Science.gov

Sample records for focal plane arrays

  1. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  2. Solid-state curved focal plane arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)

    2010-01-01

    The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

  3. Towards Dualband Megapixel QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Rafol, S. B.; Salazar, D.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.

    2006-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 x 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEDT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEDT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEDT, uniformity, operability, and modulation transfer functions of the 1024 x 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.

  4. Optical interconnections to focal plane arrays

    SciTech Connect

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  5. Large Format Multicolor QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Soibel, A.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.

    2009-01-01

    Mid-wave infrared (MWIR) and long-wave infrared (LWIR) multicolor focal plane array (FPA) cameras are essential for many DoD and NASA applications including Earth and planetary remote sensing. In this paper we summarize our recent development of large format multicolor QWIP FPA that cover MWIR and LWIR bands.

  6. Short wavelength infrared hybrid focal plane arrays

    NASA Technical Reports Server (NTRS)

    Vural, K.; Blackwell, J. D.; Marin, E. C.; Edwall, D. D.; Rode, J. P.

    1983-01-01

    The employment of area focal plane arrays (FPA) has made it possible to obtain second generation infrared imaging systems with high resolution and sensitivity. The Short Wavelength Infrared (SWIR) region (1-2.5 microns) is of importance for imaging objects at high temperature and under conditions of reflected sunlight. The present investigation is concerned with electrooptical characterization results for 32 x 32 SWIR detector arrays and FPAs which are suitable for use in a prototype imaging spectrometer. The employed detector material is Hg(1-x)Cd(x)Te grown by liquid phase epitaxy on a CdTe transparent substrate. Attention is given to details of processing, the design of the detector array, the multiplexer, the fabrication of the hybrid FPA, and aspects of performance.

  7. Infrared focal plane array crosstalk measurement

    NASA Astrophysics Data System (ADS)

    Dang, Khoa V.; Kauffman, Christopher L.; Derzko, Zenon I.

    1992-07-01

    Crosstalk between two neighboring elements in a focal plane array (FPA) occurs when signal incident on one element in the array is seen on another. This undesired effect can occur due to both the electrical and optical properties of the FPA. An effort is underway at the U.S. Army's Night Vision and Electro-Optics Directorate to develop a capability to measure crosstalk on both mid-wave infrared and long-wave infrared FPAs. A single detector in an array is illuminated using a laser source coupled with a beam expander, collimating lens, and focusing lens. The relative response of that detector to that of its neighboring detectors is measured to calculate crosstalk. The various components of the test station, the methodology for implementing the crosstalk measurement, and a model of the laser spot size are discussed.

  8. Short Wavelength Infrared Hybrid Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Vural, K.; Blackwell, J. D...; Marin, E. C.; Edwall, D. D...; Rode, J. P.

    1983-11-01

    Short wavelength (λc = 2.5 μm) 32 x 32 HgCdTe focal plane arrays have been fabricated for use in an Airborne Imaging Spectrometer (AIS) developed by the Jet Propulsion Labora-tory for NASA. An Imaging Spectrometer provides simultaneous imaging of several spectral bands for applications in the sensing and monitoring of earth resources. The detector material is HgCdTe grown on CdTe substrates using liquid phase epitaxy. Planar processing is used to make photovoltaic detectors on 68 um centers. The detector array is mated to a silicon charge coupled device multiplexer to make hybrid focal plane arrays. Results show high performance detectors with a mean RoA = 9.6 x 107 Ω --cm2 and IleakAge (-100 mV) = 0.037 pA at 120K and near zero background. The yield and uniformity are high. The ratio of the standard deviation of the dc responsivity to the mean is 3% for 98.5% of the pixels. The D1.0 = 1.3 x 1012 cm - âœ"fiz/W at a background of 1013 ph/cm2-s and 120K which is close to the background limited (BLIP) D* of 1.9 x 1012 cm- âœ"Hz/W.

  9. Multispectral linear array (MLA) focal plane mechanical and thermal design

    NASA Technical Reports Server (NTRS)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  10. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  11. CLAES focal plane array. [Cryogenic Limb Array Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Sterritt, L. W.; Kumer, J. B.; Callary, P. C.; Nielsen, R. L.

    1989-01-01

    The Cryogenic Limb Array Etalon Spectrometer for the NASA Upper Atmospheric Research Satellite uses solid-state focal plane arrays to detect emission from the earth's atmosphere over the IR wavelength range 3.5 to 13 microns. This paper discusses the design of the focal plane detector assembly and compares calculated performance with measurements. Measurements were made of focal plane noise and responsivity as functions of frequency (2 to 500 Hz) and temperature (12 to 19 K), pixel-to-pixel and across-array crosstalk, and linearity over a dynamic range of 100,000. The measurements demonstrate that the arrays satisfy the science requirements, and that, in general, there is reasonable agreement between the measurements and the analytical model.

  12. Small pixel oversampled IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Caulfield, John; Curzan, Jon; Lewis, Jay; Dhar, Nibir

    2015-06-01

    We report on a new high definition high charge capacity 2.1 Mpixel MWIR Infrared Focal Plane Array. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which is below the Nyquist limit imposed by the optical systems Point Spread Function (PSF). These smaller sub diffraction limited pixels allow spatial oversampling of the image. We show that oversampling IRFPAs enables improved fidelity in imaging including resolution improvements, advanced pixel correlation processing to reduce false alarm rates, improved detection ranges, and an improved ability to track closely spaced objects. Small pixel HD arrays are viewed as the key component enabling lower size, power and weight of the IR Sensor System. Small pixels enables a reduction in the size of the systems components from the smaller detector and ROIC array, the reduced optics focal length and overall lens size, resulting in an overall compactness in the sensor package, cooling and associated electronics. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  13. Tohoku University Focal Plane Array Controller (TUFPAC)

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Matsumoto, Daigo; Yanagisawa, Kenshi; Katsuno, Yuka; Suzuki, Ryuji; Tokoku, Chihiro; Asai, Ken'ichiro; Nishimura, Tetsuo

    2003-03-01

    TUFPAC (Tohoku University Focal Plane Array Controller) is an array control system originally designed for flexible control and efficient data acquisition of 2048 x 2048 HgCdTe (HAWAII-2) array. A personal computer operated by Linux OS controls mosaic HAWAII-2s with commercially available DSP boards installed on the PCI bus. Triggered by PC, DSP sends clock data to front-end electronics, which is isolated from the DSP board by photo-couplers. Front-end electronics supply powers, biases and clock signals to HAWAII2. Pixel data are read from four outputs of each HAWAII2 simultaneously by way of four channel preamps and ADCs. Pixel data converted to 16 bit digital data are stored in the frame memory on the DSP board. Data are processed in the memory when necessary. PC receives the frame data and stores it in the hard disk of PC in FITS format. A set of the DSP board and front-end electronics is responsible for controlling each HAWAII-2. One PC can operate eight mosaic arrays at most. TUFPAC is applicable to the control of CCDs with minor changes of front-end electronics.

  14. Smart trigger logic for focal plane arrays

    SciTech Connect

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  15. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  16. SOI diode uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kimata, Masafumi; Ueno, Masashi; Takeda, Munehisa; Seto, Toshiki

    2006-02-01

    An uncooled infrared focal plane array (IR FPA) is a MEMS device that integrates an array of tiny thermal infrared detector pixels. An SOI diode uncooled IR FPA is a type that uses freestanding single-crystal diodes as temperature sensors and has various advantages over the other MEMS-based uncooled IR FPAs. Since the first demonstration of an SOI diode uncooled IR FPA in 1999, the pixel structure has been improved by developing sophisticated MEMS processes. The most advanced pixel has a three-level structure that has an independent metal reflector for interference infrared absorption between the temperature sensor (bottom level) and the infrared-absorbing thin metal film (top level). This structure makes it possible to design pixels with lower thermal conductance by allocating more area for thermal isolation without reducing infrared absorption. The new MEMS process for the three-level structure includes a XeF II dry bulk silicon etching process and a double organic sacrificial layer surface micromachining process. Employing advanced MEMS technology, we have developed a 640 x 480-element SOI diode uncooled IR FPA with 25-μm square pixels. The noise equivalent temperature difference of the FPA is 40 mK with f/1.0 optics. This result clearly demonstrates the great potential of the SOI diode uncooled IR FPA for high-end applications. In this paper, we explain the advances and state-of-the-art technology of the SOI diode uncooled IR FPA.

  17. Focal Plane Arrays and Electronics for WISE

    NASA Astrophysics Data System (ADS)

    Masterjohn, Stacy; Hogue, H.; Mattson, R.; Dawson, L.; Bojorquez, A.; Muzilla, M.

    2009-01-01

    DRS provided the four channel focal plane array system for the Wide-field Infrared Survey Explorer (WISE) payload. The two shorter wavelength bands, centered near 3.2 and 4.5 µm, employed 1024x1024 HAWAII 1RG Mercury Cadmium Telluride (MCT) FPAs obtained from Teledyne Imaging Systems, Inc. The two longer wavelength bands, centered near 12 and 24 µm, utilized 1024x1024 arsenic doped silicon (Si:As) Blocked Impurity Band (BIB) FPAs, which were developed for the program by DRS. DRS packaged the 4 FPAs into similar custom cryogenic modules, each with its own flexible cryogenic ribbon cable to route FPA image output signals from within the WISE cryogenic telescope assembly through the cryostat walls. DRS also designed the cables and a common flight electronics box (FEB) to operate all 4 FPAs to provide their multiplexed digital image data streams to subsequent on-payload data processing and downlink systems. Fully functional, non-flight versions of the cabling and FEB were built to operate the FPAs during payload integration. The FPA system was delivered to the WISE payload integrator Space Dynamics Laboratory (SDL) in late 2007, and it is currently being integrated in to the WISE payload.

  18. Terahertz detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  19. Digital-pixel focal plane array development

    NASA Astrophysics Data System (ADS)

    Brown, Matthew G.; Baker, Justin; Colonero, Curtis; Costa, Joe; Gardner, Tom; Kelly, Mike; Schultz, Ken; Tyrrell, Brian; Wey, Jim

    2010-01-01

    Since 2006, MIT Lincoln Laboratory has been developing Digital-pixel Focal Plane Array (DFPA) readout integrated circuits (ROICs). To date, four 256 × 256 30 μm pitch DFPA designs with in-pixel analog to digital conversion have been fabricated using IBM 90 nm CMOS processes. The DFPA ROICs are compatible with a wide range of detector materials and cutoff wavelengths; HgCdTe, QWIP, and InGaAs photo-detectors with cutoff wavelengths ranging from 1.6 to 14.5 μm have been hybridized to the same digital-pixel readout. The digital-pixel readout architecture offers high dynamic range, A/C or D/C coupled integration, and on-chip image processing with low power orthogonal transfer operations. The newest ROIC designs support two-color operation with a single Indium bump connection. Development and characterization of the two-color DFPA designs is presented along with applications for this new digital readout technology.

  20. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  1. MWIR and LWIR Megapixel QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Rafol, S. B.; Thang, J.; Mumolo, Jason; Tidrow, M.; LeVan, P. D.; Hill, C.

    2004-01-01

    A mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal plane array has been demonstrated with excellent imagery. MWIR focal plane has given noise equivalent differential temperature (NETD) of 19 mK at 95K operating temperature with f/2.5 optics at 300K background and LWIR focal plane has given NEDT of 13 mK at 70K operating temperature with same optical and background conditions as MWIR array. Both of these focal plane arrays have shown background limited performance (BLIP) at 90K and 70K operating temperatures with the same optics and background conditions. In this paper, we will discuss their performance in quantum efficiency, NETD, uniformity, and operability.

  2. Self-calibration of Antenna Errors Using Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Napier, P. J.; Cornwell, T. J.

    The thery of focal-plane correlation is reviewed and applied to the problem of the self-calibration and self-correction of a radio telescope with errors in its reflecting surface. Curves are presented which allow the estimation of focal-plane array size and integration time needed for telescopes with varying amounts of error. It is suggested that the technique may have application to the problem of the construction of large telescopes in space.

  3. Uncooled infrared sensors with digital focal plane array

    NASA Astrophysics Data System (ADS)

    Marshall, Charles A.; Butler, Neal R.; Blackwell, Richard; Murphy, Robert; Breen, Thomas

    1996-06-01

    Loral Infrared & Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on the microbolometer technology, a silicon micromachined sensor which combines the wafer level silicon processing with a device structure capable of yielding excellent infrared imaging performance. Here, we report on the development of an uncooled sensor, the LTC500, which incorporates an all digital focal plane array and has a measured NETD of less than 70 mK. The focal plane array and the electronics within the LTC500 have been designed as an integrated unit to meet a broad range of end user applications by providing features such as nonuniformity correction, autogain and level, NTSC video, and digital outputs. The 327 X 245 element focal plane array has a 46.25 micrometers pixel pitch and an on focal plane array 14 bit to analog to digital converter (ADC). The ADC has a measured instantaneous dynamic range of more than 76 dB at a 6.1 MHz output data rate and 60 Hz frame rate. The focal plane array consumes less than 500 mW of power, of which less than 250 mW is used in the ADC. An additional 36 dB of digital coarse offset correction in front of the ADC on the focal plane array results in a total electronic dynamic range of 112 dB. The MRT of the LTC500 camera has been measured at less 0.2 C at f(subscript o).

  4. Megapixel Multi-band QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Rafo, S. B.; Hill, C.; Mumolo, J.; Thang, J.; Tidrow, M.; LeVan, P. D.

    2004-01-01

    A mid-wavelength 1024x1024 pixel quantum well infrared photodetector (QW) focal plane array has been demonstrated with excellent imagery. Noise equivalent differential temperature (NETD) of 19 mK was achieved at 95K operating temperature with f/2.5 optics at 300K background. This focal plane array has shown background limited performance (BLIP) at 90K operating temperature with the same optics and background conditions. In this paper, we will discuss its performance in quantum efficiency, NETD, uniformity, and operability.

  5. Optical Link For Readout From Focal-Plane Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Larsson, Anders G.; Maserjian, Joseph

    1992-01-01

    Outputs of photodetectors modulate beam of light. Proposed optical link carries analog readout signals from photodetectors in focal-plane array to external signal-processing circuitry. Insensitive to electromagnetic interference at suboptical frequencies, and imposes smaller heat load on cryogenic apparatus because it does not include high-power electronic amplifier or laser transmitter within cold chamber.

  6. Testing of focal plane arrays at the AEDC

    NASA Astrophysics Data System (ADS)

    Nicholson, Randy A.; Mead, Kimberly D.; Smith, Robert W.

    1992-07-01

    A facility was developed at the Arnold Engineering Development Center (AEDC) to provide complete radiometric characterization of focal plane arrays (FPAs). The highly versatile facility provides the capability to test single detectors, detector arrays, and hybrid FPAs. The primary component of the AEDC test facility is the Focal Plane Characterization Chamber (FPCC). The FPCC provides a cryogenic, low-background environment for the test focal plane. Focal plane testing in the FPCC includes flood source testing, during which the array is uniformly irradiated with IR radiation, and spot source testing, during which the target radiation is focused onto a single pixel or group of pixels. During flood source testing, performance parameters such as power consumption, responsivity, noise equivalent input, dynamic range, radiometric stability, recovery time, and array uniformity can be assessed. Crosstalk is evaluated during spot source testing. Spectral response testing is performed in a spectral response test station using a three-grating monochromator. Because the chamber can accommodate several types of testing in a single test installation, a high throughput rate and good economy of operation are possible.

  7. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  8. Two-color quantum well infrared photodetector focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bundas, Jason; Patnaude, Kelly; Dennis, Richard; Burrows, Douglas; Cook, Robert; Reisinger, Axel; Sundaram, Mani; Benson, Robert; Woolaway, James; Schlesselmann, John; Petronio, Susan

    2006-05-01

    QmagiQ LLC, has recently completed building and testing high operability two-color Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs). The 320 x 256 format dual-band FPAs feature 40-micron pixels of spatially registered QWIP detectors based on III-V materials. The vertically stacked detectors in this specific midwave/longwave (MW/LW) design are tuned to absorb in the respective 4-5 and 8-9 micron spectral ranges. The ISC0006 Readout Integrated Circuit (ROIC) developed by FLIR Systems Inc. and used in these FPAs features direct injection (DI) input circuitry for high charge storage with each unit cell containing dual integration capacitors, allowing simultaneous scene sampling and readout for the two distinct wavelength bands. Initial FPAs feature pixel operabilities better than 99%. Focal plane array test results and sample images will be presented.

  9. Modulation transfer function of QWIP and superlattice focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Liu, J. K.; Khoshakhlagh, A.; Keo, S. A.; Mumolo, J. M.; Nguyen, J.

    2013-07-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this paper we will discuss the detail MTF measurements of a 1024 × 1024 pixel multi-band quantum well infrared photodetector and 320 × 256 pixel long-wavelength InAs/GaSb superlattice infrared focal plane arrays.

  10. Precise annealing of focal plane arrays for optical detection

    SciTech Connect

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  11. Signal processing of microbolometer infrared focal-plane arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Junju; Qian, Yunsheng; Chang, Benkang; Xing, Suxia; Sun, Lianjun

    2005-01-01

    A 320×240-uncooled-microbolometer-based signal processing circuit for infrared focal-plane arrays is presented, and the software designs of this circuit system are also discussed in details. This signal processing circuit comprises such devices as FPGA, D/A, A/D, SRAM, Flash, DSP, etc., among which, FPGA is the crucial part, which realizing the generation of drive signals for infrared focal-plane, nonuniformity correction, image enhancement and video composition. The device of DSP, mainly offering auxiliary functions, carries out communication with PC and loads data when power-up. The phase locked loops (PLL) is used to generate high-quality clocks with low phase dithering and multiple clocks are to used satisfy the demands of focal-plane arrays, A/D, D/A and FPGA. The alternate structure is used to read or write SRAM in order to avoid the contradiction between different modules. FIFO embedded in FPGA not only makes full use of the resources of FPGA but acts as the channel between different modules which have different-speed clocks. What's more, working conditions, working process, physical design and management of the circuit are discussed. In software designing, all the function modules realized by FPGA and DSP devices, which are mentioned in the previous part, are discussed explicitly. Particularly to the nonuniformity correction module, the pipeline structure is designed to improve the working frequency and the ability to realize more complex algorithm.

  12. Focal-Plane Array Receiver Systems for Space Communications

    NASA Astrophysics Data System (ADS)

    Britcliffe, M.; Hoppe, D.; Vilnrotter, V.

    2007-08-01

    Typical ground antennas intended for use in space communications require large apertures operating at high frequencies. The challenge involved with these applications is achieving the required antenna performance in terms of antenna aperture efficiency and pointing accuracy. The utilization of a focal-plane array in place of a standard single-mode feed minimizes these problems. This article discusses the key elements required to implement a focal-plane array on a large high-frequency antenna. The example of the NASA Deep Space Network 70-m antennas operating at 32 GHz has been chosen to illustrate these advantages. The design of a suitable feed and low-noise cryogenically cooled amplifier and the required signal-processing techniques are described. It is shown that adaptive least mean-square algorithms can be applied to the output of the array elements, in order to obtain the optimum combining weights in real time, even in the presence of dynamic interference (nearby spacecraft in the array's field of view or planetary radiation). This adaptive optimization capability maximizes the combined output signal-to-noise ratio in real time, ensuring maximum data throughput in the communications link when operating in the presence of receiver noise and external interference generally present during planetary encounters.

  13. On-chip ADC for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Chen, Guo-qiang; Wang, Pan; Ding, Rui-jun

    2013-09-01

    This paper presents a low power and small area analog-digital converter (ADC) for infrared focal plane arrays (IRFPA) readout integrated circuit (ROIC). Successive approximation register (SAR) ADC architecture is used in this IRFPA readout integrated circuit. Each column of the IRFPA shares one SAR ADC. The most important part is the three-level DAC. Compared to the previous design, this three-level DAC needs smaller area, has lower power, and more suitable for IRFPA ROIC. In this DAC, its most significant bit (MSB) sub-DAC uses charge scaling, while the least significant bit (LSB) sub-DAC uses voltage scaling. Where the MSB sub-DAC consists of a four-bit charge scaling DAC and a five-bit sub-charge scaling DAC. We need to put a scaling capacitor Cs between these two sub-DACs. Because of the small area, we have more design methods to make the ADC has a symmetrical structure and has higher accuracy. The ADC also needs a high resolution comparator. In this design the comparator uses three-stage operational amplifier structure to have a 77dB differential gain. As the IR focal plane readout circuit signal is stepped DC signal, the circuit design time without adding the sample and hold circuit, so we can use a DC signal instead of infrared focal plane readout circuit output analog signals to be simulated. The simulation result shows that the resolution of the ADC is 12 bit.

  14. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  15. Technological developments of the OGRE focal plane array

    NASA Astrophysics Data System (ADS)

    Tutt, James H.; McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Rogers, Thomas; Murray, Neil; Holland, Andrew; Weatherill, Daniel; Holland, Karen; Colebrook, David; Farn, David

    2015-09-01

    The Off-plane Grating Rocket Experiment (OGRE) is a high resolution soft X-ray spectrometer sub-orbital rocket payload designed as a technology development platform for three low Technology Readiness Level (TRL) components. The incident photons will be focused using a light-weight, high resolution, single-crystal silicon optic. They are then dispersed conically according to wavelength by an array of off-plane gratings before being detected in a focal plane camera comprised of four Electron Multiplying Charge-Coupled Devices (EM-CCDs). While CCDs have been extensively used in space applications; EM-CCDs are seldom used in this environment and even more rarely for X-ray photon counting applications, making them a potential technology risk for larger scale X-ray observatories. This paper will discuss the reasons behind choosing EM-CCDs for the focal plane detector and the developments that have been recently made in the prototype camera electronics and thermal control system.

  16. High operating temperature interband cascade focal plane arrays

    SciTech Connect

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  17. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  18. Strained layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J

    2012-10-23

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  19. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  20. Curved-Focal-Plane Arrays Using Deformed-Membrane Photodetectors

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd

    2004-01-01

    A versatile and simple approach to the design and fabrication of curved-focal-plane arrays of silicon-based photodetectors is being developed. This approach is an alternative to the one described in "Curved Focal-Plane Arrays Using Back- Illuminated High-Purity Photodetectors" (NPO-30566), NASA Tech Briefs, Vol. 27, No. 10 (October 2003), page 10a. As in the cited prior article, the basic idea is to improve the performance of an imaging instrument and simplify the optics needed to obtain a given level of performance by making an image sensor (in this case, an array of photodetectors) conform to a curved focal surface, instead of designing the optics to project an image onto a flat focal surface. There is biological precedent for curved-focal-surface designs: retinas - the image sensors in eyes - conform to the naturally curved focal surfaces of eye lenses. The present approach is applicable to both front-side- and back-side-illuminated, membrane photodetector arrays and is being demonstrated on charge-coupled devices (CCDs). The very-large scale integrated (VLSI) circuitry of such a CCD or other array is fabricated on the front side of a silicon substrate, then the CCD substrate is attached temporarily to a second substrate for mechanical support, then material is removed from the back to obtain the CCD membrane, which typically has a thickness between 10 and 20 m. In the case of a CCD designed to operate in back-surface illumination, delta doping can be performed after thinning to enhance the sensitivity. This approach is independent of the design and method of fabrication of the front-side VLSI circuitry and does not involve any processing of a curved silicon substrate. In this approach, a third substrate would be prepared by polishing one of its surfaces to a required focal-surface curvature. A CCD membrane fabricated as described above would be pressed against, deformed into conformity with, and bonded to, the curved surface. The technique used to press and

  1. Optical-based spectral modeling of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2016-07-01

    We adopt an optical approach in order to model and predict the spectral signature of an infrared focal plane array. The modeling is based on a multilayer description of the structure and considers a one-dimensional propagation. It provides a better understanding of the physical phenomena occurring within the pixels, which is useful to perform radiometric measurements, as well as to reliably predict the spectral sensitivity of the detector. An exhaustive model is presented, covering the total spectral range of the pixel response. A heuristic model is also described, depicting a complementary approach that separates the different optical phenomena inside the pixel structure. Promising results are presented, validating the models through comparison with experimental results. Finally, advantages and limitations of this approach are discussed.

  2. Improved interframe registration based nonuniformity correction for focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Chen, Qian; Gu, Guohua; Sui, Xiubao; Ren, Jianle

    2012-07-01

    In this paper, an improved interframe registration based nonuniformity correction algorithm for focal plane arrays is proposed. The method simultaneously estimates detector parameters and carries out the nonuniformity correction by minimizing the mean square error between the two properly registered image frames. A new masked phase correlation algorithm is introduced to obtain reliable shift estimates in the presence of fixed pattern noise. The use of an outliers exclusion scheme, together with a variable step size strategy, could not only promote the correction precision considerably, but also eliminate ghosting artifacts effectively. The performance of the proposed algorithm is evaluated with clean infrared image sequences with simulated nonuniformity and real pattern noise. We also apply the method to a real-time imaging system to show how effective it is in reducing noise and the ghosting artifacts.

  3. Integration of IR focal plane arrays with massively parallel processor

    NASA Astrophysics Data System (ADS)

    Esfandiari, P.; Koskey, P.; Vaccaro, K.; Buchwald, W.; Clark, F.; Krejca, B.; Rekeczky, C.; Zarandy, A.

    2008-04-01

    The intent of this investigation is to replace the low fill factor visible sensor of a Cellular Neural Network (CNN) processor with an InGaAs Focal Plane Array (FPA) using both bump bonding and epitaxial layer transfer techniques for use in the Ballistic Missile Defense System (BMDS) interceptor seekers. The goal is to fabricate a massively parallel digital processor with a local as well as a global interconnect architecture. Currently, this unique CNN processor is capable of processing a target scene in excess of 10,000 frames per second with its visible sensor. What makes the CNN processor so unique is that each processing element includes memory, local data storage, local and global communication devices and a visible sensor supported by a programmable analog or digital computer program.

  4. Electronic Processing And Advantages Of CMT Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin S.; Dennis, Peter N.; Bradley, Derek J.

    1990-04-01

    There have been many advances in thermal imaging systems and components in recent years such that an infrared capability is now readily available and accepted in a variety of military and civilian applications. Conventional thermal imagers such as the UK common module imager use a mechanical scanning system to sweep a small array of detectors across the thermal scene to generate a high definition TV compatible output. Although excellent imagery can be obtained from this type of system, there are some inherent disadvantages, amongst which are the need for a high speed line scan mechanism and the fundamental limit in thermal resolution due to the low stare efficiency of the system. With the advent of two dimensional focal plane array detectors, staring array imagers can now be designed and constructed in which the scanning mechanism is removed. Excellent thermal resolution can be obtained from such imagers due to the relatively long stare times. The recent progress in this technology will be discussed in this paper together with a description of the signal processing requirements of this type of imaging system.

  5. Combatting infrared focal plane array nonuniformity noise in imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Kumar, Rakesh; Black, Wiley; Boger, James K.; Tyo, J. Scott

    2005-08-01

    One of the most significant challenges in performing infrared (IR) polarimetery is the focal plane array (FPA) nonuniformity (NU) noise that is inherent in virtually all IR photodetector technologies that operate in the midwave IR (MWIR) or long-wave IR (LWIR). NU noise results from pixel-to-pixel variations in the repsonsivity of the photodetectors. This problem is especially severy in the microengineered IR FPA materials like HgCdTe and InSb, as well as in uncooled IR microbolometer sensors. Such problems are largely absent from Si based visible spectrum FPAs. The pixel response is usually a variable nonlinear response function, and even when the response is linearized over some range of temperatures, the gain and offset of the resulting response is usually highly variable. NU noise is normally corrected by applying a linear calibration to the data, but the resulting imagery still retains residual nonuniformity due to the nonlinearity of the photodetector responses. This residual nonuniformity is particularly troublesome for polarimeters because of the addition and subtraction operations that must be performed on the images in order to construct the Stokes parameters or other polarization products. In this paper we explore the impact of NU noise on full stokes and linear-polarization-only IR polarimeters. We compare the performance of division of time, division of amplitude, and division of array polarimeters in the presence of both NU and temporal noise, and assess the ability of calibration-based NU correction schemes to clean up the data.

  6. Design of a focal plane array with analog neural preprocessing

    NASA Astrophysics Data System (ADS)

    Koren, Ivo; Dohndorf, Juergen; Schluessler, Jens-Uwe; Werner, Joerg; Kroenig, Arndt; Ramacher, Ulrich

    1996-12-01

    The design of a CMOS focal plane array with 128 by 128 pixels and analog neural preprocessing is presented. Optical input to the array is provided by substrate-well photodiodes. A two-dimensional neural grid wIth next- neighbor connectivity, implemented as differential current- mode circuit, is capable of spatial low-pass filtering combined with contrast enhancement or binarization. The gain, spatial filter and nonlinearity parameters of the neural network are controlled externally using analog currents. This allows the multipliers and sigmoid transducers to be operated in weak inversion for a wide parameter sweep range as well as in moderate or strong inversion for a larger signal to pattern-noise ratio. The cell outputs are sequentially read out by an offset compensated differential switched-capacitor multiplexer with column preamplifiers. The analog output buffer is designed for pixel rates up to 1 pixel/microsecond and 2 by 100 pF load capacitance. All digital clocks controlling the analog data path are generated on-chip. The clock timing is programmable via a serial computer interface. Using 1 micrometer double-poly double-metal CMOS process, one pixel cell occupies 96 by 96 micrometer2 and the total chip size is about 2.3 cm2. Operating the neural network in weak inversion, the power dissipation of the analog circuitry is less than 100 mW.

  7. Mid-Wave and Long-Wave Infrared Dualband Megapixel QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Ting, D. Z.; Kurth, E.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.

    2008-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel InGaAs/GaAs/AlGaAs based quantum well infrared photodetector (QWIP) focal planes and a 320x256 pixel dual-band pixel co-registered simultaneous QWIP focal plane array have been demonstrated as pathfinders. In this paper, we discuss the development of 1024x1024 MWIR/LWIR dual-band pixel co-registered simultaneous QWIP focal plane array.

  8. Advancement in 17-micron pixel pitch uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Skidmore, George; Howard, Christopher; Clarke, Elwood; Han, C. J.

    2009-05-01

    This paper provides an update of 17 micron pixel pitch uncooled microbolometer development at DRS. Since the introduction of 17 micron pitch 640x480 focal plane arrays (FPAs) in 2006, significant progress has been made in sensor performance and manufacturing processes. The FPAs are now in initial production with an FPA noise equivalent temperature difference (NETD), detector thermal time constant, and pixel operability equivalent or better than that of the current 25 micron pixel pitch production FPAs. NETD improvement was achieved without compromising detector thermal response or thermal time constant by simultaneous reduction in bolometer heat capacity and thermal conductance. In addition, the DRS unique "umbrella" microbolometer cavities were optically tuned to optimize detector radiation absorption for specific spectral band applications. The 17 micron pixel pitch FPAs are currently being considered for the next generation soldier systems such as thermal weapon sights (TWS), vehicle driver vision enhancers (DVE), digitally fused enhanced night vision goggles (DENVG) and unmanned air vehicle (UAV) surveillance sensors, because of overall thermal imaging system size, weight and power advantages.

  9. Hyperspectral modeling of an infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2014-10-01

    Infrared Focal Plane Arrays (FPA) are increasingly used to measure multi- or hyperspectral images. Therefore, it is crucial to control and modelize their spectral response. The purpose of this paper is to propose a modeling approach, adjustable by experimental data, and applicable to the main cooled detector technologies. A physical model is presented, taking into account various optogeometrical properties of the detector, such as disparities of the pixels cut-off wavelengths. It describes the optical absorption phenomenon inside the pixel, by considering it as a stack of optical bulk layers. Then, an analytical model is proposed, based on the interference phenomenon occurring into the structure. This model considers only the three major waves interfering. It represents a good approximation of the physical model and a complementary understanding of the optical process inside the structure. This approach is applied to classical cooled FPAs as well as to specific instruments such as Microspoc (MICRO SPectrometer On Chip), a concept of miniaturized infrared Fourier transform spectrometer, integrated on a classical Mercury-Cadmium-Telluride FPA, and cooled by a cryostat.

  10. Modulation transfer function of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Höglund, L.; Luong, E. M.

    2015-09-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid-wavelength and long-wavelength quantum well infrared photodetector, and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NEΔT of the 8.8μm cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.

  11. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    NASA Technical Reports Server (NTRS)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  12. System and method for generating a deselect mapping for a focal plane array

    SciTech Connect

    Bixler, Jay V; Brandt, Timothy G; Conger, James L; Lawson, Janice K

    2013-05-21

    A method for generating a deselect mapping for a focal plane array according to one embodiment includes gathering a data set for a focal plane array when exposed to light or radiation from a first known target; analyzing the data set for determining which pixels or subpixels of the focal plane array to add to a deselect mapping; adding the pixels or subpixels to the deselect mapping based on the analysis; and storing the deselect mapping. A method for gathering data using a focal plane array according to another embodiment includes deselecting pixels or subpixels based on a deselect mapping; gathering a data set using pixels or subpixels in a focal plane array that are not deselected upon exposure thereof to light or radiation from a target of interest; and outputting the data set.

  13. Multi-Color Megapixel QWIP focal plane arrays for remote sensing

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    In this paper, we will discuss the performance in terms of quantum efficiency, NEAT, uniformity, operability, and modulation transfer functions of the 1024x1024 pixel arrays and the progress of dualband QWIP focal plane array development work.

  14. Next Generation Submillimeter Heterodyne Focal Plane Array Technology

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul; Mehdi, I.; Kawamura, J. H.; Siles, J. V.; Lee, C.; Chattoopadhyay, G.; Bumble, B.; Stern, J. A.

    2014-01-01

    The results from the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory have had a major impact on astronomy, including the first velocity-resolved survey of the critical 158 micron fine structure line of C+ to observations of water in comets. To follow up on Herschel’s discoveries we need to be able to image significant areas with high angular resolution. This requires high-sensitivity focal plane heterodyne arrays, which is the driver for the present effort. The current state of the art for mixers at frequencies above ~1200 GHz utilizes Hot Electron Bolometer (HEB) mixers that have remarkably good sensitivity (noise temperature < 1000 K) and require low local oscillator power. One significant limitation is the IF bandwidth of < few GHz for NbN devices. At 2 THz, 1 GHz corresponds to a Doppler width of 150 km/s, less than seen in the 1900 GHz [CII] line. For higher frequency transitions, such as the [OI] fine structure line at 4.7 THz (63 micron wavelength), this bandwidth is insufficient. Development of new HEB materials such as magnesium based alloys may overcome this challenge, and promising results have been reported in the literature. A characteristic of all HEB mixers is their high sensitivity to local oscillator power variations. We have developed an architecture for array local oscillator power production and distribution that is based on a chain of multipliers starting from a Ka band source. Improved multiplier diodes as well as circuit designs have made it possible to obtain adequate LO power to 2.7 THz, with extension to 4.7 THz promising. We have developed a system design for a 1.9 THz [CII] array with a separate chain of multipliers for each pixel allowing individual control of LO power, together with efficient LO-signal combination in a single beamsplitter. We will present results from multiplier tests and results of measurements on a 4 pixel prototype of a full 16 or more pixel system. This robust and efficient

  15. Validating Phasing and Geometry of Large Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Standley, Shaun P.; Gautier, Thomas N.; Caldwell, Douglas A.; Rabbette, Maura

    2011-01-01

    The Kepler Mission is designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-sized and smaller planets in or near the habitable zone. The Kepler photometer is an array of 42 CCDs (charge-coupled devices) in the focal plane of a 95-cm Schmidt camera onboard the Kepler spacecraft. Each 50x25-mm CCD has 2,200 x 1,024 pixels. The CCDs accumulate photons and are read out every six seconds to prevent saturation. The data is integrated for 30 minutes, and then the pixel data is transferred to onboard storage. The data is subsequently encoded and transmitted to the ground. During End-to-End Information System (EEIS) testing of the Kepler Mission System (KMS), there was a need to verify that the pixels requested by the science team operationally were correctly collected, encoded, compressed, stored, and transmitted by the FS, and subsequently received, decoded, uncompressed, and displayed by the Ground Segment (GS) without the outputs of any CCD modules being flipped, mirrored, or otherwise corrupted during the extensive FS and GS processing. This would normally be done by projecting an image on the focal plane array (FPA), collecting the data in a flight-like way, and making a comparison between the original data and the data reconstructed by the science data system. Projecting a focused image onto the FPA through the telescope would normally involve using a collimator suspended over the telescope opening. There were several problems with this approach: the collimation equipment is elaborate and expensive; as conceived, it could only illuminate a limited section of the FPA (.25 percent) during a given test; the telescope cover would have to be deployed during testing to allow the image to be projected into the telescope; the equipment was bulky and difficult to situate in temperature-controlled environments; and given all the above, test setup, execution, and repeatability were significant concerns. Instead of using this complicated approach of

  16. 1024x1024 Pixel MWIR and LWIR QWIP Focal Plane Arrays and 320x256 MWIR:LWIR Pixel Colocated Simultaneous Dualband QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Liu, John K.; Hill, Cory J.; Rafol, S. B.; Mumolo, Jason M.; Trinh, Joseph T.; Tidrow, M. Z.; Le Van, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NE(Delta)T) of 17 mK at a 95K operating temperature with f/2.5 optics at 300K background and the LWIR detector array has demonstrated a NE(Delta)T of 13 mK at a 70K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90K and 70K operating-temperatures respectively, with similar optical and background conditions. In addition, we are in the process of developing MWIR and LWIR pixel collocated simultaneously readable dualband QWIP focal plane arrays.

  17. Focal plane array based infrared thermography in fine physical experiment

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2008-03-01

    By two examples of dissimilar physical phenomena causing thermophysical effects, the unique capabilities of one of the up-to-date methods of experimental physics—focal plane array (FPA) based infrared (IR) thermography (IRT), are demonstrated distinctly. Experimenters inexperienced in IRT can grasp how this method provides a means for combining real-time visualization with quantitative analysis. A narrow-band short-wavelength IR camera was used in the experiments. It is discussed and stated that IRT is best matched and suited to the next two test conditions—when a heated specimen is thin and when heat is generated in the immediate region of a surface of a solid. The first prerequisite is realized in the search for directional patterns of combined low-power radiation sources with the use of the IRT-aided method. The second one is realized in studies of water vapour adsorption on uneven (irregular) surfaces of solid materials. With multiple swatches taken from a set of different fabrics and used as experimental samples, a sharp distinction between adsorptivities of their surfaces is strikingly illustrated by IRT time-domain measurements exhibiting the associated thermal effect ranging within an order of magnitude. It is justified that the described IRT-aided test can find practical implementation at least in the light industry. Emissivities of different fabrics are evaluated experimentally with the described reflection method based on the narrow spectral range of IRT. On the basis of direct IR observations, attention is paid to the need for close control over the surface temperature increase while the adsorption isotherms are being measured. Sensitivity of the FPA-based IRT method, as applied to examine the kinetics of initial stages of adsorption of gaseous molecules on the solid surface, is evaluated analytically and quantitatively. The relationship between the amount of adsorbate and the measurable excess of adsorbent temperature is found. It is discovered

  18. Focal-Plane Arrays of Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Wilson, Daniel; Hill, Cory; Liu, John; Bandara, Sumith; Ting, David

    2007-01-01

    Focal-plane arrays of semiconductor quantum-dot infrared photodetectors (QDIPs) are being developed as superior alternatives to prior infrared imagers, including imagers based on HgCdTe devices and, especially, those based on quantum-well infrared photodetectors (QWIPs). HgCdTe devices and arrays thereof are difficult to fabricate and operate, and they exhibit large nonunformities and high 1/f (where f signifies frequency) noise. QWIPs are easier to fabricate and operate, can be made nearly uniform, and exhibit lower 1/f noise, but they exhibit larger dark currents, and their quantization only along the growth direction prevents them from absorbing photons at normal incidence, thereby limiting their quantum efficiencies. Like QWIPs, QDIPs offer the advantages of greater ease of operation, greater uniformity, and lower 1/f noise, but without the disadvantages: QDIPs exhibit lower dark currents, and quantum efficiencies of QDIPs are greater because the three-dimensional quantization of QDIPs is favorable to the absorption of photons at normal or oblique incidence. Moreover, QDIPs can be operated at higher temperatures (around 200 K) than are required for operation of QWIPs. The main problem in the development of QDIP imagers is to fabricate quantum dots with the requisite uniformity of size and spacing. A promising approach to be tested soon involves the use of electron-beam lithography to define the locations and sizes of quantum dots. A photoresist-covered GaAs substrate would be exposed to the beam generated by an advanced, high-precision electron beam apparatus. The exposure pattern would consist of spots typically having a diameter of 4 nm and typically spaced 20 nm apart. The exposed photoresist would be developed by either a high-contrast or a low-contrast method. In the high-contrast method, the spots would be etched in such a way as to form steep-wall holes all the way down to the substrate. The holes would be wider than the electron beam spots perhaps as

  19. Thin active region, type II superlattice photodiode arrays: Single-pixel and focal plane array characterization

    NASA Astrophysics Data System (ADS)

    Little, J. W.; Svensson, S. P.; Beck, W. A.; Goldberg, A. C.; Kennerly, S. W.; Hongsmatip, T.; Winn, M.; Uppal, P.

    2007-02-01

    We have measured the radiometric properties of two midwave infrared photodiode arrays (320×256pixel2 format) fabricated from the same wafer comprising a thin (0.24μm), not intentionally doped InAs /GaSb superlattice between a p-doped GaSb layer and a n-doped InAs layer. One of the arrays was indium bump bonded to a silicon fanout chip to allow for the measurement of properties of individual pixels, and one was bonded to a readout integrated circuit to enable array-scale measurements and infrared imaging. The superlattice layer is thin enough that it is fully depleted at zero bias, and the collection efficiency of photogenerated carriers in the intrinsic region is close to unity. This simplifies the interpretation of photocurrent data as compared with previous measurements made on thick superlattices with complex doping profiles. Superlattice absorption coefficient curves, obtained from measurements of the external quantum efficiency using two different assumptions for optical coupling into the chip, bracket values calculated using an eight-band k •p model. Measurements of the quantum efficiency map of the focal plane array were in good agreement with the single-pixel measurements. Imagery obtained with this focal plane array demonstrates the high uniformity and crystal quality of the type II superlattice material.

  20. Status of uncooled focal plane detector arrays for smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Ringh, Ulf; Jansson, Christer

    1996-06-01

    A cooperative research project between the Defense Science and Technology Organization, Australia, and the National Defense Research Establishment, Sweden, seeks to investigate concepts for smart IR focal plane detector arrays, whereby a monolithic Semiconductor Film Bolometer detector array is integrated with a CMOS signal conditioning circuit, analog- to-digital conversion and signal processing functions on the same silicon chip. Novel signal conditioning and on-chip digital readout techniques have been successfully demonstrated, and the supporting signal processing electronic design is being developed. This paper discusses the status of detector materials research and staring focal plane array development. The first experimental array has been delivered and is undergoing evaluation.

  1. Signal processing and compensation electronics for junction field-effect transistor /JFET/ focal plane arrays

    NASA Astrophysics Data System (ADS)

    Wittig, K. R.

    1982-06-01

    A signal processing system has been designed and constructed for a pyroelectric infrared area detector which uses a matrix-addressable JFET array for readout and for on-focal plane preamplification. The system compensates for all offset and gain nonuniformities in and after the array. Both compensations are performed in real time at standard television rates, so that changes in the response characteristics of the array are automatically corrected for. Two-point compensation is achieved without the need for two separate temperature references. The focal plane circuitry used to read out the array, the offset and gain compensation algorithms, the architecture of the signal processor, and the system hardware are described.

  2. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  3. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  4. Optically coupled focal plane arrays using lenslets and multiplexers

    DOEpatents

    Veldkamp, Wilfrid B.

    1991-01-01

    A detector array including a substrate having an array of diffractive lenses formed on the top side of the substrate and an array of sensor elements formed on the backside of the substrate. The sensor elements within the sensor array are oriented on the backside so that each sensor is aligned to receive light from a corresponding diffractive lens of the lens array. The detector array may also include a second substrate having an array of diffractive elements formed on one of its surfaces, the second substrate being disposed above and in proximity to the top side of the other substrate so that the elements on the second substrate are substantially aligned with corresponding sensor elements and diffractive lenses on the other substrate.

  5. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  6. Performance of the QWIP focal plane arrays for NASA's Landsat Data Continuity Mission

    NASA Astrophysics Data System (ADS)

    Jhabvala, M.; Choi, K.; Waczynski, A.; La, A.; Sundaram, M.; Costard, E.; Jhabvala, C.; Kan, E.; Kahle, D.; Foltz, R.; Boehm, N.; Hickey, M.; Sun, J.; Adachi, T.; Costen, N.; Hess, L.; Facoetti, H.; Montanaro, M.

    2011-06-01

    The focal plane assembly for the Thermal Infrared Sensor (TIRS) instrument on NASA's Landsat Data Continuity Mission (LDCM) consists of three 512 x 640 GaAs Quantum Well Infrared Photodetector (QWIP) arrays. The three arrays are precisely mounted and aligned on a silicon carrier substrate to provide a continuous viewing swath of 1850 pixels in two spectral bands defined by filters placed in close proximity to the detector surfaces. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). QWIP arrays were evaluated from four laboratories; QmagiQ, (Nashua, NH), Army Research Laboratory, (Adelphi, MD), NASA/ Goddard Space Flight Center, (Greenbelt, MD) and Thales, (Palaiseau, France). All were found to be suitable. The final discriminating parameter was the spectral uniformity of individual pixels relative to each other. The performance of the QWIP arrays and the fully assembled, NASA flight-qualified, focal plane assembly will be reviewed. An overview of the focal plane assembly including the construction and test requirements of the focal plane will also be described.

  7. Design, fabrication and characterization of a polarization-sensitive focal plane array

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2015-03-01

    Measurement of polarization is a powerful yet underutilized technique, with potential applications in remote sensing, astronomy, biomedical imaging and optical metrology. We present the design, fabrication and characterization of a CCD-based polarization-sensitive focal plane array (FPA). These devices are compact permanently aligned detectors capable of determining the degree and angle of linear polarization in a scene, with a single exposure, over a broad spectral range. To derive the polarization properties, we employ a variation of the division-of-focal plane modulation strategy. The devices are fabricated by hybridizing a micropolarizer array (MPA) with a CCD. The result is a "general-purpose" polarization-sensitive imaging sensor, which can be placed at the focal plane of a wide number of imaging systems (and even spectrographs). We present our efforts to date in developing this technology and examine the factors that fundamentally limit the performance of these devices.

  8. Progress in DRS production line for uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Han, Chien J.; Howard, Christopher G.; Howard, Philip E.; Ionescu, Adrian C.; Li, Chuan C.; Monson, John C.; Naranjo, Robert L.; Scholten, Myron J.; Sweeney, R. Michael; Strong, Roger L.; Sullivan, William; Teherani, Towfik H.

    2004-08-01

    To improve its capacity to meet customer needs, DRS Infrared Technologies began technology transfer of the VOx uncooled FPA process from its Anaheim facility to its Dallas facility in the Fall of 2002. The new facility delivered its first U3000 arrays (320x240, 51μm pitch) three months after the VOx deposition system was installed, and produced over 300 units of U3000 per month just twelve months after beginning the transfer. Process enhancements and tool upgrades have enabled excellent control of the microbolometer process. Today, this line selectively fabricates arrays with NETD varying from 30mK to 80mK in 15mK bins with less than 30 ms time constant. The same arrays also have low defect density of less than 2% dead pixels and no more than one row and one column out. The arrays are packaged in imager or radiometer (F/1.4) packages. DRS also transferred small and large format arrays with 25μm pitch under the PEO-Soldier Sensor Producibility to the Dallas facility. Production of the 25μm pitch devices is currently more that 100 units per month and is ramping up to meet customer demand. This paper reports on production progress on the U3000s and the status of U3500 and U6000 25μm pitch array.

  9. Focal Plane Arrays of Voltage-Biased Superconducting Bolometers

    NASA Technical Reports Server (NTRS)

    Myers, Michael J.; Clarke, John; Gildemeister, J. M.; Lee, Adrian T.; Richards, P. L.; Schwan, Dan; Skidmore, J. T.; Spieler, Helmuth; Yoon, Jongsoo

    2001-01-01

    The 200-micrometer to 3-mm wavelength range has great astronomical and cosmological significance. Science goals include characterization of the cosmic microwave background, measurement of the Sunyaev-Zel'dovich effect in galaxy clusters, and observations of forming galaxies. Cryogenic bolometers are the most sensitive broadband detectors in this frequency range. Because single bolometer pixels are reaching the photon noise limit for many observations, the development of large arrays will be critical for future science progress. Voltage-biased superconducting bolometers (VSBs) have several advantages compared to other cryogenic bolometers. Their strong negative electrothermal feedback enhances their linearity, speed, and stability. The large noise margin of the SQUID readout enables multiplexed readout schemes, which are necessary for developing large arrays. In this paper, we discuss the development of a large absorber-coupled array, a frequency-domain SQUID readout multiplexer, and an antenna-coupled VSB design.

  10. Measurement of modulation transfer function of focal plane arrays and imaging systems

    NASA Astrophysics Data System (ADS)

    Boreman, Glenn D.

    1994-05-01

    A method for measuring the modulation transfer function (MTF) of focal-plane arrays (FPA's) has been developed which uses the statistical properties of laser speckle. The entire area of the focal plane is characterized, and no optics are required for target projection. The random nature of the test pattern avoids phasing effects between the target and the detector-array structure, which greatly relaxes alignment tolerances as compared to other methods. The technique is applicable to arrays that have intentional nonlinearity of response, as well as to those arrays that are inherently linear. The test can be performed on any focal-plane configuration, either one dimensional (1D) or two dimensional (2D). The data processing is usually performed by an off-line computer. However, the test is also useful for real-time diagnostics, to facilitate adjustment of focal-plane operating parameters. In the real-time case, the necessary signal processing can be performed on a digital oscilloscope.

  11. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  12. Status of very long infrared-wave focal plane array development at DEFIR

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Chorier, Ph.

    2009-05-01

    The very long infrared wavelength (>14μm) is a very challenging range for the design of large HgCdTe focal plane arrays. As the wavelength gets longer (ie the semiconductor gap gets smaller), the physic of photodiodes asks for numerous technological improvements to keep a high level of detection performance. DEFIR (LETI-Sofradir common research team) has been highly active in this field during the last few years. The need (mainly expressed by the space industry ESA and CNES) of very long wave focal plane arrays appears very demanding in terms of dark current, defect density and of course quantum efficiency. This paper aims at presenting a status of long and very long wave focal plane array development at DEFIR for three different ion implanted technologies: n on p mercury vacancies doped technology, n on p extrinsic doped technology, and p on n arsenic on indium technology. Special focus is done to 15μm cut off n/p focal plane array fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50K.

  13. Characterization of post-correction uniformity on infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    O'Neill, John J.; Costanzo, Christopher R.; Kaplan, David R.

    1995-05-01

    With increased requirements for better performance being placed on thermal imaging systems, new characterization figures of merit are being developed to assess infrared focal plane array (IRFPA) attributes. Post correction uniformity (PCU) is a parameter that determines how successfully a thermal imaging system can eliminate spatial noise from scanning and staring focal plane arrays. Requirements on PCU, particularly for the more sensitive IRFPAs and applications, are quite rigorous. Test issues of l/f noise, drift, and repeatability become critical and require a rethinking of accepted methods. As infrared sensors have become more sensitive, the need to characterize these focal plane arrays under more controlled and realistic test conditions has emerged. The U.S. Army Night Vision and Electronic SEnsors Directorate (NVESD) has attempted to address these issues by developing a unique capability to measure the PCU of IR focal plane arrays using software algorithms and a specialized mechanical modulator. The modulator is a two foot diameter, two toothed (one reflective and one emissive) blade, which is used to facilitate the real-time collection of test, gain, and offset flux levels. This paper addresses (1) the significance of PCU from a system perspective, (2) discuss the limitations of various PCU measurement techniques, (3) present the NVESD approach for measuring PCU, and (4) report PCU data collected using these techniques.

  14. Radiation-Induced Transient Effects in Near Infrared Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Pickel, J.; Marshall, P.; Waczynski, A.; McMurray, R.; Gee, G.; Polidan, E.; Johnson, S.; McKeivey, M.; Ennico, K.; Johnson, R.

    2004-01-01

    This viewgraph presentation describes a test simulate the transient effects of cosmic ray impacts on near infrared focal plane arrays. The objectives of the test are to: 1) Characterize proton single events as function of energy and angle of incidence; 2) Measure charge spread (crosstalk) to adjacent pixels; 3) Assess transient recovery time.

  15. Performance of focal plane arrays for the photon counting arrays (PCAR) program

    NASA Astrophysics Data System (ADS)

    Blessinger, Michael A.; Enriquez, Marlon; Groppe, Joseph V.; Flynn, Kevin; Sudol, Thomas M.; Onat, Bora M.; Kleinhans, William E.

    2007-04-01

    The DARPA PCAR program is sponsoring the development of low noise, near infrared (1.5 μm wavelength) focal plane arrays (FPAs) for night vision applications. The first phase of this work has produced a collection of 640 x 512 pixel, 20 μm pitch FPAs with low noise. The approach was to design four different read out integrated circuits (ROICs), all compatible with the same bump-bonded InGaAs photodiode detector array. Two of the designs have capacitive transimpedance amplifier (CTIA) pixels, each with a somewhat different amplifier design and with two different sizes of small integration capacitors. The third design is a source follower per detector (SFD) pixel, integrating on the detector capacitance. The fourth design also integrates on the detector capacitance, but uses a moderate gain, in-pixel amplifier to boost the signal level, and also has a differential pixel output. All four designs require off-chip correlated sampling to achieve the desired noise level. The correlated sampling is performed digitally in the data acquisition software. Each design is capable of 30 frames per second read out rate, and has a dynamic range of 1000:1 using a rolling, non-snapshot integration. The designs were fabricated in a standard CMOS foundry process, and were bump-bonded to InGaAs detector arrays. All four designs are working without any significant design errors, and are producing low noise imaging, with less than 50 electrons rms noise per pixel after correlated double sampling.

  16. QWIP focal plane arrays performances from MWIR up to VLWIR

    NASA Astrophysics Data System (ADS)

    Robo, J. A.; Costard, E.; Truffer, J. P.; Nedelcu, A.; Marcadet, X.; Bois, P.

    2009-05-01

    Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures at various wavelengths in MWIR, LWIR and VLWIR. An overview of the available performances of QWIPs in the whole infrared spectrum is presented here. We also discuss about the under-development products such as dual band and polarimetric structures.

  17. Compact polarimeters based on polarization-sensitive focal plane arrays

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2014-08-01

    We report on the design, fabrication and performance of the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). Despite great advances in astronomical (and terrestrial remote sensing) instrumentation, the measurement of polarization of light remains challenging and infrequent. Recently, the fabrication of micropolarizer arrays has allowed the development of compact polarimeters which promise to make polarimetry more accessible. These devices are capable of measuring the degree of polarization (DoP) and angle of polarization (AoP) across a scene using a single exposure ("snapshot"). They are compact, light-weight and mechanically robust, making them ideal for deployment on space-based platforms. We present the performance of such a polarimeter and describe the kind of science that is possible with RITPIC and future generations of these revolutionary devices.

  18. WISE-Heritage Megapixel BIB Focal Plane Arrays for Astronomy

    NASA Astrophysics Data System (ADS)

    Hogue, Henry; Mainzer, A.; Molyneux, D.; Reynolds, D.; Masterjohn, S.; Muzilla, M.

    2009-01-01

    The most significant design features of the low-noise 1024x1024 cryogenic FPA readout developed by DRS for the Wide-field Infrared Survey Explorer (WISE) have been transferred to a new high-flux FPA readout design for terrestrial and airborne astronomy with warm telescopes. The development of the new readout and the first 1024x1024 arsenic-doped silicon (Si:As) BIB FPA based on it was a joint effort between DRS and NASA JPL. This FPA is called the MegaMIR FPA, since it will be initially utilized in the MegaMIR camera being developed by JPL. New high-flux Si:As detector arrays were fabricated by DRS for use in the MegaMIR FPA, and the first two engineering FPAs have been prepared and delivered to JPL for evaluation. . In parallel DRS is applying the same high-flux readout for development of a 512x512 antimony-doped silicon (Si:Sb) having twice the pixel size and pitch as the MegaMIR FPA. The 4 times larger pixel size is better matched to the diffraction-limited resolution of the longer-wavelength Si:Sb detectors ( 40 µm cut-off vs 28 µm of Si:As).

  19. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, Jérome; Huet, O.; Truffer, JP.; Pozzi, Maxime; Oubensaid, E. H.; Hamard, S.; Maillart, P.; Costard, E.

    2014-10-01

    Thanks to the various developments presently available, SWIR technology presents a growing interest and gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material, initially developed for telecommunications detectors, appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. In the context of this evolving domain, the InGaAs imagery activities from III-VLab were transferred to Sofradir, which provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 and CACTUS640. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE SW and the perspectives of InGaAs new developments.

  20. New developments on InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Coussement, J.; Rouvié, A.; Oubensaid, E. H.; Huet, O.; Hamard, S.; Truffer, J.-P.; Pozzi, M.; Maillart, P.; Reibel, Y.; Costard, E.; Billon-Lanfrey, D.

    2014-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The recent transfer of imagery activities from III-VLab to Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW and CACTUS640 SW. The developments, begun at III-Vlab towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640×512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, some performances optimization and the last developments leading to SNAKE SW.

  1. Low power, highly linear output buffer. [for infrared focal plane arrays

    NASA Technical Reports Server (NTRS)

    Foley, D.; Butler, N.; Stobie, J.

    1992-01-01

    A class AB CMOS output buffer has been designed for use on an IR focal plane array. Given the requirements for power dissipation and load capacitance a class A output, such as a source follower, would be unsuitable. The approach taken uses a class AB amplifier configured as a charge integrator. Thus it converts a charge packet in the focal plane multiplexer to a voltage which is then the output of the focal plane. With a quiescent current of 18 micro-a and a load capacitance of 100 pf, the amplifier has an open loop unity gain bandwidth of 900 khz. Integral nonlinearity is better than .03 percent over 5.5 volts when run with VDD-VSS = 6v.

  2. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, J.; Huet, O.; Truffer, J. P.; Pozzi, M.; Oubensaid, E. H.; Hamard, S.; Chaffraix, V.; Costard, E.

    2015-05-01

    SWIR spectral band is an attractive domain thanks to its intrinsic properties. Close to visible wavelengths, SWIR images interpretation is made easier for field actors. Besides complementary information can be extracted from SWIR band and bring significant added value in several fields of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). Among the various new technologies able to detect SWIR wavelengths, InGaAs appears as a key technology. Initially developed for optical telecommunications, this material guaranties performances, stability and reliability and is compatible with attractive production capacity. Thanks to high quality material, very low dark current levels can be achieved at ambient temperature. Then uncooled operation can be set up, allowing compact and low power systems. Since the recent transfer of InGaAs imaging activities from III-Vlab, Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm sensor appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE and the perspectives of InGaAs new developments.

  3. Type II superlattice infrared focal plane arrays: Optical, electrical, and mid-wave infrared imaging characterization.

    NASA Astrophysics Data System (ADS)

    Little, John; Svensson, Stefan; Goldberg, Arnie; Kennerly, Steve; Olver, Kim; Hongsmatip, Trirat; Winn, Michael; Uppal, Parvez

    2006-03-01

    We have studied the infrared optical and temperature dependent electrical properties of 320 x 256 arrays of GaSb/InAs type II superlattice infrared photodiodes. Good agreement between single-pixel and focal plane array measurements of the photon-to- electron/hole conversion efficiency was obtained, and the infrared absorption coefficient extracted from these measurements was found to be comparable to that of HgCdTe with the same bandgap as the type II superlattice. Temperature and voltage dependent dark current measurements and the voltage dependent photocurrent generated by a 300 K background scene were described well using a semi-empirical model of the photodiode. We will show high-quality images obtained from the mid-infrared focal plane array operating at 78 K.

  4. Focal plane resolution and overlapped array time delay and integrate imaging

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Cota, Stephen A.; Lomheim, Terrence S.; Kalman, Linda S.

    2010-06-01

    In this paper we model sub-pixel image registration for a generic earth-observing satellite system with a focal plane using two offset time delay and integrate (TDI) arrays in the focal plane to improve the achievable ground resolution over the resolution achievable with a single array. The modeling process starts with a high-resolution image as ground truth. The Parameterized Image Chain Analysis & Simulation Software (PICASSO) modeling tool is used to degrade the images to match the optical transfer function, sampling, and noise characteristics of the target system. The model outputs a pair of images with a separation close to the nominal half-pixel separation between the overlapped arrays. A registration estimation algorithm is used to measure the offset for image reconstruction. The two images are aligned and summed on a grid with twice the capture resolution. We compare the resolution in images between the inputs before overlap, the reconstructed image, and a simulation for the image which would have been captured on a focal plane with twice the resolution. We find the performance to always be better than the lower resolution baseline, and to approach the performance of the high-resolution array in the ideal case. We show that the overlapped array imager significantly outperforms both the conventional high- and low-resolution imagers in conditions with high image smear.

  5. Mercury cadmium telluride short- and medium-wavelength infrared staring focal plane arrays

    NASA Technical Reports Server (NTRS)

    Vural, Kadri

    1987-01-01

    Short and medium IR wavelength 64 x 64 hybrid focal plane arrays (FPAs) have been developed using sapphire-grown HgCdTe. The short wavelength arrays were developed for a prototype airborne imaging spectrometer, while those of medium wavelength are suitable for tactical missile seekers and strategic surveillance systems. Attention is presently given to results obtained for these FPAs' current-voltage characteristics, as well as for their characterization at different temperatures. The detector arrays were also mated to a multiplexer and characterized under different operating conditions. The unit cell size used is 52 x 52 microns.

  6. Submillisecond measurements of system optical modulation functions in mosaic focal plane arrays

    NASA Technical Reports Server (NTRS)

    Thurlow, P. E.

    1981-01-01

    Measurements of system optical modulation functions (MTF, SWR) may be distorted by time-dependent environmental effects (thermal, vibration, flexure) and by electronics drift. Fast data collection may therefore be advantageous by minimizing drift time. The problem of fast data collection is accentuated when modulation data must be taken on a large number of detectors in a focal plane array. A method has been developed for the generation and storage of knife edge data from focal plane arrays, where data collection time per detector is in the submillisecond range. Once knife edge collects are completed, MTF response is found using conventional convolution techniques. SWR is obtained directly from knife edge response using a computerized simulation algorithm which bypasses use of MTF harmonics. Requirements for detector electronics speed, damping, and dynamic range are considered.

  7. Solar-Driven Background Intensity Variations in a Focal Plane Array

    SciTech Connect

    Eyer, H.H.; Guillen, J.L.L.; Vittitoe, C.N.

    1998-12-03

    Portions of a series of end-of-life tests are described for a Sandia National Li~boratories- designed space-based sensor that utilizes a mercury-cadmium-telluride focal plane array. Variations in background intensity are consistent with the hypothesis that seasonal variations in solar position cause changes in the pattern of shadows falling across the compartment containing the optical elements, filter-band components, and focal plane array. When the sensor compartment is most fully illuminated by the sun, background intensities are large and their standard deviations tend to be large. During the winter season, when the compartment is most fully shadowed by surrounding structure, backgrounci intensities are small and standard deviations tend to be small. Details in the surrounding structure are speculated to produce transient shadows that complicate background intensifies as a function of time or of sensor position in orbit.

  8. InAs/GaSb superlattices for advanced infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Schmitz, Johannes; Rutz, Frank; Fleißner, Joachim; Scheibner, Ralf; Ziegler, Johann

    2009-11-01

    We report on the development of high performance focal plane arrays for the mid-wavelength infrared spectral range from 3-5 μm (MWIR) on the basis of InAs/GaSb superlattice photodiodes. An investigation on the minority electron diffusion length with a set of six sample ranging from 190 to 1000 superlattice periods confirms that InAs/GaSb superlattice focal plane arrays achieve very high external quantum efficiency. This enabled the fabrication of a range of monospectral MWIR imagers with high spatial and excellent thermal resolution at short integration times. Furthermore, novel dual-color imagers have been developed, which offer advanced functionality due to a simultaneous, pixel-registered detection of two separate spectral channels in the MWIR.

  9. InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging

    NASA Astrophysics Data System (ADS)

    Rehm, R.; Walther, M.; Schmitz, J.; Fleißner, J.; Fuchs, F.; Ziegler, J.; Cabanski, W.

    2006-03-01

    The first fully operational mid-IR (3-5 μm) 256×256 IR-FPA camera system based on a type-II InAs/GaSb short-period superlattice showing an excellent noise equivalent temperature difference below 10 mK and a very uniform performance has been realized. We report on the development and fabrication of the detecor chip, i.e., epitaxy, processing technology and electro-optical characterization of fully integrated InAs/GaSb superlattice focal plane arrays. While the superlattice design employed for the first demonstrator camera yielded a quantum efficiency around 30%, a superlattice structure grown with a thicker active layer and an optimized V/III BEP ratio during growth of the InAs layers exhibits a significant increase in quantum efficiency. Quantitative responsivity measurements reveal a quantum efficiency of about 60% for InAs/GaSb superlattice focal plane arrays after implementing this design improvement.

  10. Development of uncooled focal plane detector arrays for smart IR sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.; Reinhold, Olaf; Ringh, Ulf; Jansson, Christer

    1997-11-01

    This paper reports on the development of silicon microbolometer uncooled IR focal plane detector arrays at the Defence Science and Technology Organization (DSTO), in collaboration with the National Defence Research Establishment (FOA). The detector arrays were designed by Electro-optic Sensor Design, which also provided specialist scientific advice on array fabrication. Detector arrays are prepared by monolithic processing at DSTO, using surface micromachining to achieve thermal isolation, and are integrated on-chip with a CMOS signal conditioning and readout microcircuit designed by FOA. The CMOS circuit incorporates 16-bit analog-to-digital conversion, and is described in more detail in an accompanying paper presented. The ultimate objective is to develop 'smart' focal plane arrays which have on-chip signal processing functions, giving a capability for decision making such as automatic target detection. The silicon microbolometer technology described in the paper was invented at DSTO, and is representative of core technology employed in many initiatives world-wide. A brief overview will be given of theoretical considerations which influence detector array design, followed by an outline of recent developments in array processing.

  11. Modulation transfer function measurements of QWIP and superlattice focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Rafol, S. B.; Soibel, A.; Khoshakhlagh, A.; Hill, C.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.

    2013-01-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels multi-band quantum well infrared photodetector and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays.

  12. Modulation Transfer Function Measurement of Infrared Focal-Plane Arrays with Small Fill Factors

    NASA Astrophysics Data System (ADS)

    de la Barrière, Florence; Druart, Guillaume; Guérineau, Nicolas; Rommeluère, Sylvain; Mugnier, Laurent; Gravrand, Olivier; Baier, Nicolas; Lhermet, Nicolas; Destefanis, Gérard; Derelle, Sophie

    2012-10-01

    This paper describes an original method to measure the modulation transfer function (MTF) of an infrared focal-plane array (IRFPA), based on a diffraction grating called a continuously self-imaging grating (CSIG). We give a general methodology to design the test bench, and we describe the data processing approach which has been developed to extract relevant information about the size of the photodiodes and filtering effects. The MTF measurement capability of this method is illustrated with a cooled IRFPA.

  13. Focal Plane Array Shutter Mechanism of the JWST NIRSpec Detector System

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    This viewgraph presentation reviews the requirements, chamber location, shutter system design, stepper motor specifications, dry lubrication, control system, the environmental cryogenic function testing and the test results of the Focal Plane Array Shutter mechanism for the James Webb Space Telescope Near Infrared Spectrum Detector system. Included are design views of the location for the Shutter Mechanism, lubricant (lubricated with Molybdenum Di Sulfide) thickness, and information gained from the cryogenic testing.

  14. Advanced planar LWIR and VLWIR HgCdTe focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chu, Muren; Gurgenian, Ray H.; Mesropian, Shoghig; Terterian, Sevag; Becker, Latika; Walsh, D.; Kokoroski, S. A.; Goodnough, Mark A.; Rosner, Brett D.

    2004-01-01

    The advanced planar ion-implantation-isolated heterojunction process, which utilizes the benefits of both the boron implantation and the heterojunction epitaxy techniques, has been developed and used to produce longwave and very longwave HgCdTe focal plane arrays in the 320v256 format. The wavelength of these arrays ranges from 10.0-17.0μm. The operability of the longwave HgCdTe arrays is typically over 97%. Without anti-reflection coating and with a 60° FOV cold shield, the D* of the 10.0μm array is 9.4x1010cm x (Hz)1/2 x W-1 at 77K. The 14.7μm and 17.0μm very longwave HgCdTe array diodes have excellent reverse characteristics. The detailed characteristics of these arrays are presented.

  15. 256 x 256 hybrid HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bailey, Robert B.; Kozlowski, Lester J.; Chen, Jenkon; Bui, Duc Q.; Vural, Kadri

    1991-05-01

    Hybrid HgCdTe 256 x 256 focal plane arrays have been developed to meet the sensitivity, resolution, and field-of-view requirements of high-performance medium-wavelength infrared (MWIR) imaging systems. The detector arrays for these hybrids are fabricated on substrates that reduce or eliminate the thermal expansion mismatch to the silicon readout circuit. The readouts are foundry-processed CMOS switched-FET circuits that have charge capacities greater than 107 electrons and a single video output capable of 10-MHz data rates. The high quantum efficiency, tunable absorption wavelength, and broad operating temperature range of these large HgCdTe staring focal plane arrays give them significant advantages over competing sensors. The mature Producible Alternative to CdTe for Epitaxy-1 (PACE-1) technology, using sapphire detector substrates, has demonstrated 256 x 256 MWIR arrays with mean laboratory noise equivalent temperature difference (NETO) of 9 mK for a 4.9-micron cutoff wavelength, 40-micron pixel size, and 80-K operating temperature. RMS detector response nonuniformities are less than 4 percent, and pixel yields are greater than 99 percent. The newly developed PACE-3 process uses silicon for the detector substrate to eliminate completely the thermal mismatch with the silicon readout circuit. It has the potential for similar performance in even larger array sizes. A 640 x 480 hybrid array is under development.

  16. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620

  17. Pixelated spectral filter for integrated focal plane array in the long-wave IR.

    SciTech Connect

    Kemme, Shanalyn A.; Cruz-Cabrera, Alvaro Augusto; Boye, Robert R.; Samora, Sally; Carter, Tony Ray; Briggs, Ronald D.

    2010-03-01

    We present the design, fabrication, and characterization of a pixelated, hyperspectral arrayed component for Focal Plane Array (FPA) integration in the Long-Wave IR. This device contains tens of pixels within a single super-pixel which is tiled across the extent of the FPA. Each spectral pixel maps to a single FPA pixel with a spectral FWHM of 200nm. With this arrayed approach, remote sensing data may be accumulated with a non-scanning, 'snapshot' imaging system. This technology is flexible with respect to individual pixel center wavelength and to pixel position within the array. Moreover, the entire pixel area has a single wavelength response, not the integrated linear response of a graded cavity thickness design. These requirements bar tilted, linear array technologies where the cavity length monotonically increases across the device.

  18. Accounting for uncertainty in location when detecting point sources using infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Nichols, J. M.; Waterman, J. R.

    2016-07-01

    This work derives the modeling and detection theory required to predict the performance of an infrared focal plane array in detecting point source targets. Specifically, we focus on modeling the uncertainty associated with the location of the point source on the array. In the process we derive several new expressions related to pixel-averaged detection performance under a variety of problem assumptions. The resulting predictions are compared to standard approaches where the location is assumed fixed and known. It is further shown how to incorporate these predictions into multi-frame detection strategies.

  19. Self-correction of telescope surface errors using a correlating focal plane array

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.; Napier, P. J.

    The effects on the performance of a large radio telescope of aberrations such as reflector surface errors, defocussing, coma and pointing errors can be removed if the telesocpe is equipped with an array feed in its focal plane. If the cross correlations between all possible pairs of array elements are measured, then aberration-free images of radio sources can be obtained. Because of the great cost of building very precise large structures in space, in the future this concept may offer the possibility of a more economical design for a large, high frequency, space-born radio telescope.

  20. Materials, devices, techniques, and applications for Z-plane focal plane array technology II; Proceedings of the Meeting, San Diego, CA, July 12, 13, 1990

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1990-11-01

    Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.

  1. Development of a 2K x 2K GaAs QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Jhabvala, C.; Kelly, D.; Hess, L.; Ewin, A.; La, A.; Wacynski, A.; Sun, J.; Adachi, T.; Costen, N.; Ni, Q.; Snodgrass, Stephen; Foltz, Roger

    2013-01-01

    We are developing the next generation of GaAs Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) in preparation for future NASA space-borne Earth observing missions. It is anticipated that these missions will require both wider ground spatial coverage as well as higher ground imaging resolution. In order to demonstrate our capability in meeting these future goals we have taken a two-tiered approach in the next stage of advanced QWIP focal plane array development. We will describe our progress in the development of a 512 x 3,200 (512 x 3K) array format for this next generation thermal imaging array for the NASA Landsat project. However, there currently is no existing readout integrated circuit (ROIC) for this format array.so to demonstrate the ability to scale-up an existing ROIC we developed a 1,920 x 2,048 (2K x 2K) array and it hybridized to a Raytheon SB419 CTIA readout integrated circuit that was scaled up from their existing 512 x 640 SB339 ROIC. Two versions of the 512 x 3K QWIP array were fabricated to accommodate a future design scale-up of both the Indigo 9803 ROIC based on a 25 micron pixel dimension and a scale up of the Indigo 9705 ROIC based on a 30 micron pixel dimension. Neither readout for the 512 x 3K has yet to be developed but we have fabricated both versions of the array. We describe the design, development and test results of this effort as well as the specific applications these FPAs are intended to address.

  2. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  3. Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays

    NASA Astrophysics Data System (ADS)

    Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.

    1994-07-01

    Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.

  4. Hemispherical infrared focal plane arrays: a new design parameter for the instruments

    NASA Astrophysics Data System (ADS)

    Fendler, M.; Dumas, D.; Chemla, F.; Cohen, M.; Laporte, P.; Tekaya, K.; Le Coarer, E.; Primot, J.; Ribot, H.

    2012-07-01

    In ground based astronomy, mainly all designs of sky survey telescopes are limited by the requirement that the detecting surface is flat whereas the focal surface is curved. Two kinds of solution have been investigated up to now. The first one consists in adding optical systems to flatten the image surface; however this solution complicates the design and increases the system size. Somehow, this solution increases, in the same time, the weight and price of the instrument. The second solution consists in curving artificially the focal surface by using a mosaic of several detectors, which are positioned in a spherical shape. However, this attempt is dedicated to low curvature and is limited by the technical difficulty to control the detectors alignment and tilt between each others. Today we would like to propose an ideal solution which is to curve the focal plane array in a spherical shape, thanks to our monolithic process developed at CEA-LETI based on thinned silicon substrates which allows a 100% optical fill factor. Two infrared uncooled cameras have been performed, using 320 x 256 pixels and 25 μm pitch micro-bolometer arrays curved at a bending radius of 80 mm. These two micro-cameras illustrate the optical system simplification and miniaturization involved by curved focal plane arrays. Moreover, the advantages of curved detectors on the optical performances (Point Spreading Function), as well as on volume and cost savings have been highlighted by the simulation of the opto-mechanical architecture of the spectrometer OptiMOS-EVE for the European Extremely Large Telescope (E-ELT).

  5. Collection of photogenerated charge carriers in small-pitched infrared photovoltaic focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chekanova, Galina V.; Drugova, Albina A.; Kholodnov, Viacheslav; Nikitin, Mikhail S.

    2010-10-01

    Technology of infrared (IR) photovoltaic (PV) focal plane arrays (FPA) covering spectral range from 1.6 to 14 μm gradually moves from simple quasi-matrix (linear) arrays like as 4×288 pixels to large format high definition arrays 1280×1024 pixels and more. Major infrared detector materials for PV technology are InSb and its alloys and ternary alloys Hg1-xCdxTe. Progress in IR PV technology was provided in last decade by serious improvement in material growing techniques. Increasing of PV array format is related always to decreasing of pixel size and spacing between neighbor pixels to minimal size reasonable from point of view of infrared physics. So pitch is small (15-25 μm) in large format arrays. Ambipolar diffusion length of photogenerated charge carriers can exceed pitch many times in high quality absorption layers of PV arrays. It means that each pixel can collect excess charge carriers generated far from n+-p junction border. Optimization of resolution, filling factor and cross-talking level of small-pitched PV FPA requires comprehensive estimation of photodiode's (PD) pixel performance depending on pixel and array design, material properties and operating conditions. Objective of the present work was to develop general approach to estimate collection of photogenerated charge carriers in small-pitched arrays.

  6. 58 X 62 InSb focal plane array for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Orias, G.; Hoffman, A. W.; Casselman, M. F.

    1986-01-01

    Santa Barbara Research Center has developed a 58 x 62 staring mosaic focal plane array (FPA) consisting of an indium antimonide detector array hybridized to a silicon direct readout (DRO) multiplexer for use in IR astronomy. The detectors are sensitive to radiation from 1 to 5 microns. Each detector in the array is connected to the DRO via an indium bump contact and has its own high-impedance, low-capacitance buffer amplifier. The requirements of infrared astronomy include low dark-current and readout noise for near-BLIP performance and full-frame readout times from 32 ms to more than 20s. Both modeling and measurements of the FPA performance are presented. Results include responsivity, noise, NEP, linearity, and dark current.

  7. Dual-Color InAs/GaSb Superlattice Focal-Plane Array Technology

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Rutz, Frank; Schmitz, Johannes; Wörl, Andreas; Masur, Jan-Michael; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2011-08-01

    Within a very few years, InAs/GaSb superlattice technology has proven its suitability for high-performance infrared imaging detector arrays. At the Fraunhofer Institute for Applied Solid State Physics (IAF) and AIM Infrarot-Module GmbH, efforts have been focused on developing mature fabrication technology for dual-color InAs/GaSb superlattice focal-plane arrays for simultaneous, colocated detection at 3 μm to 4 μm and 4 μm to 5 μm in the mid-wavelength infrared atmospheric transmission window. Integrated into a wide-field-of-view missile approach warning system for an airborne platform, a very low number of pixel outages and cluster defects is mandatory for bispectral detector arrays. Process refinements, intense root-cause analysis, and specific test methodologies employed at various stages during the process have proven to be the key for yield enhancements.

  8. Fast iterative adaptive nonuniformity correction with gradient minimization for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Jufeng; Gao, Xiumin; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2014-07-01

    A fast scene-based nonuniformity correction algorithm is proposed for fixed-pattern noise removal in infrared focal plane array imagery. Based on minimization of L0 gradient of the estimated irradiance, the correction function is optimized through correction parameters estimation via iterative optimization strategy. When applied to different real IR data, the proposed method provides enhanced results with good visual effect, making a good balance between nonuniformity correction and details preservation. Comparing with other excellent approaches, this algorithm can accurately estimate the irradiance rapidly with fewer ghosting artifacts.

  9. Review of Concepts and Applications for Multispectral/Hyperspectral Focal Plane Array (FPA) Technology

    NASA Technical Reports Server (NTRS)

    McAdoo, James A.

    2001-01-01

    Multispectral, and ultimately hyperspectral, focal plane arrays (FPAs) represent the logical extension of two-color FPA technology, which has already shown its utility in military applications. Incorporating the spectral discrimination function directly in the FPA would offer the potential for orders-of-magnitude increase in remote sensor system performance. It would allow reduction or even elimination of optical components currently required to provide spectral discrimination in atmospheric remote sensors. The result would be smaller, simpler instruments with higher performance than exist today.

  10. Optimization of indium bump preparation in infrared focal plane array fabrication

    NASA Astrophysics Data System (ADS)

    Hou, Zhijin; Si, Junjie; Wang, Wei; Wang, Haizhen; Wang, Liwen

    2014-11-01

    Optimization of indium bump preparation in infrared focal plane array (IRFPA) fabrication is presented. Reasons of bringing defective pixels during conventional lift-off and cleanout process in fabrication of indium bump are discussed. IRFPAs are characterized by IRFPA test-bench. Results show that defective pixels of InSb IRFPA are owing to indium bumps connecting through indium residue on the surface of wafer. The characteristic and configuration of defective pixels of InSb IRFPA are given and analyzed. A method of reducing defective pixels through optimizing liftoff and cleanout process in InSb IRFPA is proposed. Results prove that this method is effective.

  11. Mid-wave infrared metasurface microlensed focal plane array for optical crosstalk suppression.

    PubMed

    Akın, Onur; Demir, Hilmi Volkan

    2015-10-19

    Spatial crosstalk is one of the fundamental drawbacks of diminishing pixel size in mid-wave infrared focal plane arrays (IR-FPAs). We proposed an IR-FPA using the concept of optical phase discontinuities for substantial optical crosstalk suppression. This IR-FPA consists of asymmetrically tailored V-shaped optical antennas. Full-wave simulations confirmed major improvements in narrowing the intensity distribution of incident light beam by over 30-folds and concentrating these distributions in the central pixel of IR-FPA by achieving optical crosstalks of <1%. PMID:26480363

  12. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  13. Advanced III/V quantum-structure devices for high performance infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Schmitz, Johannes; Rutz, Frank; Fleissner, Joachim; Scheibner, Ralf; Ziegler, Johann

    2009-09-01

    A mature production technology for Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) and InAs/GaSb superlattice (SL) FPAs has been developed. Dual-band and dual-color QWIP- and SL-imagers are demonstrated for the 3-5 μm and 8-12 μm atmospheric windows in the infrared. The simultaneous, co-located detection of both spectral channels resolves the temporal and spatial registration problems common to existing bispectral IRimagers. The ability for a reliable remote detection of hot CO2 signatures makes tailored dual-color superlattice imagers ideally suited for missile warning systems for airborne platforms.

  14. Infrared focal plane arrays based on dots in a well and strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2009-01-01

    In this paper, we will review some of the recent progress that we have made on developing single pixel detectors and focal plane arrays based on dots-in-a-well (DWELL) heterostructure and Type II strained layer superlattice (SLS). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs/GaAs quantum wells. By varying the thickness of the InGaAs well, the DWELL heterostructure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC). From this evaluation, we have reported the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We have also been investigating the use of miniband transitions in Type II SLS to develop infrared detectors using PIN and nBn based designs.

  15. Fiber optically coupled infrared focal plane array system for use in missile warning receiver applications

    NASA Astrophysics Data System (ADS)

    Daniels, Arnold; Liepmann, Till W.

    1999-07-01

    The location and installation of mid-infrared missile warning receiver sensors is limited by the mechanical constraints of the detector/dewar assembly and the associated cryogenic cooler assembly. The size, shape, and weight of these assemblies limit the installation alternatives, and prevent placing the missile warning receiver system in the optimum locations. Hence, their coverage and detection performance is limited. A micro-lens array coupled to a coherent fiber optic bundle and an infrared focal plane array were designed and experimentally implemented, to allow the mid-wave sensor and cryogenic devices to be located remotely from the receiver aperture. This eliminates the receiver aperture placement restrictions while easing the integration and maintenance of the sensor/dewar and cooler. Modulation transfer function and noise equivalent temperature difference measurements were performed to determine the performance of the imaging system.

  16. Strained-layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K.; Carroll, Malcolm S.; Gin, Aaron; Marsh, Phillip F.; Young, Erik W.; Cich, Michael J.

    2010-07-13

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  17. Folded multiple-capture: an architecture for high dynamic range disturbance-tolerant focal plane array

    NASA Astrophysics Data System (ADS)

    Kavusi, Sam; El Gamal, Abbas

    2004-08-01

    Earlier studies have shown that multiple capture can achieve high SNR, but cannot satisfy the high dynamic range (HDR) and high speed requirements of the Vertically-Integrated-Sensor-Array (VISA) project. Synchronous self-reset, on the other hand, can achieve these requirements, but suffers from poor SNR. Extended counting can achieve high dynamic range at high frame rate and with good SNR, but at the expense of high power consumption. The paper proposes a new HDR focal plane array architecture, denoted by folded-multiple capture (FMC), which by combining features of the synchronous self-reset and multiple capture schemes, can satisfy the VISA requirements at a fraction of the power dissipation and with more robustness to device variations than extended counting. The architecture is also capable of detecting subframe disturbances, e.g., due to laser jamming, and correcting for it.

  18. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  19. Low dark current LWIR HgCdTe focal plane arrays at AIM

    NASA Astrophysics Data System (ADS)

    Haiml, M.; Eich, D.; Fick, W.; Figgemeier, H.; Hanna, S.; Mahlein, M.; Schirmacher, W.; Thöt, R.

    2016-05-01

    Cryogenically cooled HgCdTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices, and fast response times, hence outperforming micro-bolometer arrays. AIM will present its latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below the Rule'07 have been demonstrated for n-on-p devices. Slightly higher dark current densities and excellent cosmetics with very low cluster and point defect densities have been demonstrated for p-on-n devices.

  20. Characterization of type II SLS n-CBIRD focal plane array

    NASA Astrophysics Data System (ADS)

    Rafol, S. B.; Gunapala, S. D.; Ting, D. Z.; Soibel, A.; Khoshakhlagh, A.; Nguyen, J.; Höglund, L.; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Luong, E. M.

    2012-10-01

    New generation of focal plane arrays (FPAs) based on type II SLS, which are hybrids of detector array and Read Out Integrated Circuits (ROIC), present extraordinary challenge to characterize. The standard performance metrics are: temporal NEΔT, noise equivalent irradiance (NEI), quantum efficiency, dark current and modulation transfer function (MTF). Imaging system modulation Transfer Function (MTF) is an important quantitative metric of performance in spatial domain, but it is rarely reported in the literature especially for type II SLS. MTF measurement is believed to be a good metric of performance for camera systems in addition to standard performance parameters. The paper will report on the characterization of complimentary barrier infrared detector n-CBIRD FPA.

  1. Development of noncryogenic cooled carbon nanotube-based infrared focal plane array with integrated readout circuitry

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Lai, King Wai Chiu; Chen, Hongzhi; Chen, Liangliang; Fung, Carmen Kar Man

    2011-06-01

    Infrared (IR) detectors are enormously important for various applications including medical diagnosis, night vision etc. The current bottleneck of high-sensitive IR detectors is the requirement of cryogenic cooling to reduce the noise. Carbon nanotubes (CNTs) exhibit low dark current which allows CNTs to work without cooling. This paper presents the development of noncryogenic cooled IR focal plane array (FPA) using CNTs. The FPA consists of an array of CNTbased IR detectors which are sensitive to IR signal at room temperature. The CNT-based detectors can be made by our nanomanufacturing process. And the sensitivity of the detectors at a special wavelength can be achieved by selecting and controlling the bandgap of CNTs during the process. Besides, a readout circuitry has been integrated with the FPA to retrieve signals from the detectors for high throughput applications.

  2. Coherent Optical Focal Plane Array Receiver for PPM Signals: Investigation and Applications

    NASA Technical Reports Server (NTRS)

    Fernandez, Michela Munoz

    2006-01-01

    The performance of a coherent optical focal plane array receiver for PPM signals under atmospheric turbulence is investigated and applications of this system are addressed. The experimental demonstration of this project has already been explained in previous publications [1]. This article shows a more exhaustive analysis of the expressions needed to obtain the Bit Error Rate (BER) for the real system under study in the laboratory. Selected experimental results of this system are described and compared with theoretical BER expressions, and array combining gains are presented. Receiver sensitivity in terms of photons per bit (PPB) is examined; BER results are shown as a function of signal to noise ratios, (SNR), as well as a function of photons per symbol, and photons per bit.

  3. Study on 512×128 pixels InGaAs near infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Huang, Songlei; Shao, Xiumei; Li, Tao; Huang, Zhangcheng; Gong, Haimei

    2014-10-01

    It is well known that In0.53Ga0.47As epitaxial material is lattice-matched to InP substrate corresponding to the wavelength from 0.9μm to 1.7μm, which results to high quality material and good device characteristics at room temperature. In order to develop the near infrared multi-spectral imaging, 512×128 pixels InGaAs Near Infrared Focal Plane Arrays (FPAs) were studied. The n-InP/i-InGaAs/n-InP double hereto-structure epitaxial material was grown by MBE. The 512×128 back-illuminated planar InGaAs detector arrays were fabricated, including the improvement of passivation film, by grooving the diffusion masking layer, the P type electrode layer, In bump condition and so on. The photo-sensitive region has the diffusion area of 23×23μm2 and pixel pitch of 30×30μm2 . The 512×128 detector arrays were individually hybridized on readout integrated circuit(ROIC) by Indium bump based on flip-chip process to make focal plane arrays (FPAs). The ROIC is based on a capacitive trans-impedance amplifier with correlated double sampling and integrated while readout (IWR) mode with high readout velocity of every pixel resulting in low readout noise and high frame frequency. The average peak detectivity and the response non-uniformity of the FPAs are 1.63×1012 cmHz1/2/W and 5.9%, respectively. The power dissipation and frame frequency of the FPAs are about 180mW and 400Hz, respectively.

  4. Development of high performance SWIR InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Nagi, Richie; Bregman, Jeremy; Mizuno, Genki; Oduor, Patrick; Olah, Robert; Dutta, Achyut K.; Dhar, Nibir K.

    2015-05-01

    Banpil Photonics has developed a novel InGaAs based photodetector array for Short-Wave Infrared (SWIR) imaging, for the most demanding security, defense, and machine vision applications. These applications require low noise from both the detector and the readout integrated circuit arrays. In order to achieve high sensitivity, it is crucial to minimize the dark current generated by the photodiode array. This enables the sensor to function in extremely low light situations, which enables it to successfully exploit the benefits of the SWIR band. In addition to minimal dark current generation, it is essential to develop photodiode arrays with higher operating temperatures. This is critical for reducing the power consumption of the device, as less energy is spent in cooling down the focal plane array (in order to reduce the dark current). We at Banpil Photonics are designing, simulating, fabricating and testing SWIR InGaAs arrays, and have achieved low dark current density at room temperature. This paper describes Banpil's development of the photodetector array. We also highlight the fabrication technique used to reduce the amount of dark current generated by the photodiode array, in particular the surface leakage current. This technique involves the deposition of strongly negatively doped semiconductor material in the area between the pixels. This process reduces the number of dangling bonds present on the edges of each pixel, which prevents electrons from being swept across the surface of the pixels. This in turn drastically reduces the amount of surface leakage current at each pixel, which is a major contributor towards the total dark current. We present the optical and electrical characterization data, as well as the analysis that illustrates the dark current mechanisms. Also highlighted are the challenges and potential opportunities for further reduction of dark current, while maintaining other parameters of the photodiode array, such as size, weight, temperature

  5. Demonstration of a bias tunable quantum dots-in-a-well focal plane array

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan; Jang, Woo-Yong; Pezoa, Jorge E.; Sharma, Yagya D.; Lee, Sang Jun; Noh, Sam Kyu; Hayat, Majeed M.; Restaino, Sergio; Teare, Scott W.; Krishna, Sanjay

    2009-11-01

    Infrared detectors based on quantum wells and quantum dots have attracted a lot of attention in the past few years. Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays, which are based on InAs quantum dots embedded in an InGaAs well having GaAs barriers. This focal plane array has successfully generated a two-color imagery in the mid-wave infrared (i.e. 3-5 μm) and the long-wave infrared (i.e. 8-12 μm) at a fixed bias voltage. Recently, the DWELL device has been further modified by embedding InAs quantum dots in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. This is expected to improve the operating temperature while maintaining a low dark current level. This paper examines 320 × 256 double DWELL based focal plane arrays that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit using Indium-bump (flip-chip) technology. The spectral tunability is quantified by examining images and determining the transmittance ratio (equivalent to the photocurrent ratio) between mid-wave and long-way infrared filter targets. Calculations were performed for a bias range from 0.3 to 1.0 V. The results demonstrate that the mid-wave transmittance dominates at these low bias voltages, and the transmittance ratio continuously varies over different applied biases. Additionally, radiometric characterization, including array uniformity and measured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature difference and higher uniformity, and worked at higher temperature (70 K and 80 K) than the first generation DWELL device.

  6. Design trade-offs in ADC architectures dedicated to uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Robert, P.; Dupont, B.; Pochic, D.

    2008-04-01

    This paper presents two different architectures for the design of Analog to Digital Converters specifically adapted to infrared bolometric image sensors. Indeed, the increasing demand for integrated functions in uncooled readout circuits leads to on-chip ADC design as an interface between the internal analog core and the digital processing electronics. However specifying an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. We will show that two architecture approaches are needed to cover the different sensor features in terms of array size and frame speed. A monolithic 14 bits ADC with a pipeline architecture, and a column 13 bits ADC with an original dual-ramp architecture, will be described. Finally, we will show measurement results to confirm the monolithic ADC is suitable for small array, as 160 x 120 with low frame speed, while a column ADC is more compliant for higher array, as 640 x 480 with a 60 Hz frame speed or 1024 x 768 arrays.

  7. Infrared focal plane array producibility and related materials; Proceedings of the Meeting, Orlando, FL, Apr. 20, 21, 1992

    NASA Astrophysics Data System (ADS)

    Balcerak, Ray; Pellegrini, Paul W.; Scribner, Dean A.

    The present conference discusses the commercial diversification of the U.S. IR detector industry's commercial diversification, HgCdTe focal-plane array (FPAs) manufacture, LPE of (Hg,Cd)Te FPAs, uncooled IR FPA detector producibility, a high performance staring IR camera, and novel technologies for FPA dewars. Also discussed are hybridizing FPAs, cryoprober test development, HgCdTe on Si for monolithic focal plane arrays, popcorn noise in linear InGaAs detector arrays, and the use of narrowband laser speckle for MTF characterization of CCDs. (No individual items are abstracted in this volume)

  8. Design and testing of an all-digital readout integrated circuit for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kelly, Michael; Berger, Robert; Colonero, Curtis; Gregg, Mark; Model, Joshua; Mooney, Daniel; Ringdahl, Eric

    2005-08-01

    The digital focal plane array (DFPA) project demonstrates the enabling technologies necessary to build readout integrated circuits for very large infrared focal plane arrays (IR FPAs). Large and fast FPAs are needed for a new class of spectrally diverse sensors. Because of the requirement for high-resolution (low noise) sampling, and because of the sample rate needed for rapid acquisition of high-resolution spectra, it is highly desirable to perform analog-to-digital (A/D) conversion right at the pixel level. A dedicated A/D converter located under every pixel in a one-million-plus element array, and all-digital readout integrated circuits will enable multi- and hyper-spectral imaging systems with unprecedented spatial and spectral resolution and wide area coverage. DFPAs provide similar benefits to standard IR imaging systems as well. We have addressed the key enabling technologies for realizing the DFPA architecture in this work. Our effort concentrated on demonstrating a 60-micron footprint, 14-bit A/D converter and 2.5 Gbps, 16:1 digital multiplexer, the most basic components of the sensor. The silicon test chip was fabricated in a 0.18-micron CMOS process, and was designed to operate with HgxCd1-xTe detectors at cryogenic temperatures. Two A/D designs, one using static logic and one using dynamic logic, were built and tested for performance and power dissipation. Structures for evaluating the bit-error-rate of the multiplexer on-chip and through a differential output driver were implemented for a complete performance assessment. A unique IC probe card with fixtures to mount into an evacuated, closed-cycle helium dewar were also designed for testing up to 2.5 Gbps at temperatures as low as 50 K.

  9. 320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.

  10. 320 x 256 complementary barrier infrared detector focal plane array for long-wave infrared imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean; Rafol, B., , Sir; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-06-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 μm observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 μm. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE▵T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 μm test diodes and small 28 μm FPA pixels are given.

  11. Experimental characterization, evaluation, and diagnosis of advanced hybrid infrared focal plane array electro-optical performance

    NASA Astrophysics Data System (ADS)

    Lomheim, Terrence S.; Schumann, Lee W.; Kohn, Stanley E.

    1998-07-01

    High performance scanning time-delay-and-integration and staring hybrid focal plane devices with very large formats, small pixel sizes, formidable frame and line rates, on-chip digital programmability, and high dynamic ranges, are being developed for a myriad of defense, civil, and commercial applications that span the spectral range from shortwave infrared (SWIR) to longwave infrared (LWIR). An essential part in the development of such new advanced hybrid infrared focal planes is empirical validation of their electro-optical (EO) performance. Many high-reliability, high-performance applications demand stringent and near flawless EO performance over a wide variety of operating conditions and environments. Verification of focal plane performance compliance over this wide range of parametric conditions requires the development and use of accurate, flexible, and statistically complete test methods and associated equipment. In this paper we review typical focal plane requirements, the ensuing measurement requirements (quantity, accuracy, repeatability, etc.), test methodologies, test equipment requirements, electronics and computer-based data acquisition requirements, statistical data analysis and display requirements, and associated issues. We also discuss special test requirements for verifying the performance of panchromatic thermal and multispectral imaging focal planes where characterization of dynamic modulation transfer function (MTF), and point-image response and optical overload is generally required. We briefly overview focal plane radiation testing. We conclude with a discussion of the technical challenges of characterizing future advanced hybrid focal plane testing where it is anticipated that analog-to- digital conversion will be included directly on focal plane devices, thus creating the scenario of 'photons-in-to-bits- out' within the focal plane itself.

  12. Design of readout circuit for microcantilever-based ripple uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Cao, Junmin; Chen, Zhongjian; Lu, Wengao; Zhang, Yacong; Lei, Ke; Zhao, Baoying

    2009-07-01

    A readout integrated circuit (ROIC) for uncooled microcantilever infrared focal plane arrays (IRFPAs) based on capacitive readout is proposed. The ROIC is optimized according to noise modeling and analysis to reduce noise. An experimental chip of 16×16 FPAs readout circuit has been designed and fabricated using 0.35um CMOS technology. The measurement results showed that the power dissipation is 16.5mW from a 5V supply voltage at 50Hz frame rate, the linearity is 99.2% at the typical mode; the uniformity is larger than 97% and the equivalent noise charge (ENC) is below 150e. It is believed that the ROIC has a great potential in the applications of large-scale micro-cantilever-based uncooled IRFPAs.

  13. A substrate-free optical readout focal plane array with a heat sink structure

    NASA Astrophysics Data System (ADS)

    Rmwen, Liu; Yanmei, Kong; Binbin, Jiao; Zhigang, Li; Haiping, Shang; Dike, Lu; Chaoqun, Gao; Dapeng, Chen; Qingchuan, Zhang

    2013-02-01

    A substrate-free optical readout focal plane array (FPA) operating in 8-12 μm with a heat sink structure (HSS) was fabricated and its performance was tested. The temperature distribution of the FPA with an HSS investigated by using a commercial FLIR IR camera shows excellent uniformity. The thermal cross-talk effect existing in traditional substrate-free FPAs was eliminated effectively. The heat sink is fabricated successfully by electroplating copper, which provides high thermal capacity and high thermal conductivity, on the frame of substrate-free FPA. The FPA was tested in the optical-readout system, the results show that the response and NETD are 13.6 grey/K (F / # = 0.8) and 588 mK, respectively.

  14. Measurement of optical modulation functions in sparsely sampled mosaic focal plane arrays

    NASA Technical Reports Server (NTRS)

    Young, J. B.; Thurlow, P. E.

    1982-01-01

    It is pointed out that the measurement of optical modulation functions for detectors in focal plane arrays may be somewhat more difficult under 'full-up' systems conditions as compared to ideal laboratory conditions. An idealized optical modulation test arrangement is considered along with a full-up scanned system involving an earth mapper in polar orbit. In testing the system in full-up condition, a problem arises with respect to the acquisition of knife edge response data. In order to overcome this problem, a preferred method is developed for obtaining KER data on a single scan. A special 'phased edge' reticle is developed for use in the test set-up. Attention is given to aspects of knife edge reconstruction.

  15. Research in the modulation transfer function (MTF) measurement of InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghua; Fang, Jiaxiong

    2012-10-01

    The Modulation Transfer Function (MTF) of an opto-electrical device is defined as the ratio of the system output modulation to the input modulation, which describes the performance of the imaging system in the Fourier domain. Accurate measurement of the MTF is often obtained by analyzing the high-quality image of a special target reproduced by the optical system with known MTF. To evaluate the MTF of short-wave infrared InGaAs focal plane arrays (FPAs), we develop a laboratory system with high precision and automation based on the slit scan method. An 8*1 linear InGaAs FPAs is then measured by this test set-up for the first time to evaluate the MTF of each pixel at room temperature. The results show a good MTF repeatability and uniformity of the 8*1 InGaAs FPAs. The relationship between the MTF and illumination is also discussed.

  16. Visualization of Subsurface Defects in Composites using a Focal Plane Array Infrared Camera

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1999-01-01

    A technique for enhanced defect visualization in composites via transient thermography is presented in this paper. The effort targets automated defect map construction for multiple defects located in the observed area. Experimental data were collected on composite panels of different thickness with square inclusions and flat bottom holes of different depth and orientation. The time evolution of the thermal response and spatial thermal profiles are analyzed. The pattern generated by carbon fibers and the vignetting effect of the focal plane array camera make defect visualization difficult. An improvement of the defect visibility is made by the pulse phase technique and the spatial background treatment. The relationship between a size of a defect and its reconstructed image is analyzed as well. The image processing technique for noise reduction is discussed.

  17. Time resolved photo-luminescent decay characterization of mercury cadmium telluride focal plane arrays

    DOE PAGESBeta

    Soehnel, Grant

    2015-01-20

    The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50µm have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlationmore » between spatial maps of the lifetime, dark current, and relative response.« less

  18. The study of selective heating of indium bump in MCT infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Cao, Lan; Zhuang, Fulong; Hu, Xiaoning; Gong, Haimei

    2012-10-01

    Generally the electrical interconnectivity between The Mercury Cadmium Telluride (MCT) infrared focal plane array (IRFPA) device and circuit takes the flip chip technology using indium bump as a connection medium. In order to improve the reliability of the interconnectivity indium melting is a common packaging technique at present. This technique is called reflow soldering. The heating is transferred to the indium bump by heating the device and circuit. This heating process will persist about 10 minutes resulting in the MCT material going through a 10 minutes high temperature baking course. This baking process will strongly degenerate the characteristic of the MCT device. Under this circumstance this article gives a new heating technique for indium bump which is call induction heating melting technique. This method realizes the selective heating. While the indium bump is melted by the conduction heating the semiconductor material such as MCT can't be heated.

  19. Long-Wavelength Infrared (LWIR) Quantum Dot Infrared Photodetector (QDIP) Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Shott, C. A.

    2006-01-01

    We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of approx. 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45 deg. and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1 micrometer devices has reached approx. 1 x 10(exp 10

  20. Methodology for testing infrared focal plane arrays in simulated nuclear radiation environments

    NASA Astrophysics Data System (ADS)

    Divita, E. L.; Mills, R. E.; Koch, T. L.; Gordon, M. J.; Wilcox, R. A.; Williams, R. E.

    1992-07-01

    This paper summarizes test methodology for focal plane array (FPA) testing that can be used for benign (clear) and radiation environments, and describes the use of custom dewars and integrated test equipment in an example environment. The test methodology, consistent with American Society for Testing Materials (ASTM) standards, is presented for the total accumulated gamma dose, transient dose rate, gamma flux, and neutron fluence environments. The merits and limitations of using Cobalt 60 for gamma environment simulations and of using various fast-neutron reactors and neutron sources for neutron simulations are presented. Test result examples are presented to demonstrate test data acquisition and FPA parameter performance under different measurement conditions and environmental simulations.

  1. Estimation of Thickness and Cadmium Composition Distributions in HgCdTe Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, S.; Lefebvre, S.; Rommeluère, S.; Ferrec, Y.; Primot, J.

    2016-09-01

    Mercury cadmium telluride (HgCdTe) is one of the most commonly used material systems for infrared detection. The performance of infrared focal-plane arrays (IRFPAs) based on this material is limited by several noise sources. In this paper, we focus on the fixed pattern noise, which is related to disparities between the spectral responses of pixels. In our previous work, we showed that spectral nonuniformities in a HgCdTe IRFPA were caused by inhomogeneities of thickness and cadmium composition in the HgCdTe layer, using an optical description of the pixel structure. We propose to use this bidimensional dependence combined with experimental spectral responses to estimate disparities of thickness and cadmium composition in a specific HgCdTe-based IRFPA. The estimation methods and the resulting maps are presented, highlighting the accuracy of this nondestructive method.

  2. Fabrication of resonator-quantum well infrared photodetector focal plane array by inductively coupled plasma etching

    NASA Astrophysics Data System (ADS)

    Sun, Jason; Choi, Kwong-Kit

    2016-02-01

    Inductively coupled plasma (ICP) etching has distinct advantages over reactive ion etching in that the etching rates are considerably higher, the uniformity is much better, and the sidewalls of the etched material are highly anisotropic due to the higher plasma density and lower operating pressure. Therefore, ICP etching is a promising process for pattern transfer required during microelectronic and optoelectronic fabrication. Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). To fabricate R-QWIP focal plane arrays (FPAs), two optimized ICP etching processes are developed. Using these etching techniques, we have fabricated R-QWIP FPAs of several different formats and pixel sizes with the required dimensions and completely removed the substrates of the FPAs. Their QE spectra were tested to be 30 to 40%. The operability and spectral nonuniformity of the FPA is ˜99.5 and 3%, respectively.

  3. Characterization of an advanced focal plane for multispectral linear array (MLA) application

    NASA Technical Reports Server (NTRS)

    King, P.; Botts, S.; Orias, G.; Yang, H. B.

    1984-01-01

    It is pointed out that the MLA instrument represents the next generation in the Landsat series of earth resources satellites. The MLA sensor concept utilizes a pushbroom scan mode to eliminate electromechanical scan mirrors, and the lower reliabililty and higher power dissipation which accompany their employment. The pushbroom scanner makes use of a linear array which consists generally of thousands of detectors oriented perpendicular to the along-track direction of the satellite. Test techniques have been developed for the measurement of the module parameters which are critical to MLA focal plane performance. These measurements include the determination of infrared responsivity, linearity over the dynamic range, temporal noise, and fixed pattern effects on each detector element of each module tested. Tests related to spectral response, crosstalk, and spot scan profiles are also conducted. A description is provided of the test equipment involved.

  4. Time resolved photo-luminescent decay characterization of mercury cadmium telluride focal plane arrays

    SciTech Connect

    Soehnel, Grant

    2015-01-20

    The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50µm have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlation between spatial maps of the lifetime, dark current, and relative response.

  5. Estimation of Thickness and Cadmium Composition Distributions in HgCdTe Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, S.; Lefebvre, S.; Rommeluère, S.; Ferrec, Y.; Primot, J.

    2016-05-01

    Mercury cadmium telluride (HgCdTe) is one of the most commonly used material systems for infrared detection. The performance of infrared focal-plane arrays (IRFPAs) based on this material is limited by several noise sources. In this paper, we focus on the fixed pattern noise, which is related to disparities between the spectral responses of pixels. In our previous work, we showed that spectral nonuniformities in a HgCdTe IRFPA were caused by inhomogeneities of thickness and cadmium composition in the HgCdTe layer, using an optical description of the pixel structure. We propose to use this bidimensional dependence combined with experimental spectral responses to estimate disparities of thickness and cadmium composition in a specific HgCdTe-based IRFPA. The estimation methods and the resulting maps are presented, highlighting the accuracy of this nondestructive method.

  6. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    SciTech Connect

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei

    2015-03-16

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop the SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.

  7. Non-local means-based nonuniformity correction for infrared focal-plane array detectors

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng

    2014-11-01

    The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.

  8. Modeling and deformation analyzing of InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Meng, Qingduan; Zhang, Liwen; Lv, Yanqiu

    2014-03-01

    A higher fracture probability appearing in indium antimonide (InSb) infrared focal plane arrays (IRFPAs) subjected to the thermal shock test, restricts its final yield. In light of the proposed equivalent method, where a 32 × 32 array is employed to replace the real 128 × 128 array, a three-dimensional modeling of InSb IRFPAs is developed to explore its deformation rules. To research the damage degree to the mechanical properties of InSb chip from the back surface thinning process, the elastic modulus of InSb chip along the normal direction is lessened. Simulation results show when the out-of-plane elastic modulus of InSb chip is set with 30% of its Young's modulus, the simulated Z-components of strain distribution agrees well with the top surface deformation features in 128 × 128 InSb IRFPAs fracture photographs, especially with the crack origination sites, the crack distribution and the global square checkerboard buckling pattern. Thus the Z-components of strain are selected to explore the deformation rules in the layered structure of InSb IRFPAs. Analyzing results show the top surface deformation of InSb IRFPAs originates from the thermal mismatch between the silicon readout integrated circuits (ROIC) and the intermediate layer above, made up of the alternating indium bump array and the reticular underfill. After passing through both the intermediate layer and the InSb chip, the deformation amplitude is reduced firstly from 2.23 μm to 0.24 μm, finally to 0.09 μm. Finally, von Mises stress criterion is employed to explain the causes that cracks always appear in the InSb chip.

  9. Dual-band technology on indium gallium arsenide focal plane arrays

    NASA Astrophysics Data System (ADS)

    Dixon, Peter; Hess, Cory D.; Li, Chuan; Ettenberg, Martin; Trezza, John

    2011-06-01

    While InGaAs-based SWIR imaging technology has been improved dramatically over the past 10 years, the motivation remains to reduce Size Weight and Power (SWaP) for applications in Intelligence Surveillance and Reconnaissance (ISR). Goodrich ISR Systems, Princeton (Sensors Unlimited, Inc.) has continued to improve detector sensitivity. Additionally, SUI is working jointly with DRS-RSTA to develop innovative techniques for manufacturing dual-band focal planes to provide next generation technology for not only reducing SWaP for SWIR imagers, but also to combine imaging solutions for providing a single imager for Visible Near-SWIR (VNS) + LW imaging solutions. Such developments are targeted at reducing system SWaP, cost and complexity for imaging payloads on board UASs as well as soldier deployed systems like weapon sights. Our motivation is to demonstrate capability in providing superior image quality in fused LWIR and SWIR imaging systems, while reducing the total system SWaP and cost by enabling Short Wave and Thermal imaging in a single uncooled imager. Under DARPA MTO awarded programs, a LW bolometer (DRS-RSTA) is fabricated on a Short Wave (SW) InGaAs Vis-SWIR (SUI-Goodrich) Imager. The combined imager is a dual-band Sensor-Chip Assembly which is capable of imaging in VIS-SWIR + LW. Both DRS and Goodrich have developed materials and process enhancements to support these dual-band platform investigations. The two imagers are confocal and coaxial with respect to the incident image plane. Initial work has completed a single Read Out Integrated Circuit (ROIC) capable of running both imagers. The team has hybridized InGaAs Focal planes to 6" full ROIC wafers to support bolometer fabrication onto the SW array.

  10. Recent Developments and Applications of Quantum Well Infrared Photodetector Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2000-01-01

    There are many applications that require long wavelength, large, uniform, reproducible, low cost, stable, and radiation-hard infrared (IR) focal plane arrays (FPAs). For example, the absorption lines of many gas molecules, such as ozone, water, carbon monoxide, carbon dioxide, and nitrous oxide occur in the wavelength region from 3 to 18 micron. Thus, IR imaging systems that operate in the long wavelength IR (LWIR) region (6 - 18 micron) are required in many space borne applications such as monitoring the global atmospheric temperature profiles, relative humidity profiles, cloud characteristics, and the distribution of minor constituents in the atmosphere which are being planned for future NASA Earth and planetary remote sensing systems. Due to higher radiation hardness, lower 1/f noise, and larger array size the GaAs based Quantum Well Infrared Photodetector (QWIP) FPAs are very attractive for such space borne applications compared to intrinsic narrow band gap detector arrays. In this presentation we will discuss the optimization of the detector design, material growth and processing that has culminated in realization of large format long-wavelength QWIP FPAs, portable and miniature LWIR cameras, holding forth great promise for myriad applications in 6-18 micron wavelength range in science, medicine, defense and industry. In addition, we will present some system demonstrations using broadband, two-color, and high quantum efficiency long-wavelength QWIP FPAs.

  11. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  12. Polymer films as planarization and sacrificial layers for uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Weiguo; Cai, Changlong; Zhou, Shun

    2010-10-01

    This paper presents a planarization procedure using polymer films to achieve a flat CMOS surface of Readout Integrated Circuit (ROIC) for the integration between uncooled infrared focal plane arrays and ROIC. At the same time, the polymer film is also used as the sacrificial layers. After amorphous Silicon (a-Si) film was deposited using plasma enhanced chemical vapor deposition (PECVD), and patterned using inductively coupled plasma (ICP), the polymer sacrificial layer should be removed to form a-Si self-supporting micro-bridge structure. So the thickness of polymer film determine the height of the micro-bridge; the soft curing temperature determines if the contact hole can be etched by developer during the first photolithography; and the rate of dry etching determines whether the sacrificial layers of the structure can be released successfully. In this paper, the curing temperature, surface roughness, etching process of polymer films are systematically researched. On this basis, polymer film as planarization successfully reduces the 2μm height of the bumps on ROIC to less than 83 nm, over the planarized polymer mesas, bolometer arrays are fabricated. Then the polymer film as sacrificial are removed by ICP and 160x120 self-supporting micro-bridge structure arrays are successfully fabricated.

  13. Polymer films as planarization and sacrificial layers for uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Weiguo; Cai, Changlong; Zhou, Shun

    2011-02-01

    This paper presents a planarization procedure using polymer films to achieve a flat CMOS surface of Readout Integrated Circuit (ROIC) for the integration between uncooled infrared focal plane arrays and ROIC. At the same time, the polymer film is also used as the sacrificial layers. After amorphous Silicon (a-Si) film was deposited using plasma enhanced chemical vapor deposition (PECVD), and patterned using inductively coupled plasma (ICP), the polymer sacrificial layer should be removed to form a-Si self-supporting micro-bridge structure. So the thickness of polymer film determine the height of the micro-bridge; the soft curing temperature determines if the contact hole can be etched by developer during the first photolithography; and the rate of dry etching determines whether the sacrificial layers of the structure can be released successfully. In this paper, the curing temperature, surface roughness, etching process of polymer films are systematically researched. On this basis, polymer film as planarization successfully reduces the 2μm height of the bumps on ROIC to less than 83 nm, over the planarized polymer mesas, bolometer arrays are fabricated. Then the polymer film as sacrificial are removed by ICP and 160x120 self-supporting micro-bridge structure arrays are successfully fabricated.

  14. CMOS focal-plane-array for analysis of enzymatic reaction in system-on-chip spectrophotometer

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ha, Chanki; Park, Chan B.; Joo, Youngjoong

    2004-06-01

    A CMOS focal-plane-array is designed for the high-throughput analysis of enzymatic reaction in on-chip spectrophotometer system. One of potential applications of the presented prototype system is to perform enzymatic analysis of biocompounds contained in blood. This function normally requires an expensive diode-array spectrophotometer, but it is possible to perform high throughput analysis with low budget if the spectrophotometer system is scaled down to a chip. The CMOS active pixel sensor array can cover a layer of polydimethylsiloxane (PDMS) forming the microfluidic channels and the substrate solution for enzymatic reaction can be injected into the channels by capillary force. Under room light, the underneath CMOS active pixel sensor with 40 x 40 pixels detect the gray levels of the fluid"s color. Inside the image sensor chip (size: 3mm x 3mm), the pixels of the same column share the same sample and hold circuits. The analog signals from 40 columns are multiplexed into one input feeding an on-chip 8 bits dual-slope analog to digital converter. The color change can be displayed on the external monitor by using a data acquisition card and personal computer.

  15. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics.

    PubMed

    Mazin, Benjamin A; Bumble, Bruce; Meeker, Seth R; O'Brien, Kieran; McHugh, Sean; Langman, Eric

    2012-01-16

    Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging. PMID:22274494

  16. Mechanical design of mounts for IGRINS focal plane arrays and field flattening lenses

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyeong; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Pavel, Michael; Jaffe, Daniel T.

    2014-07-01

    IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors and for the final (field-flattening) lens in the optical train serve a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.

  17. VO II-based microbolometer uncooled infrared focal plane arrays with CMOS readout integrated circuit

    NASA Astrophysics Data System (ADS)

    Chen, Xiqu; Yi, Xinjian

    2005-11-01

    Thin films of vanadium dioxide (VO II) were selected for microbolometers. The thin films were fabricated with a novel method mainly including ion-sputtering and annealing. It is found that the electrical properties of these thin films can be controlled by adjusting the time of ion-sputtering and annealing. A standard microbolometer pixel structure of micro-bridge has been applied. Two-dimensional arrays of microbolometers have been fabricated on silicon integrated circuit wafers using a surface micromachining technique. A new type of on-chip readout integrated circuit (ROIC) for 32×32 pixel bolometric detector arrays has been designed and fabricated using a 1.5μm double metal poly complementary metal oxide semiconductor (CMOS) processing. The readout circuit consists of three stages, which provides low noise, a highly stable detector bias, high photon current injection efficiency, high gain, and high speed. Several prototypes of 32×32 pixel bolometric detector arrays have been designed and fabricated. These arrays consist of detectors with lateral dimensions of 50μm 50μm, and each bolometric detector is on a 100μm pitch. The results of measurement show that the fabricated uncooled infrared focal plane arrays (UIRFPAs) have excellent performance. The frame rate is 50Hz, the pixel operability is above 96%, the responsivity (R) @ f/1 value is up to 15000V/W, the noise equivalent temperature difference (NETD) @ f/1 and 30Hz is about 50mK, and the average power dissipation is only 24.7mW. The results indicate that the technology of fabricating these 32×32 UIRFPAs has potential to be utilized for fabricating low cost and large-scale UIRFPAs.

  18. Beamlet focal plane diagnostic

    SciTech Connect

    Caird, J.A.; Nielsen, N.D.; Patton, H.G.; Seppala, L.G.; Thompson, C.E.; Wegner, P.J.

    1996-12-01

    This paper describes the major optical and mechanical design features of the Beamlet Focal Plane Diagnostic system as well as measurements of the system performance, and typical data obtained to date. We also discuss the NIF requirements on the focal spot that we are interested in measuring, and some of our plans for future work using this system.

  19. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    NASA Technical Reports Server (NTRS)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  20. Control and acquisition system for SWIR focal plane arrays from SOFRADIR

    NASA Astrophysics Data System (ADS)

    Beaufort, T.; Duvet, L.

    2009-07-01

    We report on the design, testing and characterization of a control and acquisition system developed for SWIR detectors from SOFRADIR. These detectors are MCT arrays developed for SWIR (Short Wavelength Infra Red) and hyperspectral applications;. The ROIC (Readout integrated circuitry) of each FPA (Focal Plane Array) delivers multiple analog outputs buffered and converted in the digital domain by dedicated board designed by SOFRADIR. These boards perform a time multiplexing of the digitized signals, leading to high data throughputs. Each FPA has its own dedicated Stirling micro-cooler. The control and acquisition system developed by our team is able to handle the high data throughput (up to 1.6 Gbit/s) thanks to a high speed acquisition board from National Instruments embedded in a PXI system. A standard DAQ card is used to acquire the house-keepings, control the different power supplies and clock generators while an SPI adapter enables the configuration of the FPA. The overall system is managed under the Labview environment with a flexible and comprehensive interface to the user with extensive logging of all operational parameters. The purpose of this paper is to describe the architecture of the overall system and to detail its performances.

  1. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2016-07-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  2. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2015-12-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50 -200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  3. Evaluation and display of polarimetric image data using long-wave cooled microgrid focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bowers, David L.; Boger, James K.; Wellems, L. David; Black, Wiley T.; Ortega, Steve E.; Ratliff, Bradley M.; Fetrow, Matthew P.; Hubbs, John E.; Tyo, J. Scott

    2006-05-01

    Recent developments for Long Wave InfraRed (LWIR) imaging polarimeters include incorporating a microgrid polarizer array onto the focal plane array (FPA). Inherent advantages over typical polarimeters include packaging and instantaneous acquisition of thermal and polarimetric information. This allows for real time video of thermal and polarimetric products. The microgrid approach has inherent polarization measurement error due to the spatial sampling of a non-uniform scene, residual pixel to pixel variations in the gain corrected responsivity and in the noise equivalent input (NEI), and variations in the pixel to pixel micro-polarizer performance. The Degree of Linear Polarization (DoLP) is highly sensitive to these parameters and is consequently used as a metric to explore instrument sensitivities. Image processing and fusion techniques are used to take advantage of the inherent thermal and polarimetric sensing capability of this FPA, providing additional scene information in real time. Optimal operating conditions are employed to improve FPA uniformity and sensitivity. Data from two DRS Infrared Technologies, L.P. (DRS) microgrid polarizer HgCdTe FPAs are presented. One FPA resides in a liquid nitrogen (LN2) pour filled dewar with a 80°K nominal operating temperature. The other FPA resides in a cryogenic (cryo) dewar with a 60° K nominal operating temperature.

  4. SWIR HgCdTe 256x256 focal plane array technology at BAE Systems

    NASA Astrophysics Data System (ADS)

    Hairston, A.; Tobin, S. P.; Hutchins, M.; Marciniec, J.; Mullarkey, J.; Norton, P.; Gurnee, M.; Reine, M. B.

    2006-08-01

    This paper reports new performance data for SWIR HgCdTe 256x256 hybrid Focal Plane Arrays with cutoff wavelengths of 2.6-2.7 μm, operating at temperatures of 190 K to 220 K. The unit cell size is 30x30 μm2. Back-illuminated SWIR HgCdTe P-on-n photodiode arrays were fabricated from two-layer LPE films grown on CdZnTe substrates. Response uniformity is excellent, with σ/μ=3-4%, and response operabilities are better than 99.9%. At a temperature of 190 K and a background photon flux of 6.8x10 11 ph/cm2-s, the median NEI is 1.1x10 9 ph/cm2-s, which is 1.4 times the BLIP NEI. NEI operabilities are better than 98.8%. Quantum efficiencies for large-area test diodes are 69% to 78%, close to the 79% upper limit imposed by reflection from the non-antireflection-coated CdZnTe substrate.

  5. A comparison of deghosting techniques in adaptive nonuniformity correction for IR focal-plane array systems

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Diani, Marco; Corsini, Giovanni

    2010-10-01

    Focal-plane array (FPA) IR systems are affected by fixed-pattern noise (FPN) which is caused by the nonuniformity of the responses of the detectors that compose the array. Due to the slow temporal drift of FPN, several scene-based nonuniformity correction (NUC) techniques have been developed that operate calibration during the acquisition only by means of the collected data. Unfortunately, such algorithms are affected by a collateral damaging problem: ghosting-like artifacts are generated by the edges in the scene and appear as a reverse image in the original position. In this paper, we compare the performance of representative methods for reducing ghosting. Such methods relate to the least mean square (LMS)-based NUC algorithm proposed by D.A. Scribner. In particular, attention is focused on a recently proposed technique which is based on the computation of the temporal statistics of the error signal in the aforementioned LMS-NUC algorithm. In this work, the performances of the deghosting techniques have been investigated by means of IR data corrupted with simulated nonuniformity noise over the detectors of the FPA. Finally, we have made some considerations on the computational aspect which is a challenging task for the employment of such techniques in real-time systems.

  6. Modeling of HgCdTe focal plane array spectral inhomogeneities

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2015-06-01

    Infrared focal plane arrays (IRFPA) are widely used to perform high quality measurements such as spectrum acquisition at high rate, ballistic missile defense, gas detection, and hyperspectral imaging. For these applications, the fixed pattern noise represents one of the major limiting factors of the array performance. This sensor imperfection refers to the nonuniformity between pixels, and is partially caused by disparities of the cut-off wavenumbers. In this work, we focus particularly on mercury cadmium telluride (HgCdTe), which is the most important material of IR cooled detector applications. Among the many advantages of this ternary alloy is the tunability of the bandgap energy with Cadmium composition, as well as the high quantum efficiency. In order to predict and understand spectral inhomogeneities of HgCdTe-based IRFPA, we propose a modeling approach based on the description of optical phenomena inside the pixels. The model considers the p-n junctions as a unique absorbent bulk layer, and derives the sensitivity of the global structure to both Cadmium composition and HgCdTe layer thickness. For this purpose, HgCdTe optical and material properties were necessary to be known at low temperature (80K), in our operating conditions. We therefore achieved the calculation of the real part of the refractive index using subtracti

  7. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  8. Design rule of indium bump in infrared focal plane array for longer cycling life

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Meng, Chao; Zhang, Wei; Lv, Yanqiu; Si, Junjie; Meng, Qingduan

    2016-05-01

    In light of the proposed equivalent method, a three-dimensional structural modeling of InSb infrared focal plane arrays (IRFPAs) is created, and the simulated strain distribution is identical to the deformation distribution on the top surface of InSb IRFPAs. After comparing the deformation features at different regions with the structural characteristics of IRFPAs, we infer that the flatness of InSb IRFPAs will be improved with a thinner indium bump array, and this inference is verified by subsequent simulation results. That is, when the diameter of indium bump is smaller than 20 μm, the simulated Z-components of strain on the whole top surface of InSb IRFPAs is uniform, and the deformation amplitude is small. When the diameter of indium bump is larger than 28 μm, the simulated Z-components of strain increases rapidly with the thicker indium bump, and the flatness of InSb IRFPAs is worsened rapidly. According to the changing trend of deformation amplitude with diameters of indium bump, and employing element pitches normalization method, a design rule of indium bump is proposed. That is, when the diameter of indium bump is shorter than 0.4 times the element pitch, the flatness of InSb IRFPAs is in an acceptable range. This design rule was supported by different IRFPAs with different formats delivered by several main research groups for achieving a longer cycling life.

  9. Dark current measurement of Type-II superlattice infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Katayama, Haruyoshi; Murooka, Junpei; Kimata, Masafumi; Iguchi, Yasuhiro

    2014-06-01

    We report the result of a dark current measurement of a Type-II superlattice (T2SL) infrared focal plane array (FPA), which consists of a 6 μm cutoff T2SL detector array and the readout integration circuit (ROIC) ISC0903 of FLIR Systems. In order to measure the dark current of the FPA, we obtained images with different exposure times in a fully closed cold shield of 77 K. Using the temporal change rate of the output and considering the charge conversion efficiency of the ROIC, we obtained a dark current density with an average value of 4 × 10-5 A/cm2 at a bias of -100 mV. We also compare the result of the FPA dark current measurement with that of a test element group (TEG), which was a single pixel detector, fabricated by the same process as the FPA. The dark current density of the TEG was 3 × 10-6 A/cm2 at a bias of -100 mV, lower than that of the FPA. We discuss the discrepancy between the dark current densities of the FPA and the TEG.

  10. Embedded nonuniformity correction in infrared focal plane arrays using the Constant Range algorithm

    NASA Astrophysics Data System (ADS)

    Redlich, Rodolfo; Figueroa, Miguel; Torres, Sergio N.; Pezoa, Jorge E.

    2015-03-01

    We present a digital fixed-point architecture that performs real-time nonuniformity correction in infrared (IR) focal plane arrays using the Constant Range algorithm. The circuit estimates and compensates online the gains and offsets of a first-order nonuniformity model using pixel statistics from the video stream. We demonstrate our architecture with a prototype built on a Xilinx Spartan-6 XC6SLX45T field-programmable gate array (FPGA), which can process an IR video stream from a FLIR Tau 2 long-wave IR camera with a resolution of 640 × 480 14-bit pixels at up to 238 frames per second (fps) with low resource utilization and adds only 13 mW to the FPGA power. Post-layout simulations of a custom integrated circuit implementation of the architecture on a 32 nm CMOS process show that the circuit can operate at up to 900 fps at the same resolution, and consume less than 4.5 mW.

  11. A novel design of infrared focal plane array with digital read out interface

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Ding, Ruijun; Lu, Wei; Zhou, Chun

    2010-10-01

    Infrared focal plane array (IRFPA) with digital read out interface is a key sign of the third generation IRFPA, which plays an important role in the reliability and miniaturization of infrared systems. A readout integrated circuit (ROIC) of IRFPA with digital readout interface based on dual ramp single slope (DRSS) analog to digital converter (ADC) architecture is presented in the paper. The design is realized using shared ADCs in column-wise and these ADCs are consisted of simplified DRSS architecture and shared units. Sample, conversion and readout are proceeded simultaneously in order to adapt large scale and high readout frame rate application. This circuit also shows many advantages, including small area and low power consumption. Simulation result shows that this architecture can be expand to 320×256 pixel array with a frame rate of 100 frames per second or a larger size whit lower frame rate, the quantized resolution of this circuit is 12 bit, and the analog power consumption is only 17μw per ADC.

  12. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  13. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Technical Reports Server (NTRS)

    Watts, Louis A.

    1993-01-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  14. Analysis and quantification of laser-dazzling effects on IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Hueber, N.,; Vincent, D.,; Morin, A.,; Dieterlen, A.,; Raymond, P.,

    2010-04-01

    Today Optronic Countermeasure (OCM) concerns imply an IR Focal-Plane Array (FPA) facing an in-band laser irradiation. In order to evaluate the efficiency of new countermeasure concepts or the robustness of FPAs, it is necessary to quantify the whole interaction effects. Even though some studies in the open literature show the vulnerability of imaging systems to laser dazzling, the diversity of analysis criteria employed does not allow the results of these studies to be correlated. Therefore, we focus our effort on the definition of common sensor figures of merit adapted to laser OCM studies. In this paper, two investigation levels are presented: the first one for analyzing the local nonlinear photocell response and the second one for quantifying the whole dazzling impact on image. The first study gives interesting results on InSb photocell behaviors when irradiated by a picosecond MWIR laser. With an increasing irradiance, four different successive responses appear: from linear, logarithmic, decreasing ones to permanent linear offset response. In the second study, our quantifying tools are described and their successful implementation through the picosecond laser-dazzling characterization of an InSb FPA is assessed.

  15. Two-color HgCdTe infrared staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Smith, Edward P.; Pham, Le T.; Venzor, Gregory M.; Norton, Elyse; Newton, Michael; Goetz, Paul; Randall, Valerie; Pierce, Gregory; Patten, Elizabeth A.; Coussa, Raymond A.; Kosai, Ken; Radford, William A.; Edwards, John; Johnson, Scott M.; Baur, Stefan T.; Roth, John A.; Nosho, Brett; Jensen, John E.; Longshore, Randolph E.

    2003-12-01

    Raytheon Vision Systems (RVS) in collaboration with HRL Laboratories is contributing to the maturation and manufacturing readiness of third-generation two-color HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256x256 30μm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) spectral regions. FPAs configured for MWIR/MWIR, MWIR/LWIR and LWIR/LWIR detection are used for target identification, signature recognition and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer-heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all two-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single mesa, single indium bump, and sequential mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.

  16. High-speed infrared imaging by an uncooled optomechanical focal plane array.

    PubMed

    Feng, Yun; Zhao, Yuejin; Dong, Liquan; Liu, Ming; Li, Xueyan; Ma, Wei; Yu, Xiaomei; Kong, Lingqin; Liu, Xiaohua

    2015-12-01

    In this paper, we theoretically and experimentally demonstrate that the imaging speed of the optomechanical focal plane array infrared imaging system can be significantly improved by changing the pressure in the vacuum chamber. The decrease in the thermal time constant is attributed to the additional thermal conductance caused by air. The response time will be greatly shortened to about 1/3 time in low vacuum (around ∼10(2)  Pa) compared with that in high vacuum. At a chamber pressure of 50 Pa, the "trailing" in the IR image of a moving hot iron is eliminated with negligible deterioration in the image quality. Moreover, infrared images on rapid occurrence events, such as ignition of an alcohol blast burner, lighting and fusion of a tungsten filament, are captured at a frame rate up to 200 Hz. The above results show that the proposed pressure-dependent performance provides a way to improve the system imaging speed and helps to slow down a dynamic event, which is of great value to the uncooled IR imaging systems in practical applications. PMID:26836676

  17. Epitaxial InSb for elevated temperature operation of large IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ashley, Tim; Burke, Theresa M.; Emeny, Martin T.; Gordon, Neil T.; Hall, David J.; Lees, David J.; Little, J. Chris; Milner, Daniel

    2003-09-01

    The use of epitaxially grown indium antimonide (InSb) has previously been demonstrated for the production of large 2D focal plane arrays. It confers several advantages over conventional, bulk InSb photo-voltaic detectors, such as reduced cross-talk, however here we focus on the improvement in operating temperature that can be achieved because more complex structures can be grown. Diode resistance, imaging, NETD and operability results are presented for a progression of structures that reduce the diode leakage current as the temperature is raised above 80K, compared with a basic p+-n-n+ structure presented previously. These include addition of a thin region of InAlSb to reduce p-contact leakage current, and construction of the whole device from InAlSb to reduce thermal generation in the active region of the detector. An increase in temperature to 110K, whilst maintaining full 80K performance, is achieved, and imaging up to 130K is demonstrated. This gives the prospect of significant benefits for the cooling systems, including, for example, use of argon in Joule-Thomson coolers or an increase in the life and/or decrease in the cost; power consumption and cool-down time of Stirling engines by several tens of per cent.

  18. [Research on the neas infrared focal plane array detector imaging technology used in the laser warning].

    PubMed

    Wang, Zhi-Bin; Huang, Yan-Fei; Wang, Yao-Li; Zhang, Rui; Wang, Yan-Chao

    2014-04-01

    In order to achieve the incoming laser's accurate position, it is necessary to improve the detected laser's direction resolution. The InGaAs focal plane array detector with the type of FPA-320 x 256-C was selected as the core component of the diffraction grating laser warning device. The detection theory of laser wavelength and direction based on diffraction grating was introduced. The drive circuit was designed through the analysis of the detector's performance and parameters. Under the FPGA' s timing control, the detector's analog output was sampled by the high-speed AD. The data was cached to FPGA's extended SRAM, and then transferred to a PC through USB. Labview on a PC collects the raw data for processing and displaying. The imaging experiments were completed with the above method. With the wavelength of 1550 nm and 980 nm laser from different directions the diffraction images were detected. Through analysis the location of the zero order and one order can be determined. According to the grating diffraction theory, the wavelength and the direction of the two-dimensional angle can be calculated. It indicates that the wavelength error is less than 10 nm, and the angle error is less than 1 degrees. PMID:25007645

  19. Advances in three-dimensional integration technologies in support of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Temple, D. S.; Vick, E. P.; Malta, D.; Lueck, M. R.; Skokan, M. R.; Masterjohn, C. M.; Muzilla, M. S.

    2015-01-01

    Staring infrared focal plane arrays (FPAs) require pixel-level, three-dimensional (3D) integration with silicon readout integrated circuits (ROICs) that provide detector bias, integrate detector current, and may further process the signals. There is an increased interest in ROIC technology as a result of two trends in the evolution of infrared FPAs. The first trend involves decreasing the FPA pixel size, which leads to the increased information content within the same FPA die size. The second trend involves the desire to enhance signal processing capability at the FPA level, which opens the door to the detector behaving like a smart peripheral rather than a passive component—with complex signal processing functions being executed on, rather than off, the FPA chip. In this paper, we review recent advances in 3D integration process technologies that support these key trends in the development of infrared FPAs. Specifically, we discuss approaches in which the infrared sensor is integrated with 3D ROIC stacks composed of multiple layers of silicon circuitry interconnected using metal-filled through-silicon vias. We describe the continued development of the 3D integration technology and summarize key demonstrations that show its viability for pixels as small as 5 microns.

  20. Absolute temperature measurements using a two-color QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Bundas, Jason; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Faska, Ross; Sundaram, Mani; Reisinger, Axel; Manitakos, Dan

    2010-04-01

    The infrared photon flux emitted by an object depends not only on its temperature but also on a proportionality factor referred to as its emissivity. Since the latter parameter is usually not known quantitatively a priori, any temperature determination based on single-band radiometric measurements suffers from an inherent uncertainty. Recording photon fluxes in two separate spectral bands can in principle circumvent this limitation. The technique amounts to solving a system of two equations in two unknowns, namely, temperature and emissivity. The temperature derived in this manner can be considered absolute in the sense that it is independent of the emissivity, as long as that emissivity is the same in both bands. QmagiQ has previously developed a 320x256 midwave/longwave staring focal plane array which has been packaged into a dual-band laboratory camera. The camera in question constitutes a natural tool to generate simultaneous and independent emissivity maps and temperature maps of entire two-dimensional scenes, rather than at a single point on an object of interest. We describe a series of measurements we have performed on a variety of targets of different emissivities and temperatures. We examine various factors that affect the accuracy of the technique. They include the influence of the ambient radiation reflected off the target, which must be properly accounted for and subtracted from the collected signal in order to lead to the true target temperature. We also quantify the consequences of spectrally varying emissivities.

  1. Optical sensitivity non-uniformity analysis and optimization of a tilt optical readout focal plane array

    NASA Astrophysics Data System (ADS)

    Fu, Jianyu; Shang, Haiping; Shi, Haitao; Li, Zhigang; Ou, Yi; Chen, Dapeng; Zhang, Qingchuan

    2016-02-01

    An optical readout focal plane array (FPA) usually has a differently tilted reflector/absorber at the initial state due to the micromachining technique. The angular deviation of the reflector/absorber has a strong impact on the optical sensitivity non-uniformity, which is a key factor which affects the imaging uniformity. In this study, a theoretical analysis has been developed, and it is found that the stress matching in SiO2-Aluminum (Al) bilayer leg could make a contribution towards reducing the optical sensitivity non-uniformity. Ion implantation of phosphorus (P) has been utilized to control the stress in SiO2 film. By controlling the implantation energy and dose, the stress and stress stability are modified. The optical readout FPA has been successfully fabricated with the stress-control technique based on P+ implantation. It is demonstrated that the gray response non-uniformity of optical readout FPA has decreased from 25.69% to 10.7%.

  2. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Astrophysics Data System (ADS)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  3. Random laser speckle based modulation transfer function measurement of midwave infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Barnard, Kenneth J.; Anisimov, Igor; Scheihing, John E.

    2012-08-01

    Direct measurement of the modulation transfer function (MTF) of focal plane arrays (FPAs) using random laser speckle approaches for the visible/near-infrared wavelength band has been well documented over the last 20 years. These methods have not transitioned to the midwave infrared (MWIR) primarily because other techniques have been sufficient and MWIR laser sources with sufficient output power have been unavailable. However, as the detector pitch decreases, MTF measurements become more difficult due to diffraction, while potential MTF degradation due to lateral carrier diffusion crosstalk makes accurate MTF characterization critical for sensor system design. Here, a random laser speckle FPA MTF measurement approach is adapted for use in the MWIR that utilizes a quantum cascade laser coupled with an integrating sphere to generate the appropriate in-band random speckle. Specific challenges associated with the technique are addressed including the validity of the Fresnel diffraction assumptions describing the propagation of the random speckle field from the integrating sphere to the FPA. Improved methods for estimating the power spectral density (PSD) of the measured speckle that reduce data requirements are presented. The statistics and uniformity of the laser speckle are presented along with PSD measurements and estimated MTFs of a MWIR FPA.

  4. Model based on-chip 13bits ADC design dedicated to uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Dupont, Benoit; Robert, Patrick; Dupret, Antoine; Villard, Patrick; Pochic, David

    2007-10-01

    This paper presents an on-chip 13 bits 10 M/S Analog to Digital Converter (ADC) specifically designed for infrared bolometric image sensor. Bolometric infrared sensors are MEMs based thermal sensors, which covers a large spectrum of infrared applications, ranging from night vision to predictive industrial maintenance and medical imaging. With the current move towards submicron technologies, the demand for more integrated, smarter sensors and microsystems has dramatically increased. This trend has strengthened the need of on-chip ADC as the interface between the analog core and the digital processing electronic. However designing an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. To take into account those specific needs, a high level model has been developed prior to the actual design. In this paper, we present the trade-offs of ADC design linked to infrared key performance parameters and bolometric technology detection method. The original development scheme, based on system level modeling, is also discussed. Finally we present the actual design and the measured performances.

  5. An improved retina-like nonuniformity correction for infrared focal-plane array

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Wang, Chen-sheng

    2015-11-01

    The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with nonuniformity noise. This paper mainly proposes an improved adaptive nonuniformity correction (NUC) method based on the retina-like neural network approach. The main purpose of NUC method is to obtain reliable estimations of gain and offset parameters. In this paper the two correction parameters are updated with two different learning rates respectively for the purpose of updating these two parameters synchronously. And then more accurate estimations of the two correction parameters can be obtained. Again, in order to reduce the ghost artifacts normally introduced by the strong edge effectively, the proposed algorithm employs the non-local means (NLM) method to estimate the desired target value of each detector. The proposed NUC method has been tested by applying it to the IR sequence of frames with simulated nonuniformity noise and real nonuniformity noise, respectively. The performance comparisons are implemented with the well-established scene-based NUC techniques. And the experimental results show the efficiency of the proposed method.

  6. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  7. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  8. Large format high-operability SWIR and MWIR focal plane array performance and capabilities

    NASA Astrophysics Data System (ADS)

    Bangs, James; Langell, Mark; Reddy, Madhu; Melkonian, Leon; Johnson, Scott; Elizondo, Lee; Rybnicek, Kimon; Norton, Elyse; Jaworski, Frank; Asbrock, James; Baur, Stefan

    2011-06-01

    High-performance large-format detector arrays responsive to the 1-5μm wavelength range of the infrared spectrum fabricated using large area HgCdTe layers grown on 6-inch diameter (211) silicon substrates are available for advanced imaging applications. This paper reviews performance and capabilities of Raytheon Vision Systems (RVS) HgCdTe/Si Focal Plane Arrays (FPA) and shows 2k x 2k format MWIR HgCdTe/Si FPA performance with NEdT operabilities better than 99.9%. SWIR and MWIR detector performance for HgCdTe/Si is comparable to established performance of HgCdTe/CdZnTe wafers. HgCdTe devices fabricated on both types of substrates have demonstrated very low dark current, high quantum efficiency and full spectral band fill factor characteristic of HgCdTe. HgCdTe has the advantage of being able to precisely tune the detector cutoff via adjustment of the Cd composition in the MBE growth. The HgCdTe/Si detectors described in this paper are p-on-n mesa delineated architecture and fabricated using the same mature etch, passivation, and metallization processes as our HgCdTe/CdZnTe line. Uniform device quality HgCdTe epitaxial layers and application of detector fabrication processes across the full area of 6-inch wafers routinely produces high performing detector pixels from edge to edge of the photolithographic limits across the wafer, offering 5 times the printable area as costly 6×6cm CdZnTe substrates. This 6-inch HgCdTe detector wafer technology can provide applications demanding very wide FOV high resolution coverage the capability to produce a very large single piece infrared detector array, up to a continuous image plane 10×10 cm in size. Alternatively, significant detector cost reduction through allowing more die of a given size to be printed on each wafer is possible, with further cost reduction achieved through transition towards automated detector fabrication and photolithographic processes for both increased yields and reduced touch labor costs. RVS continues

  9. SNAP focal plane

    SciTech Connect

    Lampton, Michael L.; Kim, A.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Berkovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro,R.; Ealet, A.; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland, S.E.; Huterer, D.; Karcher, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder,E.V.; Loken, S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.

    2002-07-29

    The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation--visible and near-infrared imagers, spectrograph, and star guiders--share one common focal plane.

  10. High performance type II superlattice focal plane array with 6μm cutoff wavelength

    NASA Astrophysics Data System (ADS)

    Miura, Kouhei; Machinaga, Ken-ichi; Balasekaran, Sundararajan; Kawahara, Takahiko; Migita, Masaki; Inada, Hiroshi; Iguchi, Yasuhiro; Sakai, Michito; Murooka, Junpei; Katayama, Haruyoshi; Kimata, Masafumi

    2016-05-01

    The cutoff wavelength of 6μm is preferable for the full usage of the atmospheric window in the mid-wavelength region. An InAs/GaSb type-II superlattice (T2SL) is the only known infrared material that has a theoretically predicted high performance and also the cutoff wavelength can be easily controlled by changing the thickness of InAs and GaSb. In this study, we used a p-i-n structure with InAs/GaSb T2SL absorber and also barrier layers which was grown on a Tedoped GaSb substrate by molecular beam epitaxy. A mesa-type focal plane array (FPA) with 320×256 pixels and 30μm pixel pitch was fabricated. Mesa structures were formed by inductively coupled plasma reactive ion etching with halogen gas mixture. Prior to the deposition of the SiO2 passivation film, N2 plasma treatment was applied for reducing the dark currents. Measured dark current of the sensor was 4x10-7A/cm2 at temperature of 77K and reverse bias of -20mV. The quantum efficiency was 0.35 and the detectivity was 4.1x1012cm/Hz1/2W. The sensor array was hybridized with the commercially available readout integrated circuit using indium bumps. The noise equivalent differential temperature measured with F/2.3 optics was 31mK at 77K. The operability was over 99%. This FPA is suitable for full usage of the atmospheric window in the mid-wavelength region.

  11. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  12. Modulation Transfer Function Consequences of Planar Dense Array Geometries in Infrared Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Wichman, Adam R.; Bellotti, Enrico

    2015-09-01

    Finite-difference time-domain and finite element method simulations are used to evaluate two-dimensional spot-scan profiles of p-on- n double-layer planar heterostructure (DLPH) detector arrays with abrupt p-type diffusions. The modulation transfer function (MTF) is calculated from the spot-scan profiles. An asymmetric dark and photo current collection mechanism is identified and explained as a result of electric field bunching through the corners of polygonal diffusions in DLPH arrays. The MTF consequences of the asymmetric collection are studied for triangular, square, and hexagonal diffusions in square and hexagonal arrays. We show that the placement and shape of the diffusion relative to the pixel can modify the MTF by several percent. The magnitude of the effect is largest for diffusions with fewer degrees of rotational symmetry.

  13. 1024 x 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 10(24) x 10(24) pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEAT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEAT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In this paper, we will discuss the performance in terms of quantum efficiency, NE(delta)T, uniformity, operability and modulation transfer functions.

  14. Microbolometer Terahertz Focal Plane Array and Camera with Improved Sensitivity in the Sub-Terahertz Region

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Kurashina, Seiji; Miyoshi, Masaru; Doi, Kohei; Ishi, Tsutomu; Sudou, Takayuki; Morimoto, Takao; Goto, Hideki; Sasaki, Tokuhito

    2015-10-01

    A pixel in an uncooled microbolometer terahertz (THz) focal plane array (FPA) has a suspended structure above read-out integrated circuit (ROIC) substrate. An optical cavity structure is formed between a thin metallic layer deposited on the suspended structure and a thick metallic layer deposited on the ROIC surface. The geometrical optical cavity length for our previous pixel structure, 3-4 μm, is extended three times, so that responsivity can be increased in the sub-THz region. This modification is carried out by depositing a thick SiN layer on the thick metallic layer. The modified pixel structure is applied to 640 × 480 and 320 × 240 THz-FPAs with 23.5 μm pixel pitch. Minimum detectable powers per pixel (MDP) are evaluated for these FPAs at 4.3, 2.5, 0.6, and 0.5 THz, and the MDP values are found to be improved by a factor of ten at 0.6 and 0.5 THz. The MDP values of the THz-FPAs developed in this work are compared with those of other THz detectors, such as uncooled antenna-coupled CMOS (complimentary metal-oxide semiconductor) THz-FPAs and cooled bolometer arrays. It is found that our THz-FPAs are more sensitive in the sub-THz region than the CMOS THz-FPAs, while they are much less sensitive than the cooled bolometer arrays. These THz-FPAs are incorporated into a 640 × 480 THz camera and 320 × 240 THz camera, and imaging equipment is developed. The equipment consists of a linearly polarized sub-THz source, a collimator lens, a beam homogenizer, two wire grids, a quarter-wave plate, and two THz cameras, and sub-THz images are demonstrated. It should be mentioned for the equipment that imaging of transmission and reflection is realized by moving only the quarter-wave plate, and the reflection image is taken along a direction normal to a sample surface so that the reflection image is hardly deformed.

  15. An uncooled microbolometer focal plane array using heating based resistance nonuniformity compensation

    NASA Astrophysics Data System (ADS)

    Tepegoz, Murat; Oguz, Alp; Toprak, Alperen; Senveli, S. Ufuk; Canga, Eren; Tanrikulu, M. Yusuf; Akin, Tayfun

    2012-06-01

    This paper presents the performance evaluation of a unique method called heating based resistance nonuniformity compensation (HB-RNUC). The HB-RNUC method utilizes a configurable bias heating duration for each pixel in order to minimize the readout integrated circuit (ROIC) output voltage distribution range. The outputs of each individual pixel in a resistive type microbolometer differ from each other by a certain amount due to the resistance non-uniformity throughout the focal plane array (FPA), which is an inevitable result of the microfabrication process. This output distribution consumes a considerable portion of the available voltage headroom of the ROIC unless compensated properly. The conventional compensation method is using on-chip DACs to apply specific bias voltages to each pixel such that the output distribution is confined around a certain point. However, on-chip DACs typically occupy large silicon area, increase the output noise, and consume high power. The HB-RNUC method proposes modifying the resistances of the pixels instead of the bias voltages, and this task can be accomplished by very simple circuit blocks. The simplicity of the required blocks allows utilizing a low power, low noise, and high resolution resistance nonuniformity compensation operation. A 9-bit HB-RNUC structure has been designed, fabricated, and tested on a 384x288 microbolometer FPA ROIC on which 35μm pixel size detectors are monolithically implemented, in order to evaluate its performance. The compensation operation reduces the standard deviation of the ROIC output distribution from 470 mV to 9 mV under the same readout gain and bias settings. The analog heating channels of the HB-RNUC block dissipate around 4.1 mW electrical power in this condition, and the increase in the output noise due to these blocks is lower than 10%.

  16. Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras

    NASA Astrophysics Data System (ADS)

    Tekaya, Kevin; Fendler, Manuel; Dumas, Delphine; Inal, Karim; Massoni, Elisabeth; Gaeremynck, Yann; Druart, Guillaume; Henry, David

    2014-06-01

    InfraRed (IR) sensor systems like night vision goggles, missile approach warning systems and telescopes have an increasing interest in decreasing their size and weight. At the same time optical aberrations are always more difficult to optimize with larger Focal Plane Arrays (FPAs) and larger field of view. Both challenges can now take advantage of a new optical parameter thanks to flexible microelectronics technologies: the FPA spherical curvature. This bio-inspired approach can correct optical aberrations and reduce the number of lenses in camera conception. Firstly, a new process to curve thin monolithic devices has been applied to uncooled microbolometers FPAs. A functional 256×320 25μm pitch (roughly 1cm2) uncooled FPA has been thinned and curved. Its electrical response showed no degradation after our process (variation of less than 2.3% on the response). Then a two lenses camera with a curved FPA is designed and characterized in comparison with a two lenses camera with a flat FPA. Their Modulation Transfer Functions (MTFs) show clearly an improvement in terms of beams dispersion. Secondly, a new process to fabricate monolithic cooled flip-chip MCT-IRCMOS FPAs was developed leading to the first spherical cooled IR FPA: with a radius of 550 mm. Other radii are achieved. A standard opto-electrical characterization at 80 K of the imager shows no additional short circuit and no mean response alteration compared to a standard IRCMOS shown in reference. Noise is also studied with a black body between 20 and 30°C.

  17. Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan (Inventor); Vilnrotter, Victor A. (Inventor)

    2011-01-01

    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.

  18. Numerical analysis of InSb parameters and InSb 2D infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Hongfei; Sun, Weiguo; Zhang, Lei; Meng, Chao; Lu, Zhengxiong

    2012-10-01

    Accurate and reliable numerical simulation tools are necessary for the development of advanced semiconductor devices. InSb is using the MATLAB and TCAD simulation tool to calculatet the InSb body bandstructure, blackbody's radiant emittance and simultaneously solve the Poisson, Continuity and transport equations for 2D detector structures. In this work the material complexities of InSb, such as non-parabolicity, degenergcy, mobility and Auger recombination/generation are explained, and physics based models are developed. The Empirical Tight Binding Method (ETBM) was been using to calculate the bandstructure for InSb at 77 K by Matlab. We describe a set of systematic experiments performed in order to calibrate the simulation to semiconductor devices backside illuminated InSb focal plane arrays realized with planar technology. The spectral photoresponse and crosstalk characteristic for mid-wavelength InSb infrared focal plane arrays have been numerically studied.

  19. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  20. Portable sequential multicolor thermal imager based on a MCT 384 x 288 focal plane array

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Cabanski, Wolfgang A.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann

    2001-10-01

    AIM has developed a sequential multicolor thermal imager to provide customers with a test system to realize real-time spectral selective thermal imaging. In contrast to existing PC based laboratory units, the system is miniaturized with integrated signal processing like non-uniformity correction and post processing functions such as image subtraction of different colors to allow field tests in military applications like detection of missile plumes or camouflaged targets as well as commercial applications like detection of chemical agents, pollution control, etc. The detection module used is a 384 X 288 mercury cadmium telluride (MCT) focal plane array (FPA) available in the mid wave (MWIR) or long wave spectral band LWIR). A compact command and control electronics (CCE) provides clock and voltage supply for the detector as well as 14 bit deep digital conversion of the analog detector output. A continuous rotating wheel with four facets for filters provides spectral selectivity. The customer can choose between various types of filter characteristics, e.g. a 4.2 micrometer bandpass filter for CO2 detection in the MWIR band. The rotating wheel can be synchronized to an external source giving the rotation speed, typical 25 l/s. A position sensor generates the four frame start signals for synchronous operation of the detector -- 100 Hz framerate for the four frames per rotation. The rotating wheel is exchangeable for different configurations and also plates for a microscanner operation to improve geometrical resolution are available instead of a multicolor operation. AIM's programmable MVIP image processing unit is used for signal processing like non- uniformity correction and controlling the detector parameters. The MVIP allows to output the four subsequent images as four quarters of the video screen to prior to any observation task set the integration time for each color individually for comparable performance in each spectral color and after that also to determine

  1. Digital scanner infrared focal plane technology

    NASA Astrophysics Data System (ADS)

    Ortiz, M. A.; Malone, N. R.; Harris, M.; Shin, J.; Byers, S.; Price, D.; Vampola, J.

    2011-09-01

    Advancements in finer geometry and technology advancements in circuit design now allow placement of digital architecture on cryogenic focal planes while using less power than heritage analog designs. These advances in technology reduce the size, weight, and power of modern focal planes. In addition, the interface to the focal plane is significantly simplified and is more immune to Electromagnetic Interference (EMI). The cost of the customer's instrument after integration with the digital scanning Focal Plane Array (FPA) has been significantly reduced by placing digital architecture such as Analog to digital convertors and Low Voltage Differential Signaling (LVDS) Inputs and Outputs (I/O) on the Read Out Integrated Circuit (ROIC).

  2. Electromagnetic analysis of the IR sensor focal plane arrays of micro-optics

    NASA Astrophysics Data System (ADS)

    Sikorski, Zbigniew

    2000-04-01

    Matrices of binary micro-lenses monolithically integrated with the focal-place-arrays (FPA) of longwave IR uncooled detectors can significantly improve sensor's parameters. Surface relief of the binary micro-lenses is built of annular stair step structures of heights and widths smaller than the radiation length. Scalar diffraction theory cannot correctly describe diffraction on these micro-structures and therefore the rigorous electromagnetic theory should be applied. In this aper, we have applied the electromagnetic eignemode method to study binary micro-optics for the longwave IR FPA of 50 micrometers pixel width. We have shown that binary refractive micro-lenses outperform their diffractive counterparts allowing for detectors of 10 micrometers width. The effective refractive micro-lenses require the 8-level surface relief. Geometrical optics predictions of the focal position agree quite well width electromagnetic calculations.

  3. Commercial and industrial applications of indium gallium arsenide near-infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.

    1999-07-01

    Sensors Unlimited, Inc. has developed focal pane arrays (FPAs) fabricated with indium gallium arsenide (InGaAs) photodiode arrays and silicon CMOS readout integrated circuits. These devices are readily available in a wide variety of formats suitable for commercial and industrial applications. InGaAs FPAs are sensitive to the near IR, operate without cooling, and come in both 2D formats and 1D formats. 1D InGaAs FPAs are used as both spectroscopic detectors and line scan imagers. Key applications include miniature spectrometers used for wavelength control and monitoring of WDM laser sources, octane determination, the sorting o plastics during recycling, and web process control. 2D InGaAs FPAs find use in applications such as laser beam profiling, visualization of 'clear' ice on aircraft and roadways, and industrial thermal imaging.

  4. High-resolution digital readout for uncooled smart IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ringh, Ulf; Jansson, Christer; Liddiard, Kevin C.; Reinhold, Olaf

    1997-11-01

    This paper discusses the development of a high resolution digital readout from a 2D array of uncooled IR detectors. The need for a high resolution analogue to digital converter (ADC) is described and anew concept is presented. Experimental VLSI arrays have been designed using 0.8 micrometers CMOS technology and the pixel size is 40 micrometers X 40 micrometers . The concept has been demonstrated by using 320 parallel 16 bit ADCs in a 320 X 240 readout array with a frame rate of 30 Hz. High linearity and low noise is obtained and the power consumption for each ADC is 0.5 mW. The high digital resolution allows for digital offset correction off the local plane. A 16 X 16 version of the readout circuit has been postprocessed with uncooled IR detectors. These are currently under evaluation.

  5. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  6. Low-power 12-bit superconducting analog-to-digital converter for cryogenic focal plane array readouts

    NASA Astrophysics Data System (ADS)

    Rylov, Sergey V.; Robertazzi, R. P.

    1996-06-01

    Superconducting Analog-to-Digital Converters (ADCs) are attractive for use on cryogenic focal plane arrays because of their ultra-low power consumption and their ability to operate at cryogenic temperatures. We have developed a 12 bit ADC based on Nb thin film superconducting integrated circuit technology which dissipates less than 0.44 mW while in operation at 4.2 K. Extensions of this deign to lower junction critical currents would allow the production of an ADC which dissipates less than 0.1 mW when fully biased. The ADC had at least 9.75 effective bits of resolution for 20 kHz input signals, limited by the harmonic distortions of the signal source. We estimate that the ultimate resolution of this ADC can be greater than 20 bits at 10 MHz bandwidth with our current 2.5 micron fabrication process. Potential applications for this device include focal plane array read out electronics for low temperature (4.2 K and below) imaging arrays, such as those being used on the SIRTF mission being planned by NASA. Other applications include high precision instrumentation for metrology uses.

  7. Spatial modeling of optical crosstalk in InGaAsP Geiger-mode APD focal plane arrays.

    PubMed

    Piccione, Brian; Jiang, Xudong; Itzler, Mark A

    2016-05-16

    We report a spatial model of optical crosstalk in InGaAsP Geiger-mode APD focal plane arrays created via non-sequential ray tracing. Using twenty-four equivalent experimental data sets as a baseline, we show that experimental results can be reproduced to a high degree of accuracy by incorporating secondary crosstalk effects, with reasonable assumptions of material and emission source properties. We use this model to categorize crosstalk according to source and path, showing that the majority of crosstalk in the immediate neighborhood of avalanching pixels in the present devices can be attributed to direct line-of-sight emissions. PMID:27409885

  8. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array

    SciTech Connect

    Phillips, Mark C.; Ho, Nicolas

    2008-02-04

    A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30-10.15 μm). Hypercubes containing images at 300 wavelengths separated by 0.3 cm 1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

  9. Mosaic Focal Plane Development

    NASA Astrophysics Data System (ADS)

    Mason, David L.; Horner, Scott D.; Aamodt, Earl K.

    2002-12-01

    Advances in systems engineering, applied sciences, and manufacturing technologies have enabled the development of large ground based and spaced based astronomical instruments having a large Field of View (FOV) to capture a large portion of the universe in a single image. A larger FOV can be accomplished using light weighted optical elements, improved support structures, and the development of mosaic Focal Plane Assemblies (mFPA). A mFPA designed for astronomy can use multiple Charged Coupled Devices (CCD) mounted onto a single camera baseplate integrated at the instrument plane of focus. Examples of current, or proposed, missions utilizing mFPA technology include FAME, GEST, Kepler, GAIA, LSST, and SNAP. The development of a mFPA mandates tighter control on the design trades, component development, CCD characterization, component integration, and performance verification testing. This paper addresses the capability Lockheed Martin Space Systems Company's (LMSSC) Advanced Technology Center (ATC) has developed to perform CCD characterization, mFPA assembly and alignment, and mFPA system level testing.

  10. Mosaic Focal Plane Development

    NASA Astrophysics Data System (ADS)

    Mason, D.; Horner, S.; Aamodt, E.

    Advances in manufacturing and applied sciences have enabled the development of large ground and spaced based astronomical instruments having a Field of View (FOV) large enough to capture a large portion of the universe in a single image. A large FOV can be accomplished using light weighted optics, improved structures, and the development of mosaic Focal Plane Assemblies (mFPAs). A mFPA comprises multiple Charged Coupled Devices (CCD) mounted onto a single baseplate integrated at the focus plane of the instrument. Examples of current, or proposed, missions utilizing mFPA technology include FAME, GEST, Kepler, GAIA, LSST, and SNAP. The development of a mFPA mandates tight control on the design trades of component development, CCD definition and characterization, component integration, and performance verification testing. This paper addresses the results of the Lockheed Martin Space Systems Company (LMSSC), Advanced Technology Center (ATC) developed mFPA. The design trades and performance characterization are services provided by the LMSSC ATC but not detailed in this paper.

  11. Microfabrication and Device Parameter Testing of the Focal Plane Arrays for the Spider and BICEP2/Keck CMB Polarimeters

    NASA Astrophysics Data System (ADS)

    Bonetti, J. A.; Turner, A. D.; Kenyon, M.; Orlando, A.; Brevik, J. A.; Trangsrud, A.; Sudiwala, R.; Leduc, H. G.; Nguyen, H. T.; Day, P. K.; Bock, J. J.; Golwala, S. R.; Sayers, J.; Kovac, J. M.; Lange, A. E.; Jones, W. C.; Kuo, C. L.

    2009-12-01

    Spider and BICEP2/Keck are projects to study the polarization of the cosmic microwave background (CMB). The focal planes for both require large format arrays of superconducting transition edge sensors (TES's). A major challenge for these projects is fabricating arrays with high uniformity in device parameters. A microfabrication process is described that meets this challenge. The results from device testing are discussed. Each focal plane is composed of 4 square wafers (tiles), and each wafer contains 128 membrane-isolated, polarization-sensitive, antenna-coupled TES's. After processing, selected wafers are pre-screened in a quick-turn-around, cryogen-free, 3He fridge. The pre-screening is performed with a commercial resistance bridge and measures transition temperatures (Tc) and normal state resistances (Rn). After pre-screening, 4 tiles at a time are fully characterized in a testbed employing a SQUID readout and SQUID mulitplexing. The tests demonstrate the values of Tc, Rn, thermal conductance, g, and the standard deviations of each, across a wafer and from wafer to wafer, are within design specifications.

  12. Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector.

    PubMed

    Ghosh, Ayanjeet; Serrano, Arnaldo L; Oudenhoven, Tracey A; Ostrander, Joshua S; Eklund, Elliot C; Blair, Alexander F; Zanni, Martin T

    2016-02-01

    Aided by advances in optical engineering, two-dimensional infrared spectroscopy (2D IR) has developed into a promising method for probing structural dynamics in biophysics and material science. We report two new advances for 2D IR spectrometers. First, we report a fully reflective and totally horizontal pulse shaper, which significantly simplifies alignment. Second, we demonstrate the applicability of mid-IR focal plane arrays (FPAs) as suitable detectors in 2D IR experiments. FPAs have more pixels than conventional linear arrays and can be used to multiplex optical detection. We simultaneously measure the spectra of a reference beam, which improves the signal-to-noise by a factor of 4; and two additional beams that are orthogonally polarized probe pulses for 2D IR anisotropy experiments. PMID:26907414

  13. The CHROMA focal plane array: a large-format, low-noise detector optimized for imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Demers, Richard T.; Bailey, Robert; Beletic, James W.; Bernd, Steve; Bhargava, Sidharth; Herring, Jason; Kobrin, Paul; Lee, Donald; Pan, Jianmei; Petersen, Anders; Piquette, Eric; Starr, Brian; Yamamoto, Matthew; Zandian, Majid

    2013-09-01

    The CHROMA (Configurable Hyperspectral Readout for Multiple Applications) is an advanced Focal Plane Array (FPA) designed for visible-infrared imaging spectroscopy. Using Teledyne's latest substrateremoved HgCdTe detector, the CHROMA FPA has very low dark current, low readout noise and high, stable quantum efficiency from the deep blue (390nm) to the cutoff wavelength. CHROMA has a pixel pitch of 30 microns and is available in array formats ranging from 320×480 to 1600×480 pixels. Users generally disperse spectra over the 480 pixel-length columns and image spatially over the n×160 pixellength rows, where n=2, 4, 8, 10. The CHROMA Readout Integrated Circuit (ROIC) has Correlated Double Sampling (CDS) in pixel and generates its own internal bias signals and clocks. This paper presents the measured performance of the CHROMA FPA with 2.5 micron cutoff wavelength including the characterization of noise versus pixel gain, power dissipation and quantum efficiency.

  14. High-performance uncooled amorphous silicon video graphics array and extended graphics array infrared focal plane arrays with 17-μm pixel pitch

    NASA Astrophysics Data System (ADS)

    Tissot, Jean-Luc; Tinnes, Sébastien; Durand, Alain; Minassian, Christophe; Robert, Patrick; Vilain, Michel; Yon, Jean-Jacques

    2011-06-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon with 45, 35, and 25 μm enables ULIS to develop video graphics array (VGA) and extended graphics array (XGA) infrared focal plane array (IRFPA) formats with 17-μm pixel pitch to fulfill every application. These detectors keep all the recent innovations developed on the 25-μm pixel-pitch read out integrated circuit (ROIC) (detector configuration by serial link, low power consumption, and wide electrical dynamic range). The specific appeal of these units lies in the high spatial resolution it provides while keeping the small thermal time constant. The reduction of the pixel pitch turns the VGA array into a product well adapted for high-resolution and compact systems and the XGA a product well adapted for high-resolution imaging systems. High electro-optical performances have been demonstrated with noise equivalent temperature difference (NETD) < 50 mK. We insist on NETD and wide thermal dynamic range trade-off, and on the high characteristics uniformity achieved thanks to the mastering of the amorphous silicon technology as well as the ROIC design. This technology node paves the way to high-end products as well as low-end, compact, smaller formats, such as 320 × 240 and 160 × 120 or smaller.

  15. 256 x 256 PACE-1 PV HgCdTe focal plane arrays for medium and short wavelength infrared applications

    NASA Technical Reports Server (NTRS)

    Kozlowski, L. J.; Vural, K.; Johnson, V. H.; Chen, J. K.; Bailey, R. B.

    1990-01-01

    The development of two 256 by 256 hybrid HgCdTe focal plane array (FPA) families is described, and their performance is discussed. The hybrid FPAs employ a PV HgCdTe detector array and custom Si CMOS readouts. The PACE-1 process was used to fabricate the detectors, whereby the liquid phase epitaxial growth of HgCdTe occurs on sapphire substrates buffered by a layer of CdTe. The performance characteristics of the detector arrays are given. A tactical 256 by 256 CMOS readout is tested, in which a high functional yield was achieved. Updated test results are given for a 256 by 256 readout circuit developed for use in an orbital replacement instrument for the Hubble Space Telescope. The characterizations of several MWIR and SWIR FPAs were thorough and shown to be reliable. The pixel yield, maximum FPA responsivity nonuniformity, and SWIR FPA read noise for the tests are given. The high contrast and insignificant fixed pattern noise of the imagery from the MWIR 256 by 256 FPA are emphasized. These qualities were obtained when the device was operating at 80 k and utilizing f/2 optics with an 8-in. focal length and a 4.4 micron high pass filter.

  16. 256 X 256 PACE-1 PV HgCdTe focal plane arrays for medium and short wavelength infrared applications

    NASA Astrophysics Data System (ADS)

    Kozlowski, L. J.; Vural, K.; Johnson, V. H.; Chen, J. K.; Bailey, R. B.

    1990-09-01

    The development of two 256 by 256 hybrid HgCdTe focal plane array (FPA) families is described, and their performance is discussed. The hybrid FPAs employ a PV HgCdTe detector array and custom Si CMOS readouts. The PACE-1 process was used to fabricate the detectors, whereby the liquid phase epitaxial growth of HgCdTe occurs on sapphire substrates buffered by a layer of CdTe. The performance characteristics of the detector arrays are given. A tactical 256 by 256 CMOS readout is tested, in which a high functional yield was achieved. Updated test results are given for a 256 by 256 readout circuit developed for use in an orbital replacement instrument for the Hubble Space Telescope. The characterizations of several MWIR and SWIR FPAs were thorough and shown to be reliable. The pixel yield, maximum FPA responsivity nonuniformity, and SWIR FPA read noise for the tests are given. The high contrast and insignificant fixed pattern noise of the imagery from the MWIR 256 by 256 FPA are emphasized. These qualities were obtained when the device was operating at 80 k and utilizing f/2 optics with an 8-in. focal length and a 4.4 micron high pass filter.

  17. Linear mode photon counting from visible to MWIR with HgCdTe avalanche photodiode focal plane arrays

    NASA Astrophysics Data System (ADS)

    Sullivan, William; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-05-01

    Results of characterization data on linear mode photon counting (LMPC) HgCdTe electron-initiated avalanche photodiode (e-APD)focal plane arrays (FPA) are presented that reveal an improved understanding and the growing maturity of the technology. The first successful 2x8 LMPC FPA was fabricated in 2010 [1]. Since then a process validation lot of 2x8 arrays was fabricated. Five arrays from this lot were characterized that replicated the previous 2x8 LMPC array performance. In addition, it was unambiguously verified that readout integrated circuit (ROIC) glow was responsible for most of the false event rate (FER) of the 2010 array. The application of a single layer metal blocking layer between the ROIC and the detector array and optimization of the ROIC biases reduced the FER by an order of magnitude. Photon detection efficiencies (PDEs) of greater than 50% were routinely demonstrated across 5 arrays, with one array reaching a PDE of 70%. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 μm to 25 μm resulting in a 2x increase in E-APD gain from 470 on the 2010 array to 1100 on one of the 2013 FPAs. Mean single photon signal to noise ratios of >12 were demonstrated at excess noise factors of 1.2-1.3. NASA Goddard Space Flight Center (GSFC) performed measurements on the delivered FPA that verified the PDE and FER data.

  18. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  19. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings.

    PubMed

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-01-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency. PMID:27193803

  20. World's first demonstration of type-II superlattice dual band 640x512 LWIR focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Edward Kwei-wei; Razeghi, Manijeh

    2012-01-01

    High resolution multi-band infrared detection of terrestrial objects is useful in applications such as long range and high altitude surveillance. In this paper, we present a 640 by 512 type-II superlattice focal plane array (FPA) in the long-wave infrared (LWIR) suitable for such purposes, featuring 100% cutoff wavelengths at 9.5μm (blue channel) and 13μm (red). The dual band camera is single-bump hybridized to an Indigo 30μm pitch ISC0905 read-out integrated circuit. Test pixels revealed background limited behavior with specific detectivities as high as ~5x1011 Jones at 7.9μm (blue) and ~1x1011 Jones at 10.2μm (red) at 77K.

  1. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings

    NASA Astrophysics Data System (ADS)

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-05-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency.

  2. InGaAs focal plane arrays and cameras for man-portable near-infrared imaging

    NASA Astrophysics Data System (ADS)

    Ettenberg, Martin H.; Cohen, Marshall J.; Olsen, Gregory H.; Kennedy, James J.

    1999-07-01

    During this presentation, the status of the technology will be described and prototype applications will be demonstrated and discussed. Included in the discussion will be: (1) the ability to distinguish camouflage from the surrounding environment, (2) the ability to see through fog that is opaque to visible imagers, (3) the ability to image eye-safe lasers for range-finding and target-acquisition, and (4) the use in conjunction with NIR flood lights for both covert surveillance and search and rescue operations. The high room-temperature D* makes indium gallium arsenide focal plane arrays excellent candidates for inclusion in small, light-weight, low-power, and low-cost NIR imaging modules. This type of development will enable additional applications such as the use in gun sights and micro-unmanned aerial vehicle surveillance. The presentation will conclude with the discussion of ongoing development activities.

  3. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings

    PubMed Central

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-01-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency. PMID:27193803

  4. Analysis and simulation of a new kind of noise at the input stage of infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcheng; Chen, Yu; Huang, Songlei; Fang, Jiaxiong

    2014-05-01

    Noise is a primary characteristic of an infrared focal plane array (FPA) that contributes to detection performance at low light level. In a capacitive-feedback trans-impedance amplifier (CTIA)-based readout integrated circuit (ROIC), reset noise can be removed by correlated double sampling (CDS). There is an exotic experimental phenomenon that FPA noise will increase greatly if the first sampling time of CDS is less than a threshold value. A noise model at FPA interface is presented in this paper which explains that this new kind of noise originates from incompletely settling of CTIA preamplifier. As this noise is performed in time domains, we use transient noise simulation technique to describe the dependence of this noise on detector pixel capacitance, integration capacitor, and some other design parameters. Based on the theoretical model analysis and simulation results, effective design method is obtained to reduce this kind of noise.

  5. Analysis and design of low noise column stage in CMOS ROIC for UV GaN focal plane array

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Yuan, Yonggang; Xie, Jing; Wang, Jiqiang; Ma, Ding; Wang, Ling; Li, Xiangyang

    2015-03-01

    A novel column-stage structure of readout integrated circuit (ROIC) for GaN ultraviolet (UV) focal plane array (FPA) working in "solar-blind" band is proposed. The column stage has better drive capability, higher dynamic range, stable bias current and low impedance. The noise voltage of the column readout stage is discussed, which has been reduced by small-current driving, column-stage sample and hold and the technology of divided-output-bus. This research on low-noise ROIC is designed for weak-current UV FPA. It is designed, simulated and laid out using the 0.35um 2P4M CMOS 5V process. The clock rate operates at 8MHz. The simulation input current sets 0.01nA. The output swing is 2.6V and power consumption is 40 mW according to the measurement results.

  6. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; Chang, Y. -C.; Shott, Craig A.

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  7. PtSi Schottky-barrier focal plane arrays for multispectral imaging in ultraviolet, visible, and infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Tsaur, Bor-Yeu; Chen, C. K.; Mattia, John-Paul

    1990-04-01

    PtSi Schottky-barrier detectors, which are conventionally used in the back-illumination mode for thermal imaging in the 3-5 micron infrared (IR) spectral band, are shown to exhibit excellent photoresponse in the near-ultraviolet and visible regions when operated in the front-illumination mode. For devices without antireflection coatings, external quantum efficiency in excess of 60 percent has been obtained for wavelengths between 400 and 800 nm. The efficiency decreases below 400 nm but is still about 35 percent at 290 nm. High-quality imaging has been demonstrated in both the visible and 3-5 micron spectral bands for front-illuminated 160- x 244-element PtSi focal plane arrays integrated with monolithic CCD readout circuitry.

  8. Performance of MWIR and SWIR HgCdTe-based focal plane arrays at high operating temperatures

    NASA Astrophysics Data System (ADS)

    Melkonian, Leon; Bangs, James; Elizondo, Lee; Ramey, Ron; Guerrero, Ernesto

    2010-04-01

    Raytheon Vision Systems (RVS) is producing large format, high definition HgCdTe-based MWIR and SWIR focal plane arrays (FPAs) with pitches of 15 μm and smaller for various applications. Infrared sensors fabricated from HgCdTe have several advantages when compared to those fabricated from other materials -- such as a highly tunable bandgap, high quantum efficiencies, and R0A approaching theoretical limits. It is desirable to operate infrared sensors at elevated operating temperatures in order to increase the cooler life and reduce the required system power. However, the sensitivity of many infrared sensors, including those made from HgCdTe, declines significantly above a certain temperature due to the noise resulting from increasing detector dark current. In this paper we provide performance data on a MWIR and a SWIR focal plane array operating at temperatures up to 160K and 170K, respectively. The FPAs used in the study were grown by molecular beam epitaxy (MBE) on silicon substrates, processed into a 1536x1024 format with a 15 μm pixel pitch, and hybridized to a silicon readout integrated circuit (ROIC) via indium bumps to form a sensor chip assembly (SCA). This data shows that the noise equivalent delta temperature (NEDT) is background limited at f/3.4 in the SWIR SCA (cutoff wavelength of 3.7 μm at 130K) up to 140K and in the MWIR SCA (cutoff wavelength of 4.8 μm at 115K) up to 115K.

  9. Defect density reduction in InAs/GaSb type II superlattice focal plane array infrared detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Niemasz, Jasmin; Rutz, Frank; Wörl, Andreas; Kirste, Lutz; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2011-01-01

    InAs/GaSb short-period superlattices (SL) have proven their large potential for high performance focal plane array infrared detectors. Lots of interest is focused on the development of short-period InAs/GaSb SLs for mono- and bispectral infrared detectors between 3 - 30 μm. InAs/GaSb short-period superlattices can be fabricated with up to 1000 periods in the intrinsic region without revealing diffusion limited behavior. This enables the fabrication of InAs/GaSb SL camera systems with very high responsivity, comparable to state of the art CdHgTe and InSb detectors. The material system is also well suited for the fabrication of dual-color mid-wavelength infrared InAs/GaSb SL camera systems. These systems exhibit high quantum efficiency and offer simultaneous and spatially coincident detection in both spectral channels. An essential point for the performance of two-dimensional focal plane infrared detectors in camera systems is the number of defective pixel on the matrix detector. Sources for pixel outages are manifold and might be caused by the dislocation in the substrate, the epitaxial growth process or by imperfections during the focal plane array fabrication process. The goal is to grow defect-free epitaxial layers on a dislocation free large area GaSb substrate. Permanent improvement of the substrate quality and the development of techniques to monitor the substrate quality are of particular importance. To examine the crystalline quality of 3" and 4" GaSb substrates, synchrotron white beam X-ray topography (SWBXRT) was employed. In a comparative defect study of different 3" GaSb and 4" GaSb substrates, a significant reduction of the dislocation density caused by improvements in bulk crystal growth has been obtained. Optical characterization techniques for defect characterization after MBE growth are employed to correlate epitaxially grown defects with the detector performance after hybridization with the read-out integrated circuit.

  10. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  11. The vertical photoconductor: A novel device structure suitable for HgCdTe two-dimensional infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Siliquini, J. F.; Faraone, L.

    1997-06-01

    A novel photoconductive device structure is proposed and described that has been designed specifically as a sensing element for high density two-dimensional infrared focal plane array (IRFPA) applications. Although the design concept can be applied to a variety of epitaxially grown HgCdTe material, optimum performance can be achieved using n-type HgCdTe semiconductor material consisting of epitaxially grown heterostructure layers in which a two-dimensional mosaic of vertical design photoconductors are fabricated. The heterostructure layers provide high performance devices at greatly reduced power dissipation levels, while the vertical design allows for the high density integration of photoconductors in a two-dimensional array geometry with high fill factor. The salient feature of the proposed device structure is that the bias field is applied in the vertical direction such that it is parallel to the impinging infrared radiation. A comprehensive one-dimensional model is presented for the vertical design photoconductor, which is subsequently used to determine the optimum design parameters in order to achieve maximum responsivity at the lowest possible power dissipation level. It is found that the proposed device structure has the potential to be used in the fabrication of long wavelength IRFPAs approaching 10 6 pixels using 25 × 25 μm 2 detector elements. Furthermore, this is achieved with individual device detectivities that are background limited and for a total array power dissipation of less than 0.1 W using a pulsed biasing scheme. Performance issues such as response uniformity, pixel yield, fill factor, crosstalk, power dissipation, detector impedance, array architecture, and maximum array size are discussed in relation to the suitability of the proposed vertical photoconductor structure for use in IRFPA modules. When considering IRFPA operability, it is found that in many cases the proposed technology has the potential to deliver significant advantages, such

  12. Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing

    NASA Astrophysics Data System (ADS)

    Little, Jeffrey W.; Tyrrell, Brian M.; D'Onofrio, Richard; Berger, Paul J.; Fernandez-Cull, Christy

    2014-06-01

    A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization occurs at the pixel level, enabling in-pixel DSP and noiseless data transfer from the pixel array to the peripheral processing units. The pipelined processing of row and column image data prior to off chip readout reduces the required output bandwidth of the image sensor, thus reducing the latency of computations necessary to implement various image processing systems. Data volume reductions of over 80% lead to sub 10μs latency for completing various tracking and sensor algorithms. This paper details the architecture of the pixel-processing imager (PPI) and presents some initial results from a prototype device fabricated in a standard 65nm CMOS process hybridized to a commercial off-the-shelf short-wave infrared (SWIR) detector array.

  13. Solar-blind AlGaN 256x256 p-i-n detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Reine, M. B.; Hairston, A.; Lamarre, P.; Wong, K. K.; Tobin, S. P.; Sood, A. K.; Cooke, C.; Pophristic, M.; Guo, S.; Peres, B.; Singh, R.; Eddy, C. R., Jr.; Chowdhury, U.; Wong, M. M.; Dupuis, R. D.; Li, T.; DenBaars, S. P.

    2006-02-01

    This paper reports the development of aluminum-gallium nitride (AlGaN or Al xGa 1-xN) photodiode technology for high-operability 256×256 hybrid Focal Plane Arrays (FPAs) for solar-blind ultraviolet (UV) detection in the 260-280 nm spectral region. These hybrid UV FPAs consist of a 256×256 back-illuminated AlGaN p-i-n photodiode array, operating at zero bias voltage, bump-mounted to a matching 256×256 silicon CMOS readout integrated circuit (ROIC) chip. The unit cell size is 30×30 μm2. The photodiode arrays were fabricated from multilayer AlGaN films grown by MOCVD on 2" dia. UV-transparent sapphire substrates. Improvements in AlGaN material growth and device design enabled high quantum efficiency and extremely low leakage current to be achieved in high-operability 256×256 p-i-n photodiode arrays with cuton and cutoff wavelengths of 260 and 280 nm, placing the response in the solar-blind wavelength region (less than about 280 nm) where solar radiation is heavily absorbed by the ozone layer. External quantum efficiencies (at V=0, 270 nm, no antireflection coating) as high as 58% were measured in backilluminated devices. A number of 256×256 FPAs, with the AlGaN arrays fabricated from films grown at three different facilities, achieved response operabilities as high as 99.8%, response nonuniformities (σ/μ) as low as 2.5%, and zero-bias resistance median values as high as 1×10 16 ohm, corresponding to R 0A products of 7×10 10 ohm-cm2. Noise Equivalent Irradiance (NEI) data were measured on these FPAs. Median NEI values at 1 Hz are 250-500 photons/pixel-s, with best-element values as low as 90 photons/pixel-s at 1 Hz.

  14. Progress in development of H4RG-10 infrared focal plane arrays for WFIRST-AFTA

    NASA Astrophysics Data System (ADS)

    Piquette, Eric C.; McLevige, William; Auyeung, John; Wong, Andre

    2014-07-01

    We describe progress in the development and demonstration of Teledyne's new high resolution large format FPA for astronomy, the H4RG-10 IR. The H4RG-10 is the latest in Teledyne's H×RG line of sensors, in a 4096×4096 format using 10 micron pixels. It is offered as a hybrid sensor using either a silicon p-i-n detector array (HyViSI) or a HgCdTe photodiode array with standard infrared cutoff wavelength of 1.75μm, 2.5μm, or 5.3μm (with custom cutoff wavelengths also available). The HgCdTe sensor arrays are fully substrate removed to provide high quantum efficiency, response to visible wavelengths, and minimize cosmic ray and fringing mitigation. Packaging using either CE6 or SiC bases is available. Teledyne is currently fabricating H4RG-10 SWIR FPAs for NASA's WFIRST space telescope instrument. Initial array performance has been tested and will be presented. Key results include the demonstration of low dark current (array mean dark current of <0.01e-/s/pixel at 100K), low noise (<10 e-/CDS read noise), and high array operability (>99% pixels). The paper discusses the sensor configuration and features, the performance achieved to date including QE, dark current, noise maps and histograms, and the remaining challenges.

  15. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  16. An uncooled 1280 x 1024 InGaAs focal plane array for small platform, shortwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Blessinger, M.; Enriquez, M.; Ettenberg, M.; Evans, M.; Flynn, K.; Lin, M.; Passe, J.; Stern, M.; Sudol, T.

    2009-05-01

    The increasing demand for short wave infrared (SWIR) imaging technology for soldier-based and unmanned platforms requires camera systems where size, weight and power consumption are minimized without loss of performance. Goodrich, Sensors Unlimited Inc. reports on the development of a novel focal plane (FPA) array for DARPA's MISI (Micro-Sensors for Imaging) Program. This large format (1280 x 1024) array is optimized for day/night imaging in the wavelength region from 0.4 μm to 1.7 μm and consists of an InGaAs detector bump bonded to a capacitance transimpedance amplifier (CTIA)-based readout integrated circuit (ROIC) on a compact 15 μm pixel pitch. Two selectable integration capacitors provide for high dynamic range with low (< 50 electrons) noise, and expanded onchip ROIC functionality includes analog-to-digital conversion and temperature sensing. The combination of high quality, low dark current InGaAs with temperature-parameterized non-uniformity correction allows operation at ambient temperatures while eliminating the need for thermoelectric cooling. The resulting lightweight, low power implementation is suitable for man-portable and UAV-mounted applications.

  17. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-04-01

    We present our latest results on n-on-p as well as on p-on-n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on-n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on-p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  18. Analysis of high frame rate readout circuit for near-infrared InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcheng; Chen, Yu; Huang, Songlei; Fang, Jiaxiong

    2013-09-01

    High frame rate imaging for applications such as meteorological forecast, motion target tracking require high-speed Read-Out Integrated Circuit (ROIC). In order to achieve 10 KHz of frame rate, this paper analyzes the bandwidth of Capacitive-feedback Trans-Impedance Amplifier (CTIA) in ROIC which is the dominant bandwidth-limiting node when interfaced with large InGaAs detector pixel capacitance of about 10pF. A small-signal model is presented to study the relationship between integration capacitance, detector capacitance, transconductance and CTIA bandwidth. Calculation and simulation results show explicitly how the series resistance at the interface restricts the frame rate of Focal Plane Arrays (FPA). In order to achieve low-noise performance at a high frame rate, this paper describes an optimal solution in ROIC design. A prototype ROIC chip (DL7) has been fabricated with 0.5-μm mixed signal CMOS process and interfaced with InGaAs detector arrays. Test results show that frame rate is above 10 KHz and ROIC noise is around 270 e-, near identical to the design value.

  19. Al(x)Ga(1-x)N-based deep-ultraviolet 320×256 focal plane array.

    PubMed

    Cicek, Erdem; Vashaei, Zahra; Huang, Edward Kwei-wei; McClintock, Ryan; Razeghi, Manijeh

    2012-03-01

    We report the synthesis, fabrication, and testing of a 320×256 focal plane array (FPA) of back-illuminated, solar-blind, p-i-n, Al(x)Ga(1-x)N-based detectors, fully realized within our research laboratory. We implemented a pulse atomic layer deposition technique for the metalorganic chemical vapor deposition growth of thick, high-quality, crack-free, high Al composition Al(x)Ga(1-x)N layers. The FPA is hybridized to a matching ISC 9809 readout integrated circuit and operated in a SE-IR camera system. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower, and falling off three orders of magnitude by ~285 nm. By developing an opaque masking technology, the visible response of the ROIC is significantly reduced; thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allows the FPA to achieve high external quantum efficiency (EQE); at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. PMID:22378430

  20. Numerical Simulation of Refractive-Microlensed HgCdTe Infrared Focal Plane Arrays Operating in Optical Systems

    NASA Astrophysics Data System (ADS)

    Li, Yang; Ye, Zhen-Hua; Hu, Wei-Da; Lei, Wen; Gao, Yan-Lin; He, Kai; Hua, Hua; Zhang, Peng; Chen, Yi-Yu; Lin, Chun; Hu, Xiao-Ning; Ding, Rui-Jun; He, Li

    2014-08-01

    The optoelectronic performance of the mid-wavelength HgCdTe infrared focal plane array (IRFPA) with refractive microlenses integrated on its CdZnTe substrate has been numerically simulated. A reduced light-distribution model based on scalar Kirchhoff diffraction theory was adopted to reveal the true behavior of IRFPAs operating in an optical system under imaging conditions. The pixel crosstalk obtained and the energy-gathering characteristics demonstrated that the microlenses can delay the rise in crosstalk when the image point shifts toward pixel boundaries, and can restrict the major optical absorption process in any case within a narrow region around the pixel center. The dependence of the microlenses' effects on the system's properties was also analyzed; this showed that intermediate relative aperture and small microlens radius are required for optimized device performance. Simulation results also indicated that for detectors farther from the center of the field of view, the efficacy of microlenses in crosstalk suppression and energy gathering is still maintained, except for a negligible difference in the lateral magnification from an ordinary array without microlenses.

  1. High-Performance M/LWIR Dual-Band HgCdTe/Si Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Vilela, M. F.; Olsson, K. R.; Norton, E. M.; Peterson, J. M.; Rybnicek, K.; Rhiger, D. R.; Fulk, C. W.; Bangs, J. W.; Lofgreen, D. D.; Johnson, S. M.

    2013-11-01

    Mercury cadmium telluride (HgCdTe) grown on large-area silicon (Si) substrates allows for larger array formats and potentially reduced focal-plane array (FPA) cost compared with smaller, more expensive cadmium zinc telluride (CdZnTe) substrates. In this work, the use of HgCdTe/Si for mid- wavelength/long-wavelength infrared (M/LWIR) dual-band FPAs is evaluated for tactical applications. A number of M/LWIR dual-band HgCdTe triple-layer n- P- n heterojunction device structures were grown by molecular-beam epitaxy (MBE) on 100-mm (211)Si substrates. Wafers exhibited low macrodefect densities (< 300 cm-2). Die from these wafers were mated to dual-band readout integrated circuits to produce FPAs. The measured 81-K cutoff wavelengths were 5.1 μm for band 1 (MWIR) and 9.6 μm for band 2 (LWIR). The FPAs exhibited high pixel operability in each band with noise-equivalent differential temperature operability of 99.98% for the MWIR band and 98.7% for the LWIR band at 81 K. The results from this series are compared with M/LWIR FPAs from 2009 to address possible methods for improvement. Results obtained in this work suggest that MBE growth defects and dislocations present in devices are not the limiting factor for detector operability, with regards to infrared detection for tactical applications.

  2. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  3. Evolution of large format impurity band conductor focal plane arrays for astronomy applications

    NASA Astrophysics Data System (ADS)

    Mills, Robert; Beuville, Eric; Corrales, Elizabeth; Hoffman, Alan; Finger, Gert; Ives, Derek

    2011-09-01

    Raytheon Vision Systems (RVS) has developed a family of high performance large format infrared (IR) detector arrays whose detectors are most effective for the detection of long and very long wavelength IR energy. This paper describes the evolution of the present state of the art one mega-pixel Si: As Impurity Band Conduction (IBC) arrays toward a four mega-pixel array that is desired by the astronomy community. Raytheon's Aquarius-1k, developed in collaboration with ESO, is a 1024 × 1024 pixel high performance array with a 30 μm pitch that features high quantum efficiency IBC detectors, low noise, low dark current, and on-chip clocking for ease of operation. Since the Aquarius-1k array was designed primarily for ground-based astronomy applications, it incorporates selectable gains and a large well capacity among its other features. Raytheon, in collaboration with JAXA (Japan Aerospace Exploration Agency), is also designing a 2048 × 2048 pixel high performance array with a 25 μm pitch. This 2k × 2k readout circuit will be based on the successful design used for the on the Mid-Infrared Instrument (MIRI) aboard the James Webb Space Telescope (JWST). It will feature high quantum efficiency IBC detectors, low noise, low dark current, and on-chip clocking for ease of operation. This version will also incorporate flight qualified packaging to support space-based astronomy applications. Previous generations of RVS IBC detectors have flown on several platforms, including NASA's Spitzer Space Telescope and Japan's Akari Space Telescope.

  4. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  5. The Constellation-X Focal Plane Microcalorimeter Array: An NTD-Germanium Solution

    NASA Technical Reports Server (NTRS)

    Beeman, J.; Silver, E.; Bandler, S.; Schnopper, H.; Murray, S.; Madden, N.; Landis, D.; Haller, E. E.; Barbera, M.

    2001-01-01

    The hallmarks of Neutron Transmutation Doped (NTD) germanium cryogenic thermistors include high reliability, reproducibility, and long term stability of bulk carrier transport properties. Using micro-machined NTD Ge thermistors with integral 'flying' leads, we can now fabricate two-dimensional arrays that are built up from a series of stacked linear arrays. We believe that this modular approach of building, assembling, and perhaps replacing individual modules of detectors is essential to the successful fabrication and testing of large multi-element instruments. Details of construction are presented.

  6. An IR focal plane array employing superconducting Josephson junction thermal detectors

    NASA Astrophysics Data System (ADS)

    Osterman, D. P.; Yao, C.-T.; Dang, H.; Cohen, C.; Radparvar, M.

    1990-07-01

    Thin-film superconductors invite the single-process/single-substrate fabrication of IR detector arrays and their associated processing circuitry. In place of the bolometric thermal-detection principle typical of previous superconductor-employing schemes, the temperature-dependence of the current-voltage relation in a current-biased Josephson tunnel junction is used in the present device; this yields very low intrinsic detector noise, as well as clearly-defined 'on' and 'off' states. Superconducting processing circuitry encompassing addressing and decoding circuits, analog amplifiers, and ADC has been tested for an 8 x 8 prototype array.

  7. An abuttable CCD imager for visible and X-ray focal plane arrays

    NASA Technical Reports Server (NTRS)

    Burke, Barry E.; Mountain, Robert W.; Harrison, David C.; Bautz, Marshall W.; Doty, John P.

    1991-01-01

    A frame-transfer silicon charge-coupled-device (CCD) imager has been developed that can be closely abutted to other imagers on three sides of the imaging array. It is intended for use in multichip arrays. The device has 420 x 420 pixels in the imaging and frame-store regions and is constructed using a three-phase triple-polysilicon process. Particular emphasis has been placed on achieving low-noise charge detection for low-light-level imaging in the visible and maximum energy resolution for X-ray spectroscopic applications. Noise levels of 6 electrons at 1-MHz and less than 3 electrons at 100-kHz data rates have been achieved. Imagers have been fabricated on 1000-Ohm-cm material to maximize quantum efficiency and minimize split events in the soft X-ray regime.

  8. Focal plane arrays for submillimeter waves using two-dimensional electron gas elements: A grant under the Innovative Research Program

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Lau, Kei-May

    1992-01-01

    This final report describes a three-year research effort, aimed at developing new types of THz low noise receivers, based on bulk effect ('hot electron') nonlinearities in the Two-Dimensional Electron Gas (2DEG) Medium, and the inclusion of such receivers in focal plane arrays. 2DEG hot electron mixers have been demonstrated at 35 and 94 GHz with three orders of magnitude wider bandwidth than previous hot electron mixers, which use bulk InSb. The 2DEG mixers employ a new mode of operation, which was invented during this program. Only moderate cooling is required for this mode, to temperatures in the range 20-77 K. Based on the results of this research, it is now possible to design a hot electron mixer focal plane array for the THz range, which is anticipated to have a DSB receiver noise temperature of 500-1000K. In our work on this grant, we have found similar results the the Cronin group (resident at the University of Bath, UK). Neither group has so far demonstrated heterodyne detection in this mode, however. We discovered and explored some new effects in the magnetic field mode, and these are described in the report. In particular, detection of 94 GHz and 238 GHz, respectively, by a new effect, 'Shubnikov de Haas detection', was found to be considerably stronger in our materials than the cyclotron resonance detection. All experiments utilized devices with an active 2DEG region of size of the order of 10-40 micrometers long, and 20-200 micrometers wide, formed at the heterojunction between AlGaAs and GaAs. All device fabrication was performed in-house. The materials for the devices were also grown in-house, utilizing OMCVD (Organo Metallic Chemical Vapor Deposition). In the course of this grant, we developed new techniques for growing AlGaAs/GaAs with mobilities equalling the highest values published by any laboratory. We believe that the field of hot electron mixers and detectors will grow substantially in importance in the next few years, partly as a result of

  9. MTI Focal Plane Assembly Design and Performance

    SciTech Connect

    Ballard, M.; Rienstra, J.L.

    1999-06-17

    The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.

  10. Colloidal quantum dot Vis-SWIR imaging: demonstration of a focal plane array and camera prototype (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Klem, Ethan J. D.; Gregory, Christopher W.; Temple, Dorota S.; Lewis, Jay S.

    2015-08-01

    RTI has developed a photodiode technology based on solution-processed PbS colloidal quantum dots (CQD). These devices are capable of providing low-cost, high performance detection across the Vis-SWIR spectral range. At the core of this technology is a heterojunction diode structure fabricated using techniques well suited to wafer-scale fabrication, such as spin coating and thermal evaporation. This enables RTI's CQD diodes to be processed at room temperature directly on top of read-out integrated circuits (ROIC), without the need for the hybridization step required by traditional SWIR detectors. Additionally, the CQD diodes can be fabricated on ROICs designed for other detector material systems, effectively allowing rapid prototype demonstrations of CQD focal plane arrays at low cost and on a wide range of pixel pitches and array sizes. We will show the results of fabricating CQD arrays directly on top of commercially available ROICs. Specifically, the ROICs are a 640 x 512 pixel format with 15 µm pitch, originally developed for InGaAs detectors. We will show that minor modifications to the surface of these ROICs make them suitable for use with our CQD detectors. Once completed, these FPAs are then assembled into a demonstration camera and their imaging performance is evaluated. In addition, we will discuss recent advances in device architecture and processing resulting in devices with room temperature dark currents of 2-5 nA/cm^2 and sensitivity from 350 nm to 1.7 μm. This combination of high performance, dramatic cost reduction, and multi-band sensitivity is ideally suited to expand the use of SWIR imaging in current applications, as well as to address applications which require a multispectral sensitivity not met by existing technologies.

  11. Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie

    2013-09-01

    Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.

  12. InAs/GaSb superlattice focal plane array infrared detectors: manufacturing aspects

    NASA Astrophysics Data System (ADS)

    Rutz, Frank; Rehm, Robert; Schmitz, Johannes; Fleissner, Joachim; Walther, Martin; Scheibner, Ralf; Ziegler, Johann

    2009-05-01

    InAs/GaSb type-II short-period superlattice (SL) photodiodes have been shown to be very promising for 2nd and 3rd generation thermal imaging systems with excellent detector performance. A multi-wafer molecular beam epitaxy (MBE) growth process on 3"-GaSb substrates, which allows simultaneous growth on five substrates with excellent homogeneity has been developed. A reliable III/V-process technology for badge processing of single-color and dual-color FPAs has been set up to facilitate fabrication of mono- and bi-spectral InAs/GaSb SL detector arrays for the mid-IR spectral range. Mono- and bispectral SL camera systems with different pitch and number of pixels have been fabricated. Those imaging systems show excellent electro-optical performance data with a noise equivalent temperature difference (NETD) around 10 mK.

  13. Hybrid Extrinsic Silicon Focal Plane Architecture

    NASA Astrophysics Data System (ADS)

    Pommerrenig, D. H.; Meinhardt, T.; Lowe, J.

    1981-02-01

    Large-area focal planes require mechanical assembly techniques which must be compatible with optical alignment, minimum deadspace, and cryogenic requirements in order to achieve optimum performance. Hybrid extrinsic silicon has been found particularly suitable for such an application. It will be shown that by choosing a large-area extrinsic silicon detector array which is hybrid-mated to a multiplicity of multiplexers a very cost-effective and high-density focal plane module can be assembled. Other advantages of this approach are inherent optical alignment and excellent performance.

  14. Solar-blind AlGaN 256×256 p-i-n detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Reine, M. B.; Hairston, A.; Lamarre, P.; Wong, K. K.; Tobin, S. P.; Sood, A. K.; Cooke, C.; Pophristic, M.; Guo, S.; Peres, B.; Singh, R.; Eddy, C. R. _Jr., Jr.; Chowdhury, U.; Wong, M. M.; Dupuis, R. D.; Li, T.; DenBaars, S. P.

    2006-02-01

    This paper reports the development of aluminum-gallium nitride (AlGaN or Al xGa 1-xN) photodiode technology for high-operability 256×256 hybrid Focal Plane Arrays (FPAs) for solar-blind ultraviolet (UV) detection in the 260-280 nm spectral region. These hybrid UV FPAs consist of a 256×256 back-illuminated AlGaN p-i-n photodiode array, operating at zero bias voltage, bump-mounted to a matching 256×256 silicon CMOS readout integrated circuit (ROIC) chip. The unit cell size is 30×30 μm2. The photodiode arrays were fabricated from multilayer AlGaN films grown by MOCVD on 2" dia. UV-transparent sapphire substrates. Improvements in AlGaN material growth and device design enabled high quantum efficiency and extremely low leakage current to be achieved in high-operability 256×256 p-i-n photodiode arrays with cuton and cutoff wavelengths of 260 and 280 nm, placing the response in the solar-blind wavelength region (less than about 280 nm) where solar radiation is heavily absorbed by the ozone layer. External quantum efficiencies (at V=0, 270 nm, no antireflection coating) as high as 58% were measured in back-illuminated devices. A number of 256×256 FPAs, with the AlGaN arrays fabricated from films grown at three different facilities, achieved response operabilities as high as 99.8%, response nonuniformities (σ/μ) as low as 2.5%, and zero-bias resistance median values as high as 1×10 16 ohm, corresponding to R0A products of 7×10 10 ohm-cm2. Noise Equivalent Irradiance (NEI) data were measured on these FPAs. Median NEI values at 1 Hz are 250-500 photons/pixel-s, with best-element values as low as 90 photons/pixel-s at 1 Hz.

  15. Shutterless solution for simultaneous focal plane array temperature estimation and nonuniformity correction in uncooled long-wave infrared camera.

    PubMed

    Cao, Yanpeng; Tisse, Christel-Loic

    2013-09-01

    In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment. PMID:24085086

  16. Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy

    NASA Astrophysics Data System (ADS)

    Cicek, E.; McClintock, R.; Vashaei, Z.; Zhang, Y.; Gautier, S.; Cho, C. Y.; Razeghi, M.

    2013-02-01

    We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1-xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ˜97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging.

  17. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  18. Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-03-01

    Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  19. Large-Format HgCdTe Dual-Band Long-Wavelength Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Smith, E. P. G.; Venzor, G. M.; Gallagher, A. M.; Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Randolph, J. E.

    2011-08-01

    Raytheon Vision Systems (RVS) continues to further its capability to deliver state-of-the-art high-performance, large-format, HgCdTe focal-plane arrays (FPAs) for dual-band long-wavelength infrared (L/LWIR) detection. Specific improvements have recently been implemented at RVS in molecular-beam epitaxy (MBE) growth and wafer fabrication and are reported in this paper. The aim of the improvements is to establish producible processes for 512 × 512 30- μm-unit-cell L/LWIR FPAs, which has resulted in: the growth of triple-layer heterojunction (TLHJ) HgCdTe back-to-back photodiode detector designs on 6 cm × 6 cm CdZnTe substrates with 300-K Fourier-transform infrared (FTIR) cutoff wavelength uniformity of ±0.1 μm across the entire wafer; demonstration of detector dark-current performance for the longer-wavelength detector band approaching that of single-color liquid-phase epitaxy (LPE) LWIR detectors; and uniform, high-operability, 512 × 512 30- μm-unit-cell FPA performance in both LWIR bands.

  20. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  1. Design, fabrication and testing of 17um pitch 640x480 uncooled infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang

    2015-10-01

    Uncooled infrared focal plane array (UIRFPA) detectors are widely used in industrial thermography cameras, night vision goggles, thermal weapon sights, as well as automotive night vision systems. To meet the market requirement for smaller pixel pitch and higher resolution, we have developed a 17um pitch 640x480 UIRFPA detector. The detector is based on amorphous silicon (a-Si) microbolometer technology, the readout integrated circuit (ROIC) is designed and manufactured with 0.35um standard CMOS technology on 8 inch wafer, the microbolometer is fabricated monolithically on the ROIC using an unique surface micromachining process developed inside the company, the fabricated detector is vacuum packaged with hermetic metal package and tested. In this paper we present the design, fabrication and testing of the 17um 640x480 detector. The design trade-off of the detector ROIC and pixel micro-bridge structure will be discussed, by comparison the calculation and simulation to the testing results. The novel surface micromachining process using silicon sacrificial layer will be presented, which is more compatible with the CMOS process than the traditional process with polyimide sacrificial layer, and resulted in good processing stability and high fabrication yield. The performance of the detector is tested, with temperature equivalent temperature difference (NETD) less than 60mK at F/1 aperture, operability better than 99.5%. The results demonstrate that the detector can meet the requirements of most thermography and night vision applications.

  2. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array

    PubMed Central

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-01-01

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234

  3. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array.

    PubMed

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-01-01

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234

  4. Time-resolved Fourier transform infrared spectroscopy of chemical reactions in solution using a focal plane array detector.

    PubMed

    Kaun, N; Vellekoop, M J; Lendl, B

    2006-11-01

    A Fourier transform infrared (FT-IR) microscope equipped with a single as well as a 64 x 64 element focal plane array MCT detector was used to measure chemical reaction taking place in a microstructured flow cell designed for time-resolved FT-IR spectroscopy. The flow cell allows transmission measurements through aqueous solutions and incorporates a microstructured mixing unit. This unit achieves lamination of the two input streams with a cross-section of 300 x 5 microm each, resulting in fast diffusion-controlled mixing of the two input streams. Microscopic measurement at defined positions along the outlet channel allows time-resolved information of the reaction taking place in the flow cell to be obtained. In this paper we show experimental results on the model reaction between formaldehyde and sulfite. Using the single-point MCT detector, high-quality FT-IR spectra could be obtained from a spot size of 80 x 200 microm whereas the FPA detector allowed recording light from an area of 260 x 260 microm focused on its 64 x 64 detector elements. Therefore, more closely spaced features could be discerned at the expense of a significantly lower signal-to-noise (S/N) ratio per spectrum. Multivariate curve resolution-alternating least squares was used to extract concentration profiles of the reacting species along the outlet channel axis. PMID:17132444

  5. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-06-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  6. Numerical modeling of extended short wave infrared InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Glasmann, Andreu; Wen, Hanqing; Bellotti, Enrico

    2016-05-01

    Indium gallium arsenide (In1-xGaxAs) is an ideal material choice for short wave infrared (SWIR) imaging due to its low dark current and excellent collection efficiency. By increasing the indium composition from 53% to 83%, it is possible to decrease the energy gap from 0.74 eV to 0.47 eV and consequently increase the cutoff wavelength from 1.7 μm to 2.63 μm for extended short wavelength (ESWIR) sensing. In this work, we apply our well-established numerical modeling methodology to the ESWIR InGaAs system to determine the intrinsic performance of pixel detectors. Furthermore, we investigate the effects of different buffer/cap materials. To accomplish this, we have developed composition-dependent models for In1-xGaxAs, In1-xAlxAs, and InAs1-y Py. Using a Green's function formalism, we calculate the intrinsic recombination coefficients (Auger, radiative) to model the diffusion-limited behavior of the absorbing layer under ideal conditions. Our simulations indicate that, for a given total thickness of the buffer and absorbing layer, structures utilizing a linearly graded small-gap InGaAs buffer will produce two orders of magnitude more dark current than those with a wide gap, such as InAlAs or InAsP. Furthermore, when compared with experimental results for ESWIR photodiodes and arrays, we estimate that there is still a 1.5x magnitude of reduction in dark current before reaching diffusion-limited behavior.

  7. Flagging and Correction of Pattern Noise in the Kepler Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery J.; Caldwell, Douglas A.; VanCleve, Jeffrey E.; Clarke, Bruce D.; Jenkins, Jon M.; Cote, Miles T.; Klaus, Todd C.; Argabright, Vic S.

    2010-01-01

    In order for Kepler to achieve its required less than 20 PPM photometric precision for magnitude 12 and brighter stars, instrument-induced variations in the CCD readout bias pattern (our "2D black image"), which are either fixed or slowly varying in time, must be identified and the corresponding pixels either corrected or removed from further data processing. The two principle sources of these readout bias variations are crosstalk between the 84 science CCDs and the 4 fine guidance sensor (FGS) CCDs and a high frequency amplifier oscillation on less than 40% of the CCD readout channels. The crosstalk produces a synchronous pattern in the 2D black image with time-variation observed in less than 10% of individual pixel bias histories. We will describe a method of removing the crosstalk signal using continuously-collected data from masked and over-clocked image regions (our "collateral data"), and occasionally-collected full-frame images and reverse-clocked readout signals. We use this same set to detect regions affected by the oscillating amplifiers. The oscillations manifest as time-varying moir pattern and rolling bands in the affected channels. Because this effect reduces the performance in only a small fraction of the array at any given time, we have developed an approach for flagging suspect data. The flags will provide the necessary means to resolve any potential ambiguity between instrument-induced variations and real photometric variations in a target time series. We will also evaluate the effectiveness of these techniques using flight data from background and selected target pixels.

  8. Differentiation of group I and group II strains of Clostridium botulinum by focal plane array Fourier transform infrared spectroscopy.

    PubMed

    Kirkwood, Jonah; Ghetler, Andrew; Sedman, Jacqueline; Leclair, Daniel; Pagotto, Franco; Austin, John W; Ismail, Ashraf A

    2006-10-01

    A method was developed for whole-organism fingerprinting of Clostridium botulinum isolates by focal plane array Fourier transform infrared (FPA-FTIR) spectroscopy. A database of 150,000 infrared spectra of 44 strains of C. botulinum was acquired using a FPA-FTIR imaging spectrometer equipped with a 16 x 16 array detector to evaluate the ability of FTIR spectroscopy to differentiate the 44 strains. The database contained strains from C. botulinum groups I and II producing botulinum neurotoxin of serotypes A, B, E, and F. All strains were grown on each of three agar media (brain heart infusion, McClung Toabe agar base, and universal) prior to spectral acquisition. Given the dependence of the infrared spectra of microorganisms on the composition of the growth medium, the spectra were initially separated into three subsets corresponding to the three growth media employed. However, the replicate spectra of all strains, regardless of growth medium, were properly clustered by hierarchical cluster analysis based on differences in their infrared spectral profiles in three narrow spectral regions (1,428 to 1,412, 1,296 to 1,284, and 1,112 to 1,100 cm(-1)). The dendrogram generated from the FTIR data revealed complete separation between group I and group II strains. The spectral differences between group I and group II strains allowed accurate classification of C. botulinum strains at the group level in two blind validation studies (n = 40). These results demonstrate that FPA-FTIR spectroscopy has the potential for rapid discrimination of group I and group II C. botulinum strains in less than 3 min per sample. PMID:17066916

  9. Uncooled SWIR InGaAs/GaAsSb type-II quantum well focal plane array

    NASA Astrophysics Data System (ADS)

    Inada, H.; Miura, K.; Mori, H.; Nagai, Y.; Iguchi, Y.; Kawamura, Y.

    2010-04-01

    Low dark current photodiodes (PDs) in the short wavelength infrared (SWIR) upto 2.5μm region, are expected for many applications. HgCdTe (MCT) is predominantly used for infrared imaging applications. However, because of high dark current, MCT device requires a refrigerator such as stirling cooler, which increases power consumption, size and cost of the sensing system. Recently, InGaAs/GaAsSb type II quantum well structures were considered as attractive material system for realizing low dark current PDs owing to lattice-matching to InP substrate. Planar type PIN-PDs were successfully fabricated. The absorption layer with 250 pair-InGaAs(5nm)/GaAsSb(5nm) quantum well structures was grown on S-doped (100) InP substrates by solid source molecular beam epitaxy method. InP and InGaAs were used for cap layer and buffer layer, respectively. The p-n junctions were formed in the absorption layer by the selective diffusion of zinc. Diameter of light-receiving region was 140μm. Low dark current was obtained by improving GaAsSb crystalline quality. Dark current density was 0.92mA/cm2 which was smaller than that of a conventional MCT. Based on the same process as the discrete device, a 320x256 planar type focal plane array was also fabricated. Each PD has 15μm diameter and 30μm pitch and it was bonded to read-out IC by using indium bump flip chip process. Finally, we have successfully demonstrated the 320 x256 SWIR image at room temperature. This result means that planer type PD array with the type II InGaAs/GaAsSb quantum well structure is a promising candidate for uncooled applications.

  10. Demonstration of a two-color 320×256 quantum dots-in-a-well focal plane array

    NASA Astrophysics Data System (ADS)

    Varley, Eric S.; Ramirez, David A.; Brown, Jay S.; Lee, Sang Jun; Stintz, Andreas; Lenz, Michael; Krishna, Sanjay; Reisinger, Axel; Sundaram, Mani

    2007-09-01

    In our research group, we develop novel dots-in-a-well (DWELL) photodetectors that are a hybrid of the quantum dot infrared photodetector (QDIP). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs quantum wells. By adjusting the InGaAs well thickness, our structure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC) in collaboration with QmagiQ LLC and tested with a CamIRa TM system manufactured by SE-IR Corp. From this evaluation, we report the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We demonstrated that we can operate the device at an intermediate bias (V b=-1.25 V) and obtain two color response from the FPA at 77K. Using filter lenses, both MWIR and LWIR responses were obtained from the array at the same bias voltage. The MWIR and LWIR responses are thought to be from bound states in the dot to higher and lower lying states in the quantum well respectively. Temporal NEDT for the DWELL FPA was measured to be 80mK at 77K.

  11. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    NASA Astrophysics Data System (ADS)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  12. 320x256 solar-blind focal plane arrays based on Al{sub x}Ga{sub 1-x}N

    SciTech Connect

    McClintock, R.; Mayes, K.; Yasan, A.; Shiell, D.; Kung, P.; Razeghi, M.

    2005-01-03

    We report AlGaN-based backilluminated solar-blind ultraviolet focal plane arrays operating at a wavelength of 280 nm. The electrical characteristics of the individual pixels are discussed, and the uniformity of the array is presented. The p-i-n photodiode array was hybridized to a 320x256 read-out integrated circuit entirely within our university research lab, and a working 320x256 camera was demonstrated. Several example solar-blind images from the camera are also provided.

  13. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM

    NASA Astrophysics Data System (ADS)

    Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard

    2015-10-01

    For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the

  14. Observation of the launch of the Atlas 5 EELV with a dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Goldberg, Arnold C.

    2003-12-01

    We present imagery taken with a quantum well infrared photodetector (QWIP) dual-band infrared (IR) focal plane array (FPA) of the inaugural launch of the Atlas 5 launch vehicle. The FPA was developed under the Army Research Laboratory's Advanced Sensors Federated Laboratory program and used a read-out integrated circuit produced under the Air Force Research Laboratory's Advanced Multi-Quantum Well Technology program. The detectors are able to sense light in both the 3-5 micron (MWIR) and 8-12 micron (LWIR) atmospheric transmission windows such that the resulting LWIR and MIWR images are pixel registered and simultaneous. The FPA was installed in a camera system that used a closed-cycle cooler to operate at 60 K. The camera was placed at the prime focus of an all-reflective telescope on a computer-controlled tracking mount at the Innovative Sensor Technology Evaluation Facility (ISTEF) at the Kennedy Space Center. The launch was observed from ISTEF at a distance of 15 km from the pad. Before and after the launch, The FPA/camera system was calibrated using standard blackbody sources. The launch vehicle was observed from about 30 s after launch until approximately 4 minutes after launch. This corresponded to ranges between 15 km and more than 300 km and altitudes from just over 1 km to more than 100 km. Several interesting differences in the structure of the plume were observed. In addition, the hardbody of the rocket was seen in the LWIR imagery but was undetectable in the MWIR imagery. The imagery was unsaturated in both bands allowing us to obtain good measurements of the radiance of the plume in both the MWIR and LWIR bands.

  15. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    PubMed

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment. PMID:25986938

  16. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, S.; Buurma, C.; Bergeson, J. D.; Kim, Tae Sung; Kubby, J.; Gupta, N.

    2014-05-01

    Imaging spectrometry can be utilized in the midwave infrared (MWIR) and long wave infrared (LWIR) bands to detect, identify and map complex chemical agents based on their rotational and vibrational emission spectra. Hyperspectral datasets are typically obtained using grating or Fourier transform spectrometers to separate the incoming light into spectral bands. At present, these spectrometers are large, cumbersome, slow and expensive, and their resolution is limited by bulky mechanical components such as mirrors and gratings. As such, low-cost, miniaturized imaging spectrometers are of great interest. Microfabrication of micro-electro-mechanicalsystems (MEMS)-based components opens the door for producing low-cost, reliable optical systems. We present here our work on developing a miniaturized IR imaging spectrometer by coupling a mercury cadmium telluride (HgCdTe)-based infrared focal plane array (FPA) with a MEMS-based Fabry-Perot filter (FPF). The two membranes are fabricated from silicon-oninsulator (SOI) wafers using bulk micromachining technology. The fixed membrane is a standard silicon membrane, fabricated using back etching processes. The movable membrane is implemented as an X-beam structure to improve mechanical stability. The geometries of the distributed Bragg reflector (DBR)-based tunable FPFs are modeled to achieve the desired spectral resolution and wavelength range. Additionally, acceptable fabrication tolerances are determined by modeling the spectral performance of the FPFs as a function of DBR surface roughness and membrane curvature. These fabrication non-idealities are then mitigated by developing an optimized DBR process flow yielding high-performance FPF cavities. Zinc Sulfide (ZnS) and Germanium (Ge) are chosen as the low and the high index materials, respectively, and are deposited using an electron beam process. Simulations are presented showing the impact of these changes and non-idealities in both a device and systems level.

  17. Recent development of SWIR focal plane array with InGaAs/GaAsSb type-II quantum wells

    NASA Astrophysics Data System (ADS)

    Inada, Hiroshi; Machinaga, Kenichi; Balasekaran, Sundararajan; Miura, Kouhei; Kawahara, Takahiko; Migita, Masaki; Akita, Katsushi; Iguchi, Yasuhiro

    2016-05-01

    HgCdTe (MCT) is predominantly used for infrared imaging applications even in SWIR region. However, MCT is expensive and contains environmentally hazardous substances. Therefore, its application has been restricted mainly military and scientific use and was not spread to commercial use. InGaAs/GaAsSb type-II quantum well structures are considered as an attractive material for realizing low dark current PDs owing to lattice-matching to InP substrate. Moreover, III-V compound material systems are suitable for commercial use. In this report, we describe successful operation of focal plane array (FPA) with InGaAs/GaAsSb quantum wells and mention improvement of optical characteristics. Planar type pin-PDs with 250-pairs InGaAs(5nm)/GaAsSb(5nm) quantum well absorption layer were fabricated. The p-n junction was formed in the absorption layer by the selective diffusion of zinc. Electrical and optical characteristics of FPA or pin-PDs were investigated. Dark current of 1μA/cm2 at 210K, which showed good uniformity and led to good S/N ratio in SWIR region, was obtained. Further, we could successfully reduce of stray light in the cavity of FPA with epoxy resin. As a result, the clear image was taken with 320x256 format and 7% contrast improvement was achieved. Reliability test of 10,000 heat cycles was carried out. No degradations were found in FPA characteristics of the epoxy coated sample. This result means FPA using InGaAs/GaAsSb type-II quantum wells is a promising candidate for commercial applications.

  18. A novel 512×8 ROIC with time-delayed-integration for MW infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-ling; Feng, Qi; Chen, Hong-lei; Huang, Ai-bo; Ding, Rui-jun; Ni, Yun-zhi

    2011-08-01

    In this paper a novel 512×8 readout circuit (ROIC) with time delayed integration (TDI) for middle wave (MW) infrared focal plane array (IRFPA) is present. As we known TDI is delicately devised and used in readout circuit to effectively increase the integration time and reduce the photon noise. At the same time, the bucket-brigade device (BBD) structure is commonly used in TDI implementation due to its simplicity and small size in integration. We adopt eight-stage BBD structure to get higher Signal-to-Noise ratio (SNR) and achieve faster image scanning speed for linear IRFPA in the 3μm -5μm spectral band. Because the center distance between each pixel is 28μm×56μm, an input stage based on direct injection (DI) which has high injection ratio and small layout area is proved to be suitable in this design. The detector consists of two segments in a staggered format that reads out synchronously. In order to achieve high flexibility, integration time can be controlled and the defective pixels can be de-selection manually. Some other features such as bidirectional operation, integration time, readout mode, an adaptive charge capacity control method and power consumption are also discussed in this article. The novel 512×8 ROIC is fabricated with 0.6μm double poly double metal CMOS technology and interconnected with MW IRFPA using indium bump. The experiments show that our method can achieve good performance of integration of MW signal both at room temperature and at 77K low temperature. The power consumption of the circuit is about 30mW at 5V supply and the readout clock frequency is up to 4MHz.

  19. Stray light reduction in testing of NIRSpec subsystems: the focal plane array and micro-shutter assembly

    NASA Astrophysics Data System (ADS)

    Connelly, Joseph A.; Hadjimichael, Theo J.; Boucarut, Rene A.; Tveekrem, June L.; Mott, D. Brent

    2006-08-01

    The James Webb Space Telescope (JWST) is an infrared, space-based telescope scheduled for launch in 2013. JWST will hold four scientific instruments, including the Near Infrared Spectrograph (NIRSpec). NIRSpec operates in the wavelength range from 0.6 to 5 microns, and will be assembled by the European Space Agency. NASA/Goddard Space Flight Center (GSFC) is responsible for two NIRSpec subsystems: the detector subsystem, with the focal plane array (FPA), and the micro-shutter subsystem, with the micro-shutter assembly (MSA). The FPA consists of two side-by-side Rockwell Scientific HgCdTe 2Kx2K detectors, with the detectors and readout electronics optimized for low noise. The MSA is a GSFC developed micro-electro-mechanical system (MEMS) that serves as a programmable slit mask, allowing NIRSpec to obtain simultaneous spectra of >100 objects in a single field of view. We present the optical characterization test plan of the FPA. The test plan is driven by many requirements: cryogenic operating temperature, a flight-like beam shape, and multi-wavelength flux from 1 to 10,000 photons per second, thus low stray light is critical. We use commercial optical modeling software to predict stray light effects at the FPA. We also present the optical contrast test plan of the MSA. Each individual shutter element operates in an on/off state, and the most important optical metric is contrast. The MSA is designed to minimize stray and scattered light, and the test setup reduces stray light such that the optical contrast is measurable.

  20. Infrared fiber optic focal plane dispersers

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.

    1981-01-01

    Far infrared transmissive fiber optics as a component in the design of integrated far infrared focal plane array utilization is discussed. A tightly packed bundle of fibers is placed at the focal plane, where an array of infrared detectors would normally reside, and then fanned out in two or three dimensions to individual detectors. Subsequently, the detectors are multiplexed by cryogenic electronics for relay of the data. A second possible application is frequency up-conversion (v sub 1 + v sub 2 = v sub 3), which takes advantage of the nonlinear optical index of refraction of certain infrared transmissive materials in fiber form. Again, a fiber bundle is utilized as above, but now a laser of frequency v sub 1 is mixed with the incoming radiation of frequency v sub 1 within the nonlinear fiber material. The sum, v sub 2 is then detected by near infrared or visible detectors which are more sensitive than those available at v sub 2. Due to the geometrical size limitations of detectors such as photomultipliers, the focal plane dispersal technique is advantageous for imaging up-conversion.

  1. SNAP Satellite Focal Plane Development

    SciTech Connect

    Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez,D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher,A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz,D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle,G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.

    2003-07-07

    The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.

  2. Teal Amber Visible Focal Plane Technology

    NASA Astrophysics Data System (ADS)

    Johnson, Charles R.; Burczewski, Ron

    1981-12-01

    Deep-space surveillance missions have imposed severe demands on existing technology and simulated the search for new, advanced technology developments to provide higher performance. Defense Advanced Research Projects Agency (DARPA) sponsored Teal Amber as a visible charge-coupled device (CCD) and associated focal plane signal processing technology development and demonstration program. This paper describes this large-scale, staring-array-sensor concept. The current state of art in the resulting visibled CCD imagers is specified, along with the focal plane signal processor implementation in low power-weight-volume large-scale integrated (LSI) circuitry. Performance requirements and analytic predictions are compared to demonstration system results from an electro-optical test site in White Sands, New Mexico.

  3. Rewritable photochromic focal plane masks

    NASA Astrophysics Data System (ADS)

    Molinari, Emilio; Bertarelli, Chiara; Bianco, Andrea; Bortoletto, Fabio; Conconi, Paolo; Crimi, Giuseppe; Gallazzi, Maria C.; Giro, Enrico; Lucotti, Andrea; Pernechele, Claudio; Zerbi, Filippo M.; Zerbi, Giuseppe

    2003-02-01

    The application of organic photochromic materials in astronomy is opening new possibilities which we are investigating in order to design innovative devices for future instrumentation. The photochromic property of transparent/opaque transition (although in a limited wavelength range) and the changes in intrinsic refractive index have led our studies to application in astronomic spectrographs, both as focal plane mask (for MOS application) and as dispersive elements (volume phase holographic gratings, VPHG), respectively. In both cases the possibility to write and erase devices with suitable irradiation has revealed a new perspective for non-disposable and fully customizable items for spectroscopy. Pursuing this goal we have synthesized a series of novel photochromic materials belonging to the diarylethenes. They fulfill the requirements of thermal stability and fatigue resistance necessary to build functional devices. Prototypes of high contrast focal plane mask working in the H-alpha spectral region have been manufactured and characterized both in laboratory and with the AFOSC camera at Asiago telescope (1.8 m). A custom writing robot (ARATRO) which, taking imaging frames and with the aid of interactive mask design software and ad hoc control electronics, is able to write MOS masks, has been constructed. The design of the MOS masks allow the fitting in the AFOSC slit wheel. The overall set-up is ready for the sky tests.

  4. Synchrotron Infrared Confocal Microspectroscopic Spatial Resolution or a Customized Synchrotron/focal Plane Array System Enhances Chemical Imaging of Biological Tissue or Cells

    SciTech Connect

    D Wetzel; M Nasse; =

    2011-12-31

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 {mu} with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  5. Synchrotron infrared confocal microspectroscopic spatial resolution or a customized synchrotron/focal plane array system enhances chemical imaging of biological tissue or cells

    NASA Astrophysics Data System (ADS)

    Wetzel, David L.; Nasse, Michael J.

    2011-09-01

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 μm with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  6. Low-noise InGaAs infrared 1.0- to 2.4-μm focal plane arrays for SCIAMACHY

    NASA Astrophysics Data System (ADS)

    van der A, Ronald J.; Hoogeveen, Ruud W. M.; Spruijt, Hugo J.; Goede, Albert P. H.

    1997-01-01

    SCIAMACHY has been selected for the ESA environmental satellite ENVISAT with the objective to carry out atmospheric research in the UV, VIS, and IR spectral range. The most innovative parts of the instrument are the low- noise InGaAs semiconductor focal plane arrays covering the 1.0-2.4 micrometers wavelength range. For the first time InGaAs focal plane arrays with an extended wavelength range have become space qualified. In this paper theory and measurement of the dark current and noise behavior of these detectors is presented. Each InGaAs focal plane array consists of a 1024 pixel linear photo-detecting sliver and two 512 pixel multiplexing read-out chips. Each multiplexer contains 512 individual charge transimpedance amplifier and correlated double sampling circuits. A cylindrical lens, integrated in the detector housing, focuses the light on detector in the cross-dispersion direction. The InGaAs composition of the detectors is tuned to match the required wavelength range. Measurements have been performed of the dark current and noise as function of temperature and bias voltage in order to relate their performance to theory presented in this paper. InGaAs detectors sensitive to 2400 nm wavelength achieve dark current levels as low as 20-100 fA per detector pixel area of 1.25 (DOT) 10-4 cm2 at an operating temperature of 150 K and a bias voltage of 2 mV. Lower temperatures further reduce the dark current but also decrease the quantum efficiency at long wavelengths, yielding no net gain in performance. The development programme of these SCIAMACHY detectors has been carried out by Epitaxx Inc., for and in cooperation with the Space Research Organization Netherlands.

  7. Modulation transfer function measurement of an infrared focal plane array by use of the self-imaging property of a canted periodic target.

    PubMed

    Guérineau, N; Primot, J; Tauvy, M; Caes, M

    1999-02-01

    We present a new technique for measuring the modulation transfer function (MTF) of a focal plane array (FPA). The main idea is to project a periodic pattern of thin lines that are canted with respect to the sensor's columns. Practically, one aims the projection by using the self-imaging property of a periodic target. The technique, called the canted periodic target test, has been validated experimentally on a specific infrared FPA, leading to MTF evaluation to as great as five times the Nyquist frequency. PMID:18305656

  8. Enabling more capability within smaller pixels: advanced wafer-level process technologies for integration of focal plane arrays with readout electronics

    NASA Astrophysics Data System (ADS)

    Temple, Dorota S.; Vick, Erik P.; Lueck, Matthew R.; Malta, Dean; Skokan, Mark R.; Masterjohn, Christopher M.; Muzilla, Mark S.

    2014-05-01

    Over the past decade, the development of infrared focal plane arrays (FPAs) has seen two trends: decreasing of the pixel size and increasing of signal-processing capability at the device level. Enabling more capability within smaller pixels can be achieved through the use of advanced wafer-level processes for the integration of FPAs with silicon (Si) readout integrated circuits (ROICs). In this paper, we review the development of these wafer-level integration technologies, highlighting approaches in which the infrared sensor is integrated with three-dimensional ROIC stacks composed of multiple layers of Si circuitry interconnected using metal-filled through-silicon vias.

  9. 15-micro-m 128 x 128 GaAs/Al(x)Ga(1-x) As Quantum Well Infrared Photodetector Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Park, Jin S.; Sarusi, Gabby; Lin, True-Lon; Liu, John K.; Maker, Paul D.; Muller, Richard E.; Shott, Craig A.; Hoelter, Ted

    1997-01-01

    In this paper, we discuss the development of very sensitive, very long wavelength infrared GaAs/Al(x)Ga(1-x)As quantum well infrared photodetectors (QWIP's) based on bound-to-quasi-bound intersubband transition, fabrication of random reflectors for efficient light coupling, and the demonstration of a 15 micro-m cutoff 128 x 128 focal plane array imaging camera. Excellent imagery, with a noise equivalent differential temperature (N E(delta T)) of 30 mK has been achieved.

  10. PdSi focal-plane array detectors for short-wave infrared Raman spectroscopy of biological tissue: a feasibility study

    NASA Astrophysics Data System (ADS)

    Brennan, James F., III; Beattie, Mark E.; Wang, Yang; Cantella, Michael J.; Tsaur, Bor-Yeu; Dasari, Ramachandra R.; Feld, Michael S.

    1996-10-01

    We have used a PdSi focal-plane array detector to measure short-wave infrared Raman spectra of pure compounds and human tissue. Raman bands of the pure compounds are clearly visible in the spectra, and a calcification feature at 960 cm -1 is readily identifiable in the spectra of diseased human aorta. The performance characteristics of our detection device were good; dark noise contributed approximately 60 (electrons/s)/pixel, and the read noise was approximately 50 rms electrons/pixel. The primary noise in the spectra was due to fixed-pattern noise, which is the variation in measured signal across a detector when it is uniformly illuminated.

  11. Optimal focal-plane restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1989-01-01

    Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.

  12. Characterization of the KATRIN Focal Plane Detector

    NASA Astrophysics Data System (ADS)

    Bodine, Laura; Leber, Michelle; Myers, Allan; Tolich, Kazumi; Vandevender, Brent; Wall, Brandon

    2008-10-01

    The Karlsruhe Tritium Neutrino (KATRIN) Experiment is a next generation tritium beta decay experiment designed to measure directly the electron neutrino mass with a sensitivity of 0.2 eV. In the experiment, electrons from tritium decay of a gaseous source are magnetically guided through analyzing solenoidal retarding electrostatic spectrometers and detected via a focal plane detector. The focal plane detector is a 90mm diameter, 500 micron thick monolithic silicon pin-diode array with 148 pixels. The diode contacts have a titanium nitride overlayer and are connected to preamplifiers via an array of spring-loaded pogo pins. This novel connection scheme minimizes backgrounds from radioactive materials near the detector, facilitates characterization and replacement of the detector wafer, but requires a unique mounting design. The force of the pins strains the silicon, possibly altering the detector properties and performance. Results on the mechanical, thermal and electrical performance of a prototype detector under stress from pogo pin readouts will be presented.

  13. A 25μm pitch LWIR staring focal plane array with pixel-level 15-bit ADC ROIC achieving 2mK NETD

    NASA Astrophysics Data System (ADS)

    Bisotto, Sylvette; de Borniol, Eric; Mollard, Laurent; Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Micha"l.; Castelein, Pierre; Maillart, Patrick

    2010-10-01

    CEA-Leti MINATEC has been involved in infrared focal plane array (IRFPA) development since many years, with performing HgCdTe in-house process from SWIR to LWIR and more recently in focusing its work on new ROIC architectures. The trend is to integrate advanced functions into the CMOS design for the purpose of applications demanding a breakthrough in Noise Equivalent Temperature Difference (NETD) performances (reaching the mK in LWIR band) or a high dynamic range (HDR) with high-gain APDs. In this paper, we present a mid-TV format focal plane array (FPA) operating in LWIR with 25μm pixel pitch, including a new readout IC (ROIC) architecture based on pixel-level charge packets counting. The ROIC has been designed in a standard 0.18μm 6-metal CMOS process, LWIR n/p HgCdTe detectors were fabricated with CEA-Leti in-house process. The FPA operates at 50Hz frame rate in a snapshot integrate-while-read (IWR) mode, allowing a large integration time. While classical pixel architectures are limited by the charge well capacity, this architecture exhibits a large well capacity (near 3Ge-) and the 15-bit pixel level ADC preserves an excellent signal-to-noise ratio (SNR) at full well. These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The electro-optical results demonstrating a peak NETD value of 2mK and images taken with the FPA are presented. They validate both the pixel-level ADC concept and its circuit implementation. A previously unreleased SNR of 90dB is achieved.

  14. Challenges, constraints, and results of lens design for 17 micron-bolometer focal plane arrays in 8-12 micron waveband

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert; Franks, John

    2011-06-01

    In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.

  15. Ultra-low dark current InGaAs technology for focal plane arrays for low-light level visible-shortwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Onat, Bora M.; Huang, Wei; Masaun, Navneet; Lange, Michael; Ettenberg, Martin H.; Dries, Christopher

    2007-04-01

    Under the DARPA Photon Counting Arrays (PCAR) program we have investigated technologies to reduce the overall noise level in InGaAs based imagers for identifying a man at 100m under low-light level imaging conditions. We report the results of our experiments comprising of 15 InGaAs wafers that were utilized to investigate lowering dark current in photodiode arrays. As a result of these experiments, we have achieved an ultra low dark current of 2nA/cm2 through technological advances in InGaAs detector design, epitaxial growth, and processing at a temperature of +12.3 degrees C. The InGaAs photodiode array was hybridized to a low noise readout integrated circuit, also developed under this program. The focal plane array (FPA) achieves very high sensitivity in the shortwave infrared bands in addition to the visible response added via substrate removal process post hybridization. Based on our current room-temperature stabilized SWIR camera platform, these imagers enable a full day-night imaging capability and are responsive to currently fielded covert laser designators, illuminators, and rangefinders. In addition, improved haze penetration in the SWIR compared to the visible provides enhanced clarity in the imagery of a scene. In this paper we show the results of our dark current studies as well as FPA characterization of the camera built under this program.

  16. Terahertz Absorption Characteristics of NiCr Film and Enhanced Absorption by Reactive Ion Etching in a Microbolometer Focal Plane Array

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Wang, Jun; Li, Weizhi; Tai, Huiling; Gu, Deen; Jiang, Yadong

    2013-08-01

    Nano - scale metallic films have been proven to be an effective terahertz (THz) absorption layer in uncooled infrared (IR) microbolometers operated in THz spectral range. Optimized absorption can be achieved by adjusting the thickness of metallic film. Nickel - chromium (NiCr) thin films are deposited on the diaphragms of 320 × 240 VOx - based infrared focal plane arrays (IRFPA). Absorption measurements of the diaphragms with different thicknesses of NiCr (5 to 40 nm) agree reasonably well with the predicted absorption. To improve THz absorption further, a reactive ion etching (RIE) process applied to the dielectric support layer is first suggested, which generates nano - scale surface structures and increases the effective surface area of NiCr absorption film. This provides an effective way which is easy to accomplish and compatible with the manufacturing process of microbolometer IRFPAs to improve THz absorption and detection sensitivity.

  17. A 20MHz 15μm pitch 128×128 CTIA ROIC for InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcheng; Chen, Yu; Huang, Songlei; Fang, Jiaxiong

    2014-11-01

    A 128×128 matrix readout integrated circuit (ROIC) for 15×15 μm2 InGaAs focal plane array (FPA) is reported in this paper. Capacitive-feedback Trans-Impedance Amplifier (CTIA) and correlated double sampling (CDS) are both involved in ROIC pixel which dissipates 90nW and has a full-well-capacity (FWC) of about 78,000 e-. Noises of ROIC pixel are analyzed and distribution method of capacitors in pixel is discussed in order to obtain low-noise performance. In column buffer circuit, a new pre-charging technique is developed to realize readout rate of 20 MHz with low power consumption. The ROIC is fabricated with 0.18-μm 3.3 V mixed signal CMOS process. Test results show that the ROIC has an equivalent input noise of about 181e- and can achieve a readout rate of 20 MHz.

  18. Joint FDTD-Optical/FEM-Electrical Numerical Simulation of Reflection-Type Subwavelength-Microstructure InSb Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    He, J. L.; Hu, W. D.; Ye, Z. H.; Lv, Y. Q.; Chen, X. S.; Lu, W.

    2016-09-01

    The design of a reflection-type subwavelength microstructure has been numerically investigated to concentrate incident light onto pixels for improved photoresponse of InSb infrared focal-plane arrays. Compared with traditional microlenses placed on top of the detector substrate, this reflection-type microstructure is better suited for extremely small pixel pitches. The structure is simulated using a joint numerical method combining the finite-difference time-domain method based on Maxwell's curl equations and the finite-element method based on the Poisson and continuity equations. The results show that this advanced design could effectively improve device response without sacrificing crosstalk. The optimal structure parameters are obtained theoretically, with response increase of approximately 100%.

  19. Joint FDTD-Optical/FEM-Electrical Numerical Simulation of Reflection-Type Subwavelength-Microstructure InSb Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    He, J. L.; Hu, W. D.; Ye, Z. H.; Lv, Y. Q.; Chen, X. S.; Lu, W.

    2016-05-01

    The design of a reflection-type subwavelength microstructure has been numerically investigated to concentrate incident light onto pixels for improved photoresponse of InSb infrared focal-plane arrays. Compared with traditional microlenses placed on top of the detector substrate, this reflection-type microstructure is better suited for extremely small pixel pitches. The structure is simulated using a joint numerical method combining the finite-difference time-domain method based on Maxwell's curl equations and the finite-element method based on the Poisson and continuity equations. The results show that this advanced design could effectively improve device response without sacrificing crosstalk. The optimal structure parameters are obtained theoretically, with response increase of approximately 100%.

  20. A 25μm pitch LWIR focal plane array with pixel-level 15-bit ADC providing high well capacity and targeting 2mK NETD

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Michael; de Borniol, Eric; Bisotto, Sylvette; Mollard, Laurent; Castelein, Pierre; Zanatta, Jean-Paul; Maillart, Patrick; Zecri, Michel; Peyrard, Jean-Christophe

    2010-04-01

    CEA Leti has recently developed a new readout IC (ROIC) with pixel-level ADC for cooled infrared focal plane arrays (FPAs). It operates at 50Hz frame rate in a snapshot Integrate-While-Read (IWR) mode. It targets applications that provide a large amount of integrated charge thanks to a long integration time. The pixel-level analog-to-digital conversion is based on charge packets counting. This technique offers a large well capacity that paves the way for a breakthrough in NETD performances. The 15 bits ADC resolution preserves the excellent detector SNR at full well (3Ge-). These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The ROIC, featuring a 320x256 array with 25μm pixel pitch, has been designed in a standard 0.18μm CMOS technology. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The IC has been hybridized to a LWIR detector fabricated using our in-house HgCdTe process. The first electro-optical test results of the detector dewar assembly are presented. They validate both the pixel-level ADC concept and its circuit implementation. Finally, the benefit of this LWIR FPA in terms of NETD performance is demonstrated.

  1. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  2. Readout concept employing a novel on-chip 16-bit ADC for smart IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ringh, Ulf; Jansson, Christer; Liddiard, Kevin C.

    1996-06-01

    This paper discusses CMOS readout for an uncooled 2D IR array of resistance bolometers. Factors influencing the architectural choice and detailed noise considerations for the pixel select switch are covered. A parallel readout concept using one ADC per column is the suggested architecture for an uncooled CMOS IR array. In order to meet the requirement on speed and resolution a new ADC principle had to be developed. The ADC is however of general interest where resolution above 10 bits at medium speed and low cost are desired. High linearity is obtained utilizing the first- order delta-sigma converter technique, while resolution and speed is enhanced by a successive approximation of the delta-sigma integrator residual voltage. An experimental 16 X 16 infrared bolometer detector array has been designed where a row-by-row readout operation of the bolometer array is supported by a column-wise 16-bit A/D conversion. The 16- column preamplifiers and ADC structure has been implemented in a standard 0.8 micrometers CMOS process with 40 micrometers column pitch. Measured results of the experimental array is presented, including both electronics and detectors.

  3. Design of 800×2 low-noise readout circuit for near-infrared InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcheng; Huang, Songlei; Fang, Jiaxiong

    2012-12-01

    InGaAs near-infrared (NIR) focal plane arrays (FPA) have important applications in space remote sensing. A design of 800×2 low-noise readout integrated circuit (T800 ROIC) with a pitch of 25 μm is presented for a dual-band monolithic InGaAs FPA. Mathematical analysis and transient noise simulations have been presented for predicting and lowering the noise in T800 ROIC. Thermal noise from input-stage amplifier which plays a dominant role in ROIC is reduced by increasing load capacitor under tradeoff and a low input offset voltage in the range of +/-5 mV is obtained by optimizing transistors in the input-stage amplifier. T800 ROIC has been fabricated with 0.5-μm 5V mixed signal CMOS process and interfaced with InGaAs detector arrays. Test results show that ROIC noise is around 90 μV and input offset voltage shows a good correspondence with simulation results. 800×2 InGaAs FPA has a peak detectivity (D*) of about 1.1×1012 cmHz1/2/ W, with dynamic range of above 80dB.

  4. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  5. Research progress on a focal plane array ladar system using a laser diode transmitter and FM/cw radar principles

    NASA Astrophysics Data System (ADS)

    Stann, Barry L.; Abou-Auf, Ahmed; Aliberti, Keith; Giza, Mark M.; Ovrebo, Greg; Ruff, William C.; Simon, Deborah R.; Stead, Michael R.

    2002-07-01

    The Army Research Laboratory is developing scannerless ladar systems for smart munition and reconnaissance applications. Here we report on progress attained over the past year related to the construction of a 32x32 pixel ladar. The 32x32 pixel architecture achieves ranging based on a frequency modulation/continuous wave (FM/cw) technique implemented by directly amplitude modulating a near-IR diode laser transmitter with a radio frequency (rf) subcarrier that is linearly frequency modulated. The diode's output is collected and projected to form an illumination field in the downrange image area. The returned signal is focused onto an array of metal-semiconductor-metal (MSM) detectors where it is detected and mixed with a delayed replica of the laser modulation signal that modulates the responsivity of each detector. The output of each detector is an intermediate frequency (IF) signal (a product of the mixing process) whose frequency is proportional to the target range. This IF signal is continuously sampled over each period of the rf modulation. Following this, a N channel signal processor based-on field-programmable gate arrays calculates the discrete Fourier transform over the IF waveform in each pixel to establish the ranges to all the scatterers and their respective amplitudes. Over the past year, we have built one and two-dimensional self-mixing MSM detector arrays at .8 and 1.55 micrometers , designed and built circuit boards for reading data out of a 32x32 pixel array, and designed an N channel FPGA signal processor for high-speed formation of range gates. In this paper we report on the development and performance of these components and the results of system tests conducted in the laboratory.

  6. Focal Plane Metrology for the LSST Camera

    SciTech Connect

    A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe; Takacs, Peter; Thurston, Timothy; /SLAC

    2007-01-10

    Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.

  7. Focal plane array readout integrated circuit with per-pixel analog-to-digital and digital-to-analog conversion

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart; Hottes, Alison; Pease, R. Fabian W.

    2000-07-01

    A pixel array readout integrated circuit (ROIC) containing per-pixel analog-to-digital conversion (ADC) and digital-to- analog conversion (DAC) for infrared detectors is presented with design and test result details. Fabricated in a standard 0.35 micron, 3.3 volt CMOS technology. the prototype consists of a linear array of 64 pixels, containing over 100 transistors per 30 by 30 micron pixel. The 8-bit per-pixel ADC is a Nyquist-rate single-slope design consisting of a three stage comparator and an 8 bit memory. This fully pixel- parallel ADC architecture operates in full-frame 'snapshot' mode and can reach over 1,000 frames per second. Each pixel also contains cascoded current source, globally biased to subtract an identical, fixed amount of current from each pixel in order to remove a common background signal by 'charge skimming.' It operates over more than 3 decades of current cancellation (approximately 10 pA to > 10 nA). As well, each pixel contains a 4 to 6+ bit current-mode DAC, intended to trim-out pixel-to-pixel variations in background current. It consists of 16 unit-cells of switched cascoded current sources per pixel, organized as two separately biased weights and controlled by a 16-bit per-pixel memory. The DAC operates over more than 4 decades of current cancellation (< 10 pA to approximately equals 100 nA) per least significant bit (LSB).

  8. Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras

    NASA Astrophysics Data System (ADS)

    Fendler, Manuel; Lasfargues, Gilles; Bernabé, S.; Druart, Guillaume A.; de La Barriere, Florence; Rommeluere, Sylvain; Guérineau, Nicolas; Lhermet, Nicolas; Ribot, Hervé

    2010-04-01

    Over the past decade, several technological breakthroughs have been achieved in the field of optical detection, in terms of spatial and thermal resolutions. The actual trend leads to the integration of new functions at the vicinity of the detector. This paper presents two types of integrated optics in the cryo-cooler, close to the MCT (CdHgTe) infrared detector array. The first one, for spectro-imaging applications, is a Fourier-transform microspectrometer on chip (MICROSPOC), developed for very fast acquisition of spectral signatures. Experimental results will be presented. The second one, for large field of view applications, illustrates the high potentiality of the integration of advanced optical functions in the Dewar of MCT detectors.

  9. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    SciTech Connect

    Vishnyakov, A. V.; Stuchinsky, V. A. Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  10. A digital output readout circuit with substrate temperature and bias heating compensation for uncooled micro-bolometer infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Que, Longcheng; Wei, Linhai; Lv, Jian; Jiang, Yadong

    2015-07-01

    Uncooled micro-bolometer FPAs (focal plane arrays) are influenced by substrate temperature and bias heating effect seriously. When the substrate temperature of the FPA changes greatly, the output and the responsivity of the FPA will vary a lot, thus the images' quality is poor without the substrate temperature and bias heating effect compensation. In this paper, a new substrate temperature compensation method is proposed, which is completed during analog-to-digital converting with a 12-bit ADC (analog-to-digital converter), and the bias heating effect is canceled by trimming blind bolometers with on-chip DAC (digital-to-analog converter). The simulation result presents the achievable substrate temperature compensation range is about 80 K. The proposed structure has been adopted in a readout circuit and successfully fabricated with 0.5 μm CMOS process. For normal temperature scene (300 K), the digital output only changes 16% when the substrate temperature changes from 253 K to 333 K. And the equivalent analog output only changes 546.2 mV with a 3.4 V output swing. As a result, the scene DR (dynamic range) does not change rapidly along with the variation of the substrate temperature and the images' quality is improved greatly.

  11. Analysis of the Maillard reaction in human hair using Fourier transform infrared spectroscopic imaging and a focal-plane array detector.

    PubMed

    Jung, In-Keun; Park, Sang-Chul; Bin, Sung-Ah; Roh, Young Sup; Lee, John Hwan; Kim, Boo-Min

    2016-03-01

    The Maillard reaction has been well researched and used in the food industry and the fields of environmental science and organic chemistry. Here, we induced the Maillard reaction inside human hair and analyzed its effects by using Fourier transform infrared spectroscopy with a focal-plane array (FTIR-FPA) detector. We used arginine (A), glycine (G), and D-xylose (X) to generate the Maillard reaction by dissolving them in purified water and heating it to 150 °C. This label-free process generated a complex compound (named AGX after its ingredients) with a monomer structure, which was determined by using nuclear magnetic resonance (NMR) and FTIR-FPA. This compound was stable in hair and substantially increased its tensile strength. To our knowledge, we are the first to report the formation of this monomer in human hair, and our study provides insights into a new method that could be used to improve the condition of damaged or aging hair. PMID:26905862

  12. Derivatization technique to increase the spectral selectivity of two-dimensional Fourier transform infrared focal plane array imaging: analysis of binder composition in aged oil and tempera paint.

    PubMed

    Zumbühl, Stefan; Scherrer, Nadim C; Eggenberger, Urs

    2014-01-01

    The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder, oxidative aging products, carboxylates formed during aging, and several pigments and fillers. The distinction of the aging products such as ketone and carboxylic acid functional groups pose the next problem, as these interfere with the triglyceride esters of the oil. A sample preparation and derivatization technique using gaseous sulfur tetrafluoride (SF4), was thus developed with the aim to discriminate overlapping signals and achieve a signal enhancement on superposed compounds. Of particular interest in this context is the signal elimination of the broad carboxylate bands of the typical reaction products developing during the aging processes in oil-based paints, as well as signal interference originating from several typical pigments in this spectral range. Furthermore, it is possible to distinguish the different carbonyl-containing functional groups upon selective alteration. The derivatization treatment can be applied to both microsamples and polished cross sections. It increases the selectivity of the infrared spectroscopy technique in a fundamental manner and permits the identification and two-dimensional (2D) localization of binder components in aged paint samples at the micrometer scale. The combination of SF4 derivatization with high-resolution 2D FT-IR focal plane array (FPA) imaging delivers considerable advances to the study of micro-morphological processes involving organic compounds. PMID:24694702

  13. Study of LWIR and VLWIR Focal Plane Array Developments: Comparison Between p-on- n and Different n-on- p Technologies on LPE HgCdTe

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Mollard, L.; Largeron, C.; Baier, N.; Deborniol, E.; Chorier, Ph.

    2009-08-01

    The very long infrared wavelength (>14 μm) is a very challenging range for the design of mercury cadmium telluride (HgCdTe) large focal plane arrays (FPAs). The need (mainly expressed by the space industry) for very long wave FPAs appears very difficult to fulfil. High homogeneity, low defect rate, high quantum efficiency, low dark current, and low excess noise are required. Indeed, for such wavelength, the corresponding HgCdTe gap becomes smaller than 100 meV and each step from the metallurgy to the technology becomes critical. This paper aims at presenting a status of long and very long wave FPAs developments at DEFIR (LETI-LIR/Sofradir joint venture). This study will focus on results obtained in our laboratory for three different ion implanted technologies: n-on- p mercury vacancies doped technology, n-on- p extrinsic doped technology, and p-on- n arsenic on indium technology. Special focus is given to 15 μm cutoff n/ p FPA fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50 K.

  14. Development of a 2.0W at 60K single-stage coaxial pulse tube cryocooler for long-wave infrared focal plane array applications

    NASA Astrophysics Data System (ADS)

    Dang, H. Z.; Wang, L. B.; Wu, Y. N.; Yang, K. X.; Li, S. S.; Shen, W. B.

    2010-04-01

    A 2.0W@60K single-stage coaxial pulse tube cryocooler has been developed to provide reliable low-vibration cooling for the space-borne long wave infrared focal plane array. The coaxial configuration result in a compact system and the inertance tube together with a gas reservoir serves as the only phase-shifting to realize a highly reliable system. The inertance tube consists of two parts with different inner diameter and length to obtain the desirable phase relationship. Both cold tip and warm flange integrated with fine slit heat exchanges fabricated with electro discharge machining technology to enhance heat exchange performance. A split Oxford-type linear compressor with dual-opposed piston configuration is connected to the cold finger with a 30 cm flexible metallic tube. The overall weight without control electronics is below 8 kg. The preliminary experiments show that a no-load temperature of 46 K and a cooling power of 2 W at 60 K with 104 W of input power at 300K reject temperature have been achieved.

  15. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  16. Simulation and experimental characterization of the point spread function, pixel saturation, and blooming of a mercury cadmium telluride focal plane array.

    PubMed

    Soehnel, Grant; Tanbakuchi, Anthony

    2012-11-20

    A custom IR spot scanning experiment was constructed to project subpixel spots on a mercury cadmium telluride focal plane array (FPA). The hardware consists of an FPA in a liquid nitrogen cooled Dewar, high precision motorized stages, a custom aspheric lens, and a 1.55 and 3.39 μm laser source. By controlling the position and intensity of the spot, characterizations of cross talk, saturation, blooming, and (indirectly) the minority carrier lifetime were performed. In addition, a Monte-Carlo-based charge diffusion model was developed to validate experimental data and make predictions. Results show very good agreement between the model and experimental data. Parameters such as wavelength, reverse bias, and operating temperature were found to have little effect on pixel crosstalk in the absorber layer of the detector. Saturation characterizations show that these FPAs, which do not have antiblooming circuitry, exhibit an increase in cross talk due to blooming at ∼39% beyond the flux required for analog saturation. PMID:23207309

  17. Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors

    NASA Astrophysics Data System (ADS)

    Walther, M.; Schmitz, J.; Rehm, R.; Kopta, S.; Fuchs, F.; Fleißner, J.; Cabanski, W.; Ziegler, J.

    2005-05-01

    InAs/GaSb short-period superlattices (SLs) with a broken gap type-II band alignment are investigated for the fabrication of photovoltaic pin-photodetectors on GaSb substrates. The structures were grown by molecular beam epitaxy using valved cracker cells for arsenic and antimony. Effective bandgap and strain in the SL were adjusted by varying the thickness of the InAs and GaSb layers in the SL and the controlled formation of InSb-like or GaAs-like bonds at the interfaces. MBE growth conditions were investigated and optimized in order to achieve good morphological, electrical and optical properties. IR-photodiodes with a cut-off wavelength of 5.4 μm reveal quantum efficiencies around 30% and detectivity values exceeding 10 13 Jones at 77 K. A focal plane array camera with 256×256 detector elements and 40 μm pitch based on InAs/GaSb short-period SLs was fabricated for the first time. The camera system reveals an excellent thermal resolution with a noise equivalent temperature difference below 12 mK for an integration time of 5 ms using f/2 optics. The detector performance, comparable with state of the art mercury-cadmium-telluride IR detectors, makes this material system very interesting for the fabrication of advanced thermal imaging systems.

  18. Focal plane infrared readout circuit

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2002-01-01

    An infrared imager, such as a spectrometer, includes multiple infrared photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear infrared multiplexer array for reading out infrared detectors with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.

  19. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles

  20. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not

  1. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates

    NASA Astrophysics Data System (ADS)

    Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.

    2014-10-01

    Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.

  2. Spitzer Space Telescope: Focal Plane Survey Final Report. Appendix B:; IRAC

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, Dhemetrios

    2004-01-01

    This final report summarizes the results and accuracies of the Spitzer Space Telescope focal plane survey. Accuracies achieved are compared to the focal plane survey calibration requirements put forth in the SIRTF IOC-SV Mission Plan [14] and pre-flight predictions made in [2]. The results of this focal plane survey are presently being used to support in-flight precision pointing, precision incremental offsets, IRS peakup array calibration, and ground pointing reconstruction...

  3. Confirmation of Auger-1 Minority-Carrier Lifetimes in Hg0.77Cd0.23Te and Prediction of Dark Current for Long-Wave Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Destefanis, V.; Kerlain, A.

    2016-05-01

    Minority-carrier lifetime measurements have been carried out on Hg0.77Cd0.23Te (111)B materials with gap suitable for detection in the Long-Wave Infrared (LWIR) band. The materials were grown on top of CdZnTe substrates using a liquid-phase epitaxy (LPE) process. From measurements done at 80 K, a clear difference in terms of minority-carrier lifetimes was obtained, as expected, between p-intrinsic (≤5 ns) and n-extrinsic doped samples (420 ns). Minority-carrier lifetimes were also measured as a function of temperature for the n-type samples. Auger-1-limited lifetimes were demonstrated over a wide temperature range (from 80 K to 300 K) with negligible Radiative or Shockley-Read-Hall lifetime contributions. Predictions of dark current densities are made from those lifetime measurements, assuming an Auger-1-limited lifetime. The agreement is very good between the predictions and dark current densities measured from p-on-n 640 × 512 pixels LWIR HgCdTe focal-plane arrays with 15-μm pitch from SOFRADIR, Agreement between predicted and measured dark currents and Rule'07 for LWIR is also demonstrated herein. Finally, minority-carrier lifetime measurements are demonstrated as a predictive method for focal-plane array performance. State-of-the-art dark currents from SOFRADIR p-on-n LWIR focal-plane arrays based upon high-quality HgCdTe materials are also illustrated.

  4. Confirmation of Auger-1 Minority-Carrier Lifetimes in Hg0.77Cd0.23Te and Prediction of Dark Current for Long-Wave Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Destefanis, V.; Kerlain, A.

    2016-09-01

    Minority-carrier lifetime measurements have been carried out on Hg0.77Cd0.23Te (111)B materials with gap suitable for detection in the Long-Wave Infrared (LWIR) band. The materials were grown on top of CdZnTe substrates using a liquid-phase epitaxy (LPE) process. From measurements done at 80 K, a clear difference in terms of minority-carrier lifetimes was obtained, as expected, between p-intrinsic (≤5 ns) and n-extrinsic doped samples (420 ns). Minority-carrier lifetimes were also measured as a function of temperature for the n-type samples. Auger-1-limited lifetimes were demonstrated over a wide temperature range (from 80 K to 300 K) with negligible Radiative or Shockley-Read-Hall lifetime contributions. Predictions of dark current densities are made from those lifetime measurements, assuming an Auger-1-limited lifetime. The agreement is very good between the predictions and dark current densities measured from p-on- n 640 × 512 pixels LWIR HgCdTe focal-plane arrays with 15- μm pitch from SOFRADIR, Agreement between predicted and measured dark currents and Rule'07 for LWIR is also demonstrated herein. Finally, minority-carrier lifetime measurements are demonstrated as a predictive method for focal-plane array performance. State-of-the-art dark currents from SOFRADIR p-on- n LWIR focal-plane arrays based upon high-quality HgCdTe materials are also illustrated.

  5. Optimization of starshades: focal plane versus pupil plane

    NASA Astrophysics Data System (ADS)

    Flamary, R.; Aime, C.

    2014-09-01

    We search for the best possible transmission for an external occulter coronagraph that is dedicated to the direct observation of terrestrial exoplanets. We show that better observation conditions are obtained when the flux in the focal plane is minimized in the zone in which the exoplanet is observed, instead of for the total flux received by the telescope. We describe the transmission of the occulter as a sum of basis functions. For each element of the basis, we numerically computed the Fresnel diffraction at the aperture of the telescope and the complex amplitude at its focus. The basis functions are circular disks that are linearly apodized over a few centimeters (truncated cones). We complemented the numerical calculation of the Fresnel diffraction for these functions by a comparison with pure circular disks (cylinder) for which an analytical expression, based on a decomposition in Lommel series, is available. The technique of deriving the optimal transmission for a given spectral bandwidth is a classical regularized quadratic minimization of intensities, but linear optimizations can be used as well. Minimizing the integrated intensity on the aperture of the telescope or for selected regions of the focal plane leads to slightly different transmissions for the occulter. For the focal plane optimization, the resulting residual intensity is concentrated behind the geometrical image of the occulter, in a blind region for the observation of an exoplanet, and the level of background residual starlight becomes very low outside this image. Finally, we provide a tolerance analysis for the alignment of the occulter to the telescope, which also favors the focal plane optimization. This means that telescope offsets of a few decimeters do not strongly reduce the efficiency of the occulter.

  6. MOSAD IR focal plane per pixel A/D development

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Kennedy, James J.; Chu, Muren

    1996-06-01

    An on focal plane digital readout development suggested by the Army Night Vision & Electronics Sensors Directorate is proceeding under a combined program with the development of two color HCT detector arrays. The on focal plane A/D process is based on the Amain patented multiplexed oversample A/D, MOSAD, technology. In the first year of the program, prototype on focal plane analog to digital converters for both staring arrays and scanning arrays were built and demonstrated. The prototypes included a 2 loop double ended switched MOSAD and a 1 loop single ended MOSAD. Results from the original experimental prototypes showed conclusively that better than 14 bits could be achieved and that well capacity could be increased to support high background HCT needs approaching 10(superscript 9) electrons. In the second year, a 64 X 64 staring array for HCT LWIR detectors, 50 micron centers, was built based on these original prototype designs. The layout of the per pixel MOSAD A/D staring array used Orbit 1.2 micron CMOS process and achieved a pixel size of 40 microns with a well capacity of 1.9 X 10(superscript 8) electrons. Integration capacitors were built using Orbit's normal double poly capacitors with a standard buffered direct inject TIA detector interface configuration. Preliminary testing has been completed indicating complete functionality. Fermionics LWIR HCT detectors with cutoff at 9 microns have been built for attachment to the readout but indium bumping was not completed in time to report system level testing results. However, some noise tests have been performed using on array current mirrors. These tests indicate that better than 12 bits has been achieved, but lower noise current sources will be required for a more accurate measurement.

  7. High precision radiometry using an indium arsenide/indium gallium arsenide quantum dot-in-a-well infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.

    Sensitivity, noise and performance criteria were evaluated for different varieties of InAs/InGaAs quantum dots-in-a-well (DWELL) and quantum dots-in-a-double-well (double DWELL) focal plane arrays (FPAs). These characteristics were measured and compared to those measured from a commercial quantum well infrared photodetector (QWIP) in the same experimental setup to allow a side-by-side comparison of these devices with many system variables held constant. The QWIP device was expected to perform the best, due to its higher number of active regions and enhancement grating, but the performance of the other devices was unknown. The DWELL and double DWELL samples were grown by molecular beam epitaxy (MBE) and fabricated into 320 x 256 pixel FPAs with indium bumps via standard lithography at the University of New Mexico. All samples, including the 320 x 256 pixel QWIPs were hybridized to Indigo Systems Corporation ISC9705 read out integrated circuits and device performance was measured with the SE-IR Corporation CamIRa test system at part cooling of 60°K, 70°K and 80°K. The QWIP performed best at lower device cooling, but could not operate at 80°K. The DWELL device demonstrated favorable operation at 60°K, but performance at 70°K was poor and the device did not perform at 80°K. Both double DWELL devices under test performed well across all device temperatures. The mean NEDT for the DWELL was 143°mK and the two double DWELL devices were 105.7°mK and 160.6°mK at 60°K part temperature. The double DWELL devices showed the lower noise and higher responsivity at higher device temperatures. This document also reviewed methods of non-uniformity correction and suggested methods to improve performance and results by carefully choosing the method of correction and the values.

  8. Performance of near-infrared InGaAs focal plane array with different series resistances to p-InP layer

    NASA Astrophysics Data System (ADS)

    Shao, Xiumei; Li, Xue; Li, Tao; Huang, Zhangcheng; Chen, Yu; Tang, Hengjing; Gong, Haimei

    2014-05-01

    A planar-type InGaAs linear detector was designed and fabricated based on n-i-n+ type InP/In0.53Ga0.47As/InP epitaxial materials. The major process of the detector contains planar diffusion, surface passivation, metal contact and annealing. The I-V curves and the relative spectral response were measured at room temperature. The relative spectral response is in the range of 0.9 μm to 1.68 μm. The R0A of the detector is about 2×106 Ω•cm2 and the dark current density is 5~10nA/cm2 at -10mV bias voltage. The linear detectors were wire-bonded with readout integrated circuits (ROIC) to form focal plane array (FPA). The input stage of the ROIC is based on capacitive-feedback transimpedance amplifier (CTIA) with a capacitor (Cint) to be 0.1pF. However, the FPA signals are oscillating especially when close to the saturation. The ohmic contact on p-InP region plays an important role in the performance of detectors and FPAs. In this case, the series resistance to p-InP layer of each pixel is up to 1×106Ω. The FPAs were simulated in case of InGaAs detectors with different series resistances. According to the simulation results, the bandwidth of CTIA is lowering along with Rs increasing, and the signals of the FPAs oscillate when the series resistances are beyond 4×104Ω. The reason for the unstable oscillation of FPA is due to the series resistance of the detector which is too high enough. Then, the annealing process of the detectors was improved and the series resistances were lower than 1×104Ω. The optimized InGaAs linear detectors were wire-bonded with the same ROIC. The oscillation of the signals disappears and the FPA shows good stability.

  9. Electro-Optical Characteristics of P+n In0.53Ga0.47As Hetero-Junction Photodiodes in Large Format Dense Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    DeWames, R.; Littleton, R.; Witte, K.; Wichman, A.; Bellotti, E.; Pellegrino, J.

    2015-08-01

    This paper is concerned with focal plane array (FPA) data and use of analytical and three-dimensional numerical simulation methods to determine the physical effects and processes limiting performance. For shallow homojunction P+n designs the temperature dependence of dark current for T < 300 K depends on the intrinsic carrier concentration of the In0.53Ga0.47As material, implying that the dominant dark currents are generation and recombination (G-R) currents originating in the depletion regions of the double layer planar heterostructure (DLPH) photodiode. In the analytical model differences from bulk G-R behavior are modeled with a G-R like perimeter-dependent shunt current conjectured to originate at the InP/InGaAs interface. In this description the fitting property is the effective conductivity, σ eff( T), in mho cm-1. Variation in the data suggests σ eff (300 K) values of 1.2 × 10-11-4.6 × 10-11 mho cm-1). Substrate removal extends the quantum efficiency (QE) spectral band into the visible region. However, dead-layer effects limit the QE to 10% at a wavelength of 0.5 μm. For starlight-no moon illumination conditions, the signal-to-noise ratio is estimated to be 50 at an operating temperature of 300 K. A major result of the 3D numerical simulation of the device is the prediction of a perimeter G-R current not associated with the properties of the metallurgical interface. Another is the prediction that for a junction positioned in the larger band gap InP cap layer the QE is bias-dependent and that a relatively large reverse bias ≥0.9 V is needed for the QE to saturate to the shallow homojunction value. At this higher bias the dark current is larger than the shallow homojunction value. The 3D numerical model and the analytical model agree in predicting and explaining the measured radiatively limited diffusion current originating at the n-side of the junction. The calculations of the area-dependent G-R current for the condition studied are also in agreement

  10. SIRTF Focal Plane Survey: A Pre-flight Error Analysis

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Brugarolas, Paul B.; Boussalis, Dhemetrios; Kang, Bryan H.

    2003-01-01

    This report contains a pre-flight error analysis of the calibration accuracies expected from implementing the currently planned SIRTF focal plane survey strategy. The main purpose of this study is to verify that the planned strategy will meet focal plane survey calibration requirements (as put forth in the SIRTF IOC-SV Mission Plan [4]), and to quantify the actual accuracies expected. The error analysis was performed by running the Instrument Pointing Frame (IPF) Kalman filter on a complete set of simulated IOC-SV survey data, and studying the resulting propagated covariances. The main conclusion of this study is that the all focal plane calibration requirements can be met with the currently planned survey strategy. The associated margins range from 3 to 95 percent, and tend to be smallest for frames having a 0.14" requirement, and largest for frames having a more generous 0.28" (or larger) requirement. The smallest margin of 3 percent is associated with the IRAC 3.6 and 5.8 micron array centers (frames 068 and 069), and the largest margin of 95 percent is associated with the MIPS 160 micron array center (frame 087). For pointing purposes, the most critical calibrations are for the IRS Peakup sweet spots and short wavelength slit centers (frames 019, 023, 052, 028, 034). Results show that these frames are meeting their 0.14" requirements with an expected accuracy of approximately 0.1", which corresponds to a 28 percent margin.

  11. Long wave focal plane array detector: development and performance assessment of an 8X8 Sterling cooled photovoltaic MCT detector module

    NASA Astrophysics Data System (ADS)

    Rochette, Luc; Smithson, Tracy; Gurgenian, Raymond; St. Pierre, Guy

    2007-09-01

    In June 2005, a newly develop long wave Focal Pane Array (FPA), based on photo-voltaic technology was delivered to the Defense Research & Development of Canada (DRDC). This development was part of technological Demonstration program that was founded by the DRDC. This paper will describe the FPA configuration along with its performance assessment configured in the Air PIRATE FTIR spectrometer. Air PIRATE is an airborne version of the hyper spectral spectrometer used by the Canadian Defense for target identification, as well as chemical agent identification.

  12. Characterization of DECam focal plane detectors

    SciTech Connect

    Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.

    2008-06-01

    DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.

  13. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of

  14. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  15. 15-{micro}m 128 x 128 GaAs/Al{sub x}Ga{sub 1{minus}x}As quantum well infrared photodetector focal plane array camera

    SciTech Connect

    Gunapala, S.D.; Park, J.S.; Sarusi, G.; Lin, T.L.; Liu, J.K.; Maker, P.D.; Muller, R.E.; Shott, C.A.; Hoelter, T.

    1997-01-01

    In this paper, the authors discuss the development of very sensitive, very long wavelength infrared GaAs/Al{sub x}Ga{sub 1{minus}x}As quantum well infrared photodetectors (QWIP`s) based on bound-to-quasi-bound intersubband transition, fabrication of random reflectors for efficient light coupling, and the demonstration of a 15-{micro}m cutoff 128 x 128 focal plane array imaging camera. Excellent imagery, with a noise equivalent differential temperature (NE{Delta}T) of 30 mK has been achieved.

  16. Design of large aperture focal plane shutter

    NASA Astrophysics Data System (ADS)

    Hu, Jia-wen; Ma, Wen-li; Huang, Jin-long

    2012-09-01

    To satisfy the requirement of large telescope, a large aperture focal plane shutter with aperture size of φ200mm was researched and designed to realize, which could be started and stopped in a relative short time with precise position, and also the blades could open and close at the same time at any orientation. Timing-belts and stepper motors were adopted as the drive mechanism. Velocity and position of the stepper motors were controlled by the PWM pulse generated by DSP. Exponential curve is applied to control the velocity of the stepper motors to make the shutter start and stop in a short time. The closing/open time of shutter is 0.2s, which meets the performance requirements of large telescope properly.

  17. ORFEUS focal plane instrumentation: The Berkeley spectrometer

    NASA Technical Reports Server (NTRS)

    Hurwitz, Mark; Bowyer, Stuart

    1988-01-01

    A spectrograph for the ORFEUS mission that incorporates four varied line-space, spherically figured diffraction gratings was designed. The ORFEUS, a 1-m normal incidence telescope is equipped with 2 focal plane spectrographs. The Berkeley spectrograph was developed with an optimizing raytracing computer code. Each grating accepts the light from 20 percent of the aperture of the telescope primary mirror and has a unique set of characteristics to cover a sub-bandpass within the 390 to 1200 A spectral range. Two photon-counting detectors incorporating a time delay readout system are used to record the spectra from all four gratings simultaneously. The nominal design achieves a spectral resolution (FWHM) in excess of 5500 at all wavelengths within the bandpass. The resolution is limited primarily by the detector spatial resolution. The 1 sigma astigmatism of this design varies between 13 and 150 micrometer on the same focal surface. An independent, direct imaging system tracks the drift of the target within the spectrometer aperture and allows measurement of the misalignment between the telescope optical axis and that of the external star tracker. The resolution and astigmatism achievable with this design are superior to those of a standard Rowland spectrograph designed with the same constraints.

  18. Focal-plane detector system for the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Amsbaugh, J. F.; Barrett, J.; Beglarian, A.; Bergmann, T.; Bichsel, H.; Bodine, L. I.; Bonn, J.; Boyd, N. M.; Burritt, T. H.; Chaoui, Z.; Chilingaryan, S.; Corona, T. J.; Doe, P. J.; Dunmore, J. A.; Enomoto, S.; Formaggio, J. A.; Fränkle, F. M.; Furse, D.; Gemmeke, H.; Glück, F.; Harms, F.; Harper, G. C.; Hartmann, J.; Howe, M. A.; Kaboth, A.; Kelsey, J.; Knauer, M.; Kopmann, A.; Leber, M. L.; Martin, E. L.; Middleman, K. J.; Myers, A. W.; Oblath, N. S.; Parno, D. S.; Peterson, D. A.; Petzold, L.; Phillips, D. G.; Renschler, P.; Robertson, R. G. H.; Schwarz, J.; Steidl, M.; Tcherniakhovski, D.; Thümmler, T.; Van Wechel, T. D.; VanDevender, B. A.; Vöcking, S.; Wall, B. L.; Wierman, K. L.; Wilkerson, J. F.; Wüstling, S.

    2015-04-01

    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.

  19. Fabrication of Transition Edge Sensor Microcalorimeters for X-Ray Focal Planes

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Adams, Joseph S.; Audley, Heather; Bandler, Simon R.; Betancourt-Martinez, Gabriele; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline; Lee, Sang Jun; Mateo, Jennette; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward; Yoon, Wonsik

    2015-01-01

    Requirements for focal planes for x-ray astrophysics vary widely depending on the needs of the science application such as photon count rate, energy band, resolving power, and angular resolution. Transition edge sensor x-ray calorimeters can encounter limitations when optimized for these specific applications. Balancing specifications leads to choices in, for example, pixel size, thermal sinking arrangement, and absorber thickness and material. For the broadest specifications, instruments can benefit from multiple pixel types in the same array or focal plane. Here we describe a variety of focal plane architectures that anticipate science requirements of x-ray instruments for heliophysics and astrophysics. We describe the fabrication procedures that enable each array and explore limitations for the specifications of such arrays, including arrays with multiple pixel types on the same array.

  20. Approaches and analysis for on-focal-plane analog-to-digital conversion

    NASA Astrophysics Data System (ADS)

    Pain, Bedabrata; Fossum, Eric R.

    1994-06-01

    This paper presents approaches for on-focal-plane analog-to-digital conversion (ADC). Common approaches and architectures for ADC and their utility for on-focal-plane integration are discussed. Candidate approaches are analyzed with respect to required amplifier gain, bandwidth, capacitance matching, noise and offsets as a function of ADC resolution. A column-parallel ADC architecture appears to be an effective compromise of chip area, power, circuit speed and ADC resolution. The discussion is valid for both infrared focal-plane arrays and visible image sensors.

  1. Kalman Filter for Calibrating a Telescope Focal Plane

    NASA Technical Reports Server (NTRS)

    Kang, Bryan; Bayard, David

    2006-01-01

    The instrument-pointing frame (IPF) Kalman filter, and an algorithm that implements this filter, have been devised for calibrating the focal plane of a telescope. As used here, calibration signifies, more specifically, a combination of measurements and calculations directed toward ensuring accuracy in aiming the telescope and determining the locations of objects imaged in various arrays of photodetectors in instruments located on the focal plane. The IPF Kalman filter was originally intended for application to a spaceborne infrared astronomical telescope, but can also be applied to other spaceborne and ground-based telescopes. In the traditional approach to calibration of a telescope, (1) one team of experts concentrates on estimating parameters (e.g., pointing alignments and gyroscope drifts) that are classified as being of primarily an engineering nature, (2) another team of experts concentrates on estimating calibration parameters (e.g., plate scales and optical distortions) that are classified as being primarily of a scientific nature, and (3) the two teams repeatedly exchange data in an iterative process in which each team refines its estimates with the help of the data provided by the other team. This iterative process is inefficient and uneconomical because it is time-consuming and entails the maintenance of two survey teams and the development of computer programs specific to the requirements of each team. Moreover, theoretical analysis reveals that the engineering/ science iterative approach is not optimal in that it does not yield the best estimates of focal-plane parameters and, depending on the application, may not even enable convergence toward a set of estimates.

  2. A description of the focal plane/detector test and evaluation lab at MDAC-HB

    NASA Astrophysics Data System (ADS)

    Beebe, D. D.; Lowe, J. J.; Sheldon, C.; D'Ippolito, E. S.; Osler, A. G.

    1986-01-01

    A description of a test facility for testing and evaluating visible and infrared (IR) focal plane arrays (FPA's) and associated components and subsystems is given. The facility is comprised of three computer controlled test systems for characterization of hybrid FPA's, detector arrays, and readout electronics under cryogenic conditions. Facility capabilities include FPA assembly and dewar test and assembly.

  3. Mn-doped 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 pyroelectric crystals for uncooled infrared focal plane arrays applications

    NASA Astrophysics Data System (ADS)

    Tang, Yanxue; Luo, Laihui; Jia, Yanmin; Luo, Haosu; Zhao, Xiangyong; Xu, Haiqing; Lin, Di; Sun, Jinglan; Meng, Xiangjian; Zhu, Junhao; Es-Souni, Mohammed

    2006-10-01

    3mol%Mn-doped 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals were grown by a modified Bridgman technique. The pyroelectric properties and thermal stability of the crystals were investigated. Mn substitution resulted in an enhanced pyroelectric coefficient and a lower dielectric loss, which led to the improvement of the detectivity figure of merit of doped crystals by about a factor of 4 at 50Hz compared with that of pure crystals. Moreover, the thermal stability was enhanced by Mn substitution. The mechanism of doping effect is explained by the fact that the domain walls are pinned by the dopant dipolar defects, which optimizes the pyroelectric performance of 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 for uncooled infrared focal plane arrays applications.

  4. Focal plane detectors for the WISE 12- and 23-μm bands

    NASA Astrophysics Data System (ADS)

    Hogue, H. H.; Mattson, R. B.; Stapelbroek, M. G.; Masterjohn, S. A.; Larsen, M. F.; Elwell, J. D.

    2007-09-01

    DRS Sensors & Targeting Systems, under contract to the Space Dynamics Laboratory of Utah State University, is providing the focal plane detector system for NASA's Wide-field Infrared Survey Explorer (WISE). The focal plane detector system consists of two mercury cadmium telluride (MCT) focal plane module assemblies (FPMAs), two arsenic doped silicon (Si:As) Blocked Impurity Band (BIB) FPMAs, electronics to drive the FPMAs and report digital data from them, and the cryogenic and ambient temperature cabling that connect the FPMAs and electronics. The MCT and Si:As BIB focal plane arrays (FPAs) utilized in the WISE FPMAs are both megapixel class indium-bump hybridized devices fabricated by Teledyne Imaging Systems and DRS Sensors & Targeting Systems, respectively. This paper reports performance of the WISE Si:As BIB FPAs that are used for the WISE 12- and 23-μm wavelength bands.

  5. Visible charge-coupled device (CCD) focal plane design considerations for multispectral applications

    NASA Technical Reports Server (NTRS)

    Sadowski, H.

    1982-01-01

    The typical Multispectral Linear Array (MLA) Instrument mission would be to gather high-resolution, radiometrically accurate earth resources data in several spectral bands over a prolonged period of time. These bands would include the visible (VIS), near infrared (NIR) and short wavelength infrared. Silicon charge-coupled imaging devices (CCDs) can be assembled into contiguous pixel focal planes which will cover the VIS/NIR region and operate reliably for several years in a space environment. A typical MLA focal plane would have approximately 12,000 pixels, with a pixel-to-pixel registration requirement on the order of + or - 0.1 pixel. The technology to assemble such focal planes has been developed and is described. The problem of polarization sensitivity associated with certain types of focal plane assemblies is addressed. Radiation effects on CCDs are also discussed, and a practical solution to the problem through the use of shielding is described.

  6. RDA Requirements For Optimum Hybrid Focal Plane Performance

    NASA Astrophysics Data System (ADS)

    Grossman, S. B.; Emmons, R. B.; Hawkins, S. R.

    1982-06-01

    In analyzing the performance of direct-injected hybrid focal plane arrays, many factors must be consiaered in determining the minimum detector resistance-area product RDA neces-sary to obtain background-limited performance (BLIP) and good array uniformity. In photo-aioue arrays, a necessary but not sufficient condition is that noise due to the diode generation-recombination and diffusion currents are less than the background photon shot noise. Tnis places a minimum requirement on the magnitude of RoA, the zero bias resistance area product. In addition, there are generally much more stringent requirements on RDA uue to input MOSFET l/f noise and threshold variations which exceed the single detector RoA requirement for BLIP operation at a given background. In general, the input thresnolu variations require that the photodiodes be somewhat back-biased. This produces a substantially higner average RDA at the expense of higher detector l/f noise due to surface leakage. In tnis study we have investigated the detector impedance requirements in terms of tne injection efficiency, threshold nonuniformities, the input MOSFET excess (l/f) noise, and tne detector excess noise. For state-of-the-art parameters, it was determined tnat tne input MOSFET l/f noise always dominates the other elements in determining the required detector impeaance:k

  7. Focal plane analog-to-digital conversion development

    NASA Astrophysics Data System (ADS)

    Mandl, William J.

    1995-05-01

    An on focal plane analog to digital conversion approach has been implemented for infrared sensor application. This development uses a patented oversampling methodology named MOSAD (Multiplexed OverSample Analog to Digital) in the design of simple circuits that can be placed at individual pixel sites. The construction of an analog to digital converter pixel is allowed with this technology. Most of the crosstalk and broadband noise associated with analog multiplexing and readout is avoided. Two demonstration designs were developed and built with Orbit, 1.2 micron CMOS Foresight process. For cost reasons, both designs were placed on the small die, 4.8 X 4.8 mm, and packaged in a 84 pin grid array carrier. These designs consist of a scanning array, 1 X 64 on 60 micron centers and two column portion of a 64 X 64 staring array on 60 micron centers. The detector buffer design will support HgCdTe high background applications. Support for the demonstration was received from Army, Night Vision Laboratory under their two color detector SBIR development program.

  8. Thermomechanical architecture of the VIS focal plane for Euclid

    NASA Astrophysics Data System (ADS)

    Martignac, Jérôme; Carty, Michaël.; Tourette, Thierry; Bachet, Damien; Berthé, Michel; Augueres, Jean-Louis; Amiaux, Jérôme; Fontignie, Jean; Horeau, Benoît; Renaud, Diana; Pottinger, Sabrina; Denniston, James; Winter, Berend; Guttridge, Phillip; Cole, Richard; Cropper, Mark; Niemi, Sami; Coker, John; Hunt, Thomas

    2014-08-01

    One of the main challenges for current and near future space experiments is the increase of focal plane complexity in terms of amount of pixels. In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. CEA has developed the thermomechanical architecture of that Focal Plane taking into account all the very stringent performance and mission related requirements. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150K) connected to their front end electronics (operated at 280K) as to obtain one of the largest focal plane (˜0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the e2v company under ESA contract, front end electronics is studied and provided by MSSL. In this paper we first recall the specific requirements that have driven the overall architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally. The mechanical structure based on SiC material used for the cold sub assembly supporting the CCDs is detailed. We describe also the modular architecture concept that we have selected taking into account AIT-AIV and programmatic constraints.

  9. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  10. Scaling of three-dimensional interconnect technology incorporating low temperature bonds to pitches of 10 µm for infrared focal plane array applications

    NASA Astrophysics Data System (ADS)

    Temple, Dorota S.; Lueck, Matthew R.; Malta, Dean; Vick, Erik P.

    2015-03-01

    This paper focuses on the application of low temperature bonding to the fabrication of three-dimensional (3D) massively parallel signal processors for high performance infrared imagers. We review two generations of the 3D heterogeneous integration process. The first generation process, compatible with pixel sizes in the 20 to 30 µm range, relies on low temperature epoxy bonding that is followed by the formation of copper-filled through-silicon vias (TSVs). The second generation process, scalable to pixel sizes of 10 µm and smaller, employs solid-liquid diffusion bonding of copper-tin to copper at 250 °C the bonding follows TSV fabrication. To demonstrate the second generation process, we fabricated 3D test vehicles in the form of 640 × 512 arrays of vertical interconnects composed of TSVs and metal-metal bonds on a 10 µm pitch. We characterized electrical conductivity of the interconnects, the isolation resistance between the interconnects, and the operability and yield of the arrays. The successful demonstration of the interconnect technology paves the way to a functional demonstration of 3D signal processors in infrared imagers with 10 µm pixels.

  11. Infrared focal plane performance in the South Atlantic anomaly

    NASA Technical Reports Server (NTRS)

    Junga, Frank A.

    1989-01-01

    Proton-induced pulse height distributions (PHD's) in Si:XX detectors were studied analytically and experimentally. In addition, a preliminary design for a flight experiment to characterize the response of Si:XX detectors to the trapped proton environment and verify PHD models was developed. PHD's were computed for two orbit altitudes for a variety of shielding configurations. Most of the proton-induced pulses have amplitudes less that about 3.5 x 10(exp 5) e-h pairs. Shielding has a small effect on the shape of the PHD's. The primary effect of shielding is to reduce the total number of pulses produced. Proton-induced PHD's in a Si:Sb focal plane array bombarded by a unidirectional 67-MeV beam were measured. The maximum pulse height recorded was 6 x 10(exp 5) pairs. The distribution had two peaks: the larger peak corresponded to 3.8 x 10(exp 5) pairs and the smaller peak to 1.2 x 10(exp 5) pairs. The maximum pulse height and the larger peak are within a factor of two of predicted values. The low-energy peak was not expected, but is believed to be an artifact of inefficient charge collection in the detector. The planned flight experiment will be conducted on a Space Shuttle flight. Lockheed's helium extended life dewar (HELD) will be used to provide the required cryogenic environment for the detector. Two bulk Si:Sb arrays and two Si:As impurity band conduction arrays will be tested. The tests will be conducted while the Space Shuttle passes through the South Atlantic Anomaly. PHD's will be recorded and responsivity changes tracked. This experiment will provide a new database on proton-induced PHD's, compare two infrared detector technologies in a space environment, and provide the data necessary to validate PHD modeling.

  12. Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal plane array in 32 channel readout mode

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Eschbaumer, Siegfried; Hall, Donald N. B.; Finger, Gert; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Joerg

    2008-07-01

    Teledyne Imaging Sensors (TIS) has developed a new CMOS device known as the SIDECAR application-specific integrated circuit (ASIC). This single chip provides all the functionality of FPA drive electronics to operate visible and infrared imaging detectors with a fully digital interface. At the last SPIE conference we presented test and performance results of a Teledyne 2K×2K silicon PIN diode array hybridized to a Hawaii-2RG multiplexer, the Hybrid Visible Silicon Imager (HyViSI). This detector was read out with the ESO standard IR detector controller IRACE, which delivers detector limited performance. We have now tested the H2RG HyViSI detector with the new TIS SIDECAR ASIC in 32 channel readout mode at cryogenic temperatures. The SIDECAR has been evaluated down to 105 Kelvin operating temperature and performance results have been compared to those obtained with external electronics. We find that the SIDECAR ASIC provides performance equal to optimized external electronics.

  13. WISE focal plane module lessons learned in light of success

    NASA Astrophysics Data System (ADS)

    Masterjohn, S.; Hogue, H.; Muzilla, M.; Rector, S.; Mattson, R.

    2010-08-01

    DRS Sensors & Targeting Systems, under contract to the Space Dynamics Laboratory of Utah State University, provided the focal plane detector system for NASA's Wide-field Infrared Survey Explorer (WISE). The focal plane detector system consists of two mercury cadmium telluride (MCT) focal plane module assemblies (FPMAs), two arsenic doped silicon (Si:As) Blocked Impurity Band (BIB) FPMAs, electronics to drive the FPMAs and report digital data from them, and the cryogenic and ambient temperature cabling that connect the FPMAs and electronics. The WISE Satellite was launched in late 2009 and has been a very rewarding success. In light of the recent success on orbit, there were many challenges and hurdles the DRS team had to overcome in order to guarantee the ultimate success of the instrument. This report highlights a few of the challenges that the team overcame in hopes that the information can be made available to the astronomy community for future use.

  14. LiteBIRD: Mission Overview and Focal Plane Layout

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Akiba, Y.; Arnold, K.; Borrill, J.; Chendra, R.; Chinone, Y.; Cukierman, A.; de Haan, T.; Dobbs, M.; Dominjon, A.; Elleflot, T.; Errard, J.; Fujino, T.; Fuke, H.; Goeckner-wald, N.; Halverson, N.; Harvey, P.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Hill, C.; Hilton, G.; Holzapfel, W.; Hori, Y.; Hubmayr, J.; Ichiki, K.; Inatani, J.; Inoue, M.; Inoue, Y.; Irie, F.; Irwin, K.; Ishino, H.; Ishitsuka, H.; Jeong, O.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Keating, B.; Kibayashi, A.; Kibe, Y.; Kida, Y.; Kimura, K.; Kimura, N.; Kohri, K.; Komatsu, E.; Kuo, C. L.; Kuromiya, S.; Kusaka, A.; Lee, A.; Linder, E.; Matsuhara, H.; Matsuoka, S.; Matsuura, S.; Mima, S.; Mitsuda, K.; Mizukami, K.; Morii, H.; Morishima, T.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Natsume, K.; Nishibori, T.; Nishijo, K.; Nishino, H.; Nitta, T.; Noda, A.; Noguchi, T.; Ogawa, H.; Oguri, S.; Ohta, I. S.; Otani, C.; Okada, N.; Okamoto, A.; Okamoto, A.; Okamura, T.; Rebeiz, G.; Richards, P.; Sakai, S.; Sato, N.; Sato, Y.; Segawa, Y.; Sekiguchi, S.; Sekimoto, Y.; Sekine, M.; Seljak, U.; Sherwin, B.; Shinozaki, K.; Shu, S.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, T.; Suzuki, A.; Tajima, O.; Takada, S.; Takakura, S.; Takano, K.; Takei, Y.; Tomaru, T.; Tomita, N.; Turin, P.; Utsunomiya, S.; Uzawa, Y.; Wada, T.; Watanabe, H.; Westbrook, B.; Whitehorn, N.; Yamada, Y.; Yamasaki, N.; Yamashita, T.; Yoshida, M.; Yoshida, T.; Yotsumoto, Y.

    2016-08-01

    LiteBIRD is a proposed CMB polarization satellite project to probe the inflationary B-mode signal. The satellite is designed to measure the tensor-to-scalar ratio with a 68 % confidence level uncertainty of σ _r<10^{-3}, including statistical, instrumental systematic, and foreground uncertainties. LiteBIRD will observe the full sky from the second Lagrange point for 3 years. We have a focal plane layout for observing frequency coverage that spans 40-402 GHz to characterize the galactic foregrounds. We have two detector candidates, transition-edge sensor bolometers and microwave kinetic inductance detectors. In both cases, a telecentric focal plane consists of approximately 2× 10^3 superconducting detectors. We will present the mission overview of LiteBIRD, the project status, and the TES focal plane layout.

  15. LiteBIRD: Mission Overview and Focal Plane Layout

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Akiba, Y.; Arnold, K.; Borrill, J.; Chendra, R.; Chinone, Y.; Cukierman, A.; de Haan, T.; Dobbs, M.; Dominjon, A.; Elleflot, T.; Errard, J.; Fujino, T.; Fuke, H.; Goeckner-wald, N.; Halverson, N.; Harvey, P.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Hill, C.; Hilton, G.; Holzapfel, W.; Hori, Y.; Hubmayr, J.; Ichiki, K.; Inatani, J.; Inoue, M.; Inoue, Y.; Irie, F.; Irwin, K.; Ishino, H.; Ishitsuka, H.; Jeong, O.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Keating, B.; Kibayashi, A.; Kibe, Y.; Kida, Y.; Kimura, K.; Kimura, N.; Kohri, K.; Komatsu, E.; Kuo, C. L.; Kuromiya, S.; Kusaka, A.; Lee, A.; Linder, E.; Matsuhara, H.; Matsuoka, S.; Matsuura, S.; Mima, S.; Mitsuda, K.; Mizukami, K.; Morii, H.; Morishima, T.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Natsume, K.; Nishibori, T.; Nishijo, K.; Nishino, H.; Nitta, T.; Noda, A.; Noguchi, T.; Ogawa, H.; Oguri, S.; Ohta, I. S.; Otani, C.; Okada, N.; Okamoto, A.; Okamoto, A.; Okamura, T.; Rebeiz, G.; Richards, P.; Sakai, S.; Sato, N.; Sato, Y.; Segawa, Y.; Sekiguchi, S.; Sekimoto, Y.; Sekine, M.; Seljak, U.; Sherwin, B.; Shinozaki, K.; Shu, S.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, T.; Suzuki, A.; Tajima, O.; Takada, S.; Takakura, S.; Takano, K.; Takei, Y.; Tomaru, T.; Tomita, N.; Turin, P.; Utsunomiya, S.; Uzawa, Y.; Wada, T.; Watanabe, H.; Westbrook, B.; Whitehorn, N.; Yamada, Y.; Yamasaki, N.; Yamashita, T.; Yoshida, M.; Yoshida, T.; Yotsumoto, Y.

    2016-04-01

    LiteBIRD is a proposed CMB polarization satellite project to probe the inflationary B-mode signal. The satellite is designed to measure the tensor-to-scalar ratio with a 68 % confidence level uncertainty of σ _r<10^{-3} , including statistical, instrumental systematic, and foreground uncertainties. LiteBIRD will observe the full sky from the second Lagrange point for 3 years. We have a focal plane layout for observing frequency coverage that spans 40-402 GHz to characterize the galactic foregrounds. We have two detector candidates, transition-edge sensor bolometers and microwave kinetic inductance detectors. In both cases, a telecentric focal plane consists of approximately 2× 10^3 superconducting detectors. We will present the mission overview of LiteBIRD, the project status, and the TES focal plane layout.

  16. Detectors and Focal Plane Modules for Weather Satellites

    NASA Technical Reports Server (NTRS)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Ely, P.; Khalap, V.; Babu, S.; Smith, D. S.

    2016-01-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 micron band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lamba(sub c) approximately 5 micron at 98K), MWIR (lambda(sub c) approximately 9 micron at 98K) and LWIRs (lamba(sub c) approximately 15.5 micron at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 micron to 8.6 micron and (iii) a 9.6 micron to 13.3 micron, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 micron to 0.86 micron channels. The thirteen channels above 1 micron are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 micron to 9.61 micron channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE

  17. Detectors and focal plane modules for weather satellites

    NASA Astrophysics Data System (ADS)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Ely, P.; Khalap, V.; Babu, S.; Smith, D. S.

    2016-05-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 μm band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (λc ~ 5 μm at 98K), MWIR (λc ~ 9 μm at 98K) and LWIRs (λc ~ 15.5 μm at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 μm to 8.6 μm and (iii) a 9.6 μm to 13.3 μm, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 μm to 0.86 μm channels. The thirteen channels above 1 μm are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 μm to 9.61 μm channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 μm to 13.3 μm channels fabricated in Double

  18. 8-9 and 14-15 Micron Two-Color 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Singh, A.; Liu, J. K.; Rafol, S. B.; Luong, E. M.; Mumolo, J. M.; Tran, N. Q.; Vincent, J. D.; Shott, C. A.

    2000-01-01

    An optimized long-wavelength two-color Quantum Well Infrared Photodetector (QWIP) device structure has been designed. This device structure was grown on a three inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE). This wafer was processed into several 640x486 format monolithically integrated 8-9 and 14-15 micron two color (or dual wavelength) QWIP focal plane arrays (FPAs). These FPAs were then hybridized to 640x486 silicon CMOS readout multiplexers. A thinned (i.e., substrate removed) FPA hybrid was integrated into a liquid helium cooled dewar to perform electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micron detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature, at 300 K background with f/2 cold stop. The 14-15 micron detectors of the FPA have reached BLIP at 40 K operating temperature at the same background conditions. In this presentation we discuss the performance of this long-wavelength dualband QWIP FPA in quantum efficiency, detectivity, noise equivalent temperature difference (NEAT), uniformity, and operability.

  19. Orion: A 1-5 Micron Focal Plane for the 21st Century

    NASA Astrophysics Data System (ADS)

    Fowler, A. M.; Merrill, K. M.; Ball, W.; Henden, A.; Vrba, F.; McCreight, C.

    The Orion program is a project to develop a 2Kx2K infrared focal plane using InSb p-on-n diodes for detectors. It is the natural follow-up to the successful Aladdin 1Kx1K program started in the early 90's. The work is being done at the Raytheon Infrared Operations Division (RIO, previously known as the Santa Barbara Research Center) by many of the same people who created the Aladdin focal plane. The design is very similar to the successful Aladdin design with the addition of reference pixels, whole array readout (no quadrants), two-adjacent-side buttability, and a packaging design that includes going directly to the ultimate focal plane size of 4Kx4K. So far we have successfully made a limited number of hybrid modules with InSb detectors. In this paper we will describe the design features and test data taken from some of these devices.

  20. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    NASA Astrophysics Data System (ADS)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2016-08-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  1. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  2. MTF comparisons between mesa and planar focal plane detector structures

    NASA Astrophysics Data System (ADS)

    Perley, Mitchell; Wehner, Justin; Buell, Dave; Micali, Jason; McCorkle, Joe; Rehfield, Mark; Williams, Dave; Dixon, Andrew; Malone, Neil

    2013-09-01

    Raytheon Vision Systems (RVS) has developed scanning, high-speed (<3klps), all digital, with on-chip Analog-to-Digital Conversion (ADC), mid-wave infrared (MWIR 3-5mm) focal plane arrays (FPA) with excellent modulation transfer function (MTF) performance. Using secondary ion mass spectrometry (SIMS) data and detailed models of the mesa geometry, RVS modeled the predicted detector MTF performance of detectors. These detectors have a mesa structure and geometry for improved MTF performance compared to planar HgCdTe and InSb detector structures and other similar detector structures such as nBn. The modeled data is compared to measured MTF data obtained from edge spread measurements and shows good agreement, Figure 1. The measured data was obtained using a custom advanced test set with 1µm precision alignment and automatic data acquisition for report generation in less than five minutes per FPA. The measured MTF values of 83 unique parts, Figure 2, had a standard deviation of 0.0094 and a mean absolute deviation of 0.0066 at half Nyquist frequency, showing excellent process repeatability and a design that supports high MTF with good repeatability.

  3. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    NASA Astrophysics Data System (ADS)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.

    2015-12-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  4. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  5. Design study of the accessible focal plane telescope for shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design and cost analysis of an accessible focal plane telescope for Spacelab is presented in blueprints, tables, and graphs. Topics covered include the telescope tube, the telescope mounting, the airlock plus Spacelab module aft plate, the instrument adapter, and the instrument package. The system allows access to the image plane with instrumentation that can be operated by a scientist in a shirt sleeve environment inside a Spacelab module.

  6. A new method of focal plane mosaic for space remote sensing camera

    NASA Astrophysics Data System (ADS)

    Sun, Guangwei; Li, Lin

    2011-08-01

    With the development of space remote sensors, the urgent needs of large area array optical detectors increase strongly. To address the conflict between the resolution and the detector size, the most straightforward approach is to use a larger CCD chip, but a single small area array CCD chip cannot meet the needs of the focal plane, therefore, the method of CCD mosaic must be used. This paper presents a new method of splicing, it's a twice-imaging scheme. The first image is formed on an imaging plate of intercepting optical component, and then four separate CCD cameras are used to produce the segmented images on the final image plane. So a CCD focal plane mosaic can be achieved.

  7. Tie-In Orbits for the Focal Plane Stability Test

    NASA Astrophysics Data System (ADS)

    Abramowicz-Reed, Linda

    1991-07-01

    This proposal is part of the TTSC request entitled, "Distortion Calibration in FGS 1 and FGS 2, FGS-to-FGS Alignment Calibration". This portion is listed separately due to the time critical nature of one of the orbits. OFAD in FGS 3 which will be performed in December 1992 together with the Mini OFAD's in FGS's 1 and 2 which will be performed in January 1993 will provide a new set of FGS calibration parameters. One of the objectives of the STScI Focal Plane Stability test is to monitor changes to these parameters by repeatedly observing targets in the cluster M35. Since the cluster is near the ecliptic, only two vehicle orientations are needed, the "fall" and the "spring" pointings (see attached pickles plots). Since the Mini OFAD targets are not necessarily the same targets used in the Focal Plane Stability Test, tie in orbits using the Focal Plane Stability targets are needed shortly before and after the Mini OFAD activities. In addition, the Focal Plane Stability Test may not be

  8. Precision Laser Annealing of Focal Plane Arrays

    SciTech Connect

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea; Verley, Jason C.; Jenkins, Mark W.

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  9. An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Hubmayr, J.; Appel, J. W.; Austermann, J. E.; Beall, J. A.; Becker, D.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Crites, A. T.; Essinger-Hileman, T.; Fox, A.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Irwin, K. D.; Li, D.; Niemack, M. D.; Nibarger, J. P.; VanLanen, J.; Newburgh, L. B.; Parker, L. P.

    2011-01-01

    Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response less than -23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments.

  10. Focal properties of a plane grating in a convergent beam.

    PubMed

    Hall, J T

    1966-06-01

    Focusing from a plane grating can be accomplished by using convergent radiation incident on the grating in such a manner that any incident angle alpha(n), the resulting diffraction angle beta(n), will be on the same side of the grating normal. The theory for the focal properties is developed by applying Fermat's principle of least time to selected terms resulting from a finite series expansion of the system's distance function. Derivations are given for finding the focal curve equation, astigmatism, and coma, of the most usable configuration of the optical components. Discussions of the aberrations disclose methods for eliminating the astigmatism and reducing the coma. PMID:20049009

  11. Automatic location of microscopic focal planes for computerized stereology

    NASA Astrophysics Data System (ADS)

    Elozory, Daniel T.; Bonam, Om Pavithra; Kramer, Kurt; Goldgof, Dmitry B.; Hall, Lawrence O.; Mangual, Osvaldo; Mouton, Peter R.

    2011-03-01

    When applying design-based stereology to biological tissue, there are two primary applications for an auto-focusing function in the software of computerized stereology system. The system must first locate the in-focus optical planes at the upper and lower surfaces of stained tissue sections, thus identifying the top and bottom as well as the thickness of the tissue. Second, the system must find the start and end along the Z-axis of stained objects within a Z-stack of images through tissue sections. In contrast to traditional autofocus algorithms that seek a global maximum or peak on the focus curve, the goal of this study was to find the two "knees" of the focus curve that represent the "just out-of-focus" focal planes. The upper surface of the tissue section is defined as the image just before focus is detected moving down the Z-stack. Continuing down, the lower surface is defined as the first image of the last set of adjacent images where focus is no longer detected. The performance of seven focus algorithms in locating the top and bottom focal planes of tissue sections was analyzed by comparing each algorithm on 34 Z-stacks including a total of 828 images. The Thresholded Absolute Gradient algorithm outperformed all others, correctly identifying the top or bottom focal plane within an average of 1 μm on the training data as well as the test data.

  12. Focal Plane Phase Masks for PIAA: Design and Manufacturing

    NASA Astrophysics Data System (ADS)

    Newman, K.; Conway, J.; Belikov, R.; Guyon, O.

    2016-05-01

    The Phase Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) is a coronagraph architecture for the direct detection of extrasolar planets, which can achieve close to the theoretical performance limit of any direct detection system. The primary components of a PIAACMC system are the Phase Induced Amplitude Apodization (PIAA) optics and the complex phase-shifting focal plane mask. PIAA optics have been produced and demonstrated with high coronagraph performance. In this paper, we describe the design process for the phase-shifting focal plane mask, and strategies for smoothing the mask profile. We describe the mask manufacturing process and show manufacturing results. Errors in the fabricated mask profile degrade the system performance, but we can recover performance by refining the manufacturing process and implementing wavefront control.

  13. Back focal plane imaging spectroscopy of photonic crystals

    NASA Astrophysics Data System (ADS)

    Wagner, Rebecca; Heerklotz, Lars; Kortenbruck, Nikolai; Cichos, Frank

    2012-08-01

    Back focal plane imaging spectroscopy is introduced to record angle resolved emission spectra of 3-dimensional colloidal photonic crystals. The auto-fluorescence of the colloids is used to quickly map the photonic band structure up to 72 % of the solid angle of a semisphere with the help of a high numerical aperture objective. Local excitation provides spatially resolved information on the photonic crystal's optical properties. The obtained fractional density of states allows direct conclusions on the crystal's stacking faults or defects.

  14. Relative performance of filled and feedhorn-coupled focal-plane architectures.

    PubMed

    Griffin, Matthew J; Bock, James J; Gear, Walter K

    2002-11-01

    Modern far-infrared and submillimeter instruments require large-format arrays. We consider the relative performance of filled-array (bare pixel) and feedhorn-coupled architectures for bolometer focal planes. Based on typical array parameters, we quantify the relative observing speeds and comment on the merits of the different architectures. Filled arrays can provide higher mapping speed (by a factor of as much as 3.5) and simpler observing modes at the expense of reduced sensitivity for pointed observations, increased detector numbers, and greater vulnerability to stray light and electromagnetic interference. Taking advantage of the filled-array architecture requires strongly background-limited detectors. At millimeter wavelengths, filled arrays must be surrounded by a sufficiently cold enclosure to minimize the background power from the instrument itself. PMID:12412645

  15. Energy Reconstruction with the Sweeper Magnet Focal Plane Detector

    NASA Astrophysics Data System (ADS)

    Hitt, George; Thoennessen, Michael; Frank, Nathan; Cooper, Matt; Vander Molen, A. M.; Nett, Brian

    2002-10-01

    The Sweeper Magnet Focal Plane Detector project is a collaboration of the National High Magnetic Field Laboratory (NHMFL) at Florida State University and the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The NHMFL will construct the Sweeper Magnet, a large C-type magnet necessary for the bending of rigid nuclear beams. The NSCL will build the Focal Plane Detectors consisting of two Cathode Readout Drift Detectors (CRDCs) for taking precise position measurements and an Ion Chamber with plastic scintillators for taking ΔE and E_tot measurements. During beam experiments, the Sweeper Magnet will bend the charged fragments for detection in the Focal Plane Detector. As fragments pass through, each CRDC will measure a position where fragments impinge. This will allow experimenters to calculate a fragment's trajectory and determine where it will strike the large stopping scintillator for the E_tot measurements. In order to obtain accurate energies of the fragments, the position sensitivity of the large scintillator must be mapped. By finding a functional relationship between the position of the impinging particles and the attenuation of the light emitted by the scintillator, one can use the known position information from the CRDCs to reconstruct the energy of fragments. The position sensitivity of the large plastic scintillator as measured with a collimated, pulsed blue diode will be presented.

  16. The QWIP focal plane assembly for NASA's Landsat Data Continuity Mission

    NASA Astrophysics Data System (ADS)

    Jhabvala, M.; Reuter, D.; Choi, K.; Sundaram, M.; Jhabvala, C.; La, A.; Waczynski, A.; Bundas, J.

    2010-04-01

    The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM) [1]. The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8μm and 12.0μm. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed.

  17. The QWIP Focal Plane Assembly for NASA's Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Jhabvala, M; Choi, K.; Reuter, D.; Sundaram, M.; Jhabvala, C; La, Anh; Waczynski, Augustyn; Bundas, Jason

    2010-01-01

    The Thermal Infrared Sensor (TIRS) is a QWIP based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a dual channel far infrared imager with the two bands centered at 10.8[mu]m and 12.0[mu]m. The focal plane assembly (FPA) consists of three 640x512 GaAs Quantum Well Infrared Photodetector (QWIP) arrays precisely mounted to a silicon carrier substrate that is mounted on an invar baseplate. The two spectral bands are defined by bandpass filters mounted in close proximity to the detector surfaces. The focal plane operating temperature is 43K. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). Two varieties of QWIP detector arrays are being developed for this project, a corrugated surface structure QWIP and a grating surface structure QWIP. This paper will describe the TIRS system noise equivalent temperature difference sensitivity as it affects the QWIP focal plane performance requirements: spectral response, dark current, conversion efficiency, read noise, temperature stability, pixel uniformity, optical crosstalk and pixel yield. Additional mechanical constraints as well as qualification through Technology Readiness Level 6 (TRL 6) will also be discussed.

  18. HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS

    SciTech Connect

    Guyon, Olivier; Martinache, Frantz; Belikov, Ruslan; Soummer, Remi

    2010-10-15

    We describe a coronagraph approach where the performance of a Phase-Induced Amplitude Apodization (PIAA) coronagraph is improved by using a partially transmissive phase-shifting focal plane mask and a Lyot stop. This approach combines the low inner working angle offered by phase mask coronagraphy, the full throughput and uncompromized angular resolution of the PIAA approach, and the design flexibility of Apodized Pupil Lyot Coronagraph. A PIAA complex mask coronagraph (PIAACMC) is fully described by the focal plane mask size, or, equivalently, its complex transmission which ranges from 0 (opaque) to -1 (phase shifting). For all values of the transmission, the PIAACMC theoretically offers full on-axis extinction and 100% throughput at large angular separations. With a pure phase focal plane mask (complex transmission = -1), the PIAACMC offers 50% throughput at 0.64 {lambda}/D while providing total extinction of an on-axis point source. This performance is very close to the 'fundamental performance limit' of coronagraphy derived from first principles. For very high contrast level, imaging performance with PIAACMC is in practice limited by the angular size of the on-axis target (usually a star). We show that this fundamental limitation must be taken into account when choosing the optimal value of the focal plane mask size in the PIAACMC design. We show that the PIAACMC enables visible imaging of Jupiter-like planets at {approx}1.2 {lambda}/D from the host star, and can therefore offer almost three times more targets than a PIAA coronagraph optimized for this type of observation. We find that for visible imaging of Earth-like planets, the PIAACMC gain over a PIAA is probably much smaller, as coronagraphic performance is then strongly constrained by stellar angular size. For observations at 'low' contrast (below {approx} 10{sup 8}), the PIAACMC offers significant performance enhancement over PIAA. This is especially relevant for ground-based high contrast imaging

  19. NbN A/D Conversion of IR Focal Plane Sensor Signal at 10 K

    NASA Technical Reports Server (NTRS)

    Eaton, L.; Durand, D.; Sandell, R.; Spargo, J.; Krabach, T.

    1994-01-01

    We are implementing a 12 bit SFQ counting ADC with parallel-to-serial readout using our established 10 K NbN capability. This circuit provides a key element of the analog signal processor (ASP) used in large infrared focal plane arrays. The circuit processes the signal data stream from a Si:As BIB detector array. A 10 mega samples per second (MSPS) pixel data stream flows from the chip at a 120 megabit bit rate in a format that is compatible with other superconductive time dependent processor (TDP) circuits being developed. We will discuss our planned ASP demonstration, the circuit design, and test results.

  20. Detectors and Focal Plane Modules for Weather Instruments

    NASA Technical Reports Server (NTRS)

    D'Souza, A.I.; Robinson, E.; Masterjohn, S.; Khalap, V.; Bhargava, S.; Rangel, E.; Babu, S.; Smith, D. S.

    2016-01-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lambda(sub c) (is) approximately 5 micrometers at 98 K), MWIR (lambda(sub c) (is) approximately 9 micrometers at 98 K) and LWIRs (lambda(sub c) (is) approximately 15.4 ?m at 81 K) bands in three Focal Plane Array Assemblies (FPAAs). CrIS detectors are 850 micrometers diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the detectors fabricated in a modified Double Layer Planar Heterostructure (DLPH) architecture. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak 14.01 micrometers wavelength are greater than 5.0E+10 Jones for LWIR, greater than 7.5E+10 Jones at 8.26 micrometers for MWIR and greater than 3.0E+11 Jones at peak 4.64 micrometers wavelength for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 10(exp 10) cm-Hz1/2/W at 14.0 micrometers, 9.6 x 10(exp 10) cm-Hz1/2/W at 8.0 micrometers and 3.4 x 10(exp 11) cm-Hz1/2/W at 4.64 micrometers.

  1. Detectors and focal plane modules for weather instruments

    NASA Astrophysics Data System (ADS)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Khalap, V.; Bhargava, S.; Rangel, E.; Babu, S.; Smith, D. S.

    2016-05-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (λc ~ 5 μm at 98 K), MWIR (λc ~ 9 μm at 98 K) and LWIRs (λc ~ 15.4 μm at 81 K) bands in three Focal Plane Array Assemblies (FPAAs). CrIS detectors are 850 μm diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the detectors fabricated in a modified Double Layer Planar Heterostructure (DLPH) architecture. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak 14.01 μm wavelength are >= 5.0E+10 Jones for LWIR, >= 7.5E+10 Jones at 8.26 μm for MWIR and >= 3.0E+11 Jones at peak 4.64 μm wavelength for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 μm, 9.6 x 1010 cm-Hz1/2/W at 8.0 μm and 3.4 x 1011 cm-Hz1/2/W at 4.64 μm.

  2. Focal plane detectors possible detector technologies for OWL/AIRWATCH

    SciTech Connect

    Flyckt, Esso

    1998-06-15

    New satellite-born projects OWL and AIRWATCH will need single-photon focal-plane detectors of a million pixels in a design which is optimized to the focusing optics and electronics at acceptable cost. We discuss different phototube possibilities and their pros and cons with crude cost estimates. We conclude that a multichannel-photomultiplier solution is safe. A better compromise may be to adapt a 6 or 9 inch X-ray image intensifier tube or develop a 12 inch image intensifier for detecting individual photons, and adapt the optics to have many mirror modules. The possibility of developing super-large-area phototubes is also discussed.

  3. Focal-plane CMOS wavelet feature extraction for real-time pattern recognition

    NASA Astrophysics Data System (ADS)

    Olyaei, Ashkan; Genov, Roman

    2005-09-01

    Kernel-based pattern recognition paradigms such as support vector machines (SVM) require computationally intensive feature extraction methods for high-performance real-time object detection in video. The CMOS sensory parallel processor architecture presented here computes delta-sigma (ΔΣ)-modulated Haar wavelet transform on the focal plane in real time. The active pixel array is integrated with a bank of column-parallel first-order incremental oversampling analog-to-digital converters (ADCs). Each ADC performs distributed spatial focal-plane sampling and concurrent weighted average quantization. The architecture is benchmarked in SVM face detection on the MIT CBCL data set. At 90% detection rate, first-level Haar wavelet feature extraction yields a 7.9% reduction in the number of false positives when compared to classification with no feature extraction. The architecture yields 1.4 GMACS simulated computational throughput at SVGA imager resolution at 8-bit output depth.

  4. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope

    NASA Astrophysics Data System (ADS)

    Amir, W.; Carriles, R.; Hoover, E. E.; Planchon, T. A.; Durfee, C. G.; Squier, J. A.

    2007-06-01

    Despite all the advances in nonlinear microscopy, all existing instruments are constrained to obtain images of one focal plane at a time. In this Letter we demonstrate a two-photon absorption fluorescence scanning microscope capable of imaging two focal planes simultaneously. This is accomplished by temporally demultiplexing the signal coming from two focal volumes at different sample depths. The scheme can be extended to three or more focal planes.

  5. Performance characterization of a PIAA complex focal plane mask

    NASA Astrophysics Data System (ADS)

    Newman, Kevin; Belikov, Ruslan; Guyon, Olivier; Pluzhnik, Eugene

    2015-01-01

    The Phase Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) is an architecture for directly observing extrasolar planets, and can achieve performance near the theoretical limits for any direct-detection instrument. PIAACMC can be designed for centrally-obscured and segmented apertures, which is particularly useful for next-generation telescopes. The PIAACMC architecture includes aspheric PIAA optics, and a complex phase-shifting focal plane mask that provides a pi phase shift to a portion of the on-axis starlight. The phase-shifted starlight is forced to interfere destructively with the un-shifted starlight, causing the starlight to be eliminated, and allowing a region for high-contrast imaging near the star.The main challenge in designing the complex focal plane mask is to achieve deep contrast over a wide spectral band. Another challenge for the mask design is to avoid sharp features, which can be difficult to manufacture. We present a solution to the design challenge by dividing the mask into sections and optimizing the phase shift produced by each section. We also demonstrate a method to design the mask with a smooth profile. One remaining challenge is to measure the performance of the mask. We present a method to compute the phase profile of the mask based on measurements of the diffraction pattern. The computed phase profile is used to simulate the expected coronagraph performance.

  6. Orion: A 1 5 Micron Focal Plane for the 21st Century

    NASA Astrophysics Data System (ADS)

    Fowler, Albert M.; Merrill, K. Michael; Ball, William; Henden, Arne; Vrba, Fred; McCreight, Craig

    2002-08-01

    The Orion program is a project to develop a 2K × 2K infrared focal plane using InSb p-on-n diodes for detectors. It is the natural follow-up to the successful Aladdin 1K × 1Kprogram started in the early 90’s. The work is being done at the Raytheon Infrared Operations Division (RIO, previously known as the Santa Barbara Research Center) by many of the same people who created the Aladdin focal plane. The design is very similarto the successful Aladdin design with the addition of reference pixels, whole array readout (no quadrants), two-adjacent-side buttability, and a packaging design that includes going directly to the ultimate focal plane size of 4K × 4K. So far we have successfully made a limited number of hybrid modules with InSb detectors. In this paper we will describe the design features and test data taken from some of these devices.

  7. Determination of the focal length of microlens array by spherical wavefronts

    NASA Astrophysics Data System (ADS)

    Kumar, Marimuthu Senthil; Sharma, Rahul; Narayanamurthy, Chittur Subramanian; Kumar, Alur Seelin Kiran

    2014-06-01

    We propose an experimental method consisting of a standard Fizeau interferometer with transmission sphere (TS) for the determination of the focal length of microlens array (MLA) by spherical wavefronts. The TS is axially translated to produce a spherical wavefront of different curvatures with respect to the MLA. The align mode provision of the interferometer helps to monitor the tilt of the MLA with respect to the spherical wavefront. The focal length is determined from the measured distance of adjacent image spots for various spherical wavefronts at the focal plane of the MLA. Error analysis and experimental demonstration with an off-the-shelf MLA are addressed here.

  8. Thermal and mechanical architecture for the SAFARI focal plane assembly

    NASA Astrophysics Data System (ADS)

    Martignac, J.

    2010-07-01

    The very challenging SPICA/SAFARI scientific goals imply to cool most detector solutions below 100 mK. This implies to find reliable solutions providing not only very efficient thermal insulation between the different temperature stages, but also keeping the stray light level well below the foreseen astronomical background (20 aW/pixel !). The main constraint is the available power budget (1-2μW) this value includes optical, electrical and parasitic power loads. This poster describes how the Herschel/PACS Bolometer Focal Plane thermo-mechanical design can be adapted to the new thermal and optical needs, while keeping a sufficiently stiff structure to withstand launch vibrations. We give the first results on the thermal and mechanical behaviour obtained with a prototype.

  9. Femtosecond spatial pulse shaping at the focal plane.

    PubMed

    Martínez-Matos, Ó; Vaveliuk, P; Izquierdo, J G; Loriot, V

    2013-10-21

    Spatial shaping of ultrashort laser beams at the focal plane is theoretically analyzed. The description of the pulse is performed by its expansion in terms of Laguerre-Gaussian orthonormal modes. This procedure gives both a comprehensive interpretation of the propagation dynamics and the required signal to encode onto a spatial light modulator for spatial shaping, without using iterative algorithms. As an example, pulses with top-hat and annular spatial profiles are designed and their dynamics analyzed. The interference of top-hat pulses is also investigated finding potential applications in high precision pump-probe experiments (without using delay lines) and for the creation of subwavelength ablation patterns. In addition, a novel class of ultrashort pulses possessing non-stationary orbital angular momentum is also proposed. These exotic pulses provide additional degrees of freedom that open up new perspectives in fields such as laser-matter interaction and micro-machining. PMID:24150344

  10. Panoramic monocentric imaging using fiber-coupled focal planes.

    PubMed

    Stamenov, Igor; Arianpour, Ashkan; Olivas, Stephen J; Agurok, Ilya P; Johnson, Adam R; Stack, Ronald A; Morrison, Rick L; Ford, Joseph E

    2014-12-29

    Monocentric lenses provide high-resolution wide field of view imaging onto a hemispherical image surface, which can be coupled to conventional focal planes using fiber-bundle image transfer. We show the design and characterization of a 2-glass concentric F/1.0 lens, and describe integration of 5 Mpixel 1.75µm pitch back-side illuminated color CMOS sensors with 2.5µm pitch fiber bundles, then show the fiber-coupled lens compares favorably in both resolution and light collection to a 10x larger conventional F/4 wide angle photographic lens. We describe assembly of the monocentric lens and 6 adjacent sensors with focus optomechanics into an extremely compact 30Mpixel panoramic imager with a 126° "letterbox" format field of view. PMID:25607140

  11. Infrared focal plane detector modules for space applications at AIM

    NASA Astrophysics Data System (ADS)

    Hübner, Dominique; Hanna, Stefan; Thöt, Richard; Gassmann, Kai-Uwe; Haiml, Markus; Weber, Andreas; Haas, Luis-Dieter; Ziegler, Johann; Nothaft, Hans-Peter; Fick, W.

    2012-09-01

    In the framework of this paper, AIM presents the actual status of some of its currently ongoing focal plane detector module developments for space applications covering the spectral range from the short-wavelength infrared (SWIR) to the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength infrared (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP will be elaborated. Additionally dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC will be addressed.

  12. ACIS Focal Plane Temperature Control and Observational Strategies

    NASA Astrophysics Data System (ADS)

    Adams-Wolk, Nancy; Plucinsky, P. P.; Aldcroft, T. L.; Germain, G.

    2012-01-01

    The Chandra X-Ray Observatory continues to deliver excellent science to the astronomical community as it enters its 13th observation cycle. The thermal conditions of the spacecraft components have changed over time necessitating changes in observing strategies; particularly for the ACIS Instrument. In this poster, we focus on the thermal conditions that affect the ACIS focal plane temperature, and the ACIS observational parameters that need to be carefully considered for the observer. We discuss the electronics affected, the specific conditions that can effect the science return and how Guest Observers can choose observational parameters to mitigate these issues.The Guest Observers must be aware of changes and considerations needed when preparing their observations to continue the high quality of science return from Chandra.

  13. Implementation of a 4x8 NIR and CCD Mosaic Focal Plane Technology

    NASA Astrophysics Data System (ADS)

    Jelinsky, Patrick; Bebek, C. J.; Besuner, R. W.; Haller, G. M.; Harris, S. E.; Hart, P. A.; Heetderks, H. D.; Levi, M. E.; Maldonado, S. E.; Roe, N. A.; Roodman, A. J.; Sapozhnikov, L.

    2011-01-01

    Mission concepts for NASA's Wide Field Infrared Survey Telescope (WFIRST), ESA's EUCLID mission, as well as for ground based observations, have requirements for large mosaic focal planes to image visible and near infrared (NIR) wavelengths. We have developed detectors, readout electronics and focal plane design techniques that can be used to create very large scalable focal plane mosaic cameras. In our technology, CCDs and HgCdTe detectors can be intermingled on a single, silicon carbide (SiC) cold plate. This enables optimized, wideband observing strategies. The CCDs, developed at Lawrence Berkeley National Laboratory, are fully-depleted, p-channel devices that are backside illuminated capable of operating at temperatures as low as 110K and have been optimized for the weak lensing dark energy technique. The NIR detectors are 1.7µm and 2.0µm wavelength cutoff H2RG® HgCdTe, manufactured by Teledyne Imaging Sensors under contract to LBL. Both the CCDs and NIR detectors are packaged on 4-side abuttable SiC pedestals with a common mounting footprint supporting a 44.16mm mosaic pitch and are coplanar. Both types of detectors have direct-attached, readout electronics that convert the detector signal directly to serial, digital data streams and allow a flexible, low cost data acquisition strategy, despite the large data volume. A mosaic of these detectors can be operated at a common temperature that achieves the required dark current and read noise performance in both types of detectors necessary for dark energy observations. We report here the design and integration for a focal plane designed to accommodate a 4x8 heterogeneous array of CCDs and HgCdTe detectors. Our current implementation contains over 1/4-billion pixels.

  14. Design of the Focal Plane for the Pleiades HR Instrument

    NASA Astrophysics Data System (ADS)

    Plaisant, Gérard; Le Goff, Roland; Deswarte, David

    This paper presents the design of the focal plane of the future French observation satellite PLEIADES. The purpose of this focal plane is to analyse images in panchromatic (Pa) as far as multi- spectral (Xs) bands in push-broom mode. The size of the observed image is close to 400 mm and it shall be analysed in 30.000 samples in Pa and 7.500 in Xs, resulting in an on- ground resolution lower than 1 meter in Pa. Compared to the previous French SPOT instrument series, the optical architecture is largely simplified : the Xs images are separated in the field of view and detected by four parallel CCD lines integrated in the same package. The spectral selection is made by means of strip filters placed very close in front of the Xs detector. Pa and Xs images are shifted in the field of view. Folding mirrors are used to cope with both constraints : the CCD package size and the required limitation of the distance Pa-Xs. The detection in Pa is made thanks to a Time Delay Integration (TDI) CCD in order to improve the radiometric performances. Five TDI CCD providing each 6000 pixels are optically butted to form a continuous line. The thermo-mechanical concept makes use of the characteristics of the SiC structure. It allows to evacuate the CCDs and their close electronics power towards a radiator while maintaining stable the detection lines geometry. The development is presently in phase B ; the phase C/D will start in 2002.

  15. Three-Dimensional Integration Technology for Advanced Focal Planes and Integrated Circuits

    SciTech Connect

    Keast, Craig

    2007-02-28

    Over the last five years MIT Lincoln Laboratory (MIT-LL) has developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. Advanced focal plane arrays have been the first applications to exploit the benefits of this 3D integration technology because the massively parallel information flow present in 2D imaging arrays maps very nicely into a 3D computational structure as information flows from circuit-tier to circuit-tier in the z-direction. To date, the MIT-LL 3D integration technology has been used to fabricate four different focal planes including: a 2-tier 64 x 64 imager with fully parallel per-pixel A/D conversion; a 3-tier 640 x 480 imager consisting of an imaging tier, an A/D conversion tier, and a digital signal processing tier; a 2-tier 1024 x 1024 pixel, 4-side-abutable imaging modules for tiling large mosaic focal planes, and a 3-tier Geiger-mode avalanche photodiode (APD) 3-D LIDAR array, using a 30 volt APD tier, a 3.3 volt CMOS tier, and a 1.5 volt CMOS tier. Recently, the 3D integration technology has been made available to the circuit design research community through DARPA-sponsored Multiproject fabrication runs. The first Multiproject Run (3DL1) completed fabrication in early 2006 and included over 30 different circuit designs from 21 different research groups. 3D circuit concepts explored in this run included stacked memories, field programmable gate arrays (FPGAs), and mixed-signal circuits. The second Multiproject Run (3DM2) is currently in fabrication and includes particle detector readouts designed by Fermilab. This talk will provide a brief overview of MIT-LL's 3D-integration process, discuss some of the focal plane applications where the technology is being applied, and provide a summary of some of the Multiproject Run circuit results.

  16. Future directions in focal-plane signal processing for space-borne scientific imagers

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1991-01-01

    The potential of focal-plane signal processing for space-borne scientific imagers is discussed. Significant improvement in image quality and consequent scientific return may be enabled through the utilization of focal-plane signal processing techniques. The possible application of focal-plane signal processing to readout noise reduction, cosmic ray circumvention, non-uniformity correction, and throughput enhancement is described. On-focal-plane analog-to-digital (A/D) conversion and micromotion stabilization are also discussed. It is the intention of this paper to stimulate further thought and efforts in this field.

  17. Behavior of asymmetric Bessel beam in focal plane of high numerical aperture objective

    NASA Astrophysics Data System (ADS)

    Stafeev, Sergey S.; Kotlyar, Victor V.; Porfirev, Alexey P.

    2016-04-01

    Tight focusing of a linearly-polarized asymmetric Bessel beam, which has a crescent profile, was investigated numerically and experimentally. FDTD calculations show that a binary zone plate of numerical aperture NA = 0.995 forms a crescent in the focal plane, which is rotated clockwise around the optical axis, moving away from the focal plane. Using the Debye formulae it was shown that a direction of polarization of incident light has a significant influence on intensity distribution in focal plane. The crescent in the focal plane was also observed experimentally by focusing of the asymmetric Bessel beam using an immersive objective (NA = 1.25).

  18. The Whipple Mission: Design and development of the focal plane

    NASA Astrophysics Data System (ADS)

    Kenter, A.; Kraft, R.; Murray, S. S.; Gauron, T.; Alcock, C.; Vrtilek, J.

    2014-12-01

    Whipple is a proposed space borne mission intended to detect and characterize thesize and spatial distribution of Trans Neptunian Objects (TNOs) using the ``blind'' occultation technique. This technique measures the size of, and distance to, a TNO by discerning features of the Fresnel diffraction pattern that is produced when a TNO intercepts the light path between a distant star and the observatory. As the observatory transects the diffraction pattern, it resolves that pattern as a light curve using a differential photometer. The light curve decrement is relatively large (few percent) and the temporal duration is short. For a TNO in the Kuiper Belt the duration is a fraction of a second. For objects in the Oort cloud the duration is ~ a few seconds. Since a blind occultation event is rare, tens of thousands of stars need to be observed simultaneously over several years to accumulate sufficient statistics. Stars need to be observed at cadences up to 40 Hz with a read noise <20e rms (post CDS)Though this is beyond the capability of CCDs, such a high speed, low noise, multi-object differential photometer instrument can be implemented with CMOS imaging technology. The proposed focal plane for the Whipple photometer consists of nine Teledyne HyVISI Silicon hybrid CMOS detectors behind a 77cm F1.34 optic. The detectors consist of 1k by 1k 36 micron pitch pixels and each detector is connected to its own SIDECAR ASIC. Due to the high cadence required, the detectors are operatedin window readout mode. Approximately 700 stars per detector, each in a 2x2 pixel window, will be read out at 40Hz. Progressively more stars can be observed as the cadence decreases, until the limit of the SIDECAR memory is reached at about 4,000 windows The lack of atmospheric turbulence combined with the large field of view and high, speed low noise performance of the focal plane will provide the Whipple mission with unprecedented capability in exploring our Solar System.

  19. Calibration method for division of focal plane polarimeters in the optical and near-infrared regime

    NASA Astrophysics Data System (ADS)

    York, Timothy; Gruev, Viktor

    2011-06-01

    Advances in nanofabrication allow for the creation of metallic nanowires acting as linear polarizers in the visible and near infrared regime. The monolithic integration of silicon detectors and pixelated nanowire metallic polarization filters allows for an efficient realization of high resolution polarization imaging sensors. These silicon sensors, known as division of focal plane polarimeters, capture polarization information of the imaged environment from ~400nm to 1050nm wavelength. The performance of the polarization sensor can be degraded by both irregularities in the fabrication of the nanowires and possible misalignment errors during the final deposition of the optical nanowire filters on the surface of the imaging sensor. In addition, electronic offsets due to the readout circuitry, electronic crosstalk, and optical crosstalk will also negatively affect the quality of the polarization information. Partial compensation for many of these post-fabrication errors can be accomplished through the use of a camera calibration routine. This paper will describe one such routine, and show how its application can increase the quality of measurements in both the degree of linear polarization and angle of polarization in the visible spectrum. The imaging array of the division of focal plane polarimeter is segmented into two by two blocks of superpixels. The calibration method chooses one of the four pixels as a reference, and then a gain and offset for each of the remaining three is computed based on this reference. The output is a calibration matrix for each pixel in the image array.

  20. Stress analysis of the space telescope focal plane structure joint

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Shoemaker, W. L.

    1985-01-01

    Two major efforts were begun concerning the Space Telescope focal plane structure joint. The 3-D solid finite element modeling of the bipod flexure plate was carried out. Conceptual models were developed for the load transfer through the three major bolts to the flexure plate. The flexure plate drawings were reconstructed using DADAM for the purpose of developing a file from which the coordinates of any point on the flexure plate could be determined and also to locate the attachment points of the various components which connect with the flexure plate. For modeling convenience the CADAM drawing of the flexure plate has been divided into several regions which will be subdivided into finite elements using MSGMESH, which is a finite element mesh generator available with MSC/NASTRAN. In addition to the CADAM work on the flexure plate, an effort was also begun to develop computer aided drawings of the peripheral beam which will be used to assist in modeling the connection between it and the flexure plate.

  1. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    SciTech Connect

    Codona, Johanan L.; Kenworthy, Matthew

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.

  2. Plane wave imaging using phased array

    NASA Astrophysics Data System (ADS)

    Volker, Arno

    2014-02-01

    Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data acquisition configurations can be designed in combination with an imaging algorithm. The objective of this paper is to use the minimal amount of data required to construct an image. If a plane wave is synthesized, the region of interest is illuminated completely. For plane wave synthesis, all elements in the phase array are fired. This ensures a good signal to noise ratio. Imaging can be performed efficiently with a mapping algorithm in the wavenumber domain. The algorithm involves only two Fourier transforms and can therefore be extremely fast. The obtained resolution is comparable to conventional imaging algorithms. This work investigates the potential and limitations of this mapping algorithm on simulated data. With this approach, frame rates of more than 1 kHz can be achieved.

  3. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  4. Synthesis of fully continuous phase screens for tailoring the focal plane irradiance profiles

    SciTech Connect

    Dixit, S.; Feit, M.

    1996-04-26

    We present an iterative procedure for constructing fully continuous phase screens for tailoring the focal plane intensity distributions. This algorithm alleviates the stagnations experienced in the application of the Gerchberg-Saxton algorithm with a random initial phase screen and leads to efficient distribution of the incident energy into the desired focal plane profile.

  5. Focal plane readout for 2-D LWIR application implemented with current mode background suppression per pixel

    NASA Astrophysics Data System (ADS)

    Woo, Doo Hyung; Kang, Sang Gu; Lee, Hee Chul

    2004-02-01

    In this paper, a readout technique involving current mode background suppression is studied for 2-dimensional infrared focal plane arrays (IR FPA"s). This technique has a current memory per pixel, and the suppression current can be optimized per pixel element. Capacitive transimpedende amplifier (CTIA) and feedback amplifier structure are adopted for input circuit and background suppression circuit, respectively. Feedback amplifier structure can minimize skimming error due to channel length modulation. The area size of the pixel circuit is generally limited in the case of 2-D application. So, the amplifier used in the CTIA input circuit adopts timesharing for background suppression. To further improve the area limitation, a half circuit of the CTIA is shared in row circuit out of the pixel array. Because of the leakage of the current memory, the skimming data of the current memory in the pixel array is stored in SRAM array through ADC, and is refreshed periodically with SRAM data through DAC. The readout circuit was fabricated using 0.6um 2-poly 3-metal CMOS process for 64 x 64 LWIR HgCdTe IR array with the pixel size of 50um x 50um. The measurement performance of the skimming circuit exhibits about only 3% error for 100nA background current. The simulation results exhibit that skimming error can be reduced further to 0.3% when the ratioed current mirror scheme and/or multi step refresh scheme is adopted.

  6. A 260 megapixel visible/NIR mixed technology focal plane for space

    NASA Astrophysics Data System (ADS)

    Besuner, Robert W.; Bebek, Christopher J.; Haller, Gunther M.; Harris, Stewart E.; Hart, Philip A.; Heetderks, Henry D.; Jelinsky, Patrick N.; Lampton, Michael L.; Levi, Michael E.; Maldonado, Sergio E.; Roe, Natalie A.; Roodman, Aaron J.; Sapozhnikov, Leonid

    2011-10-01

    Mission concepts for NASA's Wide Field Infrared Survey Telescope (WFIRST)1,2, ESA's Euclid3,4 mission, as well as next-generation ground-based surveys require large mosaic focal planes sensitive in both visible and near infrared (NIR) wavelengths. We have developed space-qualified detectors, readout electronics and focal plane design techniques that can be used to intermingle CCDs and NIR detectors on a single, silicon carbide (SiC) cold plate. This enables optimized, wideband observing strategies. The CCDs, developed at Lawrence Berkeley National Laboratory, are fully-depleted, pchannel devices that are backside illuminated and capable of operating at temperatures down to 120K. The NIR detectors are 1.7 μm and 2.0 μm wavelength cutoff H2RG® HgCdTe, manufactured by Teledyne Imaging Sensors under contract to LBNL. Both the CCDs and NIR detectors are packaged on 4-side abuttable SiC pedestals with a common mounting footprint supporting a 44 mm mosaic pitch. Both types of detectors have direct-attached readout electronics that convert the detector signal directly to serial, digital data streams and allow a flexible, low cost data acquisition strategy to enable large data rates. A mosaic of these detectors can be operated at a common temperature that achieves the required dark current and read noise performance necessary for dark energy observations. We report here the qualification testing and performance verification for a focal plane that accommodates a 4x8 array of CCDs and HgCdTe detectors.

  7. Advances in Focal Plane Wavefront Estimation for Directly Imaging Exoplanets

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2015-01-01

    To image cold exoplanets directly in visible light, an instrument on a telescope needs to suppress starlight by about 9 orders of magnitude at small separations from the star. A coronagraph changes the point spread function to create regions of high contrast where exoplanets or disks can be seen. Aberrations on the optics degrade the contrast by several orders of magnitude, so all high-contrast imaging systems incorporate one or more deformable mirrors (DMs) to recover regions of high contrast. With a coronagraphic instrument planned for the WFIRST-AFTA space telescope, there is a pressing need for faster, more robust estimation and control schemes for the DMs. Non-common path aberrations limit conventional phase conjugation schemes to medium star-to-planet contrast ratios of about 1e-6. High-contrast imaging requires estimation and control of both phase and amplitude in the same beam path as the science camera. Field estimation is a challenge since only intensity is measured; the most common approach, including that planned for WFIRST-AFTA, is to use DMs to create diversity, via pairs of small probe shapes, thereby allowing disambiguation of the electric field. Most implementations of DM Diversity require at least five images per electric field estimate and require narrowband measurements. This paper describes our new estimation algorithms that improve the speed (by using fewer images) and bandwidth of focal plane wavefront estimation. For narrowband estimation, we are testing nonlinear, recursive algorithms such as an iterative extended Kalman filter (IEKF) to use three images each iteration and build better, more robust estimates. We are also exploring the use of broadband estimation without the need for narrowband sub-filters and measurements. Here we present simulations of these algorithms with realistic noise and small signals to show how they might perform for WFIRST-AFTA. Once validated in simulations, we will test these algorithms experimentally in

  8. Focal Plane Detector System for the MSU/FSU Sweeper Magnet

    NASA Astrophysics Data System (ADS)

    Frank, Nathan; Thoennessen, Michael; Freigang, Chris; Yurkon, John; Bazin, Daniel; Clement, Ryan; Hitt, Wes

    2002-10-01

    The study of nuclei close to, or even beyond, the neutron dripline involves the reconstruction of the decay products - the charged fragment and neutron(s) - following a break-up reaction. The National High Magnetic Field Laboratory at FSU is building a sweeper magnet, which will bend the charged particles by up to 40 degrees, separating them from the neutrons, which will be detected at zero degrees with the Modular Neutron Array (MoNA). The charged particles will be detected in a system of focal plane detectors. This system consists of two Cathode Readout Drift Chambers (CRDC's), a Frisch gridded Ion Chamber and two plastic scintillation detectors. The basic design and first test results of this detector system will be described.

  9. A high-dynamic range ROIC for SLS and other IR focal planes

    NASA Astrophysics Data System (ADS)

    Petilli, Eugene; Stern, Ken; TeWinkle, Scott

    2014-06-01

    In many high dynamic range applications, Sigma-Delta modulator (SDM) architectures have displaced most other architectures for analog to digital conversion (ADC). SDMs have not typically been applied to ROIC applications due to the interaction of spatial discontinuities and the temporal bandwidth limitation of the SDM. By using a novel serpentine readout sequence, we have reduced the temporal bandwidth and enabled application of SDM technology for high dynamic range Focal Plane Arrays (FPA). In addition, it is reconfigurable on-the-fly for a power vs. Signal to Noise plus Distortion Ratio (SNDR) tradeoff without "binning" or reducing the pixel pitch. This technique has been applied to enable low power foveal imaging. This reconfigurable ADC has been coupled with a low noise extended dynamic range photodiode input stages.

  10. Design Aspects of Focal Beams From High-Intensity Arrays

    PubMed Central

    Stephens, Douglas N.; Kruse, Dustin E.; Qin, Shengping; Ferrara, Katherine W.

    2011-01-01

    As the applications of ultrasonic thermal therapies expand, the design of the high-intensity array must address both the energy delivery of the main beam and the character and relevance of off-target beam energy. We simulate the acoustic field performance of a selected set of circular arrays organized by array format, including flat versus curved arrays, periodic versus random arrays, and center void diameter variations. Performance metrics are based on the −3-dB focal main lobe (FML) positioning range, axial grating lobe (AGL) temperatures, and side lobe levels. Using finite-element analysis, we evaluate the relative heating of the FML and the AGLs. All arrays have a maximum diameter of 100λ, with element count ranging from 64 to 1024 and continuous wave frequency of 1.5 MHz. First, we show that a 50% spherical annulus produces focus beam side lobes which decay as a function of lateral distance at nearly 87% of the exponential rate of a full aperture. Second, for the arrays studied, the efficiency of power delivery over the −3-dB focus positioning range for spherical arrays is at least 2-fold greater than for flat arrays; the 256-element case shows a 5-fold advantage for the spherical array. Third, AGL heating can be significant as the focal target is moved to its distal half-intensity depth from the natural focus. Increasing the element count of a randomized array to 256 elements decreases the AGL-to-FML heating ratio to 0.12 at the distal half-intensity depth. Further increases in element count yield modest improvements. A 49% improvement in the AGL-to-peak heating ratio is predicted by using the Sumanaweera spiral element pattern with randomization. PMID:21859578

  11. Multi-resolution low-power Gaussian filtering by reconfigurable focal-plane binning

    NASA Astrophysics Data System (ADS)

    Fernández-Berni, J.; Carmona-Galán, R.; Pozas-Flores, F.; Zarándy, Á.; Rodríguez-Vázquez, Á.

    2011-05-01

    Gaussian filtering is a basic tool for image processing. Noise reduction, scale-space generation or edge detection are examples of tasks where different Gaussian filters can be successfully utilized. However, their implementation in a conventional digital processor by applying a convolution kernel throughout the image is quite inefficient. Not only the value of every single pixel is taken into consideration sucessively, but also contributions from their neighbors need to be taken into account. Processing of the frame is serialized and memory access is intensive and recurrent. The result is a low operation speed or, alternatively, a high power consumption. This inefficiency is specially remarkable for filters with large variance, as the kernel size increases significantly. In this paper, a different approach to achieve Gaussian filtering is proposed. It is oriented to applications with very low power budgets. The key point is a reconfigurable focal-plane binning. Pixels are grouped according to the targeted resolution by means of a division grid. Then, two consecutive shifts of this grid in opposite directions carry out the spread of information to the neighborhood of each pixel in parallel. The outcome is equivalent to the application of a 3×3 binomial filter kernel, which in turns is a good approximation of a Gaussian filter, on the original image. The variance of the closest Gaussian filter is around 0.5. By repeating the operation, Gaussian filters with larger variances can be achieved. A rough estimation of the necessary energy for each repetition until reaching the desired filter is below 20nJ for a QCIF-size array. Finally, experimental results of a QCIF proofof- concept focal-plane array manufactured in 0.35μm CMOS technology are presented. A maximum RMSE of only 1.2% is obtained by the on-chip Gaussian filtering with respect to the corresponding equivalent ideal filter implemented off-chip.

  12. Multifocal array with controllable polarization in each focal spot.

    PubMed

    Zhu, Linwei; Sun, Meiyu; Zhang, Dawei; Yu, Junjie; Wen, Jing; Chen, Jiannong

    2015-09-21

    We propose a method for producing multifocal spot arrays (MSAs) capable of controlling the position and polarization orientation of each focal spot with radially polarized Bessel-Gaussian beam. Based on a simple analytical equation that can be used to manipulate the position of the focal spot, we design a type of multi-zone plate (MZP) composed of many fan-shaped subareas which accordingly generate lateral position-controllable multifocal spots. By adding a π-phase difference between a division line passing through the center of the back aperture with different orientations to corresponding subareas of the MZP, we realize MSAs in which orientations of the linear polarization in each focal spot can be arbitrarily manipulated. Such position and polarization controllable MSAs may potentially have applications in many fields. PMID:26406670

  13. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  14. Design and fabrication of long focal length microlens arrays

    NASA Astrophysics Data System (ADS)

    Hsieh, Hsin-Ta; Lin, Vinna; Hsieh, Jo-Lan; Su, Guo-Dung John

    2011-10-01

    In this paper, we present microlens arrays (MLA) with long focal length (in millimeter range) based on thermal reflow process. The focal length of microlens is usually in the same order of lens diameter or several hundred microns. To extend focal length, we made a photoresist (SU-8) MLA covered by a Polydimethylsiloxane (PDMS) film on a glass substrate. Because the refractive index difference between PDMS and photoresist interface is lower than that of air and MLA interface, light is less bended when passing through MLA and is focused at longer distance. Microlenses of diameters from 50 μm to 240 μm were successfully fabricated. The longest focal length was 2.1 mm from the microlens of 240 μm diameter. The numerical aperture (NA) was reduced 0.06, which is much lower than the smallest NA (~ 0.15) by regular thermal reflow processes. Cured PDMS has high transmittance and becomes parts of MLA without too much optical power loss. Besides, other focal lengths can be realized by modifying the refractive index different between two adjacent materials as described in this paper.

  15. Continuous contour phase plates for tailoring the focal plane irradiance profile

    SciTech Connect

    Dixit, S.N.; Rushford, M.C.; Thomas, I.M.; Perry, M.D.

    1995-08-09

    We present fully continuous phase screens for producing super-Gaussian focal-plane irradiance profiles. Such phase screens are constructed with the assumption of either circular symmetric near-field and far-field profiles or a separable phase screen in Cartesian co-ordinates. In each case, the phase screen is only a few waves deep. Under illumination by coherent light, such phase screens produce high order super-Gaussian profiles in the focal plane with high energy content effects of beam aberrations on the focal profiles and their energy content are also discussed.

  16. DEPFET based x-ray detectors for the MIXS focal plane on BepiColombo

    NASA Astrophysics Data System (ADS)

    Treis, J.; Hälker, O.; Andricek, L.; Herrmann, S.; Heinzinger, K.; Lauf, T.; Lechner, P.; Lutz, G.; Mas-Hesse, J. M.; Porro, M.; Richter, R. H.; San Juan, J. L.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Soltau, H.; Stevenson, T.; Strüder, L.; Whitford, C.

    2008-07-01

    DEPFET Macropixel detectors, based on the fusion of the combined Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD) like drift ring structure, combine the excellent properties of the DEPFETs with the advantages of the drift detectors. As both device concepts rely on the principle of sideways depletion, a device entrance window with excellent properties is obtained at full depletion of the detector volume. DEPFET based focal plane arrays have been proposed for the Focal Plane Detectors for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on BepiColombo, ESAs fifth cornerstone mission, with destination Mercury. MIXS uses a lightweight Wolter Type 1 mirror system to focus fluorescent radiation from the Mercury surface on the FPA detector, which yields the spatially resolved relative element abundance in Mercurys crust. In combination with the reference information from the Solar Intensity X-ray Spectrometer (SIXS), the element abundance can be measured quantitatively as well. The FPA needs to have an energy resolution better than 200 eV FWHM @ 1 keV and is required to cover an energy range from 0.5 keV to 10 keV, for a pixel size of 300 x 300 μm2. Main challenges for the instrument are the increase in leakage current due to a high level of radiation damage, and the limited cooling resources due to the difficult thermal environment in the mercury orbit. By applying an advanced cooling concept, using all available cooling power for the detector itself, and very high speed readout, the energy resolution requirement can be kept during the entire mission lifetime up to an end-of-life dose of ~ 3 × 1010 10 MeV p / cm2. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory, and first prototype modules have been built. The results of the first tests will be presented here.

  17. Compton polarimeter as a focal plane detector for hard X-ray telescope

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.

    X-ray polarimetry is expected to provide unique opportunity to study the behavior of matter and radiation under extreme magnetic fields and extreme gravitational fields. However sensitivity of the X-ray polarimeters has always been an issue for the last three decades; there is almost no progress in this field whereas there is a significant advance in the fields of X-ray spectroscopy, imaging and timing. Recently significant improvement in the sensitivity is expected in polarimetric measurements using GEM-based photoelectron tracking polarimeters coupled to soft X-ray telescopes. However they are sensitive in the soft X-ray regime. On the other hand mostly for the X-ray sources higher degree of polarisation at hard X-rays is expected because of the dominance of nonthermal X-ray emission mechanisms over the thermal counterpart. So polarisation measurement in hard X-ray can yield significant insights into such processes. Of late with the advent of high energy focussing telescopes (e.g. Nu STAR, ASTRO-H), sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array of scintillator detectors. We have carried out detailed Geant4 simulations to estimate the modulation factor for 100% polarized beam as well as polarimetric efficiency of this configuration. Polarimetric sensitivity of the instrument critically depends on low energy threshold in central plastic scatterer. We estimated the sensitivity for a range of plastic threshold energy. We also discuss the methodology to measure the threshold energy in plastic scatterer. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics and the experimental results for threshold measurements in plastic.

  18. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  19. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  20. Analysis of alignment tolerance of focal plane assembly of a telescope

    NASA Astrophysics Data System (ADS)

    Chang, Shenq-Tsong; Lin, Yu-Chuan; Hsu, Ming-Ying; Huang, Ting-Ming; Chen, Fong-Zhi

    2015-09-01

    Focal plane assembly (FPA) is an important component for modern remote sensing instruments. Array or linear CCD/CMOS detectors are usually applied. Linear detectors are often used in the space project to have a wider swath. In a remote-sensing project, five spectral ranges are desired. The spectral ranges are designated to be one panchromatic (PAN) band from 450 to 700 nm and four multispectral (MS) bands from 455 to 900 nm. Pixel size of the PAN band is 10 μm, and those for MS are 20 μm. Pixel numbers are 12,000 and 6,000 for PAN and MS bands, respectively. The FPA is consisted of a filter with five stripe band-pass thin films, filter mask and a five-line detector. The arrangement of the detector is B1, B2, Pan, B3 and B4 from the top to the bottom. In order to give the alignment tolerance, an analysis of the parameters of each component in FPA has been performed. Ray tracing method has been applied to have an image projection onto the plane where thin films are located. Spread sheet computation was adopted to simulate the situations when the alignment parameters were changed. According to the analysis, some supplement wideness to the stripe thin films has to be added to have a satisfied alignment tolerance.

  1. Real-world stereoscopic performance in multiple-focal-plane displays: How far apart should the image planes be?

    NASA Astrophysics Data System (ADS)

    Watt, Simon J.; MacKenzie, Kevin J.; Ryan, Louise

    2012-03-01

    Conventional stereoscopic displays present conflicting stimuli to vergence and accommodation, causing fatigue, discomfort, and poor stereo depth perception. One promising solution is 'depth filtering', in which continuous variations in focal distance are simulated by distributing image intensity across multiple focal planes. The required image-plane spacing is a critical parameter, because there are constraints on the total number that can be used. Depth-filtered images have been shown to support continuous and reasonably accurate accommodation responses with 1.1 dioptre (D) image-plane spacings. However, retinal contrast is increasingly attenuated with increasing image-plane separation. Thus, while such stimuli may eliminate the vergence-accommodation conflict, they may also unacceptably degrade stereoscopic depth perception. Here we measured stereoacuity, and the time needed for stereoscopic fusion, for real targets and depth-filtered approximations to the same stimuli (image-plane spacings of 0.6, 0.9 and 1.2 D). Stereo fusion time was reasonably consistent across conditions. Stereoacuity for depth-filtered stimuli was only slightly poorer than for real targets with 0.6 D image-plane separation, but deteriorated rapidly thereafter. Our results suggest that stereoscopic depth perception, not accommodation and vergence responses, is the limiting factor in determining acceptable image-plane spacing for depth-filtered images. We suggest that image-plane spacing should ideally not exceed ~0.6 D.

  2. 1024 × 1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Simolon, B.; Woolaway, J.; Wang, S. C.; Li, W.; LeVan, P. D.; Tidrow, M. Z.

    2009-11-01

    This paper reports the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band quantum well infrared photodetector (QWIP) focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 to 5.1 μm and the FWHM of a long-wave infrared (LWIR) band extends from 7.8 to 8.8 μm. Dual-band QWIP detector arrays were hybridized with custom fabricated direct injection read out integrated circuits (ROICs) using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 70 K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NEΔT of 27 and 40 mK for MWIR and LWIR bands, respectively.

  3. Large Format Narrow-Band, Multi-Band, and Broad-Band LWIR QWIP Focal Planes for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2004-01-01

    A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.

  4. The finite element modeling and thermal analysis of the special focal plane of LAMOST

    NASA Astrophysics Data System (ADS)

    Zuo, Heng; Yang, Dehua; Li, Guoping

    2010-07-01

    The Large Area Multi-Object Spectroscopic Telescope (LAMOST) is a meridian reflecting Schmidt telescope with a 40m optical axis between the reflecting Schmidt plate and the spherical primary mirror. In the middle is located the spherical focal plane, through which there are corresponding 4000+ unit mounting holes for the fibers, and on its back, there attached a support truss adapted from Serrurier concept. The mechanical stabilization of the focal plane system naturally has magnificent impact on the observation efficiency of the LAMOST. A comprehensive Finite Element Model of the focal plane system has been built to evaluate thermally induced degradation of its mechanical accuracy using the nodal modification technique within ANSYS, and diverse temperature load cases have been considered on the Finite Element model and related thermal analyses have been carried out to investigate thermal deformation of the focal plane. Subsequently the calculated deflection of the working surface has been extracted and reconstructed with least square fitting in MATLAB. The results show that temperature change around the telescope has little effect on the performance of the focal plane within temperature variation requirements of the LAMOST. The methods of modeling and analyzing used in this research are informative for future large telescope projects.

  5. Infrared Astronomical Satellite /IRAS/ and Shuttle Infrared Telescope Facility /SIRTF/ - Implications of scientific objectives on focal plane sensitivity requirements

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Walker, R. G.; Witteborn, F. C.

    1978-01-01

    The full potential of infrared astronomy can be realized only through observations made with space-based telescopes cooled to cryogenic temperatures. The paper outlines the scientific mission, system description, and focal plane requirements for two cryogenic telescopes: the Infrared Astronomical Satellite (IRAS) and the Shuttle Infrared Telescope Facility (SIRTF). IRAS, a 60-cm superfluid-helium-cooled telescope system, will perform a one-year 8-120-micron IR sky survey; it will provide results of high reliability and sensitivity, produce the first complete survey data for the 30-120-micron region, and fill in missing portions (spectrally and spatially) of previous surveys short of 30 microns; its focal plane assembly is being designed to approach background-limited performance with an array of 62 discrete detectors. The SIRTF design will allow detailed follow-up studies in the 1-1000-micron range with a 116-160-cm observatory-class instrument. The Shuttle sortie capability introduces the unique SIRTF concept of an easily refurbishable or replaceable focal plane instrument complement in an orbiting cryogenic telescope.

  6. Focal plane infrared readout circuit with automatic background suppression

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Sun, Chao (Inventor); Shaw, Timothy J. (Inventor); Wrigley, Chris J. (Inventor)

    2002-01-01

    A circuit for reading out a signal from an infrared detector includes a current-mode background-signal subtracting circuit having a current memory which can be enabled to sample and store a dark level signal from the infrared detector during a calibration phase. The signal stored by the current memory is subtracted from a signal received from the infrared detector during an imaging phase. The circuit also includes a buffered direct injection input circuit and a differential voltage readout section. By performing most of the background signal estimation and subtraction in a current mode, a low gain can be provided by the buffered direct injection input circuit to keep the gain of the background signal relatively small, while a higher gain is provided by the differential voltage readout circuit. An array of such readout circuits can be used in an imager having an array of infrared detectors. The readout circuits can provide a high effective handling capacity.

  7. Lead sulfide - Silicon MOSFET infrared focal plane development

    NASA Technical Reports Server (NTRS)

    Barrett, J. R.; Jhabvala, M. D.

    1983-01-01

    A process for directly integrating photoconductive lead sulfide (PbS) infrared detector material with silicon MOS integrated circuits has been developed primarily for application in long (greater than 10,000 detector elements) linear arrays for pushbroom scanning applications. The processing technology is based on the conventional PMOS and CMOS technologies with a variation in the metallization. Results and measurements on a fully integrated eight-element multiplexer are shown.

  8. Focal Length Controllable Ultrasonic Array Transducer with Adjustable Curvature

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoon; Kim, Moojoon; Ha, Kanglyel

    2012-07-01

    In the underwater imaging field, the control of the focal length of a transducer is very useful. As one of the control methods, we suggested an ultrasonic array transducer with adjustable curvature by using air pressure. The curvature of the transducer was investigated according to the air pressure level in the back space of the transducer. Concave-, planar-, and convex-type transducers were obtained with different air pressure levels. The acoustic fields of the transducer were measured for different shapes of the radiation surface.

  9. The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System

    NASA Astrophysics Data System (ADS)

    Ressler, M. E.; Sukhatme, K. G.; Franklin, B. R.; Mahoney, J. C.; Thelen, M. P.; Bouchet, P.; Colbert, J. W.; Cracraft, Misty; Dicken, D.; Gastaud, R.; Goodson, G. B.; Eccleston, Paul; Moreau, V.; Rieke, G. H.; Schneider, Analyn

    2015-07-01

    We describe the layout and unique features of the focal plane system for MIRI. We begin with the detector array and its readout integrated circuit (combining the amplifier unit cells and the multiplexer), the electronics, and the steps by which the data collection is controlled and the output signals are digitized and delivered to the JWST spacecraft electronics system. We then discuss the operation of this MIRI data system, including detector readout patterns, operation of subarrays, and data formats. Finally, we summarize the performance of the system, including remaining anomalies that need to be corrected in the data pipeline.

  10. Focal length measurement of a microlens-array by grating shearing interferometry.

    PubMed

    Zhu, Xianchang; Hu, Song; Zhao, Lixin

    2014-10-10

    Based on grating shearing interferometry, a simple technique is introduced for focal length measurements of a microlens-array (MLA). The measurement system is composed of a He-Ne laser, condenser, collimator, the MLA under testing, a Ronchi grating, and CCD sensor. The plane wavefront from the collimator is transformed to a spherical wavefront by the MLA, while the curvature center is at the focus. Interference stripes appear at the overlap between the zero-order and first-order diffractive patterns of the grating and are detected by the CCD sensor. By analyzing the period change of stripes, the focal length is determined after the defocus of the grating is calculated. To validate the feasibility, an experiment is performed. The measurement uncertainty is discussed and measurement accuracy was determined to be 2%. PMID:25322367

  11. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    SciTech Connect

    Hao, Jiangang; Estrada, Juan; Cease, Herman; Diehl, H.Thomas; Flaugher, Brenna L.; Kubik, Donna; Kuk, Keivin; Kuropatkine, Nickolai; Lin, Huan; Montes, Jorge; Scarpine, Vic; /Fermilab

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.

  12. PHYSICS WITH A FOCAL PLANE PROTON POLARIMETER FOR HALL A AT CEBAF

    SciTech Connect

    Ron Gilman; F.T. Baker; Louis Bimbot; Ed Brash; Charles Glashausser; Mark Jones; Gerfried Kumbartzki; Sirish Nanda; Charles F. Perdrisat; Vina Punjabi; Ronald Ransome; Paul Rutt

    1994-09-01

    A focal plane polarimeter intended for the CEBAF Hall A high resolution hadron spectrometer is under construction at Rutgers University and the College of William and Mary. Experiments with focal plane polarimeters are only now beginning at electron accelerators; they play a prominent role in the list of approved experiments for Hall A. Construction of the polarimeter is in progress, it is expected to be brought to CEBAF in spring 1995. Several coincidence (e,e'p) and singles (gamma, p) measurements by the Hall A Collaboration are expected to start in 1996. In this paper we describe the polarimeter and the physics program planned for it.

  13. Characterization of a visible spectrum division-of-focal-plane polarimeter.

    PubMed

    York, Timothy; Gruev, Viktor

    2012-08-01

    The development of high resolution division-of-focal-plane polarimeters in the visible spectrum allows real-time capture of two chief properties of interest, the degree of linear polarization and the angle of polarization. The accuracy of these two parameters can be influenced by a number of factors in the imaged scene, from the incident intensity and wavelength to the lens used for image capture. The alignment, transmission, and contrast ratios of the pixel matched filters also impact the measured parameters. A system of measurements is presented here that shows how these factors can determine the quality of a division-of-focal-plane polarimeter. PMID:22859027

  14. NASA's Structure and Evolution of the Universe focal plane directions

    NASA Astrophysics Data System (ADS)

    Schwartz, P. C.

    2004-01-01

    The SEU theme encompasses an extremely diverse area of space science. Recent roadmapping efforts been devoted to prioritizing science challenges rather than defining all that is contained in the SEU theme. The highest priorities are the Big Bang and a look at Black Holes and the regions near them. To support these challenges the following technologies are of high priority: Cryogenic Systems, Formation Flying, High Performance Optics: Mid- and Far-IR Optics, X-Ray/UV optics, Advanced Detectors: X-ray and Submm/Far IR, Energy resolving detectors and Large Format Arrays. The initiative, Beyond Einstein, includes baseline missions that utilize technologies that are generally at a laboratory proof of concept level. Technology development plans are established for the flagship missions: Con-X and LISA. Conceptual development is still progressing for some Einstein Probe missions. Vision missions are still in conceptual development.

  15. HiRISE focal plane for use on the Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Dorn, David A.; Meiers, William; Burkepile, Jon; Freymiller, Ed D.; Delamere, Alan W.; McEwen, Alfred S.; Maggs, Peter; Pool, Peter J.; Wallace, Iain

    2004-01-01

    The primary mission of the upcoming HiRISE instrument on the Mars Reconnaissance Orbiter spacecraft is to better understand the geologic and climatic processes on Mars and to evaluate future landing sites. To accomplish this goal, a high resolution space-based camera is being developed that employs a 0.5m aperture Cassegrain-type telescope coupled to a large focal plane array (FPA) measuring approximately 14" (L) x 2" (W) x 2" (D). The FPA is populated with 14 time delay and integrate (TDI) format custom charge-coupled device (CCD)-based detectors. The FPA includes panchromatic, near infrared, and blue-green spectral channels. The panchromatic channel has 20,000 pixels in the cross track direction. Each color channel consists of 4,000 pixels in the cross track direction. The minimum ground sampling distance of all channels is 50 cm per pixel. The instrument"s instantaneous field of view is 1.43o x 0.1o. Over the 5-year mission, the FPA will map a portion of the surface of Mars with high spatial resolution and high signal-to-noise ratio (>100:1 at all latitudes). Electronics are housed immediately behind the FPA, which yields a low noise, compact design that is both robust and fault tolerant. Test and characterization data from the FPA and custom CCD-based detectors is discussed along with the results from performance models.

  16. CCD Centroiding Experiment for Correcting a Distorted Image on the Focal Plane

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Nakajima, Tadashi; Kawano, Nobuyuki; Tazawa, Seiichi; Yamada, Yoshiyuki; Hanada, Hideo; Asari, Kazuyoshi; Tsuruta, Seiitsu

    2006-10-01

    JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration) and ILOM (In situ Lunar Orientation Measurement) are space missions that are in progress at the National Astronomical Observatory of Japan. These two projects require a common astrometric technique to obtain precise positions of star images on solid-state detectors in order to accomplish their objectives. In the laboratory, we have carried out measurements of the centroid of artificial star images on a CCD array in order to investigate the precision of the positions of the stars, using an algorithm for estimating them from photon-weighted means of the stars. In the calibration of the position of a star image at the focal plane, we have also taken into account the lowest order distortion due to optical aberrations, which is proportional to the cube of the distance from the optical axis. Accordingly, we find that the precision of the measurement for the positions of the stars reaches below 1/100 pixel for one measurement.

  17. A QVD Detector for Focal Plane Hyperspectral Imaging in Astronomy

    NASA Astrophysics Data System (ADS)

    Wood, K. S.; Gulian, A. M.; Fritz, G. G.; VanVechten, D.

    2002-12-01

    We present the latest results on the development of a new detector, called ``QVD'' for single photons, being developed by NRL under DoD and NASA sponsorship. In this approach, incoming photons are absorbed and thermalized; the resulting elevation of temperature is detected as a thermoelectric voltage generated because of the resulting temperature differential from the absorption site to a reference at the baseline temperature. Heat (Q) is converted to voltage (V) and digitized in the readout (D). The design exploits the high value of the thermoelectric, or Seebeck, coefficient that some metals (so called Kondo metals) have at cryogenic temperatures. The best-known candidates are lanthanum-cerium hexaborides, with the Seebeck coefficient as high as 100 μ V/K at ~ 1 K temperatures reported in bulk crystals. Bulk crystals can be used in some modifications of the QVD detectors, but other crystalline modifications such as thin films or whiskers can yield better results. Thin films are most promising from the point of view of existing electronic device fabrication technologies. Thus we focus on developing thin films of hexaborides. We have currently reached S ~ 7 μ V/K. Work is in progress to improve films. We hope to get one order of magnitude improvement in the near future. Then, about 1 eV energy resolution is predicted for 6 keV photons and ~ 0.1 eV resolution for UV photons. A major feature of thermoelectric detectors is high speed (short pulse duration, ~tens of nanoseconds), already demonstrated with prototypes. Counting rates of MHz are possible for X-ray detecting designs and even higher rates for UV-detecting designs. The parameters of the absorber (dimensions and materials) can be chosen to achieve high quantum efficiency. Simplicity of the detector layout facilitates array construction for hyperspectral imaging.

  18. CNES developments of key detection technologies to prepare next generation focal planes for high resolution Earth observation

    NASA Astrophysics Data System (ADS)

    Materne, A.; Virmontois, C.; Bardoux, A.; Gimenez, T.; Biffi, J. M.; Laubier, D.; Delvit, J. M.

    2014-10-01

    This paper describes the activities managed by CNES (French National Space Agency) for the development of focal planes for next generation of optical high resolution Earth observation satellites, in low sun-synchronous orbit. CNES has launched a new programme named OTOS, to increase the level of readiness (TRL) of several key technologies for high resolution Earth observation satellites. The OTOS programme includes several actions in the field of detection and focal planes: a new generation of CCD and CMOS image sensors, updated analog front-end electronics and analog-to-digital converters. The main features that must be achieved on focal planes for high resolution Earth Observation, are: readout speed, signal to noise ratio at low light level, anti-blooming efficiency, geometric stability, MTF and line of sight stability. The next steps targeted are presented in comparison to the in-flight measured performance of the PLEIADES satellites launched in 2011 and 2012. The high resolution panchromatic channel is still based upon Backside illuminated (BSI) CCDs operated in Time Delay Integration (TDI). For the multispectral channel, the main evolution consists in moving to TDI mode and the competition is open with the concurrent development of a CCD solution versus a CMOS solution. New CCDs will be based upon several process blocks under evaluation on the e2v 6 inches BSI wafer manufacturing line. The OTOS strategy for CMOS image sensors investigates on one hand custom TDI solutions within a similar approach to CCDs, and, on the other hand, investigates ways to take advantage of existing performance of off-the-shelf 2D arrays CMOS image sensors. We present the characterization results obtained from test vehicles designed for custom TDI operation on several CIS technologies and results obtained before and after radiation on snapshot 2D arrays from the CMOSIS CMV family.

  19. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  20. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.

    PubMed

    Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng

    2016-03-01

    Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues. PMID:26768475

  1. Advanced high-performance 320x240 VOx microbolometer uncooled IR focal plane

    NASA Astrophysics Data System (ADS)

    Howard, Philip E.; Clarke, John E.; Parrish, William J.; Woolaway, James T., II

    1999-07-01

    This paper describes Boeing's next-generation 320 X 320 uncooled IR focal plane product. The basic objectives have ben to at least double focal plane performance, improve focal pane operating stability, and significantly enhance the control interface between the focal pane and the camera. All of these basic objectives have been achieved. Focal plane temporal NETD equals 0.028 degrees C has been demonstrated at a frame rate of 60 Hz on the first lot of UFPAs produced, as well as a worst-case spatial NETD < 0.016 degrees C measured over 10 degrees C temperature calibration range. Operating stability improvement has been successfully demonstrated. The design has validated a 'smart sensor' UFPA/camera control interface that provides externally programmability of on-chip signal gain, on-chip pixel offset compensation, on-chip detector bias regulation, precision on-chip temperature measurement, and a 16 test- point Built In Test function. Based on Lot-1 test results, the next lot, which is now in wafer processing, is expected to achieve NETD < 0.02 degrees C at a 60 Hz frame rate. With an improved microbolometer Thermal Isolation Structure, currently in development at Boeing, NETD < 0.010 degrees C can be demonstrated before the end of this year.

  2. Development and Testing of an Innovative Two-Arm Focal-Plane Thermal Strap (TAFTS)

    NASA Technical Reports Server (NTRS)

    Urquiza, E.; Vasquez, C.; Rodriguez, J.; Van Gorp, B.

    2011-01-01

    Maintaining temperature stability in optical focal planes comes with the intrinsic challenge of creating a pathway that is both extremely flexible mechanically and highly conductive thermally. The task is further complicated because science-caliber optical focal planes are extremely delicate, yet their mechanical resiliency is rarely tested and documented. The mechanical engineer tasked with the thermo-mechanical design must then create a highly conductive thermal link that minimizes the tensile and shear stresses transmitted to the focal plane without design parameters on an acceptable stiffness. This paper will describe the development and testing of the thermal link developed for the Portable Remote Imaging Spectrometer (PRISM) instrument. It will provide experimentally determined mechanical stiffness plots in the three axes of interest. Analytical and experimental thermal conductance results for the two-arm focal-plane thermal strap (TAFTS), from cryogenic to room temperatures, are also presented. The paper also briefly describes some elements of the fabrication process followed in developing a novel design solution, which provides high conductance and symmetrical mechanical loading, while providing enhanced flexibility in all three degrees of freedom.

  3. Tie-In Orbits for the Focal Plane Stability Test - Part 2

    NASA Astrophysics Data System (ADS)

    Abramowicz-Reed, Linda

    1991-07-01

    This proposal is part of the TTSC request entitled, "Distortion Calibration in FGS 1 and FGS 2, FGS-to-FGS Alignment Calibration". This portion is listed separately due to the time critical nature of one of the orbits. OFAD in FGS 3 which will be performed in December 1992 together with the Mini OFAD's in FGS's 1 and 2 which will be performed in January 1993 will provide a new set of FGS calibration parameters. One of the objectives of the STScI Focal Plane Stability test is to monitor changes to these parameters by repeatedly observing targets in the cluster M35. Since the cluster is near the ecliptic, only two vehicle orientations are needed, the "fall" and the "spring" pointings (see attached pickles plots). Since the Mini OFAD targets are not necessarily the same targets used in the Focal Plane Stability Test, tie in orbits using the Focal Plane Stability targets are needed shortly before and after the Mini OFAD activities. In addition, the Focal Plane Stability Test may not be

  4. Performance limits of uncooled VOx microbolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kohin, Margaret; Butler, Neal R.

    2004-08-01

    Uncooled microbolometer technology has shown dramatic improvements in recent years as tens of thousands of imaging systems have been delivered. This paper outlines the performance limits that must be overcome to continue to achieve performance improvements.

  5. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nick P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit patbs by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabric.ted parts were hybridized using a Suss FCI50 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  6. Thermal Microphotonic Focal Plane Array (TM-FPA).

    SciTech Connect

    McCormick, Frederick Bossert; Lentine, Anthony L.; Wright, Jeremy Benjamin; Watts, Michael R.; Shaw, Michael J.; Rakich, Peter T.; Nielson, Gregory N.; Peters, David William; Zortman, William A.

    2009-10-01

    The advent of high quality factor (Q) microphotonic-resonators has led to the demonstration of high-fidelity optical sensors of many physical phenomena (e.g. mechanical, chemical, and biological sensing) often with far better sensitivity than traditional techniques. Microphotonic-resonators also offer potential advantages as uncooled thermal detectors including significantly better noise performance, smaller pixel size, and faster response times than current thermal detectors. In particular, microphotonic thermal detectors do not suffer from Johnson noise in the sensor, offer far greater responsivity, and greater thermal isolation as they do not require metallic leads to the sensing element. Such advantages make the prospect of a microphotonic thermal imager highly attractive. Here, we introduce the microphotonic thermal detection technique, present the theoretical basis for the approach, discuss our progress on the development of this technology and consider future directions for thermal microphotonic imaging. Already we have demonstrated viability of device fabrication with the successful demonstration of a 20{micro}m pixel, and a scalable readout technique. Further, to date, we have achieved internal noise performance (NEP{sub Internal} < 1pW/{radical}Hz) in a 20{micro}m pixel thereby exceeding the noise performance of the best microbolometers while simultaneously demonstrating a thermal time constant ({tau} = 2ms) that is five times faster. In all, this results in an internal detectivity of D*{sub internal} = 2 x 10{sup 9}cm {center_dot} {radical}Hz/W, while roughly a factor of four better than the best uncooled commercial microbolometers, future demonstrations should enable another order of magnitude in sensitivity. While much work remains to achieve the level of maturity required for a deployable technology, already, microphotonic thermal detection has demonstrated considerable potential.

  7. SWIR InGaAs focal plane arrays in France

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Huet, O.; Hamard, S.; Truffer, J. P.; Pozzi, M.; Decobert, J.; Costard, E.; Zécri, M.; Maillart, P.; Reibel, Y.; Pécheur, A.

    2013-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The study of InGaAs FPA has begun few years ago with III-VLab, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has led to put quickly on the market a 320x256 InGaAs module. The recent transfer of imagery activities from III-VLab to Sofradir allows developing new high performances products, satisfying customers' new requirements. Especially, a 640x512 InGaAs module with a pitch of 15µm is actually under development to fill the needs of low light level imaging.

  8. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  9. NIRCA ASIC for the readout of focal plane arrays

    NASA Astrophysics Data System (ADS)

    Pâhlsson, Philip; Steenari, David; Øya, Petter; Otnes Berge, Hans Kristian; Meier, Dirk; Olsen, Alf; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Talebi, Jahanzad; Azman, Suleyman; Gheorghe, Codin; Ackermann, Jörg; Mæhlum, Gunnar; Johansen, Tor Magnus; Stein, Timo

    2016-05-01

    This work is a continuation of our preliminary tests on NIRCA - the Near Infrared Readout and Controller ASIC [1]. The primary application for NIRCA is future astronomical science and Earth observation missions where NIRCA will be used with mercury cadmium telluride image sensors (HgCdTe, or MCT) [2], [3]. Recently we have completed the ASIC tests in the cryogenic environment down to 77 K. We have verified that NIRCA provides to the readout integrated circuit (ROIC) regulated power, bias voltages, and fully programmable digital sequences with sample control of the analogue to digital converters (ADC). Both analog and digital output from the ROIC can be acquired and image data is 8b/10bencoded and delivered via serial interface. The NIRCA also provides temperature measurement, and monitors several analog and digital input channels. The preliminary work confirms that NIRCA is latch-up immune and able to operate down to 77 K. We have tested the performance of the 12-bit ADC with pre-amplifier to have 10.8 equivalent number of bits (ENOB) at 1.4 Msps and maximum sampling speed at 2 Msps. The 1.8-V and 3.3-V output regulators and the 10-bit DACs show good linearity and work as expected. A programmable sequencer is implemented as a micro-controller with a custom instruction set. Here we describe the special operations of the sequencer with regards to the applications and a novel approach to parallel real-time hardware outputs. The test results of the working prototype ASIC show good functionality and performance from room temperature down to 77 K. The versatility of the chip makes the architecture a possible candidate for other research areas, defense or industrial applications that require analog and digital acquisition, voltage regulation, and digital signal generation.

  10. Quantum Well Infrared Photodetector (QWIP) Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.

    1998-01-01

    Intrinsic infrared detectors in the long-wavelength range (6 - 20 ??are based on interband transition which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band.

  11. Utilization of a Curved Focal Surface Array in a 3.5m Wide Field of View Telescope

    NASA Astrophysics Data System (ADS)

    Blake, T.; Faccenda, W.; Lambour, R.; Shah, R.; Smith, A.; Gregory, J. G.; Pearce, E. C.; Woods, D.; Sundbeck, S.; Bolden, M.

    2013-09-01

    Wide field of view optical telescopes have a range for uses in both the astronomical and space surveillance purposes. In designing these systems, a number of factors must be taken into account and design trades accomplished to best balance the performance and cost of the system to meet various program constraints. One design trade that has been discussed of the past decade is the curving of the digital focal surface array to meet the field curvature versus the utilization of optical elements to flatten the field curvature for a more traditional focal plane array. For the Defense Advanced Research Projects Agency (DARPA) 3.5m Space Surveillance Telescope (SST) the choice was made to curve the array to best satisfy the stressing telescope performance parameters, along with programmatic challenges. The results of this design choice led to a system that meets all of the initial program goals and stands ready to dramatically improve the nation's space surveillance capabilities. This paper will discuss the implementation of the curved focal surface array, the performance achieved by the array and the delta cost difference in the curved array versus a typical flat array.

  12. Photolithographic lens characterization of critical dimension variation using empirical focal-plane modeling

    NASA Astrophysics Data System (ADS)

    Dusa, Mircea V.; Su, Bo; Dellarochetta, Stephen; Zavecz, Terrence E.

    1997-07-01

    Exposure tool optimization in process development today extends beyond the classic concepts of exposure and focus setting. The lithographer must understand and tune the system for critical feature performance using variables such as Numerical Aperture (NA), Partial Coherence (PC), and critical level tool matching. In a previous study, the authors demonstrated that the phase-shift focal plane monitor (PSFM) accurately measures focal plane variations when appropriate calibrations are employed. That paper also described the development of a model for classic aberrations such as Astigmatism, Field Curvature and Coma. The model considered geometrical aberrations (Seidel) with radial symmetry across image plane as being the primary contributor to CD variation across stepper image plane. The publication correlated image plane focal results to an approximation of the stepper's Critical Dimension (CD) behavior for a matrix of NA and PC settings. In this study, we continue the analysis of the focus budget and CD uniformity using two generations of optical steppers in a 0.35 micrometers process. The analysis first addresses questions involving the use of the PSFM including the variation of calibration across the exposure field and the advantages of using field center or full field calibrations. We describe a method of easily measuring the uniformity of NA and PC across the exposure field. These new tools are then applied as an aid in lens image field characterization and tool-to-tool matching. The information gathered is then applied to measure image aberrations and predict CD variation across the image under various conditions of focus. The predictions are validated by a comparison against CD uniformity as measured by a commercial Scanning Electron Microscope. Present work confirmed previous work and recent assumptions that Zernike diffraction theory of aberration is most appropriate for current stepper lenses with local image plane focal variations across entire field being

  13. Comparing viewer and array mental rotations in different planes

    NASA Technical Reports Server (NTRS)

    Carpenter, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    Participants imagined rotating either themselves or an array of objects that surrounded them. Their task was to report on the egocentric position of an item in the array following the imagined rotation. The dependent measures were response latency and number of errors committed. Past research has shown that self-rotation is easier than array rotation. However, we found that imagined egocentric rotations were as difficult to imagine as rotations of the environment when people performed imagined rotations in the midsagittal or coronal plane. The advantages of imagined self-rotations are specific to mental rotations performed in the transverse plane.

  14. High temperature operation In1-xAlxSb infrared focal plane

    NASA Astrophysics Data System (ADS)

    Lyu, Yanqiu; Si, Junjie; Cao, Xiancun; Zhang, Liang; Peng, Zhenyu; Ding, Jiaxin; Yao, Guansheng; Zhang, Xiaolei; Reobrazhenskiy, Valeriy

    2016-05-01

    A high temperature operation mid-wavelength 128×128 infrared focal plane arrays (FPA) based on low Al component In1-xAlxSb was presented in this work. InAlSb materials were grown on InSb (100) substrates using MBE technology, which was confirmed by XRD and AFM analyses. We have designed and grown two structures with and without barrier. The pixel of the detector had a conventional PIN structure with a size of 50μmx50μm. The device fabrication process consisted of mesa etching, passivation, metallization and flip-chip hybridization with readout integrated circuit (ROIC), epoxy backfill, lap and polish. Diode resistance, imaging, NETD and operability results are presented for a progression of structures that reduce the diode leakage current as the temperature is raised above 80K. These include addition of a thin region of InAlSb to reduce p-contact leakage current, and construction of the whole device from InAlSb to reduce thermal generation in the active region of the detector. An increase in temperature to 110K, whilst maintaining full 80K performance, is achieved. The I-V curves were measured at different temperature. Quantum efficiency, pixel operability, non-uniformity, and the mean NETD values of the FPAs were measured at 110K. This gives the prospect of significant benefits for the cooling systems, including, for example, use of argon in Joule-Thomson coolers or an increase in the life and/or decrease in the cost, power consumption and cool-down time of Stirling engines by several tens of percent.

  15. DRS U6000 640x480 VOx uncooled IR focal plane

    NASA Astrophysics Data System (ADS)

    Howard, Philip E.; Clarke, John E.; Ionescu, Adrian C.; Li, Chuan C.; Stevens, John C.

    2002-08-01

    DRS (formerly Boeing) has completed the development and demonstration of a 25-micron pixel size 640x480 VOx microbolometer uncooled IR focal plane product, the U6000. The U6000 incorporates several advanced features to enhance its performance and functional capabilities. A parallel six- bit Smart-Sensor data bus provides external command and data interface capability between the sensor and the focal plane. This includes on chip 6-bit pixel offset correction, detector bias selection and regulation, programmable signal gain, interlaced and non-interlaced output video format selection, signal integration time selection and input referred global offset selection capabilities. The U6000 also includes a high resolution on-chip temperature measurement that is incorporated into the single channel output video during horizontal blanking. This paper describes the U6000's functional capabilities, and provides U6000 functional validation and performance data.

  16. Introduction of four different drive systems used in LAMOST focal plane

    NASA Astrophysics Data System (ADS)

    Wang, Guomin; Jiang, Xiang; Wang, Yuefei; Li, Guoping; Gu, Bozhong

    2006-06-01

    This paper describes four different drive systems adopted in LAMOST focal plane mechanism to achieve four movements: field derotation, focal plane attitude adjustment, focusing and move aside out of light path for optical checking. Different type drive systems, such as worm gear drive, spur gear drive, friction drive and direct drive, which were devised and used in telescopes in the past years, have their own inherent characteristics and their working conditions. According to feasibility, reliability, suitability and cost effective, friction drive, worm gear drive, ball screw drive and chain drive are selected to as the drive systems for the above four movements. The on-shop test results show that all the drive systems have met the design goals with the accuracy of image field derotation 0.45 arcsec, attitude adjustment 0.24 arcsec, focusing 2 microns and move aside 0.02mm.

  17. Advancements in large-format SiPIN hybrid focal plane technology

    NASA Astrophysics Data System (ADS)

    Kilcoyne, S.; Malone, N.; Kean, B.; Cantrell, J.; Fierro, J.; Meier, L.; DeWalt, S.; Hewitt, C.; Wyles, J.; Drab, J.; Grama, G.; Paloczi, G.; Vampola, J.; Brown, K.

    2014-09-01

    Raytheon has built hybrid focal planes based on Silicon P-I-N photo-sensors for the past three decades. The device has undergone a continuous improvement process during this period. The detector material has been improved and the thickness has been greatly reduced. Most recently, the readout integrated circuit (ROIC) and the hybridization process, have undergone significant advancements1,2,3. This paper presents recent advancements in the latest generation 8μm pixelpitch 1k2 format and 5k2 format visible Si PIN focal-planes. The current family of devices has very low read-noise ROICs, low detector dark current, operate with a 25 volt bias and deliver 50% mean response operability greater than 99.995%.

  18. Quantitative Characterization of Super-Resolution Infrared Imaging Based on Time-Varying Focal Plane Coding

    NASA Astrophysics Data System (ADS)

    Wang, X.; Yuan, Y.; Zhang, J.; Chen, Y.; Cheng, Y.

    2014-10-01

    High resolution infrared image has been the goal of an infrared imaging system. In this paper, a super-resolution infrared imaging method using time-varying coded mask is proposed based on focal plane coding and compressed sensing theory. The basic idea of this method is to set a coded mask on the focal plane of the optical system, and the same scene could be sampled many times repeatedly by using time-varying control coding strategy, the super-resolution image is further reconstructed by sparse optimization algorithm. The results of simulation are quantitatively evaluated by introducing the Peak Signal-to-Noise Ratio (PSNR) and Modulation Transfer Function (MTF), which illustrate that the effect of compressed measurement coefficient r and coded mask resolution m on the reconstructed image quality. Research results show that the proposed method will promote infrared imaging quality effectively, which will be helpful for the practical design of new type of high resolution ! infrared imaging systems.

  19. Image interpolation for division of focal plane polarimeters with intensity correlation.

    PubMed

    Zhang, Junchao; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-01

    Division of focal plane (DoFP) polarimeters operate by integrating micro-polarizer elements with a focal plane. These polarization imaging sensors reduce spatial resolution output and each pixel has a varying instantaneous field of view (IFoV). These drawbacks can be mitigated by applying proper interpolation methods. In this paper, we present a new interpolation method for DoFP polarimeters by using intensity correlation. We employ the correlation of intensity measurements in different orientations to detect edges and then implement interpolation along edges. The performance of the proposed method is compared with several previous methods by using root mean square error (RMSE) comparison and visual comparison. Experimental results showed that our proposed method can achieve better visual effects and a lower RMSE than other methods. PMID:27607683

  20. Focal plane generation of multi-resolution and multi-scale image representation for low-power vision applications

    NASA Astrophysics Data System (ADS)

    Fernández-Berni, J.; Carmona-Galán, R.; Carranza-González, L.; Zarándy, A.; Rodríguez-Vázquez, Á.

    2011-06-01

    Early vision stages represent a considerably heavy computational load. A huge amount of data needs to be processed under strict timing and power requirements. Conventional architectures usually fail to adhere to the specifications in many application fields, especially when autonomous vision-enabled devices are to be implemented, like in lightweight UAVs, robotics or wireless sensor networks. A bioinspired architectural approach can be employed consisting of a hierarchical division of the processing chain, conveying the highest computational demand to the focal plane. There, distributed processing elements, concurrent with the photosensitive devices, influence the image capture and generate a pre-processed representation of the scene where only the information of interest for subsequent stages remains. These focal-plane operators are implemented by analog building blocks, which may individually be a little imprecise, but as a whole render the appropriate image processing very efficiently. As a proof of concept, we have developed a 176x144-pixel smart CMOS imager that delivers lighter but enriched representations of the scene. Each pixel of the array contains a photosensor and some switches and weighted paths allowing reconfigurable resolution and spatial filtering. An energy-based image representation is also supported. These functionalities greatly simplify the operation of the subsequent digital processor implementing the high level logic of the vision algorithm. The resulting figures, 5.6mW@30fps, permit the integration of the smart image sensor with a wireless interface module (Imote2 from Memsic Corp.) for the development of vision-enabled WSN applications.

  1. Fabrication of large aperture kinoform phase plates in fused silica for smoothing focal plane intensity profiles

    SciTech Connect

    Rushford, M.; Dixit, S.; Thomas, I.; Perry, M.

    1996-04-26

    We have fabricated large aperture (40-cm) kinoform phase plates for producing super-Gaussian focal plane intensity profiles. The continuous phase screen, designed using a new iterative procedure, was fabricated in fused silica as a 16-level, one-wave deep rewrapped phase profile using a lithographic process and wet etching in buffered hydrofluoric acid. The observed far-field contains 94% of the incident energy inside the desired spot.

  2. Focal-Plane Imaging of Crossed Beams in Nonlinear Optics Experiments

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Herring, G. C.

    2007-01-01

    An application of focal-plane imaging that can be used as a real time diagnostic of beam crossing in various optical techniques is reported. We discuss two specific versions and demonstrate the capability of maximizing system performance with an example in a combined dual-pump coherent anti-Stokes Raman scattering interferometric Rayleigh scattering experiment (CARS-IRS). We find that this imaging diagnostic significantly reduces beam alignment time and loss of CARS-IRS signals due to inadvertent misalignments.

  3. Antenna arrays for producing plane whistler waves

    NASA Astrophysics Data System (ADS)

    Stenzel, Reiner; Urrutia, J. Manuel

    2015-11-01

    In a large uniform laboratory plasma helicon modes with mode numbers 1 - 8 have been excited. Using a circular phased array it is shown that positive and negative modes can propagate equally well. The phase fronts of helicons form Archimedian screw surfaces. The electromagnetic field carries linear momentum due to the axial propagation and angular momentum due to the azimuthal propagation. Associated with the orbital angular momentum is a transverse Doppler shift. It is demonstrated that a rapidly rotating ``receiver'' observes a different frequency than the wave. This implies that a rotating electron can undergo cyclotron resonance when moving against the field rotation. Analogous to the axial Doppler shift cyclotron damping and cyclotron instabilities are possible due to the field rotation in helicons. Since helicons exist in unbounded laboratory plasma they should also exist in space plasmas. The angular wave-particle interaction may be an alternate approach for the remedial of energetic electrons. Work supported by NSF/DOE.

  4. Short wavelength HgCdTe staring focal plane for low background astronomy applications

    NASA Technical Reports Server (NTRS)

    Hall, D.; Stobie, J.; Hartle, N.; Lacroix, D.; Maschhoff, K.

    1989-01-01

    The design of a 128x128 staring short wave infrared (SWIR) HgCdTe focal plane incorporating charge integrating transimpedance input preamplifiers is presented. The preamplifiers improve device linearity and uniformity, and provide signal gain ahead of the miltiplexer and readout circuitry. Detector's with cutoff wavelength of 2.5 microns and operated at 80 K have demonstrated impedances in excess of 10(exp 16) ohms with 60 percent quantum efficiency. Focal plane performance using a smaller format device is presented which demonstrates the potential of this approach. Although the design is capable of achieving less than 30 rms electrons with todays technology, initial small format devices demonstrated a read noise of 100 rms electrons and were limited by the atypical high noise performance of the silicon process run. Luminescence from the active silicon circuitry in the multiplexer limits the minimum detector current to a few hundred electrons per second. Approaches to eliminate this excessive source of current is presented which should allow the focal plane to achieve detector background limited performance.

  5. Rapid acquisition of high-volume microscopic images using predicted focal plane.

    PubMed

    Yu, Lingjie; Wang, Rongwu; Zhou, Jinfeng; Xu, Bugao

    2016-09-01

    For an automated microscopic imaging system, the image acquisition speed is one of the most critical performance features because many applications require to analyse high-volume images. This paper illustrates a novel approach for rapid acquisition of high-volume microscopic images used to count blood cells automatically. This approach firstly forms a panoramic image of the sample slide by stitching sequential images captured at a low magnification, selects a few basic points (x, y) indicating the target areas from the panoramic image, and then refocuses the slide at each of the basic points at the regular magnification to record the depth position (z). The focusing coordinates (x, y, z) at these basic points are used to calculate a predicted focal plane that defines the relationship between the focus position (z) and the stage position (x, y). Via the predicted focal plane, the system can directly focus the objective lens at any local view, and can tremendously save image-acquisition time by avoiding the autofocusing function. The experiments showed how to determine the optimal number of the basic points at a given imaging condition, and proved that there is no significant difference between the images captured using the autofocusing function or the predicted focal plane. PMID:27229441

  6. Reduction in the amount of crosstalk with reduced number of focal spot rows in a grating array based zonal wavefront sensor

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2015-06-01

    The Shack Hartmann wavefront sensor (SHWS), named after Johannes Franz Hartmann and Roland Shack, is one of the most well-known and popularly used optical wavefront sensor that finds numerous applications in various optical technologies. SHWS samples the incident wavefront by means of a lenslet array to produce an array of regular 2D array of focal spots on the detector plane of a digital camera, in the case of an unaberrated plane wavefront. If the incident wavefront is aberrated or deviates from a plane wavefront, the respective focal spots get shifted from its reference positions corresponding to the regular grid. If the incident wavefront aberration increases or has a very large curvature, the focal spot of one lenslet may enter the detector sub-aperture of the nearby lenslet. Thus, the SHWS has a limited dynamic range that is restricted to aberrations which do not allow the sub-images to be displaced out from their own detector sub-array. It makes the SHWS sensitive to cross-talk when higher order aberrations are present thereby unavoidably a ecting the wavefront estimation process. The array of tiny lenses of the SHWS can be replaced by an array of gratings followed by a focusing lens, generating an array of focal spots which is similar to that as in the case of a SHWS. In this paper, the spatial frequency of such a grating array based zonal wavefront sensor is configured to produce lesser number of rows of focal spots. The reduction in the number of focal spot rows reduces the amount of cross talk in the vertical direction. In this paper we present preliminary experimental results to demonstrate the above stated reduction in crosstalk.

  7. Focal plane actuation for the development of a high resolution suborbital telescope

    NASA Astrophysics Data System (ADS)

    Duke Miller, Alex; Scowen, Paul A.; Veach, Todd

    2016-01-01

    We present a hexapod stabilized focal plane as the key instrument for a proposed suborbital balloon mission. Balloon gondolas currently achieve 1-2 arcsecond pointing error, but cannot correct for unavoidable jitter movements (~50μm at 20hz) caused by wind rushing over balloon surfaces, thermal variations, cryocoolers, and reaction wheels. The jitter causes image blur during exposures and is the limiting resolution of the system. To solve this, the hexapod system actuates the focal plane to counteract the jitter through real-time closed loop feedback from star-trackers. Removal of this final jitter term decreases pointing error by an order of magnitude and allows for true diffraction-limited observation. This boost in resolution will allow for Hubble-quality imaging for a fraction of the cost. Tip-tilt pointing systems have been used for these purposes in the past, but require additional optics and introduce multiple reflections. The hexapod system, rather, is compact and can be plugged into the focal point of nearly any configuration. The design also thermally isolates the hexapod from the cryogenic focal plane enabling the use of well-established non-cryogenic hexapod technology. High-resolution time domain multispectral imaging of the gas giant outer planets, especially in the UV range, is of particular interest to the planetary community, and a suborbital telescope with the hexapod stabilization in place would provide a wealth of new data. On an Antarctic ~100-day Long-Duration-Balloon mission the continued high-resolution imaging of gas giant storm systems would provide cloud formation and evolution data second to only a Flagship orbiter.

  8. Arrayed Ultrasonic Transducers on Arc Surface for Plane Wave Synthesis

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Soon; Kim, Jung-Ho; Kim, Moo-Joon; Ha, Kang-Lyeol; Yamada, Akira

    2004-05-01

    In ultrasonic computed tomography (UCT), it is necessary to synthesize a plane wave using waves emitted from sound sources arranged in the interior surface of a cylinder. In order to transmit a plane wave into a cylindrical surface, an ultrasonic transducer which has many vibrating elements with piezoelectric transverse effect arrayed on an arc surface is proposed. To achieve a wide beam width, the elements should have a small radiation area with a much narrow width. The measured electroacoustic efficiency for the elements was approximately 40% and the beam width defined by -3 dB level from the maximum was as wide as 120 deg. It was confirmed that plane wave synthesis is possible using the proposed transducer array.

  9. Advanced simulation methods to detect resonant frequency stack up in focal plane design

    NASA Astrophysics Data System (ADS)

    Adams, Craig; Malone, Neil R.; Torres, Raymond; Fajardo, Armando; Vampola, John; Drechsler, William; Parlato, Russell; Cobb, Christopher; Randolph, Max; Chiourn, Surath; Swinehart, Robert

    2014-09-01

    Wire used to connect focal plane electrical connections to external electrical circuitry can be modeled using the length, diameter and loop height to determine the resonant frequency. The design of the adjacent electric board and mounting platform can also be analyzed. The combined resonant frequency analysis can then be used to decouple the different component resonant frequencies to eliminate the potential for metal fatigue in the wires. It is important to note that the nominal maximum stress values that cause metal fatigue can be much less than the ultimate tensile stress limit or the yield stress limit and are degraded further at resonant frequencies. It is critical that tests be done to qualify designs that are not easily simulated due to material property variation and complex structures. Sine wave vibration testing is a critical component of qualification vibration and provides the highest accuracy in determining the resonant frequencies which can be reduced or uncorrelated improving the structural performance of the focal plane assembly by small changes in design damping or modern space material selection. Vibration flow down from higher levels of assembly needs consideration for intermediary hardware, which may amplify or attenuate the full up system vibration profile. A simple pass through of vibration requirements may result in over test or missing amplified resonant frequencies that can cause system failure. Examples are shown of metal wire fatigue such as discoloration and microscopic cracks which are visible at the submicron level by the use of a scanning electron microscope. While it is important to model and test resonant frequencies the Focal plane must also be constrained such that Coefficient of Thermal expansion mismatches are allowed to move and not overstress the FPA.

  10. Two-dimensional tracking of ncd motility by back focal plane interferometry.

    PubMed Central

    Allersma, M W; Gittes, F; deCastro, M J; Stewart, R J; Schmidt, C F

    1998-01-01

    A technique for detecting the displacement of micron-sized optically trapped probes using far-field interference is introduced, theoretically explained, and used to study the motility of the ncd motor protein. Bead motions in the focal plane relative to the optical trap were detected by measuring laser intensity shifts in the back-focal plane of the microscope condenser by projection on a quadrant diode. This detection method is two-dimensional, largely independent of the position of the trap in the field of view and has approximately 10-micros time resolution. The high resolution makes it possible to apply spectral analysis to measure dynamic parameters such as local viscosity and attachment compliance. A simple quantitative theory for back-focal-plane detection was derived that shows that the laser intensity shifts are caused primarily by a far-field interference effect. The theory predicts the detector response to bead displacement, without adjustable parameters, with good accuracy. To demonstrate the potential of the method, the ATP-dependent motility of ncd, a kinesin-related motor protein, was observed with an in vitro bead assay. A fusion protein consisting of truncated ncd (amino acids 195-685) fused with glutathione-S-transferase was adsorbed to silica beads, and the axial and lateral motions of the beads along the microtubule surface were observed with high spatial and temporal resolution. The average axial velocity of the ncd-coated beads was 230 +/- 30 nm/s (average +/- SD). Spectral analysis of bead motion showed the increase in viscous drag near the surface; we also found that any elastic constraints of the moving motors are much smaller than the constraints due to binding in the presence of the nonhydrolyzable nucleotide adenylylimidodiphosphate. PMID:9533719

  11. Ballistic imaging of biological media with collimated illumination and focal plane detection

    NASA Astrophysics Data System (ADS)

    Brezner, Barak; Cahen, Sarah; Glasser, Ziv; Sternklar, Shmuel; Granot, Er'el

    2015-07-01

    A simple, affordable method for imaging through biological tissue is investigated. The method consists of (1) imaging with a wavelength that has a relatively small scattering coefficient (1310 nm in this case) and (2) collimated illumination together with (3) focal plane detection to enhance the detection of the ballistic photons relative to the diffusive light. We demonstrate ballistic detection of an object immersed in a 1-cm-thick cuvette filled with 4% Intralipid, which is equivalent to ˜1 to 2 cm of skin tissue. With the same technology, a ballistic image of a 1-mm-wide object in 10-mm-thick chicken breast is also presented.

  12. Ballistic imaging of biological media with collimated illumination and focal plane detection.

    PubMed

    Brezner, Barak; Cahen, Sarah; Glasser, Ziv; Sternklar, Shmuel; Granot, Er'el

    2015-07-01

    A simple, affordable method for imaging through biological tissue is investigated. The method consists of (1) imaging with a wavelength that has a relatively small scattering coefficient (1310 nm in this case) and (2) collimated illumination together with (3) focal plane detection to enhance the detection of the ballistic photons relative to the diffusive light. We demonstrate ballistic detection of an object immersed in a 1-cm-thick cuvette filled with 4% Intralipid, which is equivalent to ∼1 to 2 cm of skin tissue. With the same technology, a ballistic image of a 1-mm-wide object in 10-mm-thick chicken breast is also presented. PMID:26172614

  13. Focal-plane optimization for detector noise limited performance in cryogenic Fourier transform spectrometer /FTS/ sensors

    NASA Technical Reports Server (NTRS)

    Mcguirk, M.; Logan, L.

    1980-01-01

    A study was performed to determine the optimum focal plane configuration including optics, filters and detector-preamplifier selection. The configuration was optimized particularly with respect to minimizing the noise level, but fabrication considerations for a cryogenic environment were also taken into account. The noise terms from source, background, detector electronics and charged particle radiation were quantitatively evaluated. It appears that noise equivalent spectral radiance less than 10 to the -11th W/sq cm per sr per kayser can be achieved between 2.5 and 20 microns.

  14. Upgrade of the TAMU MDM-focal plane detector with MicroMegas technology

    NASA Astrophysics Data System (ADS)

    Spiridon, A.; Pollacco, E.; Roeder, B. T.; Saastamoinen, A.; Chyzh, R.; Dag, M.; Tribble, R. E.; Trache, L.; Pascovici, G.; De Oliveira, R.

    2016-06-01

    A gridded ionization chamber used as a focal plane detector at the back of the TAMU-MDM spectrometer was modified to use MicroMegas technology for the purpose of improving energy resolution and particle identification. The upgraded system was tested in experimental conditions with several heavy-ion beams at 12 MeV/u and found to achieve resolutions between 3.2% and 4.8%. This is a significant improvement over the previous performance of 10-15% obtained using the existing, conventional ionization chambers.

  15. The Focal Plane Crystal Spectrometer for the HEAO-B satellite

    NASA Technical Reports Server (NTRS)

    Donaghy, J. F.; Canizares, C. R.

    1978-01-01

    The very low flux from even the brightest (non-solar) X-ray source has discouraged the use of instruments with high spectral resolution because of their inevitably low sensitivity. Mission B of the High Energy Astronomy Observatory will provide the first opportunity for moderate and high resolution spectral studies of celestial X-ray sources with high sensitivity. The Focal Plane Crystal Spectrometer (FPCS) described here is the instrument with the highest spectral resolution. It is designed to allow detailed spectral studies of both point and extended celestial sources in the energy range 0.2-3.3 keV with resolutions of 50 to 1000.

  16. 3D numerical model for a focal plane view in case of mosaic grating compressor for high energy CPA chain.

    PubMed

    Montant, S; Marre, G; Blanchot, N; Rouyer, C; Videau, L; Sauteret, C

    2006-12-11

    An important issue, mosaic grating compressor, is studied to recompress pulses for multiPetawatt, high energy laser systems. Alignment of the mosaic elements is crucial to control the focal spot and thus the intensity on target. No theoretical approach analyses the influence of compressor misalignment on spatial and temporal profiles in the focal plane. We describe a simple 3D numerical model giving access to the focal plane view after a compressor. This model is computationally inexpensive since it needs only 1D Fourier transforms to access to the temporal profile. We present simulations of monolithic and mosaic grating compressors. PMID:19529688

  17. Ion Transmission to the Focal Plane of the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, J. J.; Elsner, R. F.; Austin, R. A.; ODell, S. L.

    2000-01-01

    The severe degradation in spectrometric performance observed by the AXAF CCD Imaging Spectrometer (ACIS) instrument on-board the Chandra X-ray Observatory (CXO) was associated with a sharp increase in charge transfer inefficiency combined with relatively constant dark current. It was also observed that damage occurred only during passage through the earth's radiation belts, and only when ACIS remained in the focal plane during the passage. Subsequent measurements and analyses support the conjecture that the damaging radiation entered through the Observatory's High-Resolution Mirror Assembly (HRMA) aperture. A mechanism whereby low energy magnetospheric protons and/or heavier ions are scattered through the HRMA and reach the focal plane with just enough energy to stop in the CCD's charge transfer region currently provides a reasonably consistent explanation of all observed phenomena. In this paper, we will describe analyses which support this conclusion. Simulations using standard ion transmission codes were used to generate a bi-directional response function (BDRF) for the mirror surfaces and transmission through the various path elements. The BDRF was convolved with the geometry via ray-trace. Damage estimates using measured proton fluence and ground measurements of ACIS- type CCD damage vs. proton energy will be presented and compared with observed on- orbit damage.

  18. Removing defocused objects from single focal plane scans of cytological slides

    PubMed Central

    Friedrich, David; Böcking, Alfred; Meyer-Ebrecht, Dietrich; Merhof, Dorit

    2016-01-01

    Background: Virtual microscopy and automated processing of cytological slides are more challenging compared to histological slides. Since cytological slides exhibit a three-dimensional surface and the required microscope objectives with high resolution have a low depth of field, these cannot capture all objects of a single field of view in focus. One solution would be to scan multiple focal planes; however, the increase in processing time and storage requirements are often prohibitive for clinical routine. Materials and Methods: In this paper, we show that it is a reasonable trade-off to scan a single focal plane and automatically reject defocused objects from the analysis. To this end, we have developed machine learning solutions for the automated identification of defocused objects. Our approach includes creating novel features, systematically optimizing their parameters, selecting adequate classifier algorithms, and identifying the correct decision boundary between focused and defocused objects. We validated our approach for computer-assisted DNA image cytometry. Results and Conclusions: We reach an overall sensitivity of 96.08% and a specificity of 99.63% for identifying defocused objects. Applied on ninety cytological slides, the developed classifiers automatically removed 2.50% of the objects acquired during scanning, which otherwise would have interfered the examination. Even if not all objects are acquired in focus, computer-assisted DNA image cytometry still identified more diagnostically or prognostically relevant objects compared to manual DNA image cytometry. At the same time, the workload for the expert is reduced dramatically. PMID:27217971

  19. Closed-loop focal plane wavefront control with the SCExAO instrument

    NASA Astrophysics Data System (ADS)

    Martinache, Frantz; Jovanovic, Nemanja; Guyon, Olivier

    2016-09-01

    Aims: This article describes the implementation of a focal plane based wavefront control loop on the high-contrast imaging instrument SCExAO (Subaru Coronagraphic Extreme Adaptive Optics). The sensor relies on the Fourier analysis of conventional focal-plane images acquired after an asymmetric mask is introduced in the pupil of the instrument. Methods: This absolute sensor is used here in a closed-loop to compensate for the non-common path errors that normally affects any imaging system relying on an upstream adaptive optics system.This specific implementation was used to control low-order modes corresponding to eight zernike modes (from focus to spherical). Results: This loop was successfully run on-sky at the Subaru Telescope and is used to offset the SCExAO deformable mirror shape used as a zero-point by the high-order wavefront sensor. The paper details the range of errors this wavefront-sensing approach can operate within and explores the impact of saturation of the data and how it can be bypassed, at a cost in performance. Conclusions: Beyond this application, because of its low hardware impact, the asymmetric pupil Fourier wavefront sensor (APF-WFS) can easily be ported in a wide variety of wavefront sensing contexts, for ground- as well space-borne telescopes, and for telescope pupils that can be continuous, segmented or even sparse. The technique is powerful because it measures the wavefront where it really matters, at the level of the science detector.

  20. Beam control for LINC-NIRVANA: from the binocular entrance pupil to the combined focal plane

    NASA Astrophysics Data System (ADS)

    Bertram, T.; Trowitzsch, J.; Herbst, T. M.; Ragazzoni, R.

    2012-07-01

    LINC-NIRVANA is the near-infrared interferometric imaging camera for the Large Binocular Telescope. Once operational, it will provide an unprecedented combination of angular resolution, sensitivity and field of view. To meet the tight requirements that result from long exposure interferometric imaging over a large field of view, active control beyond fringe tracking and adaptive optics has to be in place in the telescope and in the instrument domain. The incoming beams of the binocular telescope have to be controlled along the entire optical path, from the entrance pupil to the combined focal plane. The beams have to coincide in the focal plane of the science detector, their pointing origins, offsets, orientations, plate scales, and distortions have to match each other and must not change during the observation. Non-common path effects between AO and science channel, flexure and thermal effects have to be compensated and offioading requests from the adaptive optics and fringe tracking systems have to be arbitrated without introducing unwanted optical path length differences or changes in the geometry of the binocular entrance pupil. Beam Control aspects include pointing, co-pointing and field derotation, active optics and collimation control. In this presentation, the constraints for coherent imaging over a 1.5 arcminute field of view are discussed together with a concept for a distributed control scheme.

  1. Focal plane wavefront sensor achromatization: The multireference self-coherent camera

    NASA Astrophysics Data System (ADS)

    Delorme, J. R.; Galicher, R.; Baudoz, P.; Rousset, G.; Mazoyer, J.; Dupuis, O.

    2016-04-01

    Context. High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation (<1 arcsec) and high flux ratio (>105). Recently, optimized instruments like VLT/SPHERE and Gemini/GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (≳1 au) but, because of uncalibrated phase and amplitude aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. Aims: There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>106-107). This requires a focal plane wavefront sensor. Our team proposed a self coherent camera, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. Methods: First, we recall the principle of the self-coherent camera and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. Results: We demonstrate in the laboratory that the multireference self-coherent camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm (bandwidth of 12.5%). We reach a performance that is close to the chromatic limitations of our bench: 1σ contrast of 4.5 × 10-8 between 5 and 17 λ0/D. Conclusions: The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the

  2. The focal plane adaptive optics test box of the Observatoire du Mont-Mégantic

    NASA Astrophysics Data System (ADS)

    Deschênes, William; Brousseau, Denis; Lavigne, Jean-Francois; Thibault, Simon; Véran, Jean-Pierre

    2014-08-01

    With the upcoming construction of Extremely Large Telescopes, several existing technologies are being pushed beyond their performance limit and it becomes essential to develop and evaluate new alternatives. The "Observatoire du Mont Mégantic" (OMM) hosts a telescope having a 1.6-meter diameter primary. The OMM telescope is known to be an excellent location to develop and test precursor instruments which are then upscaled to larger telescopes (ex. SPIOMM which led to SITELLE at the CFHT). We present a specifically designed focal plane box for the OMM which will allow to evaluate, directly on-sky, the performance of a number of next generation adaptive optics related technologies The system will able us to compare the performance of several new wavefront sensors in contrast with the current standard, the Shack-Hartman wavefront sensor.

  3. An innovative concept for the AsteroidFinder/SSB focal plane assembly

    NASA Astrophysics Data System (ADS)

    Schindler, Karsten; Tschentscher, Matthias; Koncz, Alexander; Solbrig, Michael; Michaelis, Harald

    2012-06-01

    This paper gives a summary on the system concept and design of the focal plane assembly of AsteroidFinder/SSB, a small satellite mission which is currently under development at the German Aerospace Center (DLR). An athermal design concept has been developed in accordance to the requirements of the instrument and spacecraft. Key aspects leading to this approach have been a trade-off study of the mechanical telescope interface, the definition of electrical and thermal interfaces and a material selection which minimizes thermally induced stresses. As a novelty, the structure will be manufactured from a machinable AlN-BN composite ceramic. To enable rapid design iterations and development, an integrated modeling approach has been used to conduct a thermo-mechanical analysis of the proposed concept in order to proof its feasibility. The steady-state temperature distribution for various load cases and the resulting stress and strain within the assembly have both been computed using a finite element simulation.

  4. QVD Sensors as Focal Plane Instruments for X-ray Timing Applications

    NASA Astrophysics Data System (ADS)

    Wood, Kent S.; Gulian, Armen M.; Ray, Paul S.

    2004-07-01

    ``QVD'' detectors are based on thermoelectric heat-to-voltage (Q-->V) conversion and digital (V-->D) readout. For spectroscopic applications, the theoretical performance limits are competitive with superconducting tunnel junction (STJ) detectors and transition edge sensor (TES) devices. We discuss theoretical and demonstrated timing performance of QVD detectors with different design architectures. Detectors with lanthanum-cerium hexaboride sensors can be very fast, up to 100 MHz/pixel counting rates. They can serve as focal plane detectors for X-ray timing, in situations where very large apertures are used to gather X-ray photons at high event rates. Practical implementation of thermoelectric (QVD) detectors requires cryogenic thermoelectric sensors with high figures of merit. There can be different solutions: thin films, bulk materials and ``whiskers.'' We are exploring all three design options and summarize progress in each area.

  5. A math model for high velocity sensoring with a focal plane shuttered camera.

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1971-01-01

    A new mathematical model is presented which describes the image produced by a focal plane shutter-equipped camera. The model is based upon the well-known collinearity condition equations and incorporates both the translational and rotational motion of the camera during the exposure interval. The first differentials of the model with respect to exposure interval, delta t, yield the general matrix expressions for image velocities which may be simplified to known cases. The exposure interval, delta t, may be replaced under certain circumstances with a function incorporating blind velocity and image position if desired. The model is tested using simulated Lunar Orbiter data and found to be computationally stable as well as providing excellent results, provided that some external information is available on the velocity parameters.

  6. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering.

    PubMed

    Fang, Joyce; Savransky, Dmitry

    2016-08-01

    Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation. PMID:27505378

  7. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering

    NASA Astrophysics Data System (ADS)

    Fang, Joyce; Savransky, Dmitry

    2016-08-01

    Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with eight degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis (PCA) on the simulated dataset to obtain Karhunen-Lo\\`eve (KL) modes, which form the basis set whose weights are the system measurements. A model function which maps the state to the measurement is learned using nonlinear least squares fitting and serves as the measurement function for the nonlinear estimator (Extended and Unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss both simulated and experimental results of the full system in operation.

  8. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system

    NASA Astrophysics Data System (ADS)

    Zhong, Hua; Redo-Sanchez, Albert; Zhang, X.-C.

    2006-10-01

    We present terahertz (THz) reflective spectroscopic focal-plane imaging of four explosive and bio-chemical materials (2, 4-DNT, Theophylline, RDX and Glutamic Acid) at a standoff imaging distance of 0.4 m. The 2 dimension (2-D) nature of this technique enables a fast acquisition time and is very close to a camera-like operation, compared to the most commonly used point emission-detection and raster scanning configuration. The samples are identified by their absorption peaks extracted from the negative derivative of the reflection coefficient respect to the frequency (-dr/dv) of each pixel. Classification of the samples is achieved by using minimum distance classifier and neural network methods with a rate of accuracy above 80% and a false alarm rate below 8%. This result supports the future application of THz time-domain spectroscopy (TDS) in standoff distance sensing, imaging, and identification.

  9. Depth-fused multi-focal plane displays enable accurate depth perception

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Liu, Sheng

    2010-11-01

    Many different approaches to three-dimensional (3-D) displays have been explored, most of which are considered to be stereoscopic-type. The stereoscopic-type displays create depth perception by presenting two perspective images, one for each eye, of a 3D scene from two slightly different viewing positions. They have been the dominant technology adopted for many applications, spanning the fields of flight simulation, scientific visualization, medicine, engineering design, education and training, and entertainment systems. Existing stereoscopic displays, however, lack the ability to produce accurate focus cues, which have been suggested to contribute to various visual artifacts such as visual fatigue. This paper will review some recent work on vari- and multi-focal plane display technologies that are capable of rendering nearly correct focus cues for 3D objects and these technologies have great promise of enabling more accurate depth perception for 3D tasks.

  10. ART-XC/SRG: status of the x-ray focal plane detector development

    NASA Astrophysics Data System (ADS)

    Levin, Vasily; Pavlinsky, Mikhail; Akimov, Valeriy; Kuznetsova, Maria; Rotin, Alexey; Krivchenko, Alexander; Lapshov, Igor; Oleinikov, Vladimir

    2014-07-01

    The Russian Space Research Institute (IKI) has developed CdTe detectors for the focal plane of the ART-XC/SRG instrument. The CdTe crystal has dimensions about 30 × 30 × 1 mm. Top and bottom sides of the detector each contain 48 strips and a guard ring. The ASIC VA64TA1 is connected to the CdTe crystal by AC-coupling for both DSSD sides. This approach allows one to have the same ground level for both electronic parts and to operate detectors with different leakage currents without reconfiguration of the VA64TA1 chips. One CdTe crystal and two ASICs are integrated with thermal sensors and Peltier cooler in a big hybrid integrated circuit. This detector is hermetically sealed by a cover with beryllium window. For ground testing the detector volume is filled with dry nitrogen. Peltier cooler is used during ground tests only. Together with the hermetic case package it allows us to operate the detector at low temperature during all ART-XC telescope development tests. When in space, the detector cooling will be provided by a radiator and heat pipes. Polarization rate temperature and voltage dependences as well as splitting charges between electrodes are being studied. IKI manufactured dozen X-ray cameras with detectors and supporting electronics for EM, QM and flight model of the ART-XC telescope. Spectroscopic and imaging performances of the detectors were tested on the IKI's X-Ray Calibration Facility. Current status of the focal plane detector development and testing will be presented.

  11. Simple tools for simulating phased array focal laws on 3D solids

    NASA Astrophysics Data System (ADS)

    Weber, Walter H.; Mair, H. Douglas; Frazer, Leigh

    2001-04-01

    This paper reports our progress on the development of a three-dimensional raytracing program that can simulate the focal laws of a phased array system. The modeled transducer is divided into elements of a given length, width and inter-element gap distance. Each focal law to be modeled requires a steering angle, focal length and selection of which groups of elements are transmitting and receiving. Electronic scanning is simulated by stepping through a series of predefined focal laws. The program phase shifts and sums the received rays at each element based on the properties of the currently-active focal law. Simulated A-scans are constructed from the received rays which appear animated as the beam is swept. Beam profiles can also be generated that show the primary forward beam and energy in the side lobes. The work is based on Imagine3D ultrasonic simulation software and the dedicated efforts of Doug Mair and Leigh Frazer.

  12. Tests of the Monte Carlo simulation of the photon-tagger focal-plane electronics at the MAX IV Laboratory

    NASA Astrophysics Data System (ADS)

    Preston, M. F.; Myers, L. S.; Annand, J. R. M.; Fissum, K. G.; Hansen, K.; Isaksson, L.; Jebali, R.; Lundin, M.

    2014-04-01

    Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acquired with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system.

  13. Evaluation of a fourth-generation focal plane camera for use in plasma-source mass spectrometry

    SciTech Connect

    Felton, Jeremy A.; Schilling, G. D.; Ray, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2010-10-18

    A fourth-generation focal plane camera containing 1696 Faraday-strip detectors was fitted to a Mattauch-Herzog mass spectrograph and characterized for its performance with inductively coupled plasma ionization. The camera provides limits of detection in the single to tens of ng L-1 range for most elements and has a linear dynamic range of at least nine orders of magnitude. Isotope-ratio precision better than 0.02% has also been achieved with this device, and this fourth-generation system features the broadest simultaneous mass range obtainable to date with this family of focal plane camera detectors.

  14. Focal Image Plane Detection Based on Central Coordinate Point Spectral Value in Off-Axis Digital Particle Holography

    NASA Astrophysics Data System (ADS)

    Qiu, Peizhen; Deng, Lijun; Lu, Wenhui

    2015-12-01

    A method to detect the focal image plane from a single off-axis digital particle hologram is proposed. This method utilizes the central coordinate point spectral value of the reconstructed particle image as focusing criterion to detect the focal image plane. It is found that the central coordinate point spectral values come into maximum when the reconstruction distance is equal to the actual distance that was used in experiment of hologram acquisition. Numerical simulations are given to validate the feasibility and effectiveness of the proposed method. The proposed method is a potential and better option for studying three dimensional particles by using digital holography.

  15. Charge integration successive approximation analog-to-digital converter for focal plane applications using a single amplifier

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.

  16. Calibration of optical tweezers with positional detection in the back focal plane

    SciTech Connect

    Tolic-Noerrelykke, Simon F.; Schaeffer, Erik; Howard, Jonathon; Pavone, Francesco S.; Juelicher, Frank; Flyvbjerg, Henrik

    2006-10-15

    We explain and demonstrate a new method of force and position calibrations for optical tweezers with back-focal-plane photodetection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use the drag coefficient of the trapped object as an input. Thus, neither the viscosity, nor the size of the trapped object, nor its distance to nearby surfaces needs to be known. The method requires only a low level of instrumentation and can be applied in situ in all spatial dimensions. It is both accurate and precise: true values are returned, with small error bars. We tested this experimentally, near and far from surfaces in the lateral directions. Both position and force calibrations were accurate to within 3%. To calibrate, we moved the sample with a piezoelectric translation stage, but the laser beam could be moved instead, e.g., by acousto-optic deflectors. Near surfaces, this precision requires an improved formula for the hydrodynamical interaction between an infinite plane and a microsphere in nonconstant motion parallel to it. We give such a formula.

  17. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging I Accounting for aberrations in multiple planes

    NASA Astrophysics Data System (ADS)

    Frazin, Richard A.

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs) has the potential to provide unprecedented imaging and spectroscopy of exo-planetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as ADI and SDI. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

  18. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

    PubMed

    Frazin, Richard A

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy. PMID:27140784

  19. The design and application of large area intensive lens array focal spots measurement system

    NASA Astrophysics Data System (ADS)

    Chen, Bingzhen; Yao, Shun; Yang, Guanghui; Dai, Mingchong; Wang, Zhiyong

    2014-12-01

    Concentrating Photovoltaic (CPV) modules are getting thinner and using smaller cells now days. Correspondingly, large area intensive lens arrays with smaller unit dimension and shorter focal length are wanted. However, the size and power center of lens array focal spots usually differ from the design value and are hard to measure, especially under large area situation. It is because the machining error and deformation of material of the lens array are hard to simulate in the optical design process. Thus the alignment error between solar cells and focal spots in the module assembly process will be hard to control. Under this kind of situation, the efficiency of CPV module with thinner body and smaller cells is much lower than expected. In this paper, a design of large area lens array focal spots automatic measurement system is presented, as well as its prototype application results. In this system, a four-channel parallel light path and its corresponding image capture and process modules are designed. These modules can simulate focal spots under sunlight and have the spots image captured and processed using charge coupled devices and certain gray level algorithm. Thus the important information of focal spots such as spot size and location will be exported. Motion control module based on grating scale signal and interval measurement method are also employed in this system in order to get test results with high speed and high precision on large area lens array no less than 1m×0.8m. The repeatability of the system prototype measurement is +/-10μm with a velocity of 90 spot/min. Compared to the original module assembled using coordinates from optical design, modules assembled using data exported from the prototype is 18% higher in output power, reaching a conversion efficiency of over 31%. This system and its design can be used in the focal spot measurement of planoconvex lens array and Fresnel lens array, as well as other kinds of large area lens array application

  20. Far-field diffraction and focal plane misalignment effects on simulated GIFTS data from the IHOP field program

    NASA Astrophysics Data System (ADS)

    Olson, Erik R.; Knuteson, Robert O.; Revercomb, Hank E.; Li, Jun; Huang, Hung-Lung A.

    2004-10-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES) instruments are geostationary infrared spectrometers. Geostationary orbit provides observations with very good time resolution, but also increases the effect of diffraction. There can be significant differences in emitted radiances due to clouds and changes in surface characteristics. High, thick clouds in particular are much cooler than clear areas. Diffraction causes radiation that originates from cloudy areas outside of the detector field of view to contaminate the clear pixels. GIFTS will also have two detector arrays on different focal planes, which may not be perfectly aligned. This can cause spatial misalignment between the data for the two spectral regions. High spatial resolution numerical models run at the University of Wisconsin - Cooperative Institute for Meteorological Satellite Studies (UW-CIMSS) provide data for examining the diffraction and misalignment effects. The model data represents a variable cloud case during the IHOP field experiment at 1.3-km resolution. This paper outlines the production of high spatial resolution simulated data, characterization of the far field diffraction effects on radiances, and analysis of misalignment effects on temperature and moisture profile retrievals.