Sample records for focus watershed coordinator

  1. Kootenai River Focus Watershed Coordination, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kootenai River Network,

    2006-02-01

    The Kootenai River Network (KRN) was contracted by the Bonneville Power Administration; PPA Project Number 96087200 for the period June 1, 2003 to May 31, 2004 to provide Kootenai River basin watershed coordination services. The prime focus of the KRN is coordinating activities and disseminating information related to watershed improvement and education and outreach with other interest groups in the Kootenai River basin. To this end, the KRN primarily focuses on maintaining communication networks among private and public watershed improvement groups in the Columbia River Basin. The KRN willing shares its resources with these groups. The 2003-2004 BPA contract extendedmore » the original Montana Fish, Wildlife and Parks contract, which was transferred to the Kootenai River Network through a Memorandum of Understanding in November 2001. The KRN objectives of this contract were carried out through Watershed Coordinator position. The highly successful Kootenai River Network Annual General Meeting in Bonners Ferry in May 2003 demonstrated the tremendous gains that the Kootenai River Network has made in trans-boundary networking of watershed issues and accomplishments. The Annual General Meeting included seventy five participants representing more than forty US and Canadian citizen groups, tribes, first nations, agencies, ministries, businesses and private land owners from Montana, British Columbia, Idaho and Alberta. The International Restoration Tour in July 2004 featured the Grave Creek and Therriault Wetlands restoration projects in Montana and the Sand Creek and Wolf Creek restoration projects in British Columbia. The tour was attended by more than thirty people representing US and Canadian Federal and State/Provincial agencies, schools, colleges, conservation groups, private land owners, consultants, tribes, first nations, and politicians. These exciting trans-boundary successes encouraged the KRN to establish half-time Watershed Coordinator positions in both the

  2. Kootenai River Focus Watershed Coordination, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kootenai River Network,

    2005-07-01

    The Kootenai River Network (KRN) was contracted by the Bonneville Power Administration; PPA Project Number 96087200 for the period June 1, 2004 to May 31, 2005 to provide Kootenai River basin watershed coordination services. The prime focus of the KRN Watershed Coordination Program is coordinating projects and disseminating information related to watershed improvement and education and outreach with other interest groups in the Kootenai River basin. The KRN willingly shares its resources with these groups. The 2004-2005 BPA contract extended the original Montana Fish, Wildlife and Parks contract, which was transferred to the Kootenai River Network through a Memorandum ofmore » Understanding in November 2001. The KRN objectives of this contract were carried out by one half-time Watershed Coordinator position in Montana-Idaho (Nancy Zapotocki) and one half-time Watershed Coordination team in British Columbia (Laura and Jim Duncan). Nancy Zapotocki was hired as the KRN US Watershed Coordinator in July 2004. Her extensive work experience in outreach and education and watershed planning complements the Duncans in British Columbia. To continue rejuvenating and revitalizing the KRN, the Board conducted a second retreat in November 2004. The first retreat took place in November 2003. Board and staff members combined efforts to define KRN goals and ways of achieving them. An Education and Outreach Plan formulated by the Watershed Coordinators was used to guide much of the discussions. The conclusions reached during the retreat specified four ''flagship'' projects for 2005-2006, to: (1) Provide leadership and facilitation, and build on current work related to the TMDL plans and planning efforts on the United States side of the border. (2) Continue facilitating trans-boundary British Columbia projects building on established work and applying the KRN model of project facilitation to other areas of the Kootenai basin. (3) Finalize and implement the KRN Education and Outreach

  3. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, Bob; Munson, Vicki; Rogers, Rox

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contractedmore » to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the

  4. McKenzie River Focus Watershed Coordination: Year-End Report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrailkil, Jim

    2000-01-01

    This report summarizes accomplishments of the McKenzie River Focus Watershed Council (MWC) in the areas of coordination and administration during Fiscal Year 2000. Coordination and administration consist of prioritization and planning for projects; project management and implementation; procurement of funding for long-term support of the Council; and watershed education/outreach program for residents and local schools. Key accomplishments in the area of project planning include coordinating: monthly Council and executive committee meetings; staffing the Upper Willamette Spring Chinook Working Group; staffing the water quality technical committee; and guiding education and stewardship projects. Key accomplishments in the area of project management includemore » the completion of the McKenzie-Willamette Confluence Assessment; securing funds for project planning in the confluence area; near completion of the BPA funded McKenzie sub-basin assessment; development of a framework for a McKenzie Watershed Conservation Strategy; an evaluation of Council's monitoring programs - ambient water quality, storm-event water quality, Tier III water quality, and macroinvertebrate monitoring. The Council, in cooperation with the McKenzie River Cooperative, completed habitat enhancements in the Gate Creek and Deer Creek sub-watersheds. This partnership recently submitted Bring Back the Natives grant for initiation of projects in other McKenzie tributaries. The Council will also be working with a local business to develop a river-side riparian enhancement and native landscaping project on the lodge grounds. This will serve as a demonstration project for blending fish and wildlife habitat concerns with maintaining grounds for business opportunities. Accomplishments in the area of procurement of funding included developing the FY2000 Scope of Work and budget for approval by the Council and BPA; providing quarterly budget and work program progress reports to the Council; and securing

  5. Flathead River Focus Watershed Coordinator, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2003-04-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NPPC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if

  6. Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2004-06-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if

  7. Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2006-06-26

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if

  8. Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuCharme, Lynn

    2006-05-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerrmore » dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if

  9. Clearwater Focus Watershed; Nez Perce Tribe, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Ira

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. Its goal is also to re-establish normal patters of production, dispersal, and exchange of genetic information within the 1855 Treaty Area. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing streambanks, decommissioning roads, and upgrading culverts. Coordination of these projectsmore » is critical to the success of the restoration of the sub-basin. Coordination includes: within department coordination, sub-basin assessment and planning, and treaty area coordination.« less

  10. Clearwater Focus Watershed; Nez Perce Tribe, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Ira

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division, approaches watershed restoration with a goal to protect, restore, and enhance a connected network of functioning habitat types capable of supporting all fish life stages. Its goal is also to re-establish normal patterns of production, dispersal, and exchange of genetic information within the 1855 Treaty Area. The Nez Perce Tribe began watershed restoration projects within the Clearwater River Subbasin in 1996. Progress has been made in restoring the sub-basin by excluding cattle from critical riparian areas through fencing, stabilizing stream banks, decommissioning roads, and upgrading culverts. Coordination of thesemore » projects is critical to the success of the restoration of the sub-basin. Coordination activities also includes: inter and intra-department coordination, sub-basin assessment and planning, involving government and private organizations, and treaty area coordination.« less

  11. Kootenai River Focus Watershed Coordination, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, Gretchen

    2002-07-01

    The 2001-2002 Kootenai River Network Annual Report reflects the organization's defined set of goals and objectives, and how by accomplishing these goals, we continue to meet the needs of communities and landowners throughout the Kootenai River Basin by protecting the resource. Our completed and ongoing projects throughout the watershed reflect the cooperation and support received and needed to accomplish the rehabilitation and restoration of critical habitat. They show that our mission of facilitation through collaboration with public and private interests can lead to improved resource management, the restoration of water quality and the preservation of pristine aquatic resources. Our visionmore » to empower local citizens and groups from two states, one province, two countries and affected tribal nations to collaborate in natural resource management within the basin is largely successful due to the engagement of the basin's residents--the landowners, town government, local interest groups, businesses and agency representatives who live and work here. We are proof that forging these types of cooperative relationships, such as those exhibited by the Kootenai River subbasin planning process, leads to a sense of entitlement--that the quality of the river and its resources enriches our quality of life. Communication is essential in maintaining these relationships. Allowing ourselves to network and receive ideas and information, as well as to produce quality, accessible research data such as KRIS, shared with like organizations and individuals, is the hallmark of this facilitative organization. We are fortunate in the ability to contribute such information, and continue to strive to meet the standards and the needs of those who seek us out as a model for watershed rehabilitative planning and restoration. Sharing includes maintaining active, ongoing lines of communication with the public we serve--through our web site, quarterly newsletter, public presentations and

  12. Restore McComas Watershed; Meadow Creek Watershed, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing. During years 2000-2003, trees were planted in riparian areas within the meadow and its tributaries. Culverts have been prioritized for replacement to accommodate fish passage throughoutmore » the watershed. Designs for replacement are being coordinated with the Nez Perce National Forest. Twenty miles of road were contracted for decommissioning. Tribal crews completed maintenance to the previously built fence.« less

  13. Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. Thesemore » projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.« less

  14. Testing a two-scale focused conservation strategy for reducing phosphorus and sediment loads from agricultural watersheds

    USGS Publications Warehouse

    Carvin, Rebecca; Good, Laura W.; Fitzpatrick, Faith A.; Diehl, Curt; Songer, Katherine; Meyer, Kimberly J.; Panuska, John C.; Richter, Steve; Whalley, Kyle

    2018-01-01

    This study tested a focused strategy for reducing phosphorus (P) and sediment loads in agricultural streams. The strategy involved selecting small watersheds identified as likely to respond relatively quickly, and then focusing conservation practices on high-contributing fields within those watersheds. Two 5,000 ha (12,360 ac) watersheds in the Driftless Area of south central Wisconsin, previously ranked in the top 6% of similarly sized Wisconsin watersheds for expected responsiveness to conservation efforts to reduce high P and sediment loads, were chosen for the study. The stream outlets from both watersheds were monitored from October of 2006 through September of 2016 for streamflow and concentrations of sediment, total P, and, beginning in October of 2009, total dissolved P. Fields and pastures having the highest potential P delivery to the streams in each watershed were identified using the Wisconsin P Index (Good et al. 2012). After three years of baseline monitoring (2006 to 2009), farmers implemented both field- and farm-based conservation practices in one watershed (treatment) as a means to reduce sediment and P inputs to the stream from the highest contributing areas, whereas there were no out-of-the-ordinary conservation efforts in the second watershed (control). Implementation occurred primarily in 2011 and 2012. In the four years following implementation of conservation practices (2013 through 2016), there was a statistically significant reduction in storm-event suspended sediment loads in the treatment watershed compared to the control watershed when the ground was not frozen (p = 0.047). While there was an apparent reduction in year-round suspended sediment event loads, it was not statistically significant at the 95% confidence level (p = 0.15). Total P loads were significantly reduced for runoff events (p < 0.01) with a median reduction of 50%. Total P and total dissolved P concentrations for low-flow conditions were also significantly reduced (p

  15. Protect and Restore Lolo Creek Watershed, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this project. Riparian enhancement through planning of riparian trees continues. Culvert inventory is on-going and will be completed in 2004 for the entiremore » Lolo Creek drainage. High priority culverts are being replaced and passage blocking log culverts are being removed. Tribal crews completed maintenance to the previously built fence.« less

  16. Protect and Restore Lolo Creek Watershed, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this project. Riparian enhancement through planting of riparian trees and streambank bioengineering was completed. Culvert inventory was completed in 2004 on US Forestmore » Service and Potlatch Corporation lands in the Lolo Creek drainage. Two high priority culverts were replaced, and are now accessible for fish species. Four miles of road was decommissioned. Tribal crews completed maintenance to the previously built fence.« less

  17. Watershed councils: it takes a community to restore a watershed

    Treesearch

    Marie Oliver; Rebecca Flitcroft

    2011-01-01

    Regulation alone cannot solve complex ecological problems on private lands that are managed for diverse uses. Executing coordinated restoration projects at the watershed scale is only possible with the cooperation and commitment of all stakeholders. Locally organized, nonregulatory watershed councils have proven to be a powerful method of engaging citizens from all...

  18. Watershed management and organizational dynamics: nationwide findings and regional variation

    USGS Publications Warehouse

    Clark, B.T.; Burkardt, N.; King, M.D.

    2005-01-01

    Recent attention has focused on resource management initiatives at the watershed scale with emphasis on collaborative, locally driven, and decentralized institutional arrangements. Existing literature on limited selections of well-established watershed-based organizations has provided valuable insights. The current research extends this focus by including a broad survey of watershed organizations from across the United States as a means to estimate a national portrait. Organizational characteristics include year of formation, membership size and composition, budget, guiding principles, and mechanisms of decision-making. These characteristics and the issue concerns of organizations are expected to vary with respect to location. Because this research focuses on organizations that are place based and stakeholder driven, the forces driving them are expected to differ across regions of the country. On this basis of location, we suggest basic elements for a regional assessment of watershed organizations to channel future research and to better approximate the organizational dynamics, issue concerns, and information needs unique to organizations across the country. At the broadest level, the identification of regional patterns or organizational similarities may facilitate the linkage among organizations to coordinate their actions at the much broader river basin or ecosystem scale.

  19. Watershed management and organizational dynamics: nationwide findings and regional variation.

    PubMed

    Clark, Brad T; Burkardt, Nina; King, Dawn

    2005-08-01

    Recent attention has focused on resource management initiatives at the watershed scale with emphasis on collaborative, locally driven, and decentralized institutional arrangements. Existing literature on limited selections of well-established watershed-based organizations has provided valuable insights. The current research extends this focus by including a broad survey of watershed organizations from across the United States as a means to estimate a national portrait. Organizational characteristics include year of formation, membership size and composition, budget, guiding principles, and mechanisms of decision-making. These characteristics and the issue concerns of organizations are expected to vary with respect to location. Because this research focuses on organizations that are place based and stakeholder driven, the forces driving them are expected to differ across regions of the country. On this basis of location, we suggest basic elements for a regional assessment of watershed organizations to channel future research and to better approximate the organizational dynamics, issue concerns, and information needs unique to organizations across the country. At the broadest level, the identification of regional patterns or organizational similarities may facilitate the linkage among organizations to coordinate their actions at the much broader river basin or ecosystem scale.

  20. 7 CFR 624.5 - Coordination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.5 Coordination. (a) If the President declares... Presidentially-declared natural disasters. (b) When an NRCS State Conservationist determines that a watershed... agencies involved with emergency activities, as appropriate. (c) In the case where the watershed impairment...

  1. 7 CFR 624.5 - Coordination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.5 Coordination. (a) If the President declares... Presidentially-declared natural disasters. (b) When an NRCS State Conservationist determines that a watershed... agencies involved with emergency activities, as appropriate. (c) In the case where the watershed impairment...

  2. 7 CFR 624.5 - Coordination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.5 Coordination. (a) If the President declares... Presidentially-declared natural disasters. (b) When an NRCS State Conservationist determines that a watershed... agencies involved with emergency activities, as appropriate. (c) In the case where the watershed impairment...

  3. Draft Maumee River Watershed Restoration Plan

    EPA Pesticide Factsheets

    A draft of the Maumee River AOC Watershed Restoration Plan was completed in January 2006. The plan was created to meet requirements for the stage II RAP as well as Ohio EPA’s and ODNR’s Watershed Coordinator Program.

  4. Teaching Practical Watershed Science to non-Watershed Science Majors

    NASA Astrophysics Data System (ADS)

    Fassnacht, S. R.; Laituri, M.; Layden, P.; Coleman, R.

    2008-12-01

    The Warner College of Natural Resources (WCNR) at Colorado State University (CSU) has had a long tradition of integrating field measurements into the classroom, dating back to the first forestry summer camp held in 1917 at the CSU Pingree Park mountain campus. In the early 1960s, the Cooperative Watershed Management Unit coordinated efforts to understand and analyse the basic resources of the area, with an emphasis on the geology, hydrology, and climate. Much of this understand is now used as the Abiotic (Geology and Watershed) component of a five-credit, four-week course offered twice each summer at Pingree Park. With the exception of Geology students who have their own field course, this Natural Resources Ecology and Measurements course (NR 220) is required for all WCNR undergraduate students. These majors include Watershed Science, Forestry, Rangeland Ecology, Fisheries, Wildlife Biology, Conservation Biology, and Recreation and Tourism. Since most of these are students are much better trained in biological and/or social sciences rather than physical sciences, a challenge for the Watershed professor is to teaching practical Watershed Science to non-Watershed Science majors. This presentation describes how this challenge is met and how this course helps broaden the knowledge base of Natural Resources students.

  5. Restore McComas Meadows; Meadow Creek Watershed, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2006-08-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. Designs for culvert replacements are being coordinated with the Nez Perce National Forest. 20 miles of roads were decommissioned. Tribal crews completed maintenance to the previously built fence.« less

  6. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Hoghooghi, N.

    2017-12-01

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of the same watershed can render management explicitly targeted to limit the negative outcomes from urbanization ineffective. For example, evidence indicates that green infrastructure, or low impact development (LID), practices can attenuate the adverse water quality and quantity effects of urbanizing systems. However, the research providing this evidence has been conducted at local scales (e.g., plots, small homogeneous urban catchments) that isolate the measurable effects of such approaches. Hence, a distinct disconnect exists between the scale of scientific inquiry and the scale of management and decision-making practices. Here we explore the oft-discussed yet rarely directly addressed scientific and management conundrum: How do we scale our well-documented scientific knowledge of the water quantity and quality responses to LID practices measured and modeled at local scales to that of "actual" management scales? We begin by focusing on LID practices in mixed land cover watersheds. We present key concepts that have emerged from LID research at the local scale, considerations for scaling this research to watersheds, recent advances and findings in scaling the effects of LID practices on water quality and quantity at watershed scales, and the use of combined novel measurements and models for these scaling efforts. We underscore these concepts with a case study that evaluates the effects of three LID practices using simulation modeling across a mixed land cover watershed. This synthesis and case study highlight that scientists are making progress toward successfully tailoring fundamental research questions with decision-making goals in mind, yet we still have a long road ahead.

  7. Enhancements to TauDEM to support Rapid Watershed Delineation Services

    NASA Astrophysics Data System (ADS)

    Sazib, N. S.; Tarboton, D. G.

    2015-12-01

    Watersheds are widely recognized as the basic functional unit for water resources management studies and are important for a variety of problems in hydrology, ecology, and geomorphology. Nevertheless, delineating a watershed spread across a large region is still cumbersome due to the processing burden of working with large Digital Elevation Model. Terrain Analysis Using Digital Elevation Models (TauDEM) software supports the delineation of watersheds and stream networks from within desktop Geographic Information Systems. A rich set of watershed and stream network attributes are computed. However limitations of the TauDEM desktop tools are (1) it supports only one type of raster (tiff format) data (2) requires installation of software for parallel processing, and (3) data have to be in projected coordinate system. This paper presents enhancements to TauDEM that have been developed to extend its generality and support web based watershed delineation services. The enhancements of TauDEM include (1) reading and writing raster data with the open-source geospatial data abstraction library (GDAL) not limited to the tiff data format and (2) support for both geographic and projected coordinates. To support web services for rapid watershed delineation a procedure has been developed for sub setting the domain based on sub-catchments, with preprocessed data prepared for each catchment stored. This allows the watershed delineation to function locally, while extending to the full extent of watersheds using preprocessed information. Additional capabilities of this program includes computation of average watershed properties and geomorphic and channel network variables such as drainage density, shape factor, relief ratio and stream ordering. The updated version of TauDEM increases the practical applicability of it in terms of raster data type, size and coordinate system. The watershed delineation web service functionality is useful for web based software as service deployments

  8. Accomplishments of South Platte Watershed

    EPA Pesticide Factsheets

    Accomplishments of the South Platte Watershed of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  9. 7 CFR 624.5 - Coordination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with the appropriate State office of emergency preparedness and other Federal, tribal, or local..., provide assistance and coordinate work with the appropriate State office of emergency preparedness and... AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.5 Coordination. (a) If the President declares...

  10. Moving survivorship care plans forward: focus on care coordination.

    PubMed

    Salz, Talya; Baxi, Shrujal

    2016-07-01

    After completing treatment for cancer, the coordination of oncology and primary care presents a challenge for cancer survivors. Many survivors need continued oncology follow-up, and all survivors require primary care. Coordinating the shared care of a cancer survivor, or facilitating an informed handoff from oncology to primary care, is essential for cancer survivors. Survivorship care plans are personalized documents that summarize cancer treatment and outline a plan of recommended ongoing care, with the goal of facilitating the coordination of post-treatment care. Despite their face validity, five trials have failed to demonstrate the effectiveness of survivorship care plans. We posit that these existing trials have critical shortcomings and do not adequately address whether survivorship care plans improve care coordination. Moving forward, we propose four criteria for future trials of survivorship care plans: focusing on high-needs survivor populations, tailoring the survivorship care plan to the care setting, facilitating implementation of the survivorship care plan in clinical practice, and selecting appropriate trial outcomes to assess care coordination. When trials meet these criteria, we can finally assess whether survivorship care plans help cancer survivors receive optimal oncology and primary care. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. An adaptive watershed management assessment based on watershed investigation data.

    PubMed

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  12. Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-streammore » crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.« less

  13. RESEARCH NEEDS FOR EFFECTIVE WATERSHED PLANNING

    EPA Science Inventory

    Watershed research has historically focused on physical and biological processes, stressor-response, and effects research, providing valuable understanding of the effects of human activity and natural disturbances on watershed ecosystems. Continued research to support watershed ...

  14. Wind River Watershed Restoration: 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Patrick J.

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement ofmore » Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers

  15. Photo Gallery for South Platte Watershed

    EPA Pesticide Factsheets

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating

  16. Links from South Platte Watershed Partners

    EPA Pesticide Factsheets

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating.

  17. Photo Gallery for Anacostia Watershed (Washington, DC/Maryland)

    EPA Pesticide Factsheets

    Anacostia Watershed (Washington, DC/Maryland) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating

  18. Protect and Restore Lolo Creek Watershed, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, stabilizing streambanks, decommissioning roads, and upgrading culverts. During the years 2000-2003, trees were planted in riparian areas of headwater streams to Lolo Creek. Inventory of culvertsmore » is an on-going practice, being completed by sub-drainage, and are being prioritized for replacement to accommodate fish passage and 100-year flow events throughout the watershed. Tribal crews completed maintenance to the previously built fence.« less

  19. Meetings and Events about South Platte Watershed

    EPA Pesticide Factsheets

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating.

  20. WATERSHED AND OTHER PLACE-BASED RISK ASSESSMENTS

    EPA Science Inventory

    Place-based assessments include regional, watershed and other geographically focused assessments.

    Watershed Assessments and Methods

    The watershed ...

  1. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy,more » and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.« less

  2. Links Related to Anacostia Watershed (Washington, DC/Maryland)

    EPA Pesticide Factsheets

    Anacostia Watershed (Washington, DC/Maryland) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  3. Meetings & Events about Anacostia Watershed (Washington, DC/Maryland)

    EPA Pesticide Factsheets

    Anacostia Watershed (Washington, DC/Maryland) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  4. Program Contacts for Patapsco Watershed/Baltimore Region (Maryland)

    EPA Pesticide Factsheets

    Patapsco Watershed/Baltimore Region (Maryland) Area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  5. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    USGS Publications Warehouse

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  6. Mission, Goals and Workgroups of South Platte Watershed

    EPA Pesticide Factsheets

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating

  7. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    NASA Astrophysics Data System (ADS)

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  8. Urban Waters and the Patapsco Watershed/Baltimore Region (Maryland)

    EPA Pesticide Factsheets

    Patapsco Watershed / Baltimore Area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  9. Seasonal Variation in Water Chemistry Parameters in the Clayburn - Willband Watershed, Abbotsford, British Columbia.

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Faculty and students from the University of the Fraser Valley (UFV) have conducted time series sampling of the Fraser River at Fort Langley and six Fraser Valley tributaries as a member of the Global Rivers Observatory (GRO, www.globalrivers.org) coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. The Clayburn - Willband - Stoney watershed has become a focus of the sampling being conducted by faculty and students from the Geography and Biology Departments at UFV. Water chemistry data (water temperature, dissolved oxygen, conductivity, pH and turbidity) and samples (nutrients, major ions and bacteria) have been collected weekly from sites on these creeks. These watersheds are threatened by increasing urban development, increasing idustrial activity, and expansion of agricultural landuse within the watershed. Documenting the seasonal changes in the water chemistry as measured during the onset of the heavy fall and winter precipitation events, the wet and cool winters and springs, and the hot and dry summers will assist in attempts to protect these important salmon spawning streams from anthropogenic activity.

  10. Delphi Research Methodology Applied to Place-Based Watershed Education

    ERIC Educational Resources Information Center

    Vallor, Rosanna R.; Yates, Kimberly A.; Brody, Michael

    2016-01-01

    This research focuses on the results of the Flathead Watershed Delphi survey, a consensus-building methodology used to establish foundational knowledge, skills and dispositions for the Flathead Watershed Educators Guide, a place-based watershed curriculum for middle school grades based on the Flathead Watershed Sourcebook. Survey participants (n =…

  11. Urban Waters and the Proctor Creek Watershed/Atlanta (Georgia)

    EPA Pesticide Factsheets

    Proctor Creek Watershed/Atlanta (Georgia) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  12. The patient perspective: utilizing focus groups to inform care coordination for high-risk medicaid populations.

    PubMed

    Sheff, Alex; Park, Elyse R; Neagle, Mary; Oreskovic, Nicolas M

    2017-07-25

    Care coordination programs for high-risk, high-cost patients are a critical component of population health management. These programs aim to improve outcomes and reduce costs and have proliferated over the last decade. Some programs, originally designed for Medicare patients, are now transitioning to also serve Medicaid populations. However, there are still gaps in the understanding of what barriers to care Medicaid patients experience, and what supports will be most effective for providing them care coordination. We conducted two focus groups (n = 13) and thematic analyses to assess the outcomes drivers and programmatic preferences of Medicaid patients enrolled in a high-risk care coordination program at a major academic medical center in Boston, MA. Two focus groups identified areas where care coordination efforts were having a positive impact, as well as areas of unmet needs among the Medicaid population. Six themes emerged from the focus groups that clustered in three groupings: In the first group (1) enrollment in an existing medical care coordination programs, and (2) provider communication largely presented as positive accounts of assistance, and good relationships with providers, though participants also pointed to areas where these efforts fell short. In the second group (3) trauma histories, (4) mental health challenges, and (5) executive function difficulties all presented challenges faced by high-risk Medicaid patients that would likely require redress through additional programmatic supports. Finally, in the third group, (6) peer-to-peer support tendencies among patients suggested an untapped resource for care coordination programs. Programs aimed at high-risk Medicaid patients will want to consider programmatic adjustments to attend to patient needs in five areas: (1) provider connection/care coordination, (2) trauma, (3) mental health, (4) executive function/paperwork and coaching support, and (5) peer-to-peer support.

  13. Cross-boundary cooperation in a watershed context: the sentiments of private forest landowners.

    PubMed

    Rickenbach, Mark G; Reed, A Scott

    2002-10-01

    Ecosystem management and sustainable forestry on mixed ownership landscapes will require some level of cross-boundary coordination or management. Oregon's experiment with local, voluntary, collaborative forums, called watershed councils, is one mechanism to foster cross-boundary management. Fifty qualitative, in-depth interviews in three study areas were conducted with nonindustrial private forest (NIPF) landowners, watershed council members, and agency employees to learn how and why landowners participate (or not) on watershed councils. Study areas were located in three different areas of the state to reflect different ecological and organizational settings. Our case study identified three themes-stewardship ethic, property rights amid uncertainty, and action orientation-that were most salient among landowners when deciding to participate in their local watershed council. Other factors related to competing opportunities were also identified. Our results relate to the social psychological antecedents to cooperation of perceived consensus, group identity, and legitimacy of authority as well as to applied situations where cross-boundary coordination and management are goals.

  14. Effects of timber harvesting on the lag time of Caspar Creek watershed

    Treesearch

    Karen Hardison Sendek

    1985-01-01

    Abstract - Hydrograph lag time was analyzed to determine changes after road construction and after selective, tractor-yarded logging in a Caspar Creek watershed, Mendocino County, California. The paired watershed technique was used. Hydrograph lag time for each storm was the time separation between the midpoint of precipitation and the time coordinate of the runoff...

  15. Watershed Restoration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve themore » watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.« less

  16. Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2006-07-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.« less

  17. Photo Gallery from the Los Angeles River Watershed (California)

    EPA Pesticide Factsheets

    Photo gallery of the Los Angeles River Watershed area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  18. 7 CFR 624.5 - Coordination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Presidentially-declared natural disasters. (b) When an NRCS State Conservationist determines that a watershed... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... an area to be a major disaster area, NRCS will provide assistance which will be coordinated with the...

  19. Building multi-country collaboration on watershed ...

    EPA Pesticide Factsheets

    Community-based watershed resilience programs that bridge public health and environmental outcomes often require cross-boundary, multi-country collaboration. The CRESSIDA project, led by the Regional Environmental Center for Central and Eastern Europe (REC) and supported by the US Environmental Protection Agency (EPA), forwards a resilience-focused approach for Western Balkan communities in the Drini and Drina river watersheds with the goal of safeguarding public health and the environment. The initial phases of this project give a contextualized example of how to advance resilience-driven environmental health goals in Western Balkan communities, and experience within the region has garnered several theme areas that require focus in order to promote a holistic watershed management program. In this paper, using CRESSIDA as a case study, we show (1) how watershed projects designed with resilience-driven environmental health goals can work in context, (2) provide data surrounding contextualized problems with resilience and suggest tools and strategies for the implementation of projects to address these problems, and (3) explore how cross-boundary foci are central to the success of these approaches in watersheds that comprise several countries. Published in the journal, Reviews on Environmental Health.

  20. Understanding Human Impact: Second Graders Explore Watershed Dynamics

    ERIC Educational Resources Information Center

    Magruder, Robin; Rosenauer, Julia

    2016-01-01

    This article describes a second grade science enrichment unit with a focus on human impact, both positive and negative, on the living and nonliving components of the local watershed. Investigating the local watershed gave the unit a personal and pragmatic connection to students' lives because they depend on the local watershed for what they need…

  1. Applying soil property information for watershed assessment.

    NASA Astrophysics Data System (ADS)

    Archer, V.; Mayn, C.; Brown, S. R.

    2017-12-01

    The Forest Service uses a priority watershed scheme to guide where to direct watershed restoration work. Initial assessment was done across the nation following the watershed condition framework process. This assessment method uses soils information for a three step ranking across each 12 code hydrologic unit; however, the soil information used in the assessment may not provide adequate detail to guide work on the ground. Modern remote sensing information and terrain derivatives that model the environmental gradients hold promise of showing the influence of soil forming factors on watershed processes. These small scale data products enable the disaggregation of coarse scale soils mapping to show continuous soil property information across a watershed. When this information is coupled with the geomorphic and geologic information, watershed specialists can more aptly understand the controlling influences of drainage within watersheds and focus on where watershed restoration projects can have the most success. A case study on the application of this work shows where road restoration may be most effective.

  2. Restore McComas Meadows; Meadow Creek Watershed, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. During this contract period, bids were solicited and awarded for two culvert replacement projects on Doe Creek, and a tributary to Meadow Creek. Additionally, NEPA and permits were completed for the ditch restoration project within McComas Meadows. Due to delays in cultural resource surveys, the contract was not awarded for the performance of the ditch restoration. It will occur in 2005. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.« less

  3. Implementing watershed investment programs to restore fire-adapted forests for watershed services

    NASA Astrophysics Data System (ADS)

    Springer, A. E.

    2013-12-01

    Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in

  4. DEM time series of an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Pineux, Nathalie; Lisein, Jonathan; Swerts, Gilles; Degré, Aurore

    2014-05-01

    In agricultural landscape soil surface evolves notably due to erosion and deposition phenomenon. Even if most of the field data come from plot scale studies, the watershed scale seems to be more appropriate to understand them. Currently, small unmanned aircraft systems and images treatments are improving. In this way, 3D models are built from multiple covering shots. When techniques for large areas would be to expensive for a watershed level study or techniques for small areas would be too time consumer, the unmanned aerial system seems to be a promising solution to quantify the erosion and deposition patterns. The increasing technical improvements in this growth field allow us to obtain a really good quality of data and a very high spatial resolution with a high Z accuracy. In the center of Belgium, we equipped an agricultural watershed of 124 ha. For three years (2011-2013), we have been monitoring weather (including rainfall erosivity using a spectropluviograph), discharge at three different locations, sediment in runoff water, and watershed microtopography through unmanned airborne imagery (Gatewing X100). We also collected all available historical data to try to capture the "long-term" changes in watershed morphology during the last decades: old topography maps, soil historical descriptions, etc. An erosion model (LANDSOIL) is also used to assess the evolution of the relief. Short-term evolution of the surface are now observed through flights done at 200m height. The pictures are taken with a side overlap equal to 80%. To precisely georeference the DEM produced, ground control points are placed on the study site and surveyed using a Leica GPS1200 (accuracy of 1cm for x and y coordinates and 1.5cm for the z coordinate). Flights are done each year in December to have an as bare as possible ground surface. Specific treatments are developed to counteract vegetation effect because it is know as key sources of error in the DEM produced by small unmanned aircraft

  5. Cumulative watershed effects: a research perspective

    Treesearch

    Leslie M. Reid; Robert R. Ziemer

    1989-01-01

    A cumulative watershed effect (CWE) is any response to multiple land-use activities that is caused by, or results in, altered watershed function. The CWE issue is politically defined, as is the significance of particular impacts. But the processes generating CWEs are the traditional focus of geomorphology and ecology, and have thus been studied for decades. The CWE...

  6. Focus groups to explore healthcare professionals' experiences of care coordination: towards a theoretical framework for the study of care coordination.

    PubMed

    Van Houdt, Sabine; Sermeus, Walter; Vanhaecht, Kris; De Lepeleire, Jan

    2014-12-24

    Strategies to improve care coordination between primary and hospital care do not always have the desired results. This is partly due to incomplete understanding of the key concepts of care coordination. An in-depth analysis of existing theoretical frameworks for the study of care coordination identified 14 interrelated key concepts. In another study, these 14 key concepts were further explored in patients' experiences. Additionally, "patient characteristics" was identified as a new key concept in patients' experiences and the previously identified key concept "quality of relationship" between healthcare professionals was extended to "quality of relationship" with the patient. Together, these 15 interrelated key concepts resulted in a new theoretical framework. The present study aimed at improving our understanding of the 15 previously identified key concepts and to explore potentially previous unidentified key concepts and the links between these by exploring how healthcare professionals experience care coordination. A qualitative design was used. Six focus groups were conducted including primary healthcare professionals involved in the care of patients who had breast cancer surgery at three hospitals in Belgium. Data were analyzed using constant comparative analysis. All 15 previously identified key concepts of care coordination were further explored in healthcare professionals' experiences. Links between these 15 concepts were identified, including 9 newly identified links. The concept "external factors" was linked with all 6 concepts relating to (inter)organizational mechanisms; "task characteristics", "structure", "knowledge and information technology", "administrative operational processes", "cultural factors" and "need for coordination". Five of these concepts related to 3 concepts of relational coordination; "roles", "quality of relationship" and "exchange of information". The concept of "task characteristics" was only linked with "roles" and "exchange of

  7. Watershed management in the United States in the 21st Century

    Treesearch

    David B. Thorud; George W. Brown; Brian J. Boyle; Clare M. Ryan

    2000-01-01

    Views of watershed management in the 21st Century are presented in terms of concept, status, progress and future of watershed planning. The watershed as a unit will increasingly be the basis of planning because the concept is widely understood, many state and federal laws require such a focus, and watersheds are a logical entity for monitoring purposes. Impediments to...

  8. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    USGS Publications Warehouse

    Gassman, Philip W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment

  9. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  10. A proposed international watershed research network

    USGS Publications Warehouse

    Osterkamp, W.R.; Gray, J.R.

    2003-01-01

    An “International Watershed Research Network” is to be an initial project of the Sino-U. S. Centers for Soil and Water Conservation and Environmental Protection. The Network will provide a fundamental database for research personnel of the Centers, as well as of the global research community, and is viewed as an important resource for their successful operation. Efforts are under way to (a) identify and select candidate watersheds, (b) develop standards and protocols for data collection and dissemination, and (c) specify other data sources on erosion, sediment transport, hydrology, and ancillary information of probable interest and use to participants of the Centers. The initial focus of the Network will be on water-deficient areas. Candidate watersheds for the Network are yet to be determined although likely selections include the Ansai Research Station, northern China, and the Walnut Gulch Experimental Watershed, Arizona, USA. The Network is to be patterned after the Vigil Network, an open-ended group of global sites and small drainage basins for which Internet-accessible geomorphic, hydrologic, and biological data are periodically collected or updated. Some types of data, using similar instruments and observation methods, will be collected at all watersheds selected for the Network. Other data from the watersheds that may reflect individual watershed characteristics and research objectives will be collected as well.

  11. A watershed-based adaptive knowledge system for developing ecosystem stakeholder partnerships

    NASA Astrophysics Data System (ADS)

    Lin, Hebin; Thornton, Jeffrey A.; Shadrin, Nickolai

    2015-11-01

    This study proposes a Watershed-based Adaptive Knowledge System (WAKES) to consistently coordinate multiple stakeholders in developing sustainable partnerships for ecosystem management. WAKES is extended from the institutional mechanism of Payments for Improving Ecosystem Services at the Watershed-scale (PIES-W). PIES-W is designed relating to the governance of ecosystem services fl ows focused on a lake as a resource stock connecting its infl owing and outfl owing rivers within its watershed. It explicitly realizes the values of conservation services provided by private land managers and incorporates their activities into the public organizing framework for ecosystem management. It implicitly extends the "upstream-to-downstream" organizing perspective to a broader vision of viewing the ecosystems as comprised of both "watershed landscapes" and "marine landscapes". Extended from PIES-W, WAKES specifies two corresponding feedback: Framework I and II. Framework I is a relationship matrix comprised of three input-output structures of primary governance factors intersecting three subsystems of a watershed with regard to ecosystem services and human stakeholders. Framework II is the Stakeholder-and-Information structure channeling five types of information among four stakeholder groups in order to enable the feedbacks mechanism of Framework I. WAKES identifies the rationales behind three fundamental information transformations, illustrated with the Transboundary Diagnostic Analysis and the Strategic Action Program of the Bermejo River Binational Basin. These include (1) translating scientific knowledge into public information within the Function-and-Service structure corresponding to the ecological subsystem, (2) incorporating public perceptions into political will within the Service- and- Value structure corresponding to the economic subsystem, and (3) integrating scientific knowledge, public perceptions and political will into management options within the Value

  12. USING WATERSHED COMPOSITION AND STRUCTURE AS INDICATORS OF ESTUARINE CONDITION

    EPA Science Inventory

    Many researchers examining relationships between water quality and the surrounding watershed have focused on landscape metrics associated with composition (e.g., % of the whole watershed in agriculture) often excluding measures of landscape structure. In addition, little work ha...

