Science.gov

Sample records for focused heavy ion

  1. EDITORIAL: Focus on Heavy Ions in Biophysics and Medical Physics FOCUS ON HEAVY IONS IN BIOPHYSICS AND MEDICAL PHYSICS

    NASA Astrophysics Data System (ADS)

    Durante, Marco

    2008-07-01

    include carcinogenesis, late degenerative tissue effects (including damage to the central nervous system), and hereditary effects. For these studies, microbeams represent an essential tool, considering that in space each cell in the human body will not experience more than one heavy-ion traversal. Both NASA and ESA are investing important resources in ground-based space radiation research programs, to reduce risk uncertainty and to develop countermeasures. For both cancer therapy and space radiation protection a better understanding of the effects of energetic heavy ions is needed. Physics should be improved, especially the measurements of nuclear fragmentation cross-sections, and the transport calculations. Biological effects need to be studied in greater detail, and clearly only understanding the mechanisms of heavy-ion induced biological damage will reduce the uncertainty on late effects in humans. This focus issue of New Journal of Physics aims to provide the state-of-the-art of the biophysics of energetic heavy ions and to highlight the areas where more research is urgently needed for therapy and the space program. Focus on Heavy Ions in Biophysics and Medical Physics Contents Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications K O Voss, C Fournier and G Taucher-Scholz Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight L Narici Clinical advantages of carbon-ion radiotherapy Hirohiko Tsujii, Tadashi Kamada, Masayuki Baba, Hiroshi Tsuji, Hirotoshi Kato, Shingo Kato, Shigeru Yamada, Shigeo Yasuda, Takeshi Yanagi, Hiroyuki Kato, Ryusuke Hara, Naotaka Yamamoto and Junetsu Mizoe Heavy-ion effects: from track structure to DNA and chromosome damage F Ballarini, D Alloni, A Facoetti and A Ottolenghi Shielding experiments with high-energy heavy ions for spaceflight applications C Zeitlin, S Guetersloh, L Heilbronn, J Miller, N Elkhayari, A Empl, M LeBourgeois, B W Mayes, L Pinsky

  2. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    SciTech Connect

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  3. EDITORIAL: Focus on Heavy Ions in Biophysics and Medical Physics FOCUS ON HEAVY IONS IN BIOPHYSICS AND MEDICAL PHYSICS

    NASA Astrophysics Data System (ADS)

    Durante, Marco

    2008-07-01

    include carcinogenesis, late degenerative tissue effects (including damage to the central nervous system), and hereditary effects. For these studies, microbeams represent an essential tool, considering that in space each cell in the human body will not experience more than one heavy-ion traversal. Both NASA and ESA are investing important resources in ground-based space radiation research programs, to reduce risk uncertainty and to develop countermeasures. For both cancer therapy and space radiation protection a better understanding of the effects of energetic heavy ions is needed. Physics should be improved, especially the measurements of nuclear fragmentation cross-sections, and the transport calculations. Biological effects need to be studied in greater detail, and clearly only understanding the mechanisms of heavy-ion induced biological damage will reduce the uncertainty on late effects in humans. This focus issue of New Journal of Physics aims to provide the state-of-the-art of the biophysics of energetic heavy ions and to highlight the areas where more research is urgently needed for therapy and the space program. Focus on Heavy Ions in Biophysics and Medical Physics Contents Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications K O Voss, C Fournier and G Taucher-Scholz Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight L Narici Clinical advantages of carbon-ion radiotherapy Hirohiko Tsujii, Tadashi Kamada, Masayuki Baba, Hiroshi Tsuji, Hirotoshi Kato, Shingo Kato, Shigeru Yamada, Shigeo Yasuda, Takeshi Yanagi, Hiroyuki Kato, Ryusuke Hara, Naotaka Yamamoto and Junetsu Mizoe Heavy-ion effects: from track structure to DNA and chromosome damage F Ballarini, D Alloni, A Facoetti and A Ottolenghi Shielding experiments with high-energy heavy ions for spaceflight applications C Zeitlin, S Guetersloh, L Heilbronn, J Miller, N Elkhayari, A Empl, M LeBourgeois, B W Mayes, L Pinsky

  4. Heavy-ion fusion final focus magnet shielding designs

    SciTech Connect

    Latkowski, J F; Meier, W R

    2000-10-11

    At the Thirteenth International Symposium on Heavy Ion Inertial Fusion (HIF Symposium), we presented magnet shielding calculations for 72-, 128, 200, and 288-beam versions of the HYLIFE-II power plant design. In all cases, we found the radiation-limited lifetimes of the last set of final focusing magnets to be unacceptably short. Since that time, we have completed follow-on calculations to improve the lifetime of the 72-beam case. Using a self-consistent final focusing model, we vary parameters such as the shielding thicknesses and compositions, focusing length, angle-of-attack to the target, and the geometric representation of the flibe pocket, chamber, and blanket. By combining many of these shielding features, we are able to demonstrate a magnet shielding design that would enable the last set of final focusing magnets to survive for the lifetime of the power plant.

  5. A Scaled Final Focus Experiment for Heavy Ion Fusion

    SciTech Connect

    MacLaren, Stephan, Alexander

    2000-09-19

    A one-tenth dimensionally scaled version of a final focus sub-system design for a heavy ion fusion driver is built and tested. By properly scaling the physics parameters that relate particle energy and mass, beam current, beam emittance, and focusing field, the transverse dynamics of a driver scale final focus are replicated in a small laboratory beam. The experiment uses a 95 {micro}A beam of 160 keV Cs{sup +} ions to study the dynamics as the beam is brought to a ballistic focus in a lattice of six quadrupole magnets. Diagnostic stations along the experiment track the evolution of the transverse phase space of the beam. The measured focal spot size is consistent with calculations and the report of the design on which the experiment is based. By uniformly varying the strengths of the focusing fields in the lattice, the chromatic effect of a small energy deviation on the spot size can be reproduced. This is done for {+-}1% and {+-}2% shifts and the changes in the focus are measured. Additionally, a 400 {micro}A beam is propagated through the experiment and partially neutralized after the last magnet using electrons released from a hot tungsten filament. The increase in beam current allows for the observation of significant effects on both the size and shape of the focal spot when the electrons are added.

  6. Drift Compression and Final Focus Options for Heavy Ion Fusion

    SciTech Connect

    Hong Qin; Ronald C. Davidson; John J. Barnard; Edward P. Lee

    2005-02-14

    A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. We show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1-D Vlasov equation is solved explicitly, and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot.

  7. A Superconducting Solenoid for Heavy Ion Beam Focusing

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Kubo, Toshiyuki; Kawaguchi, Takeo; Imai, Yoshio; Minato, Tsuneaki; Seo, Kazutaka

    1997-05-01

    A superconducting solenoid has been constructed to use as a final focusing element at the entrance of the projectile fragment separator RIPS (T. Kubo et al, Nucl. Instr. & Meth. B70 (1992) 309) at RIKEN. The design field on axis is 6 tesla, the average current density being 9,600 A/cm^2. The overall coil length is 1.1 meter, and the coil is divided into three sections of equal length to ease winding and possibly to distribute the stored energy. A major feature of the magnet is that cooling is conductive without LHe involved, using a cryocooler directly attached onto the coil. The solenoid is currently being tested, and the test results will be presented. After magnet testing, the solenoid will be installed in the beamline. The results of beam experiment will also be presented, along with calculation results with TRANSPORT.

  8. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    SciTech Connect

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.

    1995-04-01

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used.

  9. Ion Beam Induced Charge Collection (IBICC) Studies and Focused Heavy Ion Microprobe Facility at the University of North Texas

    NASA Astrophysics Data System (ADS)

    Guo, B. N.; Renfrow, S. N.; Jin, J.; Hughes, B. F.; Duggan, J. L.; McDaniel, F. D.

    1998-03-01

    As the feature sizes reduce, semiconductor devices increase their sensitivity to ionizing radiation that creates electron-hole pairs. The induced charge collection by the device p-n junctions can alter the state of the device, most commonly causing memory errors. To design robust devices immune to these effects, it is essential to create and test accurate models of this process. Such model-based testing requires energetic heavy ions whose number, arrival time, spatial location, energy, and angle can be controlled when they strike the integrated circuit. IBMAL is building a strong focusing lens system with spatial resolution 1μ m, raster-scanning capabilities for alpha particles and heavier ions. A detailed description of the focused heavy ion microprobe facility and IBICC experimental results conducted at Sandia National Laboratory will be presented.

  10. Focusing giga-electronvolt heavy ions to micrometers at the Institute of Modern Physics

    NASA Astrophysics Data System (ADS)

    Sheng, Lina; Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Song, Mingtao; Yuan, Youjin; Xiao, Guoqing

    2013-05-01

    To study the radiation effect of cosmic heavy ions of low fluxes in electronics and living samples, a focusing heavy ion microbeam facility, for ions with energies of several MeV/u up to 100 MeV/u, was constructed in the Institute of Modern Physics of the Chinese Academy of Sciences. This facility has a vertical design and an experiment platform for both in-vacuum analysis and in-air irradiation. Recently, microbeam of 12C6+ with energy of 80.55 MeV/u was successfully achieved at this interdisciplinary microbeam facility with a full beam spot size of 3 μm × 5 μm on target in air. Different from ions with energy of several MeV/u, the very high ion energy of hundred MeV/u level induces problems in beam micro-collimation, online beam spot diagnosis, radiation protection, etc. This paper presents the microbeam setup, difficulties in microbeam formation, and the preliminary experiments performed with the facility.

  11. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  12. Final focus shielding designs for modern heavy-ion fusion power plant designs

    NASA Astrophysics Data System (ADS)

    Latkowski, J. F.; Meier, W. R.

    2001-05-01

    Recent work in heavy-ion fusion accelerators and final focusing systems shows a trend towards less current per beam, and thus, a greater number of beams. Final focusing magnets are susceptible to nuclear heating, radiation damage, and neutron activation. The trend towards more beams, however, means that there can be less shielding for each magnet. Excessive levels of nuclear heating may lead to magnet quench or to an intolerable recirculating power for magnet cooling. High levels of radiation damage may result in short magnet lifetimes and low reliability. Finally, neutron activation of the magnet components may lead to difficulties in maintenance, recycling, and waste disposal. The present work expands upon previous, three-dimensional magnet shielding calculations for a modified version of the HYLIFE-II IFE power plant design. We present key magnet results as a function of the number of beams.

  13. Final Focus Shielding Designs for Modern Heavy-Ion Fusion Power Plant Designs

    SciTech Connect

    Latkowski, J F; Meier, W R

    2000-07-05

    Recent work in heavy-ion fusion accelerators and final focusing systems shows a trend towards less current per beam, and thus, a greater number of beams. Final focusing magnets are susceptible to nuclear heating, radiation damage, and neutron activation. The trend towards more beams, however, means that there can be less shielding for each magnet, Excessive levels of nuclear heating may lead to magnet quench or an intolerable recirculating power for magnet cooling. High levels of radiation damage may result in short magnet lifetimes and low reliability. Finally, neutron activation of the magnet components may lead to difficulties in maintenance, recycling, and waste disposal. The present work expands upon previous, three-dimensional magnet shielding calculations for a modified version of the HYLIFE-I1 IFE power plant design. We present key magnet results as a function of the number of beams.

  14. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    SciTech Connect

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  15. Drift Compression and Final Focus for Intense Heavy Ion Beams with Non-periodic, Time-dependent Lattice

    SciTech Connect

    Hong Qin; Ronald C. Davidson; John J. Barnard; Edward P. Lee

    2005-02-14

    In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the sam e focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the Integrated Beam Experiment (IBX) being designed by the Heavy Ion Fusion Virtual National Laboratory.

  16. Design of 3x3 focusing array for heavy ion driver. Final report on CRADA

    SciTech Connect

    Martovetsky, N N

    2005-03-30

    This memo presents a design of a 3 x 3 quadrupole array for HIF. It contains 3 D magnetic field computations of the array build with racetrack coils with and without different shields. It is shown that it is possible to have a low error magnetic field in the cells and shield the stray fields to acceptable levels. The array design seems to be a practical solution to any size array for future multi-beam heavy ion fusion drivers.

  17. Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing

    SciTech Connect

    Sharp, W M; Grote, D P; Cohen, R H; Friedman, A; Molvik, A W; Vay, J; Seidl, P; Roy, P K; Coleman, J E; Haber, I

    2007-06-29

    Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics. These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations and compare the results with experimental data in order to calibrate physics parameters in the model.

  18. Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing

    SciTech Connect

    Sharp, W. M.; Grote, D. P.; Cohen, R. H.; Friedman, A.; Molvik, A. W.; Vay, J.-L.; Seidl, P. A.; Roy, P. K.; Coleman, J. E.; Haber, I.

    2007-06-20

    Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics. These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations and compare the results with experimental data in order to calibrate physics parameters in the model.

  19. Focusing of high-current, large-area, heavy-ion beams with an electrostatic plasma lens

    SciTech Connect

    Goncharov, A.A.; Protsenko, I.M.; Yushkov, G.Y.; Brown, I.G.

    1999-08-01

    We report on measurements of the focusing of high-current, large-area beams of heavy metal ions using an electrostatic plasma lens. Tantalum ion beams were formed by a repetitively pulsed vacuum arc ion source, with energy in the 100 keV range, current up to 0.5 A, initial beam diameter 10 cm, and pulse length 250 {mu}s. The plasma lens was of internal diameter 10 cm and length 20 cm, and had nine electrostatic ring electrodes with potential applied to the central electrode of up to 7 kV, in the presence of a pulsed magnetic field of up to 800 G. The current-density profile of the downstream, focused, ion beam was measured with a radially moveable, magnetically suppressed, Faraday cup. The tantalum ion-beam current density at the focus was compressed by a factor of up to 30. The results are important in that they provide a demonstration of a means of manipulating high-current ion beams without associated space-charge blowup. {copyright} {ital 1999 American Institute of Physics.}

  20. (Relativistic heavy ion research)

    SciTech Connect

    Not Available

    1990-01-01

    At Brookhaven National Laboratory, participation in the E802 Experiment, which is the first major heavy-ion experiment at the BNL-AGS, was the main focus of the group during the past four years. The emphases of the E802 experiment were on (a) accurate particle identification and measurements of spectra over a wide kinematical domain (5{degree} < {theta}{sub LAB} < 55{degree}, p < 20 GeV/c); and (b) measurements of small-angle two-particle correlations, with event characterization tools: multiplicity array, forward and large-angle calorimeters. This experiment and other heavy ion collision experiments are discussed in this report.

  1. An electrostatic quadrupole doublet focusing system for MeV heavy ions in MeV-SIMS

    NASA Astrophysics Data System (ADS)

    Seki, T.; Shitomoto, S.; Nakagawa, S.; Aoki, T.; Matsuo, J.

    2013-11-01

    The importance of imaging mass spectrometry (MS) for visualizing the spatial distribution of molecular species in biological tissues and cells is growing. In conventional SIMS with keV-energy ion beams, elastic collisions occur between projectiles and atoms in constituent molecules. The collisions produce fragments, making acquisition of molecular information difficult. In contrast, MeV-energy ion beams excite electrons near the surface and enhance the ionization of high-mass molecules, hence, fragment suppressed SIMS spectrum of ionized molecules can be obtained. This work is a further step on our previous report on the successful development of a MeV secondary ion mass spectrometry (MeV-SIMS) for biological samples. We have developed an electrostatic quadrupole doublet (EQ doublet) focusing system, made of two separate lenses, Q1 and Q2, to focus the MeV heavy ion beam and reduce measurement time. A primary beam of 6 MeV Cu4+ was focused with this EQ doublet. We applied 1120 V to the Q1 lens and 1430 V to the Q2 lens, and the current density increased by a factor of about 60. Using this arrangement, we obtained an MeV-SIMS image of 100 × 100 pixels of cholesterol-OH+ of cerebellum (m/z = 369.3) over a 4 mm × 4 mm field of view, with a pixel size of 40 μm within 5 min, showing that our EQ doublet reduces the measurement time of current imaging by a factor of about 30.

  2. Traverse Focusing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion

    SciTech Connect

    James M. Mitrani, Igor D. Kaganovich, Ronald C. Davidson

    2013-01-28

    A fi nal focusing scheme designed to minimize chromatic effects is discussed. The Neutralized Drift Compression Experiment-II (NDCX-II) will apply a velocity tilt for longitudinal bunch compression, and a fi nal focusing solenoid (FFS) for transverse bunch compression. In the beam frame, neutralized drift compression causes a suffi ciently large spread in axial momentum, pz , resulting in chromatic effects to the fi nal focal spot during transverse bunch compression. Placing a weaker solenoid upstream of a stronger fi nal focusing solenoid (FFS) mitigates chromatic effects and improves transverse focusing by a factor of approximately 2-4 for appropriate NDCX-II parameters.

  3. Focusing Intense Charged Particle Beams with Achromatic Effects for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor

    2012-10-01

    Final focusing systems designed to minimize the effects of chromatic aberrations in the Neutralized Drift Compression Experiment (NDCX-II) are described. NDCX-II is a linear induction accelerator, designed to accelerate short bunches at high current. Previous experiments showed that neutralized drift compression significantly compresses the beam longitudinally (˜60x) in the z-direction, resulting in a narrow distribution in z-space, but a wide distribution in pz-space. Using simple lenses (e.g., solenoids, quadrupoles) to focus beam bunches with wide distributions in pz-space results in chromatic aberrations, leading to lower beam intensities (J/cm^2). Therefore, the final focusing system must be designed to compensate for chromatic aberrations. The paraxial ray equations and beam envelope equations are numerically solved for parameters appropriate to NDCX-II. Based on these results, conceptual designs for final focusing systems using a combination of solenoids and/or quadrupoles are optimized to compensate for chromatic aberrations. Lens aberrations and emittance growth will be investigated, and analytical results will be compared with results from numerical particle-in-cell (PIC) simulation codes.

  4. Drift compression and final focus systems for heavy ion inertial fusion

    SciTech Connect

    de Hoon, M.J.L.

    2001-05-01

    Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.

  5. Dynamics of neutralizing electrons during the focusing of intenseheavy ions beams inside a heavy fusion reactor chamber

    SciTech Connect

    Lifschitz, Agustin F.; Maynard, Gilles; Vay, Jean-Luc; Lenglet,Andrian

    2006-07-01

    The efficiency of a Heavy Ion Fusion reactor heavily depends on the maximum value for the density of energy (DoE) that can be deposited by the ion beams. In order to reduce the final beam radius, and thus to increase the DoE inside the target, the beam spatial charge has to be neutralized. Therefore the dynamics of the neutralizing electrons (DNE) play a central role in optimizing the DoE deposited in solid targets by the high current of the high energy heavy ion beams. We present results on some aspects of the DNE, which was performed using the Monte-Carlo 2D1/2 PIC code BPIC.

  6. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  7. Relativistic Heavy Ion Collider

    SciTech Connect

    Willen, E.H.

    1986-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a proposed research facility at Brookhaven National Laboratory to study the collision of beams of heavy ions, up to gold in mass and at beam energies up to 100 GeV/nucleon. The physics to be explored by this collider is an overlap between the traditional disciplines of nuclear physics and high energy physics and is a continuation of the planned program of light and heavy ion physics at BNL. The machine is to be constructed in the now-empty tunnel built for the former CBA project. Various other facilities to support the collider are either in place or under construction at BNL. The collider itself, including the magnets, is in an advanced state of design, and a construction start is anticipated in the next several years.

  8. Compact injector with alternating phase focusing-interdigital H-mode linac and superconducting electron cyclotron resonance ion source for heavy ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro

    2000-02-01

    We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.

  9. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  10. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  11. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  12. Central collisions of heavy ions

    SciTech Connect

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  13. Development of mass spectrometry by high energy focused heavy ion beam: MeV SIMS with 8 MeV Cl7+ beam

    NASA Astrophysics Data System (ADS)

    Jeromel, Luka; Siketić, Zdravko; Ogrinc Potočnik, Nina; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Pelicon, Primož

    2014-08-01

    Particle induced X-ray emission (PIXE) at microprobe of Jožef Stefan Institute is used to measure two-dimensional quantitative elemental maps of biological tissue. To improve chemical and biological understanding of the processes in vivo, supplementary information about chemical bonding and/or molecular distributions could be obtained by heavy-ion induced molecular desorption and a corresponding mass spectroscopy with Time-Of-Flight (TOF) mass spectrometer. As the method combines the use of heavy focused ions in MeV energy range and TOF Secondary Ion Mass Spectrometry, it is denoted as MeV SIMS. At Jožef Stefan Institute, we constructed a linear TOF spectrometer and mount it to our multipurpose nuclear microprobe. A beam of 8 MeV 35Cl7+ could be focused to a diameter of better than 3 μm × 3 μm and pulsed by electrostatic deflection at the high-energy side of accelerator. TOF mass spectrometer incorporates an 1 m long drift tube and a double stack microchannel plate (MCP) as a stop detector positioned at the end of the drift path. Secondary ions are focused at MCP using electrostatic cylindrical einzel lens. Time of flight spectra are currently acquired with a single-hit time-to-digital converter. Pulsed ion beam produces a shower of secondary ions that are ejected from positively biased target and accelerated towards MCP. We start our time measurement simultaneously with the start of the beam pulse. Signal of the first ion hitting MCP is used to stop the time measurement. Standard pulses proportional to the time of flight are produced with time to analog converter (TAC) and fed into analog-to-digital converter to obtain a time histogram. To enable efficient detection of desorbed fragments with higher molecular masses, which are of particular interest, we recently implemented a state-of art Field Programmable Gate Array (FPGA)-based multi-hit TOF acquisition. To test the system we used focused 8 MeV 35Cl7+ ion beam with pulse length of 180 ns. Mass resolution

  14. Heavy ion beam probing

    SciTech Connect

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  15. Heavy ion measurement on LDEF

    NASA Technical Reports Server (NTRS)

    Beaujean, R.; Jonathal, D.; Enge, W.

    1992-01-01

    A stack of CR-39 and Kodak CN track detectors was exposed on the NASA satellite LDEF and recovered after almost six years in space. The quick look analysis yielded heavy ion tracks on a background of low energy secondaries from proton interaction. The detected heavy ions show a steep energy spectrum which indicates a radiation belt origin.

  16. Chromosome Aberrations by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  17. Heavy ion therapy: Bevalac epoch

    SciTech Connect

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  18. Imaging using accelerated heavy ions

    SciTech Connect

    Chu, W.T.

    1982-05-01

    Several methods for imaging using accelerated heavy ion beams are being investigated at Lawrence Berkeley Laboratory. Using the HILAC (Heavy-Ion Linear Accelerator) as an injector, the Bevalac can accelerate fully stripped atomic nuclei from carbon (Z = 6) to krypton (Z = 34), and partly stripped ions up to uranium (Z = 92). Radiographic studies to date have been conducted with helium (from 184-inch cyclotron), carbon, oxygen, and neon beams. Useful ranges in tissue of 40 cm or more are available. To investigate the potential of heavy-ion projection radiography and computed tomography (CT), several methods and instrumentation have been studied.

  19. Results of heavy ion radiotherapy

    SciTech Connect

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  20. Chemistry of heavy ion reactions

    SciTech Connect

    Hoffman, D.C.

    1988-10-01

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since that time it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The wide variety of possible reactions gives rise to a multitude of products which have been studied by many ingenious chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low yield species from the plethora of other nuclides present. Heavy ion reactions have been essential for the production of the trans-Md elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions, and deeply inelastic reactions have been elucidated using chemical techniques. A review of the variety of chemical procedures and techniques which have been developed for the study of heavy ion reactions and their products is given. Determination of the chemical properties of the trans-Md elements, which are very short-lived and can only be produced an ''atom-at-a-time'' via heavy ion reactions, is discussed. 53 refs., 19 figs.

  1. Swift Heavy Ions in Matter

    NASA Astrophysics Data System (ADS)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  2. Quantum Electrodynamics Effects in Heavy Ions and Atoms

    SciTech Connect

    Shabaev, V. M.; Andreev, O. V.; Bondarev, A. I.; Glazov, D. A.; Kozhedub, Y. S.; Maiorova, A. V.; Tupitsyn, I. I.; Plunien, G.; Volotka, A. V.

    2011-05-11

    Quantum electrodynamics theory of heavy ions and atoms is considered. The current status of calculations of the binding energies, the hyperfine splitting and g factor values in heavy few-electron ions is reviewed. The theoretical predictions are compared with available experimental data. A special attention is focused on tests of quantum electrodynamics in strong electromagnetic fields and on determination of the fundamental constants. Recent progress in calculations of the parity nonconservation effects with heavy atoms and ions is also reported.

  3. Heavy ion fusion experiments at LBNL and LLNL

    SciTech Connect

    Ahle, L

    1998-08-19

    The long-range goal of the US Heavy Ion Fusion (HIF) program is to develop heavy ion accelerators capable of igniting inertial fusion targets to generate fusion energy for electrical power production. Accelerators for heavy ion fusion consist of several subsystems: ion sources, injectors, matching sections, combiners, induction acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a final-focus system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss some of these experiments.

  4. Relativistic heavy ion facilities: worldwide

    SciTech Connect

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs.

  5. Overview of US heavy ion fusion research

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan,J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay,J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen,R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Meier, W.R.; Molvik,A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham,L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.

    2005-06-23

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  6. Overview of US heavy ion fusion research

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan,J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay,J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen,R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik,A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham,L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-11-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  7. Heavy ions in Jupiter's environment

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1980-01-01

    The extended atmosphere of the Jupiter system consists of atoms and ions of heavy elements. This material originates on the satellite Io. Energy is lost from the thermal plasma in collisionally excited optical and ultraviolet emission. The juxtaposition of Earth and spacecraft measurements provide insight concerning the underlying processes of particle transport and energy supply.

  8. Future relativistic heavy ion experiments

    SciTech Connect

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned. (GHT)

  9. Summary of heavy ion theory

    SciTech Connect

    Gavin, S.

    1994-09-01

    Can we study hot QCD using nuclear collisions? Can we learn about metallic hydrogen from the impact of comet Shoemaker-Levy 9 on Jupiter? The answer to both questions may surprise you! I summarize progress in relativistic heavy ion theory reported at DPF `94 in the parallel sessions.

  10. Focused ion beams in biology.

    PubMed

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions. PMID:26513553

  11. Ion sources for heavy ion fusion

    SciTech Connect

    Yu, S.S.; Eylon, S.; Chupp, W.

    1995-09-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K{sup +} ions of 950 mA peak from a 6.7 inch curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of {+-}0.2% over 1 {micro}s. The measured normalized edge emittance of less than 1 {pi} mm-mr is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  12. Exotics from Heavy Ion Collisions

    SciTech Connect

    Ohnishi, Akira; Jido, Daisuke; Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-10-21

    Discriminating hadronic molecular and multi-quark states is a long standing problem in hadronic physics. We propose here to utilize relativistic heavy ion collisions to resolve this problem, as exotic hadron yields are expected to be strongly affected by their structures. Using the coalescence model, we find that the exotic hadron yield relative to the statistical model result is typically an order of magnitude smaller for a compact multi-quark state, and larger by a factor of two or more for a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured at RHIC and LHC.

  13. Centroid and Envelope Eynamics of Charged Particle Beams in an Oscillating Wobbler and External Focusing Lattice for Heavy Ion Fusion Applications

    SciTech Connect

    Ronald C. Davidson and B. Grant Logan

    2011-07-19

    Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger than 100 at 1MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the target. The centroid dynamics is controlled by a set of biased electrical plates called 'wobblers'. Using a model based on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system for a heavy ion fusion driver is briefly summarized.

  14. Multiple Electron Stripping of Heavy Ion Beams

    SciTech Connect

    D. Mueller; L. Grisham; I. Kaganovich; R. L. Watson; V. Horvat; K. E. Zaharakis; Y. Peng

    2002-06-25

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.

  15. Ion beam mixing by focused ion beam

    SciTech Connect

    Barna, Arpad; Kotis, Laszlo; Labar, Janos L.; Osvath, Zoltan; Toth, Attila L.; Menyhard, Miklos; Zalar, Anton; Panjan, Peter

    2007-09-01

    Si amorphous (41 nm)/Cr polycrystalline (46 nm) multilayer structure was irradiated by 30 keV Ga{sup +} ions with fluences in the range of 25-820 ions/nm{sup 2} using a focused ion beam. The effect of irradiation on the concentration distribution was studied by Auger electron spectroscopy depth profiling, cross-sectional transmission electron microscopy, and atomic force microscopy. The ion irradiation did not result in roughening on the free surface. On the other hand, the Ga{sup +} irradiation produced a strongly mixed region around the first Si/Cr interface. The thickness of mixed region depends on the Ga{sup +} fluence and it is joined to the pure Cr matrix with an unusual sharp interface. With increasing fluence the width of the mixed region increases but the interface between the mixed layer and pure Cr remains sharp. TRIDYN simulation failed to reproduce this behavior. Assuming that the Ga{sup +} irradiation induces asymmetric mixing, that is during the mixing process the Cr can enter the Si layer, but the Si cannot enter the Cr layer, the experimental findings can qualitatively be explained.

  16. Beam dynamics in heavy ion fusion

    SciTech Connect

    Seidl, P.

    1995-04-01

    A standard design for heavy ion fusion drivers under study in the US is an induction linac with electrostatic focusing at low energy and magnetic focusing at higher energy. The need to focus the intense beam to a few-millimeter size spot at the deuterium-tritium target establishes the emittance budget for the accelerator. Economic and technological considerations favor a larger number of beams in the low-energy, electrostatic-focusing section than in the high-energy, magnetic-focusing section. Combining four beams into a single focusing channel is a viable option, depending on the growth in emittance due to the combining process. Several significant beam dynamics issues that are, or have been, under active study are discussed: large space charge and image forces, beam wall clearances, halos, alignment, longitudinal instability, and bunch length control.

  17. High Intensity heavy ion Accelerator Facility (HIAF) in China

    NASA Astrophysics Data System (ADS)

    Yang, J. C.; Xia, J. W.; Xiao, G. Q.; Xu, H. S.; Zhao, H. W.; Zhou, X. H.; Ma, X. W.; He, Y.; Ma, L. Z.; Gao, D. Q.; Meng, J.; Xu, Z.; Mao, R. S.; Zhang, W.; Wang, Y. Y.; Sun, L. T.; Yuan, Y. J.; Yuan, P.; Zhan, W. L.; Shi, J.; Chai, W. P.; Yin, D. Y.; Li, P.; Li, J.; Mao, L. J.; Zhang, J. Q.; Sheng, L. N.

    2013-12-01

    HIAF (High Intensity heavy ion Accelerator Facility), a new facility planned in China for heavy ion related researches, consists of two ion sources, a high intensity Heavy Ion Superconducting Linac (HISCL), a 45 Tm Accumulation and Booster Ring (ABR-45) and a multifunction storage ring system. The key features of HIAF are unprecedented high pulse beam intensity and versatile operation mode. The HIAF project aims to expand nuclear and related researches into presently unreachable region and give scientists possibilities to conduct cutting-edge researches in these fields. The general description of the facility is given in this article with a focus on the accelerator design.

  18. Classical chromodynamics and heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Lappi, T.

    2005-05-01

    This paper is a slightly modified version of the introductory part of a doctoral dissertation also containing the articles hep-ph/0303076, hep-ph/0409328 and hep-ph/0409058. The paper focuses on the calculation of particle production in a relativistic heavy ion collision using the McLerran-Venugopalan model. The main part of the paper summarizes the background of these numerical calculations. First we relate this calculation of the initial stage af a heavy ion collision to our understanding of the whole collision process. Then we discuss the saturation physics of the small x wavefunction of a hadron or a nucleus. The classical field model of Kovner, McLerran and Weigert is then introduced before moving to discuss the numerical algorithms used to compute gluon and quark pair production in this model. Finally we shortly review the results on gluon and quark-antiquark production obtained in the three articles mentioned above.

  19. Comparative SEU sensitivities to relativistic heavy ions

    SciTech Connect

    Koga, R.; Crain, S.H.; Crain, W.R.; Crawford, K.B.; Hansel, S.J.

    1998-12-01

    SEU sensitivity of microcircuits to relativistic heavy ions is compared to that measured with low-energy ions of comparable LET values. Multiple junction charge collection in a complex circuit seems to mask the effect of varying charge generations due to different iron track structures. Heavy ions at sub-relativistic speeds may generate nuclear fragments, sometimes resulting in SEUs.

  20. A Distributed Radiator, Heavy Ion Target with Realistic Ion Beams

    NASA Astrophysics Data System (ADS)

    Callahan, Debra A.; Tabak, Max

    1997-11-01

    Recent efforts in heavy ion target design have centered around the distributed radiator design of Tabak(M. Tabak, Bull. Am. Phys. Soc., Vol 41, No 7, 1996.). The initial distributed radiator target assumed beams with a uniform radial density distribution aimed directly along the z axis. Chamber propagation simulations indicate that the beam distribution is more nearly Gaussian at best focus. In addition, more than two beams will be necessary to carry the required current; this means that the beams must be angled to allow space for the final focusing systems upstream. We will describe our modifications to the distributed radiator target to allow realistic beams and realistic beam angles.

  1. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  2. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  3. Heavy ion measurement on LDEF

    NASA Technical Reports Server (NTRS)

    Beaujean, R.; Jonathal, D.; Enge, W.

    1991-01-01

    The Kiel Long Duration Exposure Facility (LDEF) experiment M0002, mounted on experiment tray E6, was designed to measure the heavy ion environment by means of CR-39 plastic solid state track detectors. The detector stack with a size of 40x34x4.5 cu cm was exposed in vacuum covered by thermal protection foils with a total thickness of approx. 14 mg/sq cm. After etching small samples of the detector foils tracks with Z greater than or = 6 could be easily detected on a background of small etch pits, which were probably produced by secondaries from proton interactions. The LDEF orientation with respect to the magnetic field lines within the South Atlantic Anomaly (SAA) is expected to be constant during the mission. Therefore, the azimuth angle distribution was measured on the detector foils for low energy stopping particles. All detected arrival directions are close to a plane perpendicular to the magnetic field line of -20 deg declination and -40 deg inclination at location 34 deg W and 27 deg S. Together with the steep energy spectrum, this spatial distribution close to the mirror plane in the SAA is an evidence that heavy ions were detected from a radiation belt population.

  4. Heavy Ion Temperatures As Observed By ACE/Swics

    NASA Astrophysics Data System (ADS)

    Tracy, P.; Zurbuchen, T.; Raines, J. M.; Shearer, P.; Kasper, J. C.; Gilbert, J. A.; Alterman, B. L.

    2014-12-01

    Heavy ions observed near 1 AU, especially in fast solar wind, tend to have thermal speeds that are approximately equal, indicative of a mass proportional temperature. Additionally, observations near 1 AU have shown a streaming of heavy ions (Z>4) along the magnetic field direction at speeds faster than protons. The differential velocities observed are of the same order but typically less than the Alfven speed. Previous analysis of the behavior of ion thermal velocities with Ulysses-SWICS, focusing on daily average properties of 35 ion species at 5 AU, found only a small systematic trend with respect to q2/m. Utilizing improved data processing techniques, results from the Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) shed new light on the thermal properties of the heavy ion population at 1 AU. A clear dependence of heavy ion thermal behavior on q2/m has now been found in the recent ACE-SWICS two hour cadence data set at 1 AU. Examining the thermal velocities of about 70 heavy ion species relative to alpha particles (He2+) shows a distinct trend from equal thermal speed toward equal temperature with increasing q2/m. When examined for solar winds of different collisional ages, the observations indicate the extent of thermal relaxation present in different solar wind types. We explore this collisional dependence with a model for the collisional thermal relaxation of the heavy ions as the solar wind propagates out to 1 AU. This model is used to subtract out the collisional effects seen in the ACE-SWICS data, providing an estimate for the temperature distribution among heavy ions at the corona to be compared to remote sensing observations that have shown that heavy ions are preferentially heated at the corona. We will discuss how this new analysis elucidates the thermal behavior and evolution of heavy ions in the solar wind, along with implications for the upcoming Solar Probe Plus and Solar Orbiter missions.

  5. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    SciTech Connect

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    2012-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  6. (Aerodynamic focusing of particles and heavy molecules)

    SciTech Connect

    de la Mora, J.F.

    1990-01-08

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m{sub p} some 3.6 {times} 10{sup 5} times larger than the molecular mass m of the carrier gas (diameters above some 100{angstrom}), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 {mu}m. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5{radical}(m/m{sub p}) times the nozzle diameter d{sub n}. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs.

  7. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  8. heavy ion acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. I.; Galinsky, V.

    2009-12-01

    The theoretical study of alpha particle acceleration at a quasi-parallel shock due to interaction with Alfven waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model [1]. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered as well as the change of the wave energy due to instability or damping. It includes in consideration the total distribution function (the bulk plasma and high energy tail), so no any assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. In previous studies heavy ions were treated as perfect test particles, they only experienced the Alfven turbulence excited by protons and didn’t contribute to turbulence generation. In contrast to this approach, we consider the ion scattering on hydromagnetic turbulence generated by both protons and ions themselves. It is important for alpha particles with their relatively large mass-loading parameter that defines efficiency of the wave excitation by alpha particles. The energy spectra of alpha particles is found and compared with those obtained in test particle approximation. [1] Galinsky, V.L., and V.I. Shevchenko, Astrophys. J., 669, L109, 2007.

  9. Heavy Flavor Dynamics in Relativistic Heavy-ion Collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan

    Heavy flavor hadrons serve as valuable probes of the transport properties of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dissertation, we introduce a comprehensive framework that describes the full-time evolution of heavy flavor in heavy-ion collisions, including its initial production, in-medium evolution inside the QGP matter, hadronization process from heavy quarks to their respective mesonic bound states and the subsequent interactions between heavy mesons and the hadron gas. The in-medium energy loss of heavy quarks is studied within the framework of a Langevin equation coupled to hydrodynamic models that simulate the space-time evolution of the hot and dense QGP matter. We improve the classical Langevin approach such that, apart from quasi-elastic scatterings between heavy quarks and the medium background, radiative energy loss is incorporated as well by treating gluon radiation as a recoil force term. The subsequent hadronization of emitted heavy quarks is simulated via a hybrid fragmentation plus recombination model. The propagation of produced heavy mesons in the hadronic phase is described using the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation shows that while collisional energy loss dominates the heavy quark motion inside the QGP in the low transverse momentum (p T) regime, contributions from gluon radiation are found to be significant at high pT. The recombination mechanism is important for the heavy flavor meson production at intermediate energies. The hadronic final state interactions further enhance the suppression and the collective flow of heavy mesons we observe. Within our newly developed framework, we present numerical results for the nuclear modification and the elliptic flow of D mesons, which are consistent with measurements at both the CERN Large Hadron Collider (LHC) and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are also provided. In

  10. Theoretical overview: Light ion lessons, heavy ion hopes

    SciTech Connect

    Gavin, S.

    1992-01-01

    Experiments using light ion beams of atomic masses A [approximately] 30 have been underway since 1986 at the Brookhaven AGS and the CERN SPS at the respective energies [radical]s [approximately] 5 A GeV and 20 A GeV. The first truly heavy ion runs with a gold beam began this spring at the AGS. In this talk I will survey our progress towards an understanding of nuclear collision dynamics, focusing on those issues that are relevant to Au+Au at the AGS. In view of what we have already learned from the light ion data, I will argue that the prospects for producing matter at extreme density in these experiments are excellent.

  11. Theoretical overview: Light ion lessons, heavy ion hopes

    SciTech Connect

    Gavin, S.

    1992-12-31

    Experiments using light ion beams of atomic masses A {approximately} 30 have been underway since 1986 at the Brookhaven AGS and the CERN SPS at the respective energies {radical}s {approximately} 5 A GeV and 20 A GeV. The first truly heavy ion runs with a gold beam began this spring at the AGS. In this talk I will survey our progress towards an understanding of nuclear collision dynamics, focusing on those issues that are relevant to Au+Au at the AGS. In view of what we have already learned from the light ion data, I will argue that the prospects for producing matter at extreme density in these experiments are excellent.

  12. Heavy Ion Physics in eRHIC

    SciTech Connect

    Jalilian-Marian, Jamal

    2005-10-06

    We review the physics of gluon saturation in heavy ions at small x and consider the applications of Color Glass Condensate formalism to Deep Inelastic Scattering (DIS) of leptons on nuclei and discuss the overlapping physics between high energy heavy ion collisions at RHIC and DIS in eRHIC.

  13. Heavy Ion Radiation Effects Studies With Ion Photon Emission Microscopy

    SciTech Connect

    Branson, J. V.; Hattar, K.; Vizkelethy, G.; Powell, C. J.; Doyle, B. L.; Rossi, P.

    2011-06-01

    The development of a new radiation effects microscopy (REM) technique is crucial as emerging semiconductor technologies demonstrate smaller feature sizes and thicker back end of line (BEOL) layers. To penetrate these materials and still deposit sufficient energy into the device to induce single event effects, high energy heavy ions are required. Ion photon emission microscopy (IPEM) is a technique that utilizes coincident photons, which are emitted from the location of each ion impact to map out regions of radiation sensitivity in integrated circuits and devices, circumventing the obstacle of focusing high-energy heavy ions. Several versions of the IPEM have been developed and implemented at Sandia National Laboratories (SNL). One such instrument has been utilized on the microbeam line of the 6 MV tandem accelerator at SNL. Another IPEM was designed for ex-vacu use at the 88'' cyclotron at Lawrence Berkeley National Laboratory (LBNL). Extensive engineering is involved in the development of these IPEM systems, including resolving issues with electronics, event timing, optics, phosphor selection, and mechanics. The various versions of the IPEM and the obstacles, as well as benefits associated with each will be presented. In addition, the current stage of IPEM development as a user instrument will be discussed in the context of recent results.

  14. Heavy Ion Fusion Accelerator Research (HIFAR)

    SciTech Connect

    Not Available

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  15. Heavy ion program at BNL: AGS, RHIC (Relativistic Heavy Ion Collider)

    SciTech Connect

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented.

  16. Moon originating heavy ions associated with CIR

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Nishino, Masaki; Tsunakawa, Hideo

    2014-05-01

    Existance of a tenuous alkali atmosphere around the Moon was discovered by ground-based optical observations in 1980s. Since then the generation mechanism of the alkali atmosphere has been actively investigated. Currently, photon-stimulated desorption is regarded as the major generation process of the lunar alkai atmosphere such as sodium and potassium. MAP-PACE-IMA on Kaguya found four typical ion populations on the dayside of the Moon. These includes (1) solar wind protons backscattered at the lunar surface, (2) solar wind protons reflected by magnetic anomalies on the lunar surface, (3) reflected/backscattered protons picked-up by the solar wind, and (4) ions originating from the lunar surface/lunar exosphere. One of these populations: (4) ions originating from the lunar surface/lunar exosphere usually consisted of heavy ions such as carbon, oxygen, sodium, and potassium. Some of these ions were generated on the lunar surface by photon-stimulated desorption especially for alkali ions such as sodium and potassium and some others were generated by solar wind sputtering. Photo-ionized neutral particles were also included in these ions. These heavy ions were accelerated by the solar wind convection electric field and detected by the ion energy mass spectrometer MAP-PACE-IMA on Kaguya. Since the gyro-radius of these heavy ions was much larger than the Moon, the energy of these ions detected at 100km altitude was in most cases lower than the incident solar wind ion energy. Two special examples were found where the energy of the heavy ions was higher than the incident solar wind ion energy. These high-energy heavy ions were observed on the dayside of the Moon when CIR (Corotating Interaction Region) passed the Moon. The high energy heavy ions were observed for several hours with the highest heavy ion flux observed when the solar wind pressure increased due to the passage of the CIR. The mass spectrum of the heavy ions observed associated with CIR showed H+, He++, He

  17. Process in high energy heavy ion acceleration

    NASA Astrophysics Data System (ADS)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  18. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOEpatents

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  19. Drift compression and final focus options for heavy ionfusion

    SciTech Connect

    Qin, Hong; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.

    2005-01-18

    A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. The authors show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1D Vlasov equation is solved explicitly and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot.

  20. INELASTIC DIFFRACTION AT HEAVY ION COLLIDERS.

    SciTech Connect

    WHITE, S.

    2005-01-01

    The heavy ion physics approach to global event characterization has led us to instrument the forward region in the PHENIX experiment at RHIC. In heavy ion collisions this coverage yields a measurement of the ''spectator'' energy and its distribution about the beam direction. This energy flow is the basis of event-by-event determination of the centrality and reaction plane which are key to analyzing particle production in heavy ion collisions. These same tools have also enabled a unique set of measurements on inelastic diffraction with proton, deuteron and gold ion beams in the PHENIX experiment. We present first new results on this topic and discuss briefly the opportunity for diffractive physics with Heavy Ion beams at the LHC.

  1. Laser ion source for isobaric heavy ion collider experiment

    NASA Astrophysics Data System (ADS)

    Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is 96Ru + 96Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  2. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions. PMID:26931981

  3. Relativistic heavy ion fragmentation at HISS (Heavy Ion Spectrometer System)

    SciTech Connect

    Tull, C.E.

    1990-10-01

    An experiment was conducted at the Lawrence Berkeley Laboratory to measure projectile fragmentation of relativistic heavy ions. Charge identification was obtained by the use of a Cerenkov Hodoscope operating above the threshold for total internal reflection, while velocity measurement was performed by use of a second set of Cerenkov radiators operating at the threshold for total internal reflection. Charge and mass resolution for the system was {sigma}{sub Z} = 0.2 e and {sigma}{sub A} = 0.2 u. Measurements of the elemental and isotopic production cross sections for the fragmentation of {sup 40}Ar at 1.65{center dot}A GeV have been compared with an Abrasion-Ablation Model based on the evaporation computer code GEMINI. The model proves to be an accurate predictor of the cross sections for fragments between Chlorine and Boron. The measured cross section were reproduced using simple geometry with charge dispersions induced by zero-point vibrations of the giant dipole resonance for the prompt abrasion stage, and injecting an excitation energy spectrum based on a final state interaction with scaling factor E{sub fsi} = 38.8 MeV/c. Measurement of the longitudinal momentum distribution widths for projectile fragments are consistent with previous experiment and can be interpreted as reflecting the Fermi momentum distribution in the initial projectile nucleus. Measurement of the transverse momentum indicate an additional, unexplained dependence of the reduced momentum widths on fragment mass. This dependence has the same sign and similar slope to previously measured fragments of {sup 139}La, and to predictions based on phase-space constraints on the final state of the system.

  4. Induction accelerator development for heavy ion fusion

    SciTech Connect

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  5. Hydrodynamic approaches in relativistic heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Derradi de Souza, R.; Koide, T.; Kodama, T.

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation to the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to be answered to clarify the physics of collective phenomena in the relativistic heavy ion collisions are pointed out.

  6. Electromagnetic processes in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Baur, G.

    1986-10-01

    Electromagnetic effects in relativistic heavy ion collisions with impact parameter larger than the sum of the nuclear radii are studied using the virtual photon method. With increasing value of the relativistic parameter γ the hardness of the virtual photon spectrum increases. This leads to interesting new effects which will also have to be considered in the design of future relativistic heavy ion machines and experiments. The excitation of high-lying giant E1 and E2 multipole resonances is calculated as well as electromagnetic pion production. Coulomb bremsstrahlung is calculated and compared to the bremsstrahlung emitted in the more violent central nuclear collisions. K-shell ionization and electron-positron pair production is studied. The latter process has a very large cross section for heavy ions and contributes significantly to the stopping power of relativistic heavy ions in a dense medium.

  7. Solenoid transport for heavy ion fusion

    SciTech Connect

    Lee, Edward

    2004-06-15

    Solenoid transport of high current, heavy ion beams is considered for several stages of a heavy ion fusion driver. In general this option is more efficient than magnetic quadrupole transport at sufficiently low kinetic energy and/or large e/m, and for this reason it has been employed in electron induction linacs. Ideally an ion beam would be transported in a state of Brillouin flow, i.e. cold in the transverse plane and spinning at one half the cyclotron frequency. The design of appropriate solenoids and the equilibrium and stability of transported ion beams are discussed. An outline of application to a fusion driver is also presented.

  8. Medical heavy ion accelerator proposals

    NASA Astrophysics Data System (ADS)

    Gough, R. A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety.

  9. Beam dynamics in heavy ion induction LINACS

    SciTech Connect

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.

  10. Heavy ion drivers for inertial confinement fusion

    SciTech Connect

    Keefe, D.

    1983-12-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto.

  11. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  12. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  13. Vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Liu, F.; Qi, N.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.G.

    1998-02-01

    Heavy ion fusion is one approach to the problem of controlled thermonuclear power production, in which a small DT target is bombarded by an intense flux of heavy ions and compressed to fusion temperatures. There is a need in present HIF research and development for a reliable ion source for the production of heavy ion beams with low emittance, low beam noise, ion charge states Q=1+ to 3+, beam current {approximately}0.5A, pulse width {approximately}5{endash}20 {mu}s, and repetition rate {approximately}10 pulses per second. We have explored the suitability of a vacuum arc ion source for this application. Energetic, high current, gadolinium ion beams were produced with parameters as required or close to those required. The performance parameters can all be improved yet further in an optimized ion source design. Here we describe the ion source configuration used, the experiments conducted, and the results obtained. We conclude that a vacuum arc based metal ion source of this kind could be an excellent candidate for heavy ion fusion research application. {copyright} {ital 1998 American Institute of Physics.}

  14. Acceleration of heavy ions in the AGS

    SciTech Connect

    Barton, M.Q.

    1983-01-01

    It is possible to use the Brookhaven AGS as a heavy ion machine by adding a cyclotron to the Tandem and using this combination as injector. An intermediate step for lighter ions might consist of injecting the Tandem beam directly into the AGS. In either case, quite high intensities should be possible.

  15. Suprathermal Minor Heavy Ions In Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Difabio, R. D.; Hamilton, D. C.; Krimigis, S. M.; Mitchell, D. G.

    2010-12-01

    Minor heavy ions, with MPQ > ~25 amu/e, have been measured at energies >~64 keV/e in Saturn's inner magnetosphere using the Cassini/MIMI/CHEMS Charge Energy Mass Spectrometer. CHEMS measures atomic and molecular ions in the mass-per-charge, MPQ, range 1-80 amu/e. The predominant minor heavy ions, N2+1 and O2+1, share general spatial characteristics with the dominant water group ions (taken as O+1, OH+1, H2O+1, and H3O+1). Using an extended collection interval (mid-2004 to 2010) for CHEMS, we have also found several rare heavy ion groups with MPQ > ~40 amu/e, at ~40, ~42-48, and ~52-58 amu/e. CHEMS cannot distinguish atomic from molecular species in this MPQ range, but possible candidates at these masses are Ar+1, CO2+1 or C3H8+1, and Fe+1 or C4H8+1, respectively. These rare heavy ions exhibit somewhat different spatial characteristics than the more abundant water group and N2+1 and O2+1 ions. The compositional characteristics of these suprathermal ion groups will be discussed in the context of recent results concerning liquid water on Enceladus and the composition of dark material on the moons and rings.

  16. Heavy ion beams for inertial fusion

    SciTech Connect

    Godlove, T.F.; Herrmannsfeldt, W.B.

    1980-05-01

    The United States' program in inertial confinement fusion (ICF) is described in this paper, with emphasis on the studies of the use of intense high energy beams of heavy ions to provide the power and energy needed to initiate thermonuclear burn. Preliminary calculations of the transport of intense ion beams in an electrostatic quadrupole focussing structure are discussed.

  17. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  18. Rare Suprathermal Heavy Ions in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Christon, S. P.; Hamilton, D. C.; Mitchell, D. G.; Krimigis, S. M.; DiFabio, R. D.

    2013-12-01

    The Cassini/MIMI/CHEMS ion spectrometer has measured suprathermal (~83-167 keV/e) ions in Saturn's magnetosphere since mid-2004. We report on three rare, heavy ion groups measured in Saturn's ~4-20 Rs magnetosphere at ~40, ~46, and ~56 amu/e, with the separation from other species best at higher mass. These masses suggest possible singly-charged ion identifications as Ar+, CO2+, and Fe+, respectively. The presence of these species or compounds containing them has been suggested in composition studies of Saturn's particle populations using data from other instruments on Cassini. The observed rare ion intensities are highly variable in time and space. Broad temporal and spatial averaging is needed to examine these rare ion groups because their detection levels are much lower than the dominant water ion group, W+ (which includes O+, OH+, H2O+, and H3O+). W+ itself can be quite variable. We show that these rare ions display unique spatial and temporal variations, with similarities and differences from the dominant ion group W+ as well as O2+ and M28+, all local origin ions. We compare and contrast these rare, heavy ion species to W+ and the recently characterized [Christon et al., 2013, 10.1002/jgra.50383] minor ions M28+ (C2H5+, HCNH+, N2+, and/or CO+) and O2+ (M32+).

  19. Simulation of Chamber Transport for Heavy-Ion-Fusion Drivers

    SciTech Connect

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2003-09-25

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs.

  20. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  1. Heavy-Ion Fusion Accelerator Research, 1992

    SciTech Connect

    Not Available

    1993-06-01

    The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena.

  2. The Path to Heavy Ions at LHC and Beyond

    NASA Astrophysics Data System (ADS)

    Gutbrod, Hans H.

    My appreciation of Rolf Hagedorn motivates me to look back at my more than 40 years of trial and error in relativistic heavy ion physics. More than once, wise colleagues helped me move forward to new and better understandings. Rolf Hagedorn was one of these important people. At first, I met him anonymously in the mid 1970s when reading his 1971 Cargèse Lectures in Physics, and later in person for many years in and around CERN. I wonder what this modest person would say about his impact on physics in this millennium. As he is not here to answer, I and others give our answers in this book. I focus my report on the beginning of the research program with relativistic heavy ions, the move to CERN-SPS and the development of the heavy ion collaboration at the CERN-LHC.

  3. Progress in heavy ion fusion research

    NASA Astrophysics Data System (ADS)

    Celata, C. M.; Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Lee, E. P.; Logan, G.; Prost, L.; Seidl, P. A.; Vay, J.-L.; Waldron, W. L.; Yu, S. S.; Barnard, J. J.; Callahan, D. A.; Cohen, R. H.; Friedman, A.; Grote, D. P.; Lund, S. M.; Molvik, A.; Sharp, W. M.; Westenskow, G.; Davidson, Ronald C.; Efthimion, Philip; Gilson, Erik; Grisham, L. R.; Kaganovich, Igor; Qin, Hong; Startsev, Edward A.; Bernal, S.; Cui, Y.; Feldman, D.; Godlove, T. F.; Haber, I.; Harris, J.; Kishek, R. A.; Li, H.; O'Shea, P. G.; Quinn, B.; Reiser, M.; Valfells, A.; Walter, M.; Zou, Y.; Rose, D. V.; Welch, D. R.

    2003-05-01

    The U.S. Heavy Ion Fusion program has recently commissioned several new experiments. In the High Current Experiment [P. A. Seidl et al., Laser Part. Beams 20, 435 (2003)], a single low-energy beam with driver-scale charge-per-unit-length and space-charge potential is being used to study the limits to transportable current posed by nonlinear fields and secondary atoms, ions, and electrons. The Neutralized Transport Experiment similarly employs a low-energy beam with driver-scale perveance to study final focus of high perveance beams and neutralization for transport in the target chamber. Other scaled experiments—the University of Maryland Electron Ring [P. G. O'Shea et al., accepted for publication in Laser Part. Beams] and the Paul Trap Simulator Experiment [R. C. Davidson, H. Qin, and G. Shvets, Phys. Plasmas 7, 1020 (2000)]—will provide fundamental physics results on processes with longer scale lengths. An experiment to test a new injector concept is also in the design stage. This paper will describe the goals and status of these experiments, as well as progress in theory and simulation. A proposed future proof-of-principle experiment, the Integrated Beam Experiment, will also be described.

  4. HEAVY-ION IMAGING APPLIED TO MEDICINE

    SciTech Connect

    Fabrikant, J.I.; Tobias, C.A.; Capp, M.P.; Benton, E.V.; Holley, W.R.

    1980-02-01

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  5. Swift Heavy Ion Irradiation of Cobalt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sprouster, D. J.; Giulian, R.; Schnohr, C. S.; Kluth, P.; Araujo, L. L.; Byrne, A. P.; Foran, G. J.; Ridgway, M. C.

    2009-01-01

    It is well known that the electronic energy loss released by swift heavy ions can cause considerable atomic movement in various solids. Here, we present a study of the effects of swift heavy ion irradiation on Co nanoparticles embedded within a silica host matrix. The evolution of the Co nanoparticle crystal phase, structural properties, shape and size has been characterized using a combination of x-ray absorption spectroscopy and transmission electron microscopy. An FCC-to-HCP phase transformation is observed at low fluences, while higher fluences result in significant changes in the short range order and NP shape. After an incubation fluence the nanoparticles deform into ellipsoids, preferentially aligned parallel to the incident beam direction. The threshold diameter for elongation was comparable to the saturation value of the ellipsoid width. We correlate this saturation value with the diameter of the molten track induced in amorphous silica by swift heavy ion irradiation.

  6. Ion heating in a plasma focus

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.

    1974-01-01

    Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.

  7. Pair creation in heavy ion channeling

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Harman, Z.

    2016-04-01

    Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron-positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  8. Cataracts Heavy Ions and Individual Susceptibility

    NASA Astrophysics Data System (ADS)

    Hall, E.; Worgul, B.; Brenner, D.; Smilenov, L.

    Ocular cataracts represents one of the few legacies of space flight evident in a significant proportion of astronauts X-rays are known to induce cataracts Heavy ions are known to be much more effective per unit dose than gamma -rays The object of this present study was to identify genes that confer individual susceptibility and to estimate RBE values Wild type mice were compared with animals heterozygous for Atm Mrad9 or BRCA1 or animals that were double heterozygotes for pairs of genes Mice were irradiated with x-rays at Columbia University in New York City or with heavy ions 1GeV amu 56 Fe ions at Brookhaven National Laboratory Haploinsufficiency for either Atm or mRAD9 resulted in cataracts appearing earlier than in wild type animals whether exposed to gamma -rays or heavy ions Double heterozygotes were more radiosensitive than animals haploinsufficient for either gene alone Heavy ions were much more effective than x-rays in inducing cataracts of all grades in animals of all genotypes A detailed analysis suggest that the RBE varies to some extent with the genotype of the animal and the cataract grade

  9. High current vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-07-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in {approximately}0.5 A current beams with {approximately}20 {micro}s pulse widths and {approximately}10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce {approximately}0.5 A, {approximately}60 keV Gd (A{approximately}158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported.

  10. Overview of US heavy-ion fusion progress and plans

    SciTech Connect

    Logan, B.G.

    2004-06-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.

  11. Heavy ion driven LMF design concept

    NASA Astrophysics Data System (ADS)

    Lee, E. P.

    1991-08-01

    The US Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report.

  12. Heavy ion driven LMF design concept

    SciTech Connect

    Lee, E.P.

    1991-08-01

    The USA Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report.

  13. Ion Mobility Spectrometry of Heavy Metals.

    PubMed

    Ilbeigi, Vahideh; Valadbeigi, Younes; Tabrizchi, Mahmoud

    2016-07-19

    A simple, fast, and inexpensive method was developed for detecting heavy metals via the ion mobility spectrometry (IMS) in the negative mode. In this method, Cl(-) ion produced by the thermal ionization of NaCl is employed as the dopant or the ionizing reagent to ionize heavy metals. In practice, a solution of mixed heavy metals and NaCl salts was directly deposited on a Nichrome filament and electrically heated to vaporize the salts. This produced the IMS spectra of several heavy-metal salts, including CdCl2, ZnSO4, NiCl2, HgSO4, HgCl2, PbI2, and Pb(Ac)2. For each heavy metal (M), one or two major peaks were observed, which were attributed to M·Cl(-) or [M·NaCl]Cl(-)complexes. The method proved to be useful for the analysis of mixed heavy metals. The absolute detection limits measured for ZnSO4 and HgSO4 were 0.1 and 0.05 μg, respectively. PMID:27321408

  14. Green's function methods in heavy ion shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.

    1993-01-01

    An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.

  15. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  16. Pions from and about heavy ions

    SciTech Connect

    Rasmussen, J.O.

    1982-09-01

    A review is presented of the possibilities of pion production with heavy ion reactions. Major headings include: pion thermometry; hills and valleys in pion spectra; pionic orbits of nuclear size; pion confinement in the fireball; anomalons; and Schroedinger equation solutions for pionic atoms. 47 references, 9 figures. (GHT)

  17. Heavy ion pion production: spectral irregularities

    SciTech Connect

    Rasmussen, J.O.

    1982-09-01

    Data on ..pi../sup -//..pi../sup +/ ratios and on hills and valleys in spectra from heavy ion collisions are reviewed. Theoretical studies to handle Coulomb effects on pion spectra are examined. The possible role of strongly-bound pion orbitals of nuclear size is discussed.

  18. Resonant structures in heavy-ion reactions

    SciTech Connect

    Sanders, S.J.; Henning, W.; Ernst, H.; Geesaman, D.F.; Jachcinski, C.; Kovar, D.G.; Paul, M.; Schiffer, J.P.

    1980-01-01

    An investigation of heavy-ion resonance structures using the /sup 24/Mg(/sup 16/O, /sup 12/C)/sup 28/Si reaction is presented. The data are analyzed in the context of Breit-Wigner resonances added to a direct-reaction background.

  19. Metastable states of highly excited heavy ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Griffin, P. M.; Sellin, I. A.; Smith, W. W.; Donnally, B.

    1973-01-01

    Description of the method used and results obtained in an experimental study of the metastable states of highly stripped heavy ions, aimed at determining the lifetimes of such states by the rates of autoionization and radiation. The significance and limitations of the results presented are discussed.

  20. Reaction parameters for heavy-ion collisions

    SciTech Connect

    Wilcke, W.W.; Birkelund, J.R.; Wollersheim, H.J.; Hoover, A.D.; Huizenga, J.R.; Schroeder, W.U.; Tubbs, L.E.

    1980-09-01

    These tables present reaction parameters for all combinations of 27 projectile and 16 target nuclei in a laboratory bombarding energy range of 1--50 MeV/u. The reaction parameters are derived from the Fresnel model of heavy-ion scattering, the droplet model, and the rotating liquid-drop model, or from systematics of experimental data.

  1. Initial conditions in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Venugopalan, Raju

    2001-10-01

    At very high energies, partons in nuclei form a color glass condensate (CGC). In a nuclear collision, the color glass shatters, producing a high multiplicity of gluons. We discuss the results of numerical simulations which describe the real time evolution of the CGC in a heavy ion collision.

  2. Heavy Ion Fragmentation Experiments at the Bevatron

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.

    1975-01-01

    Fragmentation processes of heavy nuclei in matter using the heavy-ion capability of the Bevatron were studied. The purpose was to obtain the single particle inclusive spectra of secondary nuclei produced at 0 deg by the fragmentation of heavy ion beam projectiles. The process being examined is B+T yields F + anything, where B is the beam nucleus, T is the target nucleus, and F is the detected fragment. The fragments F are isotopically identified by experimental procedures involving magnetic analysis, energy loss and time-of-flight measurements. Attempts were also made to: (1) measure the total and partial production cross section for all isotopes, (2) test the applicability of high-energy multi-particle interaction theory to nuclear fragmentation, (3) apply the cross-section data and fragmentation probabilities to cosmic ray transport theory, and (4) search for systematic behavior of fragment production as a means to improve existing semi-empirical theories of cross sections.

  3. Focused Ion Beam Technology for Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  4. Inertially confined fusion using heavy ion drivers

    SciTech Connect

    Herrmannsfeldt, W.B.; Bangerter, R.O.; Bock, R.; Hogan, W.J.; Lindl, J.D.

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  5. Inertially confined fusion using heavy ion drivers

    SciTech Connect

    Herrmannsfeldt, W.B. ); Bangerter, R.O. ); Bock, R. ); Hogan, W.J.; Lindl, J.D. )

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  6. Thermoacoustic imaging using heavy ion beams

    SciTech Connect

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  7. Heavy ions, targets, and research at HHIRF

    SciTech Connect

    Ford, J.L.C.

    1983-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) typifies a new generation of heavy ion accelerators capable of producing high resolution beams with sufficient energy to study nuclear reactions across the periodic table. Exploiting the capabilities of the machine depends on the availability of thin foils at each stage of the experimental process. Rugged carbon foils are needed in the tandem and cyclotron to strip injected ions up to high charge states. Experimental success largely depends on the availability of a suitable target for bombardment which imposes new demands on the target maker. Many experiments use large solid angle gaseous counters with very thin foils as windows. The accelerators, experimental apparatus, and beam characteristics will be described. Target requirements demanded by different types of experiments will be discussed. These requirements have lead to the construction of specialized apparatus such as the supersonic gas jet target and the single crystal goniometer for blocking measurements.

  8. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  9. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  10. Cold atomic beam ion source for focused ion beam applications

    SciTech Connect

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  11. Science and art in heavy-ion collisions

    SciTech Connect

    Weiss, M.S.

    1982-08-09

    One of the more intriguing phenomena discovered in heavy-ion physics is the seeming appearance of high energy structure in the excitation spectra of inelastically scattered heavy ions. For reasons illustrated, these may well be a phenomena unique to heavy ions and their explanation perhaps unique to TDHF.

  12. Light particle emissions in heavy ion reactions

    SciTech Connect

    Petitt, G.A.; Liu, Xin-Tao; Smathers, J.; Zhang, Ziang.

    1991-03-01

    We are completing another successful year of experimental work at the Holifield Heavy Ion Research Facility (HHIRF), the Los Alamos white neutron source facility, Brookhaven National Laboratory (BNL) and Georgia State University (GSU). A paper on energy division between the two heavy fragments in deep inelastic reactions between {sup 58}Ni + {sup 165}Ho was published in Physical Review C during the year. We have partially completed analysis of the data on the {sup 32}S + {sup 93}Nb system taken with the HILI detector system at the HHIRF. This paper discusses work on these topics and discusses the setup of a neutron detector for a neutron reaction experiment.

  13. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  14. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  15. Ultra-Relativistic Heavy Ion Nuclear Physics

    SciTech Connect

    Braithwaite, W. J.

    1995-05-31

    This report describes an on-going research initiative for the University of Arkansas at Little Rock (UALR): investigating the physics of ultra-relativistic heavy ions, i.e. collisions between massive nuclei which have been accelerated to kinetic energies so large that the rest mass of the ions is a negligible fraction of their total mass-energy. This progress report is being submitted in conjunction with a 3-year grant-renewal proposal, containing additional materials. Three main categories drive the UALRGultra-relativistic heavy ion research. (1) investigations of multi-particle Hanbury-Brown-Twiss (HBT) correlations in the CERN and RHIC energy domains strongly influence the URHI experimental effort, (2) participation in the NA49 Experiment to study 33 TeV (160 GeV/nucleon) Pb on Pb collisions using the SPS facili& at CERN, and (3) participation in the STAR collaboration which is developing a major detector for use with the STAR Experiment at the Relativistic Heavy Ion Collider (RHIC), being built at BNL.

  16. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  17. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  18. High Current Ion Sources and Injectors for Heavy Ion Fusion

    SciTech Connect

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  19. Mutagenic effects of heavy ions in bacteria

    NASA Astrophysics Data System (ADS)

    Horneck, G.; Krasavin, E. A.; Kozubek, S.

    1994-10-01

    Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and λ-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z <= 4) the cross section decreases with increasing energy. For ions of Z = 10, it is nearly independent of energy. For heavier ions (Z >= 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a ``mutagenic belt'' inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.

  20. Progress in target physics and design for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    2000-05-01

    Two-dimensional, integrated calculations of a close-coupled version of the distributed radiator, heavy ion target predict gain 130 from 3.3 MJ of beam energy. To achieve these results, the case-to-capsule ratio was decreased by about 25% from the previous heavy ion targets [M. Tabak and D. Callahan-Miller, Phys. Plasmas 5, 1895 (1998)]. These targets are robust to changes in the ion stopping model because changes in the ion stopping model can be accommodated by changes to the target. The capsule is also insensitive to changes in the deuterium-tritium (DT) gas fill in the center of the capsule over the range that is of interest for target fabrication and target injection. Single-mode Rayleigh-Taylor growth rates for this capsule are smaller than those for at least one National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] design. As a result, stability issues for the heavy ion capsule can be settled on NIF. The close-coupled target also opens up the possibility of a high gain engineering test facility from a 1.5-2 MJ driver; calculations predict that gain 90 is achievable from 1.75 MJ of beam energy. Finally, the choice of hohlraum wall material, which must satisfy constraints from target physics, environment and safety, chamber design, and target fabrication, is discussed.

  1. Neoplastic cell transformation by heavy ions.

    PubMed

    Suzuki, M; Watanabe, M; Suzuki, K; Nakano, K; Kaneko, I

    1989-12-01

    We have studied the induction of morphological transformation by heavy ions. Golden hamster embryo cells were irradiated with 95 MeV 14N ions (530 keV/microns), 22 MeV 4He ions (36 keV/microns), and 22 MeV 4He ions with a 100-microns Al absorber (77 keV/microns) which were generated by a cyclotron at the Institute of Physical and Chemical Research in Japan. Colonies were considered to contain neoplastically transformed cells when the cells were densely stacked and made a crisscross pattern. It was shown that the induction of transformation was much more effective with 14N and 4He ions than with gamma or X rays. The relative biological effectiveness (RBE) relative to 60Co gamma rays was 3.3 for 14N ions, 2.4 for 4He ions, and 3.3 for 4He ions with a 100-microns Al absorber. The relationship between RBE and linear energy transfer was qualitatively similar for both cell death and transformation. PMID:2594968

  2. Optical Faraday Cup for Heavy Ion Beams

    SciTech Connect

    Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2007-06-25

    We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

  3. Heavy Ions In Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Beahm, Lorraine P.; Tylka, Allan J.

    1992-01-01

    The Heavy Ions In Space (HIIS) experiment has two primary objectives: (1) to measure the elemental composition of ultraheavy Galactic cosmic rays, beginning in the tin-barium region of the periodic table; and (2) to study heavy ions which arrive at LDEF below the geomagnetic cutoff, either because they are not fully stripped of electrons or because their source is within the magnetosphere. Both have practical as well as astrophysical consequences. The HIIS experiment used eight thick stacks of plastic track detectors mounted in two trays on the space facing end of LDEF. Since the last LDEF symposium, the statistics were increased of the observations and have extended the analysis to a second stack and to detector sheets near the top of a stack. New results are reported on the detector resolution and on the observations of both stopping and relativistic particles.

  4. Viscous photons in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Dion, Maxime; Paquet, Jean-François; Schenke, Björn; Young, Clint; Jeon, Sangyong; Gale, Charles

    2011-12-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  5. Dynamical processes in heavy ion reactions

    SciTech Connect

    Blann, M.; Remington, B.A.

    1988-07-25

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy ..gamma..-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/..mu... Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs.

  6. Faster Heavy Ion Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z < 2), mesons, and leptons, it is important to maintain overall computational efficiency. In this work, the heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  7. The Relativistic Heavy Ion Collider at Brookhaven

    SciTech Connect

    Hahn, H.

    1988-01-01

    The conceptual design of a Relativistic Heavy Ion Collider (RACK) to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 5 /times/ 10/sup 26/cm/sup /minus/2/sec/sup /minus/1/ at an energy of 100 GeV/u in each beam. Collisions with different ion species, including protons, will be possible. The collider consists of two interlaced, but otherwise separate, superconducting magnet rings. The 9.7 m long dipoles will operate at 3.5 T. Their 8 cm aperture was determined by the dimensions of gold ion beams taking into account diffusion due to intrabeam scattering. Heavy ion beams will be available from the Tandem Van de Graaff/Booster/AGS complex. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 24 refs., 7 figs., 2 tabs.

  8. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  9. Heavy ion fragmentation experiments at the bevatron

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.

    1976-01-01

    Collaborative research efforts to study the fragmentation processes of heavy nuclei in matter using heavy ion beams of the Bevatron/Bevalac are described. The goal of the program is to obtain the single particle inclusive spectra of secondary nuclei produced at 0 deg by the fragmentation of heavy ion beam projectiles. The process being examined is B+T yields F + anything, where B is the beam nucleus, T is the target nucleus, and F is the detected fragment. The fragments F are isotopically identified by experimental procedures involving magnetic analysis, energy loss and time-of-flight measurements. Effects were also made to: (a) study processes of heavy nuclei in matter, (b) measure the total and partial production cross section for all isotopes, (c) test the applicability of high energy multiparticle interaction theory to nuclear fragmentation, (d) apply the cross section data and fragmentation probabilities to cosmic ray transport theory, and (e) search for systematic behavior of fragment production as a means to improve existing semi-empirical theories of cross-sections.

  10. Heavy ions in space (M0001)

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Slberberg, R.; Tsao, C. H.

    1984-01-01

    The ojectives are to investigate three components of heavy nuclei in space: (1) a recently observed anomalous component of low-energy nuclei of N, O, and Ne; (2) the heavy nuclei in the Van Allen radiation belts; and (3) the UH nuclei (Z 30) of the galactic radiation. The study of the anomalous flux of N, O, and Ne nuclei in the unexplored energy region above 100 MeV/u is expected to provide new insights into the source of this component. Its observation in this experiment will confirm that these ions are singly charged. Knowledge of the energy spectra of the heavy nuclei observed in the Van Allen belts is expected to enhance the understanding of the origin of the belts (e.g., injection and local acceleration pocesses). The observation of these heavy ions could show, for the first time, that low-energy particles of extraterrestrial origin can diffuse to the innermost parts of the magnetosphere. Measurements of the UH component are expected to contribute information concerning its source, interstellar propagation, and the galactic storage time.

  11. Femtoscopy in Relativistic Heavy Ion Collisions

    SciTech Connect

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  12. Holifield Heavy Ion Research Facility: Users handbook

    SciTech Connect

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

  13. Future Heavy-Ion Program at J-PARC

    NASA Astrophysics Data System (ADS)

    Sako, Hiroyuki

    Recently, a heavy ion program as a future J-PARC project has been discussed among nuclear physicists and accelerator scientists. The overview of the heavy-ion program with physics goals, the design and physics feasibility of the spectrometer, and preliminary accelerator schemes are presented. The main goal of the program is to explore the QCD phase diagram in baryon densities 8-10 times as high as the normal nucleus density with heavy ion beams up to uranium at 1-10 AGeV, as well as research of unstable nuclei up to 10 AMeV. In this work, we focus on the former. One of the most important measurements which could signal the phase transition in high baryon densities is a dilepton. We study in-medium modifications of ρ , ω , and φ mesons decaying into dileptons, measure rare particles such as multi-strangeness hadrons, exotic hadrons, and hypernuclei utilizing high rate beams at J-PARC. We have been designing a spectrometer with a solenoid and a dipole magnets, which covers almost 4π acceptance, and has capability of identifying charged hadrons as well as electrons and muons. In one-month running of the experiment at the beam rate of 1011 Hz, we expect to measure ρ , ω , and φ dielectron decays of the order of 107. Heavy-ion acceleration schemes have been studied with a new heavy-ion linac and a new booster ring as an injector to RCS. The beams will be accelerated in RCS and MR. The goal beam rate is around 1010-1011/MR cycle.

  14. Chamber transport of ''foot'' pulses for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-02-20

    Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

  15. Genetic effects on heavy ions in drosophila

    NASA Technical Reports Server (NTRS)

    Kale, P. G.

    1986-01-01

    Drosophila sex-linked recessive lethal mutation test was used to study the dose response relation and relative biological effectiveness of heavy ions. The experiments were performed using the heavy ion beams at BEVALAC of Lawrence Berkeley Laboratory. These experiments were undertaken according to the proposed milestones and included Ne-20, A-40 and Fe-65 ions with respective energies of 600 MeV, 840 MeV and 850 MeV. At these energies several doses of these radiations ranging from 20 to 1280 R were used. Space radiation exposure to astronauts is supposed to be quite low and therefore very low dose experiments i.e., 20 R, were also performed for the three ions. The mutation response was measured in all germ cell types i.e., spermatozoa, spermatids, spermatocytes and spermatogonia of treated Drosophila males. A linear dose frequency relation was observed for most of the range except at high doses where the saturation effect was observed. Also, a very significant difference was observed among the sensitivity of the four germ cell stages where spermatozoa and spermatids were more sensitive. At the higher doses of this range, most of the spermatogonia and spermatocytes were killed. Although comparative and identical experiments with X-rays or neutrons have not been performed, the compassion of our data with the ones available in literature suggest that the heavy ions have a high rbe and that they are several times more effective than low LET X-rays. The rbe compared to neutrons however appears to be only slightly higher.

  16. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    NASA Astrophysics Data System (ADS)

    Zhang, Yifei

    2010-02-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (pT) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a performance study with full detector on the open charm nuclear modification factor, elliptic flow v2 and λc measurement as well as the measurement of bottom mesons via a semi-leptonic decay. )

  17. Precise formation of geometrically focused ion beams

    SciTech Connect

    Davydenko, V.I.; Ivanov, A.A.; Korepanov, S.A.; Kotelnikov, I.A.

    2006-03-15

    Geometrically focused intense neutral beams for plasma diagnostic consist of many elementary beams formed by a multiaperture ion-optical system and aimed at the focal point. In real conditions, some of the elementary beams may have increased angular divergence and/or deviate from the intended direction, thus diminishing the neutral beam density at the focus. Several improvements to the geometrical focusing are considered in the article including flattening of the plasma profile across the emission surface, using of quasi-Pierce electrodes at the beam periphery, and minimizing the deviation of the electrodes from the spherical form. Application of these measures to the neutral beam Russian diagnostic injector developed in Budker Institute of Nuclear Physics allows an increase of neutral beam current density in the focus by {approx}50%.

  18. Metal assisted focused-ion beam nanopatterning

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  19. Metal assisted focused-ion beam nanopatterning.

    PubMed

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates. PMID:27479713

  20. Beam Compression in Heavy-Ion Induction Linacs

    SciTech Connect

    Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Calanog, J.; Chen, A.X.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.K.; Van den Bogert, K.; Waldron, W.L.; Welch, D.R.

    2009-01-01

    The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the LBNL Neutralized Drift Compression Experiment (NDCX) experiment with controlled ramps and forced neutralization. The achieved peak beam current and energy can be used in experiments to heat targets and create warm dense matter. Using an injected 30 mA K{sup +} ion beam with initial kinetic energy 0.3 MeV, axial compression leading to {approx}50x current amplification and simultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss experiments that are under development to reach the necessary higher beam intensities and the associated beam diagnostics.

  1. The Relativistic Heavy Ion Collider at Brookhaven

    SciTech Connect

    Hahn, H.

    1989-01-01

    The conceptual design of a collider capable of accelerating and colliding heavy ions and to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 2 /times/ 10/sup 26/ cm/sup /minus/2/sec/sup /minus/1/ at an energy per nucleon of 100 GeV in each beam. Collisions with different ion species, including protons, will be possible. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 28 refs., 2 figs., 1 tab.

  2. Heavy ion physics at the LHC

    SciTech Connect

    Vogt, R.

    2004-08-15

    The ion-ion center of mass energies at the LHC will exceed that at RHIC by nearly a factor of 30, providing exciting opportunities for addressing unique physics issues in a completely new energy domain. Some highlights of this new physics domain are presented here. We briefly describe how these collisions will provide new insights into the high density, low momentum gluon content of the nucleus expected to dominate the dynamics of the early state of the system. We then discuss how the dense initial state of the nucleus affects the lifetime and temperature of the produced system. Finally, we explain how the high energy domain of the LHC allows abundant production of ''rare'' processes, hard probes calculable in perturbative quantum chromodynamics, QCD. At the LHC, high momentum jets and b{bar b} bound states, the {Upsilon} family, will be produced with high statistics for the first time in heavy ion collisions.

  3. Transverse emittance studies of an induction accelerator of heavy ions

    SciTech Connect

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-04-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL we have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs{sup +} induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to {approximately} 1 MeV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. We will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration. 4 refs., 4 figs., 1 tab.

  4. Longitudinal beam dynamics for heavy ion fusion using WARPrz

    SciTech Connect

    Callahan, D.A.; Langdon, A.B.; Friedman, A.; Haber, I.

    1993-02-22

    WARPrz is a 2.5 dimensional, cylindrically symmetric, electrostatic, particle-in-cell code. It is part of the WARP family of codes which has been developed to study heavy ion fusion driver issues. WARPrz is being used to study the longitudinal dynamics of heavy ion beams including a longitudinal instability that is driven by the impedance of the LINAC accelerating modules. This instability is of concern because it can enhance longitudinal momentum spread; chromatic abhoration in the lens system restricts the amount of momentum spread allowed in the beam in the final focusing system. The impedance of the modules is modeled by a continuum of resistors and capacitors in parallel in WARPrz. We discuss simulations of this instability including the effect of finite temperature and reflection of perturbations off the beam ends. We also discuss intermittency of axial confining fields (``ears`` fields) as a seed for this instability.

  5. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-11-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 Tm and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  6. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    SciTech Connect

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  7. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGESBeta

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  8. Heavy Ion Collisions at the LHC - Last Call for Predictions

    SciTech Connect

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d'Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise document, we required that

  9. Microirradiation of cells with energetic heavy ions

    NASA Astrophysics Data System (ADS)

    Dollinger, G.; Hable, V.; Hauptner, A.; Krücken, R.; Reichart, P.; Friedl, A. A.; Drexler, G.; Cremer, T.; Dietzel, S.

    2005-04-01

    The ion microprobe SNAKE (superconducting nanoscope for applied nuclear (Kern) physics experiments) at the Munich 14 MV tandem accelerator achieves beam focusing by a superconducting quadrupole doublet and can make use of a broad range of ions and ion energies, from 20 MeV protons to 200 MeV gold ions. This allows to adjust the number of DNA single strand breaks (SSBs) and double strand breaks (DSBs) per ion and per cell nucleus from about 0.1 DSBs per ion to several 100 DSBs per ion. When irradiating with single 100 MeV 16O ions, the adapted setup permits a fwhm irradiation accuracy of 0.55 μm in x-direction and 0.4 μm in y-direction, as demonstrated by retrospective track etching of polycarbonate foils. The experiments point to investigate protein dynamics after targeted irradiation. As an example for such experiments we show a kind of three dimensional representation of foci of γ-H2AX which are visible 0.5 h after the irradiation with 100 MeV 16O ions took place. It shows the gross correlation with the irradiation pattern but also distinct deviations which are attributed to protein dynamics in the cell.

  10. Identifying Multiquark Hadrons from Heavy Ion Collisions

    SciTech Connect

    Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-05-27

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  11. Calculation of cross sections for binary reactions between heavy ion projectiles and heavy actinide targets

    SciTech Connect

    Hoffman, D.C.; Hoffman, M.M.

    1990-11-01

    The computer program, described in this report, is identified as PWAVED5. It was developed to calculate cross sections for nucleon transfer reactions in low energy heavy ion bombardments. The objective was to calculate cross sections that agree with experimental results for ions of different charge and mass and to develop a predictive capability. It was undertaken because previous heavy ion calculations, for which programs were readily available, appeared to focus primarily on reactions resulting in compound nucleus formation and were not particularly applicable to calculations of binary reaction cross sections at low interaction energies. There are to principal areas in which this computation differs from several other partial wave calculations of heavy-ion reaction cross sections. First, this program is designed specifically to calculate cross sections for nucleon exchange interactions and to exclude interactions that are expected to result in fusion of the two nuclei. A second major difference in this calculation is the use of a statistical distribution to assign the total interaction cross section to individual final mass states.

  12. Heavy flavor in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Bratkovskaya, E. L.; Song, T.; Berrehrah, H.; Cabrera, D.; Torres-Rincon, J. M.; Tolos, L.; Cassing, W.

    2016-01-01

    We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectrum and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into D mesons through coalescence and/or fragmentation. The hadronized D mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor Raa and the elliptic flow v2 of D0 mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at √sNN =200 GeV and to the ALICE data, for Pb+Pb collisions at √sNN =2.76 TeV. We find that in the PHSD the energy loss of D mesons at high pT can be dominantly attributed to partonic scattering while the actual shape of RAA versus pT reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the Raa at low pT and enhances the D-meson elliptic flow v2.

  13. Focused ion beam in dental research.

    PubMed

    Ngo, H; Cairney, J; Munroe, P; Vargas, M; Mount, G

    2000-11-01

    Focused ion beam (FIB) has been available for over 10 yrs but until recently its usage has been confined to the semiconductor industry. It has been developed as an important tool in defect analysis, circuit modification and recently transmission electron microscope sample preparation. This paper introduces FIB and demonstrates its application in dental research. Its ion and electron imaging modes complement the SEM while its ability to prepare TEM samples from a wide range of material will allow the study of new types of adhesive interface. As an example, its use is described in the characterization of the interface of resin to a tribochemically treated surface of an experimental fiber-reinforced resin-based composite. As with all new techniques, the initial learning curve was difficult to manage. This new instrument offers opportunities to expand research in dental materials to areas not possible before. PMID:11763915

  14. Positron production in heavy-ion collisions

    SciTech Connect

    Dunford, R.W.

    1995-08-01

    The ATLAS Positron Experiment APEX was built to study positron emission in collisions between very heavy ions. Narrow peaks were observed in such collisions at GSI, Darmstadt in the spectra of positrons and in the sum-energy spectra of electron-positron coincidences. APEX is a second-generation experiment which was specifically designed to look for the coincidence events and measure the opening angle between electrons and positrons. The first beam-induced positrons were detected using APEX in March 1993, and since then three additional runs were carried out. The first results for the collision system {sup 238}U + {sup 181}Ta show no evidence for sharp peaks in the electron-positron sum-energy spectrum. The current emphasis in this work is to obtain a complete understanding of the APEX apparatus. The atomic group is studying events involving coincidences between heavy ions and electrons. Since APEX measures the laboratory angles and energies of both electrons and heavy ions, it is possible to make an event-by-event Doppler correction of the electron spectra. These Doppler-corrected spectra show a number of lines which are attributed to conversion electrons which are emitted when a nuclear excited state decays by ejecting an inner-shell electron. The study of these spectra provide an important confirmation of the proper functioning of APEX. We are particularly concerned with the atomic physics aspects of this process. In order to understand the electron spectra, it is necessary to account for the change in binding energy of the inner-shell electrons as a function of ionic charge. We are utilizing the GRASP relativistic atomic structure program to calculate the binding energies. This information, together with the measured gamma-ray energies, allows us to calculate the expected energies of the conversion electrons which we can then compare with the observed Doppler-corrected conversion electron energies.

  15. Economic aspects of heavy ion fusion

    SciTech Connect

    Herrmannsfeldt, W.B.

    1984-01-01

    The usual parameter space for examining scenarios for heavy ion fusion power plants has generally been based on large, slow cycling, reactor chambers which are only marginally different from chambers proposed for laser drivers. This paper will examine the economic implications of assuming that an inexpensive, low gain pellet is available and that a suitable high-repetition rate reactor has been devised. Interesting scenarios are found that generate economically feasible power from a system with a minimum net capacity of approx. 1 GWe compared to the larger approx. 4 GWe required in previous studies.

  16. Vorticity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  17. Nonrelativistic theory of heavy-ion collisions

    SciTech Connect

    Bertsch, G.

    1984-07-17

    A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures.

  18. Non abelian hydrodynamics and heavy ion collisions

    SciTech Connect

    Calzetta, E.

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  19. Focal-surface detector for heavy ions

    DOEpatents

    Erskine, John R.; Braid, Thomas H.; Stoltzfus, Joseph C.

    1979-01-01

    A detector of the properties of individual charged particles in a beam includes a gridded ionization chamber, a cathode, a plurality of resistive-wire proportional counters, a plurality of anode sections, and means for controlling the composition and pressure of gas in the chamber. Signals generated in response to the passage of charged particles can be processed to identify the energy of the particles, their loss of energy per unit distance in an absorber, and their angle of incidence. In conjunction with a magnetic spectrograph, the signals can be used to identify particles and their state of charge. The detector is especially useful for analyzing beams of heavy ions, defined as ions of atomic mass greater than 10 atomic mass units.

  20. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  1. Heavy Ion Reaction Modeling for Hadrontherapy Applications

    SciTech Connect

    Cerutti, F.; Ferrari, A.; Enghardt, W.; Gadioli, E.; Mairani, A.; Parodi, K.; Sommerer, F.

    2007-10-26

    A comprehensive and reliable description of nucleus-nucleus interactions represents a crucial need in different interdisciplinary fields. In particular, hadrontherapy monitoring by means of in-beam positron emission tomography (PET) requires, in addition to measuring, the capability of calculating the activity of {beta}{sup +}-decaying nuclei produced in the irradiated tissue. For this purpose, in view of treatment monitoring at the Heidelberg Ion Therapy (HIT) facility, the transport and interaction Monte Carlo code FLUKA is a promising candidate. It is provided with the description of heavy ion reactions at intermediate and low energies by two specific event generators. In-beam PET experiments performed at GSI for a few beam-target combinations have been simulated and first comparisons between the measured and calculated {beta}{sup +}-activity are available.

  2. Bremsstrahlung from relativistic heavy ions in matter

    SciTech Connect

    Soerensen, Allan H.

    2010-02-15

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact ('ultraperipheral collisions'). Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near 2{gamma} times the position of the giant dipole resonance, that is, near 25{gamma} MeV for a lead ion ({gamma}{identical_to}E/Mc{sup 2} is the Lorentz factor of the projectile of energy E and mass M). The maximum exceeds the bremsstrahlung from a hypothetical structureless, pointlike particle of the same charge and mass as the incoming nucleus, but rapid depletion follows on the high-energy side of the peak. As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions. In collisions with nuclear contact, though, substantial radiation is emitted. It overshoots the bremsstrahlung. However, despite the violence of contact events, the associated photon emission only exceeds the radiation from a hypothetical structureless pointlike nucleus [emitted energy per unit photon-energy interval essentially constant up to ({gamma}-1)Mc{sup 2}] at relatively low photon energies (for lead roughly below 0.2{gamma} GeV, a limit which is about an order of magnitude above the position of the bremsstrahlung peak). Results are presented for bare lead ions penetrating a solid lead target at energies of 158 GeV/n ({gamma}=170) and beyond.

  3. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    NASA Astrophysics Data System (ADS)

    Engelage, J.; Crawford, H. J.; Albergo, S.; Kuo, C.; Caccia, Z.; Chen, C.-X.; Costa, S.; Cronqvist, M.; Flores, L.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Mitchell, J. W.

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed.

  4. Experimental atomic physics in heavy-ion storage rings

    SciTech Connect

    Datz, S.; Andersen, L.H.; Briand, J.P.; Liesen, D.

    1987-01-01

    This paper outlines the discussion which took place at the ''round table'' on experimental atomic physics in heavy-ion storage rings. Areas of discussion are: electron-ion interactions, ion-ion collisions, precision spectroscopy of highly charged ions, beta decay into bound final states, and atomic binding energies from spectroscopy of conversion elections. 18 refs., 1 tab. (LSP)

  5. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-01

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. PMID:21900733

  6. Mutagenic effects of heavy ions in bacteria

    NASA Astrophysics Data System (ADS)

    Krasavin, E. A.; Kozubek, S.; Amirtayev, K. G.; Tokarova, B.; Bonev, M.

    The peculiarities and mechanisms of the mutagenic action of γ-rays and heavy ions on bacterial cells have been investigated. Direct mutations in the lac-operon of E. coli in wild type cells and repair deficient strains have been detected. Furthermore, the induction of revertants in Salmonella tester strains was measured. It was found that the mutation rate was a linear-quadratic function of dose in the case of both γ-rays and heavy ions with LET up to 200 keV/μm. The relative biological effectiveness (RBE) increased with LET up to 20 keV/μm. Low mutation rates were observed in repair deficient mutants with a block of SOS-induction. The induction of SOS-repair by ionizing radiation has been investigated by means of the ``SOS-chromotest'' and λ-prophage induction. It was shown that the intensity of the SOS-induction in E. coli increased with increasing LET up to 40-60 keV/μm.

  7. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  8. Constraining relativistic models through heavy ion collisions

    SciTech Connect

    Menezes, D. P.; Providencia, C.; Chiapparini, M.; Bracco, M. E.; Delfino, A.; Malheiro, M.

    2007-12-15

    Relativistic models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter and finite nuclei properties, these studies taking place at low and moderate temperatures. Nevertheless, all results are model dependent, and so far it is unclear whether some of them should be discarded. Moreover, in the regime of hot hadronic matter, very few calculations exist using these relativistic models, in particular when applied to particle yields in heavy ion collisions. A very important investigation is the simulation of a supernova explosion that is based on the construction of an adequate equation of state that needs to be valid within very large ranges of temperatures (0 to 100 MeV at least) and densities (very low to ten times the nuclear saturation density at least). In the present work, we comment on the known constraints that can help the selection of adequate models in this wide regime and investigate the main differences that arise when the particle production during a Au+Au collision at the BNL Relativistic Heavy Ion Collider is calculated with different relativistic models. We conclude that most of the models investigated in the present work give a very good overall description of the data and make predictions for not yet measured particle ratios.

  9. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    SciTech Connect

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  10. The Compact Muon Solenoid Heavy Ion program

    SciTech Connect

    Dr. Pablo Yepes

    2005-12-15

    The Pb-Pb center of mass energy at the LHC will exceed that of Au-Au collisions at RHIC (Relativistic Heavy Ion Collider) by nearly a factor of 30, providing exciting opportunities for addressing unique physics issues in a completely new energy domain. The interest of the Heavy Ion (HI) Physics at LHC is discussed in more detail in the LHC-USA white paper and the Compact Muon Solenoid (CMS) Heavy Ion proposal. A few highlights are presented in this document. Heavy ion collisions at LHC energies will explore regions of energy and particle density significantly beyond those reachable at RHIC. The energy density of the thermalized matter created at the LHC is estimated to be 20 times higher than at RHIC, implying an initial temperature, which is greater than at RHIC by more than a factor of two. The higher density of produced partons also allows a faster thermalization. As a consequence, the ratio of the quark-gluon plasma lifetime to the thermalization time increases by a factor of 10 over RHIC. Thus the hot, dense systems created in HI collisions at the LHC spend most of the time in a purely partonic state. The longer lifetime of the quark-gluon plasma state widens significantly the time window available to probe it experimentally. RHIC experiments have reported evidence for jet production in HI collisions and for suppression of high p{sub T} particle production. Those results open a new field of exploration of hot and dense nuclear matter. Even though RHIC has already broken ground, the production rates for jets with p{sub T} > 30 GeV are several orders of magnitude larger at the LHC than at RHIC, allowing for systematic studies with high statistics in a clean kinematic region. High p{sub T} quark and gluon jets can be used to study the hot hadronic medium produced in HI interactions. The larger Q{sup 2} causes jets to materialize very soon after the collision. They are thus embedded in and propagate through the dense environment as it forms and evolves. Through

  11. Modeling Chamber Transport for Heavy-Ion Fusion

    SciTech Connect

    Sharp, W M; Niller, D A C; Tabak, M; Yu, S S; Peterson, P F; Welch, D R; Rose, D V; Olson, C L

    2002-08-02

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  12. Modeling chamber transport for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  13. Thermalization of Heavy Ions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-01

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  14. STOPPING AND BARYON TRANSPORT IN HEAVY ION REACTIONS.

    SciTech Connect

    VIDEBAEK, F.

    2005-02-05

    In this report I will give an experimental overview on nuclear stopping in hadron collisions, and relate observations to understanding of baryon transport. Baryon number transport is not only evidenced via net-proton distributions but also by the enhancement of strange baryons near mid-rapidity. Although the focus is on high-energy data obtained from pp and heavy ions from RHIC, relevant data from SPS and ISR will be considered. A discussion how the available data at higher energy relates and gives information on baryon junction, quark-diquark breaking will be made.

  15. An Updated Point Design for Heavy Ion Fusion

    SciTech Connect

    Meier, W R; Yu, S S; Abbott, R P; Barnard, J J; Brown, T; Callahan, D A; Heitzenroeder, P; Latkowski, J F; Logan B G; Pemberton, S J; Peterson, P F; Rose, D V; Sabbi, G-L; Sharp, W M; Welch, D R

    2002-11-12

    An updated, self-consistent point design for a heavy ion fusion (HIF) power plant based on an induction linac driver, indirect-drive targets, and a thick liquid wall chamber has been completed. Conservative parameters were selected to allow each design area to meet its functional requirements in a robust manner, and thus this design is referred to as the Robust Point Design (RPD-2002). This paper provides a top-level summary of the major characteristics and design parameters for the target, driver, final focus magnet layout and shielding, chamber, beam propagation to the target, and overall power plant.

  16. An Updated Point Design for Heavy Ion Fusion

    SciTech Connect

    Yu, S S; Meier, W R; Abbott, R B; Barnard, J J; Brown, t; Callahan, D A; Heitzenroeder, P; Latkowski, J F; Logan, B G; Pemberton, S J; Peterson, P F; Rose, D V; Sabbi, G -L; Sharp, W M; Welch, D R

    2002-12-16

    An updated, self-consistent point design for a heavy ion fusion (HIF) power plant based on an induction linac driver, indirect-drive targets, and a thick liquid wall chamber has been completed. Conservative parameters were selected to allow each design area to meet its functional requirements in a robust manner, and thus this design is referred to as the Robust Point Design (RPD-2002). This paper provides a top-level summary of the major characteristics and design parameters for the target, driver, final focus magnet layout and shielding, chamber, beam propagation to the target, and overall power plant.

  17. An updated point design for heavy ion fusion

    SciTech Connect

    Yu, S.S.; Meier, W.R.; Abbott, R.P.; Barnard, J.J.; Brown, T.; Callahan, D.A.; Heitzenroeder, P.; Latkowski, J.F.; Logan, B.G.; Pemberton, S.J.; Peterson, P.F.; Rose, D.V.; Sabbi, G-L.; Sharp, W.M.; Welch, D.R.

    2002-11-01

    An updated, self-consistent point design for a heavy ion fusion (HIF) power plant based on an induction linac driver, indirect-drive targets, and a thick liquid wall chamber has been completed. Conservative parameters were selected to allow each design area to meet its functional requirements in a robust manner, and thus this design is referred to as the Robust Point Design (RPD-2002). This paper provides a top-level summary of the major characteristics and design parameters for the target, driver, final focus magnet layout and shielding, chamber, beam propagation to the target, and overall power plant.

  18. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-01-01

    HISTRAP is a proposed synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac. The ring will have a maximum bending power of 2.0 T.m and have a circumference of 46.8 m.

  19. Mass spectra of heavy ions near comet Halley

    NASA Technical Reports Server (NTRS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.

    1986-01-01

    The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  20. Heavy-ion induced electronic desorption of gas from metals

    SciTech Connect

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Kramer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2006-12-19

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  1. A synchronous beam sweeper for heavy ions

    SciTech Connect

    Bogaty, J.M.

    1989-01-01

    The Argonne Tandem Linac Accelerator System (ATLAS) facility at Argonne National Laboratory provides a wide range of accelerated heavy ions from the periodic table. Frequently, the beam delivery rate of 12 MHz is too fast for the type of experiment on line. Reaction by-products from a target bombardment may have a decay interval much longer than the dead time between beam bunches. To prevent data from being corrupted by incoming ions a beam sweeper was developed which synchronously eliminates selected beam bunches to suit experimental needs. As the SWEEPER is broad band (DC to 6 MHz) beam delivery rates can be instantaneously changed. Ion beam bunches are selectively kicked out by an electrostatic dipole electrode pulsed to 2 kVDC. The system has been used for almost three years with several hundred hours of operating time logged to date. Beam bunch delivery rates of 6 MHz down to 25 kHz have been provided. Since this is a non-resonant system any beam delivery rate from 6 MHz down to zero can be set. In addition, burst modes have been used where beam is supplied in 12 MHz bursts and then shut down for a period of time set by the user. 3 figs.

  2. Jet Structure in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter hat q. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the incone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  3. Production of charge in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Pratt, Scott; McCormack, William Patrick; Ratti, Claudia

    2015-12-01

    By analyzing preliminary experimental measurements of charge-balance functions from the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC), it is found that scenarios in which balancing charges are produced in a single surge, and therefore separated by a single length scale, are inconsistent with data. In contrast, a model that assumes two surges, one associated with the formation of a thermalized quark-gluon plasma and a second associated with hadronization, provides a far superior reproduction of the data. A statistical analysis of the model comparison finds that the two-surge model best reproduces the data if the charge production from the first surge is similar to expectations for equilibrated matter taken from lattice gauge theory. The charges created in the first surge appear to separate by approximately one unit of spatial rapidity before emission, while charges from the second wave appear to have separated by approximately a half unit or less.

  4. Rapidity dependence in holographic heavy ion collisions

    DOE PAGESBeta

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √sNN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapiditymore » spectra in our current model is narrower than the experimental data.« less

  5. Rapidity dependence in holographic heavy ion collisions

    SciTech Connect

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √sNN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapidity spectra in our current model is narrower than the experimental data.

  6. Nuclei at HERA and heavy ion physics

    SciTech Connect

    Gavin, S.; Strikman, M.

    1995-12-31

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk.

  7. Latchup in CMOS devices from heavy ions

    NASA Technical Reports Server (NTRS)

    Soliman, K.; Nichols, D. K.

    1983-01-01

    It is noted that complementary metal oxide semiconductor (CMOS) microcircuits are inherently latchup prone. The four-layer n-p-n-p structures formed from the parasitic pnp and npn transistors make up a silicon controlled rectifier. If properly biased, this rectifier may be triggered 'ON' by electrical transients, ionizing radiation, or a single heavy ion. This latchup phenomenon might lead to a loss of functionality or device burnout. Results are presented from tests on 19 different device types from six manufacturers which investigate their latchup sensitivity with argon and krypton beams. The parasitic npnp paths are identified in general, and a qualitative rationale is given for latchup susceptibility, along with a latchup cross section for each type of device. Also presented is the correlation between bit-flip sensitivity and latchup susceptibility.

  8. Prompt processes in heavy ion reactions

    SciTech Connect

    Blann, M.; Remington, B.A.

    1987-12-01

    We test a relaxation model based on two body nucleon-nucleon scattering processes to interpret phenomena observed in heavy ion reactions. We use the Boltzmann Master Equation to accomplish this. By assuming that the projectile nucleons partition the total excitation with equal a-priori probability of all configurations, we are able to reproduce several sets of neutron spectra from /sup 20/Ne and /sup 12/C induced reactions on /sup 165/Ho and from reactions of /sup 40/Ar or /sup 40/Ca. We point out ambiguities in deducing angle-integrated energy spectra from double differential spectra. With no additional free parameters, our model successfully reproduces a large body of high energy ..gamma..-ray spectra by assuming an incoherent n-p-bremsstrahlung mechanism. 45 refs., 13 figs.

  9. Observations of heavy energetic ions far upstream from Comet Halley

    NASA Technical Reports Server (NTRS)

    Sanderson, T. R.; Wenzel, K.-P.; Daly, P. W.; Cowley, S. W. H.; Hynds, R. J.; Richardson, I. G.; Smith, E. J.; Bame, S. J.; Zwickl, R. D.

    1986-01-01

    On March 25, 1986, when the ICE spacecraft came within 28 million km of the nucleus of comet Halley, and for several days around this time, bursts of heavy ions were observed by the ICE energetic ion experiment. The bursts were observed only during periods when the solar wind velocity was considerably higher than its nominal value. The characteristics of these ions, in particular their anisotropies, were examined. Using the well known formulae for transformation of distributions from the solar wind frame of reference to the spacecraft frame, the angular distributions expected from either protons, or heavy ions from the water group, were studied, showing that the measurements are consistent with heavy ions, and not with protons. Other sources of heavy ions are considered, and the most likely source of these ions is comet Halley.

  10. Bose condensation of nuclei in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1994-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of nuclei in heavy ion collisions. The most favorable conditions of high densities and low temperatures are usually associated with astrophysical processes and may be difficult to achieve in heavy ion collisions. Nonetheless, some suggestions for the possible experimental verification of the existence of this phenomenon are made.

  11. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    SciTech Connect

    McLerran,L.

    2009-07-27

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark GluonPlasma, the Color Glass Condensate , the Glasma and Quarkyoninc Matter. A novel effect that may beassociated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts andexplain how they may be seen in ultra-relatvistic heavy ion collisions

  12. NSAC Recommends a Relativistic Heavy-Ion Collider.

    ERIC Educational Resources Information Center

    Physics Today, 1984

    1984-01-01

    Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)

  13. Recent Progress in Isospin Physics with Heavy-Ion Reactions

    SciTech Connect

    Chen Liewen; Ko, Che Ming; Li Baoan

    2008-11-11

    We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by future high energy radioactive beams. Implications of these results for the nuclear effective interactions are also discussed.

  14. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    NASA Astrophysics Data System (ADS)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  15. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    SciTech Connect

    Bangerter, R.O.; Mark, J.W.K.; Meeker, D.J.; Judd, D.L.

    1981-01-01

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems.

  16. A Compact High-Brightness Heavy-Ion Injector

    SciTech Connect

    Westenskow, G A; Grote, D P; Halaxa, E; Kwan, J W; Bieniosek, F

    2005-05-11

    To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF) accelerators, we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. In an 80-kV 20-microsecond experiment, the RF plasma source has produced up to 5 mA of Ar{sup +} in a single beamlet. An extraction current density of 100 mA/cm{sup 2} was achieved, and the thermal temperature of the ions was below 1 eV. We have tested at full voltage gradient the first 4 gaps of an injector design. Einzel lens were used to focus the beamlets while reducing the beamlet to beamlet space charge interaction. We were able to reach greater than 100 kV/cm in the first four gaps. We also performed experiments on a converging 119 multi-beamlet source. Although the source has the same optics as a full 1.6 MV injector system, these test were carried out at 400 kV due to the test stand HV limit. We have measured the beam's emittance after the beamlets are merged and passed through an electrostatic quadrupole (ESQ). Our goal is to confirm the emittance growth and to demonstrate the technical feasibility of building a driver-scale HIF injector.

  17. Heavy ion acceleration at parallel shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2010-11-01

    A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007). The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail), so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter Pα=nαmα/npmp (mp, np and mα, nα are proton and alpha particle mass and density) that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.

  18. Heavy ion fusion systems assessment study

    NASA Astrophysics Data System (ADS)

    Dudziak, Donald J.; Herrmannsfeldt, W. B.

    1986-01-01

    The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of fusion system to identify favored areas in the multidimensional parameter space. The results show that cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 1000 MWe. These results hold over a large area of parameter space, but depend especially on effecting savings in the cost of the accelerator by using ions with a charge-to-mass ratio about three times higher than has been usually assumed. The feasibility of actually realizing such savings has been shown: (1) by experiments showing better-than-previously-assumed transport stability for space charge dominated beams, and (2) by theoretical predictions that the final transport and compression of the pulse to the target pellet, in the expected environment of a reactor chamber, may be sufficiently resistant to instabilities, in particular to streaming instabilities, to enable neutralized beams to successfully propagate to the target. Neutralization is assumed to be required for the higher current pulses that result from the use of the higher charge-to-mass ratio beams jointly by the Lawrence Berkeley Laboratory, the Lawrence Livermore National Laboratory, and the Los Alamos National Laboratory, and also by the McDonnell Douglas Astronautics Company with funding from the Electric Power Research Institute.

  19. Simulation of chamber transport for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan, D.A.; Tabak, M.A.; Yu, S.S.; Peterson, P.F.; Rose, D.V.; Welch, D.R.; Davidson, R.C.; Kaganovich, I.D.; Startsev, E.; Olson, C.L.

    2002-10-04

    Beams for heavy-ion fusion (HIF) are expected to require substantial neutralization in a target chamber. Present targets call for higher beam currents and smaller focal spots than most earlier designs, leading to high space-charge fields. Collisional stripping by the background gas expected in the chamber further increases the beam charge. Simulations with no electron sources other than beam stripping and background-gas ionization show an acceptable focal spot only for high ion energies or for currents far below the values assumed in recent HIF power-plant scenarios. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by radiation from the target, and pre-neutralization by a plasma generated along the beam path. The simulations summarized here indicate that these effects can significantly reduce the beam focal-spot size.

  20. Simulation of Chamber Transport for Heavy-Ion Fusion

    SciTech Connect

    Sharp, W M; Callahan Miller, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R; Davidson, R C; Kaganovich, I D; Startsev, E; Olson, C L

    2002-10-14

    Beams for heavy-ion fusion (HIF) are expected to require substantial neutralization in a target chamber. Present targets call for higher beam currents and smaller focal spots than most earlier designs, leading to high space-charge fields. Collisional stripping by the background gas expected in the chamber further increases the beam charge. Simulations with no electron sources other than beam stripping and background-gas ionization show an acceptable focal spot only for high ion energies or for currents far below the values assumed in recent HIF power-plant scenarios. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by radiation from the target, and pre-neutralization by a plasma generated along the beam path. The simulations summarized here indicate that these effects can significantly reduce the beam focal-spot size.

  1. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  2. Skyrme tensor force in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Stevenson, P. D.; Suckling, E. B.; Fracasso, S.; Barton, M. C.; Umar, A. S.

    2016-05-01

    Background: It is generally acknowledged that the time-dependent Hartree-Fock (TDHF) method provides a useful foundation for a fully microscopic many-body theory of low-energy heavy ion reactions. The TDHF method is also known in nuclear physics in the small-amplitude domain, where it provides a useful description of collective states, and is based on the mean-field formalism, which has been a relatively successful approximation to the nuclear many-body problem. Currently, the TDHF theory is being widely used in the study of fusion excitation functions, fission, and deep-inelastic scattering of heavy mass systems, while providing a natural foundation for many other studies. Purpose: With the advancement of computational power it is now possible to undertake TDHF calculations without any symmetry assumptions and incorporate the major strides made by the nuclear structure community in improving the energy density functionals used in these calculations. In particular, time-odd and tensor terms in these functionals are naturally present during the dynamical evolution, while being absent or minimally important for most static calculations. The parameters of these terms are determined by the requirement of Galilean invariance or local gauge invariance but their significance for the reaction dynamics have not been fully studied. This work addresses this question with emphasis on the tensor force. Method: The full version of the Skyrme force, including terms arising only from the Skyrme tensor force, is applied to the study of collisions within a completely symmetry-unrestricted TDHF implementation. Results: We examine the effect on upper fusion thresholds with and without the tensor force terms and find an effect on the fusion threshold energy of the order several MeV. Details of the distribution of the energy within terms in the energy density functional are also discussed. Conclusions: Terms in the energy density functional linked to the tensor force can play a non

  3. Properties of hot and dense matter from relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Braun-Munzinger, Peter; Koch, Volker; Schäfer, Thomas; Stachel, Johanna

    2016-03-01

    We review the progress achieved in extracting the properties of hot and dense matter from relativistic heavy ion collisions at the relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory and the large hadron collider (LHC) at CERN. We focus on bulk properties of the medium, in particular the evidence for thermalization, aspects of the equation of state, transport properties, as well as fluctuations and correlations. We also discuss the in-medium properties of hadrons with light and heavy quarks, and measurements of dileptons and quarkonia. This review is dedicated to the memory of Gerald E. Brown.

  4. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    SciTech Connect

    Larry R. Grisham

    2002-01-14

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10{sup -5} torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing.

  5. Development of a focused ion beam micromachining system

    SciTech Connect

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  6. Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications

    NASA Astrophysics Data System (ADS)

    Voss, K. O.; Fournier, C.; Taucher-Scholz, G.

    2008-07-01

    The risk assessment for low doses of high linear energy transfer (LET) radiation has been challenged by a growing body of experimental evidence showing that non-irradiated bystander cells can receive signals from irradiated cells to elicit a variety of cellular responses. These may be significant for radiation protection but also for radiation therapy using heavy ions. Charged particle microbeams for radiobiological application provide a unique means to address these issues by allowing the precise irradiation of single cells with a counted numbers of ions. Here, we focus specifically on heavy ion microbeam facilities currently in use for biological purposes, describing their technical features and biological results. Typically, ion species up to argon are used for targeted biological irradiation at the vertically collimated microbeam at JAEA (Takasaki, Japan). At the SNAKE microprobe in Munich, mostly oxygen ions have been used in a horizontal focused beam line for cell targeting. At GSI (Darmstadt), a horizontal microprobe with a focused beam for defined targeting using ion species up to uranium is operational. The visualization of DNA damage response proteins relocalizing to defined sites of ion traversal has been accomplished at the three heavy ion microbeam facilities described above and is used to study mechanistic aspects of heavy ion effects. However, bystander studies have constituted the main focus of biological applications. While for cell inactivation and effects on cell cycle progression a response of non-targeted cells has been described at JAEA and GSI, respectively, in part controversial results have been obtained for the induction of DNA damage measured by double-strand formation or at the cytogenetic level. The results emphasize the influence of the cellular environment, and standardization of experimental conditions for cellular studies at different facilities as well as the investigation of bystander effects in tissue will be the aims of future

  7. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. PMID:20192366

  8. US Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    SciTech Connect

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; et al.

    2005-09-19

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.

  9. US Heavy Ion Beam Research for Energy Density Physics Applicationsand Fusion

    SciTech Connect

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich,I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier,W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose,D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-09-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.

  10. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    SciTech Connect

    Grisham, L. R.; Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.

    2004-06-16

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  11. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  12. Pre-equilibrium decay processes in energetic heavy ion reactions

    SciTech Connect

    Blann, M.

    1986-04-15

    The Boltzmann master equation (BME) is defined for application to precompound decay in heavy ion reactions in the 10 100 MeV/nucleon regime. Predicted neutron spectra are compared with measured results for central collisions of /sup 20/Ne and /sup 12/C with /sup 165/Ho target nuclei. Comparisons are made with subthreshold ..pi../sup 0/ yields in heavy ion reactions between 35 and 84 MeV/nucleon, and with the ..pi../sup 0/ spectra. The BME is found to be an excellent tool for investigating these experimentally observed aspects of non-equilibrium heavy ion reactions. 18 refs., 8 figs.

  13. Residual activity induced by heavy ions and beam-loss criteria for heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Strašík, I.; Mustafin, E.; Pavlovič, M.

    2010-07-01

    The paper presents results of FLUKA simulations of the residual activity induced by heavy ions in two target configurations representing: (1) a beam pipe of an accelerator and (2) a bulky accelerator structure like a magnet yoke or a coil. The target materials were stainless steel and copper representing the most common construction materials used for basic accelerator components. For these two materials, the inventory of the induced isotopes depends mainly on the target material and much less on the projectile species. Time evolution of the induced activity can be described by means of a generic curve that is independent from the projectile mass. Dependence of the induced residual activity on selected ion beam parameters was studied. The main goal of the study was establishing a scaling law expanding the existing proton beam-loss tolerance to heavy-ion beams. This scaling law enables specifying beam-loss criteria for projectile species from proton up to uranium at energies from 200MeV/u up to 1GeV/u.

  14. Observables in relativistic heavy-ion collisions

    SciTech Connect

    Nix, J.R.; Schlei, B.R.; Strottman, D.D.; Sullivan, J.P.; Hecke, H.W. van

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors used several complimentary models of high-energy nuclear collisions to systematically study the large body of available data from high energy (p{sub beam}/A > 10 GeV/c) heavy ion experiments at BNL and CERN and to prepare for the data that will come from RHIC. One major goal of this project was to better understand the space-time history of the excited hadronic matter formed in these collisions and to use this understanding to improve models of this process. The space-time structure of the system can be extracted from measurements of single-particle p{sub T} distributions and multiparticle correlations. They looked for experimental effects of the formation of the quark-gluon plasma. Understanding the hadronic phase of the interaction determines the sensitivity of experimental measurements to the presence of this exotic state of matter.

  15. Modeling the heavy ion upset cross section

    NASA Astrophysics Data System (ADS)

    Connell, L. W.; McDaniel, P. J.; Prinja, A. K.; Sexton, F. W.

    1995-04-01

    The standard Rectangular Parallelepiped (RPP) construct is used to derive a closed form expression for, sigma-bar (theta, phi, L) the directional-spectral heavy ion upset cross section. This is an expected value model obtained by integrating the point-value cross section model, sigma (theta, phi, L, E), also developed here, with the Weibull density function, f(E), assumed to govern the stochastic behavior of the upset threshold energy, E. A comparison of sigma-bar (theta, phi, L) with experimental data show good agreement, lending strong credibility to the hypothesis that E-randomness is responsible for the shape of the upset cross section curve. The expected value model is used as the basis for a new, rigorous mathematical formulation of the effective cross section concept. The generalized formulation unifies previous corrections to the inverse cosine scaling, collapsing to Petersen's correction, (cos theta - (h/l) sin theta)(sup -1), near threshold and Sexton's, (cos theta + (h/l) sin theta)(sup -1), near saturation. The expected value cross section model therefore has useful applications in both upset rate prediction and test data analysis.

  16. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  17. Heavy ion beam transport in an inertial confinement fusion reactor

    SciTech Connect

    Barboza, N.

    1995-08-01

    A new code, bimc, is under development to determine if a beam of heavy ions can be focused to the necessary spot-size radius of about 2 mm within an inertial confinement reactor chamber where the background gas densities are on the order of 10{sup 14}--10{sup 15} cm{sup {minus}3} Lithium (or equivalent). Beam transport is expected to be strongly affected by stripping and collective plasma phenomena; however, if propagation is possible in this regime, it could lead to simplified reactor designs. The beam is modeled using a 2 1/2 D particle-in-cell (PIC) simulation code coupled with a Monte Carlo (MC) method for analyzing collisions. The MC code follows collisions between the beam ions and neutral background gas atoms that account for the generation of electrons and background gas ions (ionization), and an increase of the charge state of the beam ions (stripping). The PIC code models the complete dynamics of the interaction of the various charged particle species with the self generated electromagnetic fields. Details of the code model and preliminary results are presented.

  18. Physics with relativistic heavy ions: QGP and other delicacies

    SciTech Connect

    Young, G.R.

    1995-02-01

    Conditions favorable to formation and observation of a deconfined state of quarks and gluons (often called the quark-gluon plasma) are thought to exist following the collision of very heavy nuclei at center-of-mass energies exceeding several tens of GeV/nucleon. The Relativistic Heavy Ion Collider under construction at BNL since 1991 is designed to provide such collisions at energies up to {radical}s/A = 200 GeV. Two large dedicated experiments are being built to operate there; these two experiments take rather different approaches to the problem of classifying such collisions and probing for signals of QGP formation. Two smaller experiments are proposed to focus on specific aspects of these collisions. Recent developments in the understanding of the initial state formed in such collisions include, particularly, the possible rapid equilibration of the gluon density, leading in an equilibrium picture to such high temperatures that sizable thermal excitation of charm becomes probable. Recent theoretical conjectures have focussed on the possible formation of a disordered chiral condensate following chiral symmetry restoration in heavy-nucleus collisions, which might be a consequence of nonequilibrium deexcitation of a dense partonic state.

  19. Progress in Target Physics and Design for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra

    1999-11-01

    Two-dimensional, integrated calculations of a close-coupled version of the distributed radiator, heavy ion target predict gain 130 from 3.3 MJ of beam energy. To achieve these results, the case-to-capsule ratio was decreased by about 25% from our previous targets.(M. Tabak, D. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) The smaller hohlraum results in smaller beam spots than had been previously assumed; this puts renewed emphasis on controlling emittance growth in the accelerator and on space-charge neutralization in the reactor chamber. These targets are robust--changes in ion range and ion stopping model can be accommodated by changes in the target. Single-mode Rayleigh-Taylor growth rates for this capsule are smaller than those for at least one NIF design. As a result, stability issues for the heavy ion capsule can be settled on NIF. The close-coupled target also opens up the possibility of a high gain Engineering Test Facility from a 1.5-2 MJ driver; calculations predict that gain 90 is achievable from 1.75 MJ of beam energy. Gain curves, used for optimizing the system of accelerator, final focus, chamber transport, and target, are in good agreement with the two-dimensional calculations for both the ``conventional'' and close-coupled case-to-capsule ratio. Finally, we will discuss the choice of hohlraum wall material which must satisfy constraints from target physics (high opacity/low heat capacity to minimize the amount of energy in the hohlraum wall), environment and safety (low activation for recycling and waste disposal), chamber design (recovery of the material from the chamber), and target fabrication (need to produce many low cost targets per day).

  20. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    SciTech Connect

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-07-24

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers.

  1. Heavy ion action on single cells: Cellular inactivation capability of single accelerated heavy ions

    NASA Technical Reports Server (NTRS)

    Kost, M.; Pross, H.-D.; Russmann, C.; Schneider, E.; Kiefer, J.; Kraft, G.; Lenz, G.; Becher, W.

    1994-01-01

    Heavy ions (HZE-particles) constitute an important part of radiation in space. Although their number is small the high amount of energy transferred by individual particles may cause severe biological effects. Their investigation requires special techniques which were tested by experiments performed at the UNILAC at the GSI (Darmstadt). Diploid yeast was used which is a suitable eucaryotic test system because of its resistance to extreme conditions like dryness and vacuum. Cells were placed on nuclear track detector foils and exposed to ions of different atomic number and energy. To assess the action of one single ion on an individual cell, track parameters and the respective colony forming abilities (CFA) were determined with the help of computer aided image analysis. There is mounting evidence that not only the amount of energy deposited along the particle path, commonly given by the LET, is of importance but also the spatial problem of energy deposition at a submicroscopical scale. It is virtually impossible to investigate track structure effects in detail with whole cell populations and (globally applied) high particle fluences. It is, therefore, necessary to detect the action of simple ions in individual cells. The results show that the biological action depends on atomic number and specific energy of the impinging ions, which can be compared with model calculations of recent track structure models.

  2. RHIC UPGRADES FOR HEAVY IONS AND POLARIZED PROTONS.

    SciTech Connect

    FISCHER, W.; ALESSI, J.; BEN-ZVI, I.; LITVINENKO, V.; ROSER, T.

    2005-10-24

    The Relativistic Heavy Ion Collider (RHIC), in operation since 2000, has exceeded its design parameters. The Enhanced Design parameters, expected to be reached in 2009, call for a 4-fold increase over the heavy ion design luminosity, and a 15-fold increase over the proton design luminosity, the latter with an average polarization of 70%. Also in 2009, it is planned to commission a new Electron Beam Ion Source, offering increased reliability and ion species that cannot be supplied currently. The upgrade to RHIC 11, based on electron cooling of the beams, aims to increase the average heavy ion luminosity by an order of magnitude, and the polarized proton luminosity by a factor 2-5. Plans for an electron-ion collider eRHIC is covered in another article in these proceedings.

  3. Report of the heavy-ion fusion task group

    SciTech Connect

    Sawyer, G.A.; Booth, L.A.; Henderson, D.B.; Jameson, R.A.; Kindel, J.M.; Knapp, E.A.; Pollock, R.; Talbert, W.L.; Thode, L.E.; Williams, J.M.

    1980-02-01

    An assessment of heavy-ion fusion has been completed. Energetic heavy ions, for example 10-GeV uranium, provided by an rf linac or an induction linac, are used as alternatives to laser light to drive inertial confinement fusion pellets. The assessment has covered accelerator technology, transport of heavy-ion beams, target interaction physics, civilian power issues, and military applications. It is concluded that particle accelerators promise to be efficient pellet drivers, but that there are formidable technical problems to be solved. It is recommended that a moderate level research program on heavy-ion fusion be pursued and that LASL should continue to work on critical issues in accelerator development, beam transport, reactor systems studies, and target physics over the next few years.

  4. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  5. Recent trends in parts SEU susceptibility from heavy ions

    SciTech Connect

    Nichols, D.K.; Smith, L.S.; Price, W.E.; Koga, R.; Kolasinski, W.A.

    1987-12-01

    JPL and Aerospace have collected an extensive set of heavy ion single event upset (SEU) test data since their last joint publication in December, 1985. Trends in SEU susceptibility for state-of-the-art parts are presented.

  6. Heavy Ion Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; Diestelhorst, Ryan M.; Cressler, John D.; Dodd, Paul E.; Alles, Michael L.; Schrimpf, Ronald D.; Marshall, Paul W.; Label, Kenneth A.

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  7. Laser cooling of relativistic heavy-ion beams for FAIR

    NASA Astrophysics Data System (ADS)

    Winters, D.; Beck, T.; Birkl, G.; Dimopoulou, C.; Hannen, V.; Kühl, Th; Lochmann, M.; Loeser, M.; Ma, X.; Nolden, F.; Nörtershäuser, W.; Rein, B.; Sánchez, R.; Schramm, U.; Siebold, M.; Spiller, P.; Steck, M.; Stöhlker, Th; Ullmann, J.; Walther, Th; Wen, W.; Yang, J.; Zhang, D.; Bussmann, M.

    2015-11-01

    Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.

  8. Heavy Ion Effects on Kelvin-Helmholtz Instability: Hybrid Study

    NASA Astrophysics Data System (ADS)

    Burgess, D.; Lin, D.

    2015-12-01

    Kelvin-Helmholtz instability (KHI) is a candidate mechanism for solar wind tansportation into the magnetosphere. The statistical study of Bouhram et al. 2005 has shown that heavy ions could dominate the magnetopause for as much as 30% of the time on the dusk side. Thus the influence of heavy ions in solar wind-magnetosphere coupling should not be neglected. However, the magnetohydrodynamic (MHD) linear theory for KHI does not include any ion effects, and people working on the heavy ion effects have not come to an agreement either. Whether the heavy ions promote or inhibit the KHI still remains not well addressed. With a two-dimensional hybrid model, we investigated the effects of ion mass number on the KHI growth rate, starting from the simplest case of uniform density and uniform magnetic field perpendicular to the shear flow. It is shown that the growth rate of the KHI is lower with a heavier mass number. We try to to derive the linear theory for the kinetic KHI and compare it with the hybrid simulation results. The linear theory with ion effects considered is going to be further verified with varying heavy ion fractions and finite magnetic shear. More implications for the dawn-dusk asymmetry of KHI on planetary magnetopause are desirable when comparing the results of opposite magnetic field directions relative to the flow vorticity.

  9. Heavy ion physics at CERN: present and future

    SciTech Connect

    Alessandro, Bruno; Chiesa, Alberta Marzari

    1998-10-05

    After a general introduction on the very high energy heavy ion interactions, the CERN heavy ion program is presented. Three CERN experiments are described in details: NA38/50 (J/{psi} suppression), NA45/CERES (e{sup +}e{sup -} production) and WA85/97 (multi-strange particle production). The ALICE experiment, to be built in the next years and foreseen at the CERN Large Hadron Collider (LHC) is also extensively described.

  10. Bose condensation of nuclei in heavy ion collisions.

    PubMed

    Tripathi, R K; Townsend, L W

    1994-07-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of nuclei in heavy ion collisions. The most favorable conditions of high densities and low temperatures are usually associated with astrophysical processes and may be difficult to achieve in heavy ion collisions. Nonetheless, some suggestions for the possible experimental verification of the existence of this phenomenon are made. PMID:9969695

  11. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  12. The Relativistic Heavy Ion Collider control system

    SciTech Connect

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-12-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning.

  13. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    SciTech Connect

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  14. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  15. RF plasma source for heavy ion beam charge neutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Davidson, Ronald C.; Yu, Simon S.; Logan, B. Grant

    2003-05-01

    Highly ionized plasmas are being used as a medium for charge neutralizing heavy ion beams in order to focus the ion beam to a small spot size. A radio frequency (RF) plasma source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The goal is to operate the source at pressures {approx} 10{sup -5} Torr at full ionization. The initial operation of the source has been at pressures of 10{sup -4}-10{sup -1} Torr and electron densities in the range of 10{sup 8}-10{sup 11} cm{sup -3}. Recently, pulsed operation of the source has enabled operation at pressures in the 10{sup -6} Torr range with densities of 10{sup 11} cm{sup -3}. Near 100% ionization has been achieved. The source has been integrated with the NTX facility and experiments have begun.

  16. Depth-dose relations for heavy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Radiation transport of heavy ions in matter is of interest to radiological protection in space and high-altitude aircraft. In addition, heavy ion beams are expected to be of advantage in radiotherapy since their characteristic Bragg curve allows a relative reduction of the dose in reaching a tumor site and the near elimination of exposure beyond the tumor region as the beam exits the body. Furthermore, the radioresistance of tumorous cells due to their hypoxic state may be reduced or eliminated by the high specific ionization of heavy ion beams. The depth-dose distribution of heavy ion beams consists of energy deposited by the attenuated primary beam with its characteristic Bragg curve and a relatively unstructured background due to secondary radiations produced in nuclear reactions. As the ion mass increases, the secondary contribution becomes more structured and may add significantly to the Bragg peak of the primary ions. The result for heavy ions (z greater than 20) is a greatly broadened Bragg peak region, especially in comparison to straggling effects, which may prove to be of importance in radiotherapy and biomedical research.

  17. Heavy flavor in heavy-ion collisions at RHIC and RHIC II

    SciTech Connect

    Frawley, A D; Ullrich, T; Vogt, R

    2008-03-30

    In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nuclei-nuclei collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a 'perfect liquid' that appears to flow with a near-zero viscosity to entropy ratio--lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nuclear matter. That will require new data that will, in turn, require enhanced capabilities of the RHIC detectors and accelerator. In this report we discuss the scientific opportunities for an upgraded RHIC facility --RHIC II--in conjunction with improved capabilities of the two large RHIC detectors, PHENIX and STAR. We focus solely on heavy flavor probes. Their production rates are calculable using the well-established techniques of perturbative QCD and their sizable interactions with the hot QCD medium provide unique and sensitive measurements of its crucial properties making them one of the key diagnostic tools available to us.

  18. Dynamical Aspects of Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Garcia-Solis, Edmundo Javier

    1995-01-01

    Two independent studies on heavy-ion collisions are presented. In the first part, the charge and mass of the projectile-like fragments produced in the 15-MeV per nucleon ^{40}Ca+^{209 } Bi reaction were determined for products detected near the grazing angle. Neutron number-charge (N-Z) distributions were generated as a function of the total kinetic energy loss and parameterized by their centroids, variances and correlation coefficients. After the interaction, a drift of the charge and mass centroids towards asymmetry is observed. The production of projectile -like fragments is consistent with a tendency of the projectile -like fragments to retain the projectile neutron-to-proton ratio < N > / < Z > = 1. The correlation coefficient remains well below 1.0 for the entire range of total kinetic energy lost. Predictions of two nucleon exchange models, Randrup's and Tassan-Got's, are compared to the experimental results. The models are not able to reproduce the evolution of the experimental distributions, especially the fact that the variances reach a maximum and then decrease as function of the energy loss. This behavior supports the hypothesis that some form of projectile -like fragmentation or cluster emission is perturbing the product distribution from that expected from a damped mechanism. In the second part of the thesis a clustering model that allows the recognition of mass fragments from dynamical simulations has been developed. Studying the evolution of a microscopic computation based on the nuclear -Boltzman transport equation, a suitable time is chosen to identify the bound clusters. At this time the number of binding surfaces for each test nucleon is found. Based on the number of nucleon bindings the interior nucleons are identified, and the cluster kernels are formed. An iterative routine is then applied to determine the coalescence of the surrounding free nucleons. Once the fragment formation has been established, a statistical decay code is used to

  19. Energy loss, hadronization, and hadronic interactions of heavy flavors in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan; Qin, Guang-You; Bass, Steffen A.

    2015-08-01

    We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasielastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball are described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk quark-gluon plasma (QGP) are fed into the hadron cascade ultrarelativistic quantum molecular dynamics (UrQMD) model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high pT; heavy-light quark coalescence enhances heavy meson production at intermediate pT; and scatterings inside the hadron gas further suppress the D meson RAA at large pT and enhance its v2. Our calculations provide good descriptions of heavy meson suppression and elliptic flow observed at both the Large Hadron Collider and the Relativistic Heavy-Ion Collider.

  20. Neoplastic transformation of hamster embyro cells by heavy ions.

    PubMed

    Han, Z; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-01-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation. PMID:11542417

  1. Heavy ion beam transport and interaction with ICF targets

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Aragonés, J. M.; Gago, J. A.; Gámez, L.; González, M. C.; Honrubia, J. J.; Martínez-Val, J. M.; Mínguez, E.; Ocaña, J. L.; Otero, R.; Perlado, J. M.; Santolaya, J. M.; Serrano, J. F.; Velarde, P. M.

    1986-01-01

    Numerical simulation codes provide an essential tool for analyzing the very broad range of concepts and variables considered in ICF targets. In this paper, the relevant processes embodied in the NORCLA code, needed to simulate ICF targets driven by heavy ion beams will be presented. Atomic physic models developed at DENIM to improve the atomic data needed for ion beam plasma interaction will be explained. Concerning the stopping power, the average ionization potential following a Thomas-Fermi model has been calculated, and results are compared with full quantum calculations. Finally, a parametric study of multilayered single shell targets driven by heavy ion beams will be shown.

  2. Operational experience with heavy ions at BNL: An update

    SciTech Connect

    Cardner, C.; Reece, R.K.; Ahrens, L.A.; Barton, D.S.; Beavis, D.; Benjamin, J.; Foelsche, H.; Gill, E.; Raka, E.; Sidhu, S.

    1989-01-01

    Since May 1986, the heavy ion transfer line (HITL) which joins the Tandem Van de Graaff facility and the AGS at Brookhaven National Laboratory has permitted the acceleration of heavy ions (up to sulfur) to 14.5 GeV/nucleon. The Tandem, operating with a pulsed ion source, supplies a fully stripped ion beam at about 7 MeV/nucleon which is transported via the HITL to the AGS. A low frequency rf system accelerates the beam in the AGS to about 200 MeV/nucleon and the high frequency rf system, normally used for proton acceleration, completes the acceleration to 14.5 GeV/nucleon. The high energy ion beams are delivered to four experimental beam lines using standard resonant extraction. Following is an update of the performance and operational characteristics associated with the production, transport, and acceleration of these ion beams. 10 refs., 2 figs., 2 tabs.

  3. Characterizing the Energetic Heavy Ion Environment Inside 4 Jovian Radii

    NASA Astrophysics Data System (ADS)

    Cohen, C. M.; Stone, E. C.

    2004-05-01

    On 21 September 2003 Galileo impacted Jupiter to end its 8-year tour of the Jovian magentosphere. During this last phase data was collected in the very inner part of the magnetosphere at distances < 4 Rj. The region from 2 to 4 Rj was previously explored by Galileo during its 34th orbit around Jupiter. We present the combined data from these two passes obtained by the Heavy Ion Counter (HIC) for heavy ions at energies above 2 MeV/nucleon. In particular we discuss the significant ion absorption near the moons Thebe and Amalthea, the anisotropic pitch angle distribution and the dramatic increase in heavy ion intensity with decreasing radius seen in this region

  4. Heavy Ion Heating at Shocks in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Korreck, K. E.; Stevens, M. L.; Lepri, S. T.; Kasper, J. C.

    2014-12-01

    Ions heavier than protons can be used as tracers for heating mechamisms in solar wind plasma. Measurments by the ACE and WIND satellites provide information on the relative heating of the heavy ions versus the protons. Greater than mass proportional heating has been seen at coronal mass ejections (CME) shock fronts. Using ACE SWICS heavy ions data from CME associated shocks, heavy ion heating and the non-thermal nature of helium and oxygen distributions at 1AU is examined. The WIND SWE data set is used to examine the helium distributions at the shock fronts observed at the spacecraft. Understanding the heating and source of energetic particles and their evolution through the heliosphere is relevant to predicting space weather events and the evolution of the solar wind.

  5. Heavy ion beams in extended materials - Computational methods and experiment

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Schimmerling, W.; Wong, M.; Townsend, L. W.

    1987-01-01

    The transport of heavy ion beams in extended materials is a problem of interest in accelerator and space shielding, radiation therapy, and astrophysical and radiobiological studies. The beam particles change their energy and direction of motion through atomic/molecular collisions and undergo occasional radical transformation in nuclear collision. In health physics applications, a heavy ion beam of initially well defined radiation quality is transformed into a complex mixture of diverse quality components after passing through a modest amount of material. This transformation of radiation quality must be understood to adequately explain the biological response of tissue to heavy ion radiation. A theoretical/experimental program to define an ion beam and its products in extended matter is described.

  6. STEREO Observations of Suprathermal Corotating Interaction Region Ions in the Helium Focusing Cone

    NASA Astrophysics Data System (ADS)

    Bucik, R.; Mall, U.; Korth, A.; Mason, G. M.; Klecker, B.

    2011-12-01

    Interstellar pickup He+ contributes about ~25% of the total He population in corotating interaction regions (CIRs). It has been known that He+ pickup ion density shows annual variations due to gravitational focusing of the Sun. However, the variations in the CIR energetic ions reflecting the temporal changes in the He+ pickup ions remain unproven. In this work we examine the elemental composition and energy spectra of the 0.1 - 1 MeV/nucleon heavy ions accelerated in CIRs. For the investigations we use data from the SIT (Suprathermal Ion Telescope) instruments on board the two STEREO spacecraft (S/C) acquired over the extended minimum phase of Solar Cycle 23 from January 2007 to December 2010. The two STEREO S/C are well separated in heliolongitude, and enter the helium focusing cone at different times. During the investigated period instruments on STEREO observed more than 70 CIR events, allowing one to study CIR ion abundances during solar minimum conditions with unprecedented high statistics. The observations reveal annual variations of relative ion abundances in the CIRs during the 2007-2008 period. In 2010 the elemental composition in CIRs were influenced by solar energetic particle events. We find that the CIR He/H and He/O ratios were enhanced in the period of the focusing cone traversals. By combining the SIT observations with the solar wind plasma observations from the PLASTIC instrument on the STEREO S/C we discuss the correlations between the energy spectral slopes of the suprathermal heavy ions and the He+ pickup ion count rates. In the investigated period the solar wind was dominated by stably recurring CIRs. This could lead to more uniform particle injection and acceleration conditions in the CIRs, making it possible to see the signatures of the focusing cone in the energetic ion population.

  7. ECR (electron cyclotron resonance) ion sources and applications with heavy-ion linacs

    SciTech Connect

    Pardo, R.C.

    1990-01-01

    The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

  8. L X-ray emission induced by heavy ions

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Semaniak, J.; Fijał-Kirejczyk, I.; Jaskóła, M.; Czarnacki, W.; Korman, A.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2015-11-01

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster-Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L2-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  9. The Influence of the Martian Bow Shock on Heavy Planetary Ions

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Liemohn, M. W.; Stenberg, G.; Nilsson, H.; Ramstad, R.; Fraenz, M.

    2014-12-01

    Due to the extent of Mars' exosphere and the large gyroradii of some heavy planetary ions, it is expected that some atmospheric ions will encounter the bow shock. However, the effect that the bow shock has on these heavy ions is relatively unstudied. Mars Express (MEX) ion data is examined to determine whether significant differences exist in the velocity space distributions of energetic planetary ions inside and outside of the shock. To allow for determination of the solar wind motional electric field (Esw) using Mars Global Surveyor (MGS) magnetometer data, the study is focused on the time interval from early 2004 to late 2006 when MEX and MGS overlapped. For each 192 second measurement, an average velocity is assigned to heavy ions at high energies (> 2 keV). The possibility that there is turbulence in the magnetosheath altering the paths of heavy pickup ions will be tested by comparing flight directions relative to the direction of Esw in the magnetosheath to flight directions relative to the Esw direction upstream of the bow shock.

  10. Selected Topics in the Physics of Heavy Ion Collisions (1/3)

    ScienceCinema

    None

    2011-04-25

    In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions.

  11. Selected Topics in the Physics of Heavy Ion Collisions (1/3)

    SciTech Connect

    2011-03-15

    In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions.

  12. Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou

    NASA Astrophysics Data System (ADS)

    Zhang, Hong

    With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL) within four beam time blocks of 6-11 days, collaborating with the General Hospital of Lanzhou Command and the Tumor Hospital of Gansu Province. Patients and Methods: There were 51 patients (31 males and 20 females) with superficially-placed tumors (squamous cell carcinoma of the skin, basal cell carcinoma of the skin, malignant skin melanoma, sarcoma, lymphoma, breast cancer, metastatic lymph nodes of carcinomas and other skin lesions). The tumors were less than 2.1 cm deep to the skin surface. All patients had histological confirmation of their tumors. Karnofsky Performance Scale (KPS) of all patients was more than 70. The majority of patients were with failures or recurrences of conventional therapies. Median age at the time of radiotherapy (RT) was 55.5 years (range 5-85 years). Patients were immobilized with a vacuum cushion or a head mask and irradiated by carbon ion beams with energy 80-100 MeV/u at spread-out Bragg peak field generated from HIRFL, with two and three-dimensional conformal irradiation methods. Target volume was defined by physical palpation [ultrasonography and Computerized tomography (CT), for some cases]. The clinical target volume (CTV) was defined as the gross total volume GTV with a 0.5-1.0cm margin axially. Field placement for radiation treatment planning was done based on the surface markings. RBE of 2.5-3 within the target volume, and 40-75 GyE with a weekly fractionation of 7 × 3-15 GyE/fraction were used in the trial. Patients had follow-up examinations performed 1 month after treatment, in 1 or 2 months for the first 6 months, and 3

  13. Heavy-ion tumor therapy: Physical and radiobiological benefits

    NASA Astrophysics Data System (ADS)

    Schardt, Dieter; Elsässer, Thilo; Schulz-Ertner, Daniela

    2010-01-01

    High-energy beams of charged nuclear particles (protons and heavier ions) offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. Taking full advantage of the well-defined range and the small lateral beam spread, modern scanning beam systems allow delivery of the dose with millimeter precision. In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced biological effectiveness in the Bragg peak region caused by the dense ionization of individual particle tracks resulting in reduced cellular repair. This makes them particularly attractive for the treatment of radio-resistant tumors localized near organs at risk. While tumor therapy with protons is a well-established treatment modality with more than 60 000 patients treated worldwide, the application of heavy ions is so far restricted to a few facilities only. Nevertheless, results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities. This article reviews the progress in heavy-ion therapy, including physical and technical developments, radiobiological studies and models, as well as radiooncological studies. As a result of the promising clinical results obtained with carbon-ion beams in the past ten years at the Heavy Ion Medical Accelerator facility (Japan) and in a pilot project at GSI Darmstadt (Germany), the plans for new clinical centers for heavy-ion or combined proton and heavy-ion therapy have recently received a substantial boost.

  14. Heavy-ion tumor therapy: Physical and radiobiological benefits

    SciTech Connect

    Schardt, Dieter; Elsaesser, Thilo; Schulz-Ertner, Daniela

    2010-01-15

    High-energy beams of charged nuclear particles (protons and heavier ions) offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. Taking full advantage of the well-defined range and the small lateral beam spread, modern scanning beam systems allow delivery of the dose with millimeter precision. In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced biological effectiveness in the Bragg peak region caused by the dense ionization of individual particle tracks resulting in reduced cellular repair. This makes them particularly attractive for the treatment of radio-resistant tumors localized near organs at risk. While tumor therapy with protons is a well-established treatment modality with more than 60 000 patients treated worldwide, the application of heavy ions is so far restricted to a few facilities only. Nevertheless, results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities. This article reviews the progress in heavy-ion therapy, including physical and technical developments, radiobiological studies and models, as well as radiooncological studies. As a result of the promising clinical results obtained with carbon-ion beams in the past ten years at the Heavy Ion Medical Accelerator facility (Japan) and in a pilot project at GSI Darmstadt (Germany), the plans for new clinical centers for heavy-ion or combined proton and heavy-ion therapy have recently received a substantial boost.

  15. Possibilities for relativistic heavy ion collisions at Brookhaven

    SciTech Connect

    Barton, M.O.; Hahn, H.

    1983-01-01

    Since 1980 there has been considerable interest at Brookhaven in exploiting the existence of the Colliding Beam Accelerator, CBA, earlier referred to as Isabelle, for the generation of heavy ion collisions at very high energies. The only requirement for a heavy ion collider would have been for an energy booster for the Tandem accelerator and a tunnel and magnet transport system to the AGS. For a few million dollars heavy ions up to nearly 200 GeV/amu could be collided with luminosities of 10/sup 27/ to 10/sup 28//cm/sup 2/ sec in experimental halls with ideal facilities for heavy ion physics studies. Although the CBA project has been stopped, it is still true that Brookhaven has in place enormous advantages for constructing a heavy ion collider. This paper describes a design that exploits those advantages. It uses the tunnel and other civil construction, the refrigerator, vacuum equipment, injection line components, and the magnet design for which there is expertise and a production facility in place. The result is a machine that appears quite different than would a machine designed from first principles without access to these resources but one which is of high performance and of very attractive cost.

  16. Geometrical methods in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Taliotis, Anastasios

    Currently there exists no known way to construct the Stress-Energy tensor (Tmunu) of the medium produced in heavy ion collisions at strong coupling from purely theoretical grounds. In this work, some steps are taken in that direction. In particular, the evolution of Tmunu at strong coupling and at high energies is being studied for early proper times (tau). This is achieved in the context of the AdS/CFT duality by constructing the evolution of the dual geometry in an AdS5 background. We consider high energy collisions of two shock waves in AdS5 as a model of ultra-relativistic nucleus-nucleus collisions in the boundary theory. We first calculate the graviton field produced in the collisions in the LO, NLO and NNLO approximations, corresponding to two, three and four-graviton exchanges with the shock waves. We use this model to study Tmunu and in particular the energy density of the strongly-coupled matter created immediately after the collision because as we argue, the expansion of the energy density (epsilon) in the powers of proper time tau squared corresponds on the gravity side to a perturbative expansion of the metric in graviton exchanges. We point out that shock waves corresponding to physical energy-momentum tensors of the nuclei is likely to completely stop after the collision; on the field theory side, this corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. This motivates a more detailed investigation. For this reason we consider the asymmetric limit where the energy density in one shock wave is much higher than in the other one. In the boundary theory this setup corresponds to proton-nucleus collisions. Employing the eikonal approximation we find the exact high energy analytic solution for the metric in AdS5 for the asymmetric collision of two delta-function shock waves. The solution resums all-order graviton exchanges with the nucleus-shock wave and a single-graviton exchange with the proton

  17. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1990--September 30, 1990

    SciTech Connect

    Not Available

    1990-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, induction acceleration, is being studied at the Lawrence Berkeley Laboratory and at the Lawrence Livermore National Laboratory. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple-beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification without significant dilution of the optical quality of the beams; (4) final bunching, transport, and accurate focusing on a small target.

  18. Inactivation of individual Bacillus subtilis spores in dependence on their distance to single cosmic heavy ions.

    PubMed

    Facius, R; Reitz, G; Schafer, M

    1994-10-01

    For radiobiological experiments in space, designed to investigate biological effects of the heavy ions of the cosmic radiation field, a mandatory requirement is the possibility to spatially correlate the observed biological response of individual test organisms to the passage of single heavy ions. Among several undertakings towards this goal, the BIOSTACK experiments in the Apollo missions achieved the highest precision and therefore the most detailed information on this question. Spores of Bacillus subtilis as a highly radiation resistant and microscopically small test organism yielded these quantitative results. This paper will focus on experimental and procedural details, which must be included for an interpretation and a discussion of these findings in comparison to control experiments with accelerated heavy ions. PMID:11539939

  19. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1--September 30, 1988

    SciTech Connect

    Not Available

    1988-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; final bunching, transport, and accurate focusing on a small target.

  20. Comparison of Single Event Transients Generated by Short Pulsed X-Rays, Lasers and Heavy Ions

    SciTech Connect

    Cardoza, David; LaLumondiere, Stephen D.; Tockstein, Michael A.; Brewe, Dale L.; Wells, Nathan P.; Koga, Rokutaro; Gaab, K. M.; Lotshaw, William T.; Moss, Steven C.

    2014-12-01

    We report an experimental study of the transients generated by pulsed x-rays, heavy ions, and different laser wavelengths in a Si p-i-n photodiode. We compare the charge collected by all of the excitation methods to determine the equivalent LET for pulsed x-rays relative to heavy ions. Our comparisons show that pulsed x-rays from synchrotron sources can generate a large range of equivalent LET and generate transients similar to those excited by laser pulses and heavy ion strikes. We also look at how the pulse width of the transients changes for the different excitation methods. We show that the charge collected with pulsed x-rays is greater than expected as the x-ray photon energy increases. Combined with their capability of focusing to small spot sizes and of penetrating metallization, pulsed x-rays are a promising new tool for high resolution screening of SEE susceptibility

  1. Shielding analysis for a heavy ion beam chamber with plasma channels for ion transport

    SciTech Connect

    Sawan, M.E.; Peterson, R.R.; Yu, S.

    2000-06-28

    Neutronics analysis has been performed to assess the shielding requirements for the insulators and final focusing magnets in a modified HYLIFE-II target chamber that utilizes pre-formed plasma channels for heavy ion beam transport. Using 65 cm thick Flibe jet assemblies provides adequate shielding for the electrical insulator units. Additional shielding is needed in front of the final focusing superconducting quadrupole magnets. A shield with a thickness varying between 45 and 90 cm needs to be provided in front of the quadrupole unit. The final laser mirrors located along the channel axis are in the direct line-of-sight of source neutrons. Neutronics calculations were performed to determine the constraints on the placement of these mirrors to be lifetime components.

  2. Advances in U.S. Heavy Ion Fusion Science

    SciTech Connect

    Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Kireeff-Covo, M.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Ni, P.; Perkins, L. J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Startsev, E.A.; Waldron, W.L.

    2007-09-01

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy.

  3. Advances in U.S. Heavy Ion Fusion Science

    SciTech Connect

    Barnard, JJ; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Kireeff-Covo, M.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Ni, P.; Perkins, L.J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Startsev, E.A.; Waldron, W.L.

    2007-09-03

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy.

  4. Inferring Magnetospheric Heavy Ion Density using EMIC Waves

    SciTech Connect

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2014-05-01

    We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

  5. Direct-driven target implosion in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-03-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination.

  6. Energy levels of a heavy ion moving in dense plasmas

    SciTech Connect

    Hu, Hongwei; Chen, Wencong; Zhao, Yongtao; Li, Fuli; Dong, Chenzhong

    2013-12-15

    In this paper, the potential of a slowly moving test particle moving in collisional dense plasmas is studied. It is composed of the Debye-shielding potential, wake potential, and collision term. The Ritz variational-perturbational method is developed for calculating relativistic binding energy levels of a heavy ion moving in dense plasmas. Binding energy levels of a heavy ion moving in plasmas are calculated. The results show that both non-relativistic energy levels and relativistic energy levels become more negative as the temperature becomes high. They also become more negative as the number density decreasing. Relativistic correction is important for calculating binding energy levels. Both relativistic energy levels and non-relativistic energy levels vary minutely as the speed of heavy ion varies.

  7. Thermal, chemical and spectral equilibration in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Almási, Gábor András; Wolf, György

    2015-11-01

    We have considered the equilibration in relativistic heavy ion collisions at energies 1-7 A GeV using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20-40 fm/c whose time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have shown that in the testparticle simulation of the Boltzmann equation the mass spectra of broad resonances follow instantaneously their in-medium spectral functions as expected from the Markovian approximation to the Kadanoff-Baym equations employed via the (local) gradient expansion.

  8. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    NASA Astrophysics Data System (ADS)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  9. Sputtering Threshold Energies of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Mantenieks, Maris A.

    1999-01-01

    Sputter erosion in ion thrusters has been measured in lifetests at discharge voltages as low as 25 V. Thruster operation at this discharge voltage results in component erosion rates sufficiently low to satisfy most mission requirements. It has been recognized that most of the internal sputtering in ion thrusters is done by doubly charged ions. Knowledge of the sputtering threshold voltage of a xenon molybdenum system would be beneficial in understanding the sputtering process as well as making more accurate calculations of the sputtering rates of ion thruster components. Sputtering threshold energies calculated from various formulations found in the literature results in values ranging from 28 to 200 eV. It is evident that some of these formulations cannot be relied upon to provide sputtering thresholds with any degree of accuracy. This paper re-examines the threshold energies measurements made in the early sixties by Askerov and Sena, and Stuart and Wehner. The threshold voltages as derived by Askerov and au have been reevaluated by using a different extrapolation method of sputter yields at low ion energies. The resulting threshold energies are in general similar to those measured by Stuart and Wehner. An empirical relationship is derived,for mercury and xenon ions for the ratio of the sputtering threshold energy to the sublimation energy as a function of the ratio of target to ion atomic mass.

  10. A Nanoscale-Localized Ion Damage Josephson Junction Using Focused Ion Beam and Ion Implanter.

    PubMed

    Wu, C H; Ku, W S; Jhan, F J; Chen, J H; Jeng, J T

    2015-05-01

    High-T(c) Josephson junctions were fabricated by nanolithography using focused ion beam (FIB) milling and ion implantation. The junctions were formed in a YBa2Cu3O7-x, thin film in regions defined using a gold-film mask with 50-nm-wide (top) slits, engraved by FIB. The focused ion beam system parameters for dwell time and passes were set to remove gold up to a precise depth. 150 keV oxygen ions were implanted at a nominal dose of up to 5 x 10(13) ions/cm2 into YBa2Cu3O7-x microbridges through the nanoscale slits. The current-voltage curves of the ion implantation junctions exhibit resistive-shunted-junction-like behavior at 77 K. The junction had an approximately linear temperature dependence of critical current. Shapiro steps were observed under microwave irradiation. A 50-nm-wide slit and 0-20-nm-thick buffer layers were chosen in order to make Josephson junctions due to the V-shape of the FIB-milled trench. PMID:26504998

  11. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Astrophysics Data System (ADS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Bazylinski, D. A.; Kirschvink, J. L.; McKay, D. S.; Vali, H.; Gibson, E. K., Jr.; Romanek, C. S.

    2005-03-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy.

  12. Focusing of high-current laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabłoński, S.

    2007-04-01

    Using a two-dimensional relativistic hydrodynamic code, it is shown that a dense high-current ion beam driven by a short-pulse laser can be effectively focused by curving the target front surface. The focused beam parameters essentially depend on the density gradient scale length of the preplasma Ln and the surface curvature radius RT. When Ln⩽0.5λL (λL is the laser wavelength) and RT is comparable with the laser beam aperture dL, a significant fraction of the accelerated ions is focused on a spot much smaller than dL, which results in a considerable increase in the ion fluence and current density. Using high-contrast multipetawatt picosecond laser pulses of relativistic intensity (˜1020W/cm2), focused ion (proton) current densities approaching those required for fast ignition of DT fuel seem to be feasible.

  13. Experimental measurement of the 4-d transverse phase space map of a heavy ion beam

    SciTech Connect

    Hopkins, H S

    1997-12-01

    The development and employment of a new diagnostic instrument for characterizing intense, heavy ion beams is reported on. This instrument, the ''Gated Beam Imager'' or ''GBI'' was designed for use on Lawrence Livermore National Laboratory Heavy Ion Fusion Project's ''Small Recirculator'', an integrated, scaled physics experiment and engineering development project for studying the transport and control of intense heavy ion beams as inertial fusion drivers in the production of electric power. The GBI allows rapid measurement and calculation of a heavy ion beam's characteristics to include all the first and second moments of the transverse phase space distribution, transverse emittance, envelope parameters and beam centroid. The GBI, with appropriate gating produces a time history of the beam resulting in a 4-D phase-space and time ''map'' of the beam. A unique capability of the GBI over existing diagnostic instruments is its ability to measure the ''cross'' moments between the two transverse orthogonal directions. Non-zero ''cross'' moments in the alternating gradient lattice of the Small Recirculator are indicative of focusing element rotational misalignments contributing to beam emittance growth. This emittance growth, while having the same effect on the ability to focus a beam as emittance growth caused by non-linear effects, is in principle removable by an appropriate number of focusing elements. The instrument uses the pepperpot method of introducing a plate with many pinholes into the beam and observing the images of the resulting beamlets as they interact with a detector after an appropriate drift distance. In order to produce adequate optical signal and repeatability, the detector was chosen to be a microchannel plate (MCP) with a phosphor readout screen. The heavy ions in the pepperpot beamlets are stopped in the MCP's thin front metal anode and the resulting secondary electron signal is amplified and proximity-focused onto the phosphor while maintaining

  14. Experimental measurement of the 4-D transverse phase space map of a heavy ion beam

    NASA Astrophysics Data System (ADS)

    Hopkins, Harvey Small

    The development and employment of a new diagnostic instrument for characterizing intense, heavy ion beams is reported on. This instrument, the 'Gated Beam Imager' or 'GBI' was designed for use on Lawrence Livermore National Laboratory Heavy Ion Fusion Project's 'Small Recirculator', an integrated, scaled physics experiment and engineering development project for studying the transport and control of intense heavy ion beams as inertial fusion drivers in the production of electric power. The GBI allows rapid measurement and calculation of a heavy ion beam's characteristics to include all the first and second moments of the transverse phase space distribution, transverse emittance, envelope parameters and beam centroid. The GBI, with appropriate gating produces a time history of the beam resulting in a 4-D phase-space and time 'map' of the beam. A unique capability of the GBI over existing diagnostic instruments is its ability to measure the 'cross' moments between the two transverse orthogonal directions. Non- zero 'cross' moments in the alternating gradient lattice of the Small Recirculator are indicative of focusing element rotational misalignments contributing to beam emittance growth. This emittance growth, while having the same effect on the ability to focus a beam as emittance growth caused by non-linear effects, is in principle removable by an appropriate number of focusing elements. The instrument uses the pepperpot method of introducing a plate with many pinholes into the beam and observing the images of the resulting beamlets as they interact with a detector after an appropriate drift distance. In order to produce adequate optical signal and repeatability, the detector was chosen to be a microchannel plate (MCP) with a phosphor readout screen. The heavy ions in the pepperpot beamlets are stopped in the MCP's thin front metal anode and the resulting secondary electron signal is amplified and proximity-focused onto the phosphor while maintaining the spatial

  15. Mutagenic effects of heavy ion radiation in plants

    NASA Astrophysics Data System (ADS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-10-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  16. Mutagenic effects of heavy ion radiation in plants

    NASA Technical Reports Server (NTRS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  17. Mutagenic effects of heavy ion radiation in plants.

    PubMed

    Mei, M; Deng, H; Lu, Y; Zhuang, C; Liu, Z; Qiu, Q; Qiu, Y; Yang, T C

    1994-10-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants. PMID:11539972

  18. Heating of heavy ions on auroral field lines

    SciTech Connect

    Nishikawa, K.I.; Okuda, H., Hasegawa, A.

    1983-01-01

    Heating of heavy ions is studied in the presence of large amplitude hydrogen cyclotron waves. A three wave decay process, in which a large amplitude pump hydrogen cyclotron wave decays into a daughter hydrogen cyclotron wave and a low frequency oxygen cyclotron wave, is studied theoretically and by numerical simulations. The numerical simulations show a decay instability resulting in strong heating of both the oxygen ions and the hydrogen ions. In particular, the high energy tail of the oxygen ions is observed in the perpendicular distribution.

  19. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  20. Applications of focused ion beam systems in gunshot residue investigation.

    PubMed

    Niewöhner, L; Wenz, H W

    1999-01-01

    Scanning ion microscopy technology has opened a new door to forensic scientists, allowing the GSR investigator to see inside a particle's core. Using a focused ion beam, particles can be cross-sectioned, revealing interior morphology and character that can be utilized for identification of the ammunition manufacturer. PMID:9987878

  1. Reducing hazardous heavy metal ions using mangium bark waste.

    PubMed

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater. PMID:27179811

  2. Heavy ions at steamboat: summary of parallel sessions

    SciTech Connect

    Ludlam, T.W.

    1984-01-01

    The interest in heavy ions at the intersection between particle and nuclear physics is motivated by the opportunity for an entirely new approach to the understanding of fundamental interactions by studying extreme states of nuclear matter. At this conference we have seen important new results on some of the central issues including: (1) how well can we predict the landscape of the extremes - that is, the phase structure of QCD and nuclear matter; (2) can we explore it with heavy ion collisions; and (3) can we recognize the appearance of new terrain. Our present understanding of the behavior of nuclear matter under extreme conditions is briefly discussed. 16 references. (WHK)

  3. Charge Strippers of Heavy Ions for High Intensity Accelerators

    NASA Astrophysics Data System (ADS)

    Nolen, Jerry A.; Marti, Felix

    2014-02-01

    Charge strippers play a critical role in many high intensity heavy ion accelerators. Here we present some history of recent stripper technology development and indicate the capabilities and limitations of the various approaches. The properties of solid, gaseous, and liquid strippers are covered. In particular, the limitations of solid strippers for high intensity, high atomic number heavy ions and the unique features of helium gas and liquid lithium for high intensity applications are covered. The need for high quality simulation of stripper performance as important input for system optimization is explained and examples of the current simulation codes are given.

  4. Complexified boost invariance and holographic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.; van der Schee, Wilke

    2015-01-01

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.

  5. Solar wind heavy ions from flare-heated coronal plasma

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Fenimore, E. E.; Gosling, J. T.

    1979-01-01

    Information concerning the coronal expansion is carried by solar-wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy-ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to originate from coronal holes. Although the sources of the IS plasma are uncertain, the heavy-ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at a temperature of approximately 1.6 million K, while that of Fe is frozen in farther out at about 1.5 million K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe(16+) ions, not usually found in IS flows, and the derived coronal freezing-in temperatures are significantly higher. The coronal sources of some of these ionizationally hot flows are identified as solar flares.

  6. Residual gas fluorescence monitor for relativistic heavy ions at RHIC

    NASA Astrophysics Data System (ADS)

    Tsang, T.; Gassner, D.; Minty, M.

    2013-10-01

    A residual gas fluorescence beam profile monitor at the Relativistic Heavy Ion Collider (RHIC) has successfully recorded beam images of various species of relativistic heavy ions during FY2012 operations. These fully striped ions include gold, copper, and uranium at 100, 99.9, and 96.4GeV/n, respectively. Their beam profiles give an independent measurement of the RHIC beam size and emittance. We estimated their corresponding fluorescence cross sections to be 2.1×10-16, 1.8×10-17, and 2.6×10-16cm2, and obtained their rms transverse beam sizes of 0.36, 0.37, 0.24 mm for gold, copper, and uranium ions, respectively. They are the smallest ion beam width, thus lowest beam emittance, ever produced at RHIC or any other high-energy heavy ion colliders. These extremely small beam sizes may have reached a fundamental limit to residual gas fluorescence based beam profile monitor. Nevertheless, this beam diagnostic technique, utilizing the beam-induced fluorescence from residual gas where hydrogen is still the dominant constituent in nearly all vacuum systems, represents a passive, robust, truly noninvasive, monitor for high-energy ion beams.

  7. Single event upsets caused by solar energetic heavy ions

    SciTech Connect

    Tylka, A.J.; Adams, J.H. Jr.; Boberg, P.R.; Dietrich, W.F.; Smith, E.C.

    1996-12-01

    The authors calculate single event upset (SEU) rates due to protons, alphas, and heavier ions in two satellite systems for the major solar particle events of 1989--92, using a new and complete analysis of GOES proton data and high-energy heavy-ion fluences from the University of Chicago Cosmic Ray Telescope on IMP-8. These measurements cover the entire range of energies relevant to SEU studies and therefore overcome shortcomings of previous studies, which relied upon theoretical or semi-empirical estimates of high-energy heavy-ion spectra. They compare the results to the observed SEU rates in these events. The SEU rates in one device were overwhelmingly dominated by protons. However, even after taking into account uncertainties in the ground-test cross-section data, the authors find that at least {approximately}45% of the SEUs in the other device must have been caused by heavy ions. The results demonstrate that both protons and heavy ions must be considered in order to make a reliable assessment of SEU vulnerabilities. Furthermore, the GOES/Chicago database of solar particle events provides a basis for making accurate solar particle SEU calculations and credible worst-case estimates. In particular, measurements of the historic solar particle events of October 1989 are used in worst week and worst day environment models in CREME96, a revision of NRL`s Cosmic Ray Effects on MicroElectronics code.

  8. Heavy ion acceleration at the AGS: Present and future plans

    SciTech Connect

    Lee, Y.Y.

    1989-01-01

    The Brookhaven AGS is alternating gradient synchrotron, 807 meters in circumference, which was originally designed for only protons. Using the 15 MV Brookhaven Tandem Van de Graaff as an injector, the AGS started to accelerate heavy ions of mass lighter than sulfur. Because of the relatively poor vacuum (/approximately/10/sup /minus/8/ Torr), the AGS is not able to accelerate heavier ions which could not be fully stripped of electrons at the Tandem energy. When the AGS Booster, which is under construction, is completed the operation will be extended to all species of heavy ions including gold and uranium. Because ultra-high vacuum (/approximately/10/sup /minus/11/ Torr) is planned, the Booster can accelerate partially stripped elements. The operational experience, the parameters, and scheme of heavy ion acceleration will be presented in detail from injection to extraction, as well as future injection into the new Relativistic Heavy Ion Collider (RHIC). A future plan to improve intensity of the accelerator will also be presented. 5 figs., 4 tabs.

  9. Design and Characterization of a Neutralized-Transport Experiment for Heavy-Ion Fusion

    SciTech Connect

    Henderson, E; Eylon, S; Roy, P; Yu, S S; Anders, A; Bieniosek, F M; Greenway, W G; Logan, B G; MacGill, R A; Shuman, D B; Vanecek, D L; Waldron, W L; Sharp, W M; Houck, T L; Davidson, R C; Efthimion, P C; Gilson, E P; Sefkow, A B; Welch, D R; Rose, D V; Olson, C L

    2004-05-24

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, a converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present the first results from the experiment.

  10. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    SciTech Connect

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  11. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  12. Laser-driven multicharged heavy ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of <10 J laser energy, 36 fs pulse width, and the contrast level of ~1010 from 200 TW class Ti:sapphire J-KAREN laser system at JAEA is used in the experiment. Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  13. Calculations of heavy ion charge state distributions for nonequilibrium conditions

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Hovestadt, D.

    1985-01-01

    Numerical calculations of the charge state distributions of test ions in a hot plasma under nonequilibrium conditions are presented. The mean ionic charges of heavy ions for finite residence times in an instantaneously heated plasma and for a non-Maxwellian electron distribution function are derived. The results are compared with measurements of the charge states of solar energetic particles, and it is found that neither of the two simple cases considered can explain the observations.

  14. Possible detection of energetic Jovian heavy ions at Skylab orbit

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1979-01-01

    Evidence for the presence of sodium ions at a concentration about 10% that of oxygen among the particles with energies 10 to 20 MeV/nucleon seen with a detector on Skylab suggests that Jupiter is a significant source of energetic heavy particles inside the earth's magnetosphere. A numerical estimate based on the density of energetic sodium ions at 50 Jupiter radii measured on Voyager 1 indicates that the source strength is adequate.

  15. The integrated beam experiment - A next step experiment for heavy ion fusion

    SciTech Connect

    Celata, C.M.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, D.P. Grote; Molvik, A.W.; Sharp, W.M.; Rose, D.V.; Welch, D.R.; Davidson, R.C.; Kaganovich, Igor D.; Qin, H.; Startsev, Edward A.

    2003-09-01

    The U.S. Heavy Ion Fusion Virtual National Laboratory is proposing as its next experiment the Integrated Beam Experiment (IBX). All experiments in the U.S. Heavy Ion Fusion (HIF) program up to this time have been of modest scale and have studied the physics of selected parts of a heavy ion driver. The mission of the IBX, a proof-of-principle experiment, is to demonstrate in one integrated experiment the transport from source to focus of a single heavy ion beam with driver-relevant parameters--i.e., the production, acceleration, compression, neutralization, and final focus of such a beam. Present preconceptual designs for the IBX envision a 5-10 MeV induction linac accelerating one K{sup +} beam. At injection (1.7 MeV) the beam current is approximately 500 mA, with pulse length of 300 ns. Design flexibility allows for several different acceleration and compression schedules, including the possibility of longitudinal (unneutralized) drift compression by a factor of up to ten in pulse length after acceleration, and neutralized drift compression. Physics requirements for the IBX, and preliminary physics and engineering design work are discussed in this paper.

  16. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE PAGESBeta

    Okamura, M.; Sekine, M.; Ikeda, S.; Kanesue, T.; Kumaki, M.; Fuwa, Y.

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  17. Inferring magnetospheric heavy ion density using EMIC waves

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2015-08-01

    We present a method to infer heavy ion concentration ratios from electromagnetic ion cyclotron (EMIC) wave observations that result from ion-ion hybrid (IIH) resonance. A key feature of the IIH resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. These mode-converted waves at the IIH resonance are localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this paper, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and wave frequencies using a dipole magnetic field model. We find that the resonance only occurs over a limited range of wave frequency such that the IIH resonance frequency is close to but not exactly the same as the crossover frequency. Using the wave absorption and EMIC waves observed from the GOES 12 satellite, we demonstrate how this technique can be used to estimate the He+ concentration of around 4% near L = 6.6 assuming electron-H+-He+ plasma.

  18. Progress report on the Heavy Ions in Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Beahm, Lorraine P.; Boberg, Paul R.; Tylka, Allan J.

    1993-01-01

    One of the objectives of the Heavy Ions In Space (HIIS) experiment is to investigate heavy ions which appear at Long Duration Exposure Facility (LDEF) below the geomagnetic cutoff for fully-ionized galactic cosmic rays. Possible sources of such 'below-cutoff' particles are partially-ionized solar energetic particles, the anomalous component of cosmic rays, and magnetospherically-trapped particles. In recent years, there have also been reports of below-cutoff ions which do not appear to be from any known source. Although most of these observations are based on only a handful of ions, they have led to speculation about 'partially-ionized galactic cosmic rays' and 'near-by cosmic ray sources'. The collecting power of HIIS is order of magnitude larger than that of the instruments which reported these results, so HIIS should be able to confirm these observations and perhaps discover the source of these particles. Preliminary results on below-cutoff heavy-ions are reported. Observations to possible known sources of such ions are compared. A second objective of the HIIS experiment is to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table. A report on the status of this analysis is presented.

  19. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. PMID:20656104

  20. Heavy Ion Carcinogenesis and Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Durante, Marco

    2008-01-01

    Prior to the human exploration of Mars or long duration stays on the Earth s moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been show to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, while obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.

  1. Ionization, ion distribution, and ion focusing in laser plasmas from atomic and diatomic targets

    SciTech Connect

    Srivastava, S. N.; Rohr, K.; Sinha, B. K.

    2006-04-01

    Charge-resolved measurements of the total number of particles from plasmas produced from planar, monoatomic targets of copper and tungsten as well as the binary targets of copper and tungsten are reported, using a 125 mJ, 5 ns, Nd:YAG laser, at a laser intensity of about 10{sup 10} W/cm{sup 2}. The measurements show a severe quenching of the ionization states in the case of the diatomic targets. These measurements and their variations with ionization state support the theoretical investigations of plasma motion under the influence of the viscous force in case of plasmas consisting of light and heavy particles. Gaussian width measurements of the angular particle distribution showed a focusing effect towards the target normal, the width decreasing as the ion mass and ionization state increased. From the analysis of the theoretical results on self-similarity expansion it is concluded that the ion acceleration due to the built-in electrostatic potential is not significant.

  2. Accelerator mass spectrometry with heavy ions

    NASA Astrophysics Data System (ADS)

    Haberstock, Günther; Heinzl, Johann; Korschinek, Gunther; Morinaga, Haruhiko; Nolte, Eckehart; Ratzinger, Ulrich; Kato, Kazuo; Wolf, Manfred

    1986-11-01

    Accelerator mass spectrometry measurements with fully stripped 36Cl ions have been performed at the Munich accelerator laboratory in order to date groundwaters and palaeontological samples, to study anthropogenic 36Cl produced through nuclear tests and to determine the fast neutron flux of the Hiroshima A-bomb.

  3. Overview of U.S. heavy ion fusion progress and plans

    SciTech Connect

    Logan, G.; Bieniosek`, F.; Celata, C.; Henestroza, E.; Kwan, J; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2004-12-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  4. Mini RF-driven ion source for focused ion beam system

    SciTech Connect

    Jiang, X.; Ji, Q.; Chang, A.; Leung, K.N.

    2002-08-02

    Mini RF-driven ion sources with 1.2 cm and 1.5 cm inner chamber diameter have been developed at Lawrence Berkeley National Laboratory. Several gas species have been tested including argon, krypton and hydrogen. These mini ion sources operate in inductively coupled mode and are capable of generating high current density ion beams at tens of watts. Since the plasma potential is relatively low in the plasma chamber, these mini ion sources can function reliably without any perceptible sputtering damage. The mini RF-driven ion sources will be combined with electrostatic focusing columns, and are capable of producing nano focused ion beams for micro machining and semiconductor fabrications.

  5. Fission in intermediate energy heavy ion reactions

    SciTech Connect

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.

    1989-04-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components--intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 15 refs., 7 figs.

  6. Role of giant resonances in heavy-ion radiative capture

    SciTech Connect

    Sandorfi, A.M.

    1984-01-01

    The main features and physics of the radiative capture of heavy ions are reviewed. Data are discussed from three reactions: /sup 12/C(/sup 12/C,..gamma..)/sup 24/Mg, /sup 14/C(/sup 12/C,..gamma..)/sup 26/Mg, /sup 12/C(/sup 16/O,..gamma..)/sup 28/Si. Excitation functions are given and discussed. 17 references.

  7. (Reaction mechanism studies of heavy ion induced nuclear reactions)

    SciTech Connect

    Mignerey, A.C.

    1991-01-01

    This report discusses the following research projects; decay of excited nuclei formed in La-induced reactions at E/A = 45 MeV; mass and charge distributions in Cl-induced heavy ion reactions; and mass and charge distributions in {sup 56}Fe + {sup 165}Ho at E/A = 12 MeV.

  8. Photon and dilepton production in high energy heavy ion collisions

    DOE PAGESBeta

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  9. The chromatic correction in RHIC (Relativistic Heavy Ion Collider)

    SciTech Connect

    Lee, S.Y.; Dell, G.F.; Hahn, H.; Parzen, G.

    1987-01-01

    The scheme for the correction of chromatic effects in the Relativistic Heavy Ion Collider at BNL is discussed. This scheme uses six families of sextupoles excited by four independent power supplies, and provides adequate control of linear and quadratic terms in the tune vs momentum dependence and reduces the variation of the betatron amplitude, vs momentum.

  10. Heavy ion collisions and the pre-equilibrium exciton model

    SciTech Connect

    Betak, E.

    2012-10-20

    We present a feasible way to apply the pre-equilibrium exciton model in its masterequation formulation to heavy-ion induced reactions including spin variables. Emission of nucleons, {gamma}'s and also light clusters is included in our model.

  11. Overview of Device SEE Susceptibility from Heavy Ions

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Coss, J. R.; McCarthy, K. P.; Schwartz, H. R.; Smith, L. S.

    1998-01-01

    A fifth set of heavy ion single event effects (SEE) test data have been collected since the last IEEE publications (1,2,3,4) in December issues for 1985, 1987, 1989, and 1991. Trends in SEE susceptibility (including soft errors and latchup) for state-of-the-art parts are evaluated.

  12. Electromagnetic dissociation effects in galactic heavy-ion fragmentation

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.

    1986-01-01

    Methods for calculating cross sections for the breakup of galactic heavy ions by the Coulomb fields of the interacting nuclei are presented. By using the Weizsacker-Williams method of virtual quanta, estimates of electromagnetic dissociation cross sections for a variety of reactions applicable to galactic cosmic ray shielding studies are presented and compared with other predictions and with available experimental data.

  13. Heavy-ion reaction mechanisms studied with the spin spectrometer

    SciTech Connect

    Halbert, M.L.

    1983-01-01

    Experimental data and statistical-model calculations for xn and ..cap alpha..xn products of the reaction /sup 20/Ne + /sup 146/Nd at 136 MeV are shown to be in generally good agreement, indicating that equilibrium processes are dominant. Preliminary results on the heavy-ion ejectiles from /sup 19/F + /sup 159/Tb are presented.

  14. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  15. Trends in Device SEE Susceptibility from Heavy Ions

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Coss, J. R.; McCarty, K. P.; Schwartz, H. R.; Swift, G. M.; Watson, R. K.; Koga, R.; Crain, W. R.; Crawford, K. B.; Hansel, S. J.

    1995-01-01

    The sixth set of heavy ion single event effects (SEE) test data have been collected since the last IEEE publications in December issues of IEEE - Nuclear Science Transactions for 1985, 1987, 1989, 1991, and the IEEE Workshop Record, 1993. Trends in SEE susceptibility (including soft errors and latchup) for state-of- are evaluated.

  16. Probing the nuclear structure with heavy-ion reactions

    SciTech Connect

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions.

  17. Mechanism of dissipation in heavy-ion reactions

    SciTech Connect

    Nix, J.R.; Sierk, A.J.

    1987-01-01

    We discuss a new surface-plus-window mechanism for the conversion of nuclear collective energy into internal degrees of freedom at intermediate excitation energies. This novel dissipation mechanism, which results from the long mean free path of nucleons inside a nucleus, involves interactions of either one or two nucleons with the moving nuclear surface and also, for dumbbell-like shapes encountered in heavy-ion reactions and fission, the transfer of nucleons through the window separating the two portions of the system. To illustrate the effect of surface-plus-window dissipation on heavy-ion-fusion reactions we present dynamical calculations for values of the dissipation strength corresponding to 27% and 100% of the Swiatecki wall-formula value, as well as for no dissipation. In addition to dynamical thresholds for compound-nucleus formation in heavy-ion reactions, our new picture describes such other phenomena as experimental mean fission-fragment kinetic energies for the fission of nuclei throughout the periodic system, enhancement in neutron emission prior to fission, short scission-to-scission times in sequential ternary fission, widths of mass and charge distributions in deep-inelastic heavy-ion reactions, and widths of isoscalar giant quadrupole and giant octupole resonances. 32 refs., 2 figs.

  18. Gabor lens focusing of a negative ion beam

    SciTech Connect

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab.

  19. Collective Focusing of a Plasma-Neutralized Intense Ion Beam Propagating Along a Weak Solenoidal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2009-11-01

    Two schemes are considered for focusing intense ion beams utilizing the collective dynamics of plasma electrons. In the first approach, an ion beam propagates through a neutralizing background plasma along a uniform magnetic field. In the second approach, an ion beam passes through a finite size plasma, extracts neutralizing electrons from the plasma, and then enters a magnetic lens. In the both cases, a strong radial electric field is produced due to the collective electron dynamics. This self-electric field provides the enhanced transverse focusing of the ion beam. Detailed analytical and advanced numerical studies using particle-in-cell simulations are performed for both approaches. The radial focusing force acting on beam ions is calculated for an arbitrary ratio between the electron cyclotron and plasma frequencies. Collective focusing effects are shown to be important for the design of heavy ion drivers for high energy density and warm dense matter physics applications.

  20. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  1. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  2. Cosmic heavy ion tracks in mesoscopic biological test objects

    NASA Technical Reports Server (NTRS)

    Facius, R.

    1994-01-01

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on 'HZE particle effects in manned spaced flight', it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to 'large' fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated. Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too ('The BIOSTACK as an approach to high LET radiation research'), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions' trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series. Since biological investigations and physical measurements of particle tracks had to be performed in laboratories widely separated, the preferred fixed contact between biological test objects and the particle detectors

  3. Cosmic heavy ion tracks in mesoscopic biological test objects

    SciTech Connect

    Facius, R.

    1994-12-31

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on `HZE particle effects in manned spaced flight`, it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to `large` fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated. Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too (`The BIOSTACK as an approach to high LET radiation research`), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions` trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series.

  4. Overview of WARP: A particle code for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Friedman, Alex; Grote, David P.; Callahan, Debra A.; Langdon, A. Bruce; Haber, Irving

    1993-02-01

    The beams in a heavy ion beam driven inertial fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus, a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code's 3D package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL's planned ILSE experiments, to various 'recirculator' configurations, and to the study of equilibria and equilibration processes. Applications of the 3D package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers.

  5. Overview of WARP, a particle code for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Friedman, Alex; Grote, David P.; Callahan, Debra A.; Langdon, A. Bruce; Haber, Irving

    1993-12-01

    The beams in a Heavy Ion beam driven inertial Fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code's 3d package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL's planned ILSE experiments, to various ``recirculator'' configurations, and to the study of equilibria and equilibration processes. Applications of the 3d package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers.

  6. Overview of WARP, a particle code for Heavy Ion Fusion

    SciTech Connect

    Friedman, A.; Grote, D.P.; Callahan, D.A.; Langdon, A.B.; Haber, I.

    1993-02-22

    The beams in a Heavy Ion beam driven inertial Fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code`s 3d package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL`s planned ILSE experiments, to various ``recirculator`` configurations, and to the study of equilibria and equilibration processes. Applications of the 3d package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers.

  7. Extractor configurations for a heavy ion fusion volume source

    SciTech Connect

    Anderson, O.A.

    2004-08-30

    In order for volume sources to deliver the current (e.g., 0.8 A of Ar{sup +} per module) and brightness necessary for heavy ion fusion (HIF), they must operate at high current density. Conventional extractor designs for 1 to 2 MeV run into voltage breakdown limitations and cannot easily produce the required current rise time (about one microsecond). We discuss two systems that can overcome these volume-extraction problems. Each uses multichannel preaccelerators followed by a single channel main accelerator. Fast beam switching is done in the low energy beamlet stages. A new design, utilizing concentric ring preaccelerators, was recently described for another application [2]. A more conventional design uses a large number of small round beamlets. In either case, the merging beamlets are angled toward the axis, a feature that dominates other focusing. By suitable adjustment of the individual angles, beam aberrations are reduced. Because of the high current density, the overall structure is compact. Emittance growth from merging of beamlets is calculated and scaling is discussed.

  8. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    SciTech Connect

    Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Davidson, R.C.; Logan, B.G.; Seidl, P.A.; Waldron, W.

    2008-06-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally-applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage ({approx} 8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO{sub 3} source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5 x 10{sup 10} cm{sup -3} density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios {approx} 120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high energy density physics applications.

  9. Research needed for improving heavy-ion therapy

    NASA Astrophysics Data System (ADS)

    Kraft, G; Kraft, S D

    2009-02-01

    The large interest in heavy-ion therapy is stimulated from its excellent clinical results. The bases of this success are the radiobiological and physical advantages of heavy-ion beams and the active beam delivery used for an intensity-modulated particle radiotherapy (IMPT). Although heavy-ion therapy has reached a high degree of perfection for clinical use there is still large progress possible to improve this novel technique: in order to extend IMPT to more tumor entities and to tailor the planning more individually for each patient in an adaptive way, radiobiological work is required both experimentally and theoretically. It is also not clear whether the neighboring ions to carbon could have a clinical application as well. For this extension basic biological studies as well as physics experiments have to be performed. On the technical side, many improvements of the equipment used seem to be possible. Two major topics are the extension of IMPT to moving organs and the transition to more compact and therefore cheaper particle accelerators. In the present paper, these topics are treated to some extent in order to give an outline of the great future potential of ion-beam therapy.

  10. Parabolic heavy ion flow in the polar magnetosphere

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.

    1987-01-01

    Recent observations by the Dynamics Explorer 1 satellite over the dayside polar cap magnetosphere have indicated downward flows of heavy ions such as O(+), O(2+), N(+), and N(2+) with flow velocities of the order 1 km/s (Lockwood et al., 1985). These downward flows were interpreted as the result of 'parabolic' flow of these heavy ionospheric ions from a source region associated with the polar cleft topside ionosphere. Here, a two-dimensional kinetic model is utilized to elicit features of the transport of very low energy O(+) ions from the cleft ionosphere. Bulk parameter (density, flux, thermal energies, etc.) distributions in the noon-midnight meridian plane illustrate the effects of varying convection electric fields and source energies. The results illustrate that, particularly under conditions of weak convection electric fields and weak ion heating in the cleft region, much of the intermediate altitude polar cap magnetosphere may be populated by downward flowing heavy ions. It is further shown how two-dimensional transport effects may alter the characteristic vertical profiles of densities and fluxes from ordinary profiles computed in one-dimensional steady-state models.

  11. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  12. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  13. Activation of accelerator construction materials by heavy ions

    NASA Astrophysics Data System (ADS)

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  14. Electron-Cloud Effects on Heavy-Ion Beams

    SciTech Connect

    Azevedo, T; Friedman, A; Cohen, R; Vay, J

    2004-03-29

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We are developing a capability for self-consistent simulation of ion beams with the electron clouds they produce. We report on an ingredient in this capability, the effect of specified electron cloud distributions on the dynamics of a coasting ion beam. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also be effective. We identify a possible instability associated with resonance with the beam-envelope ''breathing'' mode. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  15. Characterization of swift heavy ion irradiation damage in ceria

    SciTech Connect

    Yablinsky, Clarissa; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, T. R.

    2015-05-14

    We have examined microstructural evolution in irradiated ceria (CeO2) using swift heavy ion irradiation, electron microscopy, and atomistic simulation. CeO2, a UO2 fuel surrogate, was irradiated with gold ions at an energy of 1 GeV to fluences up to 1x1014 ions/cm2. Transmission electron microscopy accompanied by electron energy loss spectroscopy showed that the ion tracks were of similar size at all fluences, and that there was no chemical change in the ion track core. Classical molecular dynamics simulations of thermal spikes in CeO2 with energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at the lower energy and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  16. Elliptic and triangular flow of heavy flavor in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Nahrgang, Marlene; Aichelin, Jörg; Bass, Steffen; Gossiaux, Pol Bernard; Werner, Klaus

    2015-01-01

    We investigate the elliptic and the triangular flow of heavy mesons in ultrarelativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider and the CERN Large Hadron Collider (LHC) . The dynamics of heavy quarks is coupled to the locally thermalized and fluid dynamically evolving quark-gluon plasma. The elliptic flow of D mesons and the centrality dependence measured at the LHC is well reproduced for purely collisional and bremsstrahlung interactions. Due to the event-by-event fluctuating initial conditions from the EPOS2 model, the D meson triangular flow is predicted to be nonzero at √{s }=200 GeV and √{s }=2.76 TeV. We study the centrality dependence and quantify the contributions stemming from flow of the light bulk event and the hadronization process. The flow coefficients as responses to the initial eccentricities behave differently for heavy mesons than for light hadrons due to their inertia. Higher-order flow coefficients of heavy flavor become important in order to quantify the degree of thermalization.

  17. ON THE FEASIBILITY OF POLARIZED HEAVY IONS IN RHIC.

    SciTech Connect

    MACKAY, W.W.

    2006-06-23

    Heavy nonspherical ions such as uranium have been proposed for collisions in RHIC[1]. When two such ions collide with their long axes aligned parallel to the beams (large helicities), then the plasma density might be as much as 60% higher. Since the collisions might have any orientation of the two nuclei, the alignment of the nuclei must be inferred from a complicated unfolding of multiplicity distributions. Instead, if it would be possible to polarize the ions and control the orientation in RHIC, then a much better sensitivity might be obtained. This paper investigates the manipulation of such polarized ions with highly distorted shapes in RHIC. A number of ion species are considered as possibilities with either full or partial Siberian snakes in RHIC.

  18. Mutation induction in bacteria after heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Kozubek, S.

    1994-01-01

    From a compilation of experimental data on the mutagenic effects of heavy ions in bacteria, main conclusions have been drawn as follows: (1) The mutagenic efficacy of heavy ions in bacteria depends on physical and biological variables. Physical variables are the radiation dose, energy and charge of the ion; the biological variables are the bacterial strain, the repair genotype of bacteria, and the endpoint investigated (type of mutation, induction of enzymes related to mutagenesis); (2) The responses on dose or fluence are mainly linear or linear quadratic. The quadratic component, if found for low LET radiation, is gradually reduced with increasing LET; (3) At low values of Z and LET the cross section of mutation induction sigma m (as well as SOS response, sigma sos. and lambda phage induction, sigma lambda versus LET curves can be quite consistently described by a common function which increases up to approximately 100 keV/mu m. For higher LET values, the sigma(m) versus LET curves show the so-called 'hooks' observed also for other endpoints; (4) For light ions (Z is less than or equal to 4), the cross sections mostly decrease with increasing ion energy, which is probably related to the decrease of the specific energy departed by the ion inside the sensitive volume (cell). For ions in the range of Z = 10, sigma(m) is nearly independent on the ion energy. For heavier ions (Z is greater than or equal to 16), sigma(m) increases with the energy up to a maximum or saturation around 10 MeV/u. The increment becomes steeper with increasing atomic number of the ion. It correlates with the increasing track radius of the heavy ion; (5) The mutagenic efficiency per lethal event changes slightly with ion energy, if Z is small indicating a rough correlation between cellular lethality and mutation induction, only. For ions of higher Z this relation increases with energy, indicating a change in the 'mode' of radiation action from 'killing-prone' to 'mutation-prone'; and (6

  19. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed. PMID:24231648

  20. Performance of MBE-4: An experimental multiple beam induction linear accelerator for heavy ions

    SciTech Connect

    Warwick, A.I.; Fessenden, T.J.; Keefe, D.; Kim, C.H.; Meuth, H.

    1988-06-01

    An experimental induction linac, called MBE-4, has been constructed to demonstrate acceleration and current amplification of multiple heavy ion beams. This work is part of a program to study the use of such an accelerator as a driver for heavy ion inertial fusion. MBE-4 is 16m long and accelerates four space-charge-dominated beams of singly-charged cesium ions, in this case from 200 keV to 700 keV, amplifying the current in each beam from 10mA by a factor of nine. Construction of the experiment was completed late in 1987 and we present the results of detailed measurements of the longitudinal beam dynamics. Of particular interest is the contribution of acceleration errors to the growth of current fluctuations and to the longitudinal emittance. The effectiveness of the longitudinal focusing, accomplished by means of the controlled time dependence of the accelerating fields, is also discussed. 4 refs., 5 figs., 1 tab.

  1. Magnetic quadrupole doublet focusing system for high energy ions.

    PubMed

    Glass, Gary A; Dymnikov, Alexander D; Rout, Bibhudutta; Dias, Johnny F; Houston, Louis M; LeBlanc, Jared

    2008-03-01

    A high energy focused ion beam microprobe using a doublet arrangement of short magnetic quadrupole lenses was used to focus 1-3 MeV protons to spot sizes of 1x1 microm2 and 1-4.5 MeV carbon and silicon ion beams to spot sizes of 1.5x1.5 microm2. The results presented clearly demonstrate that this simple doublet configuration can provide high energy microbeams for microanalysis and microfabrication applications. PMID:18377047

  2. Collisional electrostatic ion cyclotron waves as a possible source of energetic heavy ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Providakes, Jason; Seyler, Charles E.

    1990-01-01

    A new mechanism is proposed for the source of energetic heavy ions (NO/+/, O2/+/, and O/+/) found in the magnetosphere. Simulations using a multispecies particle simulation code for resistive current-driven electrostatic ion cyclotron waves show transverse and parallel bulk heating of bottomside ionospheric heavy ion populations. The dominant mechanism for the transverse bulk heating is resonant ion heating by wave-particle ion trapping. Using a linear kinetic dispersion relation for a magnetized, collisional, homogenous, and multiion plasma, it is found that collisional electrostatic ion cyclotron waves near the NO(+), O2(+), and O(+) gyrofrequencies are unstable to field-aligned currents of 50 microA/sq m for a typical bottomside ionosphere.

  3. Heavy ion passive dosimetry with silver halide single crystals

    NASA Technical Reports Server (NTRS)

    Childs, C. B.; Parnell, T. A.

    1972-01-01

    A method of detecting radiation damage tracks due to heavy particles in large single crystals of the silver halides is described. The tracks, when made visible with a simple electrical apparatus, appear similar to tracks in emulsions. The properties of the crystals, the technique of printing out the tracks, and evidence concerning the threshold energy for registering particles indicates that this method may find application in heavy ion dosimetry. The method has been found to be sensitive to stopping He nuclei and relativistic M group cosmic rays. Some impurities strongly influence the printout of the tracks, and the effects of these impurities are discussed.

  4. DNA damage in mammalian cells following heavy-ion irradiation

    SciTech Connect

    Rosander, K.; Frankel, K.A.; Cerda, H.; Phillips, M.H.; Lo, E.H.; Fabrikant, I.; Fabrikant, J.I.; Levy, R.P.

    1989-09-01

    In our laboratory we have been investigating DNA damage and repair in the endothelial and oligodendroglial cells of the mouse brain after irradiation using two different types of heavy ions, helium and neon. The method used, the unwinding technique with subsequent staining of the DNA with acridine orange, has been proven to be useful for nondividing cells and analysis using a microscope photometric technique. Our primary goal has been to obtain a measure of RBE, in the dose range used in clinical treatment of various brain disorders using heavy charged particle radiosurgery. 12 refs., 5 figs.

  5. Mechanism of heavy ion fusion to superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Adamian, Gurgen G.; Antonenko, Nikolai V.; Scheid, Werner

    2011-10-01

    This article reviews different models for the description of fusion of heavy ions to superheavy nuclei by using adiabatic and diabatic potentials. The dynamics of fusion is basically different in the two types of models for fusion: In the adiabatic models the nuclei melt together, whereas in the diabatic models the nuclei transfer nucleons between each other up to the instant when the compound nucleus is formed. As final result we state that diabatic potentials seem more appropriate for the description of fusion of heavy nuclei than adiabatic potentials.

  6. Characterization of the Ion Beam Focusing in a Mass Spectrometer using an IonCCD™ Detector

    SciTech Connect

    Johnson, Grant E.; Hadjar, Omar; Laskin, Julia

    2011-07-26

    A position sensitive pixel-based detector array, referred to as the IonCCDTM, has been employed to characterize the ion optics and ion beam focusing in a custom built mass spectrometer designed for soft and reactive landing of mass-selected ions onto surfaces. The IonCCDTM was placed at several stages along the path of the ion beam to determine the focusing capabilities of the various ion optics which include an electrodynamic ion funnel, two radiofrequency (RF) only collision quadrupoles, a mass resolving quadrupole, a quadrupole bender, and two Einzel lens assemblies. The focusing capabilities of the RF-only collision quadrupoles and Einzel lenses are demonstrated by large decreases in the diameter of the ion beam. In contrast, the mass resolving quadrupole is shown to significantly defocus the mass-selected ion beam resulting in an expansion of the measured ion beam diameter. Combined with SIMION simulations we demonstrate that the IonCCDTM can identify minor errors in the alignment of charged-particle optics that result in erratic trajectories and significant deflections of the ion beam.. This information can be used to improve the design assembly and maintenance of custom-built mass spectrometry instrumentation.

  7. Characterization of the ion beam focusing in a mass spectrometer using an IonCCD™ detector.

    PubMed

    Johnson, Grant E; Hadjar, Omar; Laskin, Julia

    2011-08-01

    A position sensitive pixel-based detector array, referred to as the IonCCD, has been employed to characterize the ion optics and ion beam focusing in a custom built mass spectrometer designed for soft and reactive landing of mass-selected ions onto surfaces. The IonCCD was placed at several stages along the path of the ion beam to determine the focusing capabilities of the various ion optics, which include an electrodynamic ion funnel, two radiofrequency (rf)-only collision quadrupoles, a mass resolving quadrupole, a quadrupole bender, and two einzel lens assemblies. The focusing capabilities of the rf-only collision quadrupoles and einzel lenses are demonstrated by large decreases in the diameter of the ion beam. In contrast, the mass resolving quadrupole is shown to significantly defocus the mass-selected ion beam resulting in an expansion of the measured ion beam diameter. Combined with SIMION simulations, we demonstrate that the IonCCD can identify minor errors in the alignment of charged-particle optics that result in erratic trajectories and significant deflections of the ion beam. This information may be used to facilitate the design, assembly, and maintenance of custom-built mass spectrometry instrumentation. PMID:21953193

  8. Characterization of swift heavy ion irradiation damage in ceria

    SciTech Connect

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, Todd R.

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  9. Energy loss of heavy ions at high velocity

    NASA Astrophysics Data System (ADS)

    Andersen, J. U.; Ball, G. C.; Davies, J. A.; Davies, W. G.; Forster, J. S.; Geiger, J. S.; Geissel, H.; Ryabov, V. A.

    1994-05-01

    The slowing down of heavy ions by electronic stopping at high velocity is discussed. The ions are nearly fully stripped and have a well defined charge with relatively small fluctuations. Owing to the large charge of the ions, the classical Bohr formula applies instead of the Bethe formula, which is based on a quantum perturbation calculation. It is essential to include the Barkas effect in the description since it becomes quite large for heavy ions, especially in high-Z materials. In Lindhard's treatment [Nucl. Instr. and Meth. 132 (1976) l], the Barkas correction is viewed as an effect of dynamic screening of the ion potential in the initial phase of a collision with an electron, which reduces the relative velocity and therefore enhances the cross section. With inclusion of this enhancement factor for all impact parameters, as evaluated by Jackson and McCarthy for distant collisions [Phys. Rev. B 6 (1972) 4131], the description reproduces within a few percent measurements for 15 MeV/u Br on Si, Ni, and Au and for 10 MeV/u Kr on Al, Ni, and Au. The procedure is shown also to apply at lower velocities near the stopping maximum, albeit with less accuracy. The straggling in energy loss has been analyzed for a measurement on Si and it is well described by a combination of about equal contributions from fluctuations in the number of violent collisions with single electrons (Bohr straggling) and from fluctuations in ion charge state.

  10. Characterization of swift heavy ion irradiation damage in ceria

    SciTech Connect

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, Todd R.

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  11. Characterization of swift heavy ion irradiation damage in ceria

    DOE PAGESBeta

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, Todd R.

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolatedmore » point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.« less

  12. Validation of Heavy Ion Transport Capabilities in PHITS

    NASA Astrophysics Data System (ADS)

    Ronningen, Reginald M.

    2007-03-01

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  13. Validation of Heavy Ion Transport Capabilities in PHITS

    SciTech Connect

    Ronningen, Reginald M.

    2007-03-19

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  14. Theory and simulation of emittance, space charge and electron pressure effects on focusing of neutralized ion beams

    SciTech Connect

    Lemons, D.S.; Jones, M.E.

    1986-01-01

    We investigate the final focus mode characterized by warm comoving electrons and vacuum propagation. In particular, we extend a previous envelope equation analysis of ion focusing in this mode to include the effects of ion emittance as well as ion space charge and initial electron temperature. Our major result is a simple equation relating initial R/sub o/ and final R/sub f/ beam radii to ion emittance epsilon and perveance K and electron Debye length lambda/sub D/ which is supported by one dimensional, electrostatic, particle-in-cell simulations of radial ion focusing. Finally, we use this equation to find the allowed temperature of neutralizing electrons for typical Heavy Ion Fusion reactor and High Temperature Experiment scenarios.

  15. Mutation Induction in Mammalian Cells by Accelerated Heavy Ions

    NASA Astrophysics Data System (ADS)

    Rosendahl, I. M.; Baumstark-Khan, C.; Rink, H.

    The deleterious effects of accelerated heavy ions on living cells are of increasing importance for long duration human space flight activities. An important aspect of this field is attributed to the type and quality of biological damage induced by these densely ionizing particles. To address this aspect, cell inactivation and mutation induction at the hprt locus (coding for hypoxanthine-guanine-phosphoribosyl-transferase) was investigated in cultured V79 Chinese Hamster Cells irradiated with accelerated heavy ions (8-O, 20-Ca, 79-Au, and 92-U) and X-rays. Specific energies of the ions ranged from 1.9 to 69.7 MeV/u and corresponding LET values were between 62 band 15,580 keV/μ m. 30 spontaneous and 196 heavy-ion induced 6-thioguanine resistant hprt mutant colonies were characterized by Southern technique using the restriction enzymes EcoRI, PstI and BglII and a full length hprt cDNA probe isolated from the plasmid pHpt12 (kindly provided by Dr. J. Thacker). While inactivation cross sections (σ i) rise over the whole LET range, mutation induction cross sections (σ m) increase up to approximately 300 keV/μ m (O-ions) but decline with heavier ions and more extreme LET values. A similar behaviour is seen with mutation frequency dependent on particle fluence. After irradiation with accelerated uranium ions (8.8 MeV/u, 15,580 keV/μ m) a significant decrease of mutation frequency was found with higher particle fluences (3× 106 particles cm-2). Nearly no mutants were recovered with 8× 106 particles cm-2. All restriction patterns of the spontaneous hprt mutants were indistinguishable from the wild type pattern. These mutants probably contain small deletions or point mutations in the hprt locus. In contrast, the overall spectrum of heavy ion induced mutations revealed a majority (67%) of partial or complete deletions of the hprt gene. With constant particle fluence (3× 106 particles cm-2) the quality of heavy ion induced mutations in the hprt locus depends on physical

  16. Vortex focusing of ions produced in corona discharge.

    PubMed

    Kolomiets, Yuri N; Pervukhin, Viktor V

    2013-06-15

    Completeness of the ion transportation into an analytical path defines the efficiency of ionization analysis techniques. This is of particular importance for atmospheric pressure ionization sources like corona discharge, electrospray, ionization with radioactive ((3)H, (63)Ni) isotopes that produce nonuniform spatial distribution of sample ions. The available methods of sample ion focusing are either efficient at reduced pressure (~1Torr) or feature high sample losses. This paper deals with experimental research into atmospheric pressure focusing of unipolar (positive) ions using a highly swirled air stream with a well-defined vortex core. Effects of electrical fields from corona needle and inlet capillary of mass spectrometer on collection efficiency is considered. We used a corona discharge to produce an ionized unipolar sample. It is shown experimentally that with an electrical field barrier efficient transportation and focusing of an ionized sample are possible only when a metal plate restricting the stream and provided with an opening covered with a grid is used. This gives a five-fold increase of the transportation efficiency. It is shown that the electric field barrier in the vortex sampling region reduces the efficiency of remote ionized sample transportation two times. The difference in the efficiency of light ion focusing observed may be explained by a high mobility and a significant effect of the electric field barrier upon them. It is possible to conclude based on the experimental data that the presence of the field barrier narrows considerably (more than by one and half) the region of the vortex sample ion focusing. PMID:23618173

  17. Central collisions of heavy ions. Progress report, October 1, 1991--September 31, 1992

    SciTech Connect

    Fung, Sun-yiu

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R&D project was performed.

  18. [Heavy ion physics research at Creighton University

    SciTech Connect

    Cherney, M.

    1992-01-01

    This research continues the baseline efforts i n the investigation of the behavior of hadronic matter under extreme conditions. The project is concerned with the search for indications of a phase transition from hadronic to quark matter in the STAR, NA44 and NA36 experiments. It is believed that the conditions. This project contributes to the development of a slow control system and time projection chamber tracking for the STAR experiment, upgrades for the NA44 experiment at CERN through studies of a spot focusing Cherenkov-detector, and the remaining analysis of data collected with the NA36 experiment at CERN.

  19. HIBRA: A computer code for heavy ion binary reaction analysis employing ion track detectors

    NASA Astrophysics Data System (ADS)

    Jamil, Khalid; Ahmad, Siraj-ul-Islam; Manzoor, Shahid

    2016-01-01

    Collisions of heavy ions many times result in production of only two reaction products. Study of heavy ions using ion track detectors allows experimentalists to observe the track length in the plane of the detector, depth of the tracks in the volume of the detector and angles between the tracks on the detector surface, all known as track parameters. How to convert these into useful physics parameters such as masses, energies, momenta of the reaction products and the Q-values of the reaction? This paper describes the (a) model used to analyze binary reactions in terms of measured etched track parameters of the reaction products recorded in ion track detectors, and (b) the code developed for computing useful physics parameters for fast and accurate analysis of a large number of binary events. A computer code, HIBRA (Heavy Ion Binary Reaction Analysis) has been developed both in C++ and FORTRAN programming languages. It has been tested on the binary reactions from 12.5 MeV/u 84Kr ions incident upon U (natural) target deposited on mica ion track detector. The HIBRA code can be employed with any ion track detector for which range-velocity relation is available including the widely used CR-39 ion track detectors. This paper provides the source code of HIBRA in C++ language along with input and output data to test the program.

  20. Research in Heavy Ion Nuclear Reactions

    SciTech Connect

    Petitt, G.A.; Nelson, W.H.; He, Xiaochun; Lee, W.

    1999-04-14

    This is the final progress report for the experimental nuclear physics program at Georgia State University (GSU) under the leadership of Gus Petitt. In June, 1996, Professor Petitt retired for health reasons and the DOE contract was extended for another year to enable the group to continue it's work. This year has been a productive one. The group has been heavily involved in the E866 experiment at Fermilab where we have taken on the responsibility of developing a new level-3 trigger for the experiment. Bill Lee, the graduate student in our group expects to obtain his thesis data from the run extension currently in progress, which focuses on the A dependence of J/{psi}'s and {Upsilon}'s from beryllium, tungsten, and iron targets. In the past year and a half the GSU group has led the development of a new level-3 software trigger system for E866. Our work on this project is described.

  1. PREFACE: Heavy-Ion Spectroscopy and QED Effects in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Lindgren, Ingvar; Martinson, Indrek; Schuch, Reinhold

    1993-01-01

    symposium, and we had to concentrate on some aspects, mainly based on our own personal interests. Initially, two symposia were planned, one about heavy-ion spectroscopy with connections to collision phenomena and to atomic structure, and another with focus on relativistic and QED effects in heavy atoms and ions. Then it was realized that there was a considerable overlap between the two fields, both regarding the scientific contents and the people that would be involved. Furthermore, we felt that it might be stimulating also to bring people together, who are connected to different aspects of heavy-ion research and who do not have any natural contact in their research. Therefore, the idea was born to.merge the two symposia into one with the hybrid title Heavy-Ion Spectroscopy and QED Effects in Atomic Systems. There is always a risk with such an arrangement, namely that the symposium will split into two parts with only little communication between the two. We actively tried to avoid such a development by various arrangements, and we believe that we were reasonably successful in that respect. The symposium was organized in the form of four review sessions and four more specialized mini-symposia. The review talks covered topics like many-body theory, QED and PNC effects in atoms, electron correlation effects in atomic collisions, electron capture ion-atom collisions and ions in space. Experimental reviews were given about heavy-ion experiments at Berkeley and Darmstadt. The four-mini symposia were devoted to (i) atomic structure and (ii) QED effects, (iii) multi- electron transfer reactions, and (iv) PNC effects. In these cases efforts were made to mix people with the main background in atomic collision physics and atomic structure. The mini-symposium devoted to structure ended with a panel discussion about the future of atomic structure theory. Of course, this book can only attempt to summarize the high level of knowledge existing in atomic spectroscopy and heavy ion collision

  2. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  3. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-02-24

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  4. Performance of a Bragg curve detector for heavy ion identification

    NASA Astrophysics Data System (ADS)

    Asselineau, J. M.; Duchon, J.; L'Haridon, M.; Mosrin, P.; Regimbart, R.; Tamain, B.

    1982-12-01

    By using Bragg curve spectroscopy, one can measure atomic number and energy of high energy heavy ions stopping in a gas-filled ionization chamber with longitudinal electric field. In this paper, we report on the results obtained with an isobutane filled detector. An energy resolution of 0.8% fwhm and a Z resolution of 2.7% fwhm were achieved for elastically scattered 300 MeV 40Ar ions. We study the Bragg peak amplitude dependence on the energy of the incoming ions, a dependence presumably due to the Frisch grid screening inefficiency. The corrected Bragg peak spectrum of inelastically scattered 300 MeV 40Ar ions exhibits a satisfactory Z separation around Z=18.

  5. Heavy Ion High Intensity Upgrade of the GSI UNILAC

    SciTech Connect

    Barth, W.; Dahl, L.; Galonska, M.; Glatz, J.; Groening, L.; Hollinger, R.; Richter, S.; Yaramyshev, S.

    2005-06-08

    For the future Facility for Antiproton and Ion Research (FAIR) at Darmstadt the present GSI-accelerator complex, consisting of the linear accelerator UNILAC and the heavy ion synchrotron SIS 18, is foreseen to serve as U28+-injector for up to 1012 particles/s. After a new High Current Injector (HSI) was installed, many different ion species were accelerated in the UNILAC for physics experiments. In 2001 a high energy physics experiment used up to 2{center_dot}109 uranium ions per SIS 18-spill (U73+) while a MEVVA ion source was in routine operation for the first time. In the past two years, different hardware measures and careful fine tuning in all sections of the UNILAC resulted in an increase of the beam intensity to 9.5{center_dot}1010 U27+-ions per 100 {mu}s or 1.5{center_dot}1010 U73+-ions per 100 {mu}s. The contribution reports results of beam measurements during the high current operation with argon and uranium beams (pulse beam power up to 0.5 MW). One of the major tasks was to optimize the beam matching to the Alvarez-DTL. In addition further upgrades, including improved beam diagnostics, are described, which allow to fill the SIS 18 up to its space charge limit (SCL) of 2.7{center_dot}1011 U28+-ions per cycle.

  6. Uniform fuel target implosion in heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Karino, T.; Kondo, S.; Iinuma, T.; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.

    2016-05-01

    For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the non-uniformity mitigation mechanisms in the heavy ion beam (HIB) illumination are discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to the radiation energy smoothing for the HIB illumination non-uniformity. The large density-gradient scale, which is typically ∼500μm in HIF targets, also contributes to a reduction of the Rayleigh- Taylor instability growth rate. In HIF a wobbling HIBs illumination would also reduce the Rayleigh-Taylor instability growth and to realize a uniform implosion.

  7. How to Deal with Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Hagedorn, Rolf

    A qualitative review is given of the theoretical problems and possibilities arising when one tries to understand what happens in relativistic heavy ion collisions. The striking similarity between these and pp collisions suggests the use of techniques similar to those used 5-12 years ago in pp collisions to disentangle collective motions from thermodynamics. A very heuristic and qualitative sketch of statistical bootstrap thermodynamics concludes an idealized picture in which a relativistic heavy ion collision appears as a superposition of moving `fireballs' with equilibrium thermodynamics in the rest frames of these fireballs. The interesting problems arise where this theoretician's picture deviates from reality: non-equilibrium, more complicated motion (shock waves, turbulence, spin) and the collision history. Only if these problems have been solved or shown to be irrelevant can we safely identify signatures of unusual states of hadronic matter as, for example, a quark-gluon plasma or density isomers.

  8. Dosimetry of heavy ions by use of CCD detectors

    NASA Technical Reports Server (NTRS)

    Schott, J. U.

    1994-01-01

    The design and the atomic composition of Charge Coupled Devices (CCD's) make them unique for investigations of single energetic particle events. As detector system for ionizing particles they detect single particles with local resolution and near real time particle tracking. In combination with its properties as optical sensor, particle transversals of single particles are to be correlated to any objects attached to the light sensitive surface of the sensor by simple imaging of their shadow and subsequent image analysis of both, optical image and particle effects, observed in affected pixels. With biological objects it is possible for the first time to investigate effects of single heavy ions in tissue or extinguished organs of metabolizing (i.e. moving) systems with a local resolution better than 15 microns. Calibration data for particle detection in CCD's are presented for low energetic protons and heavy ions.

  9. Factorization, the Glasma and the Ridge in heavy ion collisions

    SciTech Connect

    Venugopalan, Raju

    2008-10-13

    High energy heavy ion collisions can be efficiently described as the collision of two sheets of Color Glass Condensate. The dynamics of the collision can be studied ab initio in a systematic effective field theory approach. This requires factorization theorems that separate the initial state evolution of the wave functions with energy from the final state interactions that produce matter with high energy densities called the Glasma. We discuss how this matter is formed, its remarkable properties and its relevance for understanding thermalization of the Quark Gluon Plasma in heavy ion collisions. Long range rapidity correlations in the collision that have a remarkable ridge like structure may allow us to probe early times in the collision and infer directly the properties of the Glasma.

  10. Selected experimental results from heavy-ion collisions at LHC

    DOE PAGESBeta

    Singh, Ranbir; Kumar, Lokesh; Netrakanti, Pawan Kumar; Mohanty, Bedangadas

    2013-01-01

    We reviewmore » a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC) facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energysNN=2.76 TeV) for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC) at lower energy (sNN=200 GeV) suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.« less

  11. Solutions to heavy ion induced avalanche burnout in power devices

    NASA Astrophysics Data System (ADS)

    Wrobel, Theodore F.; Beutler, David E.

    1992-12-01

    A review of normal breakdown and current induced avalanche (CIA) breakdown mechanisms in silicon power transistors is presented. The applicability of the CIA model to heavy ion induced burnout is shown, and solutions to CIA in silicon power semiconductors are given. It is noted that solving the problem of CIA burnout in npn bipolar and n-channel DMOS devices is, at best, difficult. Several techniques of hardening these devices to the effects of heavy ion, dose-rate induced failure, and any other condition producing CIA are discussed. The most effective techniques are those that minimize the emitter current injection by reducing the emitter injection efficiency or making the parasitic bipolar more difficult to turn on. However, it is believed that the simplest solution to the problem is to use pnp bipolar and p-channel DMOS devices whenever possible.

  12. Pseudorapidity correlations in heavy ion collisions from viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko; Schenke, Björn

    2016-01-01

    We demonstrate by explicit calculations in 3+1 dimensional viscous relativistic fluid dynamics how two-particle pseudorapidity correlation functions in heavy ion collisions at the LHC and RHIC depend on the number of particle producing sources and the transport properties of the produced medium. In particular, we present results for the Legendre coefficients of the two-particle pseudorapidity correlation function, an,m, in Pb+Pb collisions at 2760 GeV and Au+Au collisions at 200 GeV from viscous hydrodynamics with three dimensionally fluctuating initial conditions. Our results suggest that the an,m provide important constraints on initial state fluctuations in heavy ion collisions.

  13. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  14. Compact High-Current Heavy-Ion Injector

    SciTech Connect

    Westenskow, G.A.; Grote, D.P.; Kwan, J.W.; Bieniosek, F.

    2005-10-05

    To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was used to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment has possible significant economical and technical impacts on the architecture of HIF drivers.

  15. On compositional variations of heavy ions during solar particle events

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Scholer, M.; Hovestadt, D.; Fan, C. Y.; Fisk, L. A.; Gloeckler, G.; Ipavich, F. M.; Ogallagher, J. J.

    1981-01-01

    Intensity-time profiles of protons, alpha particles, and heavy ions (C, O, Fe) in the MeV/nucleon energy range have been analyzed for one solar particle event following the solar flare on September 23, 1978. The data have been obtained with the wide angle double dE/dx-E sensor of the Max-Planck-Institut/University of Maryland experiment onboard ISEE-3. Time variations in the iron to helium ratio of up to 2 orders of magnitude and a significant variation of the O/He ratio during this event have been found, whereas the C/O-ratio at the same energy/nucleon appears to be time independent. The influence of a rigidity dependent mean free path in interplanetary space and of rigidity dependent coronal propagation on heavy ion ratios during solar particle events was investigated.

  16. Compact High-Current Heavy-Ion Injector

    SciTech Connect

    Westenskow, G A; Grote, D P; Kwan, J W; Bieniosek, F

    2006-04-13

    To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was use to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment has possible significant economical and technical impacts on the architecture of HIF drivers.

  17. Universal behavior of charged particle production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  18. Quasimolecular single-nucleon effects in heavy-ion collisions

    SciTech Connect

    Erb, K.A.

    1984-01-01

    Several experimental examples are discussed to illustrate that single-particle molecular orbital behavior has become an established reality in nuclear physics over the last several years. Measurements and analyses of inelastic scattering in the /sup 13/C + /sup 12/C and /sup 17/O + /sup 12/C systems, and of neutron transfer in the /sup 13/C(/sup 13/C, /sup 12/C)/sup 14/C reaction, show that the motion of valence nucleons can be strongly and simultaneously influenced by both collision partners in heavy-ion collisions. This bvehavior is characteristic of a molecular (single-particle) rather than a direct (DWBA) mechanism: it demonstrates that the single-particle analog of atomic molecular motion plays an important role in nuclear reactions at bombarding energies near the Coulomb barrier. Such behavior may be even more pronounced in the collisions of massive nuclei that will be studied with the new generation of heavy-ion accelerators. 19 references.

  19. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.

  20. Proximity potential for heavy ion reactions on deformed nuclei

    SciTech Connect

    Baltz, A. J.; Bayman, B. F.

    1982-01-01

    The usual treatment of the deformed optical model for analysis of heavy ion induced inelastic scattering data involves a deformed (target) radius, a spherical (projectile) radius and a potential strength dependent on the surface separation along the line between the two centers. Several authors using various approaches have shown that this center line potential is geometrically inadequate especially for description of higher L deformation parameters probed in heavy ion induced inelastic scattering experiments. A quantitatively adequate form of the deformed proximity potential suitable for use with a coupled channels reaction code in the analysis of inelastic scattering data above the Coulomb barrier is described. A major objective is to be able to extract reliably higher deformed multipole moments from such data. The deformed potential calculated in the folding model will serve as a geometrically exact benchmark to evaluate the accuracy of the proximity potential prescriptions. (WHK)

  1. Theory of nuclear excitation by electron capture for heavy ions

    SciTech Connect

    Palffy, Adriana; Scheid, Werner; Harman, Zoltan

    2006-01-15

    We investigate the resonant process of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy-ion collision systems.

  2. HEAVY ION DRIVER WITH NON-SCALING FFAG.

    SciTech Connect

    RUGGIERO,A.G.; ALESSI, J.; BEEBE, E.; PIKIN, A.; ROSER, T.; TRBOJEVIC

    2007-06-25

    We explore the possibility of using two non-scaling FFAG accelerators for a high power heavy-ion driver as an alternative to a superconducting Linac. Ions of Uranium 238 are accelerated to a kinetic energy of 400 MeVIu and a total power of 400 kWatt. Different modes of acceleration have been studied: at 1 and 10 kHz repetition rate, and for Continuous Wave production. The following is a summary of the study. More details of the study can be found in reference 2.

  3. The potential of He stripping in heavy ion AMS

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Alfimov, V.; Christl, M.; Lachner, J.; Schulze-König, T.; Suter, M.; Synal, H.-A.

    2013-01-01

    The use of helium as a stripper gas for Accelerator Mass Spectrometry (AMS) measurements of heavy ions is presented. At ion stripping energies of about 500 keV and below we observe a significant increase of the mean charge state when using helium instead of other gases. Moreover, scattering losses are reduced with helium because of its lower mass compared to other commonly used stripper gases. Thus, highly efficient AMS measurements for 41Ca, 129I and 236U with transmissions through the accelerator in the range of 40-50% are now possible.

  4. Self-aligned nanostructures created by swift heavy ion irradiation

    SciTech Connect

    Gehrke, Hans-Gregor; Nix, Anne-Katrin; Hofsaess, Hans; Krauser, Johann; Trautmann, Christina; Weidinger, Alois

    2010-05-15

    In tetrahedral amorphous carbon (ta-C) swift heavy ions create conducting tracks of about 8 nm in diameter. To apply these nanowires and implement them into nanodevices, they have to be contacted and gated. In the present work, we demonstrate the fabrication of conducting vertical nanostructures in ta-C together with self-aligned gate electrodes. A multilayer assembly is irradiated with GeV heavy ions and subsequently exposed to several selective etching processes. The samples consist of a Si wafer as substrate covered by a thin ta-C layer. On top is deposited a SiN{sub x} film for insulation, a Cr layer as electrode, and finally a polycarbonate film as ion track template. Chemical track etching opens nanochannels in the polymer which are self-aligned with the conducting tracks in ta-C because they are produced by the same ions. Through the pores in the polymer template, the Cr and SiN{sub x} layers are opened by ion beam sputtering and plasma etching, respectively. The resulting structure consists of nanowires embedded in the insulating carbon matrix with a built in gate electrode and has potential application as gated field emission cathode.

  5. Quarkonium formation time in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Ko, Che Ming; Lee, Su Houng

    2015-04-01

    We calculate the quarkonium formation time in relativistic heavy-ion collisions from the space-time correlator of heavy quark vector currents in a hydrodynamic background with the initial nonequilibrium stage expanding only in the longitudinal direction. Using in-medium quarkonia properties determined with the heavy quark potential taken to be the free energy from lattice calculations and the fact that quarkonia can only be formed below their dissociation temperatures due to color screening, we find that Υ (1S), Υ (2S), Υ (3S), J /ψ , and ψ' are formed, respectively, at 1.2, 6.6, 8.8, 5.8, and 11.0 fm/c after the quark pair are produced in central Au+Au collisions at the top energy of the BNL Relativistic Heavy Ion Collider (RHIC), and these times become shorter in semicentral collisions. We further show, as an example, that including the effect of formation time enhances appreciably the survivability of Υ (1S) in the produced hot dense matter.

  6. Longitudinal instability in heavy-ion-fusion induction linacs

    SciTech Connect

    Lee, E.P.

    1993-05-01

    A induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls.

  7. Production of 14 MeV neutrons by heavy ions

    DOEpatents

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  8. Dynamical description of heavy-ion collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Napolitani, P.; Colonna, M.

    2016-05-01

    Descriptions of heavy-ion collisions at Fermi energies require to take into account in-medium dissipation and phase-space fluctuations. The interplay of these correlations with the one-body collective behaviour determines the properties (kinematics and fragment production) and the variety of mechanisms (from fusion to neck formation and multifragmentation) of the exit channel. Starting from fundamental concepts tested on nuclear matter, we build up a microscopic description which addresses finite systems and applies to experimental observables.

  9. Chiral phase transition in peripheral heavy-ion collisions

    SciTech Connect

    Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo; Sanchez, Angel

    2009-04-20

    It has been recently realized that in peripheral heavy-ion collisions at high energies, a sizable magnetic field is produced in the interaction region. Although this field becomes weak at the proper times when the chiral phase transition is believed to occur, it is still significant so as to ask whether it influences such transition. We use the linear sigma model to study the chiral phase transition in the presence of weak magnetic fields.

  10. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  11. THE GEOMETRICAL ASPECT OF HIGH-ENERGY HEAVY ION COLLISIONS

    SciTech Connect

    Nagamiya, S.; Morrissey, D.J.

    1980-02-01

    The total yields of nuclear charge or mass from projectile and target fragments and the fragments from the overlapping region between projectile and target were evaluated based on existing data. These values are compared with simple formulas expected from the participant-spectator model. Agreement is reasonably good, suggesting that the major part of the integrated yields for all reaction products from high-energy heavy-ion collisions are geometrical.

  12. Aspects of heavy-ion collisions at the LHC

    SciTech Connect

    Wolschin, G.

    2014-01-14

    Three aspects of relativistic heavy-ion collisions are considered in this article: (1) Stopping and baryon transport in a QCD-based approach, (2) charged-hadron production in a nonequilibrium-statistical relativistic diffusion model (RDM), and (3) quarkonia suppression and in particular, Υ suppression in PbPb at the current LHC energy of √(s{sub NN}) = 2.76TeV.

  13. Risk assessment for heavy ions of parts tested with protons

    SciTech Connect

    O`Neill, P.M.; Badhwar, G.D.; Culpepper, W.X.

    1997-12-01

    An internuclear cascade-evaporation code is used to model energy deposition in thin slabs of silicon. This model shows that protons produce a significant number of events with effective Linear Energy Transfer (LET) greater than 8 MeV cm{sup 2}/mg and demonstrates that proton testing of microelectronic components can be an effective way to screen devices for low earth orbit susceptibility to heavy ions.

  14. A high current vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Qi, N.; Gensler, S.W.; Prasad, R.R.; Krishnan, M.; Liu, F.; Brown, I.G.

    1997-12-31

    AASC is presently developing a vacuum arc ion source for Heavy Ion Fusion (HIF) and other commercial applications. Induction linear accelerators that produce energetic heavy ions beams are a prime candidate for power-producing fusion reactors. A source of heavy ions with low emittance and low beam noise, 1+ to 3+ charge states, {approx}0.5 A current, 5--20 {micro}s pulse widths and {approximately}10 Hz repetition rates is required. A gadolinium (A {approx} 158) ion beam with {approx}0.12 A beam current, 120 keV beam energy, {approx}2.5 cm diameter extraction aperture and 20 {micro}s pulse width has been produced for HIF studies. The authors have measured that >80% Gd ions were in the 2+ charge state, the beam current fluctuation level (rms) was {approx}1.5% and the beam emittance was {approx}0.3 {pi} mm mrad (normalized). With {approx}8 {times} 10{sup {minus}5} torr background gas pressure, the beam was well space-charge neutralized and good propagation of the 20 {micro}s long Gd ion beams was observed. Details of the work will be presented. The results of the experiment imply that the vacuum arc ion source is a highly promising candidate for HIF applications.

  15. NOTE: The relevance of very low energy ions for heavy-ion therapy

    NASA Astrophysics Data System (ADS)

    Elsässer, T.; Gemmel, A.; Scholz, M.; Schardt, D.; Krämer, M.

    2009-04-01

    Heavy-ion radiotherapy exploits the high biological effectiveness of localized energy deposition delivered by so-called Bragg-peak particles. Recent publications have challenged the established procedures to calculate biological effective dose distributions in treatment planning. They emphasize the importance of very low energy (<500 keV amu-1) ions, either as primary particles or originating from molecular and nuclear fragmentations. We show, however, that slow heavy ions with energies below 500 keV amu-1 only play a negligible role in cancer treatments for several reasons. Their residual range is very small compared to the relevant length scale of treatment planning. Moreover, their relative frequency and also their relative dose distribution are insignificant, since energy loss and range straggling in ion slowing down processes as well as the necessary superposition of Bragg peaks wash out small-scale special effects. Additionally, we show that even a 1000 times larger biological damage of such slow ions would not result in a clinically relevant increase of the photon-equivalent dose. Therefore, neither a more precise physical description of ions in the very distal part of the Bragg peak nor the consideration of radiation damage induced by hyperthermal ions would result in a meaningful improvement of current models for heavy-ion treatment planning.

  16. Experimental evaluation of a negative ion source for a heavy ionfusion negative ion driver

    SciTech Connect

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2005-01-18

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photodetached to neutrals [1,2,3]. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that is used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  17. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. PMID:24136830

  18. Preliminary results from the heavy ions in space experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Beahm, Lorraine P.; Tylka, Allan J.

    1992-01-01

    The Heavy Ions In Space (HIIS) experiment has two primary objectives: (1) to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table; and (2) to study heavy ions which arrive at LDEF below the geomagnetic cutoff, either because they are not fully stripped of electrons or because their source is within the magnetosphere. Both of these objectives have practical as well as astrophysical consequences. In particular, the high atomic number of the ultraheavy galactic cosmic rays puts them among the most intensely ionizing particles in Nature. They are therefore capable of upsetting electronic components normally considered immune to such effects. The below cutoff heavy ions are intensely ionizing because of their low velocity. They can be a significant source of microelectronic anomalies in low inclination orbits, where Earth's magnetic field protects satellites from most particles from interplanetary space. The HIIS results will lead to significantly improved estimates of the intensely ionizing radiation environment.

  19. Electrostatic lens to focus an ion beam to uniform density

    DOEpatents

    Johnson, Cleland H.

    1977-01-11

    A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.

  20. Final Progress Report - Heavy Ion Accelerator Theory and Simulation

    SciTech Connect

    Haber, Irving

    2009-10-31

    The use of a beam of heavy ions to heat a target for the study of warm dense matter physics, high energy density physics, and ultimately to ignite an inertial fusion pellet, requires the achievement of beam intensities somewhat greater than have traditionally been obtained using conventional accelerator technology. The research program described here has substantially contributed to understanding the basic nonlinear intense-beam physics that is central to the attainment of the requisite intensities. Since it is very difficult to reverse intensity dilution, avoiding excessive dilution over the entire beam lifetime is necessary for achieving the required beam intensities on target. The central emphasis in this research has therefore been on understanding the nonlinear mechanisms that are responsible for intensity dilution and which generally occur when intense space-charge-dominated beams are not in detailed equilibrium with the external forces used to confine them. This is an important area of study because such lack of detailed equilibrium can be an unavoidable consequence of the beam manipulations such as acceleration, bunching, and focusing necessary to attain sufficient intensity on target. The primary tool employed in this effort has been the use of simulation, particularly the WARP code, in concert with experiment, to identify the nonlinear dynamical characteristics that are important in practical high intensity accelerators. This research has gradually made a transition from the study of idealized systems and comparisons with theory, to study the fundamental scaling of intensity dilution in intense beams, and more recently to explicit identification of the mechanisms relevant to actual experiments. This work consists of two categories; work in direct support beam physics directly applicable to NDCX and a larger effort to further the general understanding of space-charge-dominated beam physics.

  1. Studies of complex fragment emission in heavy ion reactions

    SciTech Connect

    Charity, R.J.; Sobotka, L.G.

    1992-01-01

    Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production.

  2. Chitosan removes toxic heavy metal ions from cigarette mainstream smoke

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

    2013-09-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

  3. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    PubMed

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue. PMID:9806616

  4. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  5. Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Şengül, M. Y.; Güçlü, M. C.; Mercan, Ö.; Karakuş, N. G.

    2016-08-01

    We calculate the cross sections of electromagnetic productions of muon- and tauon-pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement (Abrahamyan et al., Phys Rev Lett 108:112502, 2012) indicates that the neutrons are differently distributed from the protons; therefore this affects the cross section of the heavy-lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that the Wood-Saxon distribution function is more sensitive to the parameter R compared to the parameter a.

  6. The composition of heavy ions in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.

  7. The composition of heavy ions in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1984-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production. Previously announced in STAR as N83-20886

  8. Late degeneration in rabbit tissues after irradiation by heavy ions

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Keng, P. C.; Lee, A. C.; Su, C. M.; Bergtold, D. S.

    1980-01-01

    Results are presented for investigations of the late effects of heavy-ion irradiation on rabbit tissues which were undertaken to assess the hazards associated with the long-term exposure of humans to heavy ions in space during such activities as the construction of solar power stations or voyages to Mars. White rabbits approximately six weeks old were exposed to various doses of collimated beams of 400-MeV/n Ne ions, 570 MeV/n Ar ions and Co-60 gamma rays directed through both eyes, and the responses of the various tissues (hair follicles, skin, cornea, lens, retina, Harderian glands, bone and forebrain) were examined. Proliferating tissues are found to exhibit high damage levels in the early and late periods following irradiation, while terminally differentiating tissues repond to radiation most intensely in the late period, years after irradiation, with no intermediate recovery. The results obtained from rabbits are used to predict the occurrence of late tissue degeneration in the central nervous system, terminally differentiating systems and stem cells of humans one or more decades following exposure to radiation levels anticipated during long-duration space flights. The studies also indicate that tissues may be prematurely aged in the sense that tissue life spans may be shortened without the development of malignancies.

  9. Study of heavy-ion induced fission for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Antalic, S.; Aritomo, Y.; Comas, V. F.; Düllman, Ch. E.; Gorshkov, A.; Graeger, R.; Heinz, S.; Heredia, J. A.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, H.; Mann, R.; Mitsuoka, S.; Nagame, Y.; Nishinaka, I.; Ohtsuki, T.; Popeko, A. G.; Saro, S.; Schädel, M.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A. V.

    2014-03-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis, and the values were consistent with those determined from the evaporation residue cross sections.

  10. Preferential acceleration of heavy ions in the reconnection outflow region. Drift and surfatron ion acceleration

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Zimbardo, G.; Ukhorskiy, A. Y.; Fujimoto, M.

    2014-02-01

    Context. Many observations show that heating in the solar corona should be more effective for heavy ions than for protons. Moreover, the efficiency of particle heating also seems to be larger for a larger particle electric charge. The transient magnetic reconnection is one of the most natural mechanisms of charged particle acceleration in the solar corona. However, the role of this process in preferential acceleration of heavy ions has still yet to be investigated. Aims: In this paper, we consider charged particle acceleration in the reconnection outflow region. We investigate the dependence of efficiency of various mechanisms of particle acceleration on particle charge and mass. Methods: We take into account recent in situ spacecraft observations of the nonlinear magnetic waves that have originated in the magnetic reconnection. We use analytical estimates and test-particle trajectories to study resonant and nonresonant particle acceleration by these nonlinear waves. Results: We show that resonant acceleration of heavy ions by nonlinear magnetic waves in the reconnection outflow region is more effective for heavy ions and/or for ions with a larger electric charge. Nonresonant acceleration can be considered as a combination of particle reflections from the front of the nonlinear waves. Energy gain for a single reflection is proportional to the particle mass, while the maximum possible gain of energy corresponds to the classical betatron heating. Conclusions: Small-scale transient magnetic reconnections produce nonlinear magnetic waves propagating away from the reconnection region. These waves can effectively accelerate heavy ions in the solar corona via resonant and nonresonnat regimes of interactions. This mechanism of acceleration is more effective for ions with a larger mass and/or with a larger electric charge.

  11. Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Kleis, Thomas; Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.

    1995-01-01

    We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation.

  12. Heavy ion physics at BNL, the AGS and RHIC

    SciTech Connect

    Lowenstein, D.I.

    1985-01-01

    The advent of heavy ion acceleration with the AGS at Brookhaven National Laboratory in 1986 and the proposed Relativistic Heavy Ion Collider (RHIC) for 1990 brings us into a temperature and density regime well above anything yet produced and into a time domain of the early universe of 10/sup -13/-10/sup -6/ seconds. The physics of high energy heavy ions range from the more traditional nuclear physics to the formation of new forms of matter. Quantum Chromodynamics (QCD) is the latest, and as of yet, the most successful theory to describe the interaction of quarks and gluons. The nature of the confinement of the quarks and gluons under extremes of temperature and density is one of the compelling reasons for this new physics program at BNL. There are reasons to believe that with collisions of heavy nuclei at energies in the 10 to 100 GeV/amu range a very large volume of approx. 10 fm/sup 3/ would be heated to 200-300 MeV and/or acquire a sufficient quark density (5-10 times normal baryon density) so that the entire contents of the volume would be deconfined and the quarks and gluons would form a plasma. The kinematic region for the extant machines and the proposed RHIC are shown. At AGS energies the baryons in colliding nuclei bring each other to rest, yielding fragmentation regions of high baryon density. These are the regions in which supernorvae and neutrons stars exist. For energies much higher, such as in RHIC, nuclei are transparent to each other and one can form a central region of almost zero baryon density, mostly pions, and very high temperature. This is the region of the early universe and the quark-gluon plasma. Design parameters and cost of the RHIC are discussed.

  13. Subcutoff microwave driven plasma ion sources for multielemental focused ion beam systems.

    PubMed

    Mathew, Jose V; Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2008-06-01

    A compact microwave driven plasma ion source for focused ion beam applications has been developed. Several gas species have been experimented including argon, krypton, and hydrogen. The plasma, confined by a minimum B multicusp magnetic field, has good radial and axial uniformity. The octupole multicusp configuration shows a superior performance in terms of plasma density (~1.3 x 10(11) cm(-3)) and electron temperature (7-15 eV) at a power density of 5-10 Wcm(2). Ion current densities ranging from a few hundreds to over 1000 mA/cm(2) have been obtained with different plasma electrode apertures. The ion source will be combined with electrostatic Einzel lenses and should be capable of producing multielemental focused ion beams for nanostructuring and implantations. The initial simulation results for the focused beams have been presented. PMID:18601405

  14. MBE-4, a heavy ion multiple-beam experiment

    SciTech Connect

    Avery, R.T.; Chavis, C.S.; Fessenden, T.J.; Gough, D.E.; Henderson, T.F.; Keefe, D.; Meneghetti, J.R.; Pike, C.D.; Vanecek, D.L.; Warwick, A.I.

    1985-05-01

    MBE-4, a heavy-ion multiple beam induction linac being built at LBL in FY85/86, will model many features of a much longer device. It will accelerate four space-charge-dominated cesium ion beams from, for example, 0.2 MeV, 5 mA/beam, 3.0 ..mu..sec, 1.6 m length at injection to approx.0.8 MeV, 15 mA/beam, 1.0 ..mu..sec, 1.1 m length at the exit. It will permit study of simultaneous focussing, acceleration, current amplification and emittance growth of multiple space-charge-dominated ion beams. Some features of this accelerator are described. 11 refs., 5 figs.

  15. Photoproduction at Relativistic Heavy Ion Collider with STAR

    NASA Astrophysics Data System (ADS)

    Gorbunov, Yury

    2010-11-01

    Relativistic heavy ions carry strong transverse electromagnetic fields which can be treated as sources of quasi-real virtual photons. The ions interact through photon-Pomeron and photon-photon collisions at impact parameter more than twice the nuclear radius, so hadronic interactions are suppressed. We present recent results of the STAR experiment at RHIC on 0̂(770) production in AuAu collisions at various energies. STAR is also sensitive to the interference between two production modes: either ion can be the photon emitter or the target. We observed the coherent photoproduction of &+circ;&-circ;π+&-circ;, which maybe attributed to one of the poorly known excited states of 0̂. As well in this talk we will present preliminary results based on data collected during run 10.

  16. Multiple-electron losses in uranium ion beams in heavy ion synchrotrons

    NASA Astrophysics Data System (ADS)

    Bozyk, L.; Chill, F.; Litsarev, M. S.; Tolstikhina, I. Yu.; Shevelko, V. P.

    2016-04-01

    Charge changing processes as the result of collisions with residual gas particles are the main cause of beam loss in high energy medium charge state heavy ion beams. To investigate the magnitude of this effect for heavy ion synchrotrons like the planned SIS100 at GSI, the multiple-electron and the total electron-loss cross sections are calculated for Uq+ ions, q = 10, 28, 40, 73, colliding with typical gas components H2, He, C, N2, O2, and Ar at ion energies E = 1 MeV/u-10 GeV/u. The total electron-capture cross sections for U28+ and U73+ ions interacting with these gases are also calculated. Most of these cross sections are new and presented for the first time. Calculated charge-changing cross sections are used to determine the ion-beam lifetimes τ for U28+ ions which agree well with the recently measured values at SIS18/GSI in the energy range E = 10-200 MeV/u. Using simulations made by the StrahlSim code with the reference ion U28+, it is found that in SIS100 the beam loss caused by single and multiple electron losses has only little impact on the residual gas density due to the high efficiency of the ion catcher system.

  17. Development of a medium-energy superconducting heavy-ion linac.

    SciTech Connect

    Ostroumov, P. N.; Physics

    2002-03-01

    The Rare Isotope Accelerator (RIA) facility project includes a cw 1.4 GeV driver linac and a 100 MV postaccelerator both based on superconducting (SC) cavities operating at frequencies from 48 to 805 MHz. In these linacs more than 99% of the total voltage is provided by SC cavities. An initial acceleration is provided by room temperature radio frequency quadrupoles. The driver linac is designed for acceleration of any ion species, from protons up to 900 MeV to uranium up to 400 MeV/u. The novel feature of the driver linac is an acceleration of multiple charge-state heavy-ion beams in order to achieve 400 kW beam power. This paper presents design features of a medium-energy SC heavy-ion linac taking the RIA driver linac as an example. The dynamics of single and multiple charge-state beams are detailed, including the effects of possible errors in rf field parameters and misalignments of transverse focusing elements. The important design considerations of such linac are presented. Several new conceptual solutions in beam dynamics in SC accelerating structures for heavy-ion applications are discussed.

  18. Nanostructured Arrays Formed by Finely Focused Ion Beams

    SciTech Connect

    Budai, J.D.; Datsos, P.G.; Feldman, L.C.; Heinig, K.-H.; Meldrum, A.; Strobel, M.; Thomas, K.A.; Warmack, R.J.; White, C.W.; Zuhr, R.A.

    1998-11-30

    Amorphous, polycrystalline, and single crystal nanometer dimension particles can be formed in a variety of substrates by ion implantation and subsequent annealing. Such composite colloidal materials exhibit unique optical properties that could be useful in optical devices, switches, and waveguides. However colloids formed by blanket implantation are not uniform in size due to the nonuniform density of the implant, resulting in diminution of the size dependent optical properties. The object of the present work is to form more uniform size particles arranged in a 2-dimensional lattice by using a finely focused ion beam to implant identical ion doses only into nanometer size regions located at each point of a rectangular lattice. Initial work is being done with a 30 keV Ga beam implanted into Si. Results of particle formation as a function of implant conditions as analyzed by Rutherford backscattering, x-ray analysis, atomic force microscopy, and both scanning and transmission electron microscopy will be presented and discussed.

  19. Atomic-scale thermocapillary flow in focused ion beam milling

    SciTech Connect

    Das, K.; Johnson, H. T.; Freund, J. B.

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  20. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    SciTech Connect

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  1. Implementation of an FPGA controller for correction power supplies in heavy ion synchrotron

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Gao, Daqing; Chen, Youxin; Mao, Ruishi; Li, Peng; Zhang, Huajian; Huang, Yuzhen; Li, Min; Cui, Yuan; Yan, Huaihai; Wu, Fengjun; Zhou, Zhongzu; Yuan, Youjin

    2015-03-01

    An orbit correction system is utilized to ensure the excellent beam quality of a synchrotron. As the core components of the orbit correction system, correction power supplies play an important role in correcting orbit. To establish the orbit correction system for a dedicated heavy-ion treatment facilities, we developed some new features and integrated them into the controller for the correction power supplies. Especially, the features focused on the reliability of long-time running and on real-time response to the correction data and trigger events. After the features were verified on a correction power supply, the result showed that the correction power supply could meet the needs of the orbit correction system completely. Furthermore, the results of this study may serve to establish and further research the orbit correction system of heavy-ion synchrotron.

  2. Storm time heavy ion outflow at mid-latitudes

    SciTech Connect

    Yeh, H.C.; Foster, J.C. )

    1990-06-01

    Local ionospheric observations with the Millstone Hill incoherent scatterradar reveal an upward ion bulk velocity in excess of 3 km s{sup {minus} 1} at 1,000 km altitude during the very large magnetic storm on February 8, 1986. The upward flux of O{sup +} ions exceeded 3 {times} 10{sup 9} cm{sup {minus}2} s{sup {minus}1} at 42{degree} geodetic latitude (55{degree} {Lambda}) for a 3-hour period around 18 MLT during the event. Frictinal ion heating with ion temperatures in excess of 4,000 K at 500 km altitude was observed by the radar in the vicinity of the ion outflow event. Satellite observations place the ion outflow event within a region of intense ion and electron precipitation on field lines associated with the storm-perturbed ring current. For a one-dimensional analysis of the observed plasma profiles, continuity considerations indicate a region of intense O{sup +} production (200 cm{sup {minus}3} s{sup {minus}1}) as well as significant upward acceleration (5-10 m s{sup {minus}2}) in the region between 600 km and 800 km altitude where the outflow approaches supersonic speed. Ionizing collisions involving fast backsplash neutral O atoms (Torr et al., 1974) produced by ring current heavy ion precipitation can provide sufficient upward momentum to account for the acceleration in the observed outflowing thermal O{sup +} fluxes. Alternatively, the outflow event can be explained in terms of a time-dependent diffusion process triggered by a sudden change in the frictional heating rate in the collision-dominated F region (St.-Maurice, 1989). The concurrence of rapid ion convection and energetic ring current precipitation is unique at mid-latitudes during intense magnetic storms. Under these conditions, the observations indicate that the mid-latitude ionosphere constitutes a significant source of upflowing thermal O{sup +} fluxes to the overlying magnetosphere.

  3. Simulating Electron Cloud Effects in Heavy-Ion Beams

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Lund, S.W.; Molvik, A.W.; Azevedo, T.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2004-08-04

    Stray electrons can be introduced in heavy ion fusion accelerators as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize here results from several studies of electron-cloud accumulation and effects: (1) Calculation of the electron cloud produced by electron desorption from computed beam ion loss; the importance of ion scattering is shown; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics. We find electron cloud variations that are resonant with the breathing mode of the beam have the biggest impact on the beam (larger than other resonant and random variations), and that the ion beam is surprisingly robust, with an electron density several percent of the beam density required to produce significant beam degradation in a 200-quadrupole system. We identify a possible instability associated with desorption and resonance with the breathing mode. (3) Preliminary investigations of a long-timestep algorithm for electron dynamics in arbitrary magnetic fields.

  4. Heavy-ion irradiation induced diamond formation in carbonaceous materials.

    SciTech Connect

    Daulton, T. L.

    1999-01-08

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond.

  5. Ion energy distribution near a plasma meniscus for multielement focused ion beams

    SciTech Connect

    Mathew, Jose V.; Bhattacharjee, Sudeep

    2009-05-01

    The axial ion energy spread near a plasma meniscus for multielement focused ion beams is investigated experimentally in atomic and molecular gaseous plasmas of krypton, argon, and hydrogen by tailoring the magnetic field in the region. In the case of magnetic end plugging, the ion energy spread reduces by approx50% near the meniscus as compared to the bulk plasma, thereby facilitating beam focusing. A quadrupole filter can be used to control the mean energy of the ions. Comparison with standard Maxwellian and Druyvesteyn distributions with the same mean energy indicates that the ion energy distribution in the meniscus is deficient in the population of low and high energy tail ions, resulting in a Gaussian-like profile with a spread of approx4 and approx5 eV for krypton and argon ions, respectively. By carefully tuning the wave power, plasma collisionality, and the magnetic field in the meniscus, the spread can be made lower than that of liquid metal ion sources, for extracting focused ion beams of other elements with adequate current density, for research and applications in nanosystems

  6. Heavy-ion induced genetic changes and evolution processes

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.; Durante, M.; Mei, M.

    1994-01-01

    On Moon and Mars, there will be more galactic cosmic rays and higher radiation doses than on Earth. Our experimental studies showed that heavy ion radiation can effectively cause mutation and chromosome aberrations and that high Linear Energy Transfer (LET) heavy-ion induced mutants can be irreversible. Chromosome translocations and deletions are common in cells irradiated by heavy particles, and ionizing radiations are effective in causing hyperploidy. The importance of the genetic changes in the evolution of life is an interesting question. Through evolution, there is an increase of DNA content in cells from lower forms of life to higher organisms. The DNA content, however, reached a plateau in vertebrates. By increasing DNA content, there can be an increase of information in the cell. For a given DNA content, the quality of information can be changed by rearranging the DNA. Because radiation can cause hyperploidy, an increase of DNA content in cells, and can induce DNA rearrangement, it is likely that the evolution of life on Mars will be effected by its radiation environment. A simple analysis shows that the radiation level on Mars may cause a mutation frequency comparable to that of the spontaneous mutation rate on Earth. To the extent that mutation plays a role in adaptation, radiation alone on Mars may thus provide sufficient mutation for the evolution of life.

  7. The influence of initial state fluctuations on heavy quark energy loss in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan; Huang, Yajing; Qin, Guang-You; Bass, Steffen A.

    2015-12-01

    We study the effects of initial state fluctuations on the dynamical evolution of heavy quarks inside a quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. The evolution of heavy quarks in QGP matter is described utilizing a modified Langevin equation that incorporates the contributions from both collisional and radiative energy loss. The spacetime evolution of the fireball medium is simulated with a (2 + 1)-dimensional viscous hydrodynamic model. We find that when the medium traversed by the heavy quark contains a fixed amount of energy, heavy quarks tend to lose more energy for greater fluctuations of the medium density. This may result in a larger suppression of heavy flavor observables in a fluctuating QGP matter than in a smooth one. The possibility of using hard probes to infer the information of initial states of heavy-ion collisions is discussed.

  8. Nanopillar growth by focused helium ion-beam-induced deposition.

    PubMed

    Chen, Ping; van Veldhoven, Emile; Sanford, Colin A; Salemink, Huub W M; Maas, Diederik J; Smith, Daryl A; Rack, Philip D; Alkemade, Paul F A

    2010-11-12

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH(3))(3)Pt(C(P)CH(3)) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions. PMID:20947951

  9. Focused ion beam induced deflections of freestanding thin films

    NASA Astrophysics Data System (ADS)

    Kim, Y.-R.; Chen, P.; Aziz, M. J.; Branton, D.; Vlassak, J. J.

    2006-11-01

    Prominent deflections are shown to occur in freestanding silicon nitride thin membranes when exposed to a 50keV gallium focused ion beam for ion doses between 1014 and 1017ions/cm2. Atomic force microscope topographs were used to quantify elevations on the irradiated side and corresponding depressions of comparable magnitude on the back side, thus indicating that what at first appeared to be protrusions are actually the result of membrane deflections. The shape in high-stress silicon nitride is remarkably flat-topped and differs from that in low-stress silicon nitride. Ion beam induced biaxial compressive stress generation, which is a known deformation mechanism for other amorphous materials at higher ion energies, is hypothesized to be the origin of the deflection. A continuum mechanical model based on this assumption convincingly reproduces the profiles for both low-stress and high-stress membranes and provides a family of unusual shapes that can be created by deflection of freestanding thin films under beam irradiation.

  10. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  11. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. |

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  12. Glenn T. Seaborg and heavy ion nuclear science

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. Studies of low energy deep inelastic reactions are discussed, and special emphasis is placed on charge equilibration. Additionally, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions are reported. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  13. Transverse beam dynamics studies of a heavy ion induction linac

    SciTech Connect

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.; Keefe, D.

    1990-08-01

    The multiple beam induction linac experiment (MBE-4) was built to study the accelerator physics of the low energy, electrostatically focussed end of a driver for heavy ion inertial confinement fusion. In this machine four beams of Cs{sup +} ions are accelerated through 24 common induction gaps while being focussed in separate AG focussing channels. Each channel consists of a syncopated FODO lattice of 30 periods. We report results of the most recent studies of the transverse beam dynamics of a single drifting (180 keV) beam in this machine. The dependence of the emittance on the zero-current phase advance shows systematic variations which may be understood in the light of previous theoretical work on this topic. This result, unique to the beam parameters of a linac for heavy ion fusion, will be discussed in the context of its implications for a driver design. In addition we will discuss recent measurements of the motion of the beam centroid through the linac. These measurements, coupled with simulations, have proven to be a powerful tool in determining the presence of misalignment errors in the lattice of the accelerator. 6 refs., 3 figs.

  14. Magnetic field measurement techniques with heavy ion beam probes

    SciTech Connect

    Crowley, T.P.

    1988-08-01

    Spatially (0.1 cm/sup 3/) and temporally (1 ..mu..s) resolved magnetic field measurement techniques using a heavy ion beam probe as a test particle source are described. The measurement of both steady-state and time-varying fields is discussed. The plasma flux function can be determined by measuring the toroidal velocity of the beam ion in an axisymmetric device, because the canonical angular momentum of a particle, P/sub phi/ = qpsi+M..nu../sub phi/R, is conserved in an axisymmetric system. Corrections due to nonaxisymmetry can be significant in tokamaks and must be taken into account for the current profile and fluctuation measurements. The requirements and design of a toroidal velocity detector are discussed. The signals expected in experiments using the Texas Experimental Tokamak (TEXT) heavy ion beam probe with a velocity detector have been calculated, and they are at least two orders of magnitude higher than the amplifier noise for dc measurements of poloidal and ergodic magnetic limiter fields and for sawtooth and MHD oscillations. Low-level turbulence is expected to produce signals below the noise level.

  15. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  16. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  17. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    SciTech Connect

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  18. Overview of theory and modeling in the Heavy Ion Fusion Virtual National Laboratory

    SciTech Connect

    Davidson, R.C.; Kaganovich, I.D.; Lee, W.W.; Qin, H.; Startsev, E.A.; Tzenov, S.; Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Celata, C.M.; de Hoon, M.; Henestroza, E.; Lee, E.P.; Yu, S.S.; Vay, J-L.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-05-01

    This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program, are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. 3-D nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy, and to two-stream interactions between the beam ions and any unwanted background electrons; 3-D particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified the influence of pulse rise time; analytical studies and simulations of the drift compression process have been carried out; syntheses of a 4-D particle distribution function from phase-space projections have been developed; and studies of the generation and trapping of stray electrons in the beam self fields have been performed. Particle-in-cell simulations, involving pre-formed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in NTX and in a fusion chamber.

  19. Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory

    SciTech Connect

    Davidson, R. C.; Kaganovich, I. D.; Lee, W. W.; Qin, H.; Startsev, E. A.; Tzenov, S; Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Henestroza, E; Lee, E P; Yu, S S; Vay, J -L; Welch, D R; Rose, D V; Olson, C L; Celata, C. M.

    2003-04-09

    This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. Three-dimensional (3-D) nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy and to two-stream interactions between the beam ions and any unwanted background electrons. Three-dimensional particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified the influence of pulse rise time. Analytical studies and simulations of the drift compression process have been carried out. Syntheses of a four-dimensional (4-D) particle distribution function from phase-space projections have been developed. And, studies of the generation and trapping of stray electrons in the beam self-fields have been performed. Particle-in-cell simulations, involving preformed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in Neutralized Transport Experiment and in a fusion chamber.

  20. Atmospheric pressure ion focusing with a vortex stream.

    PubMed

    Kolomiets, Yuri N; Pervukhin, Viktor V

    2011-09-30

    For successful operation of ionization analysis techniques an efficient sampling and sample ion transportation into an analytical path are required. This is of particular importance for atmospheric pressure ionization sources like corona discharge, electrospray, MALDI, ionization with radioactive isotopes ((3)H, (63)Ni) that produce nonuniform spatial distribution of sample ions. The available methods of sample ion focusing with electric fields are either efficient at reduced pressure (to 1 Torr) or feature high sample losses. In this paper we suggest to use a highly whirled gas stream for atmospheric pressure ion focusing. We use a (63)Ni radioactive source to produce an ionized bipolar sample at atmospheric pressure. It is shown by experiments that compared to an aspiration method a forced highly whirled vortex stream allows one to enhance the efficiency of remote ionized sample collection at distances equal to the vortex sampler diameter by an order of magnitude. With a vortex stream, a sixfold increase in the efficiency of the radial ionized sample collection has been obtained. It may be deduced that with the vortex stream remote sampling obtains a new feature which is characterized by a considerable enhancement of the efficiency of the ionized sample collection and can be called as a "gas-dynamic" ionized sample focusing. Considered is the effect of recombination losses of the ionized sample during the remote sampling thereof with the vortex sampler. Prospects for a practical implementation of the vortex sampler for solving the problems of the customs control over the smuggling of radioactive α and β sources are made based on the research results. PMID:21872021

  1. Chemical modifications of PET induced by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Steckenreiter, T.; Balanzat, E.; Fuess, H.; Trautmann, C.

    1997-08-01

    Ion induced chemical modifications of polyethylene terephthalate (PET) were studied by Fourier-transform infrared spectroscopy. The irradiations with Kr (8.6 MeV/u) and with Mo (5.6 MeV/u) ions were performed under vacuum and in oxygen atmosphere, respectively. The overall degradation of the polymer was investigated as a function of the ion fluence in the range from 1 × 10 11to 6 × 10 12 ions/cm 2. A significant loss of crystallinity is related to scission processes of the main chains at the ethylene glycol residue. The benzene ring structures show only small changes under irradiation and do not seem to participate in the degradation process significantly. While various degradation processes known from photochemical degradation take place, the creation of alkynes near the track core is found to be a unique process induced by heavy ions. The presence of oxygen during irradiation enhances the overall degradation of PET and leads to enhanced formation of alkynes and CO 2.

  2. Progress on the Los Alamos heavy-ion injector

    SciTech Connect

    Wilson, D.C.; Riepe, K.B.; Ballard, E.O.; Meyer, E.A.; Shurter, R.P.; Van Haaften, F.W.; Humphries, S. Jr.

    1986-01-01

    Heavy-ion fusion using an induction linac requires injection of multiple high-current beams from a pulsed electrostatic accelerator at as high a voltage as practical. Los Alamos National Laboratory is developing a 16-beam, 2-MeV, pulsed electrostatic accelerator for Al/sup +/ ions. The ion source will use a pulsed metal vapor arc plasma. A biased grid will control plasma flux into the ion extraction region. This source has achieved a normalized emittance of epsilon/sub n/ < 3.10/sup -7/..pi..-m-rad with Al/sup +/ ions. An 800 kV Marx prototype with a laser fired diverter is being assembled. The ceramic accelerating column sections have been brazed and leak tested. Voltage hold off on a brazed sample was more than doubled by selective removal of the Ticusil braze fillet extending along the ceramic. A scaled test module held 250 kV for 50 ..mu..s, giving confidence that the full module can hold 175 kV per section. The pressure vessel should be received in June 1986. High-voltage testing of a 1 MV column will begin by early 1987.

  3. Heavy ion upgrade of the Bevatron local injector

    SciTech Connect

    Staples, J.; Gough, R.; Abbott, S.; Dwinell, R.; Halliwell, J.; Howard, D.; Richter, R.; Stover, G.; Tanabe, J.; Zajec, E.

    1984-05-01

    A new heavy ion injector system for the Bevatron, consisting of a PIG ion source, an RFQ linac, and two Alvarez linacs, is nearing completion. It will make available to the Bevatron a source of ions up to mass 40 independent of the SuperHILAC, enhancing the operational flexibility of the Bevalac complex. The RFQ accelerator, made operational in mid 1983, accelerates ions with q/A greater than or equal to 0.14 to 200 keV/n. The RFQ is followed by a new 200 MHz Alvarez linac operating in the 2..beta..lambda mode which further accelerates the ions to 800 keV/n. This linac is followed by a foil stripper and a portion of the old injector linac, rebuilt to accelerate beams with q/A greater than or equal to 0.35 to 5 MeV/n in the 2..beta..lambda mode. Details are given of the configuration, equipment modifications, and project status.

  4. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  5. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  6. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  7. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  8. The Mesozoic Era of relativistic heavy ion physics and beyond

    SciTech Connect

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.

  9. Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Durham, John Matthew

    2011-12-01

    The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.

  10. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.

    1984-01-01

    An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.

  11. Engineering study of a 10 MeV heavy ion linear accelerator

    SciTech Connect

    Fong, C.G.; Fessenden, T.J.; Fulton, R.L.; Keefe, D.

    1989-03-01

    LBL's Heavy Ion Fusion Accelerator Research group has completed the engineering study of the Induction Linac Systems Experiment (ILSE). ILSE will address nearly all accelerator physics issues of a scaled heavy ion induction linac inertial fusion pellet driver. Designed as a series of subsystem experiments, ILSE will accelerate 16 parallel carbon ion beams from a 2 MeV injector presently under development to 10 MeV at one ..mu..sec. This overview paper will present the physics and engineering requirements and describe conceptual design approaches for building ILSE. Major ILSE subsystems consist of electrostatic focusing quadrupole matching and accelerating sections, a 16 to 4 beam transverse combining section, a 4 beam magnetic focusing quadrupole accelerating section, a single beam 180 degree bend section, a drift compression section and a final focus and target chamber. These subsystems are the subject of accompanying papers. Also discussed are vacuum and alignment, diagnostics/data acquisition and controls, key conclusions and plans for further development. 10 refs., 4 figs., 1 tab.

  12. Galactic heavy-ion shielding using electrostatic fields

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1984-01-01

    The shielding of spacecraft against galactic heavy ions, particularly high-energy Fe(56) nuclei, by electrostatic fields is analyzed for an arrangement of spherical concentric shells. Vacuum breakdown considerations are found to limit the minimum radii of the spheres to over 100 m. This limitation makes it impractical to use the fields for shielding small spacecraft. The voltages necessary to repel these Fe(56) nuclei exceed present electrostatic generating capabilities by over 2 orders of magnitude and render the concept useless as an alternative to traditional bulk-material shielding methods.

  13. Theory of transfer reactions in peripheral heavy-ion collisions

    SciTech Connect

    Rapisarda, A. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I-95129 Catania, Italy ); Baldo, M. ); Broglia, R.A. The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen O, Denmark ); Winther, A. )

    1990-03-01

    The total absorption from the elastic channel due to transfer and inelastic processes in peripheral heavy-ion collisions at low bombarding energies is calculated in a microscopic coupled-channel approach. It is demonstrated for the first time that considering the depopulation of the entrance channel as an incoherent depopulation due to transfer processes is a good approximation. Using the corresponding absorptive potential within the framework of the Born approximation to calculate the transfer to individual channels, the results of full coupled-channels calculations are accurately reproduced.

  14. Hard Probes in High-Energy Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Wang, X.

    Hard QCD processes in ultrarelativistic heavy-ion collisionsbecome increasingly relevant and they can be used as probes of the dense matter formed during the violent scatterings. We will discuss how one can use these hard probes to study the properties of the dense matter and the associated phenomenologies. In particular, we study the effect of jet quenching due to medium-induced energy loss on inclusive particle pT distributions and investigate how one can improve the measurement of parton energy loss in direct photon events.

  15. Isotropization and Hydrodynamization in Weakly Coupled Heavy-Ion Collisions.

    PubMed

    Kurkela, Aleksi; Zhu, Yan

    2015-10-30

    We numerically solve the (2+1)-dimensional effective kinetic theory of weak coupling QCD under longitudinal expansion, relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by a color-glass-condensate framework, we find that for Q_{s}=2 GeV and α_{s}=0.3 the system is approximately described by viscous hydrodynamics well before τ≲1.0 fm/c. PMID:26565462

  16. Jets and Vector Bosons in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    de la Cruz, Begoña

    2013-11-01

    This paper reviews experimental results on jets and electroweak boson (photon,Wand Z) production in heavy-ion collisions, from the CMS and ATLAS detectors, using data collected during 2011 PbPb run and pp data collected at an equivalent energy. By comparing the two collision systems, the energy loss of the partons propagating through the medium produced in PbPb collisions can be studied. Its characterization is done using dijet events and isolated photon-jet pairs. Since the electroweak gauge bosons do not participate in the strong interaction, and are thus unmodified by the nuclear medium, they serve as clean probes of the initial state in the collision.

  17. Cellular track model for study of heavy ion beams

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Ngo, Duc M.

    1993-01-01

    Track theory is combined with a realistic model of a heavy ion beam to study the effects of nuclear fragmentation on cell survival and biological effectiveness. The effects of secondary reaction products are studied as a function of depth in a water column. Good agreement is found with experimental results for the survival of human T-l cells exposed to monoenergetic carbon, neon, and argon beams under aerobic and hypoxia conditions. The present calculation, which includes the effect of target fragmentation, is a significant improvement over an earlier calculation because of the use of a vastly improved beam model with no change in the track theory or cellular response parameters.

  18. Latest trends in parts SEP susceptibility from heavy ions

    NASA Technical Reports Server (NTRS)

    Nichols, Donald K.; Smith, L. S.; Soli, George A.; Koga, R.; Kolasinski, W. A.

    1989-01-01

    JPL and Aerospace have collected a third set of heavy-ion single-event phenomena (SEP) test data since their last joint IEEE publications in December 1985 and December 1987. Trends in SEP susceptibility (e.g., soft errors and latchup) for state-of-the-art parts are presented. Results of the study indicate that hard technologies and unacceptably soft technologies can be flagged. In some instances, specific tested parts can be taken as candidates for key microprocessors or memories. As always with radiation test data, specific test data for qualified flight parts is recommended for critical applications.

  19. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  20. Medical applications of nuclear physics and heavy-ion beams

    SciTech Connect

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  1. Heavy ion physics at LHC with the Compact Muon Solenoid

    SciTech Connect

    Bedjidian, M.; Contardo, D.; Haroutunian, R.

    1995-07-15

    The Compact Muon Solenoid (CMS), is one of the two detectors proposed to achieve the primary goal of the LHC: the discovery of the Higgs boson(s). For this purpose, the detector is optimized for the precise measurement of muons, photons, electrons and jets. It is a clear motivation to investigate its ability to measure the hard processes probing the formation of a Quark Gluon Plasma (QGP) in ion collisions. It is the case of the heavy quark bound states, long predicted to be suppressed in a QGP. In CMS they can be detected, via their muonic decay according to the principle adopted for the p-p physics.

  2. Optical model analyses of heavy ion fragmentation in hydrogen targets

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.

    1994-01-01

    Quantum-mechanical optical-model methods for calculating cross sections for the fragmentation of high-energy heavy ions by hydrogen targets are presented. The cross sections are calculated with a knockout-ablation collision formalism which has no arbitrary fitting parameters. Predictions of elemental production cross sections from the fragmentation of 1.2A Ge(V(La-139) nuclei and of isotope production cross sections from the fragmentation of 400A MeV(S-32) nuclei are in good agreement with recently reported experimental measurements.

  3. Nuclear multifragmentation: Antiprotons versus photons and heavy ions

    SciTech Connect

    Cugnon, J.

    1994-09-01

    Nuclear multifragmentation is the phenomenon by which a nucleus breaks into many pieces of intermediate size. It occurs in the excitation-energy regime, between the spallation + evaporation regime and the explosive fragmentation regime. The various models of multifragmentation are briefly reviewed and the possibility of critical behavior in the multifragmentation process is underlined. Unanswered problems are stated. It is shown, by model calculations, that antiproton annihilation is, in many respects, better suited than proton-nucleus and heavy-ion collisions for studying multifragmentation and, in other respects, complementary to these other tools. 36 refs., 17 figs., 1 tab.

  4. Dynamical fission following peripheral heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Strazzeri, A.; Italiano, A.

    2016-02-01

    A closed-form theoretical approach describing in a single picture both the evaporation component and the fast nonequilibrium component of the sequential fission of projectile-like fragments in a peripheral heavy-ion collision is derived and then applied to the dynamical fission observed in the 124Sn+64Ni semiperipheral collision at 35AMeV. Information on the reaction mechanism is obtained such as the opposite polarization effects and the estimate of the “formation-to-fast fission lifetimes” of the fissioning fragment.

  5. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  6. Safety focused modeling of lithium-ion batteries: A review

    NASA Astrophysics Data System (ADS)

    Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F.

    2016-02-01

    Safety issues pertaining to Li-ion batteries justify intensive testing all along their value chain. However, progress in scientific knowledge regarding lithium based battery failure modes, as well as remarkable technologic breakthroughs in computing science, now allow for development and use of prediction tools to assist designers in developing safer batteries. Subsequently, this paper offers a review of significant modeling works performed in the area with a focus on the characterization of the thermal runaway hazard and their relating triggering events. Progress made in models aiming at integrating battery ageing effect and related physics is also discussed, as well as the strong interaction with modeling-focused use of testing, and the main achievements obtained towards marketing safer systems. Current limitations and new challenges or opportunities that are expected to shape future modeling activity are also put in perspective. According to market trends, it is anticipated that safety may still act as a restraint in the search for acceptable compromise with overall performance and cost of lithium-ion based and post lithium-ion rechargeable batteries of the future. In that context, high-throughput prediction tools capable of screening adequate new components properties allowing access to both functional and safety related aspects are highly desirable.

  7. Heavy-Ion Injector for the High Current Experiment

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  8. Neutral cloud and heavy ion inner torus at Saturn

    SciTech Connect

    Johnson, R.E.; Pospieszalska, M.K.; Sittler, E.C. Jr.; Cheng, A.F.; Lanzerotti, L.J.

    1989-02-01

    Voyager plasma data are used in conjunction with laboratory data on water molecule sputter-yields and energy distributions to calculate the morphology of the Saturn neutral water molecule and dissociated water molecule-product torus coexisting with the E-ring and icy satellites of this planet. Plasma production rates determined for this cloud exhibit a structure with distance from Saturn as well as from the orbit plane; this suggests a lack of equilibrium for the heavy ion plasma at less than 7 planet radii. Attention is given to the possibility that the Saturn E-ring may be a precipitate of the neutral cloud that is initiated by low-energy ion-molecule reactions. 61 references.

  9. A Close-Coupled, Heavy Ion ICF Target

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    1998-11-01

    A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).

  10. The response of scintillators to heavy ions: 1, Plastics

    SciTech Connect

    McMahan, M.A.

    1987-10-01

    The response of various scintillator detectors to ions of A = 1-84 and energies E/A = 5 to 30 MeV have been measured, and are found to be linear above an energy of 100 MeV. Results are presented for a typical organic plastic scintillator including parametrizations of the data as a function of Z, A, and energy. These results can be used by anyone using scintillators as heavy ion detectors, with one calibration point giving a normalization that allows use of the whole set of curves. The response functions are compared to previous parametrizations at lower energies and discussed in terms of the theory of delta-ray formation in the scintillator.

  11. The Heavy Ion Fusion Program in the USA

    SciTech Connect

    Bangerter, R.O.

    2000-03-17

    The U.S. Department of Energy has established a new, larger inertial fusion energy program. To manage program growth, we have developed a new inertial fusion energy research and we have established a Virtual National Laboratory for Heavy Ion Fusion. There has been significant technical progress. Improvements in target design have reduced the predicted energy requirements by approximately a factor of two. There have also been important experiments on chamber dynamics and other inertial fusion technologies. The accelerator program has completed a number of small-scale experiments. Experiments with driver-scale beams are being designed -- including experiments with driver-scale ion sources and injectors. