plasma convects frozen-in toroidal magnetic flux which accumulates at the middle as well. Flux accumulation at the bulge has the remarkable consequence of causing the bulge to diminish so that the flux tube becomes axially uniform as observed in coronal loops. Stagnation of the convergent plasma flow at the middle heats the plasma. A small number of tail particles bouncing synchronously between approaching fluid elements can be Fermi-accelerated to very high energies. Since driving a current along a flux tube is tantamount to helicity injection into the flux tube, this mass ingestion, heating, and straightening should be ubiquitous to helicity injection processes.

  16. An approximate algorithm for the flux from a rectangular volume source

    SciTech Connect

    Wallace, O.J.

    1994-11-09

    An exact semi-analytic formula for the flux from a rectangular surface source with a slab shield has been derived and the required function table has been calculated. This formula is the basis for an algorithm which gives a good approximation for the flux from a rectangular volume source. No other hand calculation method for this source geometry is available in the literature.

  17. Plasma β Scaling of Anisotropic Magnetic Field Fluctuations in the Solar Wind Flux Tube

    NASA Astrophysics Data System (ADS)

    Sarkar, Aveek; Bhattacharjee, Amitava; Ebrahimi, Fatima

    2014-03-01

    Based on various observations, it has been suggested that at 1 AU, solar wind consists of "spaghetti"-like magnetic field structures that have the magnetic topology of flux tubes. It is also observed that the plasma fluctuation spectra at 1 AU show a plasma β dependence. Reconciling these two sets of observations and using the Invariance Principle, Bhattacharjee et al. suggested that the plasma inside every flux tube may become unstable with respect to pressure-driven instabilities and gives rise to fluctuation spectra that depend on the local plasma β. The present work is the first direct numerical simulation of such a flux tube. We solve the full magnetohydrodynamic equations using the DEBS code and show that if the plasma inside the flux tube is driven unstable by spatial inhomogeneities in the background plasma pressure, the observed nature of the fluctuating power spectra agrees reasonably well with observations, as well as the analytical prediction of Bhattacharjee et al.

  18. Plasma β scaling of anisotropic magnetic field fluctuations in the solar wind flux tube

    SciTech Connect

    Sarkar, Aveek; Bhattacharjee, Amitava; Ebrahimi, Fatima E-mail: amitava@princeton.edu

    2014-03-10

    Based on various observations, it has been suggested that at 1 AU, solar wind consists of 'spaghetti'-like magnetic field structures that have the magnetic topology of flux tubes. It is also observed that the plasma fluctuation spectra at 1 AU show a plasma β dependence. Reconciling these two sets of observations and using the Invariance Principle, Bhattacharjee et al. suggested that the plasma inside every flux tube may become unstable with respect to pressure-driven instabilities and gives rise to fluctuation spectra that depend on the local plasma β. The present work is the first direct numerical simulation of such a flux tube. We solve the full magnetohydrodynamic equations using the DEBS code and show that if the plasma inside the flux tube is driven unstable by spatial inhomogeneities in the background plasma pressure, the observed nature of the fluctuating power spectra agrees reasonably well with observations, as well as the analytical prediction of Bhattacharjee et al.

  19. New constraint on effective field theories of the QCD flux tube

    NASA Astrophysics Data System (ADS)

    Baker, M.

    2016-03-01

    Effective magnetic S U (N ) gauge theory with classical ZN flux tubes of intrinsic width 1/M is an effective field theory of the long-distance quark-antiquark interaction in S U (N ) Yang-Mills theory. Long-wavelength fluctuations of the ZN vortices of this theory lead to an effective string theory. In this paper, we clarify the connection between effective field theory and effective string theory, and we propose a new constraint on these vortices. We first examine the impact of string fluctuations on the classical dual superconductor description of confinement. At interquark distances R ˜1/M , the classical action for a straight flux tube determines the heavy quark potentials. At distances R ≫1/M , fluctuations of the flux tube axis x ˜ give rise to an effective string theory with an action Seff(x ˜), the classical action for a curved flux tube, evaluated in the limit 1/M →0 . This action is equal to the Nambu-Goto action. These conclusions are independent of the details of the ZN flux tube. Further, we assume the QCD flux tube satisfies the additional constraint, ∫0∞r d r T/θθ(r ) r2=0 , where T/θθ(r ) r2 is the value of the θ θ component of the stress tensor at a distance r from the axis of an infinite flux tube. Under this constraint, the string tension σ equals the force on a quark in the chromoelectric field E → of an infinite straight flux tube, and the Nambu-Goto action can be represented in terms of the chromodynamic fields of effective magnetic S U (N ) gauge theory, yielding a field theory interpretation of effective string theory.

  20. Ultrasonic reflection tomography vs. canonical body approximation: experimental assessment of an infinite elastic cylindrical tube.

    PubMed

    Lasaygues, Philippe; Le Marrec, Loïc

    2008-01-01

    Comparisons were made between the results obtained using two quantitative ultrasound imaging methods on the solid cross section of a cylindrical tube that is infinite in the axial direction. The first method tested was the classical reflection tomography method based on the first-order Born approximation, which can only be used under conditions to obtain limited reconstruction of the external boundaries of the high contrast scatterer. The results were compared with those obtained using another inversion scheme based on the Intercepting Canonical Body Approximation (ICBA) in a large frequency range, which gives accurate complete geometrical information about the tube (thickness measurements). The numerical and experimental results obtained show the feasibility of the latter approach. PMID:18564595

  1. Modeling of mesoscale flux-tube interchange motions in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Sazykin, Stanislav; Wolf, Richard Alan; Yang, Jian; Rocco Toffoletto, Frank

    2015-04-01

    Mesoscale flux-tube interchange motions associated with bursty bulk flows and dipolarization fronts play a significant role in particle transport from the plasma sheet into the inner magnetosphere. One of the challenges is to quantify the relative role of these processes compared to large-scale particle energization as part of global-scale convection. In this paper, we will describe latest progress in attempting quantitative modeling of flux-tube interchange processes using a high-resolution version of the Rice Convection Model (RCM) that includes effects of inertial drifts. Including effects of inertial drifts is necessary to allow oscillatory motion of flux tubes in inner magnetospheric models. We generalized the formulation of the RCM by making three simplifying assumptions: (i) the communication between the equatorial plane and ionosphere occurs either instantaneously or with a given time lag, (ii) the pressure is isotropic and therefore constant along field lines, and (iii) for purposes of calculating the effect of inertia, all of a flux tube's mass is assumed to be concentrated in the equatorial plane. We will present idealized numerical simulations of a depleted flux tube propagation in the magnetosphere, and quantify particle injection signatures. Our analysis of the simulations will include ionospheric electric fields and particle precipitation signatures of the flow channels associated with propagation of depleted flux tubes, and address the sensitivity of the results to the assumptions made in the inclusion of the inertia effects.

  2. On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed

    NASA Technical Reports Server (NTRS)

    Sandbaek, Onulf; Leer, Egil; Hansteen, Viggo H.

    1994-01-01

    A one-fluid solar wind model is used to investigate some relations between coronal heating, the flux tube divergence near the Sun, and the solar wind proton flux and flow speed. The effects of energy addition to the supersonic region of the flow are also studied. We allow for a mechanical energy flux that heats the corona, and an Alfven wave energy flux that adds energy, mainly to the supersonic flow, both as momentum and as heat. We find that the mechanical energy flux determines the solar wind mass flux, and in order to keep an almost constant proton flux at the orbit of Earth with changing flow geometry, that the mechanical energy flux must vary linearly with the magnetic field in the inner corona. This thermally driven wind generally has a low asymptotic flow speed. When Alfven waves are added to the thermally driven flow, the asymptotic flow speed is increased and is determined by the ratio of the Alfven wave and the mechanical energy fluxes at the coronal base. Flow speeds characteristic of recurrent high-speed solar wind streams can be obtained only when the Alfven wave energy flux, deposited in the supersonic flow, is larger than the mechanical energy flux heating the corona.

  3. Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1993-01-01

    Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.

  4. Basic properties of magnetic flux tubes and restrictions on theories of solar activity

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    It is shown that the mean longitudinal field in a magnetic flux tube is reduced, rather than enhanced, by twisting the tube to form a rope. It is shown that there is no magnetohydrostatic equilibrium when one twisted rope is wound around another. Instead there is rapid line cutting (neutral point annihilation). It is shown that the twisting increases, and the field strength decreases, along a flux tube extending upward through a stratified atmosphere. These facts are at variance with Piddington's (1975) recent suggestion that solar activity is to be understood as the result of flux tubes which are enormously concentrated by twisting, which consist of several twisted ropes wound around each other, and which came untwisted where they emerge through the photosphere.

  5. Flux Transfer Events Simultaneously Observed by Polar and Cluster: Flux Rope in the Subsolar Region and Flux Tube Addition to the Polar Cusp

    NASA Technical Reports Server (NTRS)

    Le, G.; Zheng, Y.; Russell, C. T.; Pfaff, R. F.; Lin, N.; Slavin, J. A.; Parks, G.; Wilber, M.; Petrinec, S. M.; Lucek, E. A.; Reme, H.

    2007-01-01

    The phenomenon called flux transfer events (FTEs) is widely accepted as the manifestation of time-dependent reconnection. In this paper, we present observational evidence of a flux transfer event observed simultaneously at low-latitude by Polar and at high-latitude by Cluster. This event occurs on March 21, 2002, when both Cluster and Polar are located near local noon but with a large latitudinal separation. During the event, Cluster is moving outbound from the polar cusp to the magnetosheath, and Polar is in the magnetosheath near the equatorial magnetopause. The observations show that a flux transfer event occurs between the equator and the northern cusp. Polar and Cluster observe the FTE s two open flux tubes: Polar encounters the southward moving flux tube near the equator; and Cluster the northward moving flux tube at high latitude. The low latitude FTE appears to be a flux rope with helical magnetic field lines as it has a strong core field and the magnetic field component in the boundary normal direction exhibits a strong bi-polar variation. Unlike the low-latitude FTE, the high-latitude FTE observed by Cluster does not exhibit the characteristic bi-polar perturbation in the magnetic field. But the plasma data clearly reveal its open flux tube configuration. It shows that the magnetic field lines have straightened inside the FTE and become more aligned to the neighboring flux tubes as it moves to the cusp. Enhanced electrostatic fluctuations have been observed within the FTE core, both at low- and high-latitudes. This event provides a unique opportunity to understand high-latitude FTE signatures and the nature of time-varying reconnection.

  6. Vacuum Energy Induced by AN Impenetrable Flux Tube of Finite Radius

    NASA Astrophysics Data System (ADS)

    Gorkavenko, V. M.; Sitenko, Yu. A.; Stepanov, O. B.

    2011-06-01

    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.

  7. Vacuum Energy Induced by AN Impenetrable Flux Tube of Finite Radius

    NASA Astrophysics Data System (ADS)

    Gorkavenko, V. M.; Sitenko, Yu. A.; Stepanov, O. B.

    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.

  8. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  9. NUMERICAL EXPERIMENTS ON THE TWO-STEP EMERGENCE OF TWISTED MAGNETIC FLUX TUBES IN THE SUN

    SciTech Connect

    Toriumi, S.; Yokoyama, T.

    2011-07-10

    We present the new results of the two-dimensional numerical experiments on the cross-sectional evolution of a twisted magnetic flux tube rising from the deeper solar convection zone (-20,000 km) to the corona through the surface. The initial depth is 10 times deeper than most of the previous calculations focusing on the flux emergence from the uppermost convection zone. We find that the evolution is illustrated by the following two-step process. The initial tube rises due to its buoyancy, subject to aerodynamic drag due to the external flow. Because of the azimuthal component of the magnetic field, the tube maintains its coherency and does not deform to become a vortex roll pair. When the flux tube approaches the photosphere and expands sufficiently, the plasma on the rising tube accumulates to suppress the tube's emergence. Therefore, the flux decelerates and extends horizontally beneath the surface. This new finding owes to our large-scale simulation, which simultaneously calculates the dynamics within the interior as well as above the surface. As the magnetic pressure gradient increases around the surface, magnetic buoyancy instability is triggered locally and, as a result, the flux rises further into the solar corona. We also find that the deceleration occurs at a higher altitude than assumed in our previous experiment using magnetic flux sheets. By conducting parametric studies, we investigate the conditions for the two-step emergence of the rising flux tube: field strength {approx}> 1.5 x 10{sup 4} G and the twist {approx}> 5.0 x 10{sup -4} km{sup -1} at -20,000 km depth.

  10. Heat flux solutions of the 13-moment approximation transport equations in a multispecies gas

    SciTech Connect

    Jian Wu; Taieb, C.

    1993-09-01

    The authors study steady state heat flux equations by means of the 13-moment approximation for situations applicable to aeronomy and space plasmas. They compare their results with Fourier`s law applied to similar problems, to test validity conditions for it. They look at the flux of oxygen and hydrogen ions in the high-latitude ionosphere, and compare calculations with observations from EISCAT radar measurements. These plasma components are observed to have strongly non-Maxwellian distributions.

  11. The propagation of torsion along flux tubes subject to dynamical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1983-01-01

    It is noted that the dynamical nonequilibrium of close-packed flux tubes is driven by the torsion in the individual tubes. Because of this, whenever tubes with the same sense of twisting come into contact, there is reconnection of their azimuthal field components. The reconnection consumes the local torsion, and this causes the propagation of torsional Alfven waves into the region from elsewhere along the tubes. The formal problem of the propagation of the torsion along twisted flux tubes is presented, along with some of the basic physical properties worked out in the limit of small torsion. It is noted that in tubes with finite twisting the propagation of torsional Alfven waves can be a more complicated phenomenon. Application to the sun suggests that the propagation of torsion from below the visible surface up into the corona is an important energy supply to the corona for a period of perhaps 10-20 hours after the emergence of the flux tubes through the surface of the sun, bringing up torsion from depths of 10,000 km or more. Torsion is of course continually furnished by the manipulation and shuffling of the field by the convection.

  12. Numerical approximation of head and flux covariances in three dimensions using mixed finite elements

    NASA Astrophysics Data System (ADS)

    James, Andrew I.; Graham, Wendy D.

    A numerical method is developed for accurately approximating head and flux covariances and cross-covariances in finite two- and three-dimensional domains using the mixed finite element method. The method is useful for determining head and flux covariances for non-stationary flow fields, for example those induced by injection or extraction wells, impermeable subsurface barriers, or non-stationary hydraulic conductivity fields. Because the numerical approximations to the flux covariances are obtained directly from the solution to the coupled problem rather than having to differentiate head covariances, the approximations are in general more accurate than those obtained from conventional finite difference or finite element methods. Results for uniform flow example problems are consistent with results from previously published finite domain analyses and demonstrate that head variances and covariances are quite sensitive to boundary conditions and the size of the bounded domain. Flux variances and covariances are less sensitive to boundary conditions and domain size. Results comparing approximations from lower-order Raviart-Thomas-Nedelec and higher order Brezzi-Douglas-Marini [9] finite element spaces indicate that higher order element space improve the estimate of the flux covariances, but do not significantly affect the estimate of the head covariances.

  13. Benchmarking Particle-in-Cell drift wave simulations with Eulerian simulations in a flux-tube

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Parker, Scott; Wan, Weigang; Bravenec, Ronald; Wang, Eric; Candy, Jeff

    2012-10-01

    We present the implementation of a flux-tube option in the global turbulence code GEM.footnotetextY. Chen and S. E. Parker, J. Comp. Phys. 220, 839 (2007) This is necessary for benchmarking purposes because of the immense complexity involved in comparing global simulations. The global GEM assumes the magnetic equilibrium to be completely given. Our initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, T, ∇T, the Jacobian etc.) to be equal to their values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. We found good agreement between GEM and GYRO/GS2 for the mode frequency/growth rate in the case of adiabatic electrons, but a difference of ˜15% in the growth rates when kinetic electrons are included. Our goal is to understand the origin of this moderate disagreement. An alternative local geometry model based on a local solution of the Grad-Shafranov equationfootnotetextJ. Candy, Plasma Phys. Control. Fusion 51, 105009 (2009) has been implemented and new benchmarking results from this model will be presented.

  14. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    SciTech Connect

    Chou, W.; Tajima, C.T.; Matsumoto, R. |; Shibata, K.

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented.

  15. On the Connection Between Mean Field Dynamo Theory and Flux Tubes

    NASA Astrophysics Data System (ADS)

    Choudhuri, Arnab Rai

    2003-07-01

    Mean field dynamo theory deals with various mean quantities and does not directly throw any light on the question of existence of flux tubes. We can, however, draw important conclusions about flux tubes in the interior of the Sun by combining additional arguments with the insights gained from solar dynamo solutions. The polar magnetic field of the Sun is of order 10 G, whereas the toroidal magnetic field at the bottom of the convection zone has been estimated to be 100000 G. Simple order-of-magnitude estimates show that the shear in the tachocline is not sufficient to stretch a 10 G mean radial field into a 100000 G mean toroidal field. We argue that the polar field of the Sun must get concentrated into intermittent flux tubes before it is advected to the tachocline. We estimate the strengths and filling factors of these flux tubes. Stretching by shear in the tachocline is then expected to produce a highly intermittent magnetic configuration at the bottom of the convection zone. The meridional flow at the bottom of the convection zone should be able to carry this intermittent magnetic field equatorward, as suggested recently by Nandy and Choudhuri (2002). When a flux tube from the bottom of the convection zone rises to a region of pre-existing poloidal field at the surface, we point out that it picks up a twist in accordance with the observations of current helicities at the solar surface.

  16. Thermalization of parton spectra in the colour-flux-tube model

    NASA Astrophysics Data System (ADS)

    Ryblewski, Radoslaw

    2016-09-01

    A detailed study of thermalization of the momentum spectra of partons produced via decays of colour flux tubes due to the Schwinger tunnelling mechanism is presented. The collisions between particles are included in the relaxation-time approximation specified by different values of the shear viscosity to entropy density ratio. At first we show that, to a good approximation, the transverse-momentum spectra of the produced partons are exponential, irrespective of the assumed value of the viscosity of the system and the freeze-out time. This thermal-like behaviour may be attributed to specific properties of the Schwinger tunnelling process. In the next step, in order to check the approach of the system towards genuine local equilibrium, we compare the local slope of the model transverse-momentum spectra with the local slope of the fully equilibrated reference spectra characterized by the effective temperature that reproduces the energy density of the system. We find that the viscosity corresponding to the anti-de Sitter/conformal field theory lower bound is necessary for thermalization of the system within about two fermis.

  17. Numerical simulations of magnetic Kelvin-Helmholtz instability at a twisted solar flux tube

    NASA Astrophysics Data System (ADS)

    Murawski, K.; Chmielewski, P.; Zaqarashvili, T. V.; Khomenko, E.

    2016-04-01

    The paper aims to study the response of a solar small-scale and weak magnetic flux tube to photospheric twisting motions. We numerically solve three-dimensional ideal magnetohydrodynamic equations to describe the evolution of the perturbation within the initially static flux tube, excited by twists in the azimuthal component of the velocity. These twists produce rotation of the magnetic field lines. Perturbation of magnetic field lines propagates upwardly, driving vertical and azimuthal flow as well as plasma compressions and rarefactions in the form of eddies. We conclude that these eddies result from the sheared azimuthal flow which seeds Kelvin-Helmholtz instability (KHI) between the flux tube and the ambient medium. Numerically obtained properties of the KHI confirm the analytical predictions for the occurrence of the instability.

  18. The Thermal Delocalization of the Flux Tubes in Mesons and Baryons

    SciTech Connect

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-05-24

    The gluon action density in a static mesonic system is analyzed at finite temperature using lattice QCD techniques in quenched QCD. The obtained results are compared to predictions of bosonic string models for the flux-tube profiles to understand the changes of the flux-tube profiles with temperature. The mesonic flux tube curved-width profile is found to compare well with that of the bosonic string at large distances. In the intermediate distance region, a free bosonic string behaviour is observed for analysis performed on highly UV-filtered gauge configurations. Extending the analysis to the static baryon reveals a delocalization of the baryonic node in the Y-shape gluonic configuration observed at zero temperature. At finite temperature, a filled delta-shaped configuration is observed, even at large distances. We study a baryonic string model at finite temperature.

  19. Numerical simulations of magnetic Kelvin-Helmholtz instability at a twisted solar flux tube

    NASA Astrophysics Data System (ADS)

    Murawski, K.; Chmielewski, P.; Zaqarashvili, T. V.; Khomenko, E.

    2016-07-01

    The paper aims to study the response of a solar small-scale and weak magnetic flux tube to photospheric twisting motions. We numerically solve three-dimensional ideal magnetohydrodynamic equations to describe the evolution of the perturbation within the initially static flux tube, excited by twists in the azimuthal component of the velocity. These twists produce rotation of the magnetic field lines. Perturbation of magnetic field lines propagates upwardly, driving vertical and azimuthal flow as well as plasma compressions and rarefactions in the form of eddies. We conclude that these eddies result from the sheared azimuthal flow which seeds Kelvin-Helmholtz instability (KHI) between the flux tube and the ambient medium. Numerically obtained properties of the KHI confirm the analytical predictions for the occurrence of the instability.

  20. ABSORPTION OF p MODES BY THIN MAGNETIC FLUX TUBES

    SciTech Connect

    Jain, Rekha; Hindman, Bradley W.; Braun, Doug C.; Birch, Aaron C.

    2009-04-10

    We study the interaction between p modes and the many magnetic fibrils that lace the solar convection zone. In particular, we investigate the resulting absorption of p-mode energy by the fibril magnetic field. Through mechanical buffeting, the p modes excite tube waves on the magnetic fibrils-in the form of longitudinal sausage waves and transverse kink waves. The tube waves propagate up and down the magnetic fibrils and out of the p-mode cavity, thereby removing energy from the incident acoustic waves. We compute the absorption coefficient associated with this damping mechanism and model the absorption that would be observed for magnetic plage. We compare our results to the absorption coefficient that is measured using the local-helioseismic technique of ridge-filtered holography. We find that, depending on the mode order and the photospheric boundary conditions, we can achieve absorption coefficients for simulated plage that exceed 50%. The observed increase of the absorption coefficient as a function of frequency is reproduced for all model parameters.

  1. Time-dependent modeling of solar wind acceleration from turbulent heating in open flux tubes

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren Nicole; Cranmer, Steven R.

    2015-04-01

    The acceleration of the solar wind, particularly from open flux tubes, remains an open question in solar physics. Countless physical processes have been suggested to explain all or parts of the coupled problem of coronal heating and wind acceleration, but the current generation of observations have been so far unable to distinguish which mechanism(s) dominates. In this project, we consider heating by Alfvén waves in a three-dimensional, time-dependent reduced magnetohydrodynamics model. This model solves for the heating rate as a function of time due to the twisting and braiding of magnetic field lines within a flux tube, which is caused by Alfvén waves generated at the single footpoint of the flux tube. We investigate three specific structures commonly found in the corona: 1) an open flux tube in a coronal hole, 2) an open flux tube on the edge of an equatorial streamer, and 3) an open flux tube directly neighboring an active region. We present the time-dependent heating rate, power spectra of fluctuations, and the time-averaged properties of the solar wind arising from each magnetic structure. We compare the time-averaged properties from the present modeling with previous results from a one-dimensional, time-steady code (Cranmer et al. 2007) to better calibrate the physics in the lower-dimensional code and get a better understanding of the intricate role that bursty, transient heating from Alfvén-wave-driven turbulence plays in the acceleration of the solar wind from different magnetic structures.

  2. Computer simulation of Alfven resonance in a cylindrical, axially bounded flux tube

    NASA Technical Reports Server (NTRS)

    Strauss, H. R.; Lawson, William S.

    1989-01-01

    The resonant absorption of Alfven waves in an axially bounded cylindrical flux tube is investigated in a dissipative MHD simulation. It is found that in an axially bounded flux tube, in contrast to an infinite periodic model, the resonant frequency is nearly independent of the poloidal component of the magnetic field. This is a consequence of the 'ballooning' structure of the resonant Alfven waves. The scaling with resistivity and viscosity of the width of the resonance layer, the dissipation rate, and the time for steady state absorption to occur, are all in agreement with theory.

  3. The flux tube paradigm and its role in MHD turbulence in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Greco, A.; Servidio, S.; Wan, M.; Osman, K.; Ruffolo, D. J.

    2011-12-01

    Descriptions of magnetic field and plasma structures in terms of flux tubes, plasmoids and other bundles of magnetic field lines are familiar in the vocabulary of observational and theoretical space physics. "Spaghetti models" and flux ropes are well known examples. Flux tubes and families of field lines can also be defined in a medium that admits magnetic fluctuations, including strong MHD turbulence, but their behavior can become complicated. In 3D fluctuations the smooth flux tube description itself becomes in some sense unstable, as nearby field lines diverge and flux surfaces shred. This lends complexity to the structure of flux tubes, and can give rise to temporarily trapped field lines and charged test particle trajectories, with immediate implications for transport, e.g., of solar energetic particles. The properties of the turbulent magnetic field can also be strongly influenced by the dynamics of turbulence. Large scale self organizing behavior, or inverse cascade, can enhance very long wavelength structure, favoring Bohm scaling of diffusion coefficients. Meanwhile smaller scale flux tube structures are integral features of the inertial range of turbulence, giving rise to a cellularization of the plasma due to rapid dynamical relaxation processes. These drive the turbulent system locally towards low-acceleration states, including Alfvenic, Beltrami and force-free states. Cell boundaries are natural positions for formation of near discontinuous boundaries, where dynamical activity can be enhanced. A primary example is appearance of numerous discontinuities and active reconnection sites in turbulence, which appear to support a wide distribution of reconnection rates associated with coherent current structures. These discontinuities are also potential sites of enhanced heating, as expected in Kolmogorov's Refined Similarity Hypothesis. All of these features are related to self organization, cascade and intermittency of the turbulence. Examples of these

  4. Dynamics of multiple flux tubes in sawtoothing KSTAR plasmas heated by electron cyclotron waves: I. Experimental analysis of the tube structure

    NASA Astrophysics Data System (ADS)

    Choe, G. H.; Yun, G. S.; Nam, Y.; Lee, W.; Park, H. K.; Bierwage, A.; Domier, C. W.; Luhmann, N. C., Jr.; Jeong, J. H.; Bae, Y. S.; the KSTAR Team

    2015-01-01

    Multiple (two or more) flux tubes are commonly observed inside and/or near the q = 1 flux surface in KSTAR tokamak plasmas with localized electron cyclotron resonance heating and current drive (ECH/CD). Detailed 2D and quasi-3D images of the flux tubes obtained by an advanced imaging diagnostic system showed that the flux tubes are m/n = 1/1 field-aligned structures co-rotating around the magnetic axis. The flux tubes typically merge together and become like the internal kink mode of the usual sawtooth, which then collapses like a usual sawtooth crash. A systematic scan of ECH/CD beam position showed a strong correlation with the number of flux tubes. In the presence of multiple flux tubes close to the q = 1 surface, the radially outward heat transport was enhanced, which explains naturally temporal changes of electron temperature. We emphasize that the multiple flux tubes are a universal feature distinct from the internal kink instability and play a critical role in the control of sawteeth using ECH/CD.

  5. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  6. MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS

    SciTech Connect

    Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant; Radermacher, Reinhard; Abdelaziz, Omar

    2014-01-01

    Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurations are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.

  7. Plasma dynamics on current-carrying magnetic flux tubes. II - Low potential simulation

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    The evolution of plasma in a current-carrying magnetic flux tube of variable cross section is investigated using a one-dimensional numerical simulation. The flux tube is narrow at the two ends and broad in the middle. The middle part of the flux tube is loaded with a hot, magnetically trapped population, and the two ends have a more dense, gravitationally bound population. A potential difference larger than the gravitational potential but less than the energy of the hot population is applied across the domain. The general result is that the potential change becomes distributed along the anode half of the domain, with negligible potential change on the cathode half. The potential is supported by the mirror force of magnetically trapped particles. The simulations show a steady depletion of plasma on the anode side of the flux tube. The current steadily decreases on a time scale of an ion transit time. The results may provide an explanation for the observed plasma depletions on auroral field lines carrying upward currents.

  8. Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min

    1994-01-01

    The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is

  9. Correlation of critical heat flux data for uniform tubes

    SciTech Connect

    Jafri, T.; Dougherty, T.J.; Yang, B.W.

    1995-09-01

    A data base of more than 10,000 critical heat flux (CHF) data points has been compiled and analyzed. Two regimes of CHF are observed which will be referred to as the high CHF regime and the low CHF regime. In the high CHF regime, for pressures less than 110 bar, CHF (q{sub c}) is a determined by local conditions and is adequately represented by q{sub c} = (1.2/D{sup 1/2}) exp[-{gamma}(GX{sub t}){sup 1/2}] where the parameter {gamma} is an increasing function of pressure only, X{sub t} the true mass fraction of steam, and all units are metric but the heat flux is in MWm{sup -2}. A simple kinetic model has been developed to estimate X{sub t} as a function of G, X, X{sub i}, and X{sub O}, where X{sub i} is the inlet quality and X{sub O} represents the quality at the Onset of Significant Vaporization (OSV) which is estimated from the Saha-Zuber (S-Z) correlation. The model is based on a rate equation for vaporization suggested by, and consistent with, the S-Z correlation and contains no adjustable parameters. When X{sub i}X{sub O}, X{sub t} depends on X{sub i}, a nonlocal variable, and, in this case, CHF, although determined by local conditions, obeys a nonlocal correlation. This model appears to be satisfactory for pressures less than 110 bar, where the S-Z correlation is known to be reliable. Above 110 bar the method of calculating X{sub O}, and consequently X{sub t}, appears to fail, so this approach can not be applied to high pressure CHF data. Above 35 bar, the bulk of the available data lies in the high CHF regime while, at pressures less than 35 bar, almost all of the available data lie in the low CHF regime and appear to be nonlocal.

  10. Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Leung, W. C.

    1995-01-01

    Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.

  11. Flux-tube geometry and solar wind speed during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  12. Habitability of planets on eccentric orbits: Limits of the mean flux approximation

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Libert, Anne-Sophie; Leconte, Jeremy; Selsis, Franck

    2016-06-01

    Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ~0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet. We computed the climate of tidally locked ocean covered planets with orbital eccentricity from 0 to 0.9 receiving a mean flux equal to Earth's. These planets are found around stars of luminosity ranging from 1 L⊙ to 10-4L⊙. We use a definition of habitability based on the presence of surface liquid water, and find that most of the planets considered can sustain surface liquid water on the dayside with an ice cap on the nightside. However, for high eccentricity and high luminosity, planets cannot sustain surface liquid water during the whole orbital period. They completely freeze at apoastron and when approaching periastron an ocean appears around the substellar point. We conclude that the higher the eccentricity and the higher the luminosity of the star, the less reliable the mean flux approximation.

  13. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  14. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xuehong; Liu, DanDan; Zhao, Min; Lu, YanLi; Song, Xiaoyong

    2015-11-01

    Delta winglet works better than other vortex generators in improving the performance of fin-tube heat exchangers. In this paper, Response Surface Approximation is used to study the effects of the fin pitch, the ratio of the longitudinal tube pitch to transverse tube pitch, the ratio of both sides V 1 , V h of delta winglets and the attack angle of delta winglets on the performance of fin-tube heat exchanger. Firstly, Twenty-nine numerical group experiments including five times repeated experiments at the central point are conducted. Then, the analyses of variable (ANOVA) and regression are performed to verify the accuracy of the polynomial coefficients. Finally, the optimization of the fin-tube heat exchanger using the Genetic Algorithm is conducted and the best performance of j/f (1/3) is found to be 0.07945, which is consistent with the numerical result.

  15. Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations

    SciTech Connect

    Singh, Rameswar; Brunner, S.; Ganesh, R.; Jenko, F.

    2014-03-15

    This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ⊥}ρ{sub i} > 1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

  16. Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Dwivedi, B. N.

    2006-11-01

    aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.

  17. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  18. Distortions of Magnetic Flux Tubes in the Presence of Electric Currents

    NASA Astrophysics Data System (ADS)

    Malanushenko, Anna; Rempel, Matthias; Cheung, Mark

    2016-05-01

    Solar coronal loops possess several peculiar properties, which have been a subject of intensive research for a long time. These in particular include the lack of apparent expansion of coronal loops and the increased pressure scale height in loops compared to the diffuse background. Previously, Malanushenko & Schrijver (2013) proposed that these could be explained by the fact that magnetic flux tubes expand with height in a highly anisotropic manner. They used potential field models to demonstrate that flux tubes that have circular cross section at the photosphere, in the corona turn into a highly elongates structures, more resembling thick ribbons. Such ribbons, viewed along the expanding edge, would appear as thin, crisp structures of a constant cross-section with an increased pressure scale height, and when viewed along the non-expanding side, would appear as faint, wide and underdense features. This may also introduce a selection bias,when a set of loops is collected for a further study, towards those viewed along the expanding edge.However, some of the past studies have indicated that strong electric currents flowing in a given flux tube may result in the tube maintaining a relatively constant cross-sectional shape along its length. Given that Malanushenko & Schrijver (2013) focused on a potential, or current-free, field model of an active region, the extend to which their analysis could be applied to the real solar fields, was unclear.In the present study, we use a magnetic field created by MURaM, a highly realistic state-of-the-art radiative MHD code (Vogler et al, 2005; Rempel et al, 2009b). MURaM was shown to reproduce a wide variety of observed features of the solar corona (e.g., Hansteen et al, 2010; Cheung et al. 2007, 2008; Rempel 2009a,b). We analyze the distortions of magnetic flux tubes in a MURaM simulation of an active region corona. We quantify such distortions and correlate them with a number of relevant parameters of flux tubes, with a

  19. Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Barbulescu, M.; Erdélyi, R.

    2016-05-01

    The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.

  20. Role of depleted flux tubes in steady magnetospheric convection: Results of RCM-E simulations

    NASA Astrophysics Data System (ADS)

    Yang, J.; Toffoletto, F. R.; Song, Y.

    2010-12-01

    We present results of a simulation of an idealized steady magnetospheric convection (SMC) event during steady southward IMF BZ using a version of the Rice Convection Model that is coupled to an equilibrium magnetic field solver (RCM-E) and compare that to a simulation of a substorm growth phase. In contrast to the 1-hour growth phase, the 5-hour SMC event is modeled by placing a plasma distribution with substantially depleted entropy parameter PV5/3 on the RCM's high-latitude boundary. We find that the modeled large-scale configuration on the nightside during the SMC event differs significantly from the growth phase simulation. First, in the magnetotail tailward of X ≈ -10 RE, the magnetic field is dipole-like associated with thick plasma sheet. Second, near geosynchronous orbit, the magnetic field is more stretched associated with the strongly enhanced partial ring current and the inner edge of the plasma sheet moves well inside geosynchronous orbit. Third, the electric field shows strong shielding or even overshielding during the SMC; while a penetration electric field emerges in the growth phase simulation. Fourth, the ground magnetogram calculation shows large horizontal magnetic field disturbances in a much thicker auroral zone which is mainly attributed to Hall currents. Meantime, fairly negative magnetic disturbance emerges in the mid and low latitudes which is mainly attributed to the partial ring current approximately extended to terminators. Contrary to previous studies, our simulation does not produce a deep BZ minimum during strong magnetospheric convection, which implies that the pressure balance inconsistency may be dramatically alleviated if the inner magnetosphere is continuously fed with under-populated flux tubes. We also suggest that strong magnetic field without BZ minimum in the plasma sheet may explain why SMCs can last for hours without a substorm expansion since certain instabilities may not build up to threshold in such a configuration.

  1. The oscillations of a magnetic flux tube and its application to sunspots

    SciTech Connect

    Evans, D.J.; Roberts, B. )

    1990-01-01

    The modes of oscillation of an isolated magnetic flux tube in the absence of gravity is examined, with parameters chosen to mimic a sunspot. Gravitational stratification of the umbral atmosphere leads to consider two cases, distinguished primarily by the ordering of the Alfven speed and the external sound speed. The transition between these two regimes occurs at about the level where the optical depth, tau(c), is equal to 1 in the umbra. The modes given by the model, taken together with the observations, suggest that 3 minute oscillations are slow-body modes (driven by overstable convection) and that a sunspot consists of a bundle of pore-sized flux tubes rather than a single monolithic one. Fast-body modes are identified in the tube with the observed 5 minute oscillations of the umbral photosphere and below. The excitation of these modes propagating up or down the tube may explain the recent observation that sunspots act as sinks for p-modes propagating in their environment. Running penumbral waves are associated with fast- and slow-surface modes. The fast-surface wave could arise from fast-body modes driven below the level where tau(c) = 1; the slow-surface waves may arise from granular buffeting or overstable convection. 55 refs.

  2. Two- and three-body color flux tubes in the chromodielectric model

    NASA Astrophysics Data System (ADS)

    Martens, Gunnar; Greiner, Carsten; Leupold, Stefan; Mosel, Ulrich

    2004-12-01

    Using the framework of the chromodielectric model we perform an analysis of color electric flux tubes in mesonlike qq¯ and baryonlike qqq quark configurations. We discuss the Abelian color structure of the model and point out a symmetry in color space as a remnant of the SU(3) symmetry of QCD. The generic features of the model are discussed by varying the model parameters. We fix these parameters by reproducing the string tension τ=980 MeV/fm and the transverse width ρ=0.35 fm of the qq¯ flux tube obtained in lattice calculations. We use a bag constant B1/4=(240-260) MeV, a glueball mass mg=(1000-1700) MeV, and a strong coupling constant CFαs=0.2-0.3. We show that the asymptotic string profile of an infinitely long flux tube is already reached for qq¯ separations R≥1.0 fm. A connection to the dual color superconductor is made by extracting a magnetic current from the model equations and a qualitative agreement between the two descriptions of confinement is shown. In the study of the qqq system we observe a Δ-like geometry for the color electric fields and a Y-like geometry in the scalar fields both in the energy density distribution and in the corresponding potentials. The resulting total qqq potential is described neither by the Δ-picture nor by the Y-picture alone.

  3. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  4. Io's wobbling flux tube and nonuniform surface conductivity - Longitude control of decametric emission and other magnetospheric interactions

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1979-01-01

    Study of systematic relations between Io's flux tube orientation, decametric emission control, and areal surface properties suggest a model that can account for longitude control of principal Io-associated decametric emissions and other observed Io/magnetosphere interactions. The model is based on the fact that Jupiter's magnetic field structure is dominated by a tilted dipole rotating at a different angular velocity than Io's orbital motion. This caused Io's flux tube near Io to wobble (precess) with respect to Io's rotational axis. Discrete contact junctions are invoked between the active current-sheet regions in the flux tube and Io's surface.

  5. Propagation and Dispersion of Sausage Wave Trains in Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Oliver, R.; Ruderman, M. S.; Terradas, J.

    2015-06-01

    A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75-1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.

  6. Enhancement of critical heat flux in tubes using staged tangential flow injection: (Progress report)

    SciTech Connect

    Dhir, V.K.

    1987-01-01

    Experimental studies of the enhancement in single and two phase heat transfer from tubes subjected to tangential flow injection have been continuing. Investigations using water as the test liquid have been focused on: single phase heat transfer coefficients; two phase heat transfer coefficients under subcooled boiling conditions; subcooled critical heat fluxes; and modeling of the enhancement under swirl flow conditions. With tangential injection up to four fold increase in the average heat transfer coefficient has been observed. During subcooled boiling the enhancement is relatively small. However swirl induced centripetal force increases vapor escape velocity and as a result higher critical heat fluxes can be accommodated. In the range of flow parameters studied up to 40% enhancement in critical heat flux has been observed with single stage injection. This enhancement is slightly less than that obtained with Freon-113. The mechanistic reasons for this observation are currently being investigated.

  7. Enhancement of critical heat flux in tubes using staged tangential flow injection

    NASA Astrophysics Data System (ADS)

    Dhir, V. K.

    Experimental studies of the enhancement in single and two phase heat transfer from tubes subjected to tangential flow injection have been continuing. Investigations using water as the test liquid have been focused on: single phase heat transfer coefficients; two phase heat transfer coefficients under subcooled boiling conditions; subcooled critical heat fluxes; and modeling of the enhancement under swirl flow conditions. With tangential injection up to four fold increase in the average heat transfer coefficient has been observed. During subcooled boiling the enhancement is relatively small. However swirl induced centripetal force increases vapor escape velocity and as a result higher critical heat fluxes can be accommodated. In the range of flow parameters studied up to 40% enhancement in critical heat flux has been observed with single stage injection. This enhancement is slightly less than that obtained with Freon-113. The mechanistic reasons for this observation are currently being investigated.

  8. Surprisingly low frequency attenuation effects in long tubes when measuring turbulent fluxes at tall towers

    NASA Astrophysics Data System (ADS)

    Ibrom, Andreas; Brændholt, Andreas; Pilegaard, Kim

    2016-04-01

    The eddy covariance technique relies on the fast and accurate measurement of gas concentration fluctuations. While for some gasses robust and compact sensors are available, measurement of, e.g., non CO2 greenhouse gas fluxes is often performed with sensitive equipment that cannot be run on a tower without massively disturbing the wind field. To measure CO and N2O fluxes, we installed an eddy covariance system at a 125 m mast, where the gas analyser was kept in a laboratory close to the tower and the sampling was performed using a 150 m long tube with a gas intake at 96 m height. We investigated the frequency attenuation and the time lag of the N2O and CO concentration measurements with a concentration step experiment. The results showed surprisingly high cut-off frequencies (close to 2 Hz) and small low-pass filter induced time lags (< 0.3 s), which were similar for CO and N2O. The results indicate that the concentration signal was hardly biased during the ca 10 s travel through the tube. Due to the larger turbulence time scales at large measurement heights the low-pass correction was for the majority of the measurements < 5%. For water vapour the tube attenuation was massive, which had, however, a positive effect by reducing both the water vapour dilution correction and the cross sensitivity effects on the N2O and CO flux measurements. Here we present the set-up of the concentration step change experiment and its results and compare them with recently developed theories for the behaviour of gases in turbulent tube flows.

  9. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  10. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  11. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  12. The motion of magnetic flux tube at the dayside magnetopause under the influence of solar wind flow

    SciTech Connect

    Liu, Z.X.; Hu, Y.D.; Li, F. ); Pu, Z.Y. )

    1990-05-01

    The authors propose that flux transfer events (FTEs) at the dayside magnetopause are formed by fluid vortices in the flow field. According to the view of vortex-induced reconnection a FTE tube is a magnetic fluid vortex tube (MF vortex tube). The motion of a FTE tube can be represented by that of a MF vortex in the formation region located in the dayside magnetopause region. This study deals with the internal and external influences governing the motion of MF vortex tubes. The equations of motion of a vortex tube are established and solved. It is found that a FTE tube moves frm low latitude to high latitude with a certain speed. However, the motional path is not a straight line but oscillates about the northward direction for the northern hemisphere. The motional velocity, amplitude and period of the oscillation depend on the flow field and magnetic field in the magnetosheath and magnetosphere as well as the size of the FTE tube.

  13. Sunspots and the physics of magnetic flux tubes. III - Aerodynamic lift

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    The aerodynamic lift exerted on a magnetic flux tube by the asymmetric flow around the two sides of the tube is calculated as part of an investigation of the physics of solar flux tubes. The general hydrodynamic forces on a rigid circular cylinder in a nonuniform flow of an ideal fluid are derived from the first derivatives of the velocity field. Aerodynamic lift in a radial nonuniform flow is found to act in the direction of the flow, toward the region of increased flow velocity, while in a shear flow, lift is perpendicular to the free stream and directed toward increasing flow velocity. For a general, three dimensional, large-scale stationary incompressible equilibrium flow, an expression is also derived relating the lift per unit length to the dynamical pressure, cylinder radius and the gradient of the free-stream velocity. Evidence from an asymmetric airfoil in a uniform flow indicates that lift is enhanced in a real fluid in the presence of turbulence.

  14. GLOBAL AND LOCAL CUTOFF FREQUENCIES FOR TRANSVERSE WAVES PROPAGATING ALONG SOLAR MAGNETIC FLUX TUBES

    SciTech Connect

    Routh, S.; Musielak, Z. E.; Hammer, R. E-mail: zmusielak@uta.edu

    2013-01-20

    It is a well-established result that the propagation of linear transverse waves along a thin but isothermal magnetic flux tube is affected by the existence of the global cutoff frequency, which separates the propagating and non-propagating waves. In this paper, the wave propagation along a thin and non-isothermal flux tube is considered and a local cutoff frequency is derived. The effects of different temperature profiles on this local cutoff frequency are studied by considering different power-law temperature distributions, as well as the semi-empirical VAL C model of the solar atmosphere. The obtained results show that the conditions for wave propagation strongly depend on the temperature gradients. Moreover, the local cutoff frequency calculated for the VAL C model gives constraints on the range of wave frequencies that are propagating in different parts of the solar atmosphere. These theoretically predicted constraints are compared to observational data and are used to discuss the role played by transverse tube waves in the atmospheric heating and dynamics, and in the excitation of solar atmospheric oscillations.

  15. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    NASA Technical Reports Server (NTRS)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  16. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  17. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  18. Closed flux tubes in higher representations and their string description in D=2+1 SU( N) gauge theories

    NASA Astrophysics Data System (ADS)

    Athenodorou, Andreas; Teper, Michael

    2013-06-01

    We calculate, numerically, the low-lying spectrum of closed confining flux tubes that carry flux in different representations of SU( N). We do so for SU(6) at β = 171, where the calculated low-energy physics is very close to the continuum limit and, in many respects, also close to N = ∞. We focus on the adjoint, 84, 120, k = 2 A, 2 S and k = 3 A,3 M,3 S representations and provide evidence that the corresponding flux tubes, albeit mostly unstable, do in fact exist. We observe that the ground state of a flux tube with momentum along its axis appears to be well defined in all cases and is well described by the Nambu-Goto spectrum (in flat space-time), all the way down to very small lengths, just as it is for flux tubes carrying fundamental flux. Excited states, however, typically show very much larger deviations from Nambu-Goto than the corresponding excitations of fundamental flux tubes and, indeed, cannot be extracted in many cases. We discuss whether what we are seeing here are separate stringy and massive modes or simply large corrections to energy levels that will become string-like at larger lengths.

  19. An Analytical Approach to Scattering between Two thin Magnetic Flux Tubes in a Stratified Atmosphere

    NASA Astrophysics Data System (ADS)

    Hanson, Chris S.; Cally, Paul S.

    2014-02-01

    We expand on recent studies to analytically model the behavior of two thin flux tubes interacting through the near- and acoustic far-field. The multiple scattering that occurs between the pair alters the absorption and phase of the outgoing wave when compared to non-interacting tubes. We have included both the sausage and kink scatter produced by the pair. It is shown that the sausage mode's contribution to the scattered wave field is significant, and plays an equally important role in the multiple scattering regime. A disparity between recent numerical results and analytical studies, in particular the lack of symmetry between the two kink modes, is addressed. This symmetry break is found to be caused by an incorrect solution for the near-field modes.

  20. Properties of Longitudinal Flux Tube Waves. III; Wave Propagation in Solar and Stellar Wind Flows

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2004-01-01

    We discuss the analytic properties of longitudinal tube waves taking into account ambient wind flows. This is an extension of the studies of Papers I and II, which assumed a mean flow speed of zero and also dealt with a simplified horizontal pressure balance. Applications include the study of longitudinal flux tube waves in stars with significant mass loss and heating and dynamics of plumes in the solar wind. Slow magnetosonic waves, also called longitudinal waves, have been observed in solar plumes and are likely an important source of heating. We show that the inclusion of ambient wind flows considerably alters the limiting shock strength as well as the energy damping length of waves.

  1. Properties of Longitudinal Flux Tube Waves. III; Wave Propagation in Solar and Stellar Wind FLows

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2004-01-01

    We discuss the analytic properties of longitudinal tube waves taking into account ambient wind flows. This is an extension of the studies of Papers I and II, which assumed a mean flow speed of zero and also dealt with a simplified horizontal pressure balance. Applications include the study of longitudinal flux tube waves in stars with significant mass loss and the heating and dynamics of plumes in the solar wind. Slow magnetosonic waves, also called longitudinal waves, have been observed in solar plumes and are likely an important source of heating. We show that the inclusion of ambient wind flows considerably alters the limiting shock strength as well as the energy damping length of the waves.

  2. Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change: Elasticity and Approximate Solutions

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Cohen, D.

    1985-01-01

    The effects of a uniform temperature change on the stresses and deformations of composite tubes are investigated. The accuracy of an approximate solution based on the principle of complementary virtual work is determined. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well. This, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory which predicts the expansion to be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depends on stacking sequence.

  3. Linear MHD Wave Propagation in Time-Dependent Flux Tube. II. Finite Plasma Beta

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2014-04-01

    The propagation of magnetohydrodynamic (MHD) waves is an area that has been thoroughly studied for idealised static and steady state magnetised plasma systems applied to numerous solar structures. By applying the generalisation of a temporally varying background density to an open magnetic flux tube, mimicking the observed slow evolution of such waveguides in the solar atmosphere, further investigations into the propagation of both fast and slow MHD waves can take place. The assumption of a zero-beta plasma (no gas pressure) was applied in Williamson and Erdélyi ( Solar Phys. 2013, doi:10.1007/s11207-013-0366-9, Paper I) is now relaxed for further analysis here. Firstly, the introduction of a finite thermal pressure to the magnetic flux tube equilibrium modifies the existence of fast MHD waves which are directly comparable to their counterparts found in Paper I. Further, as a direct consequence of the non-zero kinetic plasma pressure, a slow MHD wave now exists, and is investigated. Analysis of the slow wave shows that, similar to the fast MHD wave, wave amplitude amplification takes place in time and height. The evolution of the wave amplitude is determined here analytically. We conclude that for a temporally slowly decreasing background density both propagating magnetosonic wave modes are amplified for over-dense magnetic flux tubes. This information can be very practical and useful for future solar magneto-seismology applications in the study of the amplitude and frequency properties of MHD waveguides, e.g. for diagnostic purposes, present in the solar atmosphere.

  4. Two- and three-body color flux tubes in the chromodielectric model

    SciTech Connect

    Martens, Gunnar; Leupold, Stefan; Mosel, Ulrich; Greiner, Carsten

    2004-12-01

    Using the framework of the chromodielectric model we perform an analysis of color electric flux tubes in mesonlike qq and baryonlike qqq quark configurations. We discuss the Abelian color structure of the model and point out a symmetry in color space as a remnant of the SU(3) symmetry of QCD. The generic features of the model are discussed by varying the model parameters. We fix these parameters by reproducing the string tension {tau}=980 MeV/fm and the transverse width {rho}=0.35 fm of the qq flux tube obtained in lattice calculations. We use a bag constant B{sup 1/4}=(240-260) MeV, a glueball mass m{sub g}=(1000-1700) MeV, and a strong coupling constant C{sub F}{alpha}{sub s}=0.2-0.3. We show that the asymptotic string profile of an infinitely long flux tube is already reached for qq separations R{>=}1.0 fm. A connection to the dual color superconductor is made by extracting a magnetic current from the model equations and a qualitative agreement between the two descriptions of confinement is shown. In the study of the qqq system we observe a {delta}-like geometry for the color electric fields and a Y-like geometry in the scalar fields both in the energy density distribution and in the corresponding potentials. The resulting total qqq potential is described neither by the {delta}-picture nor by the Y-picture alone.

  5. Flux tubes in the SU(3) vacuum: London penetration depth and coherence length

    NASA Astrophysics Data System (ADS)

    Cea, Paolo; Cosmai, Leonardo; Cuteri, Francesca; Papa, Alessandro

    2014-05-01

    Within the dual superconductor scenario for the QCD confining vacuum, the chromoelectric field generated by a static qq¯ pair can be fitted by a function derived, by dual analogy, from a simple variational model for the magnitude of the normalized order parameter of an isolated Abrikosov vortex. Previous results for the SU(3) vacuum are revisited, but here the transverse chromoelectric field is measured by means of the connected correlator of two Polyakov loops and, in order to reduce noise, the smearing procedure is used instead of cooling. The penetration and coherence lengths of the flux tube are then extracted from the fit and compared with previous results.

  6. Observations on Characterization of Defects in Coiled Tubing From Magnetic-Flux-Leakage Data

    SciTech Connect

    Timothy R. McJunkin; Karen S. Miller; Charles R. Tolle

    2006-04-01

    This paper presents observations on the sizing of automatically detected artificial flaws in coiled tubing samples using magnetic-flux-leakage data. Sixty-six artificial flaws of various shapes and types, ranging from 0.30 mm deep pits to slots with length of 9.5 mm, in 44.45 mm outer diameter pipe were analyzed. The detection algorithm and the information automatically extracted from the data are described. Observations on the capabilities and limitations for determining the size and shape of the flaws are discussed.

  7. Diurnal variations on a plasmaspheric flux tube - Light ion flows and F region temperature enhancements

    NASA Technical Reports Server (NTRS)

    Guiter, S. M.; Gombosi, T. I.; Rasmussen, C. E.

    1991-01-01

    The paper concentrates on the diurnal variations on a plasmaspheric flux tube modeled using a time-dependent multispecies one-stream interhemispheric model for plasma flows. The model takes into account the effects of ionization, charge exchange, recombination, collisions, heat conduction, and allows for external heat sources. The simulation is done for June solstice conditions during solar minimum. Focus is placed on the presence of large downward H(+) velocities at about 320-km altitude in the winter (southern) hemisphere, in early morning when the summer hemisphere is sunlit but the winter hemisphere is dark. In addition, an upward H(+) flux is seen in the Southern Hemisphere at altitudes above 2000 km when the sun rises in the northern end.

  8. Multi-parametric Study of Rising 3D Buoyant Flux Tubes in an Adiabatic Stratification Using AMR

    NASA Astrophysics Data System (ADS)

    Martínez-Sykora, Juan; Moreno-Insertis, Fernando; Cheung, Mark C. M.

    2015-11-01

    We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively large diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.

  9. Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube

    PubMed Central

    Lin, S.; Zhang, G.; Li, C.; Song, Z.

    2016-01-01

    We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them. PMID:27554930

  10. In situ measurements of the plasma bulk velocity near the Io flux tube

    NASA Technical Reports Server (NTRS)

    Barnett, A.

    1985-01-01

    The flow around the Io flux tube was studied by analyzing the eleven spectra taken by the Voyager 1 Plasma Science (PLS) experiment in its vicinity. The bulk plasma parameters were determined using a procedure that uses the full response function of the instrument and the data in all four PLS sensors. The mass density of the plasma in the vicinity of Io is found to be 22,500 + or - 2,500 amu/cu cm and its electron density is found to be 1500 + or - 200/cu cm. The Alfven speed was determined using three independent methods; the values obtained are consistent and taken together yield V sub A = 300 + or - 50 km/sec, corresponding to an Alfven Mach number of 0.19 + or - 0.02. For the flow pattern, good agreement was found with the model of Neubauer (1980), and it was concluded that the plasma flows around the flux tube with a pattern similar to the flow of an incompressible fluid around a long cylinder obstacle of radius 1.26 + or - 0.1 R sub Io.

  11. FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT

    SciTech Connect

    Lagg, A.; Solanki, S. K.; Riethmueller, T. L.; Schuessler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Barthol, P.; Gandorfer, A.; MartInez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.

  12. Fully Resolved Quiet-Sun Magnetic flux Tube Observed with the SUNRISE/IMAX Instrument

    NASA Astrophysics Data System (ADS)

    Lagg, A.; Solanki, S. K.; Riethmüller, T. L.; Martínez Pillet, V.; Schüssler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Schmidt, W.; del Toro Iniesta, J. C.; Bonet, J. A.; Barthol, P.; Berkefeld, T.; Domingo, V.; Gandorfer, A.; Knölker, M.; Title, A. M.

    2010-11-01

    Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.

  13. Propagation and dispersion of transverse wave trains in magnetic flux tubes

    SciTech Connect

    Oliver, R.; Terradas, J.; Ruderman, M. S.

    2014-07-01

    The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ≅ 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.

  14. Columbia University flow instability experimental program: Volume 7. Single tube tests, critical heat flux test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1992-09-01

    This report deals with critical heat flux (CHF) measurements in vertical down flow of water at low pressures in a round Inconel tube, 96 inches long and 0.62 inch inside diameter. A total of 28 CHF points were obtained. These data were found to correlate linearly with the single variable q, defined as the heat flux required to raise the enthalpy from the inlet value to the saturation value. These results were compared to the published results of Swedish investigators for vertical upflow of water at low pressures in round tubes of similar diameters and various lengths. The parameter q depends on the inlet enthalpy and is a nonlocal variable, thus this correlation is nonlocal unless the coefficients depend upon tube length in a particular prescribed manner. For the low pressure Swedish data, the coefficients are practically independent of length and hence the correlation is nonlocal. In the present investigation only one length was employed, so it is not possible to determine whether the correlation for these data is local or nonlocal, although there is reason to believe that it is local. The same correlation was applied to a large data base (thousands of CHF points) compiled from the published data of a number of groups and found to apply, with reasonable accuracy over a wide range of conditions, yielding sometimes local and sometimes nonlocal correlations. The basic philosophy of data analysis here was not to generate a single correlation which would reproduce all data, but to search for correlations which apply adequately over some range and which might have some mechanistic significance. The tentative conclusion is that at least two mechanisms appear operative, leading to two types of correlations, one local, the other nonlocal.

  15. The 3D Structure of Flux Tubes That Admit Flute Instability in the Scrape-Off-Layer (SOL) of Tokamaks

    NASA Astrophysics Data System (ADS)

    Takahashi, Hironori

    2014-10-01

    A severe reduction in size down to an ion gyro-radius scale, commonly known as ``squeezing,'' in a lateral dimension of the cross section of a flux tube is traditionally thought to inhibit the occurrence of the flute instability in the Scrape-off-Layer of a diverted tokamak by isolating the main volume of the flux tube from its ends at electrically conducting target plates. A study reported here in the 3D flux tube structure reveals the absence of squeezing for a flux tube that is sufficiently large in its toroidal extent (small toroidal harmonic number n) and located in a layer of low field-line shear around the ``sweet spot'' (about mid-way between the primary and secondary separatrices). The low-shear layer does not hence inhibit the flute instability through the squeezing mechanism, and may thus restore the flute instability, among the most virulent in the magnetized plasma, to the ranks of candidate electrostatic instabilities thought to underlie the turbulence in the SOL in tokamaks. Variations along the flux tube of geometrical characteristics including the cross section will be calculated to develop criteria for the absence of squeezing. Supported in part by the US DOE under DE-AC02-09CH11466.

  16. Magnetic Flux Leakage and Principal Component Analysis for metal loss approximation in a pipeline

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Mujica, L. E.; Quintero, M.; Florez, J.; Quintero, S.

    2015-07-01

    Safety and reliability of hydrocarbon transportation pipelines represent a critical aspect for the Oil an Gas industry. Pipeline failures caused by corrosion, external agents, among others, can develop leaks or even rupture, which can negatively impact on population, natural environment, infrastructure and economy. It is imperative to have accurate inspection tools traveling through the pipeline to diagnose the integrity. In this way, over the last few years, different techniques under the concept of structural health monitoring (SHM) have continuously been in development. This work is based on a hybrid methodology that combines the Magnetic Flux Leakage (MFL) and Principal Components Analysis (PCA) approaches. The MFL technique induces a magnetic field in the pipeline's walls. The data are recorded by sensors measuring leakage magnetic field in segments with loss of metal, such as cracking, corrosion, among others. The data provide information of a pipeline with 15 years of operation approximately, which transports gas, has a diameter of 20 inches and a total length of 110 km (with several changes in the topography). On the other hand, PCA is a well-known technique that compresses the information and extracts the most relevant information facilitating the detection of damage in several structures. At this point, the goal of this work is to detect and localize critical loss of metal of a pipeline that are currently working.

  17. Limited Streamer Tube System for Detecting Contamination in the Gas Used in the BaBar Instrumented Flux Return

    SciTech Connect

    Huntley, L.I.; /Franklin - Marshall Coll.

    2006-08-30

    The Resistive Plate Chambers (RPCs) initially installed in the Instrumented Flux Return (IFR) of the BABAR particle detector have proven unreliable and inefficient for detecting muons and neutral hadrons. In the summer of 2004, the BABAR Collaboration began replacing the RPCs with Limited Streamer Tubes (LSTs). LST operation requires a mixture of very pure gases and an operating voltage of 5500 V to achieve maximum efficiency. In the past, the gas supplies obtained by the BABAR Collaboration have contained contaminants that caused the efficiency of the IFR LSTs to drop from approximately 90% to approximately 60%. Therefore, it was necessary to develop a method for testing this gas for contaminants. An LST test system was designed and built using two existing LSTs, one placed 1 cm above the other. These LSTs detect cosmic muons in place of particles created during the BABAR experiment. The effect of gas contamination was mimicked by reducing the operating voltage of the test system in order to lower the detection efficiency. When contaminated gas was simulated, the coincidence rate and the percent coincidence between the LSTs in the test system dropped off significantly, demonstrating that test system can be used as an indicator of gas purity. In the fall of 2006, the LST test system will be installed in the gas storage area near the BABAR facility for the purpose of testing the gas being sent to the IFR.

  18. Asymptotic solution of the diffusion equation in slender impermeable tubes of revolution. I. The leading-term approximation

    SciTech Connect

    Traytak, Sergey D.

    2014-06-14

    The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.

  19. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2016-03-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  20. The dissipation of inhomogeneous magnetic fields and the problem of coronae. I - Dislocation and flattening of flux tubes. II - The dynamics of dislocated flux

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1981-01-01

    Attention is given to the dynamical dissipation arising in a magnetic field extending up through a tenuous atmosphere when an elemental flux tube in the field (1) is displaced from its equilibrium position and/or (2) is inflated by an internal fluid pressure different from the external fluid pressure. It is pointed out that as a consequence the tension in the lines of force of the ambient field flattens the dislocated tube so that the thickness of the tube decreases without limit and that the local field gradients increase rapidly with the passage of time until destroyed by one or more dissipative effects. The magnetic energy of a dislocated flux tube is therefore soon converted into thermal energy no matter how low the molecule resistivity of the fluid. Some formal illustrations of local conditions along a misaligned flux tube are presented, showing the simultaneous onset of diffusion, fluid motion, and hydromagnetic wave propagation. The examples demonstrate that the total effect is complicated and subject only to estimation, rather than formal calculation, at the present time.

  1. The Scattering of f- and p-modes from Ensembles of Thin Magnetic Flux Tubes: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Hanson, Chris S.; Cally, Paul S.

    2014-08-01

    Motivated by the observational results of Braun, we extend the model of Hanson & Cally to address the effect of multiple scattering of f and p modes by an ensemble of thin vertical magnetic flux tubes in the surface layers of the Sun. As in the observational Hankel analysis, we measure the scatter and phase shift from an incident cylindrical wave in a coordinate system roughly centered in the core of the ensemble. It is demonstrated that although thin flux tubes are unable to interact with high-order fluting modes individually, they can indirectly absorb energy from these waves through the scatters of kink and sausage components. It is also shown how the distribution of absorption and phase shift across the azimuthal order m depends strongly on the tube position as well as on the individual tube characteristics. This is the first analytical study into an ensembles multiple-scattering regime that is embedded within a stratified atmosphere.

  2. The scattering of f- and p-modes from ensembles of thin magnetic flux tubes: an analytical approach

    SciTech Connect

    Hanson, Chris S.; Cally, Paul S.

    2014-08-20

    Motivated by the observational results of Braun, we extend the model of Hanson and Cally to address the effect of multiple scattering of f and p modes by an ensemble of thin vertical magnetic flux tubes in the surface layers of the Sun. As in the observational Hankel analysis, we measure the scatter and phase shift from an incident cylindrical wave in a coordinate system roughly centered in the core of the ensemble. It is demonstrated that although thin flux tubes are unable to interact with high-order fluting modes individually, they can indirectly absorb energy from these waves through the scatters of kink and sausage components. It is also shown how the distribution of absorption and phase shift across the azimuthal order m depends strongly on the tube position as well as on the individual tube characteristics. This is the first analytical study into an ensembles multiple-scattering regime that is embedded within a stratified atmosphere.

  3. Linear MHD Wave Propagation in Time-Dependent Flux Tube. I. Zero Plasma-β

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2014-03-01

    MHD waves and oscillations in sharply structured magnetic plasmas have been studied for static and steady systems in the thin tube approximation over many years. This work will generalize these studies by introducing a slowly varying background density in time, in order to determine the changes to the wave parameters introduced by this temporally varying equilibrium, i.e. to investigate the amplitude, frequency, and wavenumber for the kink and higher order propagating fast magnetohydrodynamic wave in the leading order approximation to the WKB approach in a zero- β plasma representing the upper solar atmosphere. To progress, the thin tube and over-dense loop approximations are used, restricting the results found here to the duration of a number of multiples of the characteristic density change timescale. Using such approximations it is shown that the amplitude of the kink wave is enhanced in a manner proportional to the square of the Alfvén speed, . The frequency of the wave solution tends to the driving frequency of the system as time progresses; however, the wavenumber approaches zero after a large multiple of the characteristic density change timescale, indicating an ever increasing wavelength. For the higher order fluting modes the changes in amplitude are dependent upon the wave mode; for the m=2 mode the wave is amplified to a constant level; however, for all m≥3 the fast MHD wave is damped within a relatively small multiple of the characteristic density change timescale. Understanding MHD wave behavior in time-dependent plasmas is an important step towards a more complete model of the solar atmosphere and has a key role to play in solar magneto-seismological applications.

  4. A Flux-Tube Tectonics Model for Solar Coronal Heating Driven by the Magnetic Carpet

    NASA Astrophysics Data System (ADS)

    Priest, Eric R.; Heyvaerts, Jean F.; Title, Alan M.

    2002-09-01

    We explore some of the consequences of the magnetic carpet for coronal heating. Observations show that most of the magnetic flux in the quiet Sun emerges as ephemeral regions and then quickly migrates to supergranule boundaries. The original ephemeral concentrations fragment, merge, and cancel over a time period of 10-40 hr. Since the network photospheric flux is likely to be concentrated in units of 1017 Mx or smaller, there will be myriads of coronal separatrix surfaces caused by the highly fragmented photospheric magnetic configuration in the quiet network. We suggest that the formation and dissipation of current sheets along these separatrices are an important contribution to coronal heating. The dissipation of energy along sharp boundaries we call, by analogy with geophysical plate tectonics, the tectonics model of coronal heating. Similar to the case on Earth, the relative motions of the photospheric sources will drive the formation and dissipation of current sheets along a hierarchy of such separatrix surfaces at internal dislocations in the corona. In our preliminary assessment of such dissipation we find that the heating is fairly uniform along the separatrices, so that each elementary coronal flux tube is heated uniformly. However, 95% of the photospheric flux closes low down in the magnetic carpet and the remaining 5% forms large-scale connections, so the magnetic carpet will be heated more effectively than the large-scale corona. This suggests that unresolved observations of coronal loops should exhibit enhanced heating near their feet in the carpet, while the upper parts of large-scale loops should be heated rather uniformly but less strongly.

  5. Flux vector splitting and approximate Newton methods. [for solution of steady Euler equations

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Pulliam, T. H.

    1983-01-01

    In the present investigation, the basic approach is employed to view an iterative scheme as Newton's method or as a modified Newton's method. Attention is given to various modified Newton methods which can arise from differencing schemes for the Euler equations. Flux vector splitting is considered as the basic spatial differencing technique. This technique is based on the partition of a flux vector into groups which have certain properties. The Euler equations fluxes can be split into two groups, the first group having a flux Jacobian with all positive eigenvalues, and the second group having a flux Jacobian with all negative eigenvalues. Flux vector splitting based on a velocity-sound speed split is considered along with the use of numerical techniques to analyze nonlinear systems, and the steady Euler equations for quasi-one-dimensional flow in a nozzle. Results are given for steady flows with shocks.

  6. Instantaneous Io flux tube as the source of Jovian DAM - Possible second harmonic emissions

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Curran, D. B.

    1990-01-01

    To determine if the source of the Jovian Io-dependent DAM (decametric) emission is along the instantaneous Io flux tube (IIFT), the results of ray-tracing calculations are compared with radio emission data obtained by the Planetary Radio Astronomy instruments on Voyager 1 and 2. RX mode gyroemission at frequencies near the local gyrofrequency and sources along field lines within the active sector between 150 and 270 deg longitude are assumed. The results indicate good agreement with the observations if the source is within 20 deg of the IIFT, but the maximum gyrofrequency of the model magnetic field is smaller than the observed maximum frequency of the DAM for the assumed active field line. While errors in the magnetic-field model coupled with emission at large Doppler shift might explain this discrepancy, a more natural explanation is that the higher-frequency component of the DAM is due to second-harmonic gyroemission.

  7. Sunspots and the physics of magnetic flux tubes. IX - Umbral dots and longitudinal overstability

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    The dynamical properties of the sunspot field and of a column of hot gas confined by such a vertical magnetic field are examined in order to understand the umbral dot within the context of the magnetic sunspot structure. Attention is given to the conditions necessary for gas intrusion, longitudinal as well as convective overstability, the growing modes, and the even mode. With the hypothesis that the subsurface magnetic field of a sunspot splits into many separate flux tubes with field-free gas between, it is suggested that the field-free columns occasionally punch their way up through the overlying magnetic field to the surface, appearing there as the bright, field-free umbral dots. Effects fostering the phenomenon are also discussed, that is, the enhanced temperature of a column of rising gas, the strongly reduced overhead magnetic pressure, and the initiated upward intrusion; these effects are illustrated with examples.

  8. Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes

    NASA Astrophysics Data System (ADS)

    Hanson, Chris S.; Cally, Paul S.

    2015-07-01

    Our previous semi-analytic treatment of - and -mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125, 2014a; 791, 129, 2014b) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident - and -modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.

  9. Limited Streamer Tubes for the BaBar Instrumented Flux Return Upgrade

    SciTech Connect

    Lu, C.; /Princeton U.

    2005-10-11

    Starting from the very beginning of their operation the efficiency of the RPC chambers in the BaBar Instrumented Flux Return (IFR) has suffered serious degradation. After intensive investigation, various remediation efforts had been carried out, but without success. As a result the BaBar collaboration decided to replace the dying barrel RPC chambers about two years ago. To study the feasibility of using the Limited Streamer Tube (LST) as the replacement of RPC we carried out an R&D program that has resulted in BaBar's deciding to replace the barrel RPC's with LST's. In this report we summarize the major detector R&D results, and leave other issues of the IFR system upgrade to the future publications.

  10. Noncommutative vortices and flux tubes from Yang-Mills theories with spontaneously generated fuzzy extra dimensions

    SciTech Connect

    Kuerkcueoglu, Seckin

    2010-11-15

    We consider a U(2) Yang-Mills theory on MxS{sub F}{sup 2}, where M is an arbitrary noncommutative manifold, and S{sub F}{sup 2} is a fuzzy sphere spontaneously generated from a noncommutative U(N) Yang-Mills theory on M, coupled to a triplet of scalars in the adjoint of U(N). Employing the SU(2)-equivariant gauge field constructed in [D. Harland and S. Kurkcuoglu, Nucl. Phys. B 821, 380 (2009).], we perform the dimensional reduction of the theory over the fuzzy sphere. The emergent model is a noncommutative U(1) gauge theory coupled adjointly to a set of scalar fields. We study this model on the Groenewald-Moyal plane M=R{sub {theta}}{sup 2} and find that, in certain limits, it admits noncommutative, non-Bogomol'nyi-Prasad-Somerfield vortex as well as flux-tube (fluxon) solutions and discuss some of their properties.

  11. Confinement and Lattice Quantum-Electrodynamic Electric Flux Tubes Simulated with Ultracold Atoms

    SciTech Connect

    Zohar, Erez; Reznik, Benni

    2011-12-30

    We propose a method for simulating (2+1)D compact lattice quantum-electrodynamics, using ultracold atoms in optical lattices. In our model local Bose-Einstein condensates' (BECs) phases correspond to the electromagnetic vector potential, and the local number operators represent the conjugate electric field. The well-known gauge-invariant Kogut-Susskind Hamiltonian is obtained as an effective low-energy theory. The field is then coupled to external static charges. We show that in the strong coupling limit this gives rise to ''electric flux tubes'' and to confinement. This can be observed by measuring the local density deviations of the BECs, and is expected to hold even, to some extent, outside the perturbative calculable regime.

  12. Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube

    NASA Astrophysics Data System (ADS)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-08-01

    From experiments of axially homogeneous turbulent convection in a vertical tube using heat (Prandtl number Pr≃6 ) and brine (Pr≃600 ) we show that at sufficiently high Rayleigh numbers (Rag), the Nusselt number Nug˜(RagPr)1/2, which corresponds to the so-called ultimate regime scaling. In heat experiments below certain Rag,however,there is transition to a new regime, Nug˜(RagPr)0.3. This transition also seems to exist in earlier reported data for Pr=1 and Pr≃600 , at different Rag. However, the transition occurs at a single Grashof number, Grgc≃1.6 ×105 , and unified flux scalings for Pr≥1 , Nug/Pr˜Grg0.3, and Nug/Pr˜Grg1/2 can be given for the two regimes.

  13. Systematic study of Zc+ family from a multiquark color flux-tube model

    NASA Astrophysics Data System (ADS)

    Deng, Chengrong; Ping, Jialun; Huang, Hongxia; Wang, Fan

    2015-08-01

    Inspired by the present experimental results of charged charmonium-like states Zc+, we present a systematic study of the tetraquark states [c u ][c ¯ d ¯ ] in a color flux-tube model with a multibody confinement potential. Our investigation indicates that charged charmonium-like states Zc+(3900 ) or Zc+(3885 ), Zc+(3930 ) , Zc+(4020 ) or Zc+(4025 ), Z1+(4050 ), Z2+(4250 ), and Zc+(4200 ) can be described as a family of tetraquark [c u ][c ¯d ¯] states with the quantum numbers n 2SL+1 J and JP of 1 3S1 and 1+, 2 3S1 and 1+, 1 5S2 and 2+, 1 3P1 and 1-, 1 5D1 and 1+, and 1 3D1 and 1+, respectively. The predicted lowest mass charged tetraquark state [c u ][c ¯ d ¯ ] with 0+ and 1 1S0 lies at 3780 ±10 MeV /c2 in the model. These tetraquark states have compact three-dimensional spatial configurations similar to a rugby ball with higher orbital angular momentum L between the diquark [c u ] and antidiquark [c ¯d ¯] corresponding to a more prolate spatial distribution. The multibody color flux tube, a collective degree of freedom, plays an important role in the formation of those charged tetraquark states. However, the two heavier charged states Zc+(4430 ) and Zc+(4475 ) cannot be explained as tetraquark states [c u ][c ¯d ¯] in this model approach.

  14. Numerical Study on the Emergence of Kinked Flux Tube for Understanding of Possible Origin of δ-spot Regions

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Fan, Yuhong; Cheung, Mark C. M.; Shibata, Kazunari

    2015-11-01

    We carried out an magnetohydrodynamic simulation where a subsurface twisted kink-unstable flux tube emerges from the solar interior to the corona. Unlike the previous expectations based on the bodily emergence of a knotted tube, we found that the kinked tube can spontaneously form a complex quadrupole structure at the photosphere. Due to the development of the kink instability before the emergence, the magnetic twist at the kinked apex of the tube is greatly reduced, although the other parts of the tube are still strongly twisted. This leads to the formation of a complex quadrupole structure: a pair of the coherent, strongly twisted spots and a narrow complex bipolar pair between it. The quadrupole is formed by the submergence of a portion of emerged magnetic fields. This result is relevant for understanding the origin of the complex multipolar δ-spot regions that have a strong magnetic shear and emerge with polarity orientations not following Hale-Nicholson and Joy Laws.

  15. Systematics of flux tubes in the dual Ginzburg-Landau theory and Casimir scaling hypothesis: folklore and lattice facts

    NASA Astrophysics Data System (ADS)

    Koma, Y.; Koma (Takayama), M.

    2003-01-01

    The ratios between the string tensions σ_D of color-electric flux tubes in higher and fundamental SU(3) representations, dD equiv σD/σ3, are systematically studied in a Weyl symmetric formulation of the DGL theory. The ratio is found to depend on the Ginzburg-Landau (GL) parameter, kappa equiv m_{χ}/mB, the mass ratio between the monopoles (m_{χ}) and the masses of the dual gauge bosons (mB). While the ratios dD follow a simple flux counting rule in the Bogomol'nyi limit, kappa=1.0, systematic deviations appear with increasing kappa due to interactions between the fundamental flux inside a higher representation flux tube. We find that in a type-II dual superconducting vacuum near kappa = 3.0 this leads to a consistent description of the ratios dD as observed in lattice QCD simulations.

  16. On the look-up tables for the critical heat flux in tubes (history and problems)

    SciTech Connect

    Kirillov, P.L.; Smogalev, I.P.

    1995-09-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality. The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section.

  17. Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements.

    PubMed

    Dombrovsky, Leonid; Randrianalisoa, Jaona; Baillis, Dominique

    2006-01-01

    A modified two-flux approximation is suggested for calculating the hemispherical transmittance and reflectance of a refracting, absorbing, and scattering medium in the case of collimated irradiation of the sample along the normal to the interface. The Fresnel reflection is taken into account in this approach. It is shown that the new approximation is rather accurate for the model transport scattering function. For an arbitrary scattering medium, the error of the modified two-flux approximation is estimated by comparison with the exact numerical calculations for the Henyey-Greenstein scattering function in a wide range of albedos and optical thicknesses. Possible applications of the derived analytical solution to identification problems are discussed. PMID:16478064

  18. Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Mullis, A. M.; Cochrane, R. F.

    2016-03-01

    A comparative study of rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing and drop-tube techniques is presented. A computational model is used to estimate the cooling rate and undercooling of the free fall droplets as this cannot be determined directly. SEM micrographs show that both materials consist of lamellar and anomalous eutectic structures. However, below the critical undercooling the morphologies of each are different in respect of the distribution and volume of anomalous eutectic. The anomalous eutectic in flux- undercooled samples preferentially forms at cell boundaries around the lamellar eutectic in the cell body. In drop-tube processed samples it tends to distribute randomly inside the droplets and at much smaller volume fractions. That the formation of the anomalous eutectic can, at least in part, be suppressed in the drop-tube is strongly suggestive that the formation of anomalous eutectic occurs via remelting process, which is suppressed by rapid cooling during solidification.

  19. Dynamics of multiple flux tubes in sawtoothing KSTAR plasmas heated by electron cyclotron waves: II. Theoretical and numerical analysis

    NASA Astrophysics Data System (ADS)

    Bierwage, Andreas; Yun, Gunsu S.; Hyuen Choe, Gyueng; Nam, Yoonbum; Lee, Woochang; Park, Hyeon K.; Bae, Youngsoon

    2015-01-01

    The dynamics of multiple closed flux tubes in the core of a sawtoothing tokamak plasma are studied using nonlinear simulations. This is motivated by recent observations of long-lived hot spots in the electron cyclotron emission (ECE) images of KSTAR plasmas with electron cyclotron heating (ECH) (Yun et al 2012 Phys. Rev. Lett. 109 145003). Using an empirical source term in a reduced set of MHD equations, it is shown that flux tubes with helicity h = 1 are easily produced and survive for the observed time intervals only if the safety factor is close to unity (|q - 1| ≪ 0.5%) and the magnetic shear is small (|s| ≪ 1). This suggests that sawteeth in KSTAR leave behind wide regions where q ≈ 1. On the basis of the relevant time scales, we discuss how this magnetic geometry and the spatial localization of the EC resonance may allow ECH to actively induce the formation of flux tubes. Using simulations with q profiles that possess a wide q = 1 region inside the sawtooth inversion radius, we examine how the flux tubes merge and annihilate, and how their dynamics depend on the strength of the drive. The phenomena seen in the simulations and experiments lead us to conclude that, during the sawtooth ramp phase, there is a dynamic competition between sources and sinks of thermal and magnetic energy, where the flux tubes may play an important role; both as carriers of and channels for energy. The development of self-consistent simulation models is motivated and directions for future experiments are given.

  20. Comparing Simulations of Rising Flux Tubes Through the Solar Convection Zone with Observations of Solar Active Regions: Constraining the Dynamo Field Strength

    NASA Astrophysics Data System (ADS)

    Weber, M. A.; Fan, Y.; Miesch, M. S.

    2013-10-01

    We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1∘ to 40∘ in both hemispheres. This article expands upon Weber, Fan, and Miesch ( Astrophys. J. 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 1020 Mx and 1021 Mx, and more simulations of the previously investigated case of 1022 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy's Law as in Article 1, and in addition the scatter of tilt angles about the Joy's Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active-region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of ≥ 40 kG are good candidates for the progenitors of large (1021 Mx to 1022 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 1022 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy's Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux.

  1. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, Will

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  2. Magnetohydrodynamic Kink Waves in Nonuniform Solar Flux Tubes: Phase Mixing and Energy Cascade to Small Scales

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Terradas, Jaume

    2015-04-01

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.

  3. An overview of Io flux tube footprints in Jupiter's auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Randall Gladstone, G.; Zarka, Philippe

    The influence of Io on the Jovian magnetosphere and its radio emissions has been studied for more than three decades. The electrodynamical interaction between Io and the Jovian magnetosphere results in an electric circuit that runs from Io along Jupiter's magnetic field lines and closes through the Jovian ionosphere (near 65° north and south latitude) at each foot of the Io Flux Tube (IFT). Where the particles carrying this current impact the atmosphere of Jupiter, an auroral-like spot of emission results. The first direct evidence of the IFT footprint was obtained in a near-infrared image of Jupiter's H 3+ emissions at 3.4 μm in 1992. Subsequently, the IFT signature has been observed at far ultraviolet (by HST) and visible (by Galileo SSI) wavelengths. Part of the Jovian decameter radio emissions, and especially the "S-bursts", are believed to be directly related to the IFT. This paper discusses the multi-wavelength information available regarding the IFT footprints, along with relevant plasma measurements, and presents a qualitative picture of the IFT energetics and morphology.

  4. Characterization of 3D filament dynamics in a MAST SOL flux tube geometry

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Dudson, B. D.; Fishpool, G.

    2013-10-01

    Non-linear simulations of filament propagation in a realistic MAST SOL flux tube geometry using the BOUT++ fluid modelling framework show an isolation of the dynamics of the filament in the divertor region from the midplane region due to three features of the magnetic geometry; the variation of magnetic curvature along the field line, the expansion of the flux tube and strong magnetic shear. Of the three effects, the latter two lead to a midplane ballooning feature of the filament, whilst the former leads to a ballooning around the X-points. In simulations containing all three effects the filament is observed to balloon at the midplane, suggesting that the role of curvature variation is sub-dominant to the flux expansion and magnetic shear. The magnitudes of these effects are all strongest near the X-point which leads to the formation of parallel density gradients. The filaments simulated, which represent filaments in MAST, are identified as resistive ballooning, meaning that their motion is inertially limited, not sheath limited. Parallel density gradients can drive the filament towards a Boltzmann response when the collisionalityof the plasma is low. The results here show that the formation of parallel density gradients is a natural and inevitable consequence of a realistic magnetic geometry and therefore the transition to the Boltzmann response is a consequence of the use of realistic magnetic geometry and does not require initializing specifically varying background profiles as in slab simulations. The filaments studied here are stable to the linear resistive drift-wave instability but are subject to the non-linear effects associated with the Boltzmann response, particularly Boltzmann spinning. The Boltzmann response causes the filament to spin on an axis. In later stages of its evolution a non-linear turbulent state develops where the vorticity evolves into a turbulent eddy field on the same length scale as the parallel current. The transition from interchange

  5. On magnetohydrodynamic thermal instabilities in magnetic flux tubes. [in plane parallel stellar atmosphere in LTE and hydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.

    1985-01-01

    The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.

  6. Evolution of a magnetic flux tube in two-dimensional penetrative convection

    NASA Technical Reports Server (NTRS)

    Jennings, R. L.; Brandenburg, A.; Nordlund, A.; Stein, R. F.

    1992-01-01

    Highly supercritical compressible convection is simulated in a two-dimensional domain in which the upper half is unstable to convection while the lower half is stably stratified. This configuration is an idealization of the layers near the base of the solar convection zone. Once the turbulent flow is well developed, a toroidal magnetic field B sub tor is introduced to the stable layer. The field's evolution is governed by an advection-diffusion-type equation, and the Lorentz force does not significantly affect the flow. After many turnover times the field is stratified such that the absolute value of B sub tor/rho is approximately constant in the convective layer, where rho is density, while in the stable layer this ratio decreases linearly with depth. Consequently most of the magnetic flux is stored in the overshoot layer. The inclusion of rotation leads to travelling waves which transport magnetic flux latitudinally in a manner reminiscent of the migrations seen during the solar cycle.

  7. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  8. Solar Wind Acceleration: Modeling Effects of Turbulent Heating in Open Flux Tubes

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    We present two self-consistent coronal heating models that determine the properties of the solar wind generated and accelerated in magnetic field geometries that are open to the heliosphere. These models require only the radial magnetic field profile as input. The first code, ZEPHYR (Cranmer et al. 2007) is a 1D MHD code that includes the effects of turbulent heating created by counter-propagating Alfven waves rather than relying on empirical heating functions. We present the analysis of a large grid of modeled flux tubes (> 400) and the resulting solar wind properties. From the models and results, we recreate the observed anti-correlation between wind speed at 1 AU and the so-called expansion factor, a parameterization of the magnetic field profile. We also find that our models follow the same observationally-derived relation between temperature at 1 AU and wind speed at 1 AU. We continue our analysis with a newly-developed code written in Python called TEMPEST (The Efficient Modified-Parker-Equation-Solving Tool) that runs an order of magnitude faster than ZEPHYR due to a set of simplifying relations between the input magnetic field profile and the temperature and wave reflection coefficient profiles. We present these simplifying relations as a useful result in themselves as well as the anti-correlation between wind speed and expansion factor also found with TEMPEST. Due to the nature of the algorithm TEMPEST utilizes to find solar wind solutions, we can effectively separate the two primary ways in which Alfven waves contribute to solar wind acceleration: 1) heating the surrounding gas through a turbulent cascade and 2) providing a separate source of wave pressure. We intend to make TEMPEST easily available to the public and suggest that TEMPEST can be used as a valuable tool in the forecasting of space weather, either as a stand-alone code or within an existing modeling framework.

  9. Approximate analytical formulation of radial diffusion and whistler-induced losses from a preexisting flux peak in the plasmasphere

    NASA Astrophysics Data System (ADS)

    Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.

    2015-09-01

    Modeling the spatiotemporal evolution of relativistic electron fluxes trapped in the Earth's radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modeling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection) at low L together with enhanced wave-induced losses and outward radial transport at higher L. Assuming that radial diffusion can be further described as the spatial broadening within the plasmasphere of this preexisting flux peak, simple approximate analytical solutions for the distribution of trapped relativistic electrons are derived. Such a simplified formalism provides a convenient means for easily determining whether radial diffusion actually prevails over atmospheric losses at any particular time for given electron energy E and location L. It is further used to infer favorable conditions for relativistic electron access to the inner belt, providing an explanation for the relative scarcity of such a feat under most circumstances. Comparisons with electron flux measurements on board the Van Allen Probes show a reasonable agreement between a few weeks and 4 months after the formation of a flux peak.

  10. Sunspots and the physics of magnetic flux tubes. IV - Aerodynamic lift on a thin cylinder in convective flows

    NASA Technical Reports Server (NTRS)

    Tsinganos, K. C.

    1979-01-01

    The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out the upwellings and the downdrafts of the convective cell, into a location midway between them. The implications for the intense magnetic flux tubes in the convection beneath the surface of the sun are considered.

  11. An Approximate Analytic Expression for the Flux Density of Scintillation Light at the Photocathode

    SciTech Connect

    Braverman, Joshua B; Harrison, Mark J; Ziock, Klaus-Peter

    2012-01-01

    The flux density of light exiting scintillator crystals is an important factor affecting the performance of radiation detectors, and is of particular importance for position sensitive instruments. Recent work by T. Woldemichael developed an analytic expression for the shape of the light spot at the bottom of a single crystal [1]. However, the results are of limited utility because there is generally a light pipe and photomultiplier entrance window between the bottom of the crystal and the photocathode. In this study, we expand Woldemichael s theory to include materials each with different indices of refraction and compare the adjusted light spot shape theory to GEANT 4 simulations [2]. Additionally, light reflection losses from index of refraction changes were also taken into account. We found that the simulations closely agree with the adjusted theory.

  12. Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid

    SciTech Connect

    Alford, Mark G.; Good, Gerald

    2008-07-01

    We analyze magnetic-flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient ('entrainment') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional {kappa}{identical_to}{lambda}/{xi}=1/{radical}(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical {kappa} and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to 'type-II(n)' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical {kappa} and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region but might be observed in condensed-matter systems.

  13. Vacuum Polarization by a Magnetic Flux Tube at Finite Temperature in the Cosmic String Space-Time

    NASA Astrophysics Data System (ADS)

    Spinelly, J.; Bezerra de Mello, E. R.

    In this paper, we analyze the effect produced by the temperature in the vacuum polarization associated with a charged massless scalar field in the presence of a magnetic flux tube in the cosmic string space-time. Three different configurations of magnetic fields are taken into account: (i) a homogeneous field inside the tube, (ii) a field proportional to 1/r, and (iii) a cylindrical shell with δ-function. In these three cases, the axis of the infinitely long tube of radius R coincides with the cosmic string. Because of the complexity of this analysis in the region inside the tube, we consider the thermal effect in the region outside. In order to develop this analysis, we construct the thermal Green function associated with this system for the three above-mentioned situations considering points in the region outside the tube. We explicitly calculate, in the high-temperature limit, the thermal average of the field square and the energy-momentum tensor.

  14. Erupting Filaments with Large Enclosing Flux Tubes as Sources of High-mass Three-part CMEs, and Erupting Filaments in the Absence of Enclosing Flux Tubes as Sources of Low-mass Unstructured CMEs

    NASA Astrophysics Data System (ADS)

    Hutton, Joe; Morgan, Huw

    2015-11-01

    The 3-part appearance of many coronal mass ejections (CMEs) arising from erupting filaments emerges from a large magnetic flux tube structure, consistent with the form of the erupting filament system. Other CMEs arising from erupting filaments lack a clear 3-part structure and reasons for this have not been researched in detail. This paper aims to further establish the link between CME structure and the structure of the erupting filament system and to investigate whether CMEs which lack a 3-part structure have different eruption characteristics. A survey is made of 221 near-limb filament eruptions observed from 2013 May 03 to 2014 June 30 by Extreme UltraViolet (EUV) imagers and coronagraphs. Ninety-two filament eruptions are associated with 3-part structured CMEs, 41 eruptions are associated with unstructured CMEs. The remaining 88 are categorized as failed eruptions. For 34% of the 3-part CMEs, processing applied to EUV images reveals the erupting front edge is a pre-existing loop structure surrounding the filament, which subsequently erupts with the filament to form the leading bright front edge of the CME. This connection is confirmed by a flux-rope density model. Furthermore, the unstructured CMEs have a narrower distribution of mass compared to structured CMEs, with total mass comparable to the mass of 3-part CME cores. This study supports the interpretation of 3-part CME leading fronts as the outer boundaries of a large pre-existing flux tube. Unstructured (non 3-part) CMEs are a different family to structured CMEs, arising from the eruption of filaments which are compact flux tubes in the absence of a large system of enclosing closed field.

  15. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR (High Flux Isotope Reactor) Reactor

    SciTech Connect

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs.

  16. Dynamic Evolution of Active Region Flux Tubes in the Turbulent Convective Envelope of a Young Sun: Solar-like Fast Rotators

    NASA Astrophysics Data System (ADS)

    Weber, Maria A.; Brown, B. P.; Fan, Y.

    2012-05-01

    Our Sun rotated much more rapidly when it was younger, as is suggested by observations of rapidly rotating solar-like stars and the influence of the solar wind, which removes angular momentum from the Sun. By studying how flux emergence may have occurred on the young Sun, we are likely to learn more about the nature of the solar dynamo early in the Sun's history, as well as other solar-like stars. To investigate this, we embed a toroidal flux tube near the base of the convection zone of a rotating spherical shell of turbulent convection performed for solar-like stars that rotate 3, 5, and 10 times the current solar rate. Our objective is to understand how the convective flows of these fast rotators can influence the emergent properties of flux tubes which would rise to create active regions, or starspots, of a variety of magnetic flux strengths, magnetic fields, and initial latitudes. Flux tube properties we will discuss include rise times, latitude of emergence, and tilt angles of the emerging flux tube limbs with respect to the east-west direction. Also of interest is identifying the regimes where dynamics of the flux tube are convection dominated or magnetic buoyancy dominated, as well as attempting to identify active longitudes.

  17. Nano-cavities observed in a 316SS PWR Flux Thimble Tube Irradiated to 33 and 70 dpa

    SciTech Connect

    Edwards, Danny J.; Garner, Francis A.; Bruemmer, Stephen M.; Efsing, Pal G.

    2009-02-28

    The radiation-induced microstructure of a cold-worked 316SS flux thimble tube from an operating pressurized water reactor (PWR) was examined. Two irradiated conditions, 33 dpa at 290ºC and 70 dpa at 315ºC were examined by transmission electron microscopy. The original dislocation network had completely disappeared and was replaced by fine dispersions of Frank loops and small nano-cavities at high densities. The latter appear to be bubbles containing high levels of helium and hydrogen. An enhanced distribution of these nano-cavities was found at grain boundaries and may play a role in the increased susceptibility of the irradiated 316SS to intergranular failure of specimens from this tube during post-irradiation slow strain rate testing in PWR water conditions.

  18. Sunspots and the physics of magnetic flux tubes. VI - Convective propulsion. VII - Heat flow in a convective downdraft

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.

  19. The use of two-stream approximations for the parameterization of solar radiative energy fluxes through vegetation

    SciTech Connect

    Joseph, J.H.; Iaquinta, J.; Pinty, B.

    1996-10-01

    Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system. For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to make this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to be acceptable by other researchers and, in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND`s as well as experimental data for 17 plant canopies. It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LAND`s. However, only the uniform and planophile LANDS lead to canopy hemispheric reflectances, which are markedly different from one another. The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must be made on the basis of experimental data. 30 refs., 5 figs.

  20. The Use of Two-Stream Approximations for the Parameterization of Solar Radiative Energy Fluxes through Vegetation.

    NASA Astrophysics Data System (ADS)

    Josepoh, Joachim H.; Laquinta, Jean; Pinty, Bernard

    1996-10-01

    Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system.For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to nuke this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to he acceptable by other researchers and. in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND's as well as experimental data for 17 plant canopies.It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LANDS. However, only the uniform and planophile LANDs lead to canopy hemispheric reflectances, which are markedly different from one another.The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must he made on the basis of experimental data.

  1. Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A. H.; Pal, M.

    2015-03-01

    A cell-centered control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations. The grid is aligned with the fractures and barriers which are then modeled as lower-dimensional interfaces located between the matrix cells in the physical domain. The nD pressure equation is solved in the matrix domain coupled with an (n - 1)D pressure equation solved in the fractures. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures, and must be added to the lower-dimensional flow equation (called the transfer function). An additional transmission condition is used between matrix cells adjacent to low permeable fractures to link the velocity and pressure jump across the fractures. Numerical tests serve to assess the convergence and accuracy of the lower-dimensional fracture model for highly anisotropic fractures having different apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approach for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretization. Lower-dimensional fracture model results are compared with hybrid-grid and equi-dimensional model results. Fractures and barriers are efficiently modeled by lower-dimensional interfaces which yield comparable results to those of the equi-dimensional model. Highly conductive fractures are modeled as lower-dimensional entities without the use of locally refined grids that are required by the equi-dimensional model, while pressure continuity across fractures is built into the model, without depending on the extra degrees of freedom which must be added locally by the hybrid-grid method. The lower-dimensional fracture

  2. Linear MHD Wave Propagation in Time-Dependent Flux Tube. III. Leaky Waves in Zero-Beta Plasma

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2016-01-01

    In this article, we evaluate the time-dependent wave properties and the damping rate of propagating fast magneto-hydrodynamic (MHD) waves when energy leakage into a magnetised atmosphere is considered. By considering a cold plasma, initial investigations into the evolution of MHD wave damping through this energy leakage will take place. The time-dependent governing equations have been derived previously in Williamson and Erdélyi (2014a, Solar Phys. 289, 899 - 909) and are now solved when the assumption of evanescent wave propagation in the outside of the waveguide is relaxed. The dispersion relation for leaky waves applicable to a straight magnetic field is determined in both an arbitrary tube and a thin-tube approximation. By analytically solving the dispersion relation in the thin-tube approximation, the explicit expressions for the temporal evolution of the dynamic frequency and wavenumber are determined. The damping rate is, then, obtained from the dispersion relation and is shown to decrease as the density ratio increases. By comparing the decrease in damping rate to the increase in damping for a stationary system, as shown, we aim to point out that energy leakage may not be as efficient a damping mechanism as previously thought.

  3. Average patterns of precipitation and plasma flow in the plasma sheet flux tubes during steady magnetospheric convection

    NASA Technical Reports Server (NTRS)

    Sergeev, V. A.; Lennartsson, W.; Pellinen, R.; Vallinkoski, M.; Fedorova, N. I.

    1990-01-01

    Average patterns of plasma drifts and auroral precipitation in the nightside auroral zone were constructed during a steady magnetospheric convection (SMC) event on February 19, 1978. By comparing these patterns with the measurements in the midtail plasma sheet made by ISEE-1, and using the corresponding magnetic field model, the following features are inferred: (1) the concentration of the earthward convection in the midnight portion of the plasma sheet (convection jet); (2) the depleted plasma energy content of the flux tubes in the convection jet region; and (3) the Region-1 field-aligned currents generated in the midtail plasma sheet. It is argued that these three elements are mutually consistent features appearing in the process of ionosphere-magnetosphere interaction during SMC periods. These configurational characteristics resemble the corresponding features of substorm expansions (enhanced convection and 'dipolarized' magnetic field within the substorm current wedge) and appear to play the same role in regulating the plasma flow in the flux tubes connected to the plasma sheet.

  4. Evidence for siphon flows with shocks in solar magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Degenhardt, D.; Solanki, S. K.; Montesinos, B.; Thomas, J. H.

    1993-01-01

    We synthesize profiles of the infrared line Fe I 15648.5 A (g = 3) for a recently developed theoretical model of siphon flows along photospheric magnetic loops. The synthesized line profiles are compared with the observations from which Rueedi et al. (1992) deduced the presence of such flows across the neutral line of an active region plage. This comparison supports the interpretation of Rueedi et al. (1992). It also suggests that the average footpoint separation of the observed loops carrying the siphon flow is 8-15 sec and that the siphon flow experiences a standing tube shock in the downstream leg near the top of the arch.

  5. The behavior of transverse waves in nonuniform solar flux tubes. II. Implications for coronal loop seismology

    SciTech Connect

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2014-02-01

    The seismology of coronal loops using observations of damped transverse oscillations in combination with results from theoretical models is a tool to indirectly infer physical parameters in the solar atmospheric plasma. Existing seismology schemes based on approximations of the period and damping time of kink oscillations are often used beyond their theoretical range of applicability. These approximations assume that the variation of density across the loop is confined to a nonuniform layer much thinner than the radius of the loop, but the results of the inversion problem often do not satisfy this preliminary hypothesis. Here, we determine the accuracy of the analytic approximations of the period and damping time, and the impact on seismology estimates when largely nonuniform loops are considered. We find that the accuracy of the approximations when used beyond their range of applicability is strongly affected by the form of the density profile across the loop, that is observationally unknown and so must be arbitrarily imposed as part of the theoretical model. The error associated with the analytic approximations can be larger than 50% even for relatively thin nonuniform layers. This error directly affects the accuracy of approximate seismology estimates compared to actual numerical inversions. In addition, assuming different density profiles can produce noncoincident intervals of the seismic variables in inversions of the same event. The ignorance about the true shape of density variation across the loop is an important source of error that may dispute the reliability of parameters seismically inferred assuming an ad hoc density profile.

  6. A Comparison between a Minijet Model and a Glasma Flux Tube Model for Central Au-Au Collisions at sqrt NN=200 GeV

    SciTech Connect

    Longacre, R.S.

    2011-05-17

    In this paper we compare two models with central Au-Au collisions at sqrtsNN=200 GeV. The first model is a minijet model which assumes that around ~50 minijets are produced in back-to-back pairs and have an altered fragmentation functions. It is also assumed that the fragments are transparent and escape the collision zone and are detected. The second model is a glasma flux tube model which leads to flux tubes on the surface of a radial expanding fireball driven by interacting flux tubes near the center of the fireball through plasma instabilities. This internal fireball becomes an opaque hydro fluid which pushes the surface flux tubes outward. Around ~12 surfaceflux tubes remain and fragment with ~1/2 the produced particles escaping the collision zone and are detected. Both models can reproduce two particle angular correlations in the different pt1 pt2 bins. We also compare the two models for three additional effects: meson baryon ratios; the long range nearside correlation called the ridge; and the so-called mach cone effect when applied to three particle angular correlations.

  7. A phenomenological model for boiling heat transfer and the critical heat flux in tubes containing twisted tapes

    NASA Astrophysics Data System (ADS)

    Weisman, J.; Yang, J. Y.; Usman, S.

    1994-01-01

    New critical heat flux (CHF) and boiling heat transfer data were obtained in the subcooled and low quality regions using refrigerant 113. These data were obtained in a 0.61 cm round tube containing a twisted tape having a twist ratio of 6.25. The new CHF data, plus water data from the literature, were compared to a modified version of the CHF predictive model based on bubble crowding and coalescence in the bubbly layer (Weisman and Pei, (1983), Weisman and Illeslamlou, (1988)). Reasonably good predictions were obtained within the range of the model. It was also found that the Yang and Weisman (1991) extension of the CHF model to boiling heat transfer held for swirling flow.

  8. Investigation on the Importance of Fast Air Temperature Measurements in the Sampling Cell of Short-Tube Closed-Path Gas Analyzer for Eddy-Covariance Fluxes

    NASA Astrophysics Data System (ADS)

    Kathilankal, J. C.; Fratini, G.; Burba, G. G.

    2014-12-01

    High-speed, precise gas analyzers used in eddy covariance flux research measure gas content in a known volume, thus essentially measuring gas density. The classical eddy flux equation, however, is based on the dry mole fraction. The relation between dry mole fraction and density is regulated by the ideal gas law and law of partial pressures, and depends on water vapor content, temperature and pressure of air. If the instrument can output precise fast dry mole fraction, the flux processing is significantly simplified and WPL terms accounting for air density fluctuations are no longer required. This will also lead to the reduction in uncertainties associated with the WPL terms. For instruments adopting an open-path design, this method is difficult to use because of complexities with maintaining reliable fast temperature measurements integrated over the entire measuring path, and also because of extraordinary challenges with accurate measurements of fast pressure in the open air flow. For instruments utilizing a traditional long-tube closed-path design, with tube length 1000 or more times the tube diameter, this method can be used when instantaneous fluctuations in the air temperature of the sampled air are effectively dampened, instantaneous pressure fluctuations are regulated or negligible, and water vapor is measured simultaneously with gas, or the sample is dried. For instruments with a short-tube enclosed design, most - but not all - of the temperature fluctuations are attenuated, so calculating unbiased fluxes using fast dry mole fraction output requires high-speed, precise temperature measurements of the air stream inside the cell. In this presentation, authors look at short-term and long-term data sets to assess the importance of high-speed, precise air temperature measurements in the sampling cell of short-tube enclosed gas analyzers. The CO2 and H2O half hourly flux calculations, as well as long-term carbon and water budgets, are examined.

  9. Ionospheric outflows as possible source of the low-energy plasma flux tubes controlling the dimension of pulsating auroral patches

    NASA Astrophysics Data System (ADS)

    Liang, J.; Donovan, E.; Nishimura, T.; Yang, B.; Angelopoulos, V.

    2014-12-01

    Conjunctive observations of low-Earth-orbit satellites and optical auroral imagers have indicated that, a majority of pulsating auroral patches (PAPs) are associated with low-energy ion (LEI) precipitation structures with core energies ranging from several tens of eV up to a few hundred eV. This result is consistent with a long-standing proposal that the PAPs connect to flux tubes filled with enhanced "cold" plasma. To further explore the origin and generation mechanism of those LEI structures, we investigate a few THEMIS events when the in-situ probes are conceived as conjugate to PAPs, judging by an apparent correlation between the in-situ whistler-mode chorus and the oscillation of the PAP luminosity [Nishimura et al., 2011]. We notice a common existence of LEI structures from THEMIS in-situ data during those conjugacy event intervals. Such LEI structures are always strongly field-aligned, with core energies ranging from several tens of eV up to a few hundred eV, and often exhibit distinct energy dispersion features. Contingent upon the energy range and time, the pitch-angle distribution of the LEI structures can be either heavily biased toward parallel direction, or biased toward anti-parallel direction, or roughly symmetric between parallel and anti-parallel directions. The above observations allude to the ion outflows from the ionosphere as a plausible origin of the observed LEI structures. To check the above notion, we perform particle simulations assuming that the low-energy ions originate from the ion outflows in topside ionosphere and bounce between hemispheres while convecting with EXB drift. The simulation results can reproduce some of the basic observable features of the LEI structures, such as the energy dispersion and the variation of pitch-angle distribution versus time and energy. Combining the results from low-Earth-orbit satellites observations, THEMIS in-situ observations, and simulations, we propose that the ion outflows into the magnetosphere

  10. Technical Note: Approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.

    2015-06-01

    An aquifer consisting of a skin zone and a formation zone is considered as a two-zone aquifer. Existing solutions for the problem of constant-flux pumping in a two-zone confined aquifer involve laborious calculation. This study develops a new approximate solution for the problem based on a mathematical model describing steady-state radial and vertical flows in a two-zone aquifer. Hydraulic parameters in these two zones can be different but are assumed homogeneous in each zone. A partially penetrating well may be treated as the Neumann condition with a known flux along the screened part and zero flux along the unscreened part. The aquifer domain is finite with an outer circle boundary treated as the Dirichlet condition. The steady-state drawdown solution of the model is derived by the finite Fourier cosine transform. Then, an approximate transient solution is developed by replacing the radius of the aquifer domain in the steady-state solution with an analytical expression for a dimensionless time-dependent radius of influence. The approximate solution is capable of predicting good temporal drawdown distributions over the whole pumping period except at the early stage. A quantitative criterion for the validity of neglecting the vertical flow due to a partially penetrating well is also provided. Conventional models considering radial flow without the vertical component for the constant-flux pumping have good accuracy if satisfying the criterion.

  11. Effective Estimation of Dynamic Metabolic Fluxes Using 13C Labeling and Piecewise Affine Approximation: From Theory to Practical Applicability

    PubMed Central

    Schumacher, Robin; Wahl, S. Aljoscha

    2015-01-01

    The design of microbial production processes relies on rational choices for metabolic engineering of the production host and the process conditions. These require a systematic and quantitative understanding of cellular regulation. Therefore, a novel method for dynamic flux identification using quantitative metabolomics and 13C labeling to identify piecewise-affine (PWA) flux functions has been described recently. Obtaining flux estimates nevertheless still required frequent manual reinitalization to obtain a good reproduction of the experimental data and, moreover, did not optimize on all observables simultaneously (metabolites and isotopomer concentrations). In our contribution we focus on measures to achieve faster and robust dynamic flux estimation which leads to a high dimensional parameter estimation problem. Specifically, we address the following challenges within the PWA problem formulation: (1) Fast selection of sufficient domains for the PWA flux functions, (2) Control of over-fitting in the concentration space using shape-prescriptive modeling and (3) robust and efficient implementation of the parameter estimation using the hybrid implicit filtering algorithm. With the improvements we significantly speed up the convergence by efficiently exploiting that the optimization problem is partly linear. This allows application to larger-scale metabolic networks and demonstrates that the proposed approach is not purely theoretical, but also applicable in practice. PMID:26690237

  12. Self-organized criticality in a two-dimensional cellular automaton model of a magnetic flux tube with background flow

    NASA Astrophysics Data System (ADS)

    Dănilă, B.; Harko, T.; Mocanu, G.

    2015-11-01

    We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.

  13. THREE-DIMENSIONAL NONLINEAR EVOLUTION OF A MAGNETIC FLUX TUBE IN A SPHERICAL SHELL: INFLUENCE OF TURBULENT CONVECTION AND ASSOCIATED MEAN FLOWS

    SciTech Connect

    Jouve, Laurene; Brun, Allan Sacha E-mail: sacha.brun@cea.fr

    2009-08-20

    We present the first three-dimensional magnetohydrodynamics study in spherical geometry of the nonlinear dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone (CZ). These numerical simulations use the anelastic spherical harmonic code. We seek to understand the mechanism of emergence of strong toroidal fields through a turbulent layer from the base of the solar CZ to the surface as active regions. To do so, we study numerically the rise of magnetic toroidal flux ropes from the base of a modeled CZ up to the top of our computational domain where bipolar patches are formed. We compare the dynamical behavior of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional circulation (MC) and differential rotation, with reference calculations done in a quiet isentropic zone. We find that two parameters influence the tubes during their rise through the CZ: the initial field strength and amount of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or high). By contrast, weaker field cases indicate that downflows and upflows control the rising velocity of particular regions of the rope and could in principle favor the emergence of flux through {omega}-loop structures. For these latter cases, we focus on the orientation of bipolar patches and find that sufficiently arched structures are able to create bipolar regions with a predominantly east-west orientation. Meridional flow seems to determine the trajectory of the magnetic rope when the field strength has been significantly reduced near the top of the domain. Appearance of local magnetic field also feeds back on the horizontal flows thus perturbing the MC via Maxwell stresses. Finally differential rotation makes it more difficult for tubes introduced at low latitudes to

  14. Technical Note: Approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer

    NASA Astrophysics Data System (ADS)

    Huang, C.-S.; Yang, S.-Y.; Yeh, H.-D.

    2015-03-01

    An aquifer consisting of a skin zone and a formation zone is considered as a two-zone aquifer. Existing solutions for the problem of constant-flux pumping (CFP) in a two-zone confined aquifer involve laborious calculation. This study develops a new approximate solution for the problem based on a mathematical model including two steady-state flow equations with different hydraulic parameters for the skin and formation zones. A partially penetrating well may be treated as the Neumann condition with a known flux along the screened part and zero flux along the unscreened part. The aquifer domain is finite with an outer circle boundary treated as the Dirichlet condition. The steady-state drawdown solution of the model is derived by the finite Fourier cosine transform. Then, an approximate transient solution is developed by replacing the radius of the boundary in the steady-state solution with an analytical expression for a dimensionless time-dependent radius of influence. The approximate solution is capable of predicting good temporal drawdown distributions over the whole pumping period except at the early stage. A quantitative criterion for the validity of neglecting the vertical flow component due to a partially penetrating well is also provided. Conventional models considering radial flow without the vertical component for the CFP have good accuracy if satisfying the criterion.

  15. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (pt,pt) and angular differences (ηΔ,φΔ)

    DOE PAGESBeta

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √(sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that themore » glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.« less

  16. The effect of a constraining metal tube on flux pinning induced stress in a long cylindrical superconductor

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobin; Tu, Shan-Tung

    2012-07-01

    The use of an alloy tube to impose pressure on a superconducting cylinder during magnetizing reduces pinning-induced tensile stress in high temperature superconductors has been well established. In this paper the natural contact state between the superconducting cylinder and the metal tube is modeled. An exact solution is obtained for the isotropic magnetoelastic problem with the superconductor behaving magnetically, and an expression for the contact pressure exerted on the superconductor by the metal tube is obtained. This expression explicitly gives the contribution of the ratio of Young's modulus of the superconductor to that of the metal and the ratio of the internal to external radii of the metal tube. The stress profile in the superconductor, subjected to the restriction of metal tube, with both field cooled activation and pulse field activation is analyzed in terms of the Bean critical-state model. The results show that the metal tube can prevent radial expansion of the superconductor and can reduce the maximum tension for field-cooled and pulsed-field activations. These results are important for the selection of materials as well as the optimization of sizes of the alloy tube.

  17. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  18. Reduction-melting combined with a Na₂CO₃ flux recycling process for lead recovery from cathode ray tube funnel glass.

    PubMed

    Okada, Takashi; Yonezawa, Susumu

    2014-08-01

    With large quantity of flux (Na2CO3), lead can be recovered from the funnel glass of waste cathode-ray tubes via reduction-melting at 1000°C. To reduce flux cost, a technique to recover added flux from the generated oxide phase is also important in order to recycle the flux recovered from the reduction-melting process. In this study, the phase separation of sodium and the crystallization of water-soluble sodium silicates were induced after the reduction-melting process to enhance the leachability of sodium in the oxide phase and to extract the sodium from the phase for the recovery of Na2CO3 as flux. A reductive atmosphere promoted the phase separation and crystallization, and the leachability of sodium from the oxide phase was enhanced. The optimum temperature and treatment time for increasing the leachability were 700°C and 2h, respectively. After treatment, more than 90% of the sodium in the oxide phase was extracted in water. NaHCO3 can be recovered by carbonization of the solution containing sodium ions using carbon dioxide gas, decomposed to Na2CO3 at 50°C and recycled for use in the reduction-melting process. PMID:24816522

  19. Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model

    NASA Astrophysics Data System (ADS)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2015-12-01

    A novel cell-centred control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations on unstructured grids in three-dimensions (3D). The grid is aligned with fractures and barriers which are then modelled as lower-dimensional surface interfaces located between the matrix cells in the physical domain. The three-dimensional pressure equation is solved in the matrix domain coupled with a two-dimensional (2D) surface pressure equation solved over fracture networks via a novel surface CVD-MPFA formulation. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures and define the transfer function, which is added to the lower-dimensional flow equation and couples the three-dimensional and surface systems. An additional transmission condition is used between matrix cells adjacent to low permeable fractures to couple the velocity and pressure jump across the fractures. Convergence and accuracy of the lower-dimensional fracture model is assessed for highly anisotropic fractures having a range of apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approximation for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretisation. Lower-dimensional fracture model results are compared with equi-dimensional model results. Fractures and barriers are efficiently modelled by lower-dimensional interfaces which yield comparable results to those of the equi-dimensional model. Pressure continuity is built into the model across highly conductive fractures, leading to reduced local degrees of freedom in the CVD-MPFA approximation. The formulation is applied to geologically complex

  20. Combination of helical ferritic-steel inserts and flux-tube-expansion divertor for the heat control in tokamak DEMO reactor

    NASA Astrophysics Data System (ADS)

    Takizuka, T.; Tokunaga, S.; Hoshino, K.; Shimizu, K.; Asakura, N.

    2015-08-01

    Edge localized modes (ELMs) in the H-mode operation of tokamak reactors may be suppressed/mitigated by the resonant magnetic perturbation (RMP), but RMP coils are considered incompatible with DEMO reactors under the strong neutron flux. We propose an innovative concept of the RMP without installing coils but inserting ferritic steels of the helical configuration. Helically perturbed field is naturally formed in the axisymmetric toroidal field through the helical ferritic steel inserts (FSIs). When ELMs are avoided, large stationary heat load on divertor plates can be reduced by adopting a flux-tube-expansion (FTE) divertor like an X divertor. Separatrix shape and divertor-plate inclination are similar to those of a simple long-leg divertor configuration. Combination of the helical FSIs and the FTE divertor is a suitable method for the heat control to avoid transient ELM heat pulse and to reduce stationary divertor heat load in a tokamak DEMO reactor.

  1. Simulations of the Cleft Ion Fountain outflows resulting from the passage of Storm Enhanced Density (SED) plasma flux tubes through the dayside cleft auroral processes region

    NASA Astrophysics Data System (ADS)

    Horwitz, James; Zeng, Wen

    2007-10-01

    Foster et al. [2002] reported elevated ionospheric density regions convected from subauroral plasmaspheric regions toward noon, in association with convection of plasmaspheric tails. These Storm Enhanced Density (SED) regions could supply cleft ion fountain outflows. Here, we will utilize our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density ``plasmasphere-like'' flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. It is found that the O^+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased fluxes of O^+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.

  2. Quantifying the Difference Between the Flux-Tube Expansion Factor at the Source Surface and at the Alfvén Surface Using a Global MHD Model for the Solar Wind

    NASA Astrophysics Data System (ADS)

    Cohen, O.

    2015-08-01

    The potential-field approximation has been providing a fast and computationally inexpensive estimation for the solar corona's global magnetic-field geometry for several decades. In contrast, more physics-based global magnetohydrodynamic (MHD) models have been used for a similar purpose, while being much more computationally expensive. Here, we investigate the difference in the field geometry between a global MHD model and the potential-field source-surface model (PFSSM) by tracing individual magnetic field lines in the MHD model from the Alfvén surface (AS), through the source surface (SS), all the way to the field-line footpoint, and then back to the source surface in the PFSSM. We also compare the flux-tube expansion at two points at the SS and the AS along the same radial line. We study the effect of solar cycle variations, the order of the potential-field harmonic expansion, and different magnetogram sources. We find that the flux-tube expansion factor is consistently smaller at the AS than at the SS for solar minimum and the fast solar wind, but it is consistently larger for solar maximum and the slow solar wind. We use the Wang-Sheeley-Arge model to calculate the associated wind speed for each field line and propagate these solar-wind speeds to 1 AU. We find a deviation of more than five hours in the arrival time between the two models for 20 % of the field lines in the solar minimum case and for 40 % of the field lines in the solar maximum case.

  3. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    NASA Technical Reports Server (NTRS)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  4. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  5. The Role of the Velocity Gradient in Laminar Convective Heat Transfer through a Tube with a Uniform Wall Heat Flux

    ERIC Educational Resources Information Center

    Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…

  6. Effects of the geomagnetic asymmetry of flux-tube integrated neutral winds to the Rayleigh-Taylor instability in equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Luo, Weihua; Xu, Jisheng; Tian, Mao

    Neutral winds play an important role in the develop-ment of Rayleigh-Taylor instability which is very associated with the occurrence of irregularities in the equatorial and low-latitude regions. For example, eastward winds would make for the development of R-T instability and meridional winds suppress the development of R-T insta-bility. In this work, we investigate effects of the geomagnetic asymmetry of neutral winds to the flux-tube integrated R-T instability in equatorial ionosphere. The flux-tube integrated lin-ear growth rate of R-T instability were estimated and considering the ambient electric fields and asymmetry of neutral winds between North-South hemispheres, and the integrated growth rates were compared which were get with and without the neutral wind, including the zonal and meridional wind. Effects of the longitudinal distribution of the meridional winds on the inte-grated growth rate are investigated also. It is shown that the zonal and meridional wind could significantly affect the growth rates and the meridional winds could decrease the integrated growth rate, respectively. The longitudinal variation of occurrence of irregularities would be related with the global distribution of meridional wind. Reference: Sultan, P.J., Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 1996, 101(A12), 26875-26891 Basu, B., On the linear theory of equato-rial plasma instability: Comparison of different descriptions, J. Geophys. Res., 2002, 107(A8), 1199, doi: 10.1029/2001JA000317

  7. Splitting of inviscid fluxes for real gases

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Vanleer, Bram; Shuen, Jian-Shun

    1988-01-01

    Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations or auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.

  8. Comparison of Implicit Schemes to Solve Equations of Radiation Hydrodynamics with a Flux-limited Diffusion Approximation: Newton--Raphson, Operator Splitting, and Linearization

    NASA Astrophysics Data System (ADS)

    Tetsu, Hiroyuki; Nakamoto, Taishi

    2016-03-01

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton-Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas & Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.

  9. High-speed Air Temperature Measurements in a Closed-path Cell and Quality of CO2 and H2O Fluxes from a Short-tube Gas Analyzer.

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Kathilankal, J. C.; Fratini, G.

    2015-12-01

    Gas analyzers traditionally used for eddy covariance method measure gas density. When fluxes are calculated, corrections are applied to account for the changes in gas density due to changing temperature and pressure (Ideal Gas Law) and changing water vapor density (Dalton's Law). The new generation of gas analyzers with fast air temperature and pressure measurements in the sampling cell enables on-the-fly calculation of fast dry mole fraction. This significantly simplifies the flux processing because the WPL density terms are no longer required, and leads to the reduction in uncertainties associated with latent and sensible heat flux inputs into the density terms. Traditional closed-path instruments with long intake tubes often can effectively dampen the fast temperature fluctuations in the tube before reaching the measurement cell, thus reducing or eliminating the need for temperature correction for density-based fluxes. But in instruments with a short-tube design, most - but not all - of the temperature fluctuations are attenuated, so calculating unbiased fluxes using fast dry mole fraction requires high-speed precise temperature measurements of the air stream inside the cell. Fast pressure and water vapor content of the sampled air should also be measured in the cell and carefully aligned in time with gas density and sample temperature measurements.In this study we examine the impact of fast-response air temperature measurements in the cell on the calculations of carbon dioxide and water vapor fluxes at different time scales from three different ecosystems. The fast cell air temperature data is filtered mathematically to obtain slower response cell temperature time series, which is used in the calculation of fluxes. This exercise is intended to simulate the use of thicker slower response thermocouples instead of fast response fine wire thermocouples for estimating cell temperature. The directly measured block temperature is also utilized to illustrate the

  10. High-energy X-ray detection of G359.89–0.08 (SGR A–E): Magnetic flux tube emission powered by cosmic rays?

    SciTech Connect

    Zhang, Shuo; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Nynka, Melania; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Christensen, Finn E.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2014-03-20

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index Γ ≈ 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F{sub X} = (2.0 ± 0.1) × 10{sup –12} erg cm{sup –2} s{sup –1}, corresponding to an unabsorbed X-ray luminosity L{sub X} = (2.6 ± 0.8) × 10{sup 34} erg s{sup –1} assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ∼100 kyr) with low surface brightness and radii up to ∼30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  11. Modeling early stages of relativistic heavy ion collisions: Coupling relativistic transport theory to decaying color-electric flux tubes

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Puglisi, A.; Oliva, L.; Plumari, S.; Scardina, F.; Greco, V.

    2015-12-01

    In this study we model early-time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism, coupling the dynamical evolution of the initial color field to the dynamics of the many particles system produced by the decay. The latter is described by relativistic kinetic theory in which we fix the ratio η /s rather than insisting on specific microscopic processes, and the backreaction on the color field is taken into account by solving self-consistently the kinetic and the field equations. We study isotropization and thermalization of the system produced by the field decay for a static box and for a 1 +1 D expanding geometry. We find that regardless of the viscosity of the produced plasma, the initial color-electric field decays within 1 fm/c ; however, in the case where η /s is large, oscillations of the field are effective along all the entire time evolution of the system, which affect the late-time evolution of the ratio between longitudinal and transverse pressure. In the case of small η /s (η /s ≲0.3 ) we find τisotropization≈0.8 fm/c and τthermalization≈1 fm/c , in agreement with the common lore of hydrodynamics. Moreover, we have investigated the effect of turning from the relaxation time approximation to the Chapman-Enskog one: We find that this improvement affects mainly the early-time evolution of the physical quantities, the effect being milder in the late-time evolution.

  12. The role of magnetic flux tube deformation and magnetosheath plasma beta in the saturation of the Region 1 field-aligned current system

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Wiltberger, M.

    2015-03-01

    The phenomena of cross polar cap potential (CPCP) and ionospheric field-aligned current (FAC) saturation remain largely unexplained. In the present study, we expand upon the Alfvén wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the Region 1 FAC input into the polar cap. Our hypothesis is that the ability of open flux tubes to deform in response to applied fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn governs the Maxwell stress imposed on ionospheric plasma from the magnetosphere. We performed 32 MHD simulations with varying solar wind density and interplanetary magnetic field strength and show that the plasma beta does govern the deformation of open field lines, as well as the nonlinear response of the Region 1 FAC system to increasingly southward interplanetary magnetic field. Further, we show that the current-voltage relationship in the ionosphere also shows a dependence on the plasma beta in the magnetosheath, with the ionosphere becoming more resistive at lower beta.

  13. The Role of Polar Cap Flux Tube Deformation and Magnetosheath Plasma Beta in the Saturation of the Region 1 Field-Aligned Current System

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Wiltberger, M. J.

    2014-12-01

    The phenomena of cross-polar cap potential (CPCP) and ionospheric field-aligned current (FAC) saturation remains largely unexplained. In this study, we expand upon the Alfvén Wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the Region 1 FAC input into the polar cap. Our hypothesis is that the ability of open flux tubes to deform in response to applied fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn governs the Maxwell stress imposed on ionospheric plasma from the magnetosphere. This leads both the Region 1 FAC input as well as the ionospheric convection strength, as represented by the CPCP, to saturate in response to the interplanetary magnetic field (IMF) driving. We perform 32 simulations using the Lyon-Fedder-Mobarry (LFM) Magnetohydrodynamic (MHD) model with varying solar wind density and IMF strength, and demonstrate that the plasma beta does govern the deformation of polar cap and lobe field lines, as well as the non-linear response of the Region 1 FAC system to increasingly southward IMF. Further, we show that the current-voltage relationship in the ionosphere also shows a dependence on the plasma beta in the magnetosheath, with the ionosphere becoming more resistive at lower beta.

  14. Fluid-kinetic simulations of the passage of Storm Enhanced Density (SED) plasma flux tubes through the dayside cleft auroral processes region

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Horwitz, J. L.

    2007-12-01

    Foster et al. [2002] and others have reported on elevated ionospheric density regions being convected from the subauroral plasmaspheric region toward noon, in association with convection of plasmaspheric tails in the dayside magnetosphere. It has been suggested that these so-called Storm Enhanced Density (SED) regions could serve as ionospheric plasma source populations for cleft ion fountain outflows. To investigate this scenario, we have used our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density "plasmasphere-like" flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. We find that the O+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased numbers of O+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. We also find that O+- H+ crossing point in topside ionosphere moves upward as the wave heating continues. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.

  15. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (pt,pt) and angular differences (ηΔΔ)

    SciTech Connect

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √(sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude that the glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.

  16. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  17. Feeding Tubes

    MedlinePlus

    ... administer the TPN. Tubes Used for Enteral Feeds NG (Nasogastric Tube) A flexible tube is placed via ... down through the esophagus into the stomach. The NG tube can be used to empty the stomach ...

  18. Ear Tubes

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  19. Contactless diagnostics of biophysical parameters of skin and blood on the basis of approximating functions for radiation fluxes scattered by skin

    SciTech Connect

    Lisenko, S A; Kugeiko, M M

    2014-03-28

    Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body. (biophotonics)

  20. Contactless diagnostics of biophysical parameters of skin and blood on the basis of approximating functions for radiation fluxes scattered by skin

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2014-03-01

    Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body.

  1. Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube

    SciTech Connect

    Aroonrat, Kanit; Wongwises, Somchai

    2011-01-15

    Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

  2. The dynamics of magnetic flux rings

    NASA Technical Reports Server (NTRS)

    Deluca, E. E.; Fisher, G. H.; Patten, B. M.

    1993-01-01

    The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.

  3. How the Saturnian Magnetosphere Conserves Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Wei, H.; Russell, C. T.; Arridge, C. S.; Dougherty, M. K.

    2012-12-01

    The magnetospheric dynamics at Saturn are driven by the centrifugal force of near co-rotating water group ions released at a rate of hundreds of kilograms per second by Saturn's moon Enceladus. The plasma is accelerated up to co-rotation speed by the magnetospheric magnetic field coupled to the Saturnian ionosphere. The plasma is lost ultimately through the process of magnetic reconnection in the tail. Conservation of magnetic flux requires that plasma-depleted, "empty" flux tubes return magnetic flux to the inner magnetosphere. After completion of the initial inrush of the reconnected and largely emptied flux tubes inward of the reconnection point, the flux tubes face the outflowing plasma and must move inward against the flow. Observations of such flux tubes have been identified in the eight years of Cassini magnetometer data. The occurrence of these tubes is observed at all local times indicating slow inward transport of the tubes relative to the co-rotation speed. Depleted flux tubes observed in the equatorial region appear as an enhancement in the magnitude of the magnetic field, whereas the same flux tubes observed at higher latitudes appear as decreased field strength. The difference in appearance of the low latitude and the high latitude tubes is due to the plasma environment just outside the tube. Warm low-density plasma fills the inside of the flux tube at all latitudes. This flux tube thus will expand in the less dense regions away from the magnetic equator and will be observed as a decrease in the magnitude of the magnetic field from the background. These flux tubes near the equator, where the plasma density outside of the flux tube is much greater, will be observed as an enhancement in the magnitude of the magnetic field. Cassini magnetometer and CAPS data are examined to understand the properties of these flux tubes and their radial and latitudinal evolution throughout the Saturnian magnetospheric environment.

  4. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  5. Collapse Tubes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02154 Collapse Tubes

    The discontinuous channels in this image are collapsed lava tubes.

    Image information: VIS instrument. Latitude -19.7N, Longitude 317.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Energy and energy flux in axisymmetric slow and fast waves

    NASA Astrophysics Data System (ADS)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  7. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes

    NASA Astrophysics Data System (ADS)

    Srimuang, Wasan; Limkaisang, Viroj

    2016-08-01

    The heat transfer characteristics of a conventional vapor chamber (CVC) and a loop vapor chamber (LVC) are compared. The vapor chambers consisted of a stainless steel box with different covers. The results indicated that the heat flux and convective heat transfer coefficient of the air-side of LVC is higher than CVC. An empirical correlation was developed to predict the convective heat transfer coefficient of the air-side of the LVC.

  8. Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.

    2010-12-01

    We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.

  9. Three-dimensional magnetohydrodynamics of the emerging magnetic flux in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Matsumoto, R.; Tajima, T.; Shibata, K.; Kaisig, M.

    1993-01-01

    The nonlinear evolution of an emerging magnetic flux tube or sheet in the solar atmosphere is studied through 3D MHD simulations. In the initial state, a horizontal magnetic flux sheet or tube is assumed to be embedded at the bottom of MHD two isothermal gas layers, which approximate the solar photosphere/chromosphere and the corona. The magnetic flux sheet or tube is unstable against the undular mode of the magnetic buoyancy instability. The magnetic loop rises due to the linear and then later nonlinear instabilities caused by the buoyancy enhanced by precipitating the gas along magnetic field lines. We find by 3D simulation that during the ascendance of loops the bundle of flux tubes or even the flux sheet develops into dense gas filaments pinched between magnetic loops. The interchange modes help produce a fine fiber flux structure perpendicular to the magnetic field direction in the linear stage, while the undular modes determine the overall buoyant loop structure. The expansion of such a bundle of magnetic loops follows the self-similar behavior observed in 2D cases studied earlier. Our study finds the threshold flux for arch filament system (AFS) formation to be about 0.3 x 10 exp 20 Mx.

  10. Eddy current signal comparison for tube identification

    SciTech Connect

    Glass, S. W. E-mail: Ratko.Vojvodic@areva.com; Vojvodic, R. E-mail: Ratko.Vojvodic@areva.com

    2015-03-31

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  11. Eddy current signal comparison for tube identification

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Vojvodic, R.

    2015-03-01

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  12. Image tubes

    SciTech Connect

    Csorba, I.P.

    1985-01-01

    This text provides a wealth of valuable, hard-to-find data on electron optics, imaging, and image intensification systems. The author explains details of image tube theory, design, construction, and components. He includes material on the design and operation of camera tubes, power components, and secondary electron emitters, as well as data on photomultiplier tubes and electron guns.

  13. Condensation of refrigerants flowing inside smooth and corrugated tubes

    SciTech Connect

    Hinton, D.L.; Conklin, J.C.; Vineyard, E.A.

    1995-07-01

    Because heat exchanger thermal performance has a direct fluence on the overall cycle performance of vapor-compression refrigeration machinery,enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. We investigated R-22 and a nonazeotropic refrigerant mixture (NARM) of 75% R-143a and 25% R-124 (by mass) to study their thermal performance in a condenser made of conventional smooth tubes and another condenser made of corrugated, or spirally indented, tubes. We investigated the condensing heat transfer and pressure drop characteristics in an experimental test loop model of a domestic beat pump system employing a variable speed compressor. The refrigerant circulates inside the central tube and the water circulates in the annulus. At refrigerant mass fluxes of approximately 275--300 kg/m{sup 2}s, the measured irreversible pressure drop of the corrugated surface was 23% higher than that of the smooth surface for the R-22. At refrigerant mass fluxes of 350-370 kg/m{sup 2}s, the irreversible pressure drop of the corrugated surface was 36% higher than that of the smooth surface for the NARM. The average heat transfer coefficient for the corrugated surface for R-22 was roughly 40% higher than that for the smooth tube surface at refrigerant mass fluxes of 275--295 kg/m{sup 2}s. The average heat transfer coefficient for the corrugated surface for the NARM was typically 70% higher than that for the smooth tube surface at refrigerant mass fluxes of 340--385 kg/m{sup 2}s.

  14. Transport of magnetic flux in Saturn’s inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Lai, H. R.; Wei, H. Y.; Jia, Y. D.; Dougherty, M. K.

    2015-11-01

    The dynamics of the Saturnian magnetosphere, which rotates rapidly with an internal plasma source provided by Enceladus, qualitatively resembles those of the jovian magnetosphere powered by Io. The newly added plasma is accelerated to the corotation speed and moves outward together with the magnetic flux. In the near tail region, reconnection cuts the magnetic flux, reconnects it into plasma-depleted inward moving flux tubes and outward moving massive plasmoids. The buoyant empty tubes then convect inward against the outward flow to conserve the total magnetic flux established by the internal dynamo. In both jovian and saturnian magnetospheres, flux tubes with enhanced field strength relative to their surroundings are detected in the equatorial region. Recent observations show that there are flux tubes with reduced field strength off the equator in the saturnian magnetosphere. To understand the formation mechanism of both types of flux tubes, we have surveyed all the available 1-sec magnetic field data from Cassini. The systematic statistical study confirms the different latitudinal distributions of the two types of flux tubes. In addition, enhanced-field flux tubes are closer to the planet while reduced-field flux tubes can be detected at larger distances; both types of flux tubes become indistinguishable from the background magnetic flux inside an L-value of about 4; the local time distribution of both types of flux tubes are similar and they contain about the same amount of magnetic flux. Therefore, the two types of flux tubes are the same phenomena with different manifestations in different plasma environments. When the surrounding plasma density is high (near the equator and closer to the plasma source region), the flux tubes are compressed and have enhanced field strength inside; while in the low-plasma density region (off the equator and further from the plasma source region), the flux tubes expand and have reduced field strength inside.

  15. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  16. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... A nasogastric tube (NG tube) is a special tube that carries food and medicine to the stomach through the nose. It can be ...

  17. Modeling Pulse Tube Cryocoolers with CFD

    NASA Astrophysics Data System (ADS)

    Flake, Barrett; Razani, Arsalan

    2004-06-01

    A commercial computational fluid dynamics (CFD) software package is used to model the oscillating flow inside a pulse tube cryocooler. Capabilities for modeling pulse tubes are demonstrated with preliminary case studies and the results presented. The 2D axi-symmetric simulations demonstrate the time varying temperature and velocity fields in the tube along with computation of the heat fluxes at the hot and cold heat exchangers. The only externally imposed boundary conditions are a cyclically moving piston wall at one end of the tube and constant temperature or heat flux boundaries at the external walls of the hot and cold heat exchangers.

  18. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  19. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    SciTech Connect

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  20. Infrared imaging of LED lighting tubes and fluorescent tubes

    NASA Astrophysics Data System (ADS)

    Siikanen, Sami; Kivi, Sini; Kauppinen, Timo; Juuti, Mikko

    2011-05-01

    The low energy efficiency of conventional light sources is mainly caused by generation of waste heat. We used infrared (IR) imaging in order to monitor the heating of both LED tube luminaires and ordinary T8 fluorescent tubes. The IR images showed clearly how the surface temperatures of the fluorescent tube ends quickly rose up to about +50...+70°C, whereas the highest surface temperatures seen on the LED tubes were only about +30...+40°C. The IR images demonstrated how the heat produced by the individual LED chips can be efficiently guided to the supporting structure in order to keep the LED emitters cool and hence maintain efficient operation. The consumed electrical power and produced illuminance were also recorded during 24 hour measurements. In order to assess the total luminous efficacy of the luminaires, separate luminous flux measurements were made in a large integrating sphere. The currently available LED tubes showed efficacies of up to 88 lm/W, whereas a standard "cool white" T8 fluorescent tube produced ca. 75 lm/W. Both lamp types gave ca. 110 - 130 lx right below the ceiling-mounted luminaire, but the LED tubes consume only 40 - 55% of the electric power compared to fluorescent tubes.

  1. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  2. Uniform Moment Theory for Charged Particle Motion in Gases. 2. Second Approximation

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.

    2016-04-01

    The Boltzmann equation governing the motion of trace amounts of ions in a dilute gas that may contain a small amount of reactive neutral is written in terms of moments. The resulting moment equations are equivalent to Maxwell's equations of change. Four smallness factors are introduced, governing time derivatives, spatial gradients, reactive moments, and non-reactive moments that are of minor importance. The first approximation equations in paper 1 of this series are obtained by keeping the time derivatives but setting the other smallness factors equal to zero. The second approximation equations derived here are shown to extend the first-approximation equations for ion drift velocity and energy to situations where diffusion occurs or where there are infrequent chemical reactions. They also give results for the temperature tensor, the heat flux vector and the dyadic energy. Numerical applications to ion motion in drift-tube mass spectrometers show that the successive approximations appear to be converging.

  3. Ear tube insertion

    MedlinePlus

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  4. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  5. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  6. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  7. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  8. Performance of multi tubes in tube helically coiled as a compact heat exchanger

    NASA Astrophysics Data System (ADS)

    Nada, S. A.; El Shaer, W. G.; Huzayyin, A. S.

    2014-12-01

    Multi tubes in tube helically coiled heat exchanger is proposed as a compact heat exchanger. Effects of heat exchanger geometric parameters and fluid flow parameters; namely number of inner tubes, annulus hydraulic diameter, Reynolds numbers and input heat flux, on performance of the heat exchanger are experimentally investigated. Different coils with different numbers of inner tubes, namely 1, 3, 4 and 5 tubes, were tested. Results showed that coils with 3 inner tubes have higher values of heat transfer coefficient and compactness parameter (bar{h} Ah ). Pressure drop increases with increasing both of Reynolds number and number of inner tubes. Correlations of average Nusselt number were deduced from experimental data in terms of Reynolds number, Prandtl number, Number of inner coils tubes and coil hydraulic diameter. Correlations prediction was compared with experimental data and the comparison was fair enough.

  9. Angular glass tubing drawn from round tubing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Round glass tubing softened in a furnace is drawn over a shaped plug or mandel to form shapes with other than a circular cross section. Irregularly shaped tubing is formed without limitations on tube length or wall thickness.

  10. Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor)

    2008-01-01

    An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.

  11. Electron tube

    DOEpatents

    Suyama, Motohiro; Fukasawa, Atsuhito; Arisaka, Katsushi; Wang, Hanguo

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  12. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  13. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  14. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your ...

  15. Tube Feeding Troubleshooting Guide

    MedlinePlus

    ... profile tube also has a stem length). Note: NG and NJ tubes (that go through a person’s ... Immediate Action: • Discontinue feeding. • If you have an NG or NJ tube, and the tube is curled ...

  16. Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad-Shafranov reconstruction

    NASA Astrophysics Data System (ADS)

    Hara, Takuya; Seki, Kanako; Hasegawa, Hiroshi; Brain, David A.; Matsunaga, Kazunari; Saito, Miho H.; Shiota, Daikou

    2014-09-01

    We applied the Grad-Shafranov reconstruction (GSR) technique to Martian magnetic flux ropes observed downstream from strong crustal magnetic fields in the southern hemisphere. The GSR technique can provide a two-dimensional axial magnetic field map as well as the axial orientation of flux ropes from single-spacecraft data under assumptions that the structure is magnetohydrostatic and time independent. The reconstructed structures, including their orientation, allowed us to evaluate possible formation processes for the flux ropes. We reconstructed 297 magnetic flux ropes observed by Mars Global Surveyor between April 1999 and November 2006. Based on characteristics of their geometrical axial orientation and transverse magnetic field topology, we found that they can be mainly distinguished according to whether draped interplanetary magnetic fields overlaying the crustal magnetic fields are involved or not. Approximately two thirds of the flux ropes can be formed by magnetic reconnection between neighboring crustal magnetic fields attached to the surface. The remaining events seem to require magnetic reconnection between crustal and overlaid draped magnetic fields. The latter scenario should allow planetary ions to be transferred from closed magnetic flux tube to flux tubes connected to interplanetary space, allowing atmospheric ions to escape from Mars. We quantitatively evaluate lower limits on potential ion escape rates from Mars owing to magnetic flux ropes.

  17. Electron and ion density variation below 4000 km along the L~2 flux tube as a function of geomagnetic activity: A study using whistler mode echoes observed by RPI/IMAGE

    NASA Astrophysics Data System (ADS)

    Reddy, A.; Sonwalkar, V. S.

    2012-12-01

    Whistler mode (WM) echoes observed by RPI/IMAGE were used to study the electron and ion density variation along the L~2 flux tube from 90 km to ~4000 km during the period from Aug 30 to Sep 09, 2005. This interval included the onset, main phase, and recovery period of a major (7-

  18. Adiabatic Betatron deceleration of ionospheric charged particles: a new explanation for (i) the rapid outflow of ionospheric O ions, and for (ii) the increase of plasma mass density observed in magnetospheric flux tubes during main phases of geomagnetic s

    NASA Astrophysics Data System (ADS)

    Lemaire, Joseph; Pierrard, Viviane; Darrouzet, Fabien

    2013-04-01

    Using European arrays of magnetometers and the cross-phase analysis to determine magnetic field line resonance frequencies, it has been found by Kale et al. (2009) that the plasma mass density within plasmaspheric flux tubes increased rapidly after the SSC of the Hallowe'en 2003 geomagnetic storms. These observations tend to confirm other independent experimental results, suggesting that heavy ion up-flow from the ionosphere is responsible for the observed plasma density increases during main phases of geomagnetic storms. The aim of our contribution is to point out that, during main phases, reversible Betatron effect induced by the increase of the southward Dst-magnetic field component (|Δ Bz|), diminishes slightly the perpendicular kinetic energy (W?) of charged particles spiraling along field lines. Furthermore, due to the conservation of the first adiabatic invariant (μ = Wm/ Bm) the mirror points of all ionospheric ions and electrons are lifted up to higher altitudes i.e. where the mirror point magnetic field (Bm) is slightly smaller. Note that the change of the mirror point altitude is given by: Δ hm = -1/3 (RE + hm) Δ Bm / Bm. It is independent of the ion species and it does not depend of their kinetic energy. The change of kinetic energy is determined by: Δ Wm = Wm Δ Bm / Bm. Both of these equations have been verified numerically by Lemaire et al. (2005; doi: 10.1016/S0273-1177(03)00099-1) using trajectory calculations in a simple time-dependant B-field model: i.e. the Earth's magnetic dipole, plus an increasing southward B-field component: i.e. the Dst magnetic field whose intensity becomes more and more negative during the main phase of magnetic storms. They showed that a variation of Bz (or Dst) by more than - 50 nT significantly increases the mirror point altitudes by more than 100 km which is about equal to scale height of the plasma density in the topside ionosphere where particles are almost collisionless (see Fig. 2 in Lemaire et al., 2005

  19. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  20. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A.; Bakulin, Andrey

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  1. Tube wall temperature monitoring technique

    SciTech Connect

    Granton, R.L.

    1985-07-01

    In 1977, Monsanto and Conoco undertook the construction of a new, modern technology ethylene plant at Chocolate Bayou, near Alvin, Texas. This plant included high severity cracking furnaces with potential tube wall temperatures considerably higher than any we had previously experienced. Furnace on-stream time between decokes, a factor in the economics of plant operation, was limited by tube wall temperature, thus requiring its accurate knowledge. Earlier work with other ethylene furnaces had also demonstrated our lack of knowledge concerning high temperature measurements in a furnace firebox environment. This had to change. An outside consultant was called upon to provide a threeday workshop on radiant tube temperature sensing. The workshop consisted of two days of formal training in the theory and practice of temperature measurement and one day of field training. This workshop was conducted at a site away from the plant. Approximately 20 engineers (manufacturing and technical groups) attended. The major topics covered by this workshop are as follows: radiant tube temperature sensing, radiation situation of radiant tubes, g.a. method: sample calculations, noncontact sensors: methods of specifying and purchasing, thermal imager strategies, calibration of noncontact sensors, avoiding problems with noncontact sensors, optical aids to radiant tube viewing, tube temperature management and its environmental implications, and contact temperature sensors.

  2. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  3. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  4. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  5. TEMPERATURE GRADIENTS IN THE SOLAR ATMOSPHERE AND THE ORIGIN OF CUTOFF FREQUENCY FOR TORSIONAL TUBE WAVES

    SciTech Connect

    Routh, S.; Musielak, Z. E.; Hammer, R. E-mail: zmusielak@uta.ed

    2010-02-01

    Fundamental modes supported by a thin magnetic flux tube embedded in the solar atmosphere are typically classified as longitudinal, transverse, and torsional waves. If the tube is isothermal, then the propagation of longitudinal and transverse tube waves is restricted to frequencies that are higher than the corresponding global cutoff frequency for each wave. However, no such global cutoff frequency exists for torsional tube waves, which means that a thin and isothermal flux tube supports torsional tube waves of any frequency. In this paper, we consider a thin and non-isothermal magnetic flux tube and demonstrate that temperature gradients inside this tube are responsible for the origin of a cutoff frequency for torsional tube waves. The cutoff frequency is used to determine conditions for the wave propagation in the solar atmosphere, and the obtained results are compared to the recent observational data that support the existence of torsional tube waves in the Sun.

  6. Neutron and Gamma Fluxes and dpa Rates for HFIR Vessel Beltline Region (Present and Upgrade Designs)

    SciTech Connect

    Blakeman, E.D.

    2001-01-11

    The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) is currently undergoing an upgrading program, a part of which is to increase the diameters of two of the four radiation beam tubes (HB-2 and HB-4). This change will cause increased neutron and gamma radiation dose rates at and near locations where the tubes penetrate the vessel wall. Consequently, the rate of radiation damage to the reactor vessel wall at those locations will also increase. This report summarizes calculations of the neutron and gamma flux (particles/cm{sup 2}/s) and the dpa rate (displacements/atom/s) in iron at critical locations in the vessel wall. The calculated dpa rate values have been recently incorporated into statistical damage evaluation codes used in the assessment of radiation induced embrittlement. Calculations were performed using models based on the discrete ordinates methodology and utilizing ORNL two-dimensional and three-dimensional discrete ordinates codes. Models for present and proposed beam tube designs are shown and their results are compared. Results show that for HB-2, the dpa rate in the vessel wall where the tube penetrates the vessel will be increased by {approximately}10 by the proposed enlargement. For HB-4, a smaller increase of {approximately}2.6 is calculated.

  7. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    SciTech Connect

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  8. Pool boiling of R-114/oil mixtures from single tubes and tube bundles. Master's thesis

    SciTech Connect

    Murphy, T.J.

    1987-09-01

    An apparatus was designed, fabricated, and operated for the testing of horizontal tube bundles for boiling of R-114 with various concentrations of oil. Preliminary data were taken on the top tube in the bundle, with and without the other tubes in operation. Results showed up to a 37% increase in the boiling heat-transfer coefficient as a result of the favorable bundle effect. In a separate single-tube apparatus, three enhanced tubes were tested at a saturation temperature of 2.2 C with oil mass concentrations of 0, 1, 2, 3, 6 and 10%. The tubes were: 1) a finned tube with 1024 fins per meter, 2) a finned tube with 1575 fins per meter and 3) a Turbo-B tube. These tubes resulted in enhancement ratios in pure refrigerant of 2.8, 3.8 and 5.2, respectively, at a practical heat flux of 30 kW/sq. meter. With 3% oil, these ratios were decreased to 2.6, 3.5 and 5, while with 10% oil, these ratios were further reduced to 2.6, 3.2 and 4.7, respectively. Based on these results, the use of Turbo-B tubes is expected to result in significant savings in weight and size of evaporators over the finned tubes presently in use on board some naval vessels.

  9. Flow of superfluid helium in tubes with heated walls

    NASA Technical Reports Server (NTRS)

    Snyder, H. A.; Mord, A. J.

    1991-01-01

    The equations for superfluid helium flowing through a straight tube with heated walls are integrated. The model equations are based on those of Landau as modified for superfluid turbulence by Gorter and Mellink (1949). The model is implemented by the program SUPERFLOW which runs on a personal computer. The effect of the heating level on the mass flux, the energy flux, and the pressure and temperature profiles is investigated. The four types of profiles which occur without sidewall heating are also found with heated walls. The progression through these four types is shown to depend primarily on the dimensionless parameter, defined previously to characterize the unheated profiles, and a dimensionless ratio of heat fluxes. The pressure and temperature maxima which rise well above the boundary values increase significantly with sidewall heating. Approximate design equations for estimating the mass flux and the profiles are presented. The physical basis of the results is discussed. These results are useful in the design of optimal cooling loops and other superfluid flow systems.

  10. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  11. Free vibration analysis for tube-in-tube tall buildings

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Hae

    2007-06-01

    An approximate solution procedure is formulated for free vibration analysis of tube-in-tube tall buildings in this paper. The governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients on the assumption that the transverse displacement is a harmonic vibration. A power-series solution which represents the mode shape function of tube-in-tube tall buildings is derived. Applying the boundary conditions yields the boundary value problem, from which the frequency equation is established and solved through a numerical process to determine the natural frequencies. Two numerical examples are performed and compared with results available in the published literature to show the accuracy of the proposed method. Care has been exercised to retain sufficient terms in power series in evaluating natural frequencies of accepted accuracy. The influences of the factors including flexural rigidity, mass per unit length and building height to the natural frequency are discussed. The method proposed herein enables one to calculate as an alternative the natural frequency of tube-in-tube tall buildings with good accuracy associated by calculators and hand, prior to use of the complicated computer programs.

  12. Tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  13. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  14. A tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, J.; Campbell, B.; Depoy, D.

    1996-12-31

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  15. The ionospheric signature of flux transfer events

    SciTech Connect

    Southwood, D.J. )

    1987-04-01

    The author examines the motion of an isolated flux tube connecting the interplanetary and terrestrial magnetic field that has been created by reconnection at the dayside magnetopause. Such tubes should create a distinct localized flow pattern at their feet in the ionosphere. Observational effects are discussed. It is argued that the delay time of the order of a minute or more corresponding to the time for propagation of information from the reconnection site to the ionosphere is important and could control the creation of flux transfer events. It is predicted that magnetic pulsations in the Pc 5 frequency band are likely to be set up on closed flux tubes immediately neighboring the newly connected tubes.

  16. Tracheostomy tube - eating

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000464.htm Tracheostomy tube - eating To use the sharing features on ... when you swallow foods or liquids. Eating and Tracheostomy Tubes When you get your tracheostomy tube, or ...

  17. Tube-shape verifier

    NASA Technical Reports Server (NTRS)

    Anderson, A. N.; Christ, C. R.

    1980-01-01

    Inexpensive apparatus checks accuracy of bent tubes. Assortment of slotted angles and clamps is bolted down to flat aluminum plate outlining shape of standard tube bent to desired configuration. Newly bent tubes are then checked against this outline. Because parts are bolted down, tubes can be checked very rapidly without disturbing outline. One verifier per tube-bending machine can really speed up production in tube-bending shop.

  18. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  19. New technique of the local heat flux measurement in combustion chambers of steam boilers

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Taler, Dawid; Sobota, Tomasz; Dzierwa, Piotr

    2011-12-01

    A new method for measurement of local heat flux to water-walls of steam boilers was developed. A flux meter tube was made from an eccentric tube of short length to which two longitudinal fins were attached. These two fins prevent the boiler setting from heating by a thermal radiation from the combustion chamber. The fins are not welded to the adjacent water-wall tubes, so that the temperature distribution in the heat flux meter is not influenced by neighbouring water-wall tubes. The thickness of the heat flux tube wall is larger on the fireside to obtain a greater distance between the thermocouples located inside the wall which increases the accuracy of heat flux determination. Based on the temperature measurements at selected points inside the heat flux meter, the heat flux absorbed by the water-wall, heat transfer coefficient on the inner tube surface and temperature of the water-steam mixture was determined.

  20. Mist/steam cooling in a 180{degree} tube bend

    SciTech Connect

    Guo, T.; Wang, T.; Gaddis, J.L.

    1999-07-01

    An experimental study on mist/steam cooling in a highly heated, horizontal 180{degree} tube bend has been performed. The mist/steam mixture is obtained by blending fine water droplets (3{approximately}15 microns) with the saturated steam at 1.5 bar. The test section consists of a thin wall ({approximately}0.9 mm), welded, circular, stainless steel 180-degree tube (20 mm ID) with a straight section downstream of the curved section, and is heated directly by a DC power supply. The experiment was conducted with steam Reynolds numbers ranging from 10,000 to 35,000, wall superheat up to 300 C, and droplet to steam mass ratio at about 2%. The results show that the heat transfer performance of steam can be significantly improved by adding mist into the main flow. Due to the effect of centrifugal force, the outer wall of the test section always exhibits a higher heat transfer enhancement than the inner wall. The highest enhancement occurs at a location on the outer wall about 45{degree} downstream of the inlet of the test section. Generally, only a small number of droplets can survive the 180{degree} turn and be present in the downstream straight section, as observed by a Phase Doppler Particle Analyzer (PDPA) system. The overall cooling enhancement of the mist/steam flow ranges from 40% to 300%. It increases as the main steam flow increases, but decreases as the wall heat flux increases.

  1. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  2. Indoor tests of the concentric-tube solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report describes performance tests on 12-tube, liquid-filled collector. Thermal efficiency, change in efficiency with sun position, and time constant for temperature drop after solar flux is cut are described.

  3. Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes

    NASA Astrophysics Data System (ADS)

    Tatsumoto, Hideki; Shirai, Yasuyuki; Shiotsu, Masahiro; Hata, Koichi; Naruo, Yoshihiro; Kobayashi, Hiroyuki; Inatani, Yoshifumi; Kinoshita, K.

    2012-06-01

    Forced flow heat transfers of liquid hydrogen through horizontally-mounted tubes with the diameter of 3.0 mm and 6.0 mm were measured at the pressure of 0.7 MPa for various inlet temperatures and flow velocities. The measured non-boiling heat transfer coefficients agree with those by the Dittus-Boelter correlation. The heat fluxes at the onset of nucleate boiling and the departure from nucleate boiling (DNB) heat fluxes, where the heat transfer continuously changes to film boiling regime, are higher for higher flow velocity, larger subcooling and larger tube diameter. The DNB heat fluxes for the horizontally-mounted tube are slightly lower than those for the vertically-mounted tube, although the effect of the tube attitude direction disappears for a small tube diameter. The measured DNB heat fluxes agree with the correlation for vertically-mounted tubes.

  4. EC Tube Fits

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-03-03

    In the design of the EC, the beam tube, through which the beam line travels, can be found in the IH tube which is centrally located in the IH module. However, also between the beam tube and the IH tube lie both the vacuum and inner tubes of the vacuum and inner vessels. It is the vacuum between these vessels which provides insulation between the ambient beam tube and liquid argon in the cryostat. while the vacuum tube is supported along its length with the inner tube as best as possible, the inner tube will only be supported at the ends. The beam tube will also be end-supported, but it will be allowed to rest directly on the inner surface of the vacuum tube. It is required that the beam tube be able to slide in and out of the vacuum tube with relative ease in order that the EC's can be moved away from the CC when necessary (repair work, etc.). Although the frequency of such a move is not known, it is hoped to be low, and it would therefore be desirable, for cost reasons, to be able to use stock tubing for the vacuum and beam tubes instead of using specially machined tubing.

  5. Line-of-sight magnetic flux imbalances caused by electric currents

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Rabin, Douglas

    1995-01-01

    Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.

  6. Relaxation Processes within Flux Ropes in Solar Wind

    NASA Astrophysics Data System (ADS)

    Telloni, D.; Carbone, V.; Perri, S.; Bruno, R.; Lepreti, F.; Veltri, P.

    2016-08-01

    Flux ropes are localized structures in space plasma whose tube-like organized magnetic configuration can be well approximated by a force-free field model. Both numerical simulations and simple models suggest that the ideal magnetohydrodynamics (MHD) can relax toward a minimum energy state, where magnetic helicity is conserved, characterized by force-free magnetic fields (Taylor relaxation). In this paper, we evaluate MHD rugged invariants within more than 100 flux ropes identified in the solar wind at 1 AU, showing that the magnetic and cross-helicity content carried out by these structures tend to be “attracted” toward a particular subphase in the parameter plane. The final configuration of the MHD rugged invariants in the parameter plane suggests indeed that flux ropes represent well-organized structures coming from the dynamical evolution of MHD turbulent cascade. These observational results, along with a simple model based on a truncated set of nonlinear ordinary differential equations for both the velocity and magnetic field Fourier coefficients, thus, support a scenario in which the flux ropes naturally come out from the ideal MHD decay to large-scale magnetic field in space plasmas, probably governed by relaxation processes similar to those observed in laboratory plasmas.

  7. Bender/Coiler for Tubing

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  8. Collapse of composite tubes under end moments

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Cooper, Paul A.

    1992-01-01

    Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic.

  9. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  10. Torsion Tests of Tubes

    NASA Technical Reports Server (NTRS)

    Stang, Ambrose H; Ramberg, Walter; Back, Goldie

    1937-01-01

    This report presents the results of tests of 63 chromium-molybdenum steel tubes and 102 17st aluminum-alloy tubes of various sizes and lengths made to study the dependence of the torsional strength on both the dimensions of the tube and the physical properties of the tube material. Three types of failure are found to be important for sizes of tubes frequently used in aircraft construction: (1) failure by plastic shear, in which the tube material reached its yield strength before the critical torque was reached; (2) failure by elastic two-lobe buckling, which depended only on the elastic properties of the tube material and the dimensions of the tube; and (3) failure by a combination of (1) and (2) that is, by buckling taking place after some yielding of the tube material.

  11. Lunar lava tube radiation safety analysis.

    PubMed

    De Angelis, Giovanni; Wilson, J W; Clowdsley, M S; Nealy, J E; Humes, D H; Clem, J M

    2002-12-01

    For many years it has been suggested that lava tubes on the Moon could provide an ideal location for a manned lunar base, by providing shelter from various natural hazards, such as cosmic radiation, meteorites, micrometeoroids, and impact crater ejecta, and also providing a natural environmental control, with a nearly constant temperature, unlike that of the lunar surface showing extreme variation in its diurnal cycle. An analysis of radiation safety issues on lunar lava tubes has been performed by considering radiation from galactic cosmic rays (GCR) and Solar Particle Events (SPE) interacting with the lunar surface, modeled as a regolith layer and rock. The chemical composition has been chosen as typical of the lunar regions where the largest number of lava tube candidates are found. Particles have been transported all through the regolith and the rock, and received particles flux and doses have been calculated. The radiation safety of lunar lava tubes environments has been demonstrated. PMID:12793728

  12. Lunar lava tube radiation safety analysis

    NASA Technical Reports Server (NTRS)

    De Angelis, Giovanni; Wilson, J. W.; Clowdsley, M. S.; Nealy, J. E.; Humes, D. H.; Clem, J. M.

    2002-01-01

    For many years it has been suggested that lava tubes on the Moon could provide an ideal location for a manned lunar base, by providing shelter from various natural hazards, such as cosmic radiation, meteorites, micrometeoroids, and impact crater ejecta, and also providing a natural environmental control, with a nearly constant temperature, unlike that of the lunar surface showing extreme variation in its diurnal cycle. An analysis of radiation safety issues on lunar lava tubes has been performed by considering radiation from galactic cosmic rays (GCR) and Solar Particle Events (SPE) interacting with the lunar surface, modeled as a regolith layer and rock. The chemical composition has been chosen as typical of the lunar regions where the largest number of lava tube candidates are found. Particles have been transported all through the regolith and the rock, and received particles flux and doses have been calculated. The radiation safety of lunar lava tubes environments has been demonstrated.

  13. Rational approximations of viscous losses in vocal tract acoustic modeling

    NASA Astrophysics Data System (ADS)

    Wilhelms-Tricarico, Reiner; McGowan, Richard S.

    2004-06-01

    The modeling of viscous losses in acoustic wave transmission through tubes by a boundary layer approximation is valid if the thickness of the boundary layer is small compared to the hydraulic radius. A method was found to describe the viscous losses that extends the frequency range of the model to very low frequencies and very thin tubes. For higher frequencies, this method includes asymptotically the spectral effects of the boundary layer approximation. The method provides a simplification for the rational approximation of the spectral effects of viscous losses.

  14. 1999 tubing guide

    SciTech Connect

    1999-06-01

    Petroleum Engineer International`s 1999 Tubing Guide contains performance and metallurgical data, as well as connection dimensions, on tubing from several companies. Parameters listed in each section were selected with the input of buyers and manufacturers of connections and tubing. Connections listings include: nominal tube OD, weight, tensile efficiency, sealing system, standard connection OD, special clearance OD, minimum ID and make-up loss. The grades section lists the tubing OD range, yield strength, tensile strength, hardness and whether the tubing is seamless or welded. An applications index specifies the downhole environments each grade can survive.

  15. Helical flux ropes in solar prominences

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.; Van Ballegooijen, A. A.

    1990-01-01

    The present numerical method for the computation of force-free, cancelling magnetic structures shows that flux cancellation at the neutral line in a sheared magnetic arcade generates helical field lines that can support a prominence's plasma. With increasing flux cancellation, the axis of the helical fields moves to greater heights; this is suggestive of a prominence eruption. Two alternative scenarios are proposed for the formation of polar crown prominences which yield the correct axial magnetic field sign. Both models are noted to retain the formation of helical flux tubes through flux cancellation as their key feature.

  16. Algebraic Flux Correction II

    NASA Astrophysics Data System (ADS)

    Kuzmin, Dmitri; Möller, Matthias; Gurris, Marcel

    Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity operators, the choice of variables to be limited, and the transformation of antidiffusive fluxes. An a posteriori control mechanism is implemented to make the limiter failsafe. The numerical treatment of initial and boundary conditions is discussed in some detail. The initialization is performed using an FCT-constrained L 2 projection. The characteristic boundary conditions are imposed in a weak sense, and an approximate Riemann solver is used to evaluate the fluxes on the boundary. We also present an unconditionally stable semi-implicit time-stepping scheme and an iterative solver for the fully discrete problem. The results of a numerical study indicate that the nonlinearity and non-differentiability of the flux limiter do not inhibit steady state convergence even in the case of strongly varying Mach numbers. Moreover, the convergence rates improve as the pseudo-time step is increased.

  17. Burnout in the horizontal tubes of a furnace waterwall panel

    NASA Astrophysics Data System (ADS)

    Kamenetskii, B. Ya.

    2009-08-01

    An experimental study of heat transfer that occurs in tubes nonuniformly heated over the perimeter at low velocities of subcooled water flowing in them is presented. Experiments with unsteady supply of heat made it possible to determine heat fluxes under burnout conditions. Unusually low values of critical heat fluxes were obtained under such conditions.

  18. Calculator Function Approximation.

    ERIC Educational Resources Information Center

    Schelin, Charles W.

    1983-01-01

    The general algorithm used in most hand calculators to approximate elementary functions is discussed. Comments on tabular function values and on computer function evaluation are given first; then the CORDIC (Coordinate Rotation Digital Computer) scheme is described. (MNS)

  19. Investigation of heat transfer with film cooling to a flat plate in a shock tube

    NASA Astrophysics Data System (ADS)

    Jurgelewicz, Scott A.

    1989-12-01

    The heat transfer occurring through turbulent boundary layers in modern gas turbines is not well understood. The heat transferred to a flat plate though a turbulent boundary layer presents many similarities without the complex flow patterns. The gas used in this study was air. The flow behind a passing shock wave in a shock tube was used to simulate the high temperature ratio flows found in gas turbines. Highly responsive heat flux gages were used to measure the temperature history of a flat plate exposed to the flow. High speed digital recorders were used to sample and store the information. Heat transfer rates were determined from temperature history using a computer program and a quadrature method. The temperature history was numerically averaged to filter out noise effects before it was used to calculate the heat flux. It was found that low shock Mach numbers produced measured heat flux rates that were predictable by theory. At higher Mach numbers the rounded leading edge of the plate produced reflections that increased the measured heat flux as the Mach number increased; but theory, dependent on incident shock Mach number, underpredicted these actual values. Film cooling flows were then studied under the same flow conditions. Ratios of heat transfer coefficients with blowing ratios of approximately two to three produced the best agreement with correlations. The effects of free stream turbulence on the heat flux with film cooling were also briefly studied.

  20. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  1. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318

  2. Dual active surface heat flux gage probe

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  3. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina bifida, ...

  4. Tracheostomy tube - speaking

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000465.htm Tracheostomy tube - speaking To use the sharing features on ... are even speaking devices that can help you. Tracheostomy Tubes and Speaking Air passing through vocal cords ( ...

  5. Tracheostomy tube - speaking

    MedlinePlus

    ... key part of communicating with people. Having a tracheostomy tube can change your ability to talk and ... you can learn how to speak with a tracheostomy tube. It just takes practice. There are even ...

  6. Application of an electron beam facility for heat transfer measurements in capillary tubes

    NASA Technical Reports Server (NTRS)

    Lunde, A. R.; Kramer, T.

    1977-01-01

    A unique method was developed for the determination of heat transfer coefficients for water flowing through capillary tubes using a rastered electron beam heater. Heat flux levels of 150 and 500 watts/sq cm were provided on the top surface of four square tubes. Temperature gradient along the tube length and mass flow rates versus pressure drop were measured.

  7. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications

    SciTech Connect

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-09-02

    This paper presents a nonlinear analytical model of a novel double sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets (PM), stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry which makes it a good alternative for evaluating prospective designs of TFM as compared to finite element solvers which are numerically intensive and require more computation time. A single phase, 1 kW, 400 rpm machine is analytically modeled and its resulting flux distribution, no-load EMF and torque, verified with Finite Element Analysis (FEA). The results are found to be in agreement with less than 5% error, while reducing the computation time by 25 times.

  8. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications: Preprint

    SciTech Connect

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain; Iqbal; Muljadi, Eduard

    2015-08-24

    This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solvers that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.

  9. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  10. Multi-tube model for interplanetary magnetic clouds

    NASA Astrophysics Data System (ADS)

    Osherovich, Vladimir A.; Fainberg, J.; Stone, R. G.

    Measurements of the polytropic index γ inside a magnetic cloud showed that there are two non-equal tubes inside the cloud [Fainberg et al., 1996; Osherovich et al., 1997]. For both tubes, γ < 1, but each tube has its own polytrope. We test equilibrium solutions which are a superposition of solutions with cylindrical and helical symmetry [Krat and Osherovich, 1978] as a new paradigm for a multi-tube model. Comparison of magnetic and gas pressure profiles for these bounded MHD states with observations suggests that complex magnetic clouds can be viewed as multiple helices embedded in a cylindrically symmetric flux rope.

  11. An asymptotic homogenized neutron diffusion approximation. II. Numerical comparisons

    SciTech Connect

    Trahan, T. J.; Larsen, E. W.

    2012-07-01

    In a companion paper, a monoenergetic, homogenized, anisotropic diffusion equation is derived asymptotically for large, 3-D, multiplying systems with a periodic lattice structure [1]. In the present paper, this approximation is briefly compared to several other well known diffusion approximations. Although the derivation is different, the asymptotic diffusion approximation matches that proposed by Deniz and Gelbard, and is closely related to those proposed by Benoist. The focus of this paper, however, is a numerical comparison of the various methods for simple reactor analysis problems in 1-D. The comparisons show that the asymptotic diffusion approximation provides a more accurate estimate of the eigenvalue than the Benoist diffusion approximations. However, the Benoist diffusion approximations and the asymptotic diffusion approximation provide very similar estimates of the neutron flux. The asymptotic method and the Benoist methods both outperform the standard homogenized diffusion approximation, with flux weighted cross sections. (authors)

  12. Flux transfer events: Reconnection without separators. [magnetopause

    NASA Technical Reports Server (NTRS)

    Hesse, M.; Birn, J.; Schindler, K.

    1989-01-01

    A topological analysis of a simple model magnetic field of a perturbation at the magnetopause modeling an apparent flux transfer event is presented. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause. Although the model field exhibits neutral points, these are not involved in the magnetic connection of the flux tubes. The topological substructure of a localized perturbation is analyzed in a simpler configuration. The presence of both signs of the magnetic field component normal to the magnetopause leads to a linkage of topologically different flux tubes, described as a flux knot, and a filamentary substructure of field lines of different topological types which becomes increasingly complicated for decreasing magnetic shear at the magnetopause.

  13. Covariant approximation averaging

    NASA Astrophysics Data System (ADS)

    Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph

    2015-06-01

    We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.

  14. Fast approximate motif statistics.

    PubMed

    Nicodème, P

    2001-01-01

    We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175

  15. The Guiding Center Approximation

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Sunn

    The guiding center approximation for charged particles in strong magnetic fields is introduced here. This approximation is very useful in situations where the charged particles are very well magnetized, such that the gyration (Larmor) radius is small compared to relevant length scales of the confinement device, and the gyration is fast relative to relevant timescales in an experiment. The basics of motion in a straight, uniform, static magnetic field are reviewed, and are used as a starting point for analyzing more complicated situations where more forces are present, as well as inhomogeneities in the magnetic field -- magnetic curvature as well as gradients in the magnetic field strength. The first and second adiabatic invariant are introduced, and slowly time-varying fields are also covered. As an example of the use of the guiding center approximation, the confinement concept of the cylindrical magnetic mirror is analyzed.

  16. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  17. Monotone Boolean approximation

    SciTech Connect

    Hulme, B.L.

    1982-12-01

    This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.

  18. Telescoping tube assembly

    NASA Technical Reports Server (NTRS)

    Sturm, Albert J. (Inventor); Marrinan, Thomas E. (Inventor)

    1995-01-01

    An extensible and retractable telescoping tube positions test devices that inspect large stationary objects. The tube has three dimensional adjustment capabilities and is vertically suspended from a frame. The tube sections are independently supported with each section comprising U-shaped housing secured to a thicker support plate. Guide mechanisms preferably mounted only to the thicker plates guide each tube section parallel to a reference axis with improved accuracy so that the position of the remote end of the telescoping tube is precisely known.

  19. REACTOR COOLANT TUBE SEAL

    DOEpatents

    Morris, W.J.

    1958-12-01

    A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.

  20. Evaluation of commercial enhanced tubes in pool boiling: Topical report

    SciTech Connect

    Jung, C.; Bergles, A.E.

    1989-03-01

    In support of a study of shellside boiling with enhanced tubes, a pool boiling apparatus was developed and used to test single tubes with various structured boiling surfaces in R-113. The basic design of the tube-bundle test section was carried out and certain critical design features were tested experimentally. Copper tubes, 3/4 in. o.d. and 4 in. long, were selected with 1/4 in. diameter cartridge heaters. Four thermocouples were inserted in 3/32 in. diameter, 2 in. long holes. The pool boiling characteristics of a plain tube agree well with previous tests. Wolverine Turbo-B tubes with small, medium, and large features performed identically for a heat flux greater than 20 kW/m/sup 2/. For lower heat flux, however, the Turbo-B S was slightly superior. In general, the Wolverine Turbo-B tubes had more favorable boiling characteristics than the single Wieland Gewa-T tube that was tested. The test procedure is deemed entirely adequate for screening enhanced tubes to see which ones should be used in the tube-bundle test section. Three different ways of mounting the tubes were tested in R-113 at 65/degree/C and 5 bar gage pressure. As all three constructions sealed well, the simplest design is recommended in which a snap ring fixes the tube to the wall and an O-ring seals against the pressure. The general design features of the tube bundle test chamber are also presented. 14 refs.

  1. Corrosion guard tubing nipple

    SciTech Connect

    Guy, W.E.

    1988-09-27

    This patent describes the process of placing a string of tubing in an oil field well; a. the string of tubing when placed extending from the surface of the earth to an oil bearing formation far below the surface, b. the string made from i. a plurality of tubing sections, ii. each section having external threads on each end, and iii. cuffs with internal threads coupling the tubing sections together, c. each of the tubing sections having i. an axis, ii. a wall thickness, and iii. a corrosion resistant coating on its inside bore; wherein the improved method comprises: d. placing a section of tubing into the well with a cuff attached to the upper end at the surface of the earth, e. dropping a corrosion resistant nipple into the cuff, f. the nipple being loose in the cuff, g. attaching an additional section of tubing onto the cuff, and h. screwing the additional section tightly to the cuff.

  2. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  3. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    SciTech Connect

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  4. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  5. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |

    1997-12-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  6. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.

    1998-06-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  7. Intercostal drainage tube or intracardiac drainage tube?

    PubMed Central

    Anitha, N.; Kamath, S. Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure. PMID:27397467

  8. 'LTE-diffusion approximation' for arc calculations

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Tanaka, M.

    2006-08-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on De/W, where De is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode.

  9. Optimizing the Zeldovich approximation

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.

    1994-01-01

    We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment

  10. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  11. Transport of magnetic flux and mass in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.; Jia, Y. D.; Wei, H. Y.; Dougherty, M. K.

    2016-04-01

    It is well accepted that cold plasma sourced by Enceladus is ultimately lost to the solar wind, while the magnetic flux convecting outward with the plasma must return to the inner magnetosphere. However, whether the interchange or reconnection, or a combination of the two processes is the dominant mechanism in returning the magnetic flux is still under debate. Initial Cassini observations have shown that the magnetic flux returns in the form of flux tubes in the inner magnetosphere. Here we investigate those events with 10 year Cassini magnetometer data and confirm that their magnetic signatures are determined by the background plasma environments: inside (outside) the plasma disk, the returning magnetic field is enhanced (depressed) in strength. The distribution, temporal variation, shape, and transportation rate of the flux tubes are also characterized. The flux tubes break into smaller ones as they convect in. The shape of their cross section is closer to circular than fingerlike as produced in the simulations based on the interchange mechanism. In addition, no sudden changes in any flux tube properties can be found at the "boundary" which has been claimed to separate the reconnection and interchange-dominant regions. On the other hand, reasonable cold plasma loss rate and outflow velocity can be obtained if the transport rate of the magnetic flux matches the reconnection rate, which supports reconnection alone as the dominant mechanism in unloading the cold plasma from the inner magnetosphere and returning the magnetic flux from the tail.

  12. High-flux first-wall design for a small reversed-field pinch reactor

    NASA Astrophysics Data System (ADS)

    Cort, G. E.; Graham, A. L.; Christensen, K. E.

    To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time averaged heat flux of 4.5 MW/sq m with a conservatively estimated transient peak approximately twice the average value. The design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading is presented. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities.

  13. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  14. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Török, Tibor

    2013-12-01

    We present results from three-dimensional visco-resistive magnetohydrodynamic simulations of the emergence of a convection zone magnetic flux tube into a solar atmosphere containing a pre-existing dipole coronal field, which is orientated to minimize reconnection with the emerging field. We observe that the emergence process is capable of producing a coronal flux rope by the transfer of twist from the convection zone, as found in previous simulations. We find that this flux rope is stable, with no evidence of a fast rise, and that its ultimate height in the corona is determined by the strength of the pre-existing dipole field. We also find that although the electric currents in the initial convection zone flux tube are almost perfectly neutralized, the resultant coronal flux rope carries a significant net current. These results suggest that flux tube emergence is capable of creating non-current-neutralized stable flux ropes in the corona, tethered by overlying potential fields, a magnetic configuration that is believed to be the source of coronal mass ejections.

  15. Ruggedized electronographic tube development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1981-01-01

    Because of their glass components and lack of far ultraviolet sensitivity, currently available Spectracons are not suited for rocket launch. Technology developed for second generation image tubes and for magnetically focused image tubes can be applied to improve the optical and mechanical properties of these magnetically focused electronographic tubes whose 40 kilovolt signal electrons exit a 4-micrometer thick mica window and penetrate a photographic recording emulsion.

  16. Tube-welder aids

    NASA Technical Reports Server (NTRS)

    Weaver, J. F.

    1980-01-01

    Simple tools assist in setting up and welding tubes. Welder aids can be easily made to fit given tube diameter. Finished set can be used repeatedly to fix electrode-to-weld gap and mark sleeve and joint positions. Tools are readily made in tube-manufacturing plants and pay for themselves in short time in reduced labor costs and quality control: Conventional measurements are too slow for mass production and are prone to errors.

  17. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  18. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  19. Sapphire tube pressure vessel

    SciTech Connect

    Outwater, J.O.

    2000-05-23

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  20. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  1. Flared tube attachment fitting

    NASA Technical Reports Server (NTRS)

    Alkire, I. D.; King, J. P., Jr.

    1980-01-01

    Tubes can be flared first, then attached to valves and other flow line components, with new fitting that can be disassembled and reused. Installed fitting can be disassembled so parts can be inspected. It can be salvaged and reused without damaging flared tube; tube can be coated, tempered, or otherwise treated after it has been flared, rather than before, as was previously required. Fitting consists of threaded male portion with conical seating surface, hexagonal nut with hole larger than other diameter of flared end of tube, and split ferrule.

  2. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  3. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  4. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  5. Beyond the Kirchhoff approximation

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto

    1989-01-01

    The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.

  6. Critical heat flux of subcooled flow boiling with water for high heat flux application

    NASA Astrophysics Data System (ADS)

    Inasaka, Fujio; Nariai, Hideki

    1993-11-01

    Subcooled flow boiling in water is thought to be advantageous in removing high heat load of more than 10 MW/m2. Characteristics of the critical heat flux (CHF), which determines the upper limit of heat removal, are very important for the design of cooling systems. In this paper, studies on subcooled flow boiling CHF, which have been conducted by the authors, are reported. Experiments were conducted using direct current heating of stainless steel tube. For uniform heating conditions, CHF increment in small diameter tubes (1 - 3 mm inside diameter) and the CHF characteristics in tubes with internal twisted tapes were investigated, and also the existing CHF correlations for ordinary tubes (more than 3 mm inside diameter) were evaluated. For peripherally non-uniform heating conditions using the tube, whose wall thickness was partly reduced, the CHF for swirl flow was higher than the CHF under uniform heating conditions with an increase of the non-uniformity factor.

  7. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  8. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  9. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  10. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  11. End Restraints for Impact-Energy-Absorbing Tube Specimens

    NASA Technical Reports Server (NTRS)

    Farley, G. L.; Modlin, J. T.

    1985-01-01

    Inexpensive device developed that eliminates tipping problem without affecting crushing process. Device consists of soft sponge-rubber insert approximately 0.5 inches (1.3 centimeters) thick, cut to same diameter as internal diameter of tube specimen. Metal washer, slightly smaller than internal diameter of tube, placed on top of rubber insert. Screw passed through washer and rubber insert and threaded into base of test machine. As screw tightened against washer, rubber insert compressed and expands radially. Radial expansion applies pressure against internal wall of tube specimen, which provides sufficient support to tube to prevent tipping.

  12. Welding Tubes In Place

    NASA Technical Reports Server (NTRS)

    Meredith, R.

    1984-01-01

    Special welding equipment joins metal tubes that carry pressurized cyrogenic fluids. Equipment small enough to be used in confined spaces in which such tubes often mounted. Welded joints lighter in weight and more leak-proof than joints made with mechanical fittings.

  13. Pyrotechnic Tubing Connector

    NASA Technical Reports Server (NTRS)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  14. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  15. Monte Carlo surface flux tallies

    SciTech Connect

    Favorite, Jeffrey A

    2010-11-19

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  16. Fallopian Tube Catheterization

    PubMed Central

    Thurmond, Amy Suzanne

    2013-01-01

    Fallopian tube catheterization is used for treatment of infertility caused by proximal tubal occlusion, and has replaced surgical treatment for this condition. More recently, fallopian tube catheterization has been used for tubal sterilization. Interventional radiologists tested numerous methods for tubal occlusion using the rabbit as an animal model. As a result, a tubal device has recently been Food and Drug Administration approved for permanent sterilization using hysteroscopic guidance; it can also be placed fluoroscopically by fallopian tube catheterization as an “off-label” procedure. This is a 5-year continuation and update on a procedure that has been done by interventional radiologists for 25 years; history of the development of fallopian tube catheterization in women has been published in detail in this journal. Highlighted in this article will be description of the basic components needed for fallopian tube catheterization. PMID:24436565

  17. Method for making heat exchange tubes

    SciTech Connect

    Cunningham, J.L.; Campbell, B.J.

    1987-09-15

    This patent describes a method of making a heat exchange tube from difficult to work materials such as titanium and stainless steel in a single finning pass. It consists of inserting a mandrel having at least a first larger diameter portion and a second smaller diameter portion inside a plain tube. Then move the axes of a rotating disc carrying finning arbors toward the tube so that first and second sets of discs on the arbors, which are separated from each other by a spacer member, will sequentially force portions of the tube toward the first and second portions of the mandrel. The first set of discs serve to initially form the fins on the tube to at least approximately their final outside diameter and the second set of discs, whose discs are axially spaced so as to have a greater pitch than the discs of the first set, serve to reduce the root diameter of the fins previously formed by the first set of discs without substantially changing the outer diameter of the fins formed by the first set of discs. The greater pitch of the second set of discs causes an elongation of the tube and reduces its tendency to twist during finning.

  18. Metal wastage analysis of carbon steel tubes in FBC environment

    SciTech Connect

    Sethi, V.K.; Puentes, E. ); Natesan, K. )

    1989-01-01

    The TVA 20-MW AFBC Pilot Plant located near Paducah, Kentucky began operations in March 1982, and it operated with the same in-bed evaporator tubes (tube bundle B1) for {approximately}13,625 h through the end of 1985. During January-February 1986, the evaporator tubes were removed to test a new tube bundle configuration (tube bundle C1). After only a short period of operation, tube diameter measurements show that tube wastage rates for bundle C1 were almost an order of magnitude larger than those recorded for B1. Although several other changes could have been responsible for this increase, the consensus at the TVA was that the increase probably occurred because the pilot plant switched coals from a low chlorine (0.02%) to a high chlorine ({approximately}0.30%) KY No. 9 coal. In order to determine the validity of the role of chlorine in increasing the tube wastage, several tube sections were cut out from the plant and analyzed. The results of the chemical and metallographic examination are reported.

  19. Countably QC-Approximating Posets

    PubMed Central

    Mao, Xuxin; Xu, Luoshan

    2014-01-01

    As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730

  20. Approximate Bayesian multibody tracking.

    PubMed

    Lanz, Oswald

    2006-09-01

    Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance. PMID:16929730

  1. Robotic Tube-Gap Inspector

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  2. What Are Neural Tube Defects?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on ... media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects ...

  3. Holder for Straightening Bent Tubes

    NASA Technical Reports Server (NTRS)

    Turner, A. R.; Polzien, E. D.

    1985-01-01

    One-piece holder restrains bent metal tube against further bending during straightening operation. Holder consists of handle 16 in. (41 cm) long welded to short, strong tube that fits around tube to be straightened.

  4. Evidence that the X-Ray Plasma in Microflares is in a Sequence of Subresolution Magnetic Tubes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.

    1998-01-01

    We analyze the cooling of the X-ray emitting thermal plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope. A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approximately 2 x 10(exp 8) cm) (Shimizu 1995, PASJ, 47, 251). The X-ray plasma in the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is filled by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (1995) (X-ray brightness through the thin aluminum filter approximately 4 x 10(exp 3) DN/s/pixel, lifetime approximately 5 min, temperature approximately 6 x 10(exp 6) K, loop length approximately 10(exp 9) cm, loop diameter approximately 3 x 10(exp 8) cm), we find that for filling factors greater than approximately 1% (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that (1) heating to X-ray temperatures continues through nearly the entire life of a microflare, (2) the heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes

  5. Approximation by hinge functions

    SciTech Connect

    Faber, V.

    1997-05-01

    Breiman has defined {open_quotes}hinge functions{close_quotes} for use as basis functions in least squares approximations to data. A hinge function is the max (or min) function of two linear functions. In this paper, the author assumes the existence of smooth function f(x) and a set of samples of the form (x, f(x)) drawn from a probability distribution {rho}(x). The author hopes to find the best fitting hinge function h(x) in the least squares sense. There are two problems with this plan. First, Breiman has suggested an algorithm to perform this fit. The author shows that this algorithm is not robust and also shows how to create examples on which the algorithm diverges. Second, if the author tries to use the data to minimize the fit in the usual discrete least squares sense, the functional that must be minimized is continuous in the variables, but has a derivative which jumps at the data. This paper takes a different approach. This approach is an example of a method that the author has developed called {open_quotes}Monte Carlo Regression{close_quotes}. (A paper on the general theory is in preparation.) The author shall show that since the function f is continuous, the analytic form of the least squares equation is continuously differentiable. A local minimum is solved for by using Newton`s method, where the entries of the Hessian are estimated directly from the data by Monte Carlo. The algorithm has the desirable properties that it is quadratically convergent from any starting guess sufficiently close to a solution and that each iteration requires only a linear system solve.

  6. Vector magnetic field observations of flux tube emergence

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Aulanier, G.; Pariat, E.; Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.

    2002-10-01

    With Flare Genesis Experiment (FGE), a balloon borne Observatory high spatial and temporal resolution vector magnetograms have been obtained in an emerging active region. The comparison of the observations (FGE and TRACE) with a linear force-free field analysis of the region shows where the region is non-force-free. An analysis of the magnetic topology furnishes insights into the existence of "bald patches" regions (BPs are regions where the vector field is tangential to the boundary (photosphere) along an inversion line). Magnetic reconnection is possible and local heating of the chromopshere is predicted near the BPs. Ellerman bombs (EBs) were found to coincide with few BPs computed from a linear force-free extrapolation of the observed longitudinal field. But when the actual observations of transverse fields were used to identify BPs, then the correspondence with EB positions improved significantly. We conclude that linear force-free extrapolations must be done with the true observed vertical fields, which require the measurement of the three components of the magnetic field.

  7. Eustachian Tube Function.

    PubMed

    Ars, Bernard; Dirckx, Joris

    2016-10-01

    The fibrocartilaginous eustachian tube is part of a system of contiguous organs including the nose, palate, rhinopharynx, and middle ear cleft. The middle ear cleft consists of the tympanic cavity, which includes the bony eustachian tube (protympanum) and the mastoid gas cells system. The tympanic cavity and mastoid gas cells are interconnected and allow gaseous exchange and pressure regulation. The fibrocartilaginous eustachian tube is a complex organ consisting of a dynamic conduit with its mucosa, cartilage, surrounding soft tissue, peritubal muscles (ie, tensor and levator veli palatine, salpingopharyngeus and tensor tympani), and superior bony support (the sphenoid sulcus). PMID:27468632

  8. Modeling Orifice Pulse Tube Coolers

    NASA Technical Reports Server (NTRS)

    Roach, Kittel P.; Roach, P. R.; Lee, J. M.; Kashani, A.; McCreight, Craig R. (Technical Monitor)

    1996-01-01

    We have developed a calculational model that treats all the components of an orifice pulse tube cooler. We base our analysis on 1-dimensional thermodynamic equations for the regenerator and we assume that all mass flows, pressure oscillations and temperature oscillations are small and sinusoidal. Non-linear pressure drop effects are included in the regenerator to account for finite pressure amplitude effects. The resulting mass flows and pressures are matched at the boundaries with the other components of the cooler: compressor, aftercooler, cold heat exchanger, pulse tube, hot heat exchanger, orifice and reservoir. The results of the calculation are oscillating pressures, mass flows and enthalpy flows in the main components of the cooler. By comparing with the calculations of other available models, we show that our model is very similar to REGEN 3 from NIST and DeltaE from Los Alamos National Lab. Our model is much easier to use than other available models because of its simple graphical interface and the fact that no guesses are required for the operating pressures or mass flows. In addition, the model only requires a few minutes of running time allowing many parameters to be optimized in a reasonable time. A version of the model is available for use over the World Wide Web at http://irtek.arc.nasa.gov. Future enhancements include adding a bypass orifice and including second order terms in steady mass streaming and steady heat transfer. A two-dimensional anelastic approximation of the fluid equations will be used as the basis for the latter analysis. Preliminary results are given in dimensionless numbers appropriate for oscillating compressible flows. The model shows how transverse heat transfer reduces enthalpy flow, particularly for small pulse tubes. The model also clearly shows mass recirculation in the open tube on the order of the tube length. They result from the higher order Reynolds stresses. An interesting result of the linearized approach is that the

  9. Effective diffusion coefficient of a Brownian particle in a periodically expanded conical tube

    PubMed Central

    Antipov, Anatoly E.; Barzykin, Alexander V.; Berezhkovskii, Alexander M.; Makhnovskii, Yurii A.; Zitserman, Vladimir Yu.; Aldoshin, Sergei M.

    2016-01-01

    Diffusion in a tube of periodically varying diameter occurs slower than that in a cylindrical tube because diffusing particles get trapped in wells of the periodic entropy potential which is due to variation of the tube cross-section area. To quantify the slowdown one has to establish a relation between the effective diffusion coefficient of the particle and the tube geometry, which is a very complicated problem. Here we show how to overcome the difficulties in the case of a periodically expanded conical tube, where we find an approximate solution for the effective diffusion coefficient as a function of the parameters determining the tube geometry. PMID:24329385

  10. Building with Tubes.

    ERIC Educational Resources Information Center

    D'Eugenio, Terrance, Ed.

    Text and illustrations show how to assemble furniture and toys out of cardboard tubes and sheets. Basic directions are provided, and the tools and materials necessary to the assembly of specific items are described. (MLF)

  11. Ear tube insertion - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Update Date 8/ ...

  12. PEG tube insertion -- discharge

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site ... To use the sharing features on this page, please enable JavaScript. A PEG (percutaneous endoscopic gastrostomy) feeding tube insertion is the placement of ...

  13. Chest tube insertion

    MedlinePlus

    ... leaks from inside the lung into the chest ( pneumothorax ) Fluid buildup in the chest (called a pleural ... on the reason a chest tube is inserted. Pneumothorax usually improves, but sometimes needs minimally invasive surgery. ...

  14. Eustachian Tube Dysfunction

    MedlinePlus

    ... flying (because of altitude changes). Riding in elevators, driving through mountains or diving may also make your symptoms worse. Causes & Risk Factors What causes eustachian tube dysfunction? The most common ...

  15. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  16. Snorkeling and Jones tubes

    PubMed Central

    Lam, Lewis Y. W.; Weatherhead, Robert G.

    2015-01-01

    Summary We report a case of tympanic membrane rupture during snorkeling in a 17-year-old young man who had previously undergone bilateral Jones tubes placed for epiphora. To our knowledge, this phenomenon has not been previously reported.

  17. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  18. Tubing crimping pliers

    DOEpatents

    Lindholm, G.T.

    1981-02-27

    The disclosure relates to pliers and more particularly to pliers for crimping two or more pieces of copper tubing together prior to their being permanently joined by brazing, soldering or the like. A die containing spring-loaded pins rotates within a cammed ring in the head of the pliers. As the die rotates, the pins force a crimp on tubing held within the pliers.

  19. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section 868.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy...

  20. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a surgical opening of the trachea to facilitate ventilation to the lungs. The cuff may be a separate...

  1. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a surgical opening of the trachea to facilitate ventilation to the lungs. The cuff may be a separate...

  2. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a surgical opening of the trachea to facilitate ventilation to the lungs. The cuff may be a separate...

  3. Parity-time symmetry under magnetic flux

    NASA Astrophysics Data System (ADS)

    Jin, L.; Song, Z.

    2016-06-01

    We study a parity-time-(PT -) symmetric ring lattice, with one pair of balanced gain and loss located at opposite positions. The system remains PT -symmetric when threaded by a magnetic flux; however, the PT symmetry is sensitive to the magnetic flux in the presence of a large balanced gain and loss, or in a large system. We find a threshold gain or loss above which any nontrivial magnetic flux breaks the PT symmetry. We obtain the maximally tolerable magnetic flux for the exact PT -symmetric phase, which is approximately linearly dependent on a weak gain or loss.

  4. Biocompatibility of blood tubings.

    PubMed

    Branger, B; Garreau, M; Baudin, G; Gris, J C

    1990-10-01

    We studied hemocompatibility of various blood tubings with C3a anaphylatoxin measurement and comparative electron scanning microscopy. The following tubing materials were tested: polyvinylchloride (PVC) plasticised with phthalate (PVC), pvc plasticised with phthalate coextruded with polyurethane (PIV), and two phthalate-free lines: pvc plasticised with trimellitate coextruded with polyurethane (TRI) and pvc plasticised with LT 360 (LTP). Results of C3a generation rate showed a significant activation by all blood tubings, with a reduced rate with PIV when compared to all others. Electron scanning microscopy showed marked alterations of PIV surface on tubings stored for 6 months. Protein deposits on internal surfaces after dialysis were similar whatever tubing material was tested, but adhesive cell number was greater with TRI when compared to PVC and LTP. Hemocompatibility is unchanged with phthalate-free tubings when compared to phthalate plasticised ones. In contrast with phthalate plasticised PVC there is no beneficial effect of polyurethane coextrusion with trimellitate plasticised PVC in regard to C3a generation. PMID:2254048

  5. Aeronautical tubes and pipes

    NASA Astrophysics Data System (ADS)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  6. Evidence for helical kink instability in the Venus magnetic flux ropes

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.

    1983-01-01

    Empirical models of the magnetic field structure of flux ropes found in the Venus ionosphere are seen as suggesting that the ropes are unstable to long-wavelength (more than 100 km) helical-kink perturbations. The onset of such an instability can explain the apparent volume distribution of flux ropes with altitude, as well as their orientation as a function of altitude. In the subsolar region, the fraction of volume occupied by flux ropes increases from approximately 20 percent at high altitudes to more than 50 percent at low altitudes; this is a greater increase than would be expected if ropes convect downward as simple straight horizontal cylinders. The helical kink instability raises the fractional volume occupied by ropes by turning the originally straight, horizontal flux tubes into corkscrew-shaped structures as they convect to lower altitudes. It is noted that this instability also explains why high altitude ropes tend to be horizontal and low altitude ropes appear to have almost any orientation.

  7. Dynamic tube/support interaction in heat exchanger tubes

    SciTech Connect

    Chen, S.S.

    1991-01-01

    The supports for heat exchanger tubes are usually plates with drilled holes; other types of supports also have been used. To facilitate manufacture and to allow for thermal expansion of the tubes, small clearances are used between tubes and tube supports. The dynamics of tube/support interaction in heat exchangers is fairly complicated. Understanding tube dynamics and its effects is important for heat exchangers. This paper summarizes the current state of the art on this subject and to identify future research needs. Specifically, the following topics are discussed: dynamics of loosely supported tubes, tube/support gap dynamics, tube response in flow, tube damage and wear, design considerations, and future research needs. 55 refs., 1 fig.

  8. Explosively driven air blast in a conical shock tube

    NASA Astrophysics Data System (ADS)

    Stewart, Joel B.; Pecora, Collin

    2015-03-01

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  9. Explosively driven air blast in a conical shock tube.

    PubMed

    Stewart, Joel B; Pecora, Collin

    2015-03-01

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs. PMID:25832276

  10. Explosively driven air blast in a conical shock tube

    SciTech Connect

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  11. Heat transfer to throat tubes in a square-chambered rocket engine at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Brindley, William J.

    1989-01-01

    A gaseous H2/O2 rocket engine was constructed at the NASA-Lewis to provide a high heat flux source representative of the heat flux to the blades in the high pressure fuel turbopump (HPFTP) during startup of the space shuttle main engines. The high heat flux source was required to evaluate the durability of thermal barrier coatings being investigated for use on these blades. The heat transfer, and specifically, the heat flux to tubes located at the throat of the test rocket engine was evaluated and compared to the heat flux to the blades in the HPFTP during engine startup. Gas temperatures, pressures and heat transfer coefficients in the test rocket engine were measured. Near surface metal temperatures below thin thermal barrier coatings were also measured at various angular orientations around the throat tube to indicate the angular dependence of the heat transfer coefficients. A finite difference model for a throat tube was developed and a thermal analysis was performed using the measured gas temperatures and the derived heat transfer coefficients to predict metal temperatures in the tube. Near surface metal temperatures of an uncoated throat tube were measured at the stagnation point and showed good agreement with temperatures predicted by the thermal model. The maximum heat flux to the throat tube was calculated and compared to that predicted for the leading edge of an HPFTP blade. It is shown that the heat flux to an uncooled throat tube is slightly greater than the heat flux to an HPFTP blade during engine startup.

  12. Flux-flow voltages during guided flux collapse from hollow superconducting cylinders

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Leblanc, M. A. R.; Clem, J. R.

    1976-01-01

    Voltages across diametrically opposite contact pairs on the outer surface of superconducting Nb tubes are found to depend dramatically upon the spatial configuration of the voltage-measuring leads relative to the positions of the moving magnetic flux lines. Experiments have been conducted to study these voltages for different wall thicknesses and for a variety of arrangements of the leads when flux in the hole and the wall of the Nb tube is made to exit or enter, completely or partially, by applying heat at a narrow strip along its length. Using the critical-state concept, a model for the change of flux and the resulting electric fields in the Nb tube on application of a heat pulse is presented. The resulting time-dependent and time-integrated voltages are calculated in excellent quantitative agreement with the experimental results. These results show that the flux-flow voltages across two contact points on a superconductor arise from the generation of an induced electric field over a chosen path in the superconductor between the contact points and from a change of magnetic flux through the surface bounded by the measuring leads and the chosen path in the superconductor.

  13. The limited streamer tubes system for the SLD warm iron calorimeter

    SciTech Connect

    Benvenuti, A.C.; Camanzi, B.; Piemontese, L.; Zucchelli, P. |; Calcaterra, A.; De Sangro, R.; De Simone, P.; De Simone, S.; Gallinaro, M.; Peruzzi, I.; Piccolo, M.; Burrows, P.N.; Busza, W.; Cartwright, S.L.; Fuess, S.; Gonzalez, S.; Hansl-Kozanecka, T.; Lath, A.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Schneekloth, U.; Taylor, F.E.; Verdier, R.; Williams, D.C.; Yamartino, J.M.; Bacchetta, N.; Bisello, D.; Castro, A.; Galvagni, S.; Loreti, M.; Pescara, L.; Wyss, J. |; Battiston, R.; Biasini, M.; Bilei, G.M.; Checcucci, B; Mancinelli, G.; Mantovani, G.; Pauluzzi, M.; Santocchia, A.; Servoli, L. |; Carpinelli, M.; Castaldi, R.; Cazzola, U.; Dell`Orso, R.; Pieroni, E.; Vannini, C.; Verdini, P.G. |; Byers, B.L.; Escalera, J.; Kharakh, D.; Messner, R.L.; Zdarko, R.W.; Johnson, J.R.

    1992-01-01

    The SLD detector at the Stanford Linear Accelerator Center is a general purpose device for studying e{sup +}{epsilon}{sup {minus}} interaction at the Z{sup 0}. The SLD calorimeter system consists of two parts: a lead Liquid Argon Calorimeter (LAC) with both electromagnetic (22 radiation lengths) and hadronic sections (2.8 absorption lengths) housed inside the coil, and the Warm Ion limited streamer tubes Calorimeter (WIC) outside the coil which uses as radiator the iron of the flux return for the magnetic field. The WIC completes the measurement of the hadronic shower energy ({approximately}85% on average is contained in the LAC) and it provides identification and tracking for muons over 99% of the solid angle. In this note we report on the construction, test and commissioning of such a large system.

  14. General view looking down the approximate centerline of the expansion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking down the approximate centerline of the expansion nozzle of a Space Shuttle Main Engine (SSME) mounted on a SSME Engine Handler in the SSME Processing Facility at Kennedy Space Center. This view shows the 1080 cooling tubes used to regeneratively cool the Nozzle and Combustion Chamber by circulating relatively low temperature fuel through the tubes and manifolds before being ignited in the Main Combustion Chamber. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Kennedy Space Center Fixation Tube (KFT)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E.; Levine, Howard G.; Romero, Vergel

    2016-01-01

    Experiments performed on the International Space Station (ISS) frequently require the experimental organisms to be preserved until they can be returned to earth for analysis in the appropriate laboratory facility. The Kennedy Fixation Tube (KFT) was developed to allow astronauts to apply fixative, chemical compounds that are often toxic, to biological samples without the use of a glovebox while maintaining three levels of containment (Fig. 1). KFTs have been used over 200 times on-orbit with no leaks of chemical fixative. The KFT is composed of the following elements: a polycarbonate main tube where the fixative is loaded preflight, the sample tube where the plant or other biological specimens is placed during operations, the expansion plug, actuator, and base plug that provides fixative containment (Fig. 2). The main tube is pre-filled with 25 mL of fixative solution prior to flight. When actuated, the specimen contained within the sample tube is immersed with approximately 22 mL (+/- 2 mL) of the fixative solution. The KFT has been demonstrated to maintain its containment at ambient temperatures, 4degC refrigeration and -100 C freezing conditions.

  16. Radially Focused Eddy Current Sensor for Detection of Longitudinal Flaws in Metallic Tubes

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor)

    1999-01-01

    A radially focused eddy current sensor detects longitudinal flaws in a metal tube. A drive coil induces eddy currents within the wall of the metal tube. A pick-up cod is spaced apart from the drive coil along the length of the metal tube. The pick@up coil is positioned with one end thereof lying adjacent the wall of the metal tube such that the pick-up coil's longitudinal axis is perpendicular to the wall of the metal tube. To isolate the pick-up coil from the magnetic flux of the drive coil and the flux from the induced eddy currents. except the eddy currents diverted by a longitudinal flaw. an electrically conducting material high in magnetic permeability surrounds all of the pick-up coil except its one end that is adjacent the walls of the metal tube. The electrically conducting material can extend into and through the drive coil in a coaxial relationship therewith.

  17. Tool Extracts Smooth, Fragile Tubes

    NASA Technical Reports Server (NTRS)

    Sanders, Fred G.

    1988-01-01

    When laterally compressible tube too slippery to pull, simple tool does job. Consists of three linked sections of steel tube with sticky rubber on inside and handles on outside. Hinged sections encircle tube to be pulled. User pulls on handles to extract tube.

  18. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  19. Erosion of heat exchanger tubes in fluidized beds

    SciTech Connect

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  20. Boiling incipience in a reboiler tube

    SciTech Connect

    Ali, H.; Alam, S.S. )

    1991-03-01

    This heating surface and liquid temperature distributions were experimentally obtained to identify the boiling incipience conditions in a single vertical tube thermosiphon reboiler with water, acetone, ethanol, and ethylene glycol as test liquids. The test section was an electrically heated stainless steel tube of 25.56-mm i.d. and 1900 mm long. The uniform heat flux values were used in the range of 3800--40 000 W/m{sup 2}, while inlet liquid subcooling were varied from 0.2 to 45.5{degrees} C. The liquid submergence was maintained around 100, 75, 50 and 30%. All the data were generated at 1-atm pressure. The maximum superheats attained around boiling incipience were taken from the wall temperature distributions and correlated with heat flux and physical properties of liquids using the expression of Yin and Abdelmessih. The heated sections required for onset of fully developed boiling with net vapor generation were determined assuming a thermal equilibrium model. In this paper a dimensionless correlation relating these values with heat flux, liquid subcooling, and submergence is proposed.

  1. Calculation of He II flow in tubes

    SciTech Connect

    Snyder, H.A.; Mord, A.J. )

    1992-02-01

    The equations for the flow of He II are integrated using a new one-dimensional, steady state model to study the flow in a tube. A wide range of driving conditions is studied. The temperature and pressure profiles along the tube fall into four classes. A dimensionless parameter called {sigma} is defined which determines the progression through the four classes of behavior. The deviation of the flow from Newtonian is measured by {sigma}. Significant maxima of the temperature and pressure can occur between the ends of the tube for large values of {sigma}. The shapes of the profiles and the mass flux depend primarily on {sigma}, the geometry and the boundary conditions. Formulas are presented which relate the variables of interest to the boundary conditions. These formulas result from averaging the equations of motion along the tube. A general and unified approach, based on {sigma}, is presented for analyzing experimental data and designing new experiments. It is shown that the common practice of neglecting the pressure term in the energy equation results in poor prediction for many situations. The occurrence of large maxima of pressure and temperature imply that the interpretation of some of the experimental data of the literature should be reconsidered.

  2. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  3. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  4. Fluid mechanics and heat transfer spirally fluted tubing

    NASA Astrophysics Data System (ADS)

    Larue, J. C.; Libby, P. A.; Yampolsky, J. S.

    1981-08-01

    The objective of this program is to develop both a qualitative and a quantitative understanding of the fluid mechanics and heat transfer mechanisms that underlie the measured performance of the spirally fluted tubes under development at General Atomic. The reason for the interest in the spirally fluted tubes is that results to date have indicated three advantages to this tubing concept: The fabrication technique of rolling flutes on strip and subsequently spiralling and simultaneously welding the strip to form tubing results in low fabrication costs, approximately equal to those of commercially welded tubing. The heat transfer coefficient is increased without a concomitant increase of the friction coefficient on the inside of the tube. In single-phase axial flow of water, the helical flutes continuously induce rotation of the flow both within and without the tube as a result of the effect of curvature. An increase in condensation heat transfer on the outside of the tube is achieved. In a vertical orientation with fluid condensing on the outside of the helically fluted tube, the flutes provide a channel for draining the condensed fluid.

  5. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1989-03-01

    Twenty-three laced permanent magnet quadrupole drift tube magnets have been constructed, tested, and installed in the SuperHILAC heavy ion linear accelerator at LBL, marking the first accelerator use of this new type of quadrupole. The magnets consist of conventional tape-wound quadrupole electromagnets, using iron pole-pieces, with permanent magnet material (samarium cobalt) inserted between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the individual quadrupole magnets in a drift tube linac is never reversed, we can take advantage of this asymmetrical saturation to provide about 20% greater focusing strength than is available with conventional quadrupoles, while replacing the vanadium permendur poletips with iron poletips. Comparisons between these magnets and conventional tape-wound quadrupoles will be presented. 3 refs., 5 figs.

  6. ASYMMETRY OF HELICITY INJECTION FLUX IN EMERGING ACTIVE REGIONS

    SciTech Connect

    Tian Lirong; Alexander, David

    2009-04-20

    Observational and modeling results indicate that typically the leading magnetic field of bipolar active regions (ARs) is often spatially more compact, while more dispersed and fragmented in following polarity. In this paper, we address the origin of this morphological asymmetry, which is not well understood. Although it may be assumed that, in an emerging {omega}-shaped flux tube, those portions of the flux tube in which the magnetic field has a higher twist may maintain its coherence more readily, this has not been tested observationally. To assess this possibility, it is important to characterize the nature of the fragmentation and asymmetry in solar ARs and this provides the motivation for this paper. We separately calculate the distribution of the helicity flux injected in the leading and following polarities of 15 emerging bipolar ARs, using the Michelson Doppler Image 96 minute line-of-sight magnetograms and a local correlation tracking technique. We find from this statistical study that the leading (compact) polarity injects several times more helicity flux than the following (fragmented) one (typically 3-10 times). This result suggests that the leading polarity of the {omega}-shaped flux tube possesses a much larger amount of twist than the following field prior to emergence. We argue that the helicity asymmetry between the leading and following magnetic field for the ARs studied here results in the observed magnetic field asymmetry of the two polarities due to an imbalance in the magnetic tension of the emerging flux tube. We suggest that the observed imbalance in the helicity distribution results from a difference in the speed of emergence between the leading and following legs of an inclined {omega}-shaped flux tube. In addition, there is also the effect of magnetic flux imbalance between the two polarities with the fragmented following polarity displaying spatial fluctuation in both the magnitude and sign of helicity measured.

  7. Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube

    NASA Technical Reports Server (NTRS)

    Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok

    2015-01-01

    This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.

  8. Radiation transport calculations for the ANS (Advanced Neutron Source) beam tubes

    SciTech Connect

    Engle, W.W., Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs.

  9. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  10. Neural Tube Defects

    PubMed Central

    Greene, Nicholas D.E.; Copp, Andrew J.

    2015-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  11. Regulation of the interplanetary magnetic flux

    SciTech Connect

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.

    1991-01-01

    In this study we use a recently developed technique for measuring the 2-D magnetic flux in the ecliptic plane to examine (1) the long term variation of the magnetic flux in interplanetary space and (2) the apparent rate at which coronal mass ejections (CMEs) may be opening new flux from the Sun. Since there is a substantial variation ({approximately}50%) of the flux in the ecliptic plane over the solar cycle, we conclude that there must be some means whereby new flux can be opened from the Sun and previously open magnetic flux can be closed off. We briefly describe recently discovered coronal disconnections events which could serve to close off previously open magnetic flux. CMEs appear to retain at least partial magnetic connection to the Sun and hence open new flux, while disconnections appear to be likely signatures of the process that returns closed flux to the Sun; the combination of these processes could regulate the amount of open magnetic flux in interplanetary space. 6 refs., 3 figs.

  12. Passively cooled glass CO2 laser tubes for severe environments

    NASA Technical Reports Server (NTRS)

    Walker, H. E.; Johnson, E. H.

    1974-01-01

    The objective of this effort was to design a glass CO2 laser tube that could survive the Titan 3 C launch environment and at the same time provide adequate thermal conductivity to maintain the wall of the laser tube below approximately equal to 50 C for efficient lasing. The approach that was taken to satisfy these requirements was to pot the tube in an aluminum heat sink using a space qualified polyurethane potting material. Two configurations of the laser tube successfully passed the complete Titan 3 C qualification level sine and random vibration specification and satisfied the thermal requirements. Fabrication details and test results are presented that indicate this could be a practical solution for laser tubes used in a severe environment and where flowing coolants are impractical or undesirable.

  13. Heat loss and drag of spherical drop tube samples

    NASA Technical Reports Server (NTRS)

    Wallace, D. B.

    1982-01-01

    Analysis techniques for three aspects of the performance of the NASA/MSFC 32 meter drop tube are considered. Heat loss through the support wire in a pendant drop sample, temperature history of a drop falling through the drop tube when the tube is filled with helium gas at various pressures, and drag and resulting g-levels experienced by a drop falling through the tube when the tube is filled with helium gas at various pressures are addressed. The developed methods apply to systems with sufficiently small Knudsen numbers for which continuum theory may be applied. Sample results are presented, using niobium drops, to indicate the magnitudes of the effects. Helium gas at one atmosphere pressure can approximately double the amount of possible undercooling but it results in an apparent gravity levels of up to 0.1 g.

  14. PRODUCTION OF URANIUM TUBING

    DOEpatents

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  15. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  16. Pressure drop in tubing in aircraft instrument installations

    NASA Technical Reports Server (NTRS)

    Wildhack, W A

    1937-01-01

    The theoretical basis of calculation of pressure drop in tubing is reviewed briefly. The effect of pressure drop in connecting tubing upon the operation and indication of aircraft instruments is discussed. Approximate equations are developed, and charts and tables based upon them are presented for use in designing installations of altimeters, air-speed indicators, rate-of-climb indicators, and air-driven gyroscopic instruments.

  17. Metal wastage analysis of carbon steel tubes in FBC environment

    SciTech Connect

    Sethi, V.K.; Puentes, E.; Natesan, K.; Argonne National Lab., IL )

    1988-11-01

    The TVA 20-MW AFBC Pilot Plant located near Paducah, Kentucky began operations in March 1982, and it operated with the same in-bed evaporator tubes (tube bundle B1) for {approximately}13,625 h through the end of 1985. During January--February 1986, the evaporator tubes were removed to test a new tube bundle configuration (tube bundle C1). After only a short period of operation, tube diameter measurements showed that tube wastage rates for bundle C1 were almost an order of magnitude larger than those recorded for B1. Although several other changes could have been responsible for this increase, the consensus at the TVA was that the increase probably occurred because the pilot plant switched coals from a low chlorine (0.02%) to a high chlorine ({approximately}0.30%) KY 9 coal. In order to determine the validity of the role of chlorine in increasing the tube wastage, several tube sections were cut out from the plant and analyzed at the Kentucky Energy Cabinet Laboratory (KECL) and at Argonne National Laboratory (ANL). The results of the chemical and metallographic examination showed that wastage could be attributed to erosive wear of chlorine-impregnated iron oxide scales. Corrosion component (oxidation) could have been altered by the presence of elements such as chlorine, sulfur, and potassium in the combustion gases. The results also showed that, in order to understand the complex deposition/corrosion phenomena that occur in FBC systems, it is imperative to characterize the local environment in the vicinity of the tube bundles. 5 refs., 16 figs.

  18. Flux-vector splitting for the 1990s

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1991-01-01

    The development of flux-vector splitting through the 1970s and 1980s is reviewed. Attention is given to the diffusive nature of flux-vector splitting, which makes it an undesirable technique for approximating the inviscid fluxes in a Navier-Stokes solver. Several proposed improvements, including a brand new one, are discussed and illustrated by a simple, yet revealing, numerical test case. Finally, an outlook for flux-vector splitting in the 1990s is presented.

  19. Generation of nanosecond neutron pulses in vacuum accelerating tubes

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.

    2014-06-01

    The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.

  20. Application of two-phase thermosiphons in tube furnaces

    SciTech Connect

    Kazhdan, A.Z.; Bezrodnyi, M.K.; Baklashov, V.E.

    1987-01-01

    Two-phase (vaporizing) thermosiphons (TTS) are used in various types of heating units, including vessels used in processing hydrocarbon media. A thermosiphon is a heat transfer device and is illustrated here. In many cases, the use of TTSs can increase the level of reliability and heat capacity of a particular process unit and savings of electric energy can be achieved as is shown by the authors. It has been proposed that TTSs should be used to increase the heat capacity of tube furnaces, where the principal element is the tube coil. The authors show distribution of heat flux density around the circumference of the tube coil. Designs of tube furnaces are shown with a TTS as the shield of the product coil. Calculations show that when the TTS is used, the heat capacity of two furnaces may be increased by a factor of 1.4-1.6.

  1. Gas-solid flow in vertical tubes

    SciTech Connect

    Pita, J.A.; Sundaresan, S. )

    1991-07-01

    This paper reports on a computational study of fully-developed flow of gas-particle suspensions in vertical pipes which was carried out, using the model proposed recently by Sinclair and Jackson, to understand the predicted scale-up characteristics. It was shown that the model can capture the existence of steady-state multiplicity wherein different pressure gradients can be obtained for the same gas and solids fluxes. A pronounced and nonmonotonic variation of the pressure gradient required to achieve desired fluxes of solid and gas with tube diameter was predicted by the model, and this is explained on a physical basis. The computed results were compared with the experimental data. The model manifests an unsatisfactory degree of sensitivity to the inelasticity of the particle-particle collisions and the damping of particle-phase fluctuating motion by the gas.

  2. Manufacturing SP-100 rhenium tubes

    NASA Astrophysics Data System (ADS)

    Sayre, Edwin D.; Ruffo, Thomas J.

    1992-01-01

    A process for producing high quality, thin walled, wrought, rhenium tubing was successfully developed and qualified in the SP-100 fuel fabrication program. Rhenium was selected for the fuel-cladding barrier versus tungsten because of the cold workability and nuclear characteristics of rhenium. Several tube fabricating processes including swaging, drawing, and extruding sintered tube shells and chemical vapor deposition were evaluated before a drawn tube made by forming and electron beam welding rhenium strip was selected as the most cost effective. The process for making the rhenium tubes is discussed in general and the tube, room temperature, tensile properties are compared favorably with the properties reported in the literature.

  3. Heat-shrink plastic tubing seals joints in glass tubing

    NASA Technical Reports Server (NTRS)

    Del Duca, B.; Downey, A.

    1968-01-01

    Small units of standard glass apparatus held together by short lengths of transparent heat-shrinkable polyolefin tubing. The tubing is shrunk over glass O-ring type connectors having O-rings but no lubricant.

  4. Orbital tube flaring system produces tubing connectors with zero leakage

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1967-01-01

    An orbital tube flaring system produces tubing connectors with a zero-leak potential needed in high pressure hydraulic and pneumatic systems. The flaring system incorporates a rolling cone and rolling die to closely control flare characteristics.

  5. Neural Tube Defects

    MedlinePlus

    ... The two most common neural tube defects are spina bifida and anencephaly. In spina bifida, the fetal spinal column doesn't close completely. There is usually nerve damage that causes at least some paralysis of the legs. In anencephaly, ... National Institute of Child Health and Human Development

  6. Investigation of Pitot tubes

    NASA Technical Reports Server (NTRS)

    Herschel, W H; Buckingham, E

    1917-01-01

    Report describes the principles of operation and characteristics of some of the instruments which have been devised or used to measure both low and high speeds of aeroplanes. Since the pitot tube is the instrument which has been most commonly used in the United States and Great Britain as a speedometer for aeroplanes, it is treated first and somewhat more fully than the others.

  7. PEG tube insertion - discharge

    MedlinePlus

    ... to 3 times a day. Use either mild soap and water or sterile saline (ask you provider). You may ... skin and tube. Be gentle. If you used soap, gently clean again with plain water. Dry the skin well with a clean towel ...

  8. Tube Feeding Transition Plateaus

    ERIC Educational Resources Information Center

    Klein, Marsha Dunn

    2007-01-01

    The journey children make from tube feeding to oral feeding is personal for each child and family. There is a sequence of predictable plateaus that children climb as they move toward orally eating. By better understanding this sequence, parents and children can maximize the development, learning, enjoyment and confidence at each plateau. The…

  9. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  10. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  11. Condensation of Refrigerant-11 on the outside of vertical enhanced tubes

    SciTech Connect

    Domingo, N.

    1981-08-01

    Experiments were conducted to determine heat transfer performance of single vertical tubes with Refrigerant-11 condensing on its outside surface. Twelve enhanced (fluted, spiraled, roped, and corrugated) tubes of 2.54-cm (1-in.) nominal outside diameter and 1.2-m (4-ft) length were tested. Several of the tested tubes featured internal enhanced geometries. A previously tested smooth tube served as the basis for comparison. Composite heat transfer coefficients (coefficients that include the resistances of both the condensing film and the tube wall), based on the total tube outside surface area, ranged from 850 to 6530 W/m/sup 2/ . K (150 to 1150 Btu/h . ft/sup 2/ . /sup 0/F) over the heat flux range of 5675 to 31,375 W/m/sup 2/ (1800 to 9950 Btu/h . ft/sup 2/). The primary conclusions from this study are: (1) for a given heat flux, an external fluted tube can increase composite condensing heat transfer coefficients by up to 5.5 times the smooth tube values, giving better condensing performance than any of the other geometries tested; (2) further increase in composite condensing coefficients can be achieved by using skirts to divide the fluted tube into equal condensing lengths; and (3) for a given overall temperature difference and water flow rate, internal flutes can increase the overall performance by up to 17% over that for a tube with identical outside flutes and a smooth inside surface.

  12. Electrically heated tube investigation of cooling channel geometry effects

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1995-01-01

    The results of an experimental investigation on the combined effects of cooling channel aspect ratio and curvature for rocket engines are presented. Symmetrically heated tubes with average heat fluxes up to 1.7 MW/m(exp 2) were used. The coolant was gaseous nitrogen at an inlet temperature of 280 K (500 R) and inlet pressures up to 1.0 x 10(exp 7) N/m(exp 2) (1500 psia). Two different tube geometries were tested: a straight, circular cross-section tube, and an aspect-ratio 10 cross-section tube with a 45 deg bend. The circular tube results are compared to classical models from the literature as validation of the system. The curvature effect data from the curved aspect-ratio 10 tube compare favorably to the empirical equations available in the literature for low aspect ratio tubes. This latter results suggest that thermal stratification of the coolant due to diminished curvature effect mixing may not be an issue for high aspect-ratio cooling channels.

  13. Induced fermionic current by a magnetic tube in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Maior de Sousa, M. S.; Ribeiro, R. F.; Bezerra de Mello, E. R.

    2016-02-01

    In this paper, we consider a charged massive fermionic quantum field in the spacetime of an idealized cosmic string, in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic field are taken into account: (i) a cylindrical shell of radius a , (ii) a magnetic field proportional to 1 /r , and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objective is to analyze the induced vacuum fermionic current densities outside the tube. In order to do that, we explicitly construct the wave functions inside and outside the tube for each case. Having the complete set of normalized wave functions, we use the summation method to develop our analysis. We show that, in the region outside the tube, the induced currents are decomposed into parts corresponding to a zero-thickness magnetic flux in addition to core-induced contributions. The latter presents a specific form depending on the magnetic field configuration considered. We also see that the only nonvanishing component of fermionic current corresponds to the azimuthal one. The zero-thickness contribution depends only on the fractional part of the ration of the magnetic flux inside the tube by the quantum one. As to the core-induced contribution, it depends on the total magnetic flux inside the tube and, consequently, it is not, in general, a periodic function of the flux.

  14. DEVELOPMENT OF ODS HEAT EXCHANGER TUBING

    SciTech Connect

    Mark A. Harper, Ph.D.

    2001-10-01

    Work continued on four major tasks of this project--increasing the circumferential strength of MA956 tubing, joining of the MA956 alloy, determining the bending limits of MA956 tubing, and determination of the high temperature corrosion limits of the MA956 alloy. With respect to increasing the circumferential strength of a MA956 tube, an additional 120 MA956 rods have been extruded (total of 180 rods) using 16:1 and 10:1 extrusion ratios and extrusion temperatures of 1000, 1075, 1150, and 1200 C. Also, approximately 40 cold work (0, 10, 20, 30, 40%) plus annealing treatments (1000, 1150, 1300 C) have been completed with the resulting sample microstructures presently being analyzed. Creep testing to determine the ''stress threshold'' curves for this alloy continues. Regarding joining of the MA956 alloy, work continued using friction welding, magnetic impulse welding, explosive welding, and transient liquid phase bonding, with encouraging results obtained from the friction, explosive, and transient liquid phase joining methods. Initial work on determining the bending limits of the MA956 tubing has shown that the recrystallized material shows good ductility but the unrecrystallized material does not. And finally, fluid-side high temperature corrosion testing of the material continues and the environment for the laboratory fireside corrosion testing has been established and testing initiated.

  15. Biased Brownian motion in extremely corrugated tubes

    NASA Astrophysics Data System (ADS)

    Martens, S.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2011-12-01

    Biased Brownian motion of point-size particles in a three-dimensional tube with varying cross-section is investigated. In the fashion of our recent work, Martens et al. [Phys. Rev. E 83, 051135 (2011)] we employ an asymptotic analysis to the stationary probability density in a geometric parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. Expression for the higher order corrections to the probability density is derived. Using this expansion orders, we obtain that in the diffusion dominated regime the average particle current equals the zeroth order Fick-Jacobs result corrected by a factor including the corrugation of the tube geometry. In particular, we demonstrate that this estimate is more accurate for extremely corrugated geometries compared with the common applied method using a spatially-dependent diffusion coefficient D(x, f) which substitutes the constant diffusion coefficient in the common Fick-Jacobs equation. The analytic findings are corroborated with the finite element calculation of a sinusoidal-shaped tube.

  16. Tubing For Sampling Hydrazine Vapor

    NASA Technical Reports Server (NTRS)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  17. Multiple test tubes stirred mechanically

    NASA Technical Reports Server (NTRS)

    Leon, H. J.; Strong, I. J.

    1965-01-01

    Mechanical device simultaneously stirs multiple test tubes under controlled laboratory conditions. The invention provides a variable stirring rate, minimal amount of contamination of tube contents, unattended and simple operation, and easy maintenance and cleaning.

  18. Quarter-wave pulse tube

    NASA Astrophysics Data System (ADS)

    Swift, G. W.; Gardner, D. L.; Backhaus, S. N.

    2011-10-01

    In high-power pulse-tube refrigerators, the pulse tube itself can be very long without too much dissipation of acoustic power on its walls. The pressure amplitude, the volume-flow-rate amplitude, and the time phase between them evolve significantly along a pulse tube that is about a quarter-wavelength long. Proper choice of length and area makes the oscillations at the ambient end of the long pulse tube optimal for driving a second, smaller pulse-tube refrigerator, thereby utilizing the acoustic power that would typically have been dissipated in the first pulse-tube refrigerator's orifice. Experiments show that little heat is carried from the ambient heat exchanger to the cold heat exchanger in such a long pulse tube, even though the oscillations are turbulent and even when the tube is compactly coiled.

  19. Cavity approximation for graphical models.

    PubMed

    Rizzo, T; Wemmenhove, B; Kappen, H J

    2007-07-01

    We reformulate the cavity approximation (CA), a class of algorithms recently introduced for improving the Bethe approximation estimates of marginals in graphical models. In our formulation, which allows for the treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction factors is explicitly carried out, and a message passing algorithm that implements the first order correction to the Bethe approximation is described. Furthermore, we investigate an implementation of the CA for pairwise interactions. In all cases considered we could confirm that CA[k] with increasing k provides a sequence of approximations of markedly increasing precision. Furthermore, in some cases we could also confirm the general expectation that the approximation of order k , whose computational complexity is O(N(k+1)) has an error that scales as 1/N(k+1) with the size of the system. We discuss the relation between this approach and some recent developments in the field. PMID:17677405

  20. Approximate circuits for increased reliability

    SciTech Connect

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  1. Approximate circuits for increased reliability

    SciTech Connect

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  2. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  3. Calculation of RABBIT and Simulator Worth in the HFIR Hydraulic Tube and Comparison with Measured Values

    SciTech Connect

    Slater, CO

    2005-09-08

    To aid in the determinations of reactivity worths for target materials in a proposed High Flux Isotope Reactor (HFIR) target configuration containing two additional hydraulic tubes, the worths of cadmium rabbits within the current hydraulic tube were calculated using a reference model of the HFIR and the MCNP5 computer code. The worths were compared to measured worths for both static and ejection experiments. After accounting for uncertainties in the calculations and the measurements, excellent agreement between the two was obtained. Computational and measurement limitations indicate that accurate estimation of worth is only possible when the worth exceeds 10 cents. Results indicate that MCNP5 and the reactor model can be used to predict reactivity worths of various samples when the expected perturbations are greater than 10 cents. The level of agreement between calculation and experiment indicates that the accuracy of such predictions would be dependent solely on the quality of the nuclear data for the materials to be irradiated. Transients that are approximated by ''piecewise static'' computational models should likewise have an accuracy that is dependent solely on the quality of the nuclear data.

  4. The properties of MHD waves and instabilities in solar plasmas with anisotropic temperature and thermal fluxes

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir; Dzhalilov, Namig

    As confirmed by observations, the temperature anisotropy relative to the magnetic field and the thermal fluxes are typical characteristics of the collisionless and magnetized plasma of the solar corona and solar wind. The properties of such plasma are described in terms of the anisotropic magnetohydrodynamics based on the kinetic equation under the 16-moment approximation. MHD waves and instabilities in the collisionless solar plasma have been analyzed under the aforementioned approximation taking into account the anisotropy of the plasma pressure along and across the magnetic field and the thermal flux along the field. It is established that the thermal flux results in the asymmetry of phase velocities of the compressible wave modes with respect to the outer magnetic field, in a strong interaction between the modes (particularly, between the retrograde modes propagating against the magnetic field), and in oscillatory in-stability of these modes. The thresholds of the mirror and fire-hose instabilities coincide with their kinetic expressions; the increments coincide qualitatively. At a certain propagation angle, the resonance interaction of three retrograde modes (fast sound, slow magnetosound, and slow sound ones) under the occurrence conditions of the classical aperiodic fire-hose instability gives rise to the oscillatory "fire-hose" instability of compressible modes, whose maximum increment may exceed the maximum increment of the classical fire-hose instability. A good agreement of the results obtained in terms of anisotropic MHD with the low-frequency limit of the kinetic description allows us to consider the applied approximation adequate for the description of large-scale dynamics of collisionless anisotropic solar plasma and to use it in the study of waves and instabilities in magnetic tubes and other magnetic features in the solar corona, magnetic reconnection, etc.

  5. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    SciTech Connect

    Herer, C.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  6. Calibration of image dissector tubes

    NASA Technical Reports Server (NTRS)

    Klingman, E. E., III

    1976-01-01

    Technique employs computer-controlled light-emitting diode (LED), precision machined mask, and analog-to-digital coverter (ADC). Computer turns on LED which floods masked face of tube. Intensity pattern, generated as tube is electromagnetically swept, is fed to ADC which controls tube calibration.

  7. Enteral Tube Feeding and Pneumonia

    ERIC Educational Resources Information Center

    Gray, David Sheridan; Kimmel, David

    2006-01-01

    To determine the effects of enteral tube feeding on the incidence of pneumonia, we performed a retrospective review of all clients at our institution who had gastrostomy or jejunostomy tubes placed over a 10-year period. Ninety-three subjects had a history of pneumonia before feeding tube insertion. Eighty had gastrostomy and 13, jejunostomy…

  8. Sleeve puller salvages welded tubes

    NASA Technical Reports Server (NTRS)

    Weaver, J. F.

    1980-01-01

    Tool removes sleeve remnants without distorting or damaging tubes, unlike pliers and other conventional handtools. Tubes can be reused, saving time, labor, and material in many applications. Sleeve-removal fixture consists of pressure screw, swing arm, locking screws, and base. It removes sleeve remnant from tubing after welded joint has been sawed through.

  9. Method for reinforcing tubing joints

    NASA Technical Reports Server (NTRS)

    Kinzler, J.; Lee, W. S.

    1968-01-01

    Joint repair technique uses a longitudinally split aluminum shield over the joint ferrule and immediately adjacent tubing to reseal or reinforce leaking or weak joints in small tubing. Epoxy resin coating on inside surfaces of the two shield halves provides a tightly sealed bond between shield and tubing.

  10. Tubing cutter for tight spaces

    NASA Technical Reports Server (NTRS)

    Girala, A. S.

    1980-01-01

    Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

  11. Cosmic string formation by flux trapping

    SciTech Connect

    Blanco-Pillado, Jose J.; Olum, Ken D.; Vilenkin, Alexander

    2007-11-15

    We study the formation of cosmic strings by confining a stochastic magnetic field into flux tubes in a numerical simulation. We use overdamped evolution in a potential that is minimized when the flux through each face in the simulation lattice is a multiple of the fundamental flux quantum. When the typical number of flux quanta through a correlation-length-sized region is initially about 1, we find a string network similar to that generated by the Kibble-Zurek mechanism. With larger initial flux, the loop distribution and the Brownian shape of the infinite strings remain unchanged, but the fraction of length in infinite strings is increased. A 2D slice of the network exhibits bundles of strings pointing in the same direction, as in earlier 2D simulations. We find, however, that strings belonging to the same bundle do not stay together in 3D for much longer than the correlation length. As the initial flux per correlation length is decreased, there is a point at which infinite strings disappear, as in the Hagedorn transition.

  12. Tubing rotator reduces tubing wear in rod pumped wells

    SciTech Connect

    Graham, M. ); Brown, C. )

    1994-04-04

    Tubing failures are both expensive and time-consuming. The most common failure results from rod cutting, or, erosion of the tubing ID because of continuous, reciprocating contact with the rod string. Installation of tubing rotators has decreased tubing failures in West Texas waterflood sucker-rod pumped wells. Pumping unit movement powers the rotator system, turning the tubing string at about 1 revolution/day. The rotator system has both surface and subsurface components. A reduction gear box attached to the walking beam converts the pumping unit's reciprocating strokes into rotary motion. A drive line transfers this rotary motion to a gear-driven suspension mandrel in the rotating tubing hanger. Near the bottom of the tubing string, a rotating tubing anchor/catcher allows the entire tubing string, including the tail pipe, seating nipple, and gas and mud anchor to rotate. The rotator hanger suspends the weight of the tubing string on a bearing system. One model of the hanger has a load capacity of 135,000 lb. A surface swivel allows rotation below the pumping tee so that the flow lines remain stationary. Also included in the string is a safety shear coupling to prevent over torquing the tubing.

  13. On current sheet approximations in models of eruptive flares

    NASA Technical Reports Server (NTRS)

    Bungey, T. N.; Forbes, T. G.

    1994-01-01

    We consider an approximation sometimes used for current sheets in flux-rope models of eruptive flares. This approximation is based on a linear expansion of the background field in the vicinity of the current sheet, and it is valid when the length of the current sheet is small compared to the scale length of the coronal magnetic field. However, we find that flux-rope models which use this approximation predict the occurrence of an eruption due to a loss of ideal-MHD equilibrium even when the corresponding exact solution shows that no such eruption occurs. Determination of whether a loss of equilibrium exists can only be obtained by including higher order terms in the expansion of the field or by using the exact solution.

  14. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  15. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  16. YouTube Physics

    NASA Astrophysics Data System (ADS)

    Riendeau, Diane

    2012-09-01

    To date, this column has presented videos to show in class, Don Mathieson from Tulsa Community College suggested that YouTube could be used in another fashion. In Don's experience, his students are not always prepared for the mathematic rigor of his course. Even at the high school level, math can be a barrier for physics students. Walid Shihabi, a colleague of Don's, decided to compile a list of YouTube videos that his students could watch to relearn basic mathematics. I thought this sounded like a fantastic idea and a great service to the students. Walid graciously agreed to share his list and I have reproduced a large portion of it below.

  17. Induction plasma tube

    SciTech Connect

    Hull, D.E.

    1984-02-14

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  18. Approximate Genealogies Under Genetic Hitchhiking

    PubMed Central

    Pfaffelhuber, P.; Haubold, B.; Wakolbinger, A.

    2006-01-01

    The rapid fixation of an advantageous allele leads to a reduction in linked neutral variation around the target of selection. The genealogy at a neutral locus in such a selective sweep can be simulated by first generating a random path of the advantageous allele's frequency and then a structured coalescent in this background. Usually the frequency path is approximated by a logistic growth curve. We discuss an alternative method that approximates the genealogy by a random binary splitting tree, a so-called Yule tree that does not require first constructing a frequency path. Compared to the coalescent in a logistic background, this method gives a slightly better approximation for identity by descent during the selective phase and a much better approximation for the number of lineages that stem from the founder of the selective sweep. In applications such as the approximation of the distribution of Tajima's D, the two approximation methods perform equally well. For relevant parameter ranges, the Yule approximation is faster. PMID:17182733

  19. 21 CFR 876.5980 - Gastrointestinal tube and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5980 Gastrointestinal... intubation, feeding tube, gastroenterostomy tube, Levine tube, nasogastric tube, single lumen tube...

  20. 21 CFR 876.5980 - Gastrointestinal tube and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5980 Gastrointestinal... intubation, feeding tube, gastroenterostomy tube, Levine tube, nasogastric tube, single lumen tube...