  13. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaney, Mark D.

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fishmore » production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  14. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  15. The Shenandoah Watershed Study: 20 years of Catchment Hydrogeochemistry

    NASA Astrophysics Data System (ADS)

    Galloway, J.

    2002-05-01

    The Shenandoah Watershed Study (SWAS) is a cooperative program between the Department of Environmental Sciences at the University of Virginia and the National Park Service. The scientific objective of the SWAS program is to improve understanding of processes and factors that govern hydrobiogeochemical conditions in forested watersheds of the Shenandoah National Park (SNP), VA, and the central Appalachian Mountain region. The SWAS program was initiated in 1979, with the establishment of water quality monitoring on two streams. The current SWAS network involves 14 primary study watersheds, in which a combination of discharge gauging, quarterly and weekly water quality sampling, and episodic storm-flow sampling take place. In addition, a number of extensive water quality surveys, fish population surveys, soil surveys, vegetation surveys, and plot-scale manipulations have been conducted in the SWAS watersheds in support of basic research in watershed science. The SWAS program is presently coordinated with the Virginia Trout Stream Sensitivity Study (VTSSS), which extends the watershed-based research to an additional 51 native brook trout streams located on public lands throughout western Virginia. During the past two decades the SWAS program has developed a uniquely comprehensive watershed database for SNP resource managers, while making major contributions to scientific understanding of surface water acidification and the biogeochemistry of forested mountain watersheds. The SWAS program is characterized by long-term continuity of sampling, a wide range of temporal resolution, and the availability of data from multiple watersheds within the landscape. These attributes enable both detection of long-term trends in response to chronic anthropogenic influences (e.g., acidic deposition) and interpretation of transient natural disturbances (e.g., pest outbreaks, fire, etc.). The spatial redundancy of the network provides insight into the regional homogeneity of observed

  16. Discover a Watershed: The Watershed Manager Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2002

    2002-01-01

    This guide contains 19 science-based, multidisciplinary activities that teach what a watershed is, how it works and why we must all consider ourselves watershed managers. An extensive background section introduces readers to fundamental watershed concepts. Each activity adapts to local watersheds, contains e-links for further Internet research and…

  17. Report: Saving the Chesapeake Bay Watershed Requires Better Coordination of Environmental and Agricultural Resources

    EPA Pesticide Factsheets

    Report #2007-P-00004, November 20, 2006. Despite significant efforts to improve water quality in the Chesapeake Bay watershed, excess nutrients and sediment continue to impair the Bay’s water quality.

  18. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with

  19. South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) Systems Thinking

    EPA Pesticide Factsheets

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating

  20. Watershed Management Optimization Support Tool (WMOST) v1: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a screening model that is spatially lumped with options for a daily or monthly time step. It is specifically focused on modeling the effect of management decisions on the watershed. The model considers water flows and ...

  1. A science-based, watershed strategy to support effective remediation of abandoned mine lands

    USGS Publications Warehouse

    Buxton, Herbert T.; Nimick, David A.; Von Guerard, Paul; Church, Stan E.; Frazier, Ann G.; Gray, John R.; Lipin, Bruce R.; Marsh, Sherman P.; Woodward, Daniel F.; Kimball, Briant A.; Finger, Susan E.; Ischinger, Lee S.; Fordham, John C.; Power, Martha S.; Bunch, Christine M.; Jones, John W.

    1997-01-01

    A U.S. Geological Survey Abandoned Mine Lands Initiative will develop a strategy for gathering and communicating the scientific information needed to formulate effective and cost-efficient remediation of abandoned mine lands. A watershed approach will identify, characterize, and remediate contaminated sites that have the most profound effect on water and ecosystem quality within a watershed. The Initiative will be conducted during 1997 through 2001 in two pilot watersheds, the Upper Animas River watershed in Colorado and the Boulder River watershed in Montana. Initiative efforts are being coordinated with the U.S. Forest Service, Bureau of Land Management, National Park Service, and other stakeholders which are using the resulting scientific information to design and implement remediation activities. The Initiative has the following eight objective-oriented components: estimate background (pre-mining) conditions; define baseline (current) conditions; identify target sites (major contaminant sources); characterize target sites and processes affecting contaminant dispersal; characterize ecosystem health and controlling processes at target sites; develop remediation goals and monitoring network; provide an integrated, quality-assured and accessible data network; and document lessons learned for future applications of the watershed approach.

  2. Extending the ARS Experimental Watersheds to Address Regional Issues

    NASA Astrophysics Data System (ADS)

    Marks, D.; Goodrich, D. C.; Winstral, A.; Bosch, D. D.; Pool, D.

    2001-12-01

    The USDA-Agricultural Research Service's (ARS) Watershed Research Program maintains and operates a diverse, geog raphically distributed, nested, multi-scale, national ex perimental watershed network. This network, much of which has been operational for more than 40 years (several more than 60 years), constitutes one the best networks of its kind in the world. The watershed network and its instrumentation was primarily established to assess the hydrologic impacts of watershed conservation and management practices. It has evolved, through development of long-term hydrologic data, as a network of high quality outdoor laboratories for addressing emerging science issues facing hydrologists and resource managers. While the value of the experimental watershed for investigating precipitation, climatic, and hydrologic processes is unquestioned, extending the results from these investigations to other sites and larger areas is more difficult. ARS experimental watersheds are a few hundred km2 or smaller making it challenging to address regional scale issues. To address this the ARS watershed program is, with a suite of partners from universities and other federal agencies, enlarging its research focus to extend beyond the boundaries of the experimental watershed. In this poster we present several examples of this effort, with suggestions on how, using the experimental watershed and its core, a larger scale hydrologic observatory could be developed and maintained.

  3. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    EPA Pesticide Factsheets

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  4. Watershed analysis

    Treesearch

    Alan Gallegos

    2002-01-01

    Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...

  5. WATERSHED INFORMATION - SURF YOUR WATERSHED

    EPA Science Inventory

    Surf Your Watershed is both a database of urls to world wide web pages associated with the watershed approach of environmental management and also data sets of relevant environmental information that can be queried. It is designed for citizens and decision makers across the count...

  6. Multi-scale trends analysis of landscape stressors in an urbanizing coastal watershed

    EPA Science Inventory

    Anthropogenic land based stressors within a watershed can deliver major impacts to downstream and adjacent coastal waterways affecting water quality and estuarine habitats. Our research focused on a subset of non-point sources of watershed stressors specifically, human population...

  7. Watershed Central: A New Gateway to Watershed Information

    EPA Science Inventory

    Many communities across the country struggle to find the right approaches, tools and data to in their watershed plans. EPA recently posted a new Web site called "Watershed Central, a “onestop" tool, to help watershed organizations and others find key resources to protect their ...

  8. Research on Coupling Method of Watershed Initial Water Rights Allocation in Daling River

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fengping, W.

    2016-12-01

    Water scarcity is now a common occurrence in many countries. The situation of watershed initial water rights allocation has caused many benefit conflicts among regions and regional water sectors of domestic and ecology environment and industries in China. This study aims to investigate the method of watershed initial water rights allocation in the perspective of coupling in Daling River Watershed taking provincial initial water rights and watershed-level governmental reserved water as objects. First of all, regarding the allocation subsystem of initial water rights among provinces, this research calculates initial water rights of different provinces by establishing the coupling model of water quantity and quality on the principle of "rewarding efficiency and penalizing inefficiency" based on the two control objectives of water quantity and quality. Secondly, regarding the allocation subsystem of watershed-level governmental reserved water rights, the study forecasts the demand of watershed-level governmental reserved water rights by the combination of case-based reasoning and water supply quotas. Then, the bilaterally coupled allocation model on water supply and demand is designed after supply analysis to get watershed-level governmental reserved water rights. The results of research method applied to Daling River Watershed reveal the recommended scheme of watershed initial water rights allocation based on coordinated degree criterion. It's found that the feasibility of the iteration coupling model and put forward related policies and suggestions. This study owns the advantages of complying with watershed initial water rights allocation mechanism and meeting the control requirements of water quantity, water quality and water utilization efficiency, which help to achieve the effective allocation of water resources.

  9. [Watershed water environment pollution models and their applications: a review].

    PubMed

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  10. Storm flow export of metolachlor from a coastal plain watershed.

    PubMed

    Watts, D W; Novak, J M; Johnson, M H; Stone, K C

    2000-03-01

    During an 18-month (1994-1995) survey of the surface water in an Atlantic Coastal Plain watershed, metolachlor was most frequently detected during storm flow events. Therefore, a sampling procedure, focused on storm flow, was implemented in June of 1996. During 1996, three tropical cyclones made landfall within 150 km of the watershed. These storms, as well as several summer thunderstorms, produced six distinct storm flow events within the watershed. Metolachlor was detected leaving the watershed during each event. In early September, Hurricane Fran produced the largest storm flow event and accounted for the majority of the metolachlor exports. During the storm event triggered by Hurricane Fran, the highest daily average flow (7.5 m2 s-1) and highest concentration (5.1 micrograms L-1) ever measured at the watershed outlet were recorded. Storm flow exports leaving the watershed represented 0.1 g ha-1 or about 0.04% of active ingredient applied.

  11. Targeting land-use change for nitratenitrogen load reductions in an agricultural watershed

    USGS Publications Warehouse

    Jha, M.K.; Schilling, K.E.; Gassman, Philip W.; Wolter, C.F.

    2010-01-01

    The research was conducted as part of the USDA's Conservation Effects Assessment Project. The objective of the project was to evaluate the environmental effects of land-use changes, with a focus on understanding how the spatial distribution throughout a watershed influences their effectiveness.The Soil and Water AssessmentTool (SWAT) water quality model was applied to the Squaw Creek watershed, which covers 4,730 ha (11,683 ac) of prime agriculture land in southern Iowa. The model was calibrated (2000 to 2004) and validated (1996 to 1999) for overall watershed hydrology and for streamflow and nitrate loadings at the watershed outlet on an annual and monthly basis. Four scenarios for land-use change were evaluated including one scenario consistent with recent land-use changes and three scenarios focused on land-use change on highly erodible land areas, upper basin areas, and floodplain areas. Results for the Squaw Creek watershed suggested that nitrate losses were sensitive to land-use change. If land-use patterns were restored to 1990 conditions, nitrate loads may be reduced 7% to 47% in the watershed and subbasins, whereas converting row crops to grass in highly erodible land, upper basin, and floodplain areas would reduce nitrate loads by 47%, 16%, and 8%, respectively. These SWAT model simulations can provide guidance on how to begin targeting land-use change for nitrate load reductions in agricultural watersheds.

  12. Watershed Health: The Need for a New Perspective

    NASA Astrophysics Data System (ADS)

    Reeves, G.

    2017-12-01

    Watershed health is a measure of the condition of the aquatic ecosystem within a watershed and is indicated by a specific set of environmental conditions that provide desired ecological, social, and legal amenities. A watershed is deemed "healthy" if it has these attributes and the traditional management approach to maintaining or developing a healthy watershed is to create and maintain these specific conditions within the watershed. However, this approach may not be applicable to situations in which processes are complex, non-linear, and poorly understood. The focus on a specific set of conditions comes at the expense of recognizing the ecological processes that create and maintain habitats for an aquatic organisms and the ecological context in which they evolved, and may lead to further degradation or compromising of the ecosystems and landscapes of interest. An emerging perspective suggests that aquatic-riparian ecosystems possess a range of processes and attributes that are inherently complex, nonlinear, and dynamic and because of the variation in the size and asynchronous nature of disturbance events, conditions will vary over time among watersheds, resulting in a mosaic of biophysical conditions across the landscape. Thus, watershed health may not be a single condition but rather a suite of conditions similar to how terrestrial ecosystems are viewed, requiring an integrated assessment of a range of ecological conditions and consideration of the intactness of key ecological processes.

  13. Workshop to transfer VELMA watershed model results to ...

    EPA Pesticide Factsheets

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on streamflow, stream temperature, and other habitat characteristics affecting threatened salmon populations in the 100 square mile Tolt River watershed in Washington state. To date, the WED group has fully calibrated the watershed model to simulate Tolt River flows with a high degree of accuracy under current and historical conditions and practices, and is in the process of simulating long-term responses to specific watershed restoration practices conducted by the Snoqualmie Tribe and partners. On July 20-21 WED Researchers Bob McKane, Allen Brookes and ORISE Fellow Jonathan Halama will be attending a workshop at the Tolt River site in Carnation, WA, to present and discuss modeling results with the Snoqualmie Tribe and other Tolt River watershed stakeholders and land managers, including the Washington Departments of Ecology and Natural Resources, U.S. Forest Service, City of Seattle, King County, and representatives of the Northwest Indian Fisheries Commission. The workshop is being co-organized by the Snoqualmie Tribe, EPA Region 10 and WED. The purpose of this 2-day workshop is two-fold. First, on Day 1, the modeling team will perform its second site visit to the watershed, this time focus

  14. Arizona watershed framework in the Verde River watershed

    Treesearch

    Ren Northrup

    2000-01-01

    The Arizona Department of Environmental Quality, Water Quality Division drafted a six-step approach to guide its staff and local participants in developing and implementing watershed management plans. From January 1999 through June 2000, the draft Arizona Statewide Watershed Framework will be tested in Arizona's Verde River watershed. This concept proofing...

  15. Educating the Community: A Watershed Model Project.

    ERIC Educational Resources Information Center

    Perryess, C. S.

    2001-01-01

    Focuses on the construction and use of a schoolyard model of the Morrow Bay watershed in California. Describes the design and use of materials that include styrofoam insulation, crushed granite, cement, and stucco. (DDR)

  16. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds

    NASA Astrophysics Data System (ADS)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.

    2016-12-01

    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  17. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    NASA Astrophysics Data System (ADS)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  18. Watershed Central: Dynamic Collaboration for Improving Watershed Management (Philadelphia)

    EPA Science Inventory

    The Watershed Central web and wiki pages will be presented and demonstrated real-time as part of the overview of Web 2.0 collaboration tools for watershed management. The presentation portion will discuss how EPA worked with watershed practitioners and within the Agency to deter...

  19. Watershed analysis of the Salmon River watershed, Washington : hydrology

    USGS Publications Warehouse

    Bidlake, William R.

    2003-01-01

    The U.S. Geological Survey analyzed selected hydrologic conditions as part of a watershed analysis of the Salmon River watershed, Washington, conducted by the Quinault Indian Nation. The selected hydrologic conditions were analyzed according to a framework of hydrologic key questions that were identified for the watershed. The key questions were posed to better understand the natural, physical, and biological features of the watershed that control hydrologic responses; to better understand current streamflow characteristics, including peak and low flows; to describe any evidence that forest harvesting and road construction have altered frequency and magnitude of peak and low flows within the watershed; to describe what is currently known about the distribution and extent of wetlands and any impacts of land management activities on wetlands; and to describe how hydrologic monitoring within the watershed might help to detect future hydrologic change, to preserve critical ecosystem functions, and to protect public and private property.

  20. Study protocol: cross-national comparative case study of recovery-focused mental health care planning and coordination (COCAPP).

    PubMed

    Simpson, Alan; Hannigan, Ben; Coffey, Michael; Jones, Aled; Barlow, Sally; Cohen, Rachel; Všetečková, Jitka; Faulkner, Alison; Haddad, Mark

    2015-07-03

    The collaborative care planning study (COCAPP) is a cross-national comparative study of care planning and coordination in community mental healthcare settings. The context and delivery of mental health care is diverging between the countries of England and Wales whilst retaining points of common interest, hence providing a rich geographical comparison for research. Across England the key vehicle for the provision of recovery-focused, personalised, collaborative mental health care is the care programme approach (CPA). The CPA is a form of case management introduced in England in 1991, then revised in 2008. In Wales the CPA was introduced in 2003 but has now been superseded by The Mental Health (Care Co-ordination and Care and Treatment Planning) (CTP) Regulations (Mental Health Measure), a new statutory framework. In both countries, the CPA/CTP requires providers to: comprehensively assess health/social care needs and risks; develop a written care plan (which may incorporate risk assessments, crisis and contingency plans, advanced directives, relapse prevention plans, etc.) in collaboration with the service user and carer(s); allocate a care coordinator; and regularly review care. The overarching aim of this study is to identify and describe the factors that ensure CPA/CTP care planning and coordination is personalised, recovery-focused and conducted collaboratively. COCAPP will employ a concurrent transformative mixed methods approach with embedded case studies. Phase 1 (Macro-level) will consider the national context through a meta-narrative mapping (MNM) review of national policies and the relevant research literature. Phase 2 (Meso-level and Micro-level) will include in-depth micro-level case studies of everyday 'frontline' practice and experience with detailed qualitative data from interviews and reviews of individual care plans. This will be nested within larger meso-level survey datasets, senior-level interviews and policy reviews in order to provide

  1. Application of WATERSHED ECOLOGICAL RISK ASSESSMENT Methods to Watershed Management

    EPA Science Inventory

    Watersheds are frequently used to study and manage environmental resources because hydrologic boundaries define the flow of contaminants and other stressors. Ecological assessments of watersheds are complex because watersheds typically overlap multiple jurisdictional boundaries,...

  2. Application of Watershed Ecological Risk Assessment Methods to Watershed Management

    EPA Science Inventory

    Watersheds are frequently used to study and manage environmental resources because hydrologic boundaries define the flow of contaminants and other stressors. Ecological assessments of watersheds are complex because watersheds typically overlap multiple jurisdictional boundaries,...

  3. Watershed Seasons

    ERIC Educational Resources Information Center

    Endreny, Anna

    2007-01-01

    All schools are located in "watersheds," land that drains into bodies of water. Some watersheds, like the one which encompasses the school discussed in this article, include bodies of water that are walking distance from the school. The watershed cited in this article has a brook and wetland within a several-block walk from the school. This…

  4. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution

    PubMed Central

    Janke, Benjamin D.; Nidzgorski, Daniel A.; Millet, Dylan B.; Baker, Lawrence A.

    2017-01-01

    Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains. PMID:28373560

  5. Removing Mercury in the Guadalupe River Watershed Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Removing Mercury in the Guadalupe River Watershed Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  6. Predictive Understanding of Mountainous Watershed Hydro-Biogeochemical Function and Response to Perturbations

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Williams, K. H.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.; Dwivedi, D.; Newcomer, M. E.

    2017-12-01

    Recognizing the societal importance, vulnerability and complexity of mountainous watersheds, the `Watershed Function' project is developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, floods and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. Located in the 300km2 East River headwater catchment of the Upper Colorado River Basin, the project is guided by several constructs. First, the project considers the integrated role of surface and subsurface flow and biogeochemical reactions - from bedrock to the top of the vegetative canopy, from terrestrial through aquatic compartments, and from summit to receiving waters. The project takes a system-of-systems perspective, focused on developing new methods to quantify the cumulative watershed hydrobiogeochemical response to perturbations based on information from select subsystems within the watershed, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A `scale-adaptive' modeling capability, in development using adaptive mesh refinement methods, serves as the organizing framework for the SFA. The scale-adaptive approach is intended to permit simulation of system-within-systems behavior - and aggregation of that behavior - from genome through watershed scales. This presentation will describe several early project discoveries and advances made using experimental, observational and numerical approaches. Among others, examples may include:quantiying how seasonal hydrological perturbations drive biogeochemical responses across critical zone compartments, with a focus on N and C transformations; metagenomic documentation of the spatial variability in floodplain meander microbial ecology; 3D reactive transport simulations of couped hydrological-biogeochemical behavior in the hyporheic zone; and

  7. A Workflow to Model Microbial Loadings in Watersheds ...

    EPA Pesticide Factsheets

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated with 1) land-applied manure on undeveloped areas from domestic animals; 2) direct shedding on undeveloped lands by domestic animals and wildlife; 3) urban or engineered areas; and 4) point sources that directly discharge to streams from septic systems and shedding by domestic animals. A microbial source module, which houses these formulations, is linked within a workflow containing eight models and a set of databases that form a loosely configured modeling infrastructure which supports watershed-scale microbial source-to-receptor modeling by focusing on animal-impacted catchments. A hypothetical example application – accessing, retrieving, and using real-world data – demonstrates the ability of the infrastructure to automate many of the manual steps associated with a standard watershed assessment, culminating with calibrated flow and microbial densities at the pour point of a watershed. Presented at 2016 Biennial Conference, International Environmental Modelling & Software Society.

  8. [Impact on nitrogen and phosphorous export of wetlands in Tianmu Lake watershed].

    PubMed

    Li, Zhao-Fu; Liu, Hong-Yu; Li, Heng-Peng

    2012-11-01

    Focused on understanding the function of wetland in improving water quality, Pingqiao watershed and Zhongtian watershed in Tianmu Lake drinking water sources area were selected as the research region. We integrated remote sensing, GIS techniques with field investigation and chemical analysis to analyze the relationship between wetland and water quality in watershed scale. Results show: (1) There are many wetland patches in Pingqiao and Zhongtian watershed, wetlands patch densities were respectively 7.5 km(-2) and 7.1 km(-2). Wetlands widely distributed in the Pingqiao watershed with mostly located away from the river of 500 m, whereas wetlands relatively concentrated in the lower reach within 500 meters of riverside in Zhongtian watershed. (2) Nitrogen and phosphorus nutrient retention of wetland in watershed scale was significant. The annual mean TN and DTN concentration had a strong relationship with percent area of wetlands in Zhongtian watershed while the weakest relationship was found with TP and DTP concentrations, especially, the mean TN and DTN concentrations in spring and winter had the significantly negative relationship with wetland areas of watershed. The negative relationship was existed for nitrogen in autumn of Pingqiao watershed, which suggested that watersheds varying in area of wetlands have the different nutrient reducing efficiency in seasonal periods. (3) A certain number and area of wetland will improve river water quality in watershed scale, which can instruct water environment treatment. However, considering the complexity of nutrient transport processes in watershed, wetland-related factors such as area, location, density, ecosystem structure and watershed-related factors such as temporal interval, spatial scales, slope and land use will impact on the transport processes, and related theoretical and practical problems need further research.

  9. Programs for Watershed-Plus phase for rainfed regions in India

    NASA Astrophysics Data System (ADS)

    Ramachandran, Kausalya; Ramakrishna, Y. S.

    2006-12-01

    Watershed-based development is the strategy for sustainable growth in the vast rain-fed regions of India since 1980s to enhance agricultural production, conservation of natural resources and raising rural livelihood of farming communities. Although soil and water conservation was initially the primary objective of watershed program that saw large public investment since inception, later its focus shifted to principles of equity and enhancing rural livelihood opportunities and more recently to sustainable development since mid-1990s. At present a major emphasis under watershed program is the regeneration of degraded fragile lands in rain-fed regions. Several noteworthy watershed programs have been carried out since inception that have yielded sterling results while many others have yielded little by way of unbalanced development because of improper characterization of watersheds and poor project planning and implementation. Tools of Geomatics like satellite data, GIS and GPS besides conventional ones like field survey, topographical and cadastral maps along with traditional multi-disciplinary methods like PRA, soil and water analysis, socio-economic survey etc. provide insight into characterization of watersheds, project formulation and proper implementation of such development programs. The present paper illustrates the methodology for characterization of watersheds using the tools of Geomatics on one hand, besides exhibiting its utility for scaling-out the program benefits like sustaining higher agricultural productivity, enhancing irrigation efficiency, equity, enhanced rural livelihood opportunities, women empowerment, drought-proofing etc. during Watershed-Plus phase in the coming decades, on the other.

  10. Green Infrastructure and Watershed-Scale Hydrology in a Mixed Land Cover System

    NASA Astrophysics Data System (ADS)

    Hoghooghi, N.; Golden, H. E.; Bledsoe, B. P.

    2017-12-01

    Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pollutant loads and concentrations. Research on the effectiveness of different Green Infrastructure (GI), or Low Impact Development (LID), practices to reduce these negative impacts on stream flow and water quality has been mostly focused at the local scale (e.g., plots, small catchments). However, limited research has considered the broader-scale effects of LID, such as how LID practices influence water quantity, nutrient removal, and aquatic ecosystems at watershed scales, particularly in mixed land cover and land use systems. We use the Visualizing Ecosystem Land Management Assessments (VELMA) model to evaluate the effects of different LID practices on daily and long-term watershed-scale hydrology, including infiltration surface runoff. We focus on Shayler Crossing (SHC) watershed, a mixed land cover (61% urban, 24% agriculture, 15% forest) subwatershed of the East Fork Little Miami River watershed, Ohio, United States, with a drainage area of 0.94 km2. The model was calibrated to daily stream flow at the outlet of SHC watershed from 2009 to 2010 and was applied to evaluate diverse distributions (at 25% to 100% implementation levels) and types (e.g., pervious pavement and rain gardens) of LID across the watershed. Results show reduced surface water runoff and higher rates of infiltration concomitant with increasing LID implementation levels; however, this response varies between different LID practices. The highest magnitude response in streamflow at the watershed outlet is evident when a combination of LID practices is applied. The combined scenarios elucidate that the diverse watershed-scale hydrological responses of LID practices depend primarily on the type and extent of the implemented

  11. Streamflow, sediment and carbon transport from a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Rai, S. C.

    2004-04-01

    Rivers indeed serve an important role in the carbon fluxes being recognized as a major component to regional and global environmental change. The present study focuses the sediment and carbon transports in a Himalayan watershed (elevational range 300-2650 m asl, area of 3014 ha) at Sikkim, India. The watershed has five perennial streams, all attain significant size during rainy season. The micro-watershed for each perennial stream has a mosaic distribution of land-use practices, viz. forests, agroforestry, agriculture and wastelands. The average discharge in the Rinjikhola, the watershed outlet was 840-850 l s -1 in summer season that increased by 5-6 times in rainy season. Sediment concentration varied distinctly with seasons in different streams and the outlet of the watershed. The soil loss rate from the total watershed ranged from 6 to 7 t ha -1 yr -1 that accounts to a net loss of 833 t yr -1 organic carbon, and 2025 t yr -1 dissolved organic carbon from the watershed, and more than 90% of soil losses were attributable to open cropped area. The stream discharge, soil and carbon loss and precipitation partitioning through different pathways in forest and agroforestry land-use suggest that these land-uses promote conservation of soil and carbon. It is emphasized that a good understanding of carbon transfer through overland flow and discharge is important for policy decisions and management of soil and carbon loss of a Himalayan watershed as it is very sensitive to land-use/cover changes. Therefore, the conversion of forest to agricultural land should be reversed. Agroforestry systems should be included in agricultural land in mountainous regions.

  12. How Do Land-Use and Climate Change Affect Watershed ...

    EPA Pesticide Factsheets

    With the growing emphasis on biofuel crops and potential impacts of climate variability and change, there is a need to quantify their effects on hydrological processes for developing watershed management plans. Environmental consequences are currently estimated by utilizing computer models such as Soil and Water Assessment Tool (SWAT) to simulate watershed hydrology under projected climate and land-use scenarios to assess the effect on water quantity and/or quality. Such studies have largely been deterministic in nature, with the focus being on whether hydrologic variables such as runoff, sediment and/or nutrient loads increase or decrease from the baseline case under projected scenarios. However, studying how these changes would affect watershed health in a risk-based framework has not been attempted. In this study, impacts of several projected land-use and climate change scenarios on the health of the Wildcat Creek watershed in Indiana have been assessed through three risk indicators, namely reliability-resilience-vulnerability (R-R-V). Results indicate that cultivation of biofuel crops such as Miscanthus and switchgrass has the potential to improve risk indicator values with respect to sediment, total N and total P. Climate change scenarios that involved rising precipitation levels were found to negatively impact watershed health indicators. Trends of water quality constituents under risk-based watershed health assessment revealed nuances not readily a

  13. Slowing the flow: Setting priorities and defining success in Lake Superior’s South Shore watersheds

    EPA Science Inventory

    For over 60 years, watershed conservation efforts to improve water quality have largely focused on restoring and protecting hydrology under the mantra “slow the flow”. This approach seeks to reduce peak flows with landscape scale watershed restoration approaches that ...

  14. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated

  15. Watershed Watch: Using undergraduate student-driven inquiry-based research projects as a means of engaging undeclared students in the biogeosciences

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Hale, S.; Graham, K.; Hayden, L. B.

    2009-12-01

    Watershed Watch (NSF 0525433) engages early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). The program is a partnership between two four-year campuses - the University of New Hampshire (UNH), and Elizabeth City State University (ECSU, in North Carolina); and two two-year campuses - Great Bay Community College (GBCC, in New Hampshire) and the College of the Albemarle (COA, in North Carolina). The program focuses on two watersheds: the Merrimack Ricer Watershed in New Hampshire and Massachusetts, and the Pasquotank River Watershed in Virginia and North Carolina. Both the terrestrial and aquatic components of both watersheds are evaluated using the student-driven projects. A significant component of this program is an intensive two-week Summer Research Institute (SRI), in which undeclared freshmen and sophomores investigate various aspects of their local watershed. Two Summer Research Institutes have been held on the UNH campus (2006 and 2008) and two on the ECSU campus (2007 and 2009). Students develop their own research questions and study design, collect and analyze data, and produce a scientific oral or poster presentation on the last day of the SRI. The course objectives, curriculum and schedule are presented as a model for dissemination for other institutions and programs seeking to develop inquiry-rich programs or courses designed to attract students into biogeoscience disciplines. Data from self-reported student feedback indicate the most important factors explaining high-levels of student motivation and research excellence in the program are: 1) working with committed, energetic, and enthusiastic faculty mentors, and 2) faculty mentors demonstrating high degrees of

  16. Linking the watershed to the schoolshed: teaching sustainable development in K-12 with the Chester RIver Watershed Observatory

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; Levin, D.; Seidel, J.

    2012-12-01

    (developed by Levin) engage students in the building and testing of buoys to monitor the environment. Additional hands on science activities include the Levin developed ROVs-in-a-bucket project that Trembanis has incorporated into the University of Delaware high school summer science camp TIDE (Teaching an Interest in Delaware's Estuary) http://www.ceoe.udel.edu/tide/ in which 12-15 high school students annually participate in groups working to design, build, and operate a simple remotely operated vehicle in a series of real work simulation activities such as responding to an oil spill. The new CRW network will be the focus for formal and informal learning partnerships between schools in the watershed. Professional development opportunities for Chester River watershed teachers focus on the use of sensors, utilization of GIS in the classroom, and other resources that become available as shared teaching resources. Federal, state, regional, and local users in government, private industry, and educational venues from grades k-16 will be able to observe the trends and learn together the most prudent ways to sustain and conserve natural resources.

  17. Urban Watershed Forestry Manual Part 1: Methods for Increasing Forest Cover in a Watershed

    Treesearch

    Karen Cappiella; Tom Schueler; Tiffany Wright

    2005-01-01

    This manual is one in a three-part series on using trees to protect and restore urban watersheds. A brief description of each part follows. Part 1: Methods for Increasing Forest Cover in a Watershed introduces the emerging topic of urban watershed forestry. This part also presents new methods for the watershed planner or forester to systematically measure watershed...

  18. Optimizing conservation practices in watersheds: Do community preferences matter?

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana D.; Babbar-Sebens, Meghna; Jane Luzar, E.

    2013-10-01

    This paper focuses on investigating (a) how landowner tenure and attitudes of farming communities affect the preference of individual conservation practices in agricultural watersheds, (b) how spatial distribution of landowner tenure affects the spatial optimization of conservation practices on a watershed scale, and (c) how the different attitudes and preferences of stakeholders can modify the effectiveness of alternatives obtained via classic optimization approaches that do not include the influence of existing social attitudes in a watershed during the search process. Results show that for Eagle Creek Watershed in central Indiana, USA, the most optimal alternatives (i.e., highest benefits for minimum economic costs) are for a scenario when the watershed consists of landowners who operate as farmers on their own land. When a different land-tenure scenario was used for the watershed (e.g., share renters and cash renters), the optimized alternatives had similar nitrate reduction benefits and sediment reduction benefits, but at higher economic costs. Our experiments also demonstrated that social attitudes can lead to alteration of optimized alternatives found via typical optimization approaches. For example, when certain practices were rejected by landowner operators whose attitudes toward practices were driven by economic profits, removal of these practices from the optimized alternatives led to a setback of nitrates reduction by 2-50%, peak flow reductions by 11-98 %, and sediments reduction by 20-77%. In conclusion, this study reveals the potential loss in optimality of optimized alternatives possible, when socioeconomic data on farmer preferences and land tenure are not incorporated within watershed optimization investigations.

  19. A Workflow to Model Microbial Loadings in Watersheds ...

    EPA Pesticide Factsheets

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated with 1) land-applied manure on undeveloped areas from domestic animals; 2) direct shedding on undeveloped lands by domestic animals and wildlife; 3) urban or engineered areas; and 4) point sources that directly discharge to streams from septic systems and shedding by domestic animals. A microbial source module, which houses these formulations, is linked within a workflow containing eight models and a set of databases that form a loosely configured modeling infrastructure which supports watershed-scale microbial source-to-receptor modeling by focusing on animal-impacted catchments. A hypothetical example application – accessing, retrieving, and using real-world data – demonstrates the ability of the infrastructure to automate many of the manual steps associated with a standard watershed assessment, culminating with calibrated flow and microbial densities at the pour point of a watershed. In the Proceedings of the International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Modelling and Software, Toulouse, France

  20. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyonmore » Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount

  1. Watershed assessment-watershed analysis: What are the limits and what must be considered

    Treesearch

    Robert R. Ziemer

    2000-01-01

    Watershed assessment or watershed analysis describes processes and interactions that influence ecosystems and resources in a watershed. Objectives and methods differ because issues and opportunities differ.

  2. Volunteer Watershed Health Monitoring by Local Stakeholders: New Mexico Watershed Watch

    ERIC Educational Resources Information Center

    Fleming, William

    2003-01-01

    Volunteers monitor watershed health in more than 700 programs in the US, involving over 400,000 local stakeholders. New Mexico Watershed Watch is a student-based watershed monitoring program sponsored by the state's Department of Game and Fish which provides high school teachers and students with instruction on methods for water quality…

  3. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Treesearch

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  4. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  5. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    ERIC Educational Resources Information Center

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  6. Introduction to the Watershed Central Web Site and Watershed Wiki Mini-Workshop

    EPA Science Inventory

    Many communities across the country struggle to find the right approaches, tools and data to include in their watershed plans. EPA recently posted a new web site called "Watershed Central,” a “one-stop" tool, to help watershed organizations and others find key resources to protec...

  7. Watershed-based survey designs

    USGS Publications Warehouse

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  8. Watersheds: where we live

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    We all live in a watershed. Animals and plants all live there with us. Everyone affects what happens in a watershed by how we treat the natural resources. So what is a watershed? It is the land area that drains water to a stream, river, lake, or ocean. Water travels over the Earth's surface across forest land, farm fields, pastures, suburban lawns, and city streets, or it seeps into the soil and makes its way to a stream as local ground water. Watersheds come in many different shapes and sizes. Some contain mountains and hills, and others are nearly flat. A watershed can be affected by many different activities and events. Construction of cities and towns, farming, logging, and the application and disposal of many garden and household chemicals can affect the quantity and quality of water flowing from a watershed.

  9. Contributions of systematic tile drainage to watershed-scale phosphorus transport.

    PubMed

    King, Kevin W; Williams, Mark R; Fausey, Norman R

    2015-03-01

    Phosphorus (P) transport from agricultural fields continues to be a focal point for addressing harmful algal blooms and nuisance algae in freshwater systems throughout the world. In humid, poorly drained regions, attention has turned to P delivery through subsurface tile drainage. However, research on the contributions of tile drainage to watershed-scale P losses is limited. The objective of this study was to evaluate long-term P movement through tile drainage and its manifestation at the watershed outlet. Discharge data and associated P concentrations were collected for 8 yr (2005-2012) from six tile drains and from the watershed outlet of a headwater watershed within the Upper Big Walnut Creek watershed in central Ohio. Results showed that tile drainage accounted for 47% of the discharge, 48% of the dissolved P, and 40% of the total P exported from the watershed. Average annual total P loss from the watershed was 0.98 kg ha, and annual total P loss from the six tile drains was 0.48 kg ha. Phosphorus loads in tile and watershed discharge tended to be greater in the winter, spring, and fall, whereas P concentrations were greatest in the summer. Over the 8-yr study, P transported in tile drains represented <2% of typical application rates in this watershed, but >90% of all measured concentrations exceeded recommended levels (0.03 mg L) for minimizing harmful algal blooms and nuisance algae. Thus, the results of this study show that in systematically tile-drained headwater watersheds, the amount of P delivered to surface waters via tile drains cannot be dismissed. Given the amount of P loss relative to typical application rates, development and implementation of best management practices (BMPs) must jointly consider economic and environmental benefits. Specifically, implementation of BMPs should focus on late fall, winter, and early spring seasons when most P loading occurs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil

  10. Stressed Watersheds in a Rainfall-Rich Region

    NASA Astrophysics Data System (ADS)

    Kastrinos, J. R.; Miles, O.; Pickering, N. B.

    2016-12-01

    Southern New England has ample rainfall and, in some years, snowmelt, to sustain reservoirs and aquifers that are used primarily for municipal water supplies and secondarily for industrial and agricultural needs. Despite the humid climate, however, many watersheds are considered stressed, particularly during the summer and early fall growing-season months due to the combined effect of evapotranspiration and increased demand for lawn irrigation and other seasonal, warm-weather uses. While per capita consumption is frequently the focus of water-conservation efforts, most high-stress areas are in population centers where concentrated demand exceeds recharge (to aquifers) or runoff (to surface water supplies) within the region's small watersheds (commonly 200 mi2 or less). The parameter depletion intensity, described by Konikow (2015) in a review of groundwater-depletion trends across the United States, is used to compare seasonal stress and changes in stress level in several watersheds in Massachusetts. Areas of stress follow patterns of high depletion intensity during the summer months when demand is high. This seasonal stress is exacerbated by inter-basin transfer of water or wastewater from a watershed. Examples will be presented of projects where streamflow impacts have been offset using tools including well optimization, water conservation, storm water recharge, and reductions of infiltration/inflow to utilities, pursuant to the state's Sustainable Water Management Initiative.

  11. The South Fork Experimental Watershed: Soil moisture and precipitation network for satellite validation

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Prueger, J. H.; McKee, L.; Bindlish, R.

    2013-12-01

    A recently deployed long term network for the study of soil moisture and precipitation was deployed in north central iowa, in cooperation between USDA and NASA. This site will be a joint calibration/validation network for the Soil Moisture Active Passive (SMAP) and Global Precipitation Measurement (GPM) missions. At total of 20 dual gauge precipitation gages were established across a watershed landscape with an area of approximately 600 km2. In addition, four soil moisture probes were installed in profile at 5, 10, 20, and 50 cm. The network was installed in April of 2013, at the initiation of the Iowa Flood Study (IFloodS) which was a six week intensive ground based radar observation period, conducted in coordination with NASA and the University of Iowa. This site is a member watershed of the Group on Earth Observations Joint Experiments on Crop Assessment and Monitoring (GEO-JECAM) program. A variety of quality control procedures are examined and spatial and temporal stability aspects of the network are examined. Initial comparisons of the watershed to soil moisture estimates from satellites are also conducted.

  12. Watershed Central: Harnessing a social media tool to organize local technical knowledge and find the right watershed resources for your watershed

    EPA Science Inventory

    Watershed Central was developed to be a bridge between sharing and searching for information relating to watershed issues. This is dependent upon active user support through additions and updates to the Watershed Central Wiki. Since the wiki is user driven, the content and applic...

  13. A Science Framework for Connecticut River Watershed Sustainability

    USGS Publications Warehouse

    Rideout, Stephen; Nicolson, Craig; Russell-Robinson, Susan L.; Mecray, Ellen L.

    2005-01-01

    Introduction: This document outlines a research framework for water resource managers and land-use planners in the four-state Connecticut River Watershed (CRW). It specifically focuses on developing the decision-support tools and data needed by managers in the watershed. The purpose of the Science Framework is to identify critical research issues and information required to better equip managers to make decisions on desirable changes in the CRW. This Science Framework is the result of a cooperative project between the U.S. Geological Survey (USGS), the University of Massachusetts at Amherst (UMass-Amherst), and the U.S. Fish and Wildlife Service (FWS). The cooperative project was guided by a Science Steering Committee (SC) and included several focus groups, a 70-person workshop in September 2004, and an open collaborative process by which the workshop outcomes were synthesized, written up, and then progressively refined through peer review. This document is the product of that collaborative process.

  14. Hydrologic Response and Watershed Sensitivity to Climate Warming in California's Sierra Nevada

    PubMed Central

    Null, Sarah E.; Viers, Joshua H.; Mount, Jeffrey F.

    2010-01-01

    This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2°, 4°, and 6°C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds. PMID:20368984

  15. Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 2: Building Partnerships for Resilient Watersheds, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquat

  16. Future of applied watershed science at regional scales

    Treesearch

    Lee Benda; Daniel Miller; Steve Lanigan; Gordon Reeves

    2009-01-01

    Resource managers must deal increasingly with land use and conservation plans applied at large spatial scales (watersheds, landscapes, states, regions) involving multiple interacting federal agencies and stakeholders. Access to a geographically focused and application-oriented database would allow users in different locations and with different concerns to quickly...

  17. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices

    NASA Astrophysics Data System (ADS)

    Dudula, John; Randhir, Timothy O.

    2016-10-01

    Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.

  18. Watershed Stewardship Education Program--A Multidisciplinary Extension Education Program for Oregon's Watershed Councils.

    ERIC Educational Resources Information Center

    Conway, Flaxen D. L.; Godwin, Derek; Cloughesy, Mike; Nierenberg, Tara

    2003-01-01

    The Watershed Stewardship Education Program (WSEP) is a multidisciplinary Oregon Extension designed to help watershed councils, landowners, and others work effectively together on water management. Components include practical, easy-to-use educational materials, training in effective collaboration, a Master Watershed Stewards program, and advanced…

  19. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  20. Nutrient Characterization of Rainwater, Soil and Groundwater from Two Different Watersheds, Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Thaw, M.; Gao, F.; Yu, Z.; Acharya, K.

    2012-12-01

    Over the past two decades, an increase of nutrients to Lake Taihu, China has resulted in hyper-eutrophication and the production of severe cyanobacterial blooms. While many past studies have focused on how surface water transports nutrients to the lake, this study seeks to characterize the concentration of nutrients in different media, including rainwater, soil and groundwater from two different watersheds. These two watersheds varied in overall land use, and agricultural sites within each watershed varied by crop type and growing method. Samples were collected from the Meilin watershed, a mix of forest and agricultural land and the Zhangjiagang watershed, which consisted of industrial, urban and agricultural lands. Samples included soils, groundwater and rain water. Soils from each site were characterized by aggregate size class and analyzed for total nitrogen and total phosphorus. Rainwater and groundwater samples were analyzed for total nitrogen and total phosphorus.

  1. Performance of National Maps of Watershed Integrity at Watershed Scales

    EPA Science Inventory

    Watershed integrity, the capacity of a watershed to support and maintain ecological processes essential to the sustainability of services provided to society, can be influenced by a range of landscape and in-stream factors. Ecological response data from four intensively monitored...

  2. Watersheds in disordered media

    NASA Astrophysics Data System (ADS)

    Andrade, Joséi, Jr.; Araújo, Nuno; Herrmann, Hans; Schrenk, Julian

    2015-02-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics of disordered systems. This review initially surveys the origin and definition of a watershed line in a geomorphological framework to subsequently introduce its basic geometrical and physical properties. Results on statistical properties of watersheds obtained from artificial model landscapes generated with long-range correlations are presented and shown to be in good qualitative and quantitative agreement with real landscapes.

  3. Coordination games, anti-coordination games, and imitative learning.

    PubMed

    McCain, Roger A; Hamilton, Richard

    2014-02-01

    Bentley et al.'s scheme generates distributions characteristic of situations of high and low social influence on decisions and of high and low salience ("transparency") of rewards. Another element of decisions that may influence the placement of a decision process in their map is the way in which individual decisions interact to determine the payoffs. This commentary discusses the role of Nash equilibria in game theory, focusing especially on coordination and anti-coordination games.

  4. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    PubMed

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Monitoring, Modeling, and Emergent Toxicology in the East Fork Watershed: Developing a Test Bed for Water Quality Management.

    EPA Science Inventory

    Overarching objectives for the development of the East Fork Watershed Test Bed in Southwestern Ohio include: 1) providing research infrastructure for integrating risk assessment and management research on the scale of a large multi-use watershed (1295 km2); 2) Focusing on process...

  6. Island Watershed Activity.

    ERIC Educational Resources Information Center

    Benson, Rod

    2003-01-01

    Describes a 90-minute "Island Watershed" activity to help earth science students understand the concept of the water cycle. Introduces a surface waters unit appropriate for students in grades 7-10. Includes watershed project guidelines. (Author/KHR)

  7. Understanding Metal Sources and Transport Processes in Watersheds: a Hydropedologic Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Brousseau, P.; Ross, D. S.; Bourgault, R.; Zimmer, M. A.

    2010-12-01

    Understanding the origin of metals in watersheds, as well as the transport and cycling processes that affect them is of critical importance to watershed science. Metals can be derived both from weathering of minerals in the watershed soils and bedrock and from atmospheric deposition, and can have highly variable residence times in the watershed due to cycling through plant communities and retention in secondary mineral phases prior to release to drainage waters. Although much has been learned about metal cycling and transport through watersheds using simple “box model” approaches that define unique input, output and processing terms, the fact remains that watersheds are inherently complex and variable in terms of substrate structure, hydrologic flowpaths and the influence of plants, all of which affect the chemical composition of water that ultimately passes through the watershed outlet. In an effort to unravel some of this complexity at a watershed scale, we have initiated an interdisciplinary, hydropedology-focused study of the hydrologic reference watershed (Watershed 3) at the Hubbard Brook Experimental Forest in New Hampshire, USA. This 41 hectare headwater catchment consists of a beech-birch-maple-spruce forest growing on soils developed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Soils vary from lateral spodosols downslope from bedrock exposures near the watershed crest to vertical and bi-modal spodosols along hillslopes to umbrepts at toe-slope positions and inferred hydrologic pinch points created by bedrock and till structure. Using a variety of chemical and isotope tracers (e.g., K/Na, Ca/Sr, Sr/Ba, Fe/Mn, 87Sr/86Sr, Ca-Sr-Fe stable isotopes) on water, soil and plant samples in an end-member mixing analysis approach, we are attempting to discretize the watershed according to soil types encountered along determined hydrologic flowpaths in order better constrain the various biogeochemical processes that control the delivery of

  8. East Fork Watershed Cooperative: Toward better system-scale watershed management

    EPA Science Inventory

    The East Fork Watershed Cooperative is a group intent on understanding how to best manage water quality in a large mixed-use Midwestern watershed system. The system contains a reservoir that serves as a source of drinking water and is popular for water recreation. The reservoir i...

  9. Twenty years of water-quality studies in the Cheney Reservoir Watershed, Kansas, 1996-2016

    USGS Publications Warehouse

    Graham, Jennifer L.; Foster, Guy M.; Kramer, Ariele R.

    2017-03-31

    Since 1996, the U.S. Geological Survey (USGS), in cooperation with the City of Wichita, has done studies in the Cheney Reservoir watershed to understand environmental effects on water-quality conditions. Early studies (1996–2001) determined subwatershed sources of contaminants, nutrient and sediment loading to Cheney Reservoir, changes in reservoir sediment quality over time, and watershed sources of phosphorus. Later studies (2001–present) focused on nutrient and sediment concentrations and mass transport from the watershed; the presence of cyanobacteria, cyanotoxins, and taste-and-odor compounds in the reservoir; and development of regression models for real-time computations of water-quality constituents of interest that may affect drinking-water treatment. This fact sheet summarizes key results from studies done by the USGS during 1996–2016 in the Cheney Reservoir watershed and Cheney Reservoir.

  10. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    NASA Astrophysics Data System (ADS)

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  11. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    NASA Astrophysics Data System (ADS)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  12. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    NASA Technical Reports Server (NTRS)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  13. CRYPTOSPORIDIUM SOURCE TRACKING TO ENHANCE SOURCE WATER PROTECTION IMPLEMENTATION IN THE POTOMAC RIVER WATERSHED: A REGIONAL APPLIED RESEARCH EFFORTS (RARE) PROJECT

    EPA Science Inventory

    The Potomac River watershed is a critical drinking water supply for the Washington DC metropolitan area. In 2004, the Drinking Water Source Protection Partnership (DWSPP) was formed to help coordinate efforts by local drinking water utilities and government agencies to protect th...

  14. Environmental relations between inland rice culture and the Cooper and Wando River watersheds, South Carolina

    Treesearch

    Hayden R. Smith

    2016-01-01

    This study explains the geographical importance of the Cooper and Wando River watersheds, located east of Charleston (SC), in relation to inland rice cultivation during the colonial and antebellum periods. By focusing on the geological formation of this watershed, this paper will explain the connection between this plantation enterprise and the natural environment. The...

  15. Design and routing of storm flows in an urbanized watershed without surface streams

    NASA Astrophysics Data System (ADS)

    Schaad, David E.; Farley, Jon; Haynes, Criss

    2009-09-01

    SummaryIn the karst geologic setting of Greenbrier County, West Virginia, USA, the drainage network in the watersheds do not support surface streams, but depend entirely on sinkholes, solution cavities, or injection wells as discharge points for accumulated storm water. By providing a systematic framework for designing and routing storms in this geologic setting, functioning retention and attenuation structures have been developed which are protective of water quality while still safely discharging storm water in a controlled manner to the subsurface. This article provides a rationale for the design methodology and then examines the successful implementation of an attenuation and storm water retention design to manage the surface discharges for an entire watershed. By examining the pre-development flows and evaluating future land use patterns (i.e., installation of impermeable surfaces over large areas), as well as sinkhole conveyance capabilities, it was necessary to examine alternative disposal options for collected storm water as well as devise a basin-wide management strategy to coordinate future development of the watershed. Additionally, innovative water quality measures were implemented to help prevent contamination from preferentially infiltrating into the subsurface as a result of these land development activities.

  16. Small watershed response to porous rock check dams in a semiarid watershed

    NASA Astrophysics Data System (ADS)

    Nichols, Mary; Polyakov, Viktor; Nearing, Mark

    2016-04-01

    Rock check dams are used throughout the world as technique for mitigating erosion problems on degraded lands. Increasingly, they are being used in restoration efforts on rangelands in the southwestern US, however, their impact on watershed response and channel morphology is not well quantified. In 2008, 37 porous rock structures were built on two small (4.0 and 3.1 ha) instrumented watersheds on an alluvial fan at the base of the Santa Rita Mountains in southern Arizona, USA. 35 years of historical rainfall and runoff, and sediment data are available to compare with 7 years of data collected after check dam construction. In addition, post construction measurements of channel geometry and longitudinal channel profiles were compared with pre-construction measurements to characterize the impact of check dams on sediment retention and channel morphology. The primary impact of the check dams is was retention of channel sediment and reduction in channel gradient; however response varied between the proximal watersheds with 80% of the check dams on one of the watersheds filled to 100% of their capacity after 7 runoff seasons. In addition, initial impact on precipitation runoff ratios is was not persistent. The contrasting watershed experiences lower sediment yields and only 20% of the check dams on this watershed are were filled to capacity and continue to influence runoff during small events. Within the watersheds the mean gradient of the channel reach immediately upstream of the structures has been reduced by 35% (from 0.061 to 0.039) and 34% on (from 0.071 to 0.047).

  17. Micro practices of coordination based on complex adaptive systems: user needs and strategies for coordinating public health in Denmark.

    PubMed

    Terkildsen, Morten Deleuran; Wittrup, Inge; Burau, Viola

    2015-01-01

    Many highly formalised approaches to coordination poorly fit public health and recent studies call for coordination based on complex adaptive systems. Our contribution is two-fold. Empirically, we focus on public health, and theoretically we build on the patient perspective and treat coordination as a process of contingent, two-level negotiations of user needs. The paper draws on the concept of user needs-based coordination and sees coordination as a process, whereby needs emerging from the life world of the user are made amenable to the health system through negotiations. The analysis is based on an explorative case study of a health promotion initiative in Denmark. It adopts an anthropological qualitative approach and uses a range of qualitative data. The analysis identifies four strategies of coordination: the coordinator focusing on the individual user or on relations with other professionals; and the manager coaching the coordinator or providing structural support. Crucially, the coordination strategies by management remain weak as they do not directly relate to specific user needs. In process of bottom-up negotiations user needs become blurred and this is especially a challenge for management. The study therefore calls for an increased focus on the level nature of negotiations to bridge the gap that currently weakens coordination strategies by management.

  18. Integrated Watershed Management using the Watershed Management Optimization Support Tool (WMOST)

    EPA Science Inventory

    Integrated watershed management is an effective planning strategy to balance tradeoffs between competing water uses within a watershed. WMOST is an Excel-based decision tool to aid planners in making cost effective decisions that meet water quantity and quality regulations. WMOST...

  19. Impact of Watershed Development on Sediment Transport and Seasonal Flooding in the Main Stream of the Mekong River

    NASA Astrophysics Data System (ADS)

    Kameyama, S.; Nohara, S.; Sato, T.; Fujii, Y.; Kudo, K.

    2009-12-01

    The Mekong River watershed is undergoing rapid economic progress and population growth, raising conflicts between watershed development and environmental conservation. A typical conflict is between the benefits of dam construction versus the benefits of watershed ecological services. In developed countries, this conflict is changing to a coordinated search for outcomes that are mutually acceptable to all stakeholders. In the Mekong River, however, government policy gives priority to watershed development for ensuring steady energy supplies. Since the 1990s, a series of dams called “the Mekong Cascade” have been under construction. Dam construction has multiple economic values as electric power supply, irrigation water, flood control, etc. On the other hand, the artificial flow discharge controls of dam moderate seasonal hydrologic patterns of the Asian monsoon region. Dam operations can change the sediment transport regime and river structure. Furthermore, their impacts on watershed ecosystems and traditional economic activities of fisheries and agriculture in downstream areas may be severe. We focus on dam impacts on spatio-temporal patterns of sediment transport and seasonal flood in riparian areas downstream from Mekong River dams. Our study river section is located on 100 km down stream from the Golden Triangle region of Myanmar, Laos, and Thailand. We selected a 10-km section in this main channel to simulate seasonal flooding. We modeled the river hydrology in the years 1991 and 2002, before and after the Manwan dam construction (1986-1993). For this simulation, we adapted three models (distributed runoff model, 1-D hydrological model, and 2-D flood simulation with sediment movement algorithm.) Input data on river structure, water velocity, and flow volume were acquired from field survey data in November 2007 and 2008. In the step of parameter decision, we adopted the shuffled complex evolution method. To validate hydrologic parameters, we used annual

  20. MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION

    EPA Science Inventory

    This document is written as a resource for state and local watershed managers who have the responsibility of managing pathogen contamination in urban watersheds. In addition it can be an information source for members of the public interested in watershed mitigation efforts aime...

  1. Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate

    EPA Pesticide Factsheets

    Information about the SFBWQP Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate , part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  2. Care coordination between specialty care and primary care: a focus group study of provider perspectives on strong practices and improvement opportunities

    PubMed Central

    Kim, Bo; Lucatorto, Michelle A; Hawthorne, Kara; Hersh, Janis; Myers, Raquel; Elwy, A Rani; Graham, Glenn D

    2015-01-01

    Care coordination between the specialty care provider (SCP) and the primary care provider (PCP) is a critical component of safe, efficient, and patient-centered care. Veterans Health Administration conducted a series of focus groups of providers, from specialty care and primary care clinics at VA Medical Centers nationally, to assess 1) what SCPs and PCPs perceive to be current practices that enable or hinder effective care coordination with one another and 2) how these perceptions differ between the two groups of providers. A qualitative thematic analysis of the gathered data validates previous studies that identify communication as being an important enabler of coordination, and uncovers relationship building between specialty care and primary care (particularly through both formal and informal relationship-building opportunities such as collaborative seminars and shared lunch space, respectively) to be the most notable facilitator of effective communication between the two sides. Results from this study suggest concrete next steps that medical facilities can take to improve care coordination, using as their basis the mutual understanding and respect developed between SCPs and PCPs through relationship-building efforts. PMID:25653538

  3. Care coordination between specialty care and primary care: a focus group study of provider perspectives on strong practices and improvement opportunities.

    PubMed

    Kim, Bo; Lucatorto, Michelle A; Hawthorne, Kara; Hersh, Janis; Myers, Raquel; Elwy, A Rani; Graham, Glenn D

    2015-01-01

    Care coordination between the specialty care provider (SCP) and the primary care provider (PCP) is a critical component of safe, efficient, and patient-centered care. Veterans Health Administration conducted a series of focus groups of providers, from specialty care and primary care clinics at VA Medical Centers nationally, to assess 1) what SCPs and PCPs perceive to be current practices that enable or hinder effective care coordination with one another and 2) how these perceptions differ between the two groups of providers. A qualitative thematic analysis of the gathered data validates previous studies that identify communication as being an important enabler of coordination, and uncovers relationship building between specialty care and primary care (particularly through both formal and informal relationship-building opportunities such as collaborative seminars and shared lunch space, respectively) to be the most notable facilitator of effective communication between the two sides. Results from this study suggest concrete next steps that medical facilities can take to improve care coordination, using as their basis the mutual understanding and respect developed between SCPs and PCPs through relationship-building efforts.

  4. 36 CFR 251.35 - Petersburg watershed.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Petersburg watershed. 251.35... Miscellaneous Land Uses Petersburg Watershed § 251.35 Petersburg watershed. (a) Except as authorized in paragraphs (b) and (c), access to lands within the Petersburg watershed, Tongass National Forest, as...

  5. 36 CFR 251.35 - Petersburg watershed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Petersburg watershed. 251.35... Miscellaneous Land Uses Petersburg Watershed § 251.35 Petersburg watershed. (a) Except as authorized in paragraphs (b) and (c), access to lands within the Petersburg watershed, Tongass National Forest, as...

  6. 36 CFR 251.35 - Petersburg watershed.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Petersburg watershed. 251.35... Miscellaneous Land Uses Petersburg Watershed § 251.35 Petersburg watershed. (a) Except as authorized in paragraphs (b) and (c), access to lands within the Petersburg watershed, Tongass National Forest, as...

  7. 36 CFR 251.35 - Petersburg watershed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Petersburg watershed. 251.35... Miscellaneous Land Uses Petersburg Watershed § 251.35 Petersburg watershed. (a) Except as authorized in paragraphs (b) and (c), access to lands within the Petersburg watershed, Tongass National Forest, as...

  8. 36 CFR 251.35 - Petersburg watershed.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Petersburg watershed. 251.35... Miscellaneous Land Uses Petersburg Watershed § 251.35 Petersburg watershed. (a) Except as authorized in paragraphs (b) and (c), access to lands within the Petersburg watershed, Tongass National Forest, as...

  9. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed.

    PubMed

    Su, Fangli; Kaplan, David; Li, Lifeng; Li, Haifu; Song, Fei; Liu, Haisheng

    2017-03-03

    In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world.

  10. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed

    PubMed Central

    Su, Fangli; Kaplan, David; Li, Lifeng; Li, Haifu; Song, Fei; Liu, Haisheng

    2017-01-01

    In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world. PMID:28273834

  11. Coordinating ‘Ethical’ Clinical Trials: The Role of Research Coordinators in the Contract Research Industry

    PubMed Central

    Fisher, Jill A.

    2010-01-01

    Change in the way new drugs are developed, including the privatization of clinical trials, has altered the arrangement and roles of health care professions. In this article I examine one aspect of this change: the role of research coordinators in the conduct of contract research in the United States. My focus on coordinators highlights the ethical conflicts embedded in clinical trials. I describe the ways in which coordinators experience and contend with the conflict between research and care and show how their construction of ethics is distinct from institutional conceptions formally associated with human subjects research. My analysis demonstrates how the coordinators' focus on ethics is a response to their role conflict and an attempt to reinsert individualized care into the context of research. PMID:17184412

  12. Watershed Effects on Streamflow Quantity and Quality in Six Watersheds of Gwinnett County, Georgia

    USGS Publications Warehouse

    Landers, Mark N.; Ankcorn, Paul D.; McFadden, Keith W.

    2007-01-01

    Watershed management is critical for the protection and enhancement of streams that provide multiple benefits for Gwinnett County, Georgia, and downstream communities. Successful watershed management requires an understanding of how stream quality is affected by watershed characteristics. The influence of watershed characteristics on stream quality is complex, particularly for the nonpoint sources of pollutants that affect urban watersheds. The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources (formerly known as Public Utilities), established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. Between 1996 and 2003, more than 10,000 analyses were made for more than 430 water-quality samples. Continuous-flow and water-quality data have been collected since 1998. Loads have been computed for selected constituents from 1998 to 2003. Changing stream hydrology is a primary driver for many other water-quality and aquatic habitat effects. Primary factors affecting stream hydrology (after watershed size and climate) within Gwinnett County are watershed slope and land uses. For the six study watersheds in Gwinnett County, watershedwide imperviousness up to 12 percent does not have a well-defined influence on stream hydrology, whereas two watersheds with 21- and 35-percent impervious area are clearly impacted. In the stream corridor, however, imperviousness from 1.6 to 4.4 percent appears to affect baseflow and stormflow for all six watersheds. Relations of concentrations to discharge are used to develop regression models to compute constituent loads using the USGS LOAD ESTimator model. A unique method developed in this study is used to calibrate the model using separate baseflow and stormflow sample datasets. The method reduced model error and provided estimates of the load associated with the baseflow and stormflow parts of the hydrograph

  13. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren

    2018-02-01

    This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors

  14. WATERSHED INFORMATION NETWORK

    EPA Science Inventory

    Resource Purpose:The Watershed Information Network is a set of about 30 web pages that are organized by topic. These pages access existing databases like the American Heritage Rivers Services database and Surf Your Watershed. WIN in itself has no data or data sets.
    L...

  15. A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling

    USDA-ARS?s Scientific Manuscript database

    The progressive improvement of computer science and development of auto-calibration techniques means that calibration of simulation models is no longer a major challenge for watershed planning and management. Modelers now increasingly focus on challenges such as improved representation of watershed...

  16. Evaluating integrated watershed management using multiple criteria analysis--a case study at Chittagong Hill Tracts in Bangladesh.

    PubMed

    Biswas, Shampa; Vacik, Harald; Swanson, Mark E; Haque, S M Sirajul

    2012-05-01

    Criteria and indicators assessment is one of the ways to evaluate management strategies for mountain watersheds. One framework for this, Integrated Watershed Management (IWM), was employed at Chittagong Hill Tracts region of Bangladesh using a multi-criteria analysis approach. The IWM framework, consisting of the design and application of principles, criteria, indicators, and verifiers (PCIV), facilitates active participation by diverse professionals, experts, and interest groups in watershed management, to explicitly address the demands and problems to measure the complexity of problems in a transparent and understandable way. Management alternatives are developed to fulfill every key component of IWM considering the developed PCIV set and current situation of the study area. Different management strategies, each focusing on a different approach (biodiversity conservation, flood control, soil and water quality conservation, indigenous knowledge conservation, income generation, watershed conservation, and landscape conservation) were assessed qualitatively on their potential to improve the current situation according to each verifier of the criteria and indicator set. Analytic Hierarchy Process (AHP), including sensitivity analysis, was employed to identify an appropriate management strategy according to overall priorities (i.e., different weights of each principle) of key informants. The AHP process indicated that a strategy focused on conservation of biodiversity provided the best option to address watershed-related challenges in the Chittagong Hill Tracts, Bangladesh.

  17. Landscape ecological assessment of the Chesapeake Bay watershed.

    PubMed

    Weber, Ted

    2004-06-01

    The Chesapeake Bay Watershed, located in the Mid-Atlantic Region of the United States, is experiencing rapid habitat loss and fragmentation from sprawling low-density development. The bay itself is heavily stressed by excess sediment and nutrient runoff. Three states, the District of Columbia, and the federal government signed an agreement in 2000 to address these problems. The commitments included an assessment of the watershed's resource lands, and targeting the most valued lands for protection. As part of this task, the Resource Lands Assessment identified an ecological network comprised of large contiguous blocks (hubs) of forests, wetlands, and streams, interconnected by corridors to allow animal and plant propagule dispersal and migration. Hubs were prioritized by ecoregion, by analyzing a variety of ecological parameters, including: rare species presence, rarity and population viability; vegetation and vertebrate richness; habitat area, condition, and diversity; intactness and remoteness; connectivity potential; and the nature of the surrounding landscape. I found that much of the watershed was still fairly intact, although this varied dramatically by ecoregion. Current protection also varied, and an assessment of vulnerability will help focus protection efforts among the most valuable hubs and corridors.

  18. John Day Watershed Restoration Projects, annual report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Linda

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day systemmore » is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an

  19. Managing Watersheds with WMOST

    EPA Pesticide Factsheets

    The Watershed Management Optimization Support Tool (WMOST) allows water-resource managers and planners to screen a wide range of practices for cost-effectiveness in achieving watershed or water utilities management goals.

  20. Genome-to-Watershed Predictive Understanding of Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.

    2014-12-01

    Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and

  1. Scaling relations for watersheds

    NASA Astrophysics Data System (ADS)

    Fehr, E.; Kadau, D.; Araújo, N. A. M.; Andrade, J. S., Jr.; Herrmann, H. J.

    2011-09-01

    We study the morphology of watersheds in two and three dimensional systems subjected to different degrees of spatial correlations. The response of these objects to small, local perturbations is also investigated with extensive numerical simulations. We find the fractal dimension of the watersheds to generally decrease with the Hurst exponent, which quantifies the degree of spatial correlations. Moreover, in two dimensions, our results match the range of fractal dimensions 1.10≤df≤1.15 observed for natural landscapes. We report that the watershed is strongly affected by local perturbations. For perturbed two and three dimensional systems, we observe a power-law scaling behavior for the distribution of areas (volumes) enclosed by the original and the displaced watershed and for the distribution of distances between outlets. Finite-size effects are analyzed and the resulting scaling exponents are shown to depend significantly on the Hurst exponent. The intrinsic relation between watershed and invasion percolation, as well as relations between exponents conjectured in previous studies with two dimensional systems, are now confirmed by our results in three dimensions.

  2. Grays River Watershed and Biological Assessment Final Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R.

    2008-02-04

    , aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the

  3. Grays River Watershed and Biological Assessment, 2006 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Christopher; Geist, David

    2007-04-01

    , aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the

  4. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    PubMed

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.

  5. THE BEAR BROOK WATERSHED MANIPULATION PROJECT: WATERSHED SCIENCE IN A POLICY PERSPECTIVE

    EPA Science Inventory

    The Bear Brook Watershed Manipulation in Maine is a paired watershed experiment. Monitoring of the paired catchments (East Bear Brook - reference; West Bear Brook - experimental) began in early 1987. Chemical manipulation of West Bear Brook catchment began in November 1989. Proce...

  6. Master Watershed Stewards.

    ERIC Educational Resources Information Center

    Comer, Gary L.

    The Master Watershed Stewards (MWS) Program is a pilot project (developed through the cooperation of the Ohio State University Extension Logan and Hardin County Offices and the Indian Lake Watershed Project) offering the opportunity for communities to get involved at the local level to protect their water quality. The program grew out of the…

  7. WATERSHED SCALE RAINFALL INTERCEPTION ON TWO FORESTED WATERSHEDS IN THE LUQUILLO MOUNTAINS OF PUERTO RICO

    Treesearch

    F.N. SCATENA

    1990-01-01

    Interception losses were monitored for one year and related to vegetation characteristics in two forested watersheds in the Luquillo Experimental Forest of Puerto Rico. Total watershed interception was then modeled by weighting values of throughfall measured in representative areas of different vegetation types by the total watershed area of that vegetation group....

  8. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  9. [Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China].

    PubMed

    Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong

    2016-10-01

    Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.

  10. Watershed Management Partnership Agreement

    EPA Pesticide Factsheets

    On November 19, 2004, the U.S. Environmental Protection Agency and the U.S. Army Corps of Engineers signed the Watershed Management Partnership Agreement to promote watershed health, economic sustainability and community vitality through effective manageme

  11. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    NASA Astrophysics Data System (ADS)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years

  12. Bonanza Creek Experimental Forest & Caribou-Poker Creeks Research Watershed.

    Treesearch

    Valerie Rapp

    2003-01-01

    Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed are located in the boreal forest of interior Alaska. Research focuses on basic ecological processes, hydrology, disturbance regimes, and climate change in the boreal forest region. Interior Alaska lies between the Alaska Range to the south and the Brooks Range to the north and covers an area...

  13. History of watershed research in the Central Arizona Highlands

    Treesearch

    Malchus B. Baker

    1999-01-01

    The Central Arizona Highlands have been the focus of a wide range of research efforts designed to learn more about the effects of natural and human induced disturbances on the functioning, processes, and components of the region's ecosystems. The watershed research spearheaded by the USDA Forest Service and its cooperators continues to lead to a comprehensive...

  14. Effects of vision on head-putter coordination in golf.

    PubMed

    Gonzalez, David Antonio; Kegel, Stefan; Ishikura, Tadao; Lee, Tim

    2012-07-01

    Low-skill golfers coordinate the movements of their head and putter with an allocentric, isodirectional coupling, which is opposite to the allocentric, antidirectional coordination pattern used by experts (Lee, Ishikura, Kegel, Gonzalez, & Passmore, 2008). The present study investigated the effects of four vision conditions (full vision, no vision, target focus, and ball focus) on head-putter coupling in low-skill golfers. Performance in the absence of vision resulted in a level of high isodirectional coupling that was similar to the full vision condition. However, when instructed to focus on the target during the putt, or focus on the ball through a restricted viewing angle, low-skill golfers significantly decoupled the head--putter coordination pattern. However, outcome measures demonstrated that target focus resulted in poorer performance compared with the other visual conditions, thereby providing overall support for use of a ball focus strategy to enhance coordination and outcome performance. Focus of attention and reduced visual tracking were hypothesized as potential reasons for the decoupling.

  15. ECOLOGICAL FORECASTING FOR WATERSHEDS

    EPA Science Inventory

    To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as nutrients, sediments, pathogens, and toxics over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of...

  16. Guam Pago Watershed Conservation

    Treesearch

    Maria Lynn Cruz; Laura F. Biggs

    2016-01-01

    The purpose of this research is to explore water science methodologies in determining the source of sedimentation in the Guam Pago Watershed. Watersheds provide drinking water, an agricultural water source, and forms of recreation.

  17. Part 1: Principles of Urban Watershed Forestry

    Treesearch

    Karen Cappiella; Tom Schueler; Tiffany Wright

    2005-01-01

    Conserving forests in a watershed? This manual introduces the emerging topic of urban watershed forestry and presents new methods for systematically measuring watershed forest cover and techniques for maintaining or increasing this cover. The audience for this manual includes the local watershed planner or forester.

  18. An Integrated Mobile Application to Improve the Watershed Management in Taiwan

    NASA Astrophysics Data System (ADS)

    Chou, T. Y.; Chen, M. H.; Lee, C. Y.

    2015-12-01

    This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.

  19. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    EPA Science Inventory

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  20. 7 CFR 622.11 - Eligible watershed projects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Eligible watershed projects. 622.11 Section 622.11..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Qualifications § 622.11 Eligible watershed projects. (a) To be eligible for Federal assistance, a watershed project must: (1) Meet the definition of a...

  1. Watershed characteristics and water-quality trends and loads in 12 watersheds in Gwinnett County, Georgia

    USGS Publications Warehouse

    Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total

  2. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    NASA Astrophysics Data System (ADS)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  3. LINKING GREAT WATERSHEDS WITH LAKE MICHIGAN: THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance Study -- which is focusing on atrazine, PCBs, nutrients, suspended solids, trans-nonachlor, and mercury. The relative contribution of contaminants to Lake Michigan will be examined for all major watersheds in the basin. - - - Further ...

  4. Research to Inform Nutrient Thresholds and Prioritization of Watersheds for Nutrient Management

    EPA Science Inventory

    The information in this presentation focuses on SSWR's 4.02 project, which will advance the science needed to inform decisions to prioritize watersheds and nutrient sources for nutrient management and define appropriate nutrient levels for the nation’s waters, two importan...

  5. Impact of environmental policies on the adoption of manure management practices in the Chesapeake Bay watershed.

    PubMed

    Savage, Jeff A; Ribaudo, Marc O

    2013-11-15

    Pollution in the Chesapeake Bay is a problem and has been a focus of federal and state initiatives to reduce nutrient pollution from agriculture and other sources since 1983. In 2010 EPA established a TMDL for the watershed. Producers may voluntarily respond to intense and focused policy scrutiny by adopting best management practices. A detailed analysis of water quality best management practices by animal feeding operations inside and outside the watershed yield insight into this relationship. Our findings support the hypothesis that farmers will adopt water quality measures if links are made clear and there is an expectation of future regulations. Published by Elsevier Ltd.

  6. Watershed management and sustainable development: Lessons learned and future directions

    Treesearch

    Karlyn Eckman; Hans M. Gregerson; Allen L. Lundgren

    2000-01-01

    Fundamental belief underlying the direction and content of this paper is that the paradigms of land and water management evolving into the 21st century increasingly favor a watershed focused approach. Underlying that approach is an appreciation of the processes of sustainable development and resource use. The increasing recognition that sustainable development and...

  7. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    NASA Astrophysics Data System (ADS)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P

  8. Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Wilson, K. Van; Clair, Michael G.; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (Hydrologic Unit Codes) were further subdivided into 10-digit watersheds (62.5 to 391 square miles (mi2)) and 12-digit subwatersheds (15.6 to 62.5 mi2) - the exceptions being the Delta part of Mississippi and the Mississippi River inside levees, which were subdivided into 10-digit watersheds only. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, subdivision codes and names, and drainage-area data - are stored in a Geographic Information System database, which are available at: http://ms.water.usgs.gov/. This map shows information on drainage and hydrography in the form of U.S. Geological Survey hydrologic unit boundaries for water-resource 2-digit regions, 4-digit subregions, 6-digit basins (formerly called accounting units), 8-digit subbasins (formerly called cataloging units), 10-digit watershed, and 12-digit subwatersheds in Mississippi. A description of the project study area, methods used in the development of watershed and subwatershed boundaries for Mississippi, and results are presented in Wilson and others (2008). The data presented in this map and by Wilson and others (2008) supersede the data presented for Mississippi by Seaber and others (1987) and U.S. Geological Survey (1977).

  9. Land cover change of watersheds in Southern Guam from 1973 to 2001.

    PubMed

    Wen, Yuming; Khosrowpanah, Shahram; Heitz, Leroy

    2011-08-01

    Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.

  10. Community Capacity for Watershed Conservation: A Quantitative Assessment of Indicators and Core Dimensions

    NASA Astrophysics Data System (ADS)

    Brinkman, Elliot; Seekamp, Erin; Davenport, Mae A.; Brehm, Joan M.

    2012-10-01

    Community capacity for watershed management has emerged as an important topic for the conservation of water resources. While much of the literature on community capacity has focused primarily on theory construction, there have been few efforts to quantitatively assess community capacity variables and constructs, particularly for watershed management and conservation. This study seeks to identify predictors of community capacity for watershed conservation in southwestern Illinois. A subwatershed-scale survey of residents from four communities located within the Lower Kaskaskia River watershed of southwestern Illinois was administered to measure three specific capacity variables: community empowerment, shared vision and collective action. Principal component analysis revealed key dimensions of each variable. Specifically, collective action was characterized by items relating to collaborative governance and social networks, community empowerment was characterized by items relating to community competency and a sense of responsibility and shared vision was characterized by items relating to perceptions of environmental threats, issues with development, environmental sense of place and quality of life. From the emerging factors, composite measures were calculated to determine the extent to which each variable contributed to community capacity. A stepwise regression revealed that community empowerment explained most of the variability in the composite measure of community capacity for watershed conservation. This study contributes to the theoretical understanding of community capacity by quantifying the role of collective action, community empowerment and shared vision in community capacity, highlighting the need for multilevel interaction to address watershed issues.

  11. The Watershed Deposition Tool: A Tool for Incorporating Atmospheric Deposition in Watershed Analysis

    EPA Science Inventory

    The tool for providing the linkage between air and water quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. The Watershed Deposition Tool (WDT) takes gridded output of at...

  12. Development of online tools to support GIS watershed analyses

    Treesearch

    William J. Elliot

    2016-01-01

    In 1996 there was a meeting in Tucson of hydrologists from every Forest Service region, as well as Forest Service research scientists engaged in watershed-related activities. This meeting was organized by the Stream Team (which has since been enveloped by the National Stream and Aquatic Ecology Center). The focus of the meeting was to identify tools that needed to be...

  13. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    USGS Publications Warehouse

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  14. How will climate change affect watershed mercury export in a representative Coastal Plain watershed?

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Feaster, T.; Davis, G. M.; Benedict, S. T.; Bradley, P. M.

    2012-12-01

    Future climate change is expected to drive variations in watershed hydrological processes and water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such shifts in climatic conditions will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern. We simulate the responses of watershed hydrological and total Hg (HgT) fluxes and concentrations to a unified set of past and future climate change projections in a Coastal Plain basin using multiple watershed models. We use two statistically downscaled global precipitation and temperature models, ECHO, a hybrid of the ECHAM4 and HOPE-G models, and the Community Climate System Model (CCSM3) across two thirty-year simulations (1980 to 2010 and 2040 to 2070). We apply three watershed models to quantify and bracket potential changes in hydrologic and HgT fluxes, including the Visualizing Ecosystems for Land Management Assessment Model for Hg (VELMA-Hg), the Grid Based Mercury Model (GBMM), and TOPLOAD, a water quality constituent model linked to TOPMODEL hydrological simulations. We estimate a decrease in average annual HgT fluxes in response to climate change using the ECHO projections and an increase with the CCSM3 projections in the study watershed. Average monthly HgT fluxes increase using both climate change projections between in the late spring (March through May), when HgT concentrations and flow are high. Results suggest that hydrological transport associated with changes in precipitation and temperature is the primary mechanism driving HgT flux response to climate change. Our multiple model/multiple projection approach allows us to bracket the relative response of HgT fluxes to climate change, thereby illustrating the uncertainty associated with the projections. In addition, our approach allows us to examine potential variations in climate change-driven water and HgT export based on different conceptualizations of watershed Hg

  15. [Ecological risk assessment and its management of Bailongjiang watershed, southern Gansu based on landscape pattern].

    PubMed

    Gong, Jie; Zhao, Cai-Xia; Xie, Yu-Chu; Gao, Yan-Jing

    2014-07-01

    Watershed ecological risk assessment is an important research subject of watershed ecological protection and environmental management. Research on the ecological risk focuses on addressing the influence of human activities and its spatial variation at watershed scale is vital to policy-making to control the impact of human activity and protocols for sustainable economic and societal development. A comprehensive ecological environment index, incorporating a landscape index and an assessment of ecological vulnerability, was put forward to assess the spatio-temporal characteristics of ecological risk of the Bailongjiang watershed, southern Gansu Province, Northwest China. Using ArcGIS and Fragstats software and a land use map of 2010, an ecological risk map was obtained through spatial sampling and disjunctive Kriging interpolation. The results indicated that there were some obvious spatial differences of ecological risk levels in the watershed. The ecological risk level of the north and northwest of the Bailongjiang was higher than that of the western and southern extremities of the watershed. Ecological risk index (ERI) of Wudu and Tanchang was higher than that of Wenxian and Diebu. Some measures for ecological risk management were put forward on the basis of ERI of Bailongjiang watershed. To strengthen the integrated management of human activities and land use in the watershed, to carry out the vegetation restoration and ecological reconstruction, and to reduce the ecological risks and hazards of irrational human disturbance, are vital to the realization 'multiple-win' of the economic, social and ecological protection and for the sustainable development in the hilly area in southern Gansu.

  16. Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran).

    PubMed

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab

    2017-06-01

    Quantitative response of the watershed health to climate variability is of critical importance for watershed managers. However, existing studies seldom considered the impact of climate variability on watershed health. The present study therefore aimed to analyze the temporal and spatial variability of reliability (R el ), resilience (R es ) and vulnerability (V ul ) indicators in node years of 1986, 1998, 2008 and 2014 in connection with Standardized Precipitation Index (SPI) for 24 sub-watersheds in the Shazand Watershed of Markazi Province in Iran. The analysis was based on rainfall variability as one of the main climatic drivers. To achieve the study purposes, the monthly rainfall time series of eight rain gauge stations distributed across the watershed or neighboring areas were analyzed and corresponding SPIs and R el R es V ul indicators were calculated. Ultimately, the spatial variation of SPI oriented R el R es V ul was mapped for the study watershed using Geographic Information System (GIS). The average and standard deviation of SPI-R el R es V ul index for the study years of 1986, 1998, 2008 and 2014 was obtained 0.240±0.025, 0.290±0.036, 0.077±0.0280 and 0.241±0.081, respectively. In overall, the results of the study proved the spatiotemporal variations of SPI-R el R es V ul watershed health index in the study area. Accordingly, all the sub-watersheds of the Shazand Watershed were grouped in unhealthy and very unhealthy conditions in all the study years. For 1986 and 1998 all the sub-watersheds were assessed in unhealthy status. Whilst, it declined to very unhealthy condition in 2008 and then some 75% of the watershed ultimately referred again to unhealthy and the rest still remained under very unhealthy conditions in 2014. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Watershed Complexity Impacts on Rainfall-Runoff Modeling

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Grayson, R.; Willgoose, G.; Palacios-Velez, O.; Bloeschl, G.

    2002-12-01

    Application of distributed hydrologic watershed models fundamentally requires watershed partitioning or discretization. In addition to partitioning the watershed into modeling elements, these elements typically represent a further abstraction of the actual watershed surface and its relevant hydrologic properties. A critical issue that must be addressed by any user of these models prior to their application is definition of an acceptable level of watershed discretization or geometric model complexity. A quantitative methodology to define a level of geometric model complexity commensurate with a specified level of model performance is developed for watershed rainfall-runoff modeling. In the case where watershed contributing areas are represented by overland flow planes, equilibrium discharge storage was used to define the transition from overland to channel dominated flow response. The methodology is tested on four subcatchments which cover a range of watershed scales of over three orders of magnitude in the USDA-ARS Walnut Gulch Experimental Watershed in Southeastern Arizona. It was found that distortion of the hydraulic roughness can compensate for a lower level of discretization (fewer channels) to a point. Beyond this point, hydraulic roughness distortion cannot compensate for topographic distortion of representing the watershed by fewer elements (e.g. less complex channel network). Similarly, differences in representation of topography by different model or digital elevation model (DEM) types (e.g. Triangular Irregular Elements - TINs; contour lines; and regular grid DEMs) also result in difference in runoff routing responses that can be largely compensated for by a distortion in hydraulic roughness.

  18. Developing stressor-watershed function relationships to refine the national maps of watershed integrity

    EPA Science Inventory

    Abstract ESA 2017Developing stressor-watershed function relationships to refine the national maps of watershed integrityJohnson, Z.C., S.G. Leibowitz, and R.A. Hill. To be submitted to the Ecological Society of America Annual Meeting, Portland, OR. August 2017.Human-induced ecolo...

  19. Climate change and watershed mercury export in a Coastal Plain watershed

    Treesearch

    Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley

    2016-01-01

    Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.

  20. Watershed processes, fish habitat, and salmonid distribution in the Tonsina River (Copper River watershed), Alaska

    NASA Astrophysics Data System (ADS)

    Booth, D. B.; Ligon, F. K.; Sloat, M. R.; Amerson, B.; Ralph, S. C.

    2007-12-01

    -scale differences in physical habitat features. For example, juvenile coho salmon used interstitial spaces between unembedded cobbles and boulders but were absent from adjacent habitat with high embeddedness. Thus high delivery rates of coarse sediment sustain critical rearing habitat that would otherwise be relatively inhospitable to fish. Using Chinook salmon as a focal species, we have integrated field- and map-based analyses to predict basin- scale geomorphic and biological constraints on the distribution of suitable spawning and rearing habitat. These analyses provide rapid guidance for where focused investigations or monitoring of key habitats should occur, a particularly important outcome where watersheds are large and field logistics are challenging. The predicted extent of suitable stream habitat within the study area represents a relatively minor fraction (ca. 10 percent) of the total stream channel network, suggesting that production of salmon from the study area depends on the maintenance of quality habitat in discrete, and relatively rare, reaches.

  1. The Watershed Report Card.

    ERIC Educational Resources Information Center

    Kelly, Allyson

    1996-01-01

    Outlines the history and development of the Watershed Report Card, an integrated program that educates Ontario participants about the holistic nature of a watershed and fosters community stewardship of the local ecosystem. The program consists of the inventory level, assessment and monitoring level, and remediation level. Emphasizes partnerships…

  2. Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine Graben

    NASA Astrophysics Data System (ADS)

    Zizinga, A.

    2017-12-01

    Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine GrabenAlex Zizinga1, Moses Tenywa2, Majaliwa Jackson Gilbert1, 1Makerere University, Department of Environmental Sciences, O Box 7062, Kampala, Uganda 1Makerere University, Department of Agricultural Production, P.O Box 7062, Kampala, Uganda Corresponding author: azizinga@caes.mak.ac.ug AbstractThe most pressing issues local communities in Uganda are facing result from land-use and land cover changes exacerbated by climate change impacts. A key issue is the documentation of land-cover changes visible with the ongoing clearance of remaining forests, bush-lands and wetlands for expanding farmland for sugarcane production, producing charcoal and collecting firewood for local distilleries using imported molasses. Decision-makers, resource managers, farmers and practitioners must build their capacity for adaptive measures. Here we present the potential impacts of climate change on watershed hydrological processes in the River Kiha Watershed, located in Western Uganda, Lake Albert Water Management Zone, by using social learning techniques incorporating water users, local stakeholders and researchers. The research team examined different farming and economic activities within the watershed to assess their impacts on catchment water resources, namely on water quality and discharge of river Kiha. We present the impacts of locally induced climate change, which are already manifested in increasing seasonal variability of rainfall. The study aims at answering questions posed by local communities and stakeholders about climate change and its effects on livelihood and key resources, specifically water and soils within the Kiha watershed. Key words: Climate change impacts, Social Learning and Watershed Management

  3. Management and assimilation of diverse, distributed watershed datasets

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Faybishenko, B.; Versteeg, R.; Agarwal, D.; Hubbard, S. S.; Hendrix, V.

    2016-12-01

    The U.S. Department of Energy's (DOE) Watershed Function Scientific Focus Area (SFA) seeks to determine how perturbations to mountainous watersheds (e.g., floods, drought, early snowmelt) impact the downstream delivery of water, nutrients, carbon, and metals over seasonal to decadal timescales. We are building a software platform that enables integration of diverse and disparate field, laboratory, and simulation datasets, of various types including hydrological, geological, meteorological, geophysical, geochemical, ecological and genomic datasets across a range of spatial and temporal scales within the Rifle floodplain and the East River watershed, Colorado. We are using agile data management and assimilation approaches, to enable web-based integration of heterogeneous, multi-scale dataSensor-based observations of water-level, vadose zone and groundwater temperature, water quality, meteorology as well as biogeochemical analyses of soil and groundwater samples have been curated and archived in federated databases. Quality Assurance and Quality Control (QA/QC) are performed on priority datasets needed for on-going scientific analyses, and hydrological and geochemical modeling. Automated QA/QC methods are used to identify and flag issues in the datasets. Data integration is achieved via a brokering service that dynamically integrates data from distributed databases via web services, based on user queries. The integrated results are presented to users in a portal that enables intuitive search, interactive visualization and download of integrated datasets. The concepts, approaches and codes being used are shared across various data science components of various large DOE-funded projects such as the Watershed Function SFA, Next Generation Ecosystem Experiment (NGEE) Tropics, Ameriflux/FLUXNET, and Advanced Simulation Capability for Environmental Management (ASCEM), and together contribute towards DOE's cyberinfrastructure for data management and model-data integration.

  4. MonitoringResources.org—Supporting coordinated and cost-effective natural resource monitoring across organizations

    USGS Publications Warehouse

    Bayer, Jennifer M.; Scully, Rebecca A.; Weltzin, Jake F.

    2018-05-21

    Natural resource managers who oversee the Nation’s resources require data to support informed decision-making at a variety of spatial and temporal scales that often cross typical jurisdictional boundaries such as states, agency regions, and watersheds. These data come from multiple agencies, programs, and sources, often with their own methods and standards for data collection and organization. Coordinating standards and methods is often prohibitively time-intensive and expensive. MonitoringResources.org offers a suite of tools and resources that support coordination of monitoring efforts, cost-effective planning, and sharing of knowledge among organizations. The website was developed by the Pacific Northwest Aquatic Monitoring Partnership—a collaboration of Federal, state, tribal, local, and private monitoring programs—and the U.S. Geological Survey (USGS), with funding from the Bonneville Power Administration and USGS. It is a key component of a coordinated monitoring and information network.

  5. Watershed Characteristics and Land Management in the Nonpoint-Source Evaluation Monitoring Watersheds in Wisconsin

    USGS Publications Warehouse

    Rappold, K.F.; Wierl, J.A.; Amerson, F.U.

    1997-01-01

    In 1992, the Wisconsin Department of Natural Resources, in cooperation with the U.S. Geological Survey, began a land-use inventory to identify sources of contaminants and track the land-management changes for eight evaluation monitoring watersheds in Wisconsin. An important component of the land-use inventory has been developing descriptions and preliminary assessments for the eight watersheds. These descriptions establish a baseline for future data analysis. The watershed descriptions include sections on location, reference watersheds, climate, land use, soils and topography, and surface-water resources. The land-management descriptions include sections on objectives, sources of nonpoint contamination and goals of contaminant reduction, and implementation of best-management practices. This information was compiled primarily from the nonpoint-source control plans, county soil surveys, farm conservation plans, Federal and State agency data reports, and data collected through the land-use inventory.

  6. MAPPING WATERSHED INTEGRITY FOR THE CONTERMINOUS UNITED STATES.

    EPA Science Inventory

    Watersheds provide a variety of ecosystem services valued by society. Production of these services is sensitive to watershed alteration by human activities. Flotemersch and others (2015), defined watershed integrity (WI) as the “capacity of a watershed to support and maint...

  7. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    PubMed

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mapping watershed integrity for the conterminous United States..

    EPA Science Inventory

    Watershed integrity is the capacity of a watershed to support and maintain the full range of ecological processes and functions essential to sustainability. We evaluated and mapped an Index of Watershed Integrity (IWI) for 2.6 million watersheds in the conterminous US using firs...

  9. Developing a Watershed Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  10. EPA'S WATERSHED MANAGEMENT AND MODELING RESEARCH PROGRAM

    EPA Science Inventory

    Watershed management presumes that community groups can best solve many water quality and ecosystem problems at the watershed level rather than at the individual site, receiving waterbody, or discharger level. After assessing and ranking watershed problems, and setting environ...

  11. Engineering a Healthier Watershed: Middle School Students Use Engineering Design to Lessen the Impact of Their Campus' Impervious Surfaces on Their Local Watershed

    NASA Astrophysics Data System (ADS)

    Gardner, Elizabeth Claire

    It is important that students understand not only how their local watershed functions, but also how it is being impacted by impervious surfaces. Additionally, students need experience exploring the scientific and engineering practices that are necessary for a strong STEM background. With this knowledge students can be empowered to tackle this real and local problem using engineering design, a powerful practice gaining momentum and clarity through its prominence in the recent Framework for K-12 Science Education. Twenty classes of suburban sixth-graders participated in a new five-week Watershed Engineering Design Unit taught by their regular science teachers. Students engaged in scientific inquiry to learn about the structure, function, and health of their local watersheds, focusing on the effects of impervious surfaces. In small groups, students used the engineering design process to propose solutions to lessen the impact of runoff from their school campuses. The goal of this evaluation was to determine the effectiveness of the curriculum in terms of student gains in understanding of (1) watershed function, (2) the impact of impervious surfaces, and (3) the engineering design process. To determine the impact of this curriculum on their learning, students took multiple-choice pre- and post-assessments made up of items covering the three categories above. This data was analyzed for statistical significance using a lower-tailed paired sample t-test. All three objectives showed statistically significant learning gains and the results were used to recommend improvements to the curriculum and the assessment instrument for future iterations.

  12. Effect of internal versus external focus of attention on implicit motor learning in children with developmental coordination disorder.

    PubMed

    Jarus, Tal; Ghanouni, Parisa; Abel, Rachel L; Fomenoff, Shelby L; Lundberg, Jocelyn; Davidson, Stephanie; Caswell, Sarah; Bickerton, Laura; Zwicker, Jill G

    2015-02-01

    Children with developmental coordination disorder (DCD) struggle to learn new motor skills. It is unknown whether children with DCD learn motor skills more effectively with an external focus of attention (focusing on impact of movement on the environment) or an internal focus of attention (focusing on one's body movements) during implicit (unconscious) and explicit (conscious) motor learning. This paper aims to determine the trends of implicit motor learning in children with DCD, and how focus of attention influences motor learning in children with DCD in comparison with typically developing children. 25 children, aged 8-12, with (n=12) and without (n=13) DCD were randomly assigned to receive instructions that focused attention externally or internally while completing a computer tracking task during acquisition, retention, and transfer phases. The motor task involved tracking both repeated and random patterns, with the repeated pattern indicative of implicit learning. Children with DCD scored lower on the motor task in all three phases of the study, demonstrating poorer implicit learning. Furthermore, graphical data showed that for the children with DCD, there was no apparent difference between internal and external focus of attention during retention and transfer, while there was an advantage to the external focus of attention group for typically developing children. Children with DCD demonstrate less accuracy than typically developing children in learning a motor task. Also, the effect of focus of attention on motor performance is different in children with DCD versus their typically developing counterparts during the three phases of motor learning. Results may inform clinicians how to facilitate motor learning in children with DCD by incorporating explicit learning with either internal or external focus of attention within interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions.

    PubMed

    Evenson, Grey R; Golden, Heather E; Lane, Charles R; McLaughlin, Daniel L; D'Amico, Ellen

    2018-06-01

    Depressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning. However, these wetlands have been lost at a prodigious rate over past decades due to drainage for development, climate effects, and other causes. Options for management entities to protect the existing wetlands, and their functions, may focus on conserving wetlands based on spatial location vis-à-vis a floodplain or on size limitations (e.g., permitting smaller wetlands to be destroyed but not larger wetlands). Yet the effects of such management practices and the concomitant loss of depressional wetlands on watershed-scale hydrological, biogeochemical, and ecological functions are largely unknown. Using a hydrological model, we analyzed how different loss scenarios by wetland size and proximal location to the stream network affected watershed storage (i.e., inundation patterns and residence times), connectivity (i.e., streamflow contributing areas), and export (i.e., streamflow) in a large watershed in the Prairie Pothole Region of North Dakota, USA. Depressional wetlands store consequential amounts of precipitation and snowmelt. The loss of smaller depressional wetlands (<3.0 ha) substantially decreased landscape-scale inundation heterogeneity, total inundated area, and hydrological residence times. Larger wetlands act as hydrologic "gatekeepers," preventing surface runoff from reaching the stream network, and their modeled loss had a greater effect on streamflow due to changes in watershed connectivity and storage characteristics of larger wetlands. The wetland management scenario based on stream proximity (i.e., protecting wetlands 30 m and ~450 m from the stream) alone resulted in considerable landscape heterogeneity loss and decreased inundated area and residence times. With more snowmelt and precipitation available for runoff with wetland losses, contributing area increased across all loss scenarios

  14. Watershed Management Optimization Support Tool v3

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  15. Enhancing ecosystem restoration efficiency through spatial and temporal coordination.

    PubMed

    Neeson, Thomas M; Ferris, Michael C; Diebel, Matthew W; Doran, Patrick J; O'Hanley, Jesse R; McIntyre, Peter B

    2015-05-12

    In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.

  16. Enhancing ecosystem restoration efficiency through spatial and temporal coordination

    PubMed Central

    Neeson, Thomas M.; Ferris, Michael C.; Diebel, Matthew W.; Doran, Patrick J.; O’Hanley, Jesse R.; McIntyre, Peter B.

    2015-01-01

    In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems. PMID:25918378

  17. Model My Watershed - A Robust Online App to Enable Citizen Scientists to Model Watershed Hydrology and Water Quality at Regulatory-Level Standards

    NASA Astrophysics Data System (ADS)

    Daniels, M.; Kerlin, S.; Arscott, D.

    2017-12-01

    Citizen-based watershed monitoring has historically lacked scientific rigor and geographic scope due to limitation in access to watershed-level data and the high level skills and resources required to adequately model watershed dynamics. Public access to watershed information is currently routed through a variety of governmental data portals and often requires advanced geospatial skills to collect and present in useable forms. At the same time, tremendous financial resources are being invested in watershed restoration and management efforts, and often these resources pass through local stakeholder groups such as conservation NGO, watershed interest groups, and local municipalities without extensive hydrologic knowledge or access to sophisticated modeling resources. Even governmental agencies struggle to understand how to best steer or prioritize restoration investments. A new app, Model My Watershed, was built to improve access to watershed data and modeling capabilities in a fast, accessible, free web-app format. Working across the contiguous United States, the Model My Watershed app provides land cover, soils, aerial imagery and relief, watershed delineation, and stream network delineation. Users can model watersheds or areas of interest and create management scenarios to evaluate implementation of land cover changes and best management practice implementation with both hydrologic and water quality outputs that meet TMDL regulatory standards.

  18. Integrating local research watersheds into hydrologic education: Lessons from the Dry Creek Experimental Watershed

    NASA Astrophysics Data System (ADS)

    McNamara, J. P.; Aishlin, P. S.; Flores, A. N.; Benner, S. G.; Marshall, H. P.; Pierce, J. L.

    2014-12-01

    While a proliferation of instrumented research watersheds and new data sharing technologies has transformed hydrologic research in recent decades, similar advances have not been realized in hydrologic education. Long-standing problems in hydrologic education include discontinuity of hydrologic topics from introductory to advanced courses, inconsistency of content across academic departments, and difficulties in development of laboratory and homework assignments utilizing large time series and spatial data sets. Hydrologic problems are typically not amenable to "back-of-the-chapter" examples. Local, long-term research watersheds offer solutions to these problems. Here, we describe our integration of research and monitoring programs in the Dry Creek Experimental Watershed into undergraduate and graduate hydrology programs at Boise State University. We developed a suite of watershed-based exercises into courses and curriculums using real, tangible datasets from the watershed to teach concepts not amenable to traditional textbook and lecture methods. The aggregation of exercises throughout a course or degree allows for scaffolding of concepts with progressive exposure of advanced concepts throughout a course or degree. The need for exercises of this type is growing as traditional lecture-based classes (passive learning from a local authoritative source) are being replaced with active learning courses that integrate many sources of information through situational factors.

  19. 7 CFR 622.11 - Eligible watershed projects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Eligible watershed projects. 622.11 Section 622.11 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Qualifications § 622.11 Eligible watershed...

  20. 7 CFR 622.11 - Eligible watershed projects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Eligible watershed projects. 622.11 Section 622.11 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Qualifications § 622.11 Eligible watershed...

  1. 7 CFR 622.11 - Eligible watershed projects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Eligible watershed projects. 622.11 Section 622.11 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Qualifications § 622.11 Eligible watershed...

  2. 7 CFR 622.11 - Eligible watershed projects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... benefits consistent with protecting the Nation's environment (for structural water resource projects... 7 Agriculture 6 2010-01-01 2010-01-01 false Eligible watershed projects. 622.11 Section 622.11..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Qualifications § 622.11 Eligible watershed...

  3. Application of four watershed acidification models to Batchawana Watershed, Canada.

    PubMed

    Booty, W G; Bobba, A G; Lam, D C; Jeffries, D S

    1992-01-01

    Four watershed acidification models (TMWAM, ETD, ILWAS, and RAINS) are reviewed and a comparison of model performance is presented for a common watershed. The models have been used to simulate the dynamics of water quantity and quality at Batchawana Watershed, Canada, a sub-basin of the Turkey Lakes Watershed. The computed results are compared with observed data for a four-year period (Jan. 1981-Dec. 1984). The models exhibit a significant range in the ability to simulate the daily, monthly and seasonal changes present in the observed data. Monthly watershed outflows and lake chemistry predictions are compared to observed data. pH and ANC are the only two chemical parameters common to all four models. Coefficient of efficiency (E), linear (r) and rank (R) correlation coefficients, and regression slope (s) are used to compare the goodness of fit of the simulated with the observed data. The ILWAS, TMWAM and RAINS models performed very well in predicting the monthly flows, with values of r and R of approximately 0.98. The ETD model also showed strong correlations with linear (r) and rank (R) correlation coefficients of 0.896 and 0.892, respectively. The results of the analyses showed that TMWAM provided the best simulation of pH (E=0.264, r=0.648), which is slightly better than ETD (E=0.240, r=0.549), and much better than ILWAS (E=-2.965, r=0.293), and RAINS (E=-4.004, r=0.473). ETD was found to be superior in predicting ANC (E=0.608, r=0.781) as compared to TMWAM (E=0.340, r=0.598), ILWAS (E=0.275, r=0.442), and RAINS (E=-1.048, r=0.356). The TMWAM model adequately simulated SO4 over the four-year period (E=0.423, r=0.682) but the ETD (E=-0.904, r=0.274), ILWAS (E=-4.314, r=0.488), and RAINS (E=-6.479, r=0.126) models all performed poorer than the benchmark model (mean observed value).

  4. Characterizing ponds in watershed simulations and evaluating their influence on streamflowin a Mississippi Watershed

    USDA-ARS?s Scientific Manuscript database

    Small water bodies are common landscape features, but often are not simulated within a watershed modeling framework. The wetland modeling tool, AgWET, uses a GIS framework to characterize the features of ponds and wetlands so that they can be incorporated into watershed simulations using the Annuali...

  5. Nitrogen fluxes and retention in urban watershed ecosystems

    USGS Publications Warehouse

    Groffman, P.M.; Law, N.L.; Belt, K.T.; Band, L.E.; Fisher, G.T.

    2004-01-01

    Although the watershed approach has long been used to study whole-ecosystem function, it has seldom been applied to study human-dominated systems, especially those dominated by urban and suburban land uses. Here we present 3 years of data on nitrogen (N) losses from one completely forested, one agricultural, and six urban/suburban watersheds, and input-output N budgets for suburban, forested, and agricultural watersheds. The work is a product of the Baltimore Ecosystem Study, a long-term study of urban and suburban ecosystems, and a component of the US National Science Foundation's long-term ecological research (LTER) network. As expected, urban and suburban watersheds had much higher N losses than did the completely forested watershed, with N yields ranging from 2.9 to 7.9 kg N ha-1 y-1 in the urban and suburban watersheds compared with less than 1 kg N ha-1 y -1 in the completely forested watershed. Yields from urban and suburban watersheds were lower than those from an agricultural watershed (13-19.8 kg N ha-1 y-1). Retention of N in the suburban watershed was surprisingly high, 75% of inputs, which were dominated by home lawn fertilizer (14.4 kg N ha-1 y-1) and atmospheric deposition (11.2 kg N ha-1 y-1). Detailed analysis of mechanisms of N retention, which must occur in the significant amounts of pervious surface present in urban and suburban watersheds, and which include storage in soils and vegetation and gaseous loss, is clearly warranted.

  6. Application of a DRAINMOD-based watershed model to a lower coastal plain watershed

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2003-01-01

    This is a case study for applying DRAINMOD-GIS, a DRAINMOD based lumped parameter watershed model to Chicod Creek, a 11300 ha coastal plain watershed in North Carolina which is not intensively instrumented or documented. The study utilized the current database of land-use, topography, stream network, soil, and weather data available to the State and Federal agencies....

  7. Land Conservation Plan from the New Hampshire’s Coastal Watersheds (Piscataqua Region Estuaries Partnership)

    EPA Pesticide Factsheets

    The overarching goal of this land conservation plan is to focus conservation on those lands and waters that are most important for conserving living resources - native plants, animals and natural communities - and water quality in the coastal watersheds.

  8. Alaska Index of Watershed Integrity

    EPA Science Inventory

    The US Environmental Protection Agency’s (EPA) Index of Watershed Integrity (IWI) is used to calculate and visualize the status of natural watershed infrastructure that supports ecological processes (e.g., nutrient cycling) and services provided to society (e.g., subsistenc...

  9. A Customizable Dashboarding System for Watershed Model Interpretation

    NASA Astrophysics Data System (ADS)

    Easton, Z. M.; Collick, A.; Wagena, M. B.; Sommerlot, A.; Fuka, D.

    2017-12-01

    Stakeholders, including policymakers, agricultural water managers, and small farm managers, can benefit from the outputs of commonly run watershed models. However, the information that each stakeholder needs is be different. While policy makers are often interested in the broader effects that small farm management may have on a watershed during extreme events or over long periods, farmers are often interested in field specific effects at daily or seasonal period. To provide stakeholders with the ability to analyze and interpret data from large scale watershed models, we have developed a framework that can support custom exploration of the large datasets produced. For the volume of data produced by these models, SQL-based data queries are not efficient; thus, we employ a "Not Only SQL" (NO-SQL) query language, which allows data to scale in both quantity and query volumes. We demonstrate a stakeholder customizable Dashboarding system that allows stakeholders to create custom `dashboards' to summarize model output specific to their needs. Dashboarding is a dynamic and purpose-based visual interface needed to display one-to-many database linkages so that the information can be presented for a single time period or dynamically monitored over time and allows a user to quickly define focus areas of interest for their analysis. We utilize a single watershed model that is run four times daily with a combined set of climate projections, which are then indexed, and added to an ElasticSearch datastore. ElasticSearch is a NO-SQL search engine built on top of Apache Lucene, a free and open-source information retrieval software library. Aligned with the ElasticSearch project is the open source visualization and analysis system, Kibana, which we utilize for custom stakeholder dashboarding. The dashboards create a visualization of the stakeholder selected analysis and can be extended to recommend robust strategies to support decision-making.

  10. Watershed condition [Chapter 4

    Treesearch

    Daniel G. Neary; Jonathan W. Long; Malchus B. Baker

    2012-01-01

    Managers of the Prescott National Forest are obliged to evaluate the conditions of watersheds under their jurisdiction in order to guide informed decisions concerning grazing allotments, forest and woodland management, restoration treatments, and other management initiatives. Watershed condition has been delineated by contrasts between “good” and “poor” conditions (...

  11. Watershed Education for Broadcast Meteorologists

    NASA Astrophysics Data System (ADS)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.

    2006-12-01

    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  12. Characterizing Storm Event Dynamics of a Forested Watershed in the Lower Atlantic Coastal Plain, South Carolina USA

    NASA Astrophysics Data System (ADS)

    Latorre Torres, I. B.; Amatya, D. M.; Callahan, T. J.; Levine, N. S.

    2007-12-01

    Hydrology research in the Southeast U.S. has primarily focused on upland mountainous areas; however, much less is known about hydrological processes in Lower Coastal Plain (LCP) watersheds. Such watersheds are difficult to characterize due to shallow water table conditions, low topographic gradient, complex surface- subsurface water interaction, and lack of detailed soil information. Although opportunities to conduct long term monitoring in relatively undeveloped watersheds are often limited, stream flow and rainfall in the Turkey Creek watershed (third-order watershed, about 7200 ha in the Francis Marion National Forest near Charleston, SC) have been monitored since 1964. In this study, event runoff-rainfall ratios have been determined for 51 storm events using historical data from 1964-1973. One of our objectives was to characterize relationships between seasonal event rainfall and storm outflow in this watershed. To this end, observed storm event data were compared with values predicted by established hydrological methods such as the Soil Conservation Service runoff curve number (SCS-CN) and the rational method integrated within a Geographical Information System (GIS), to estimate total event runoff and peak discharge, respectively. Available 1:15000 scale aerial images were digitized to obtain land uses, which were used with the SCS soil hydrologic groups to obtain the runoff coefficients (C) for the rational method and the CN values for the SCS-CN method. These methods are being tested with historical storm event responses in the Turkey Creek watershed scale, and then will be used to predict event runoff in Quinby Creek, an ungauged third-order watershed (8700 ha) adjacent to Turkey Creek. Successful testing with refinement of parameters in the rational method and SCS-CN method, both designed for small urban and agricultural dominated watersheds, may allow widespread application of these methods for studying the event rainfall-runoff dynamics for similar

  13. Keep meaning in conversational coordination

    PubMed Central

    Cuffari, Elena C.

    2014-01-01

    Coordination is a widely employed term across recent quantitative and qualitative approaches to intersubjectivity, particularly approaches that give embodiment and enaction central explanatory roles. With a focus on linguistic and bodily coordination in conversational contexts, I review the operational meaning of coordination in recent empirical research and related theorizing of embodied intersubjectivity. This discussion articulates what must be involved in treating linguistic meaning as dynamic processes of coordination. The coordination approach presents languaging as a set of dynamic self-organizing processes and actions on multiple timescales and across multiple modalities that come about and work in certain domains (those jointly constructed in social, interactive, high-order sense-making). These processes go beyond meaning at the level that is available to first-person experience. I take one crucial consequence of this to be the ubiquitously moral nature of languaging with others. Languaging coordinates experience, among other levels of behavior and event. Ethical effort is called for by the automatic autonomy-influencing forces of languaging as coordination. PMID:25520693

  14. Protecting water quality in the watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, C.R.; Johnson, K.E.; Stewart, E.H.

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships tomore » each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.« less

  15. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    NASA Astrophysics Data System (ADS)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  16. Walnut creek watershed monitoring project, Iowa: Monitoring water quality in response to prairie restoration

    USGS Publications Warehouse

    Schilling, K.E.; Thompson, C.A.

    2000-01-01

    row crop in the basins and subbasins. Although some results are encouraging, definitive water quality improvements have not been observed during the first three years of monitoring. Possible reasons include: (1) more time is needed to adequately detect changes; (2) the size of the watershed is too large to detect improvements; (3) land use changes are not located in the area of the watershed where they would have greatest effect; or (4) water quality improvements have occurred but have been missed by the project monitoring design. Longer-term monitoring will allow better evaluation of the impact of restoration activities on water quality.An overview is given on the Walnut Creek Watershed Monitoring Project established as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Services. Focus is on land use and surface water data for nitrogen and pesticides. Initial results obtained for the first three years of monitoring are discussed.

  17. INTEGRATIVE CONSIDERATIONS IN WATERSHED PLANNING

    EPA Science Inventory

    Understanding the filters through which society views the values produced by watersheds is key to developing effective and adaptable watershed plans, and ultimately a measure of how well policy makers are likely to meet a sustainability, or any other, intent. Many natural resour...

  18. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    PubMed

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per

  19. Draft framework for watershed-based trading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-30

    Effluent trading is an innovative way for water quality agencies and community stakeholders to develop common-sense, cost-effective solutions for water quality problems in their watersheds. Trading can allow communities to grow and prosper while retaining their commitment to water quality. The bulk of this framework discusses effluent trading in watersheds. Remaining sections discuss transactions that, while not technically fulfilling the definition of `effluent` trade, do involve the exchange of valued water quality or other ecological improvements between partners responding to market initiatives. This document therefore includes activities such as trades within a facility (intra-plant trading) and wetland mitigation banking, effluentmore » trading/watersheds/watershed management/water quality protection/water quality management.« less

  20. Watershed Education for Sustainable Development.

    ERIC Educational Resources Information Center

    Stapp, William B.

    2000-01-01

    Presents information on the Global Rivers Environmental Education Network (GREEN), which is a global communication system for analyzing watershed usage and monitoring the quality and quantity of river water. Describes GREEN's watershed educational model and strategies and international development. (Contains 67 references.) (Author/YDS)

  1. Automated watershed subdivision for simulations using multi-objective optimization

    USDA-ARS?s Scientific Manuscript database

    The development of watershed management plans to evaluate placement of conservation practices typically involves application of watershed models. Incorporating spatially variable watershed characteristics into a model often requires subdividing the watershed into small areas to accurately account f...

  2. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    DOE PAGES

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; ...

    2016-02-08

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less

  3. Emerging tools and technologies in watershed management

    Treesearch

    D. Phillip Guertin; Scott N. Miller; David C. Goodrich

    2000-01-01

    The field of watershed management is highly dependent on spatially distributed data. Over the past decade, significant advances have been made toward the capture, storage, and use of spatial data. Emerging tools and technologies hold great promise for improving the scientific understanding of watershed processes and are already revolutionizing watershed research....

  4. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    EPA Pesticide Factsheets

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  5. Influence of riparian and watershed alterations on sandbars in a Great Plains river

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Paukert, Craig P.; Daniels, M.L.

    2014-01-01

    Anthropogenic alterations have caused sandbar habitats in rivers and the biota dependent on them to decline. Restoring large river sandbars may be needed as these habitats are important components of river ecosystems and provide essential habitat to terrestrial and aquatic organisms. We quantified factors within the riparian zone of the Kansas River, USA, and within its tributaries that influenced sandbar size and density using aerial photographs and land use/land cover (LULC) data. We developed, a priori, 16 linear regression models focused on LULC at the local, adjacent upstream river bend, and the segment (18–44 km upstream) scales and used an information theoretic approach to determine what alterations best predicted the size and density of sandbars. Variation in sandbar density was best explained by the LULC within contributing tributaries at the segment scale, which indicated reduced sandbar density with increased forest cover within tributary watersheds. Similarly, LULC within contributing tributary watersheds at the segment scale best explained variation in sandbar size. These models indicated that sandbar size increased with agriculture and forest and decreased with urban cover within tributary watersheds. Our findings suggest that sediment supply and delivery from upstream tributary watersheds may be influential on sandbars within the Kansas River and that preserving natural grassland and reducing woody encroachment within tributary watersheds in Great Plains rivers may help improve sediment delivery to help restore natural river function.

  6. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    PubMed

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bransford, Stephanie

    2009-05-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into themore » present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.« less

  8. Self-Concept of Boys with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Cocks, Neralie; Barton, Belinda; Donelly, Michelle

    2009-01-01

    Children with Developmental Coordination Disorder (DCD) experience difficulties in motor coordination. During the last decade there has been increasing interest in the psychosocial aspects of children with motor coordination difficulties. To date, the majority of studies have focused on the perceived competence and global self-worth of children…

  9. Watershed geomorphological characteristics

    USGS Publications Warehouse

    Fitzpatrick, Faith A.

    2016-01-01

    This chapter describes commonly used geomorphological characteristics that are useful for analyzing watershed-scale hydrology and sediment dynamics. It includes calculations and measurements for stream network features and areal basin characteristics that cover a range of spatial and temporal scales and dimensions of watersheds. Construction and application of longitudinal profiles are described in terms of understanding the three-dimensional development of stream networks. A brief discussion of outstanding problems and directions for future work, particularly as they relate to water-resources management, is provided. Notations with preferred units are given.

  10. Linking Ecosystem Services Supply to Stakeholder Values in Guanica Bay Watershed, Puerto Rico

    EPA Science Inventory

    Policies to protect coastal resources will be more effective when they account for the social and economic concerns of stakeholders in the coastal zone and watershed, and are responsive to potential tradeoffs between benefits offered by both land and sea. We focus on the Gu&aacu...

  11. The role of interior watershed processes in improving parameter estimation and performance of watershed models

    USDA-ARS?s Scientific Manuscript database

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the l...

  12. Evaluation of the Agro-EcoSystem-Watershed (AgES-W)model for estimating nutrient dynamics on a midwest agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    In order to satisfy the requirements of Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model dev...

  13. Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hogue, T. S.; Hay, L.

    2015-12-01

    This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.

  14. Evaluation results of the GlobalWatershed GK-12 Fellowship Program - a model for increased science literacy and partnership

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Vye, E.

    2016-12-01

    The Michigan Tech GlobalWatershed GK-12 Fellowship program bridges the gap between K-12 learning institutions and the scientific community with a focus on watershed research. Michigan Tech graduate students (fellows) work in tandem with teachers on the development of relevant hands-on, inquiry based lesson plans and activities based on their doctoral research projects in watershed science. By connecting students and teachers to state of the art academic research in watershed science, teachers are afforded a meaningful way in which to embed scientific research as a component of K-12 curricula, while mentoring fellows on the most pertinent and essential topics for lesson plan development. Fellows fulfill their vital responsibility of communicating their academic research to a broader public while fostering improved teaching and communication skills. A goal of the project is to increase science literacy among students so they may understand, communicate and participate in decisions made at local, regional, and global levels. The project largely works with schools located in Michigan's western Upper Peninsula but also partners with K-12 systems in Sonora, Mexico. While focusing on local and regional issues, the international element of the project helps expand student, teacher, and fellow worldviews and global awareness of watershed issues and creates meaningful partnerships. Lesson plans are available online and teacher workshops are held regularly to disseminate the wealth of information and resources available to the broader public. Evaluation results indicate that fellows' skill and confidence in their ability to communicate science increased as a results of their participation of the program, as well as their desire to communicate science in their future careers. Teachers' confidence in their capacity to present watershed science to their students increased, along with their understanding of how scientific research contributes to understanding of water

  15. Landscape and plant physiological controls on water dynamics within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, J.; Looker, N. T.; Martin, J. T.; Hoylman, Z. H.; Jencso, K. G.

    2014-12-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower

  16. Integrated investigations of environmental effects of historical mining in the Animas River Watershed, San Juan County, Colorado

    USGS Publications Warehouse

    Church, Stan E.; Von Guerard, Paul; Finger, Susan E.

    2007-01-01

    This publication comprises a Volume Contents of chapters (listed below) and a CD-ROM of data (contents shown in column at right). The Animas River watershed in southwest Colorado is one of many watersheds in the western United States where historical mining has left a legacy of acid mine drainage and elevated concentrations of potentially toxic trace elements in surface streams. U.S. Geological Survey scientists have completed a major assessment of the environmental effects of historical mining in the Animas River watershed focusing on the area upstream of Silverton, Colo.?the Mineral Creek, Cement Creek, and upper Animas River basins. The study demonstrated how the watershed approach can be used to assess and rank mining-affected sites for possible cleanup. The study was conducted in collaboration with State and Federal land-management agencies and regional stakeholders groups. This book is available for purchase at Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  17. Using four capitals to assess watershed sustainability.

    PubMed

    Pérez-Maqueo, Octavio; Martinez, M Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  18. Using Four Capitals to Assess Watershed Sustainability

    NASA Astrophysics Data System (ADS)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  19. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    PubMed

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  20. WATERSHED HEALTH ASSESSMENT TOOLS-INVESTIGATING FISHERIES (WHAT-IF): A MODELING TOOLKIT FOR WATERSHED AND FISHERIES MANAGEMENT

    EPA Science Inventory

    The Watershed Health Assessment Tools-Investigating Fisheries (WHAT-IF) is a decision-analysis modeling toolkit for personal computers that supports watershed and fisheries management. The WHAT-IF toolkit includes a relational database, help-system functions and documentation, a...

  1. Rural watershed partnerships: lessons from West Virginia

    Treesearch

    Steve W. Selin; Alan Collins; Susan Hunter

    1998-01-01

    The goal of this study is to examine the efforts by one state government (West Virginia) to facilitate collaborative, watershed-based planning. This paper provides an overview of the state watershed planning process and includes a summary of a baseline study of rural watershed partnerships operating within West Virginia. Implication of the study for state policies and...

  2. Detecting temporal change in watershed nutrient yields

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2008-01-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...

  3. Detecting Temporal Change in Watershed Nutrient Yields

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2008-01-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...

  4. Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model

    USGS Publications Warehouse

    Long, Andrew J.

    2009-01-01

    Highly parameterized, physically based models may be no more effective at simulating the relations between rainfall and outflow from karst watersheds than are simpler models. Here an antecedent rainfall and convolution model was used to separate a karst watershed hydrograph into two outflow components: one originating from focused recharge in conduits and one originating from slow flow in a porous annex system. In convolution, parameters of a complex system are lumped together in the impulse-response function (IRF), which describes the response of the system to an impulse of effective precipitation. Two parametric functions in superposition approximate the two-domain IRF. The outflow hydrograph can be separated into flow components by forward modeling with isolated IRF components, which provides an objective criterion for separation. As an example, the model was applied to a karst watershed in the Madison aquifer, South Dakota, USA. Simulation results indicate that this watershed is characterized by a flashy response to storms, with a peak response time of 1 day, but that 89% of the flow results from the slow-flow domain, with a peak response time of more than 1 year. This long response time may be the result of perched areas that store water above the main water table. Simulation results indicated that some aspects of the system are stationary but that nonlinearities also exist.

  5. Variability of E. coli density and sources in an urban watershed.

    PubMed

    Wu, J; Rees, P; Dorner, S

    2011-03-01

    The objective of this study was to characterize the variability of Escherichia coli density and sources in an urban watershed, particularly to focus on the influences of weather and land use. E. coli as a microbial indicator was measured at fourteen sites in four wet weather events and four dry weather conditions in the upper Blackstone River watershed. The sources of E. coli were identified by ribotyping. The results showed that wet weather led to sharp increases of E. coli densities. Interestingly, an intense storm of short duration led to a higher E. coli density than a moderate storm of long duration (p<0.01). The ribotyping patterns revealed microbial sources were mainly attributed to humans and wildlife, but varied in different weather conditions and were associated with the patterns of land use. Human sources accounted for 24.43% in wet weather but only 9.09% in dry weather. In addition, human sources were more frequently observed in residential zones (>30% of the total sources), while wildlife sources were dominant in open land and forest zones (54%). The findings provide useful information for developing optimal management strategies aimed at reducing the level of pathogens in urban watersheds.

  6. Contaminants in sediment, food-chain biota, and bird eggs from the Newport Bay watershed, Orange County, California.

    PubMed

    Santolo, Gary M; Byron, Earl R; Ohlendorf, Harry M

    2016-02-01

    Groundwater-related discharges in the San Diego Creek/Newport Bay watershed in Orange County, California have the potential to adversely affect the surface waters within the watershed and would likely not comply with the established total maximum daily loads (TMDLs) for the watershed. In 2004 and 2005, we studied the concentrations of contaminants of TMDL concern (particularly selenium [Se]) in birds that are at risk of exposure to contaminated food items because they feed and nest in the Newport Bay watershed. Most bioaccumulation is from elevated Se in groundwater downstream of a historic terminal swamp. Se bioaccumulation was observed in all biota tested, and DDE was found in fish and bird egg samples. Effects of contaminants on fish and birds are inconclusive due to the management disturbances in the watershed (e.g., flood control) and lack of bird nesting habitat. Although a significant relationship was observed between DDE concentrations and eggshell thinning in American avocet (Recurvirostra americana) eggs, the shell thinning in avocet and other species examined was not enough to result in hatching failure. Further focused monitoring efforts will be needed to characterize the exposure and risk levels.

  7. Applications of remote sensing to watershed management

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  8. Characterizing response of total suspended solids and total phosphorus loading to weather and watershed characteristics for rainfall and snowmelt events in agricultural watersheds

    USGS Publications Warehouse

    Danz, Mari E.; Corsi, Steven; Brooks, Wesley R.; Bannerman, Roger T.

    2013-01-01

    Understanding the response of total suspended solids (TSS) and total phosphorus (TP) to influential weather and watershed variables is critical in the development of sediment and nutrient reduction plans. In this study, rainfall and snowmelt event loadings of TSS and TP were analyzed for eight agricultural watersheds in Wisconsin, with areas ranging from 14 to 110 km2 and having four to twelve years of data available. The data showed that a small number of rainfall and snowmelt runoff events accounted for the majority of total event loading. The largest 10% of the loading events for each watershed accounted for 73–97% of the total TSS load and 64–88% of the total TP load. More than half of the total annual TSS load was transported during a single event for each watershed at least one of the monitored years. Rainfall and snowmelt events were both influential contributors of TSS and TP loading. TSS loading contributions were greater from rainfall events at five watersheds, from snowmelt events at two watersheds, and nearly equal at one watershed. The TP loading contributions were greater from rainfall events at three watersheds, from snowmelt events at two watersheds and nearly equal at three watersheds. Stepwise multivariate regression models for TSS and TP event loadings were developed separately for rainfall and snowmelt runoff events for each individual watershed and for all watersheds combined by using a suite of precipitation, melt, temperature, seasonality, and watershed characteristics as predictors. All individual models and the combined model for rainfall events resulted in two common predictors as most influential for TSS and TP. These included rainfall depth and the antecedent baseflow. Using these two predictors alone resulted in an R2 greater than 0.7 in all but three individual models and 0.61 or greater for all individual models. The combined model yielded an R2 of 0.66 for TSS and 0.59 for TP. Neither the individual nor the combined models were

  9. Economic Tools for Managing Nitrogen in Coastal Watersheds ...

    EPA Pesticide Factsheets

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to coastal watershed managers who had commissioned economic studies and found that they were largely satisfied with the information and their ability to communicate the importance of coastal ecosystems. However, while managers were able to use these studies as communication tools, methods used in some studies were inconsistent with what some economists consider best practices. In addition, many watershed managers are grappling with how to implement nitrogen management activities in a way that is both cost-effective and achieves environmental goals, while maintaining public support. These and other issues led to this project. Our intent is to provide information to watershed managers and others interested in watershed management – such as National Estuary Programs, local governments, or nongovernmental organizations – on economic tools for managing nitrogen in coastal watersheds, and to economists and other analysts who are interested in assisting them in meeting their needs. Watershed management requires balancing scientific, political, and social issues to solve environmental problems. This document summarizes questions that watershed managers have about using economic analysis, and g

  10. Model My Watershed: Connecting Students' Conceptual Understanding of Watersheds to Real-World Decision Making

    ERIC Educational Resources Information Center

    Gill, Susan E.; Marcum-Dietrich, Nanette; Becker-Klein, Rachel

    2014-01-01

    The Model My Watershed (MMW) application, and associated curricula, provides students with meaningful opportunities to connect conceptual understanding of watersheds to real-world decision making. The application uses an authentic hydrologic model, TR-55 (developed by the U.S. Natural Resources Conservation Service), and real data applied in…

  11. Studying Watersheds: A Confluence of Important Ideas. ERIC Digest.

    ERIC Educational Resources Information Center

    Haury, David L.

    This digest explains how the study of watersheds can serve to connect concept and skill development across subject areas and grade levels for curriculum reform and standards-based assessment. Specific resources are organized into watersheds in the curriculum, connections to National Standards, watershed concepts and activities, watershed education…

  12. Retrofitting for watershed drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, D.B.; Heaney, J.P.

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushingmore » in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.« less

  13. Watersheds and Water Policy Funding From USDA-CSREES: Vision, Outlook, and Priorities

    NASA Astrophysics Data System (ADS)

    Cavallaro, N.

    2006-05-01

    The Cooperative State Research, Education and Extension Service (CSREES) of the United States Department of Agriculture funds research, extension, and education grants in all aspects of agriculture, the environment, human health and well-being, and communities. Water is key natural resource for all of these areas and there are several types of funding opportunities available. The primary sources for watersheds and water management funding within CSREES are the Water and Watersheds program of the National Research Initiative, and the National Integrated Research, Education and Extension Program in Water Quality. These two programs have substantially reduced their focus in the last three years in order to meet the federal budget office demands for measurable outcomes. This paper will discuss the current and priorities and likely trends in funding in these areas. In addition, to the above two programs, agricultural water security is a prominent issue related to water management and policy. A recent listening session on agricultural water security and policy resulted in white paper available on the CSREES website. This paper will also describe a recommended strategy for CSREES efforts and current and projected needs and opportunities. Briefly, six themes for research, education, and extension activities were identified: Irrigation Efficiency and Management; Drought Risk Assessment and Preparedness; General Water Conservation and Management; Rural/Urban Water Reuse; Water Marketing, Distribution and Allocation; and Biotechnology. Of these six themes, it was recommended that CSREES should focus on the three: 1.Exploring new technologies and systems for the use of recycled/reuse water in agricultural, rural, and urbanizing watersheds, 2.Probing the human, social, and economic dimensions of agricultural water security (including water markets) with a focus on adoption-outreach and behavioral change, and 3.Discovering biotechnological improvements in water use efficiency of

  14. Derivation of a GIS-based watershed-scale conceptual model for the St. Jones River Delaware from habitat-scale conceptual models.

    PubMed

    Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub

    2009-08-01

    Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.

  15. AN INTEGRATED COASTAL-WATERSHED MONITORING FRAMEWORK FOR ASSESSMENT

    EPA Science Inventory

    An approach for watershed classification in support of assessments, disgnosis of biological impairment, and prioritization of watershed restorations has been tested in coastal watersheds surrounding the western arm of Lake Superior and is currently being assessed for a series of ...

  16. Mapping Watershed Integrity for the Conterminous United States

    EPA Science Inventory

    Watersheds provide a variety of ecosystem services valued by society. Production of these services is partially a function of the degree to which watersheds are altered by human activities. In a recent manuscript, Flotemersch and others (in preparation), defined watershed integr...

  17. Stormwater management network effectiveness and implications for urban watershed function: A critical review

    USGS Publications Warehouse

    Jefferson, Anne J.; Bhaskar, Aditi S.; Hopkins, Kristina G.; Fanelli, Rosemary; Avellaneda, Pedro M.; McMillan, Sara K.

    2017-01-01

    Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small-scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention-based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non-additive effects of individual SCMs; and

  18. The Caspar Creek Experimental Watershed

    Treesearch

    T. E. Lisle

    1979-01-01

    The Caspar Creek Experimental Watershed was set up as a traditional paired watershed to investigate the effects of logging and road construction on erosion and sedimentation. Research participants have come from the California Division of Forestry, the Pacific Southwest Forest and Range Experiment Station, the California Department of Water Resources, the California...

  19. Application of the Ecosystem Diagnosis and Treatment Method to the Grande Ronde Model Watershed project : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobrand, Lars Erik; Lestelle, Lawrence C.

    In the spring of 1994 a technical planning support project was initiated by the Grande Ronde Model Watershed Board of Directors (Board) with funding from the Bonneville Power Administration. The project was motivated by a need for a science based method for prioritizing restoration actions in the basin that would promote effectiveness and accountability. In this section the authors recall the premises for the project. The authors also present a set of recommendations for implementing a watershed planning process that incorporates a science-based framework to help guide decision making. This process is intended to assist the Grande Ronde Model Watershedmore » Board in its effort to plan and implement watershed improvement measures. The process would also assist the Board in coordinating its efforts with other entities in the region. The planning process is based on an approach for developing an ecosystem management strategy referred to as the Ecosystem Diagnosis and Treatment (EDT) method (Lichatowich et al. 1995, Lestelle et al. 1996). The process consists of an on-going planning cycle. Included in this cycle is an assessment of the ability of the watershed to support and sustain natural resources and other economic and societal values. This step in the process, which the authors refer to as the diagnosis, helps guide the development of actions (also referred to as treatments) aimed at improving the conditions of the watershed to achieve long-term objectives. The planning cycle calls for routinely reviewing and updating, as necessary, the basis for the diagnosis and other analyses used by the Board in adopting actions for implementation. The recommendations offered here address this critical need to habitually update the information used in setting priorities for action.« less

  20. Long-term Watershed Database for the Ridge and Valley Physiographic Province: Mahantango Creek Watershed, Pennsylvania, USA

    USDA-ARS?s Scientific Manuscript database

    Understanding agricultural effects on water quality in rivers and estuaries requires understanding of hydrometeorology and geochemical cycling at various scales over time. The USDA-ARS initiated a hydrologic research program at the Mahantango Creek Watershed (MCW) in 1968, a research watershed at t...

  1. Research and cumulative watershed effects

    Treesearch

    L. M. Reid

    1993-01-01

    The mandate for land managers to address cumulative watershed effects (CWEs) requires that planners evaluate the potential impacts of their activities on multiple beneficial uses within the context of other coexisting activities in a watershed. Types of CWEs vary with the types of land-use activities and their modes of interaction, but published studies illustrate...

  2. Global perspective of watershed management

    Treesearch

    Kenneth N. Brooks; Karlyn Eckman

    2000-01-01

    This paper discusses the role of watershed management in moving towards sustainable natural resource and agricultural development. Examples from 30 field projects and six training projects involving over 25 countries are presented to illustrate watershed management initiatives that have been implemented over the last half of the 20th century. The level of success has...

  3. Estimating uncertainties in watershed studies

    Treesearch

    John Campbell; Ruth Yanai; Mark Green

    2011-01-01

    Small watersheds have been used widely to quantify chemical fluxes and cycling in terrestrial ecosystems for about the past half century. The small watershed approach has been valuable in characterizing hydrologic and nutrient budgets, for instance, in estimating the net gain or loss of solutes in response to disturbance. However, the uncertainty in these ecosystem...

  4. Imbalances of Water and Solutes in Experimental Watersheds: Spatial or Temporal Origin?

    NASA Astrophysics Data System (ADS)

    Ruiz, L.; Fovet, O.; Sekhar, M.; Riotte, J.; Braun, J.; Gascuel-odoux, C.; Durand, P.

    2012-12-01

    the water or solute imbalances at the watershed scale depended, to a large extent, on the duration considered in the analysis. In the Mule Hole watershed, water storage in the unsaturated weathered bedrock was the major cause of water imbalance for short time series (less than 10 years) while deep loses were the only source of imbalance for long term analysis (more than 30 years). On the contrary, in the Kerrien and Kerbernez watersheds, solute imbalance were mainly attributed to underflow for short term analysis (less than 10 years) while variation of solute storage in the weathered bedrock became a major source of imbalance for long term analysis (more than 20 years). Discussion will focus on the consequences of these results on the validity of the hypotheses used in hydrological and hydrochemical modeling studies, and on the interest of long term environmental observatories for understanding water and element cycles.

  5. Soils of Walker Branch Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietzke, D.A.

    1994-03-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1,200 usingmore » a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed.« less

  6. Potential effects of climate change on streamflow for seven watersheds in eastern and central Montana

    USGS Publications Warehouse

    Chase, Katherine J.; Haj, Adel E.; Regan, R. Steven; Viger, Roland J.

    2016-01-01

    Study regionEastern and central Montana.Study focusFish in Northern Great Plains streams tolerate extreme conditions including heat, cold, floods, and drought; however changes in streamflow associated with long-term climate change may render some prairie streams uninhabitable for current fish species. To better understand future hydrology of these prairie streams, the Precipitation-Runoff Modeling System model and output from the RegCM3 Regional Climate model were used to simulate streamflow for seven watersheds in eastern and central Montana, for a baseline period (water years 1982–1999) and three future periods: water years 2021–2038 (2030 period), 2046–2063 (2055 period), and 2071–2088 (2080 period).New hydrological insights for the regionProjected changes in mean annual and mean monthly streamflow vary by the RegCM3 model selected, by watershed, and by future period. Mean annual streamflows for all future periods are projected to increase (11–21%) for two of the four central Montana watersheds: Middle Musselshell River and Cottonwood Creek. Mean annual streamflows for all future periods are projected to decrease (changes of −24 to −75%) for Redwater River watershed in eastern Montana. Mean annual streamflows are projected to increase slightly (2–15%) for the 2030 period and decrease (changes of −16 to −44%) for the 2080 period for the four remaining watersheds.

  7. Climate Change Impact on Water Balance at the Chipola River Watershed in Florida

    NASA Astrophysics Data System (ADS)

    Griffen, J. M.; Chen, X.; Wang, D.; Hagen, S. C.

    2013-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through the Florida Panhandle and drains into the Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with an aridity index of approximately 1.0. However, climate change affects the hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this watershed. This research is mainly focused on assessing climate change impact on the partitioning of rainfall and the following runoff generation in Chipola watershed, from long-term mean annual to inter-annual and to seasonal and monthly scales. A comprehensive water balance model at inter-annual scale is built in this study based on Budyko's framework, two-stage runoff theory and proportionality hypothesis. The inter-annual scale model considers the impact of storage change, seasonality and landscape controls, which are normally assumed to be negligible on a long-term scale. The model is applied to the Chipola River Watershed in Florida to project future water balance pattern with the input from a Regional Climate Model projection. Based on the projection results: evaporation will increase in the future in all 12 months; runoff will increase only in dry months of July to October, while significantly decrease in wet months of December to April; storage change will increase in wet months of January to April, while decrease in the dry months of August to November.

  8. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  9. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  10. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  11. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  12. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  13. Wood Export and Deposition Dynamics in Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Senter, Anne Elizabeth

    Wood dynamics that store, transport, break down, and ultimately export wood pieces through watershed networks are key elements of stream complexity and ecosystem health. Efforts to quantify wood processes are advancing rapidly as technological innovations in field data collection, remotely sensed data acquisition, and data analyses become increasingly sophisticated. The ability to extend the temporal and spatial scales of wood data acquisition has been particularly useful to the investigations presented herein. The primary contributions of this dissertation are focused on two aspects of wood dynamics: watershed-scale wood export processes as identified using the depositional environment of a mountain reservoir, and wood deposition mechanisms in a bedrock-dominated mountain river. Three chapters present this work: In Chapter 1, continuous video monitoring of wood in transport revealed seasonal and diurnal hydrologic cycle influences on the variable rates at which wood transports. This effort supports the efficacy of utilizing continuous data collection methods for wood transport studies. Annual wood export data were collected via field efforts and aerial image analyses from New Bullards Bar Reservoir on the North Yuba River, Sierra Nevada, California. Examination of data revealed linkages between decadal-scale climatic patterns, large flood events, and episodic wood export quantities. A watershed-specific relation between wood export quantities and annual peak discharge contributes to the notion that peak discharge is a primary control on wood export, and yielded prediction of annual wood export quantities where no data were available. Linkages between seasonality, climatic components, and hydrologic events that exert variable control on watershed scale wood responses are presented as a functional framework. An accompanying conceptual model supports the framework presumption that wood responses are influenced by seasonal variations in Mediterranean-montane climate

  14. Unplanned roads impacts assessment in Phewa Lake watershed, Western region, Nepal

    NASA Astrophysics Data System (ADS)

    Leibundgut, Geoffroy; Sudmeier-Rieux, Karen; Devkota, Sanjaya; Jaboyedoff, Michel; Penna, Ivanna; Adhikari, Anu; Khanal, Rajendra

    2015-04-01

    This work describes current research being conducted in the Phewa Lake watershed, near Pokhara in Nepal's Siwaliks/Middle hills, a moist sub-tropical zone with the highest amount of annual rainfall in Nepal (4,500 - 5,000 mm). The watershed lithology is mainly siltstone, sandstones and intensively weathered rocks, highly prone to erosion and shallow landslides (Agrawala et al., 2003). The main purpose of this study is to focus on the impact of unplanned earthen road construction in the Phewa Lake watershed as part of land use changes over 30 years in one of Nepal's most touristic regions. Over the past three decades, the road network has expanded exponentially and a majority of rural earthen roads are often funded by communities themselves, with some government subsidies. They are usually constructed using a local bulldozer contractor with no technical or geological expertise increasing erosion processes, slope instabilities risk and impacts to settlements, forests, water sources, agriculture lands, and infrastructure. Moreover, these human-induced phenomena are being compounded by increasingly intense monsoon rains, likely due to climate change (Petley, 2010). Research methods were interdisciplinary and based on a combination of remote sensing, field observations and discussions with community members. The study compared 30 year-old aerial photos with current high resolution satellite images to correlate changes in land use with erosion and slope instabilities. Secondly, most of the watershed's roads were surveyed in order to inventory and quantify slope instabilities and soil loss events. Using a failure-characteristics grid, their main features were measured (location, size, type and extension of damage areas, etc.) and a GIS data base was created. We then estimated economic impacts of these events in terms of agriculture lands losses and road maintenance, based on field observations and discussions with affected people. Field work investigations have shown that

  15. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    NASA Astrophysics Data System (ADS)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  16. Adjusting measured peak discharges from an urbanizing watershed to reflect a stationary land use signal

    NASA Astrophysics Data System (ADS)

    Beighley, R. Edward; Moglen, Glenn E.

    2003-04-01

    A procedure to adjust gauged streamflow data from watersheds urbanized during or after their gauging period is presented. The procedure adjusts streamflow to be representative of a fixed land use condition, which may reflect current or future development conditions. Our intent is to determine what an event resulting in a peak discharge in, for example, 1950 (i.e., before urbanization) would produce on the current urban watershed. While past approaches assumed uniform spatial and temporal changes in urbanization, this study focuses on the use of geographic information systems (GIS) based methodologies for precisely locating in space and time where land use change has occurred. This information is incorporated into a hydrologic model to simulate the change in discharge as a result of changing land use conditions. In this paper, we use historical aerial photographs, GIS linked tax-map data, and recent land use/land cover data to recreate the spatial development history of eight gauged watersheds in the Baltimore-Washington, D. C., metropolitan area. Using our procedure to determine discharge series representative of the current urban watersheds, we found that the increase of the adjusted 2-year discharge ranged from 16 to 70 percent compared with the measured annual maximum discharge series. For the 100-year discharge the adjusted values ranged from 0 to 47 percent greater than the measured values. Additionally, relationships between the increase in flood flows and four measures of urbanization (increase in urban land, decrease in forested land, increase in high-density development, and the spatial development pattern) are investigated for predicting the increase in flood flows for ungauged watersheds. Watersheds with the largest increases in flood flows typically had more extensive development in the areas far removed from the outlet. In contrast, watersheds with development located nearer to the outlet typically had the smallest increases in peak discharge.

  17. Effects of snowmelt on watershed transit time distributions

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Carroll, R. W. H.; Harman, C. J.; Wilusz, D. C.; Schumer, R.

    2017-12-01

    Snowmelt is the principal control of the timing and magnitude of water flow through alpine watersheds, but the streamflow generated may be displaced groundwater. To quantify this effect, we use a rank StorAge Selection (rSAS) model to estimate time-dependent travel time distributions (TTDs) for the East River Catchment (ERC, 84 km2) - a headwater basin of the Colorado River, and newly designated as the Lawrence Berkeley National Laboratory's Watershed Function Science Focus Area (SFA). Through the SFA, observational networks related to precipitation and stream fluxes have been established with a focus on environmental tracers and stable isotopes. The United Stated Geological Survey Precipitation Runoff Modeling System (PRMS) was used to estimate spatially- and temporally-variable boundary fluxes of effective precipitation (snowmelt & rain), evapotranspiration, and subsurface storage. The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm was used to calibrate the rSAS model to observed stream isotopic concentration data and quantify uncertainty. The sensitivity of the simulated TTDs to systematic changes in the boundary fluxes was explored. Different PRMS and rSAS model parameters setup were tested to explore how they affect the relationship between input precipitation, especially snowmelt, and the estimated TTDs. Wavelet Coherence Analysis (WCA) was applied to investigate the seasonality of TTD simulations. Our ultimate goal is insight into how the Colorado River headwater catchments store and route water, and how sensitive flow paths and transit times are to climatic changes.

  18. Healthy Watersheds Integrated Assessments Workshop Synthesis

    EPA Science Inventory

    The U.S. Environmental Protection Agency, in partnership with others, is embarking on the new Healthy Watersheds Initiative to protect our remaining healthy watersheds, prevent them from becoming impaired, and accelerate our restoration successes. In November 2010, a Healthy Wate...

  19. Watershed Management in the United States

    EPA Science Inventory

    A watershed approach provides an effective framework for dealing with water resources challenges. Watersheds provide drinking water, recreation, and ecological habitat, as well as a place for waste disposal, a source of industrial cooling water, and navigable inland water transpo...

  20. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  1. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    USGS Publications Warehouse

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  2. Watershed Profiles and Stream-net Structure of Vesuvio Volcano, Italy

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Oguchi, T.; Komatsu, G.

    2006-12-01

    Watershed topography including stream-net structure in 32 watersheds of Vesuvio Volcano was analyzed using a DEM with a 20-m resolution, with special attention to geomorphological differences between the northern ?0-8 area and the other areas. The longitudinal and transverse profiles and stream-nets of the watersheds were extracted from the DEM. Drainage density and statistical morphometric parameters representing the shape of the profiles were investigated, and their relations with other basic morphometric parameters such as slope angle were examined. The relationships between drainage density and slope angle for each watershed can be divided into two types: Type 1 - negative correlation and Type 2 - convex-form correlation. The Type 2 watersheds have smaller bifurcation ratios and larger low-order stream lengths than the Type 1 watersheds, indicating that low-order streams in the Type 2 watersheds are more integrated. The results of longitudinal and transverse profile analyses also show that the topography of the Type 2 watersheds is simpler and more organized than that of the Type 1 watersheds, suggesting that the Type 2 watersheds are closer to equilibrium conditions. The Type 2 watersheds are located in the steepest and highest part of the somma area, where only limited eruption products have been deposited during the Holocene, due to the existence of the high and steep outer rim of the caldera at the top of the volcano. The results including the existence of the two types are similar to those from non-volcanic watersheds in Japan, indicating that stream-net studies combined with profile analysis using DEMs are effective in discussing the erosional stages of watersheds.

  3. Coastal watershed management across an international border in the Tijuana River watershed

    NASA Astrophysics Data System (ADS)

    Fernandez, Linda

    2005-05-01

    The paper develops and applies a game theoretic model of upstream and downstream countries to examine cooperative and noncooperative strategies of a common watershed. The application to the Tijuana River watershed shared by the United States and Mexico provides quantification of the strategies for internalizing water quality externalities to upstream and downstream originating from sedimentation. Results show that different transfer payments, such as the Chander/Tulkens cost sharing rule and the Shapley value, imply the size of the existing transfer from downstream to upstream could increase the amount currently allocated.

  4. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    NASA Astrophysics Data System (ADS)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    ) utilizing a crop rotation of wheat and forage crops (Abdelwahab et al., 2014). Further evaluations include scenarios with additional improvements in the input data, in particular better reflecting the management operations within model input parameters used to represent the current conditions applied in the watershed, and the study of the efficiency of the model in predicting runoff and sediment loads at a monthly and annual scale using un-calibrated parameters. The effect of riparian buffers as a natural trap that reduce runoff and increase the in-situ sediment deposition are also investigated. Acknowledgements This work is carried out in the framework of the Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, "National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area" National Coordinator prof. Mario Lenzi (University of Padova). References Gentile F., Bisantino T., Corbino R., Milillo F., Romano G., Trisorio Liuzzi G. (2010) Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (southern Italy). Catena 80, 1-8, doi:10.1016/j.catena.2009.08.004. Bisantino T., Bingner R., Chouaib W., Gentile F., Trisorio Liuzzi G. (2013) Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degradation & Development, wileyonlinelibrary.com, doi: 10.1002/ldr.2213. Abdelwahab O.M.M., Bingner R.L., Milillo F., Gentile F. (2014) Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed. Journal of Agricultural Engineering, vol. XLV:430, 125-136, doi: 10.4081/jae.2014.430.

  5. The challenge of documenting water quality benefits of conservation practices: a review of USDA-ARS's conservation effects assessment project watershed studies.

    PubMed

    Tomer, M D; Locke, M A

    2011-01-01

    The Conservation Effects Assessment Project was established to quantify water quality benefits of conservation practices supported by the U.S. Department of Agriculture (USDA). In 2004, watershed assessment studies were begun in fourteen agricultural watersheds with varying cropping systems, landscapes, climate, and water quality concerns. This paper reviews USDA Agricultural Research Service 'Benchmark' watershed studies and the challenge of identifying water quality benefits in watersheds. Study goals included modeling and field research to assess practices, and evaluation of practice placement in watersheds. Not all goals were met within five years but important lessons were learned. While practices improved water quality, problems persisted in larger watersheds. This dissociation between practice-focused and watershed-scale assessments occurred because: (1) Conservation practices were not targeted at critical sources/pathways of contaminants; (2) Sediment in streams originated more from channel and bank erosion than from soil erosion; (3) Timing lags, historical legacies, and shifting climate combined to mask effects of practice implementation; and (4) Water quality management strategies addressed single contaminants with little regard for trade-offs among contaminants. These lessons could help improve conservation strategies and set water quality goals with realistic timelines. Continued research on agricultural water quality could better integrate modeling and monitoring capabilities, and address ecosystem services.

  6. [Evaluation on the eco-economic benefits of small watershed in Beijing mountainous area: a case of Yanqi River watershed].

    PubMed

    Xiao, Hui-Jie; Wei, Zi-Gang; Wang, Qing; Zhu, Xiao-Bo

    2012-12-01

    Based on the theory of harmonious development of ecological economy, a total of 13 evaluation indices were selected from the ecological, economic, and social sub-systems of Yanqi River watershed in Huairou District of Beijing. The selected evaluation indices were normalized by using trapezoid functions, and the weights of the evaluation indices were determined by analytic hierarchy process. Then, the eco-economic benefits of the watershed were evaluated with weighted composite index method. From 2004 to 2011, the ecological, economic, and social benefits of Yanqi River watershed all had somewhat increase, among which, ecological benefit increased most, with the value changed from 0.210 in 2004 to 0.255 in 2011 and an increment of 21.5%. The eco-economic benefits of the watershed increased from 0.734 in 2004 to 0.840 in 2011, with an increment of 14.2%. At present, the watershed reached the stage of advanced ecosystem, being in beneficial circulation and harmonious development of ecology, economy, and society.

  7. Variable Width Riparian Model Enhances Landscape and Watershed Condition

    NASA Astrophysics Data System (ADS)

    Abood, S. A.; Spencer, L.

    2017-12-01

    Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape

  8. Spatial Scaling of Floods in Atlantic Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Plank, C.

    2013-12-01

    Climate and land use changes are altering global, regional and local hydrologic cycles. As a result, past events may not accurately represent the events that will occur in the future. Methods for hydrologic prediction, both statistical and deterministic, require adequate data for calibration. Streamflow gauges tend to be located on large rivers. As a result, statistical flood frequency analysis, which relies on gauge data, is biased towards large watersheds. Conversely, the complexity of parameterizing watershed processes in deterministic hydrological models limits these to small watersheds. Spatial scaling relationships between drainage basin area and discharge can be used to bridge these two methodologies and provide new approaches to hydrologic prediction. The relationship of discharge (Q) to drainage basin area (A) can be expressed as a power function: Q = αAθ. This study compares scaling exponents (θ) and coefficients (α) for floods of varying magnitude across a selection of major Atlantic Coast watersheds. Comparisons are made by normalizing flood discharges to a reference area bankfull discharge for each watershed. These watersheds capture the geologic and geomorphic transitions along the Atlantic Coast from narrow bedrock-dominated river valleys to wide coastal plain watersheds. Additionally, there is a range of hydrometeorological events that cause major floods in these basins including tropical storms, thunderstorm systems and winter-spring storms. The mix of flood-producing events changes along a gradient as well, with tropical storms and hurricanes increasing in dominance from north to south as a significant cause of major floods. Scaling exponents and coefficients were determined for both flood quantile estimates (e.g. 1.5-, 10-, 100-year floods) and selected hydrometeorological events (e.g. hurricanes, summer thunderstorms, winter-spring storms). Initial results indicate that southern coastal plain watersheds have lower scaling exponents (θ) than

  9. Connected vehicle data capture and management (DCM) and dynamic mobility applications (DMA) : focused standards coordination plan.

    DOT National Transportation Integrated Search

    2012-11-01

    The Connected Vehicle Mobility Standards Coordination Plan project links activities in three programs (Data Capture and Management, Dynamic Mobility Applications, and ITS Standards). The plan coordinates the timing, intent and relationship of activit...

  10. 18 CFR 801.9 - Watershed management.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation, erosion...

  11. 18 CFR 801.9 - Watershed management.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation, erosion...

  12. 18 CFR 801.9 - Watershed management.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation, erosion...

  13. A watershed-scale approach to tracing metal contamination in the environment

    USGS Publications Warehouse

    Church, Stanley E

    1996-01-01

    IntroductionPublic policy during the 1800's encouraged mining in the western United States. Mining on Federal lands played an important role in the growing economy creating national wealth from our abundant and diverse mineral resource base. The common industrial practice from the early days of mining through about 1970 in the U.S. was for mine operators to dispose of the mine wastes and mill tailings in the nearest stream reach or lake. As a result of this contamination, many stream reaches below old mines, mills, and mining districts and some major rivers and lakes no longer support aquatic life. Riparian habitats within these affected watersheds have also been impacted. Often, the water from these affected stream reaches is generally not suitable for drinking, creating a public health hazard. The recent Department of Interior Abandoned Mine Lands (AML) Initiative is an effort on the part of the Federal Government to address the adverse environmental impact of these past mining practices on Federal lands. The AML Initiative has adopted a watershed approach to determine those sites that contribute the majority of the contaminants in the watershed. By remediating the largest sources of contamination within the watershed, the impact of metal contamination in the environment within the watershed as a whole is reduced rather than focusing largely on those sites for which principal responsible parties can be found.The scope of the problem of metal contamination in the environment from past mining practices in the coterminous U.S. is addressed in a recent report by Ferderer (1996). Using the USGS1:2,000,000-scale hydrologic drainage basin boundaries and the USGS Minerals Availability System (MAS) data base, he plotted the distribution of 48,000 past-producing metal mines on maps showing the boundaries of lands administered by the various Federal Land Management Agencies (FLMA). Census analysis of these data provided an initial screening tool for prioritization of

  14. Modeling Peak Discharge within the Marengo River Watershed: Lessons for Restoration in the Saint Louis River Watershed

    EPA Science Inventory

    To more fully understand the hydrologic condition of the Marengo River Watershed, and to map specific locations most likely to have increased discharge and flow velocity (leading to more erosion and higher sediment loads) we modeled peak discharge for 35 different sub-watersheds ...

  15. Watershed Management Optimization Support Tool (WMOST) ...

    EPA Pesticide Factsheets

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  16. The speech focus position effect on jaw-finger coordination in a pointing task.

    PubMed

    Rochet-Capellan, Amélie; Laboissière, Rafael; Galván, Arturo; Schwartz, Jean-Luc

    2008-12-01

    This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a CVCV (e.g., /papa/) versus CVCV (e.g., /papa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the stressed syllable. Jaw and finger motions were recorded using Optotrak (Northern Digital, Waterloo, Ontario, Canada). The effects of stress position on jaw-finger coordination were tested across different target positions (near vs. far) and different consonants in the target word (/t/ vs. /p/). Twenty native Portuguese Brazilian speakers participated in the experiment (all conditions). Jaw response starts earlier, and finger-target alignment period is longer for CVCV words than for CVCV ones. The apex of the jaw-opening gesture for the stressed syllable appears synchronized with the onset of the finger-target alignment period (corresponding to the pointing apex) for CVCV words and with the offset of that period for CVCV words. For both stress conditions, the stressed syllable occurs within the finger-target alignment period because of tight finger-jaw coordination. This result is interpreted as evidence for an anchoring of the speech deictic site (part of speech that shows) in the pointing gesture.

  17. Watershed microinfarct pathology and cognition in older persons.

    PubMed

    Kapasi, Alifiya; Leurgans, Sue E; James, Bryan D; Boyle, Patricia A; Arvanitakis, Zoe; Nag, Sukriti; Bennett, David A; Buchman, Aron S; Schneider, Julie A

    2018-05-30

    Brain microinfarcts are common in aging and are associated with cognitive impairment. Anterior and posterior watershed border zones lie at the territories of the anterior, middle, and posterior cerebral arteries, and are more vulnerable to hypoperfusion than brain regions outside the watershed areas. However, little is known about microinfarcts in these regions and how they relate to cognition in aging. Participants from the Rush Memory and Aging Project, a community-based clinical-pathologic study of aging, underwent detailed annual cognitive evaluations. We examined 356 consecutive autopsy cases (mean age-at-death, 91 years [SD = 6.16]; 28% men) for microinfarcts from 3 watershed brain regions (2 anterior and 1 posterior) and 8 brain regions outside the watershed regions. Linear regression models were used to examine the association of cortical watershed microinfarcts with cognition, including global cognition and 5 cognitive domains. Microinfarcts in any region were present in 133 (37%) participants, of which 50 had microinfarcts in watershed regions. Persons with multiple microinfarcts in cortical watershed regions had lower global cognition (estimate = -0.56, standard error (SE) = 0.26, p = 0.03) and lower cognitive function in the specific domains of working memory (estimate = -0.58, SE = 0.27, p = 0.03) and visuospatial abilities (estimate = -0.57, SE = 0.27, p = 0.03), even after controlling for microinfarcts in other brain regions, demographics, and age-related pathologies. Neither the presence nor multiplicity of microinfarcts in brain regions outside the cortical watershed regions were related to global cognition or any of the 5 cognitive domains. These findings suggest that multiple microinfarcts in watershed regions contribute to age-related cognitive impairment. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Linking Resilience of Aquatic Species to Watershed Condition

    NASA Astrophysics Data System (ADS)

    Flitcroft, R. L.

    2017-12-01

    Watershed condition means different things to different people. From the perspective of aquatic ecology, watershed condition may be interpreted to mean the capacity of a watershed to support life history diversity of native species. Diversity in expression of life history is thought to confer resilience allowing portions of the broader population to survive stressful conditions. Different species have different life history strategies, many of which were developed through adaptation to regional or local environmental conditions and natural disturbance regimes. By reviewing adaptation strategies for species of interest at regional scales, characteristics of watersheds that confer resilience may be determined. Such assessments must be completed at multiple levels of spatial organization (i.e. sub-watershed, watershed, region) allowing assessments to be inferred across broad spatial extents. In a project on the Wenatchee River watershed, we guided models of wildfire effects on bull trout and spring Chinook from a meta-population perspective to determine risks to survival at local and population scales over multiple extents of spatial organization. In other work in the Oregon Coast Range, we found that historic landslides continue to exert habitat-forming pressure at local scales, leading to patchiness in distribution of habitats for different life stages of coho salmon. Further, climate change work in Oregon estuaries identified different vulnerabilities in terms of juvenile rearing habitat depending on the species of interest and the intensity of future changes in climate. All of these studies point to the importance of considering physical conditions in watersheds at multiple spatial extents from the perspective of native aquatic species in order to understand risks to long-term survival. The broader implications of watershed condition, from this perspective, is the determination of physical attributes that confer resilience to native biota. This may require

  19. Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing intomore » 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.« less

  20. Protect and Restore Mill Creek Watershed; Annual Report 2003-2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004,more » trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and designs completed on two of the high priority culverts. Maintenance to the previously built fence was also completed.« less

  1. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing intomore » 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.« less

  2. Understanding human uses and values in watershed analysis.

    Treesearch

    Roger D. Fight; Linda E. Kruger; Christopher Hansen-Murray; Arnold Holden; Dale Bays

    2000-01-01

    Watershed analysis is used as a tool to understand the functioning of aquatic and terrestrial ecosystem processes at the landscape scale and to assess opportunities to restore or improve those processes and associated watershed conditions. Assessing those opportunities correctly requires an understanding of how humans have interacted with the watershed in the past and...

  3. Compatability of timber salvage operations with watershed values

    Treesearch

    Roger J. Poff

    1989-01-01

    Timber salvage on the Indian Burn was carried out without compromising watershed values. In some cases watershed condition was actually improved by providing ground cover, by removing trees that were a source of erosive water droplets, and by breaking up hydrophobic soil layers. Negative impacts of timber salvage on watersheds were minimized by using an...

  4. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    NASA Astrophysics Data System (ADS)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  5. Exploring the Variability of Short-term Precipitation and Hydrological Response of Small Czech Watersheds

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Strouhal, Ludek; Weyskrabova, Lenka; Müller, Miloslav; Kozant, Petr

    2017-04-01

    The short-term rainfall temporal distribution is known to have a significant effect on the small watersheds' hydrological response. In Czech Republic there are limited publicly available data on rainfall patterns of short-term precipitation. On one side there are catalogues of very short-term synthetic rainfalls used in urban drainage planning and on the other side hourly distribution of daily totals of rainfalls with long return period for larger catchments analyses. This contribution introduces the preliminary outcomes of a running three years' project, which should bridge this gap and provide such data and methodology to the community of scientists, state administration as well as design planners. Six generalized 6-hours hyetographs with 1 minute resolution were derived from 10 years of radar and gauging stations data. These hyetographs are accompanied with information concerning the region of occurrence as well as their frequency related to the rainfall amount. In the next step these hyetographs are used in a complex sensitivity analysis focused on a rainfall-runoff response of small watersheds. This analysis takes into account the uncertainty related to type of the hydrological model, watershed characteristics and main model routines parameterization. Five models with different methods and structure are considered and each model is applied on 5 characteristic watersheds selected from a classification of 7700 small Czech watersheds. For each combination of model and watershed 30, rainfall scenarios were simulated and other scenarios will be used to address the parameters uncertainty. In the last step the variability of outputs will be assessed in the context of economic impacts on design of landscape water structures or mitigation measures. The research is supported by the grant QJ1520265 of the Czech Ministry of Agriculture, rainfall data were provided by the Czech Hydrometeorological Institute.

  6. SFA 2.0- Watershed Structure and Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ken

    2015-01-23

    Berkeley Lab Earth Scientist Ken Williams explains the watershed research within the Sustainable Systems SFA 2.0 project—including identification and monitoring of primary factors that control watershed biogeochemical functioning.

  7. On the Complexity of Nutrient Transport in a Large Watershed in Ohio

    NASA Astrophysics Data System (ADS)

    Schwartz, F. W.; Allen, G.

    2009-12-01

    This paper examines key features of the hydrobiologic setting in controlling the cycling of nutrients through the major streams and rivers of a large agriculturally dominated watershed in central Ohio. The particular focus is on the roles of extreme rainfall events in generating nutrients, and role of reservoirs in attenuating nutrient concentrations. The study also highlights major gaps in process knowledge even in the face in the face of extensive regulatory and other monitoring. Although it has been recognized that reservoirs can significantly affect surface-water flows in watersheds, there is a growing recognition of the need for expanded and complementary studies to understand their role in nutrient transport. The study area is located in central Ohio and includes the entire Upper Scioto and the northern portion of the Lower Scioto River basins, an area encompassing approximately 9984 km2. Five of the sub-watersheds contain major surface-water storage reservoirs. Two watersheds are without reservoirs. There is intensive agriculture within the study area with corn and soybeans as the dominant crops. Tile drainage of fields provides an efficient and rapid connection of agricultural lands to surface waters, facilitating the loading of fertilizers and agrochemicals to surface streams. Storm flows in spring months that coincide with fertilizer applications often provide nitrate concentrations in excess of 10 mg/L as N. In spite of years of routine sampling for regulatory purposes, little is known about nutrient loading patterns during the few, brief, extreme events each year. Interpretations of a high resolution temporal chemical record of sampling on the Scioto River is frustrated by the complexity of loading and mixing as tributaries from sub-watersheds join the main stem of the Scioto River and nutrient utilization within the large reservoirs. Even with literally thousands of individual chemical measurements, extensive stream and precipitation data, the details

  8. Development of a Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Van Wilson, K.; Clair, Michael G.; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System, developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and drainage areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (hydrologic unit codes) were further subdivided into 10-digit watersheds and 12-digit subwatersheds - the exceptions are the Lower Mississippi River Alluvial Plain (known locally as the Delta) and the Mississippi River inside levees, which were only subdivided into 10-digit watersheds. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, hydrologic unit codes and names, and drainage-area data - are stored in a Geographic Information System database.

  9. Chapter 19. Cumulative watershed effects and watershed analysis

    Treesearch

    Leslie M. Reid

    1998-01-01

    Cumulative watershed effects are environmental changes that are affected by more than.one land-use activity and that are influenced by.processes involving the generation or transport.of water. Almost all environmental changes are.cumulative effects, and almost all land-use.activities contribute to cumulative effects

  10. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receivemore » credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.« less

  11. Watershed Investigations

    ERIC Educational Resources Information Center

    Bodzin, Alec; Shive, Louise

    2004-01-01

    Investigating local watersheds presents middle school students with authentic opportunities to engage in inquiry and address questions about their immediate environment. Investigation activities promote learning in an investigations interdisciplinary context as students explore relationships among chemical, biological, physical, geological, and…

  12. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds

    USGS Publications Warehouse

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  13. USDA-ARS Southeast Watershed Laboratory at Tifton, GA:Index Site Design for the Suwannee Basin

    NASA Astrophysics Data System (ADS)

    Bosch, D.; Strickland, T.; Sheridan, J.; Lowrance, R.; Truman, C.; Hubbard, R.; Potter, T.; Wauchope, D.; Vellidis, G.; Thomas, D.

    2001-12-01

    The Southeast Watershed Hydrology Research Center (SEWHRC) was established in 1966 by order of the U.S. Senate "to identify and characterize those elements that control the flow of water from watersheds in the southeast". A 129 sq.mi. area within the headwaters of Little River Watershed (LRW) in central south Georgia was instrumented to provide data for evaluating and characterizing Coastal Plain hydrologic processes and for development and testing of prediction methodologies for use in ungaged watersheds in regions of low topographic relief. Pesticide analytical capabilities were added in 1976, and inorganic chemistry and sediment transport research were expanded. In 1980, the Center was renamed as the Southeast Watershed Research Laboratory (SEWRL), and laboratories were constructed for nutrient analysis and soil physics. A pesticide analysis laboratory was constructed in 1987. In the early 1990s, a hydraulics laboratory was established for sediment and chemical transport studies, and research on riparian buffers was expanded. The SEWRL research program continues to focus on hydrologic and environmental concerns. Major components of the program are hydrology, pesticides behavior, buffer systems, animal waste management, erosion, remote sensing of watershed condition, and relationships between site-specific agricultural management (BMPs) and small-to-large watershed response. SEWRL's program will be expanded over the next five years to include two additional watersheds comparable in size and instrumentation to the LRW; nesting the LRW within the full Little River drainage and subsequently...all three watersheds within the full Suwannee Basin; and mapping and quantifying irrigation water removals within the Suwannee Basin. We will instrument the three intensive study watersheds and the full Suwannee Basin to provide real-time characterization of precipitation, soil moisture, hydrologic flow, and water quality at a range of spatial and temporal scales. We will

  14. Prioritizing Restoration in the Hangman Creek Watershed: Predicting Baseflow through Sub-basin Modeling

    NASA Astrophysics Data System (ADS)

    Navickis-Brasch, A. S.; Fiedler, F. R.

    2013-12-01

    Land use changes since European settlement have significantly impaired the beneficial uses of Coeur d'Alene (CDA) Tribe water bodies in the Hangman Creek watershed. The cumulative impacts have resulted in a 303 (d) designation by the Environmental Protection Agency (EPA), extirpated the only salmon run on the reservation, and reduced tributary connectivity by isolating many native fish populations. Considering salmon were an essential part of tribal identity and cultural activities, the tribe initiated a 100-year management plan to restore the 155,000-acre portion of the Hangman Creek watershed located on the CDA reservation. The restoration management plan focuses on sustaining subsistence and cultural activities by reestablishing stream connectivity and providing sustainable aquatic habitats as well as restoring watershed processes and improving water quality. Ultimately, the restoration goal is to improve the habitat suitability of Hangman Creek for the eventual return of salmon. To accomplish these goals, it is essential to prioritize and sequence activities that most effectively support restoration. While watershed modeling provides a commonly accepted holistic approach to simulating watershed responses, it appears the effectiveness of models in predicting restoration success, particularly with respect to the effects of restoration on baseflow, have not been well documented. In addition, creating a representative watershed model capable of accounting for a watershed scale spatial and temporal variability generally requires extensive field measurements. This presents a challenge for developing a model of Hangman Creek, since the watershed is mostly ungauged with only limited data available at a few monitoring sites. Our approach to developing a restoration prioritization plan is to first model a subbasin in the watershed with similar characteristics and restoration goals, then utilize the subbasin model to project future baseflow responses in the larger

  15. Soils of Walker Branch Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lietzke, D.A.

    1994-01-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 usingmore » a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research

  16. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  17. Watershed Watch: The Importance of Mentors in Student-driven Full Inquiry Undergraduate Research Projects as the Foundation for an Introductory Course in Biogeoscience

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Hale, S. R.; Graham, K. J.; Hayden, L.; Barber, L.; Perry, C.; Schloss, J.; Sullivan, E.; Yuan, J.; Abebe, E.; Mitchell, L.; Abrams, E.; Gagnon, M.

    2008-12-01

    Watershed Watch (NSF 0525433) engages early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). A significant component of this program is an intensive two-week Summer course, in which undeclared freshmen research various aspects of a local watershed. Students develop their own research questions and study design, collect and analyze data, and produce a scientific or an oral poster presentation. The course objectives, curriculum and schedule are presented as a model for dissemination for other institutions and programs seeking to develop inquiry-rich courses designed to attract students into biogeoscience disciplines. Data from self-reported student feedback indicated the most important factors explaining high-levels of student motivation and research excellence in the course are 1) working with committed, energetic, and enthusiastic faculty mentors; and 2) faculty mentors demonstrating high degrees of teamwork and coordination.

  18. Development of An Empirical Water Quality Model for Stormwater Based on Watershed Land Use in Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, Valerie I.; May, Christopher W.; Brandenberger, Jill M.

    2007-03-29

    The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County, Washington, U.S.A. (Figure 1). The Puget Sound Naval Shipyard (PSNS), U.S Environmental Protection Agency (USEPA), the Washington State Department of Ecology (WA-DOE), Kitsap County, City of Bremerton, City of Bainbridge Island, City of Port Orchard, and the Suquamish Tribe have joined in a cooperative effort to evaluate water-quality conditions in the Sinclair-Dyes Inlet watershed and correct identified problems. A major focus of this project, known as Project ENVVEST, is to develop Water Clean-up (TMDL) Plans for constituents listed on the 303(d) listmore » within the Sinclair and Dyes Inlet watershed. Segments within the Sinclair and Dyes Inlet watershed were listed on the State of Washington’s 1998 303(d) because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue (WA-DOE 2003). Stormwater loading was identified by ENVVEST as one potential source of sediment contamination, which lacked sufficient data for a contaminant mass balance calculation for the watershed. This paper summarizes the development of an empirical model for estimating contaminant concentrations in all streams discharging into Sinclair and Dyes Inlets based on watershed land use, 18 storm events, and wet/dry season baseflow conditions between November 2002 and May 2005. Stream pollutant concentrations along with estimates for outfalls and surface runoff will be used in estimating the loading and ultimately in establishing a Water Cleanup Plan (TMDL) for the Sinclair-Dyes Inlet watershed.« less

  19. How Do Teachers Coordinate Their Work? A Framing Approach

    ERIC Educational Resources Information Center

    Dumay, Xavier

    2014-01-01

    Since the 1970s, schools have been characterized as loosely coupled systems, meaning that the teachers' work is weakly coordinated at the local level. Nonetheless, few studies have focused on the local variations of coordination modes, their sources and their nature. In this article, the process of local coordination of the teachers' work is…

  20. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  1. Urban Watershed Forestry Manual Part 2 Conserving and Planting Trees at Development Sites

    Treesearch

    Karen Cappiella; Tom Schueler; Tiffany Wright

    2006-01-01

    This manual is the second in a three-part series on using trees to protect and restore urban watersheds. A brief description of each part follows. Part 2. Conserving and Planting Trees at Development Sites presents specific ways to enable developers, engineers, or landscape architects to incorporate more trees into a development site. The proposed approach focuses...

  2. Development of watershed models for emerald lake watershed in Sequoia National Park and for other lakes of the Sierra Nevada. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorooshian, S.; Bales, R.C.; Gupta, V.K.

    1992-02-01

    In order to better understand the implications of acid deposition in watershed systems in the Sierra Nevada, the California Air Resources Board (CARB) initiated an intensive integrated watershed study at Emerald Lake in Sequoia National Park. The comprehensive nature of the data obtained from these studies provided an opportunity to develop a quantitative description of how watershed characteristics and inputs to the watershed influence within-watershed fluxes, chemical composition of streams and lakes, and, therefore, biotic processes. Two different but closely-related modeling approaches were followed. In the first, the emphasis was placed on the development of systems-theoretic models. In the secondmore » approach, development of a compartmental model was undertaken. The systems-theoretic effort results in simple time-series models that allow the consideration of the stochastic properties of model errors. The compartmental model (the University of Arizona Alpine Hydrochemical Model (AHM)) is a comprehensive and detailed description of the various interacting physical and chemical processes occurring on the watershed.« less

  3. SFA 2.0- Watershed Structure and Controls

    ScienceCinema

    Williams, Ken

    2018-05-23

    Berkeley Lab Earth Scientist Ken Williams explains the watershed research within the Sustainable Systems SFA 2.0 project—including identification and monitoring of primary factors that control watershed biogeochemical functioning.

  4. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Yearmore » Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the

  5. Public participation in watershed management: International practices for inclusiveness

    NASA Astrophysics Data System (ADS)

    Perkins, Patricia E. (Ellie)

    This paper outlines a number of examples from around the world of participatory processes for watershed decision-making, and discusses how they work, why they are important, their social and ecological potential, and the practical details of how to start, expand and develop them. Because of long-standing power differentials in all societies along gender, class and ethnic lines, equitable public participation requires the recognition that different members of society have different kinds of relationships with the environment in general, and with water in particular. From a range of political perspectives, inclusive participatory governance processes have many benefits. The author has recently completed a 5 year project linking universities and NGOs in Brazil and Canada to develop methods of broadening public engagement in local watershed management committees, with a special focus on gender and marginalized communities. The innovative environmental education and multi-lingual international public engagement practices of the Centre for Socio-Environmental Knowledge and Care of the La Plata Basin (which spans Brazil, Argentina, Uruguay, Paraguay and Bolivia) are also discussed in this paper.

  6. CONNECTING WATERSHED CHARACTERISTICS TO NUTRIENT REGIME FROM HEADWATERS TO RECEIVING WATERS IN THE LAURENTIAL GREAT LAKES

    EPA Science Inventory

    We are evaluating the influence of position along the tributary-coastal wetland-lake continuum on the expression of watershed characteristics in the water quality of Great Lakes (GL) coastal ecosystems as part of an EPA study focused on determining stressor-response relationships...

  7. Implementation of green infrastructure concept in Citarum Watershed

    NASA Astrophysics Data System (ADS)

    Maryati, Sri; Humaira, An Nisaa'Siti

    2017-03-01

    Green infrastructure has several benefits compared to grey infrastructure in term of environmental services and sustainability, such as reducing energy consumption, improving air quality, providing carbon sequestration, and increasing property values. Nevertheless in practice, the implementation of the concept in Indonesia is still limited. Implementation of the certain concept has to be guided in planning document. In this paper, green infrastructure concept in the current spatial plan and other planning documents is assessed. The purpose of this research is to figure out how far the green infrastructure concept is integrated into planning system, based on the analysis of planning documents in Citarum Watershed and expert interviews with local stakeholders. Content analysis method is used to analyze the documents and result of interview. The result shows that green infrastructure concept has not been accommodated in spatial plan or other planning documents widely. There are some challenges in implementing the concept including reward and punishment system (incentive and disincentive), coordination, and lack of human resources.

  8. Upper South Platte Watershed Protection and Restoration Project

    Treesearch

    Steve Culver; Cindy Dean; Fred Patten; Jim Thinnes

    2001-01-01

    The Upper South Platte Basin is a critical watershed in Colorado. Nearly 80 percent of the water used by the 1.5 million Denver metropolitan residents comes from or is transmitted through this river drainage. The Colorado Unified Watershed Assessment identified the Upper South Platte River as a Category 1 watershed in need of restoration. Most of the river basin is...

  9. The watershed and river systems management program

    USGS Publications Warehouse

    Markstrom, S.L.; Frevert, D.; Leavesley, G.H.; ,

    2005-01-01

    The Watershed and River System Management Program (WaRSMP), a joint effort between the U.S. Geological Survey (USGS) and the U.S. Bureau of Reclamation (Reclamation), is focused on research and development of decision support systems and their application to achieve an equitable balance among diverse water resource management demands. Considerations include: (1) legal and political constraints; (2) stake holder and consensus-building; (3) sound technical knowledge; (4) flood control, consumptive use, and hydropower; (5) water transfers; (6) irrigation return flows and water quality; (7) recreation; (8) habitat for endangered species; (9) water supply and proration; (10) near-surface groundwater; and (11) water ownership, accounting, and rights. To address the interdisciplinary and multi-stake holder needs of real-time watershed management, WaRSMP has developed a decision support system toolbox. The USGS Object User Interface facilitates the coupling of Reclamation's RiverWare reservoir operations model with the USGS Modular Modeling and Precipitation Runoff Modeling Systems through a central database. This integration is accomplished through the use of Model and Data Management Interfaces. WaRSMP applications include Colorado River Main stem and Gunnison Basin, the Yakima Basin, the Middle Rio Grande Basin, the Truckee-Carson Basin, and the Umatilla Basin.

  10. Watershed and longitudinal monitoring events

    Treesearch

    Harold Harbert; Steven Blackburn

    2016-01-01

    Georgia Adopt-A-Stream partners annually with many organizations, universities and watershed groups to conduct sampling events with volunteers at a watershed level. These monitoring events range from one-day snapshots to week-long paddle trips. One-day sampling events, also called “Blitzs,” River Adventures and River Rendezvous, generally target 20-50 sites within a...

  11. Watershed modeling applications in south Texas

    USGS Publications Warehouse

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    This fact sheet presents an overview of six selected watershed modeling studies by the USGS and partners that address a variety of water-resource issues in south Texas. These studies provide examples of modeling applications and demonstrate the usefulness and versatility of watershed models in aiding the understanding of hydrologic systems.

  12. Geology of the Teakettle Creek watersheds

    Treesearch

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  13. ASSESSMENT OF TWO PHYSICALLY BASED WATERSHED MODELS BASED ON THEIR PERFORMANCES OF SIMULATING SEDIMENT MOVEMENT OVER SMALL WATERSHEDS

    EPA Science Inventory


    Abstract: Two physically based and deterministic models, CASC2-D and KINEROS are evaluated and compared for their performances on modeling sediment movement on a small agricultural watershed over several events. Each model has different conceptualization of a watershed. CASC...

  14. Watershed Nitrogen and Mercury Geochemical Fluxes Integrate Landscape Factors in Long-term Research Watersheds at Acadia National Park, Maine, USA

    Treesearch

    J. S. Kahl; S. J. Nelson; I. Fernandez; T. Haines; S. Norton; G. B. Wiersma; G. Jacobson; A. Amirbahman; K. Johnson; M. Schauffler; L. Rustad; K. Tonnessen; R. Lent; M. Bank; J. Elvir; J. Eckhoff; H. Caron; P. Ruck; J. Parker; J. Campbell; D. Manski; R. Breen; K. Sheehan; A. Grygo

    2007-01-01

    This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and...

  15. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  16. International Watershed Technology: Improving Water Quality and Quantity at the Local, Basin, and Regional Scales

    USGS Publications Warehouse

    Tollner, Ernest W.; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the five papers in the “International Watershed Technology” collection. These papers were selected from 60 technical presentations at the fifth biennial ASABE 21st Century Watershed Technology Conference and Workshop: Improving the Quality of Water Resources at Local, Basin, and Regional Scales, held in Quito, Ecuador, on 3-9 December 2016. The conference focused on solving spatial and temporal water quality and quantity problems and addressed topics such as watershed management in developing countries, aquatic ecology and ecohydrology, ecosystem services, climate change mitigation strategies, flood forecasting, remote sensing, and water resource policy and management. While diverse, the presentation topics reflected the continuing evolution of the “data mining” and “big data” themes of past conferences related to geospatial data applications, with increasing emphasis on practical solutions. The papers selected for this collection represent applications of spatial data analyses toward practical ends with a theme of “tools and techniques for sustainability.” The papers address a range of topics, including the matching of crops with water availability, and assessing the environmental impacts of agricultural production. The papers identify some of the latest tools and techniques for improving sustainability in watershed resource management that are relevant to both developing and developed countries.

  17. Beyond imperviousness: A statistical approach to identifying functional differences between development morphologies on variable source area-type response in urbanized watersheds

    NASA Astrophysics Data System (ADS)

    Lim, T. C.

    2016-12-01

    Empirical evidence has shown linkages between urbanization, hydrological regime change, and degradation of water quality and aquatic habitat. Percent imperviousness, has long been suggested as the dominant source of these negative changes. However, recent research identifying alternative pathways of runoff production at the watershed scale have called into question percent impervious surface area's primacy in urban runoff production compared to other aspects of urbanization including change in vegetative cover, imported water and water leakages, and the presence of drainage infrastructure. In this research I show how a robust statistical methodology can detect evidence of variable source area (VSA)-type hydrologic response associated with incremental hydraulic connectivity in watersheds. I then use logistic regression to explore how evidence of VSA-type response relates to the physical and meterological characteristics of the watershed. I find that impervious surface area is highly correlated with development, but does not add significant explanatory power beyond percent developed in predicting VSA-type response. Other aspects of development morphology, including percent developed open space and type of drainage infrastructure also do not add to the explanatory power of undeveloped land in predicting VSA-type response. Within only developed areas, the effect of developed open space was found to be more similar to that of total impervious area than to undeveloped land. These findings were consistent when tested across a national cross-section of urbanized watersheds, a higher resolution dataset of Baltimore Metropolitan Area watersheds, and a subsample of watersheds confirmed not to be served by combined sewer systems. These findings suggest that land development policies that focus on lot coverage should be revisited, and more focus should be placed on preserving native vegetation and soil conditions alongside development.

  18. Dissolved rainfall inputs and streamwater outputs in an undisturbed watershed on highly weathered soils in the Brazilian cerrado

    NASA Astrophysics Data System (ADS)

    Markewitz, Daniel; Resende, Julio C. F.; Parron, Lucilia; Bustamante, Mercedes; Klink, Carlos A.; Figueiredo, Ricardo De O.; Davidson, Eric A.

    2006-08-01

    The cerrados of Brazil cover 2 million km2. Despite the extent of these seasonally dry ecosystems, little watershed research has been focused in this region, particularly relative to the watersheds of the Amazon Basin. The cerrado shares pedogenic characteristics with the Amazon Basin in draining portions of the Brazilian shield and in possessing Oxisols over much of the landscape. The objective of this research was to quantify the stream water geochemical relationships of an undisturbed 1200 ha cerrado watershed for comparison to river geochemistry in the Amazon. Furthermore, this undisturbed watershed was used to evaluate stream discharge versus dissolved ion concentration relationships. This research was conducted in the Córrego Roncador watershed of the Reserva Ecológica do Roncador (RECOR) of the Instituto Brasileiro Geografia e Estatística (IBGE) near Brasilia, Brazil. Bulk precipitation and stream water chemistry were analysed between May 1998 and May 2000. The upland soils of this watershed are nutrient poor possessing total stocks of exchangeable elements in the upper 1 m of 81 +/- 13, 77 +/- 4, 25 +/- 3, and 1 +/- 1 kg ha-1 of K, Ca, Mg, and P, respectively. Bulk precipitation inputs of dissolved nutrients for this watershed are low and consistent with previous estimates. The nutrient-poor soils of this watershed, however, increase the relative importance of precipitation for nutrient replenishment to vegetation during episodes of ecosystem disturbance. Stream water dissolved loads were extremely dilute with conductivities ranging from 4 to 10 μS cm-1 during periods of high- and low-flow, respectively. Despite the low concentrations in this stream, geochemical relationships were similar to other Amazonian streams draining shield geologies. Discharge-concentration relationships for Ca and Mg in these highly weathered soils developed from igneous rocks of the Brazilian shield demonstrated a significant negative relationship indicating a continued

  19. Watershed Management Optimization Support Tool (WMOST) Webinar

    EPA Science Inventory

    This webinar will highlight version 3 of EPA’s Watershed Management Optimization Support Tool (WMOST). WMOST facilitates implementation of integrated water management by communities, utilities, watershed management organizations, consultants, and others. There can be many o...

  20. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed.

    PubMed

    Liao, Hehuan; Krometis, Leigh-Anne H; Kline, Karen

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126CFU/100mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed

  1. Tree response to experimental watershed acidification

    Treesearch

    N.K. Jensen; E.J. Holzmueller; P.J. Edwards; M. Thomas-Van Gundy; D.R. DeWalle; K.W.J. Williard

    2014-01-01

    Forest ecosystems in the Eastern USA are threatened by acid deposition rates that have increased dramatically since industrialization. We utilized two watersheds at the Fernow Experimental Forest in West Virginia to examine long-term effects of acidification on ecological processes. One watershed has been treated with ammonium sulfate (approximately twice the ambient...

  2. Turbidity Threshold sampling in watershed research

    Treesearch

    Rand Eads; Jack Lewis

    2003-01-01

    Abstract - When monitoring suspended sediment for watershed research, reliable and accurate results may be a higher priority than in other settings. Timing and frequency of data collection are the most important factors influencing the accuracy of suspended sediment load estimates, and, in most watersheds, suspended sediment transport is dominated by a few, large...

  3. 5. Basin assessment and watershed analysis

    Treesearch

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  4. Meaningful Watershed Experiences for Middle and High School Students

    NASA Astrophysics Data System (ADS)

    Landry, Melinda; Smith, Cynthia; Greene, Joy

    2014-05-01

    Prince William County Public Schools and George Mason University in Virginia, USA, partnered to provide Meaningful Watershed Educational Experiences (MWEEs) for over 25,000 middle and high school students (11-18 year olds) across 34 schools. This school district, situated in a rapidly growing region 55 km southwest of Washington DC, has over 82,000 K-12 students. As native forest cover has been replaced with farming and urbanization, water quality has significantly degraded in the 166,534 km2 Chesapeake Bay watershed. This project was designed to increase student awareness of their impact on the land and waters of the largest estuary in the United States. MWEE is a long-term comprehensive project that incorporates a classroom preparation phase, a hands-on outdoor field investigation, and a reflection and data-sharing component. Training and technical assistance enhances the capacity of teachers of 6th grade, high school Earth Science and Environmental Science to deliver MWEEs which includes schoolyard stewardship, inquiry driven field study, use of hand-held technology and computer based mapping and analysis, project sharing and outreach. George Mason University researchers worked closely with K-12 science educators to create a comprehensive watershed-focused curriculum. Graduate and undergraduate students with strong interests in environmental science and education were trained to deliver the field investigation component of the MWEE. Representative teachers from each school were provided 3 days of professional development and were responsible for the training of their school's science education team. A comprehensive curriculum provided teachers with activities and tools designed to enhance students' mastery of state science objectives. Watershed concepts were used as the unifying theme to support student understanding of curriculum and STEM objectives including: scientific investigation, data collection and communication, chemistry, energy, erosion, human

  5. Participatory Modeling Processes to Build Community Knowledge Using Shared Model and Data Resources and in a Transboundary Pacific Northwest Watershed (Nooksack River Basin, Washington, USA)

    NASA Astrophysics Data System (ADS)

    Bandaragoda, C.; Dumas, M.

    2014-12-01

    As with many western US watersheds, the Nooksack River Basin faces strong pressures associated with climate variability and change, rapid population growth, and deep-rooted water law. This transboundary basin includes contributing areas in British Columbia, Canada, and has a long history of joint data collection, model development, and facilitated communication between governmental (federal, tribal, state, local), environmental, timber, agricultural, and recreational user groups. However, each entity in the watershed responds to unique data coordination, information sharing, and adaptive management regimes and thresholds, further increasing the complexity of watershed management. Over the past four years, participatory methods were used to compile and review scientific data and models, including fish habitat (endangered salmonid species), channel hydraulics, climate data, agricultural, municipal and industrial water use, and integrated watershed scale distributed hydrologic models from over 15 years of projects (from jointly funded to independent shared work by individual companies, agencies, and universities). A specific outcome of the work includes participatory design of a collective problem statement used for guidance on future investment of shared resources and development of a data-generation process where modeling results are communicated in a three-tiers for 1) public/decision-making, 2) technical, and 3) research audiences. We establish features for successful participation using tools that are iteratively developed, tested for usability through incremental knowledge building, and designed to provide rigor in modeling. A general outcome of the work is ongoing support by tribal, state, and local governments, as well as the agricultural community, to continue the generation of shared watershed data using models in a dynamic legal and regulatory setting, where two federally recognized tribes have requested federal court resolution of federal treaty rights

  6. Providing a virtual tour of a glacial watershed

    NASA Astrophysics Data System (ADS)

    Berner, L.; Habermann, M.; Hood, E.; Fatland, R.; Heavner, M.; Knuth, E.

    2007-12-01

    SEAMONSTER, a NASA funded sensor web project, is the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research. Seamonster is leveraging existing open-source software and is an implementation of existing sensor web technologies intended to act as a sensor web testbed, an educational tool, a scientific resource, and a public resource. The primary focus area of initial SEAMONSTER deployment is the Lemon Creek watershed, which includes the Lemon Creek Glacier studied as part of the 1957-58 IPY. This presentation describes our year one efforts to maximize education and public outreach activities of SEAMONSTER. During the first summer, 37 sensors were deployed throughout two partially glaciated watersheds and facilitated data acquisition in temperate rain forest, alpine, lacustrine, and glacial environments. Understanding these environments are important for public understanding of climate change. These environments are geographically isolated, limiting public access to, and understanding of, such locales. In an effort to inform the general public and primary educators about the basic processes occurring in these unique natural systems, we are developing an interactive website. This web portal will supplement and enhance environmental science primary education by providing educators and students with interactive access to basic information from the glaciological, hydrological, and meteorological systems we are studying. In addition, we are developing an interactive virtual tour of the Lemon Glacier and its watershed. This effort will include Google Earth as a means of real-time data visualization and will take advantage of time-lapse movies, photographs, maps, and satellite imagery to promote an understanding of these unique natural systems and the role of sensor webs in education.

  7. Sustaining flows of crucial watershed resources

    Treesearch

    J. E. de Steiguer

    2000-01-01

    Watersheds are the source of a number of resources which are of benefit to society. These resources include water, timber, grazing, recreation, wildlife and others, often described as multiple-use resources. In addition, however, watersheds also produce a number of less tangible resources and uses, which are also socially important. These include amenity, option values...

  8. GROUND WATER AND WATERSHEDS AND ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    Effective watershed management has the potential to achieve both drinking water and ecological protection goals. However, it is important that the watershed perspective be three- dimensional and include the hidden subsurface. The subsurface catchment, or groundwatershed, is geohy...

  9. ASSESSMENT AND MANAGEMENT OF WATERSHED MICROBIAL CONTAMINANTS

    EPA Science Inventory

    Numerous sources of infectious disease causing microorganisms exist in watersheds and can impact recreational and drinking water quality. Organisms of concern include bacteria, viruses, and parasites. The watershed manager is challenged to limit human contact with pathogens, limi...

  10. East Fork Watershed Cooperative: Toward better system-scale ...

    EPA Pesticide Factsheets

    The East Fork Watershed Cooperative is a group intent on understanding how to best manage water quality in a large mixed-use Midwestern watershed system. The system contains a reservoir that serves as a source of drinking water and is popular for water recreation. The reservoir is experience harmful algal blooms. The system including the reservoir has become a significant case study for EPA ORD research and development. The Cooperative includes affiliates from the USACE, the OHIO EPA, the USGS, the USDA, and local Soil and Water Conservation districts as well as utility operators and water quality protection offices. The presentation includes a description of the water quality monitoring and modeling program in the watershed, followed by the results of using the watershed model to estimate the costs associated with nutrient reduction to Harsha Lake, and then ends with an explanation of temporal changes observed for important factors controlling harmful algae in Harsha Lake and how this lake relates to other reservoirs in the Ohio River Basin. This presentation is an invited contribution to the Ohio River Basin Water Quality Workshop sponsored by the US ACE and the US EPA. The presentation describes the activities of the East Fork Watershed Cooperative and the knowledge it has gained to help better manage a case study watershed system over the last few years. The East Fork of the Little Miami River is the focal watershed. It is a significant tributary to the Lit

  11. Evaluating Water Quality Response and Controlling Variables for Burned Watersheds in the Western United States

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.

    2016-12-01

    Increasing wildfire size and frequency in the Western United States creates short-term and long-term impacts on water quality. Surface water in forested watersheds provides water for municipal water supplies and aquatic ecosystems. After fire, increased runoff and erosion lead to elevated loading of nutrients, sediment, and metals. Studies on individual fires have observed mobilization of contaminants, nutrients, metals and sediments into receiving waters. Other studies focused on individual fires over a short period, 1-3 years after fire. The objective of this study is to utilize an extensive historical water quality database, assembled by the authors, to identify trends in post-fire water quality response for the ten years following a significant fire. Specifically, we investigate the variability of post-fire water quality response and determine the key drivers impacting the immediate contaminant flux, recovery over the longer-term and ultimate resiliency of impacted watersheds and municipal water supplies. Results show that the most common post-fire response was increased nutrient loading. Thirty-two western watersheds experienced significant increases in NO3-, NO2-, NH3, and total nitrogen loading for the first five years after fire and remained elevated ten years after fire. Dissolved and total phosphorous significantly increased in 32 western watersheds for the first five years after fire. The majority of these water bodies returned to normal loading after 10 years. Dissolved ions such as calcium, magnesium, and chloride were also exported from over 32 watersheds for the first five years after fire. Using multiple linear regression analysis, we also identify the key physical watershed characteristics that drive post-fire water quality response and recovery. Burn severity, burn area and aridity index all influence the degree of water quality response. Our work provides managers with critical information to evaluate water supply impacts, including short

  12. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment.

    PubMed

    Liu, Peilong; Hao, Lu; Pan, Cen; Zhou, Decheng; Liu, Yongqiang; Sun, Ge

    2017-07-01

    Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystem structure that determines the ecosystem functions and services such as clean water supply and carbon sequestration in a watershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of studies have rarely been done at a watershed scale due to data availability. The present study examined the spatial and temporal variations of LAI for five ecosystem types within a watershed with a complex topography in the Upper Heihe River Basin, a major inland river in the arid and semi-arid western China. We integrated remote sensing-based GLASS (Global Land Surface Satellite) LAI products, interpolated climate data, watershed characteristics, and land management records for the period of 2001-2012. We determined the relationships among LAI, topography, air temperature and precipitation, and grazing history by five ecosystem types using several advanced statistical methods. We show that long-term mean LAI distribution had an obvious vertical pattern as controlled by precipitation and temperature in a hilly watershed. Overall, watershed-wide mean LAI had an increasing trend overtime for all ecosystem types during 2001-2012, presumably as a result of global warming and a wetting climate. However, the fluctuations of observed LAI at a pixel scale (1km) varied greatly across the watershed. We classified the vegetation changes within the watershed as 'Improved', 'Stabilized', and 'Degraded' according their respective LAI changes. We found that climate was not the only driver for temporal vegetation changes for all land cover types. Grazing partially contributed to the decline of LAI in some areas and masked the positive climate warming effects in other areas. Extreme weathers such as cold spells and droughts could substantially affect inter-annual variability of LAI dynamics. We concluded that

  13. Watershed influences on the structure and function of riparian wetlands associated with headwater streams - Kenai Peninsula, Alaska.

    PubMed

    Whigham, D F; Walker, C M; Maurer, J; King, R S; Hauser, W; Baird, S; Keuskamp, J A; Neale, P J

    2017-12-01

    Riparian wetlands are dynamic components of landscapes. Located between uplands and aquatic environments, riparian habitats intercept sediments and nutrients before they enter aquatic environments. They are a source of organic matter and nutrients to aquatic systems, and they provide important habitat for animals, often serving as corridors for the movement of animals between habitats in fragmented landscapes. In this project, we focused on the structure and function of riparian wetlands associated with headwater streams in Alaska that serve as nursery habitats for juvenile salmonids. We asked whether or not the structure and function of headwater wetlands differed between watersheds with and without nitrogen-fixing Alder (Alnus spp.). We found that the aboveground biomass of riparian vegetation was higher in the watershed with Alder, but the largest differences were in the litter layer and belowground where vegetation in the watershed with no Alder had significantly higher root biomass. Interstitial water chemistry also differed between the study sites with significantly higher inorganic N and significantly different characteristics of colored dissolved organic matter at the site with Alder on the watershed. The biomass of litter that hung over the creek bank was less at the site with Alder on the watershed and an in situ decomposition experiment showed significant differences between the two systems. Results of the research demonstrates that watershed characteristics can impact the ecology of headwater streams in ways that had not been previously recognized. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. U.S. EPA's Watershed Management Research Activities

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate alternative plans for environmental quality restoration and protection needs in urban and developing areas. A watershed-scale decision-support system, based on cost optimization, provides an essential tool to suppo...

  15. Mystic River Watershed

    EPA Pesticide Factsheets

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Mystic River Watershed and nongovernmental organizations to improve the water quality of the Mystic River.

  16. Hybrid modeling approach for the northern Adriatic watershed management.

    PubMed

    Volf, Goran; Atanasova, Nataša; Škerjanec, Mateja; Ožanić, Nevenka

    2018-04-23

    Northern Adriatic (NA) is one of the most productive parts of the Mediterranean Sea due to vast nutrient discharges from the contributing watershed. To understand better the excess of nutrients as stressors to the state of the marine ecosystem, a hybrid modeling approach following the DPSIR framework and terminology was developed, linking: 1) the AVGWLF model for modeling the pressures, i.e. nutrients originating from the watershed caused by two major drivers (urbanization and agriculture), 2) the ML tool MTSMOTI for inducing a model tree connecting the pressures with the marine ecosystem state, and 3) the water quality index, TRIX, equation to evaluate the trophic state of the marine ecosystem. Data used for the modeling purpose comprised GIS layers (i.e., digital terrain model, land use/cover data, soil map, locations of hydro-meteorological stations and WWTPs), time series data (i.e., hydro-meteorological data and nutrient concentrations), and statistical data (i.e., number of inhabitants, connections to wastewater treatment, livestock statistics, etc.) as well as physical, chemical and biological parameters, measured at six marine water monitoring stations, located between the Po River delta (Italy) and the city of Rovinj (west Istrian coast, Croatia). Using the model, seven watershed management scenarios related to wastewater treatment and agricultural activities were evaluated for their influence on the state of the NA marine ecosystem. According to the results, the gradual implementation of the UWWTD in the last 10years contributed significantly to the preservation and improvement of the NA marine ecosystem state. However, despite the full implementation of the UWWTD, the state of the NA marine ecosystem could deteriorate in case of increased nutrient loads from agriculture. Since the UWWTD is already close to its full implementation, NA watershed management should focus on controlling agricultural activities in order to maintain 'high' state of the NA

  17. Evaluating the influence of septic systems and watershed characteristics on stream faecal pollution in suburban watersheds in Georgia, USA.

    PubMed

    Sowah, R; Zhang, H; Radcliffe, D; Bauske, E; Habteselassie, M Y

    2014-11-01

    To determine the impact of septic systems on water quality and in so doing identify watershed level characteristics that influence septic system impact. Water samples were collected from streams in 24 well-characterized watersheds during baseflow to analyse for the levels of faecal indicators Escherichia coli and enterococci. The watersheds represent a gradient of land-use conditions from low to high density of septic systems, as well as developed to undeveloped uses. Our findings indicate statistically significant interaction between septic density and season for enterococci count (P = 0·005) and stream yield (P = 0·04). Seasonal variations in bacterial count and stream yield were also observed, with significant differences between spring-winter and summer-winter. Results from multiple linear regression models suggest that watershed characteristics (septic system density, median distance of septic systems to stream, per cent developed area and forest cover) and water temperature could explain approximately half (R(2) = 0·50) of the variability in bacterial count and yield in spring and summer. There is a significant positive relationship between septic system density and faecal pollution levels. However, this relationship is season dependent and is influenced by watershed level characteristics such as median distance of septic systems from streams, per cent developed area and forest cover. This study confirms the significant impact of septic systems on faecal pollution during baseflow and provides the tools that will enable effective pollution monitoring at the watershed scale. © 2014 The Society for Applied Microbiology.

  18. Watershed and Economic Data InterOperability (WEDO): Facilitating Discovery, Evaluation and Integration through the Sharing of Watershed Modeling Data

    EPA Science Inventory

    Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interop...

  19. Watershed Deposition Tool for air quality impacts

    EPA Pesticide Factsheets

    The WDT is a software tool for mapping deposition estimates from the CMAQ model to watersheds. It provides users with the linkage of air and water needed for the total maximum daily load (TMDL) and related nonpoint-source watershed analyses.

  20. Upper Washita River experimental watersheds: Sediment Database

    USDA-ARS?s Scientific Manuscript database

    Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...

  1. Watershed Management Optimization Support Tool (WMOST) Workshop.

    EPA Science Inventory

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green i...

  2. Subdivision of Texas watersheds for hydrologic modeling.

    DOT National Transportation Integrated Search

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  3. Identifying riparian sinks for watershed nitrate using soil surveys.

    PubMed

    Rosenblatt, A E; Gold, A J; Stolt, M H; Groffman, P M; Kellogg, D Q

    2001-01-01

    The capacity of riparian zones to serve as critical control locations for watershed nitrogen flux varies with site characteristics. Without a means to stratify riparian zones into different levels of ground water nitrate removal capacity, this variability will confound spatially explicit source-sink models of watershed nitrate flux and limit efforts to target riparian restoration and management. We examined the capability of SSURGO (1:15 840 Soil Survey Geographic database) map classifications (slope class, geomorphology, and/or hydric soil designation) to identify riparian sites with high capacity for ground water nitrate removal. The study focused on 100 randomly selected riparian locations in a variety of forested and glaciated settings within Rhode Island. Geomorphic settings included till, outwash, and organic/alluvial deposits. We defined riparian zones with "high ground water nitrate removal capacity" as field sites possessing both >10 m of hydric soil width and an absence of ground water surface seeps. SSURGO classification based on a combination of geomorphology and hydric soil status created two functionally distinct sets of riparian sites. More than 75% of riparian sites classified by SSURGO as organic/alluviumhydric or as outwash-hydric had field attributes that suggest a high capacity for ground water nitrate removal. In contrast, >85% of all till sites and nonhydric outwash sites had field characteristics that minimize the capacity for ground water nitrate removal. Comparing the STATSGO and SSURGO databases for a 64000-ha watershed, STATSGO grossly under-represented critical riparian features. We conclude that the SSURGO database can provide modelers and managers with important insights into riparian zone nitrogen removal potential.

  4. The Impact of Drainage Network Structure on Flooding in a Small Urban Watershed in Metropolitan Baltimore, MD

    NASA Astrophysics Data System (ADS)

    Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.

    2006-12-01

    The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.

  5. The Suwannee River Hydrologic Observatory: A Subtropical Coastal Plain Watershed in Transition

    NASA Astrophysics Data System (ADS)

    Graham, W. D.

    2004-12-01

    The Consortium of Universities for the Advancement of Hydrologic Sciences (CUAHSI) proposed to establish a network of 5-15 hydrologic observatories (HO's) across North America is to support fundamental research for the hydrologic science community into the next century. These HO's are projected to be 10,000 to 50,000 km2 and will include a broad range of hydrologic, climatic, bio-geochemical and ecosystem processes, including the critical linkages and couplings. This network is envisioned as the natural laboratory for experimental hydrology in support of scientific investigations focused on predictive understanding at a scale that will include both atmospheric- and ecosystem-hydrologic interaction, as well as the hydrologic response to larger-scale climate variation and change. A group of researchers from Florida and Georgia plan to propose the Suwannee River watershed as a Hydrologic Observatory. The Suwannee River flows through a diverse watershed relatively unimpacted by urbanization but in transition to more intense land-use practices. It thus provides excellent opportunities to study the effects of ongoing changes in land use and water supply on varied hydrological processes. Much background information is available on the hydrology, hydrogeology, geology, chemistry, and biology of the watershed. Several major on-going monitoring programs are supported by state and federal agencies. Four characteristics, discussed in greater detail below, make the Suwannee River watershed ideal for a Hydrologic Observatory: Unregulated and rural - The Suwannee River is one of few major rivers in the United States with largely unregulated flow through rural areas and is relatively unimpaired with regard to water quality, leading to its designation as one of twelve National Showcase Watersheds. At Risk and in Transition - Land use is trending toward increased urbanization and intensive agriculture with an apparent coupled increase in nutrient loads and decline in water quality

  6. The quest for customer focus.

    PubMed

    Gulati, Ranjay; Oldroyd, James B

    2005-04-01

    Companies have poured enormous amounts of money into customer relationship management, but in many cases the investment hasn't really paid off. That's because getting closer to customers isn't about building an information technology system. It's a learning journey-one that unfolds over four stages, requiring people and business units to coordinate in progressively more sophisticated ways. The journey begins with the creation of a companywide repository containing each interaction a customer has with the company, organized not by product, purchase, or location, but by customer. Communal coordination is what's called for at this stage, as each group contributes its information to the data pool separately from the others and then taps into it as needed. In the second stage, one-way serial coordination from centralized IT through analytical units and out to the operating units allows companies to go beyond just assembling data to drawing inferences. In stage three, companies shift their focus from past relationships to future behavior. Through symbiotic coordination, information flows back and forth between central analytic units and various organizational units like marketing, sales, and operations, as together they seek answers to questions like "How can we prevent customers from switching to a competitor?" and "Who would be most likely to buy a new product in the future"? In stage four, firms begin to move past discrete, formal initiatives and, through integral coordination, bring an increasingly sophisticated understanding oftheir customers to bear in all day-to-day operations. Skipping stages denies organizations the sure foundation they need to build a lasting customer-focused mind-set. Those that recognize this will invest their customer relationship dollars much more wisely-and will see their customer-focusing efforts pay offon the bottom line.

  7. Coordinate references for the indoor/outdoor seamless positioning

    NASA Astrophysics Data System (ADS)

    Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei

    2018-05-01

    Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.

  8. Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales

    NASA Astrophysics Data System (ADS)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2018-03-01

    Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.

  9. Landslides and sediment budgets in four watersheds in eastern Puerto Rico: Chapter F in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    USGS Publications Warehouse

    Larsen, Matthew C.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    The low-latitude regions of the Earth are undergoing profound, rapid landscape change as forests are converted to agriculture to support growing population. Understanding the effects of these land-use changes requires analysis of watershed-scale geomorphic processes to better inform and manage this usually disorganized process. The investigation of hillslope erosion and the development of sediment budgets provides essential information for resource managers. Four small, montane, humid-tropical watersheds in the Luquillo Experimental Forest and nearby Río Grande de Loíza watershed, Puerto Rico (18° 20' N., 65° 45' W.), were selected to compare and contrast the geomorphic effects of land use and bedrock geology. Two of the watersheds are underlain largely by resistant Cretaceous volcaniclastic rocks but differ in land use and mean annual runoff: the Mameyes watershed, with predominantly primary forest cover and runoff of 2,750 millimeters per year, and the Canóvanas watershed, with mixed secondary forest and pasture and runoff of 970 millimeters per year. The additional two watersheds are underlain by relatively erodible granitic bedrock: the forested Icacos watershed, with runoff of 3,760 millimeters per year and the agriculturally developed Cayaguás watershed, with a mean annual runoff of 1,620 millimeters per year. Annual sediment budgets were estimated for each watershed using landslide, slopewash, soil creep, treethrow, suspended sediment, and streamflow data. The budgets also included estimates of sediment storage in channel beds, bars, floodplains, and in colluvial deposits. In the two watersheds underlain by volcaniclastic rocks, the forested Mameyes and the developed Canóvanas watersheds, landslide frequency (0.21 and 0.04 landslides per square kilometer per year, respectively), slopewash (5 and 30 metric tons per square kilometer per year), and suspended sediment yield (325 and 424 metric tons per square kilometer per year), were lower than in the

  10. A Stochastic Water Balance Framework for Lowland Watersheds

    NASA Astrophysics Data System (ADS)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  11. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    PubMed

    Beaulieu, Jake J; Golden, Heather E; Knightes, Christopher D; Mayer, Paul M; Kaushal, Sujay S; Pennino, Michael J; Arango, Clay P; Balz, David A; Elonen, Colleen M; Fritz, Ken M; Hill, Brian H

    2015-01-01

    Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention.

  12. Urban Stream Burial Increases Watershed-Scale Nitrate Export

    PubMed Central

    Beaulieu, Jake J.; Golden, Heather E.; Knightes, Christopher D.; Mayer, Paul M.; Kaushal, Sujay S.; Pennino, Michael J.; Arango, Clay P.; Balz, David A.; Elonen, Colleen M.; Fritz, Ken M.; Hill, Brian H.

    2015-01-01

    Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention. PMID:26186731

  13. Watershed analysis on federal lands of the Pacific northwest

    Treesearch

    Leslie M. Reid; Robert R. Ziemer; Michael J. Furniss

    1994-01-01

    Abstract - Watershed analysis-the evaluation of processes that affect ecosystems and resources in a watershed-is now being carried out by Federal land-management and regulatory agencies on Federal lands of the Pacific Northwest. Methods used differ from those of other implementations of watershed analysis because objectives and opportunities differ. In particular,...

  14. COMPREHENSIVE PLAN FOR A SUSTAINABLE URBAN WATERSHED

    EPA Science Inventory

    Technical Challenge. This proposal deals with the urban watershed. The urban watershed is important to the quality of life in the city. For many urban dwellers, the urban stream represents a unique opportunity for recreation and the experience of the ...

  15. Improving watershed management practices in humid regions

    USDA-ARS?s Scientific Manuscript database

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. To improve the understanding we used watershed studies on three continents. The results show that in well vegetated (sub) humid and temperate watersheds ...

  16. DETECTING TEMPORAL CHANGE IN WATERSHED NUTRIENT YIELDS

    EPA Science Inventory

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increase...

  17. US EPA’s Watershed Management Research Activities

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s Urban Watershed Management Branch (UWMB) is responsible for developing and demonstrating methods to manage the risk to public health, property and the environment from wet-weather flows (WWF) in urban watersheds. The activities are prim...

  18. EFFECTS OF WATERSHED DISTURBANCE ON SMALL STREAMS

    EPA Science Inventory

    This presentation presents the effects of watershed disturbance on small streams. The South Fork Broad River Watershed was studied to evaluate the use of landscape indicators to predict pollutant loading at small spatial scales and to develop indicators of pollutants. Also studie...

  19. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  20. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    PubMed

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  1. Contributions of watershed management research to ecosystem-based management in the Colorado River Basin

    Treesearch

    Malchus B. Baker; Peter F. Ffolliott

    2000-01-01

    The Rocky Mountains and Southwestern United States, essentially the Colorado River Basin, have been the focus of a wide range of research efforts to learn more about the effects of natural and human induced disturbances on the functioning, processes, and components of the regions’s ecosystems. Watershed research, spearheaded by the USDA Forest Service and its...

  2. Nitrate in watersheds: straight from soils to streams?

    USGS Publications Warehouse

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  3. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    NASA Astrophysics Data System (ADS)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  4. Sediment yields from small, steep coastal watersheds of California

    USGS Publications Warehouse

    Warrick, Jonathan A.; Melack, John M.; Goodridge, Blair M.

    2015-01-01

    Global inventories of sediment discharge to the ocean highlight the importance of small, steep watersheds (i.e., those having drainage areas less than 100,000 km2 and over 1000 m of relief) that collectively provide a dominant flux of sediment. The smallest of these coastal watersheds (e.g., those that have drainage areas less than 1000 km2) can represent a large portion of the drainage areas of active margin coasts, such as California’s coast, but remain almost universally unmonitored. Here we report on the suspended-sediment discharge of several small coastal watersheds (10-56 km2) of the Santa Ynez Mountains, California, that were found to have ephemeral discharge and suspended-sediment concentrations ranging between 1 and over 200,000 mgL-1. Sediment concentrations were weakly correlated with discharge (r2 = 0.10–0.25), and all types of hysteresis patterns were observed during high flows (clockwise, counterclockwise, no hysteresis, and complex). Sediment discharge varied strongly with time and was measurably elevated in one watershed following a wildfire. Although sediment yields varied by over 100-fold across the watersheds (e.g., 15 – 2100 tkm-2 yr -1during the relatively wet 2005 water year), the majority of sediment discharge (65-80%) occurred during only 1% of the time for all watersheds. Furthermore, sampling of dozens of high flow events provides evidence that sediment yields were generally related to peak discharge yields, although these relationships were not consistent across the watersheds. These results suggest that small watersheds of active margins can provide large fluxes of sediment to the coast, but that the rates and timing of this sediment discharge is more irregular in time – and thus more difficult to characterize – than the better monitored and studied watersheds that are 1000-100,000 km2.

  5. My life in the watershed: then, now, and beyond

    USDA-ARS?s Scientific Manuscript database

    "My Life in the Watershed" tells the first-hand account of a young girl growing up in southwestern Oklahoma, the impact growing up in a watershed had on her life, and the vision she sees for her children and her children's children, so they will continue to benefit from the USDA Small Watershed Prog...

  6. An eleven-year validation of a physically-based distributed dynamic ecohydorological model tRIBS+VEGGIE: Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.

    2008-12-01

    A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in

  7. Sediment sources in an urbanizing, mixed land-use watershed

    NASA Astrophysics Data System (ADS)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  8. Bimanual coordination: A missing piece of arm rehabilitation after stroke.

    PubMed

    Kantak, Shailesh; Jax, Steven; Wittenberg, George

    2017-01-01

    Inability to use the arm in daily actions significantly lowers quality of life after stroke. Most contemporary post-stroke arm rehabilitation strategies that aspire to re-engage the weaker arm in functional activities have been greatly limited in their effectiveness. Most actions of daily life engage the two arms in a highly coordinated manner. In contrast, most rehabilitation approaches predominantly focus on restitution of the impairments and unilateral practice of the weaker hand alone. We present a perspective that this misalignment between real world requirements and intervention strategies may limit the transfer of unimanual capability to spontaneous arm use and functional recovery. We propose that if improving spontaneous engagement and use of the weaker arm in real life is the goal, arm rehabilitation research and treatment need to address the coordinated interaction between arms in targeted theory-guided interventions. Current narrow focus on unimanual deficits alone, difficulty in quantifying bimanual coordination in real-world actions and limited theory-guided focus on control and remediation of different coordination modes are some of the biggest obstacles to successful implementation of effective interventions to improve bimanual coordination in the real world. We present a theory-guided taxonomy of bimanual actions that will facilitate quantification of coordination for different real-world tasks and provide treatment targets for addressing coordination deficits. We then present evidence in the literature that points to bimanual coordination deficits in stroke survivors and demonstrate how current rehabilitation approaches are limited in their impact on bimanual coordination. Importantly, we suggest theory-based areas of future investigation that may assist quantification, identification of neural mechanisms and scientifically-based training/remediation approaches for bimanual coordination deficits post-stroke. Advancing the science and practice of

  9. Virtual Simulated Care Coordination Rounds for Nursing Students.

    PubMed

    Badowski, Donna M

    Implementation of the Affordable Care Act has nursing education reflecting on paradigm shifts in order to prepare nursing students for the evolving health care environment. The traditional focus of nursing education on nursing care in acute care settings does not provide learning experiences in care coordination and transitional care management skills. Virtual simulated care coordination rounds, using the National League for Nursing Advancing Care Excellence resources, offer nursing students an innovative experience in care coordination and transition care management.

  10. A TEST OF WATERSHED CLASSIFICATION SYSTEMS FOR ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    To facilitate extrapolation among watersheds, ecological risk assessments should be based on a model of underlying factors influencing watershed response, particularly vulnerability. We propose a conceptual model of landscape vulnerability to serve as a basis for watershed classi...

  11. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bransford, Stephanie

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPAmore » efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).« less

  12. Temporal and spatial patterns in tumour prevalence in brown bullhead Ameiurus nebulosus (Lesueur) in the tidal Potomac River watershed (USA).

    PubMed

    Pinkney, A E; Harshbarger, J C; Rutter, M A

    2014-10-01

    For two decades, fish tumour surveys have been used to monitor habitat quality in the Chesapeake Bay (USA) watershed. Tributaries with sediments contaminated with polynuclear aromatic hydrocarbons (PAHs), known to cause liver neoplasia, were frequently targeted. Here, we compare surveys in brown bullhead Ameiurus nebulosus conducted in 2009-2011 in the tidal Potomac River watershed (including the Anacostia River) with previous surveys. Using logistic regression, we identified length and sex as covariates for liver and skin tumours. We reported a statistically significant decrease in liver tumour probabilities for standardized 280 mm Anacostia bullheads between the 1996 and 2001 samplings (merged collections: female-77.5%, male-43.0%) and 2009-2011 (female-42.2%, male-13.6%). However, liver tumour prevalence in bullheads from the Anacostia, Potomac River (Washington, DC) and Piscataway Creek (17 km downriver) was significantly higher than that for Chesapeake Bay watershed reference locations. The causes of skin tumours in bullheads are uncertain, requiring further research. The similar liver tumour prevalence in these three locations suggests that the problem is regional rather than restricted to the Anacostia. To monitor habitat quality and the success of pollution control actions, we recommend conducting tumour surveys on a 5-year cycle coordinated with sediment chemistry analyses. © 2014 John Wiley & Sons Ltd.

  13. ANALYZING CORRELATIONS BETWEEN STREAM AND WATERSHED ATTRIBUTES

    EPA Science Inventory

    Bivariate correlation analysis has been widely used to explore relationships between stream and watershed attributes that have all been measured on the same set of watersheds or sampling locations. Researchers routinely test H0: =0 for each correlation in a large table and then ...

  14. WATERSHED LANDSCAPE INDICATORS OF ESTUARINE BENTHIC CONDITION

    EPA Science Inventory

    Do land use/cover characteristics of watersheds associated with small estuaries exhibit a strong enough signal to make landscape metrics useful for identifying degraded bottom communities? We tested this idea with 58 pairs of small estuaries (<260 km2) and watersheds in the U.S. ...

  15. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    USGS Publications Warehouse

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  16. Integrated investigations of environmental effects of historical mining in the Basin and Boulder Mining Districts, Boulder River watershed, Jefferson County, Montana

    USGS Publications Warehouse

    Nimick, David A.; Church, Stan E.; Finger, Susan E.

    2004-01-01

    The Boulder River watershed is one of many watersheds in the western United States where historical mining has left a legacy of acid mine drainage and elevated concentrations of potentially toxic trace elements. Abandoned mine lands commonly are located on or affect Federal land. Cleaning up these Federal lands will require substantial investment of resources. As part of a cooperative effort with Federal land-management agencies, the U.S. Geological Survey implemented an Abandoned Mine Lands Initiative in 1997. The goal of the initiative was to use the watershed approach to develop a strategy for gathering and communicating the scientific information needed to formulate effective and cost-efficient remediation of affected lands in a watershed. The watershed approach is based on the premise that contaminated sites that have the most profound effect on water and ecosystem quality within an entire watershed should be identified, characterized, and ranked for remediation.The watershed approach provides an effective means to evaluate the overall status of affected resources and helps to focus remediation at sites where the most benefit will be gained in the watershed. Such a large-scale approach can result in the collection of extensive information on the geology and geochemistry of rocks and sediment, the hydrology and water chemistry of streams and ground water, and the diversity and health of aquatic and terrestrial organisms. During the assessment of the Boulder River watershed, we inventoried historical mines, defined geological conditions, assessed fish habitat, collected and chemically analyzed hundreds of water and sediment samples, conducted toxicity tests, analyzed fish tissue and indicators of physiological malfunction, examined invertebrates and biofilm, and defined hydrological regimes. Land- and resource-management agencies are faced with evaluating risks associated with thousands of potentially harmful mine sites, and this level of effort is not always

  17. Northwest Forest Plan—the first 20 years (1994–2013): watershed condition status and trends

    Treesearch

    Stephanie A. Miller; Sean N. Gordon; Peter Eldred; Ronald M. Beloin; Steve Wilcox; Mark Raggon; Heidi Andersen; Ariel. Muldoon

    2017-01-01

    The Aquatic and Riparian Effectiveness Monitoring Program focuses on assessing the degree to which federal land management under the aquatic conservation strategy (ACS) of the Northwest Forest Plan (NWFP) has been effective in maintaining and improving watershed conditions. We used stream sampling data and upslope/riparian geographic information system (GIS) and remote...

  18. A Cross-Site Comparison of Factors Influencing Soil Nitrification Rates in Northeastern USA Forested Watersheds

    Treesearch

    Donald S. Ross; Beverley C. Wemple; Austin E. Jamison; Guinevere Fredriksen; James B. Shanley; Gregory B. Lawrence; Scott W. Bailey; John L. Campbell

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small...

  19. Spectral Measurement of Watershed Coefficients in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J. (Principal Investigator); Bausch, W.

    1978-01-01

    The author has identified the following significant results. It was apparent that the spectra calibration of runoff curve numbers cannot be achieved on watersheds where significant areas of timber were within the drainage area. The absorption of light by wet soil conditions restricts differentiation of watersheds with regard to watershed runoff curve numbers. It appeared that the predominant factor influencing the classification of watershed runoff curve numbers was the difference in soil color and its associated reflectance when dry. In regions where vegetation grown throughout the year, where wet surface conditions prevail or where watersheds are timbered, there is little hope of classifying runoff potential with visible light alone.

  20. Geospatial Estimates of Road Salt Usage Across a Gradient of Urbanizing Watersheds in Southern Ontario:Thesis for Masters in Spatial Analysis (MSA)

    NASA Astrophysics Data System (ADS)

    Giberson, G. K.; Oswald, C.

    2015-12-01

    In areas affected by snow, chloride (Cl) salts are widely used as a de-icing agent to improve road conditions. While the improvement in road safety is indisputable, there are environmental consequences to local aquatic ecosystems. In many waterways, Cl concentrations have been increasing since the early 1990s, often exceeding national water quality guidelines. To determine the quantity of Cl that is accumulating in urban and urbanizing watersheds, accurate estimates of road salt usage at the watershed-scale are needed. The complex jurisdictional control over road salt application in southern Ontario lends itself to a geospatial approach for calculating Cl inputs to improve the accuracy of watershed-scale Cl mass balance estimates. This study will develop a geospatial protocol for combining information on road salt applications and road network areas to refine watershed-scale Cl inputs, as well as assess spatiotemporal patterns in road salt application across the southern Ontario study region. The overall objective of this project is to use geospatial methods (predominantly ArcGIS) to develop high-accuracy estimates of road salt usage in urbanizing watersheds in southern Ontario. Specifically, the aims will be to map and summarize the types and areas ("lane-lengths") of roadways in each watershed that have road salt applied to them, to determine the most appropriate source(s) of road salt usage data for each watershed, taking into consideration multiple levels of jurisdiction (e.g. municipal, regional, provincial), to calculate and summarize sub-watershed and watershed-scale road salt usage estimates for multiple years, and to analyze intra-watershed spatiotemporal patterns of road salt usage, especially focusing on impervious surfaces. These analyses will recommend areas of concern exacerbated by high-levels of road salt distribution; recommendations around modifying on-the-ground operations will be the next step in helping to correct these issues.

  1. Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion.

    PubMed

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A; Boll, Jan; Hyman, Jeffrey B

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  2. Watershed Management Optimization Support Tool (WMOST) v3: User Guide

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  3. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  4. Watershed Management Optimization Support Tool (WMOST) v2: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  5. Landscape and plant physiological controls on water dynamics and forest productivity within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, Jia; Jencso, Kelsey; Looker, Nathaniel; Martin, Justin; Hoylman, Zachary

    2015-04-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower

  6. Composition of water and suspended sediment in streams of urbanized subtropical watersheds in Hawaii

    USGS Publications Warehouse

    De Carlo, E. H.; Beltran, V.L.; Tomlinson, M.S.

    2004-01-01

    Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2

  7. Cloud GIS Based Watershed Management

    NASA Astrophysics Data System (ADS)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  8. AmeriFlux US-WBW Walker Branch Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, Tilden

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WBW Walker Branch Watershed. Site Description - The stand is over 50 years old, having regenerated from agricultural land.This site is located near Oak Ridge, Tennessee near the Walker Branch Watershed.

  9. It's all about Balance: Using a watershed model to evaluate costs, benefits and tradeoffs for Monponsett Ponds watershed

    EPA Science Inventory

    As part of an EPA Region 1 RARE project, EPA Region 1 reached out to towns in the Taunton River watershed to identify those interested in testing new version of EPA watershed management tool (WMOST version 2)and found Halifax, MA in need of assistance in dealing with a suite of w...

  10. A customizable model for chronic disease coordination: Lessons learned from the coordinated chronic disease program

    DOE PAGES

    Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes

    2016-03-31

    In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managedmore » resources, and 6) relationship building. Furthermore, these elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs.« less

  11. A customizable model for chronic disease coordination: Lessons learned from the coordinated chronic disease program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes

    In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managedmore » resources, and 6) relationship building. Furthermore, these elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs.« less

  12. Hydrologic resilience of a Canadian Foothills watershed to forest harvest

    NASA Astrophysics Data System (ADS)

    Goodbrand, Amy; Anderson, Axel

    2016-04-01

    Recent investigations of long-term hydrometeorological, groundwater, and streamflow data from watersheds on the eastern slopes of the Canadian Rocky Mountains showed the streamflow regime was resilient to forest harvest. These watersheds had low levels of harvest relative to their size and a large area of sparsely vegetated alpine talus slopes and exposed bedrock; an area shown to generate the majority of runoff for streamflow. In contrast, watersheds located in the foothills of the Rocky Mountains are of lower relief and typically have harvestable timber throughout the watershed; therefore, these watersheds may be more sensitive to forest disturbance and have increased potential for streamflow response. This project assesses the hydrologic resilience of an Alberta Foothills watershed to forest harvest using a 23-year dataset from the Tri-Creeks Experimental Watershed (Tri-Creeks). Tri-Creeks has been the site of intensive streamflow, groundwater, snow accumulation, and precipitation observations from 1967 - 1990. During the early 1980s, forestry experiments were conducted to compare the effects of timber harvest and riparian buffers, and the effectiveness of timber harvesting ground rules in protecting fisheries and maintaining water resources within three sub-watersheds: Eunice (16.8 km2; control); Deerlick (15.2 km2; 36% streamside timber removal); and, Wampus (28.3 km2; 37% clear-cut). Statistical analyses were used to compare the pre-and post-harvest ratios of treatment to control sub-watershed runoff for: water year, monthly (April - October), snowmelt peak flow, and low flow (10th percentile streamflow) periods as an assessment of hydrologic resilience to forest harvest. The only significant post-harvest change was an increase in water yield during May at Wampus (Mann-Whitney (MW), p<0.05) and Deerlick (MW, p<0.1) Creeks. The lack of change in snowmelt peak flow timing or magnitude was not expected, particularly in Deerlick, which had 36% streamside timber

  13. Watershed Planning within a Quantitative Scenario Analysis Framework.

    PubMed

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-07-24

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation.

  14. Using the cloud to speed-up calibration of watershed-scale hydrologic models (Invited)

    NASA Astrophysics Data System (ADS)

    Goodall, J. L.; Ercan, M. B.; Castronova, A. M.; Humphrey, M.; Beekwilder, N.; Steele, J.; Kim, I.

    2013-12-01

    This research focuses on using the cloud to address computational challenges associated with hydrologic modeling. One example is calibration of a watershed-scale hydrologic model, which can take days of execution time on typical computers. While parallel algorithms for model calibration exist and some researchers have used multi-core computers or clusters to run these algorithms, these solutions do not fully address the challenge because (i) calibration can still be too time consuming even on multicore personal computers and (ii) few in the community have the time and expertise needed to manage a compute cluster. Given this, another option for addressing this challenge that we are exploring through this work is the use of the cloud for speeding-up calibration of watershed-scale hydrologic models. The cloud used in this capacity provides a means for renting a specific number and type of machines for only the time needed to perform a calibration model run. The cloud allows one to precisely balance the duration of the calibration with the financial costs so that, if the budget allows, the calibration can be performed more quickly by renting more machines. Focusing specifically on the SWAT hydrologic model and a parallel version of the DDS calibration algorithm, we show significant speed-up time across a range of watershed sizes using up to 256 cores to perform a model calibration. The tool provides a simple web-based user interface and the ability to monitor the calibration job submission process during the calibration process. Finally this talk concludes with initial work to leverage the cloud for other tasks associated with hydrologic modeling including tasks related to preparing inputs for constructing place-based hydrologic models.

  15. Predicting Mountainous Watershed Biogeochemical Dynamics, Including Response to Droughts and Early Snowmelt

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Williams, K. H.; Long, P.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.

    2016-12-01

    Climate change, extreme weather, land-use change, and other perturbations are significantly reshaping interactions with in watersheds throughout the world. While mountainous watersheds are recognized as the water towers for the world, hydrological processes in watersheds also mediate biogeochemical processes that support all terrestrial life. Developing predictive understanding of watershed hydrological and biogeochemical functioning is challenging, as complex interactions occurring within a heterogeneous watershed can lead to a cascade of effects on downstream water availability and quality. Although these interactions can have significant implications for energy production, agriculture, water quality, and other benefits valued by society, uncertainty associated with predicting watershed function is high. The Watershed Function project aims to substantially reduce this uncertainty through developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. The Watershed Function project is being carried out in a headwater mountainous catchment of the Upper Colorado River Basin, within a watershed characterized by significant gradients in elevation, vegetation and hydrogeology. A system-within system project perspective posits that the integrated watershed response to disturbances can be adequately predicted through consideration of interactions and feedbacks occurring within a limited number of subsystems, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A key technological goal is the development of scale-adaptive simulation capabilities that can incorporate genomic information where and when it is useful for predicting the overall watershed response to disturbance. Through developing

  16. Analysis of the Lake Superior Watershed Seasonal Snow Cover

    DTIC Science & Technology

    2007-05-01

    ER D C/ CR R EL T R -0 7 -5 Analysis of the Lake Superior Watershed Seasonal Snow Cover Steven F. Daly, Timothy B. Baldwin, and...unlimited. ERDC/CRREL TR-07-5 May 2007 Analysis of the Lake Superior Watershed Seasonal Snow Cover Steven F. Daly, Timothy B. Baldwin, and...12 5 GIS Analysis of SWE over the Lake Superior Watershed .........................................................15

  17. Water balance of drained plantation watersheds in North Carolina

    Treesearch

    Johnny M. Grace; R. W. Skaggs

    2006-01-01

    A 3-year study to evaluate the effect of thinning on the hydrology of a drained loblolly pine (Pinus taeda L.) plantation was conducted in eastern North Carolina. The study utilized a paired watershed design with a 40-ha thinned watershed (WS5) and a 16-ha control watershed (WS2). Data from the field experiment conducted from 1999-2002 was used to...

  18. Artificial watershed acidification on the Fernow Experimental Forest, USA

    Treesearch

    M.B. Adams; P.J. Edwards; F. Wood; J.N. Kochenderfer

    1993-01-01

    A whole-watershed manipulation project was begun on the Fernow Experimental Forest in West Virginia, USA, in 1987, with the objective of increasing understanding of the effects of acidic deposition on forest ecosystems. Two treatment watersheds (WS9 and WS3) and one control watershed (WS4) were included. Treatments were twice-ambient N and S deposition, applied via NH...

  19. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    PubMed

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  20. Hyperkahler metrics on focus-focus fibrations

    NASA Astrophysics Data System (ADS)

    Zhao, Jie

    In this thesis, we focus on the study of hyperkahler metric in four dimensional cases, and practice GMN's construction of hyperkahler metric on focus-focus fibrations. We explicitly compute the action-angle coordinates on the local model of focus-focus fibration, and show its semi-global invariant should be harmonic to admit a compatible holomorphic 2-form. Then we study the canonical semi-flat metric on it. After the instanton correction inspired by physics, we get a family of the generalized Ooguri-Vafa metric on focus-focus fibrations, which becomes more local examples of explicit hyperkahler metric in four dimensional cases. In addition, we also make some exploration of the Ooguri-Vafa metric in the thesis. We study the potential function of the Ooguri-Vafa metric, and prove that its nodal set is a cylinder of bounded radius 1 < R < 1. As a result, we get that only on a finite neighborhood of the singular fibre the Ooguri-Vafa metric is a hyperkahler metric. Finally, we give some estimates for the diameter of the fibration under the Oogui-Vafa metric, which confirms that the Oogui-Vafa metric is not complete. The new family of metric constructed in the thesis, we think, will provide more examples to further study of Lagrangian fibrations and mirror symmetry in future.

  1. Effect of Wildfire on Hydrological Processes in a Monoculture Invasive Grass Catchment within the Panama Canal Watershed

    NASA Astrophysics Data System (ADS)

    Regina, J. A.; Ogden, F. L.

    2014-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to watershed management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One question posed by this project concerns the hydrologic role of fire in tropical environments. Within the Panama Canal Watershed, fire has seen widespread use among agriculturalists. This study focused on a monoculture invasive grass (Saccharum spontaneum) catchment. Specifically, the effects of significant wildfire events on hydrological processes in the catchment were analyzed. The catchment is within Panama's protected Soberania National Park, which is part of the greater Panama Canal Watershed. Installed instrumentation includes a rain gauge cluster, a two-stage v-notch weir, atmometer and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across the catchment is available from 2009-2013. Various hydrologic characteristics, such as runoff ratio, peak flow per unit area, time to peak, runoff duration, and leaf area index, from before and after the events were compared. These characteristics are related to rates of ground water recharge and the occurrence of flash floods. This study provides a baseline from which the potential impacts of fire on hydrological processes in tropical environments can be analyzed.

  2. Watershed responses to Amazon soya bean cropland expansion and intensification

    PubMed Central

    Neill, Christopher; Coe, Michael T.; Riskin, Shelby H.; Krusche, Alex V.; Elsenbeer, Helmut; Macedo, Marcia N.; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A.; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A.

    2013-01-01

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales. PMID:23610178

  3. Watershed responses to Amazon soya bean cropland expansion and intensification.

    PubMed

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A

    2013-06-05

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.

  4. Watershed characterization and analysis using the VELMA model

    EPA Science Inventory

    We developed a broadly applicable watershed simulator – VELMA (Visualizing Ecosystem and Land Management Assessments) – to characterize hydrological and ecological processes essential to the healthy functioning of watersheds, and to identify best management practices ...

  5. Selected achievements, science directions, and new opportunities for the WEBB small watershed research program

    USGS Publications Warehouse

    Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape. 

  6. Sediment calibration strategies of Phase 5 Chesapeake Bay watershed model

    USGS Publications Warehouse

    Wu, J.; Shenk, G.W.; Raffensperger, Jeff P.; Moyer, D.; Linker, L.C.; ,

    2005-01-01

    Sediment is a primary constituent of concern for Chesapeake Bay due to its effect on water clarity. Accurate representation of sediment processes and behavior in Chesapeake Bay watershed model is critical for developing sound load reduction strategies. Sediment calibration remains one of the most difficult components of watershed-scale assessment. This is especially true for Chesapeake Bay watershed model given the size of the watershed being modeled and complexity involved in land and stream simulation processes. To obtain the best calibration, the Chesapeake Bay program has developed four different strategies for sediment calibration of Phase 5 watershed model, including 1) comparing observed and simulated sediment rating curves for different parts of the hydrograph; 2) analyzing change of bed depth over time; 3) relating deposition/scour to total annual sediment loads; and 4) calculating "goodness-of-fit' statistics. These strategies allow a more accurate sediment calibration, and also provide some insightful information on sediment processes and behavior in Chesapeake Bay watershed.

  7. Phosphorus losses from an irrigated watershed in the northwestern United States: case study of the upper snake rock watershed.

    PubMed

    Bjorneberg, David L; Leytem, April B; Ippolito, James A; Koehn, Anita C

    2015-03-01

    Watersheds using surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000-ha Upper Snake Rock (USR) watershed from 2005 to 2008 showed that, on average, water diverted from the Snake River annually supplied 547 kg ha of total suspended solids (TSS), 1.1 kg ha of total P (TP), and 0.50 kg ha of dissolved P (DP) to the irrigation tract. Irrigation return flow from the USR watershed contributed 414 kg ha of TSS, 0.71 kg ha of TP, and 0.32 kg ha of DP back to the Snake River. Significantly more TP flowed into the watershed than returned to the Snake River, whereas there was no significant difference between inflow and return flow loads for TSS and DP. Average TSS and TP concentrations in return flow were 71 and 0.12 mg L, respectively, which exceeded the TMDL limits of 52 mg L TSS and 0.075 mg L TP set for this section of the Snake River. Monitoring inflow and outflow for five water quality ponds constructed to reduce sediment and P losses from the watershed showed that TSS concentrations were reduced 36 to 75%, but DP concentrations were reduced only 7 to 16%. This research showed that continued implementation of conservation practices should result in irrigation return flow from the USR watershed meeting the total maximum daily load limits for the Snake River. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Mercury accumulation by lower trophic-level organisms in lentic systems within the Guadalupe River watershed, California

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Moon, Gerald E.; Husby, Peter; Lincoff, Andrew; Carter, James L.; Croteau, Marie-Noële

    2005-01-01

    The water columns of four reservoirs (Almaden, Calero, Guadalupe and Lexington Reservoirs) and an abandoned quarry pit filled by Alamitos Creek drainage for recreational purposes (Lake Almaden) were sampled on September 14 and 15, 2004 to provide the first measurements of mercury accumulation by phytoplankton and zooplankton in lentic systems (bodies of standing water, as in lakes and reservoirs) within the Guadalupe River watershed, California. Because of widespread interest in ecosystem effects associated with historic mercury mining within and downgradient of the Guadalupe Riverwatershed, transfer of mercury to lower trophic-level organisms was examined. The propensity of mercury to bioaccumulate, particularly in phytoplankton and zooplankton at the base of the food web, motivated this attempt to provide information in support of developing trophic-transfer and solute-transport models for the watershed, and hence in support of subsequent evaluation of load-allocation strategies. Both total mercury and methylmercury were examined in these organisms. During a single sampling event, replicate samples from the reservoir water column were collected and processed for dissolved-total mercury, dissolved-methylmercury, phytoplankton mercury speciation, phytoplankton taxonomy and biomass, zooplankton mercury speciation, and zooplankton taxonomy and biomass. The timing of this sampling event was coordinated with sampling and analysis of fish from these five water bodies, during a period of the year when vertical stratification in the reservoirs generates a primary source of methylmercury to the watershed. Ancillary data, including dissolved organic carbon and trace-metal concentrations as well as vertical profiles of temperature, dissolved oxygen, specific conductance and pH, were gathered to provide a water-quality framework from which to compare the results for mercury. This work, in support of the Guadalupe River Mercury Total Maximum Daily Load (TMDL) Study, provides

  9. Impact of Fire on Streamflow in Southern California Watersheds

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Hope, A. S.

    2007-12-01

    Post-fire streamflow dynamics in Southern California have primarily been studied using small watershed experiments. These studies have concluded that increases in streamflow are a consequence of an increase in soil hydrophobicity, along with a decrease in transpiration rates associated with less vegetation. Extrapolation of the results from these studies to large watersheds (>50 km2) has been limited because large watersheds may not burn completely and other processes may emerge at these scales. In this study, six paired watersheds were used to test the hypothesis that there is an increase in streamflow following fire in large California watersheds (54-632 km2). The percentage of area burned in these watersheds ranged from 23 to 100%. The effects of fires on streamflow were examined at annual, seasonal, and monthly time-steps for the five years following fire. In addition, this study attempted to address fundamental regression assumptions that are commonly ignored, and create uncertainty bounds for evaluating the changes in streamflow before and after fire. Results of this experiment indicate that differences in pre and post-fire streamflows, at all time scales and in all the test catchments, were generally within the 95% uncertainty bounds of the regression equation. It is uncertain whether the apparent lack of significant difference between the pre and post-fire streamflow reflects no actual change in streamflow or is a consequence of the errors and uncertainties in the streamflow data. Furthermore, persistent drought in the years following fire made it challenging to interpret differences in pre and post-fire flows using the paired watershed methodology. The effects of hydrophobicity on post-fire streamflow may have been reduced by a limited number of storm flow events during these drought years. Under these dry conditions, soil moisture was the dominant control over transpirational losses, minimizing the effects of a reduction in vegetation cover. These results

  10. Factors Influencing the Sahelian Paradox at the Local Watershed Scale: Causal Inference Insights

    NASA Astrophysics Data System (ADS)

    Van Gordon, M.; Groenke, A.; Larsen, L.

    2017-12-01

    While the existence of paradoxical rainfall-runoff and rainfall-groundwater correlations are well established in the West African Sahel, the hydrologic mechanisms involved are poorly understood. In pursuit of mechanistic explanations, we perform a causal inference analysis on hydrologic variables in three watersheds in Benin and Niger. Using an ensemble of techniques, we compute the strength of relationships between observational soil moisture, runoff, precipitation, and temperature data at seasonal and event timescales. Performing analysis over a range of time lags allows dominant time scales to emerge from the relationships between variables. By determining the time scales of hydrologic connectivity over vertical and lateral space, we show differences in the importance of overland and subsurface flow over the course of the rainy season and between watersheds. While previous work on the paradoxical hydrologic behavior in the Sahel focuses on surface processes and infiltration, our results point toward the importance of subsurface flow to rainfall-runoff relationships in these watersheds. The hypotheses generated from our ensemble approach suggest that subsequent explorations of mechanistic hydrologic processes in the region include subsurface flow. Further, this work highlights how an ensemble approach to causal analysis can reveal nuanced relationships between variables even in poorly understood hydrologic systems.

  11. Watershed Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for watershed modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain watershed analysis workgroup. (TetraTech, 2012a)

  12. Mercury budget of an upland-peatland watershed

    Treesearch

    D. F. Grigal; Randy K. Kolka; J. A. Fleck; E. A. Nater

    2000-01-01

    Inputs, outputs, and pool sizes of total mercury (Hg) were measured in a forested 10 ha,watershed consisting of a 7 ha hardwood-dominated upland surrounding a 3 ha coniferdominated peatland. Hydrologic inputs via throughfall and stemflow, 13 +/- 0.4/ug m-2 yr-1 over the entire watershed, were about double precipitation...

  13. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    USDA-ARS?s Scientific Manuscript database

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  14. Ultra-urban baseflow and stormflow concentrations and fluxes in a watershed undergoing restoration (WS263)

    Treesearch

    Kenneth T. Belt; William P. Stack; Richard V. Pouyat; Kimberly Burgess; Peter M. Groffman; William M. Frost; Sujay S. Kaushal; Guy Hager

    2014-01-01

    We discuss the results of sampling baseflow and stormwater runoff in Watershed 263, an ultra-urban catchment in west Baltimore City that is undergoing restoration aimed at both improving water quality as well as the quality of life in its neighborhoods. We focus on urban hydrology and describe the high baseflow and stormwater nutrient, metal, bacterial and other...

  15. Structure and composition of a watershed-scale sediment information network

    USGS Publications Warehouse

    Osterkamp, W.R.; Gray, J.R.; Laronne, J.B.; Martin, J.R.

    2007-01-01

    A 'Watershed-Scale Sediment Information Network' (WaSSIN), designed to complement UNESCO's International Sedimentation Initiative, was endorsed as an initial project by the World Association for Sedimentation and Erosion Research. WaSSIN is to address global fluvial-sediment information needs through a network approach based on consistent protocols for the collection, analysis, and storage of fluvial-sediment and ancillary information at smaller spatial scales than those of the International Sedimentation Initiative. As a second step of implementation, it is proposed herein that the WaSSIN have a general structure of two components, (1) monitoring and data acquisition and (2) research. Monitoring is to be conducted in small watersheds, each of which has an established database for discharge of water and suspended sediment and possibly for bed load, bed material, and bed topography. Ideally, documented protocols have been used for collecting, analyzing, storing, and sharing the derivative data. The research component is to continue the collection and interpretation of data, to compare those data among candidate watersheds, and to determine gradients of fluxes and processes among the selected watersheds. To define gradients and evaluate processes, the initial watersheds will have several common attributes. Watersheds of the first group will be: (1) six to ten in number, (2) less than 1000 km2 in area, (3) generally in mid-latitudes of continents, and (4) of semiarid climate. Potential candidate watersheds presently include the Weany Creek Basin, northeastern Australia, the Zhi Fanggou catchment, northern China, the Eshtemoa Watershed, southern Israel, the Metsemotlhaba River Basin, Botswana, the Aiuaba Experimental Basin, Brazil, and the Walnut Gulch Experimental Watershed, southwestern United States.

  16. Contrasting Nitrogen Fate in Watersheds using Agricultural and Water Quality Information

    NASA Astrophysics Data System (ADS)

    Essaid, H.; Baker, N. T.; McCarthy, K.

    2016-12-01

    A study combining Surplus Nitrogen (N) estimation with Principal Component (PCA) and End-Member-Mixing Analysis (EMMA) successfully reproduced, explained, and contrasted the general features of N fate and transport in diverse agricultural watersheds in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA) that ranged in size from 5 to 1254 km2. Watershed Surplus N was determined by subtracting estimates of crop uptake and volatilization from estimates of N input from atmospheric deposition, plant fixation, fertilizer application and manure. Surplus N was ≤ 20% of total N input in the lower permeability watersheds of MS, IA and IN and most Surplus N in these watersheds was exported downstream. In contrast, Surplus N was > 20% of total N input in the more permeable watersheds of WA, NE and MD and only a fraction of the Surplus N was exported downstream. PCA and EMMA were used to identify end-members contributing to streamflow and NO3 load. Discharge of oxic groundwater (GW) to the stream was the primary source of stream NO3 load in the more permeable watersheds. In the less permeable watersheds GW was predominantly anoxic and tile drainage and runoff were the primary sources of stream NO3 load. These results suggest that a larger fraction of N applied at the land surface was not used by the plants and leached into the subsurface in more permeable watersheds. Although NO3-bearing oxic GW was the main source of stream NO3 in these watersheds, subsurface NO3 removal appeared to be occurring by denitrification along GW flow paths that encountered anoxic conditions and/or reactive streambed sediments. Although plants were able to more efficiently use N applied at the land surface in less permeable watersheds, what wasn't taken up by plants flowed directly to the stream with little opportunity for denitrification. Instream benthic processing was not apparent in small watersheds but became more important as watershed size increased.

  17. Comparing the Hydrologic and Watershed Processes between a Full Scale Stochastic Model Versus a Scaled Physical Model of Bell Canyon

    NASA Astrophysics Data System (ADS)

    Hernandez, K. F.; Shah-Fairbank, S.

    2016-12-01

    The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.

  18. Critical Watersheds: Climate Change, Tipping Points, and Energy-Water Impacts

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Brown, M.; Coon, E.; Linn, R.; McDowell, N. G.; Painter, S. L.; Xu, C.

    2014-12-01

    Climate change, extreme climate events, and climate-induced disturbances will have a substantial and detrimental impact on terrestrial ecosystems. How ecosystems respond to these impacts will, in turn, have a significant effect on the quantity, quality, and timing of water supply for energy security, agriculture, industry, and municipal use. As a community, we lack sufficient quantitative and mechanistic understanding of the complex interplay between climate extremes (e.g., drought, floods), ecosystem dynamics (e.g., vegetation succession), and disruptive events (e.g., wildfire) to assess ecosystem vulnerabilities and to design mitigation strategies that minimize or prevent catastrophic ecosystem impacts. Through a combination of experimental and observational science and modeling, we are developing a unique multi-physics ecohydrologic framework for understanding and quantifying feedbacks between novel climate and extremes, surface and subsurface hydrology, ecosystem dynamics, and disruptive events in critical watersheds. The simulation capability integrates and advances coupled surface-subsurface hydrology from the Advanced Terrestrial Simulator (ATS), dynamic vegetation succession from the Ecosystem Demography (ED) model, and QUICFIRE, a novel wildfire behavior model developed from the FIRETEC platform. These advances are expected to make extensive contributions to the literature and to earth system modeling. The framework is designed to predict, quantify, and mitigate the impacts of climate change on vulnerable watersheds, with a focus on the US Mountain West and the energy-water nexus. This emerging capability is used to identify tipping points in watershed ecosystems, quantify impacts on downstream users, and formally evaluate mitigation efforts including forest (e.g., thinning, prescribed burns) and watershed (e.g., slope stabilization). The framework is being trained, validated, and demonstrated using field observations and remote data collections in the

  19. Subject Coordinator Role and Responsibility: Experiences of Australian Academics

    ERIC Educational Resources Information Center

    Zutshi, Ambika; Creed, Andrew; Ringer, Allison; Osborne, Angela

    2013-01-01

    The subject coordinator role has changed with the implementation of new management practices in universities. Discussions from in-depth interviews with subject coordinators in an Australian university are analysed with a focus on insights into the changing role with reference to Value, Rarity, Imitability and Organisation (VRIO) and institutional…

  20. Emerald Lake Watershed study: Introduction and site description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnessen, K.A.

    1991-07-01

    The Emerald Lake Watershed study was organized to investigate the effects of acidic deposition on high-elevation watersheds and surface waters of the Sierra Nevada, California. Some of the results of this comprehensive study of aquatic and terrestrial ecosystems at a small, headwater basin are presented in four papers in this series. The watershed study site is in Sequoia National Park, on the western slope of the Sierra Nevada. This glacial cirque is located in the upper Marble Fork of the Kaweah River. This 120-ha watershed ranges from Alta Peak (3,416 m) down to Emerald Lake (2,400 m). Most of themore » watershed surface area is exposed granite and granodiorite rocks, with limited coverage (about 20%) by thin, acidic soils. The hydrology of the basin is dominated by snowmelt runoff during March-June. Emerald Lake, a glacial tarn, is 2.72 ha in area, with a maximum depth of 10.5 m. Surface waters are poorly buffered and dominated by calcium and bicarbonate. Most of the yearly precipitation falls as dilute snow (pH5.2-5.4), with acidic rain storms sampled during May-October.« less

  1. Guiding principles for management of forested, agricultural, and urban watersheds

    Treesearch

    Pamela J. Edwards; Jon E. Schoonover; Karl W.J. Williard

    2015-01-01

    Human actions must be well planned and include consideration of their potential influences on water and aquatic ecosystems - such consideration is the foundation of watershed management. Watersheds are the ideal land unit for managing and protecting water resources and aquatic health because watersheds integrate the physical, biological and chemical processes within...

  2. Estimating the value of watershed services following forest restoration

    NASA Astrophysics Data System (ADS)

    Mueller, Julie M.; Swaffar, Wes; Nielsen, Erik A.; Springer, Abraham E.; Lopez, Sharon Masek

    2013-04-01

    Declining forest health, climate change, and development threaten the sustainability of water supplies in the western United States. While forest restoration may buffer threats to watershed services, funding shortfalls for landscape-scale restoration efforts limit management action. The hydrologic response and reduction in risk to watersheds following forest restoration treatments could create significant nonmarket benefits for downstream water users. Historic experimental watershed studies indicate a significant and positive response from forest thinning by a reallocation of water from evapotranspiration to surface-water yield. In this study, we estimate the willingness to pay (WTP) for improved watershed services for one group of downstream users, irrigators, following forest restoration activities. We find a positive and statistically significant WTP within our sample of 183.50 per household, at an aggregated benefit of more than 400,000 annually for 2181 irrigators. Our benefit estimate provides evidence that downstream irrigators may be willing to invest in landscape-scale forest restoration to maintain watershed services.

  3. Watershed-based Morphometric Analysis: A Review

    NASA Astrophysics Data System (ADS)

    Sukristiyanti, S.; Maria, R.; Lestiana, H.

    2018-02-01

    Drainage basin/watershed analysis based on morphometric parameters is very important for watershed planning. Morphometric analysis of watershed is the best method to identify the relationship of various aspects in the area. Despite many technical papers were dealt with in this area of study, there is no particular standard classification and implication of each parameter. It is very confusing to evaluate a value of every morphometric parameter. This paper deals with the meaning of values of the various morphometric parameters, with adequate contextual information. A critical review is presented on each classification, the range of values, and their implications. Besides classification and its impact, the authors also concern about the quality of input data, either in data preparation or scale/the detail level of mapping. This review paper hopefully can give a comprehensive explanation to assist the upcoming research dealing with morphometric analysis.

  4. OPTIMIZING BMP PLACEMENT AT WATERSHED-SCALE USING SUSTAIN

    EPA Science Inventory

    Watershed and stormwater managers need modeling tools to evaluate alternative plans for environmental quality restoration and protection needs in urban and developing areas. A watershed-scale decision-support system, based on cost optimization, provides an essential tool to suppo...

  5. Overview of the Caspar Creek watershed study

    Treesearch

    Norm Henry

    1998-01-01

    The California Department of Forestry and Fire Protection (CDF) and the Pacific Southwest Research Station, Redwood Sciences Laboratory (PSW) have been conducting watershed research within the Caspar Creek watershed on the Jackson Demonstration State Forest, in northern California, since 1962. A concrete broad-crested weir with a 120 degree low-flow V-notch was...

  6. Comparison of Drainmod Based Watershed Scale Models

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    Watershed scale hydrology and water quality models (DRAINMOD-DUFLOW, DRAINMOD-W, DRAINMOD-GIS and WATGIS) that describe the nitrogen loadings at the outlet of poorly drained watersheds were examined with respect to their accuracy and uncertainty in model predictions. Latin Hypercube Sampling (LHS) was applied to determine the impact of uncertainty in estimating field...

  7. Cross-Boundary Coordination on Forested Landscapes: Investigating Alternatives for Implementation

    NASA Astrophysics Data System (ADS)

    Gass, Rebecca J.; Rickenbach, Mark; Schulte, Lisa A.; Zeuli, Kimberly

    2009-01-01

    Cross-boundary coordination is a tool for ecosystem management whereby landowners voluntarily coordinate management practices toward economic and/or ecological landscape-scale outcomes (e.g., fiber, invasive species control, habitat). Past research indicates that it may be particularly applicable on landscapes that include small forest landholdings. To explore alternatives by which coordination might occur, we conducted seven focus groups with landowners ( n = 51) who actively manage their forests in southwest Wisconsin and northeast Iowa. Focus group participants were presented with three hypothetical alternatives to coordinate with their neighbors; landowners could self-organize, work with a natural resource professional (i.e., forester), or work with an organization to complete a cross-boundary practice. In this article, we focus on the latter two alternatives and the role of two social theories—principal-agent and cooperation—in explaining landowners’ evaluations of these alternatives. Key findings are that (1) cross-boundary coordination has the potential to alleviate problems between landowners and resource professionals inherent to their typical working relationship, and (2) social relationships are a major factor contributing to landowners’ willingness to participate. We posit that cross-boundary coordination offers a non-economic incentive for landowners to work together as it may reduce the uncertainty associated with hiring a resource professional. At the same time, professionals can provide a bridging function among landowners who are unacquainted. To achieve these outcomes and expand the adoption of cross-boundary coordination, we suggest four guidelines. First, foster dialogue among landowners toward shared cognition and oversight. Second, match landowners’ practices and objectives such that there are clear benefits to all. Third, develop relationships through low risk activities where possible. Fourth, do not expect on-going commitments.

  8. Cross-boundary coordination on forested landscapes: investigating alternatives for implementation.

    PubMed

    Gass, Rebecca J; Rickenbach, Mark; Schulte, Lisa A; Zeuli, Kimberly

    2009-01-01

    Cross-boundary coordination is a tool for ecosystem management whereby landowners voluntarily coordinate management practices toward economic and/or ecological landscape-scale outcomes (e.g., fiber, invasive species control, habitat). Past research indicates that it may be particularly applicable on landscapes that include small forest landholdings. To explore alternatives by which coordination might occur, we conducted seven focus groups with landowners (n=51) who actively manage their forests in southwest Wisconsin and northeast Iowa. Focus group participants were presented with three hypothetical alternatives to coordinate with their neighbors; landowners could self-organize, work with a natural resource professional (i.e., forester), or work with an organization to complete a cross-boundary practice. In this article, we focus on the latter two alternatives and the role of two social theories--principal-agent and cooperation--in explaining landowners' evaluations of these alternatives. Key findings are that (1) cross-boundary coordination has the potential to alleviate problems between landowners and resource professionals inherent to their typical working relationship, and (2) social relationships are a major factor contributing to landowners' willingness to participate. We posit that cross-boundary coordination offers a non-economic incentive for landowners to work together as it may reduce the uncertainty associated with hiring a resource professional. At the same time, professionals can provide a bridging function among landowners who are unacquainted. To achieve these outcomes and expand the adoption of cross-boundary coordination, we suggest four guidelines. First, foster dialogue among landowners toward shared cognition and oversight. Second, match landowners' practices and objectives such that there are clear benefits to all. Third, develop relationships through low risk activities where possible. Fourth, do not expect on-going commitments.

  9. Climate change and watershed mercury export: a multiple projection and model analysis.

    PubMed

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  10. Climate change and watershed mercury export: a multiple projection and model analysis

    USGS Publications Warehouse

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  11. The politics of participation in watershed modeling.

    PubMed

    Korfmacher, K S

    2001-02-01

    While researchers and decision-makers increasingly recognize the importance of public participation in environmental decision-making, there is less agreement about how to involve the public. One of the most controversial issues is how to involve citizens in producing scientific information. Although this question is relevant to many areas of environmental policy, it has come to the fore in watershed management. Increasingly, the public is becoming involved in the sophisticated computer modeling efforts that have been developed to inform watershed management decisions. These models typically have been treated as technical inputs to the policy process. However, model-building itself involves numerous assumptions, judgments, and decisions that are relevant to the public. This paper examines the politics of public involvement in watershed modeling efforts and proposes five guidelines for good practice for such efforts. Using these guidelines, I analyze four cases in which different approaches to public involvement in the modeling process have been attempted and make recommendations for future efforts to involve communities in watershed modeling. Copyright 2001 Springer-Verlag

  12. How misapplication of the hydrologic unit framework diminishes the meaning of watersheds

    USGS Publications Warehouse

    Omernik, James M.; Griffith, Glenn E.; Hughes, Robert M.; Glover, James B.; Weber, Marc H.

    2017-01-01

    Hydrologic units provide a convenient but problematic nationwide set of geographic polygons based on subjectively determined subdivisions of land surface areas at several hierarchical levels. The problem is that it is impossible to map watersheds, basins, or catchments of relatively equal size and cover the whole country. The hydrologic unit framework is in fact composed mostly of watersheds and pieces of watersheds. The pieces include units that drain to segments of streams, remnant areas, noncontributing areas, and coastal or frontal units that can include multiple watersheds draining to an ocean or large lake. Hence, half or more of the hydrologic units are not watersheds as the name of the framework “Watershed Boundary Dataset” implies. Nonetheless, hydrologic units and watersheds are commonly treated as synonymous, and this misapplication and misunderstanding can have some serious scientific and management consequences. We discuss some of the strengths and limitations of watersheds and hydrologic units as spatial frameworks. Using examples from the Northwest and Southeast United States, we explain how the misapplication of the hydrologic unit framework has altered the meaning of watersheds and can impair understanding associations between spatial geographic characteristics and surface water conditions.

  13. Runoff potentiality of a watershed through SCS and functional data analysis technique.

    PubMed

    Adham, M I; Shirazi, S M; Othman, F; Rahman, S; Yusop, Z; Ismail, Z

    2014-01-01

    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling.

  14. Runoff Potentiality of a Watershed through SCS and Functional Data Analysis Technique

    PubMed Central

    Adham, M. I.; Shirazi, S. M.; Othman, F.; Rahman, S.; Yusop, Z.; Ismail, Z.

    2014-01-01

    Runoff potentiality of a watershed was assessed based on identifying curve number (CN), soil conservation service (SCS), and functional data analysis (FDA) techniques. Daily discrete rainfall data were collected from weather stations in the study area and analyzed through lowess method for smoothing curve. As runoff data represents a periodic pattern in each watershed, Fourier series was introduced to fit the smooth curve of eight watersheds. Seven terms of Fourier series were introduced for the watersheds 5 and 8, while 8 terms of Fourier series were used for the rest of the watersheds for the best fit of data. Bootstrapping smooth curve analysis reveals that watersheds 1, 2, 3, 6, 7, and 8 are with monthly mean runoffs of 29, 24, 22, 23, 26, and 27 mm, respectively, and these watersheds would likely contribute to surface runoff in the study area. The purpose of this study was to transform runoff data into a smooth curve for representing the surface runoff pattern and mean runoff of each watershed through statistical method. This study provides information of runoff potentiality of each watershed and also provides input data for hydrological modeling. PMID:25152911

  15. Sediment Management at the Watershed Level

    DTIC Science & Technology

    2012-08-01

    al. 2005). Trimble examined ten river basins (1,000 to 7,500 mi2 ) and found that the sediment yield averaged about six percent. He attributed the...importance of storage and remobilization in controlling sediment yield from the 139 mi2 Coon Creek watershed in Wisconsin. Trimble prepared sediment...Federal government in 1984, DHP activities targeted sixteen watersheds comprising 2,625 mi2 within the Yazoo River Basin in the Lower Mississippi

  16. Watershed modeling and monitoring for assessing nutrient ...

    EPA Pesticide Factsheets

    Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient enrichment problem that is creating harmful algal blooms in a reservoir used for drinking water and recreation. Innovative modeling and monitoring is combined to understand how to best manage this water quality problem and costs associated with this endeavor. The presentation will provide an overview of the water quality trading feasibility research. The research includes the development and evaluation of innovative modeling and monitoring approaches to manage watersheds for nutrient pollution using a whole systems approach.

  17. The Role of Ecological Endpoints in Watershed Management

    EPA Science Inventory

    Landscape change and pollution in watersheds affect ecological endpoints in receiving water bodies. Therefore, these endpoints are useful in watershed management. Fish and benthic macro invertebrates are often used as endpoints, since they are easily measured in the field and int...

  18. Matanuska-Susitna Index of Watershed Integrity (AK IWI)

    EPA Science Inventory

    The US Environmental Protection Agency’s (EPA) Index of Watershed Integrity (IWI) is used to calculate and visualize the status of natural watershed infrastructure that supports ecological processes (e.g., nutrient cycling) and services provided to society (e.g., subsistenc...

  19. INTEGRATED WATERSHED MANAGEMENT: LINKING SCIENCE TO DECISION MAKING

    EPA Science Inventory

    This paper describes some of the challenges and benefits of taking an integrated watershed approach to achieving Clean Water Act (CWA) and Safe Drinking Water Act (SDWA) goals, and some of the activities in EPA to facilitate watershed management decision making.

  20. Developing Landscape Level Indicators for Predicting Watershed Condition

    EPA Science Inventory

    Drainage basins (watersheds) exert a strong influence on the condition of water bodies such as streams and lakes. Watersheds and associated aquatic systems respond differently to stressors (e.g., land use change) or restoration activities depending on the climatic setting, bedroc...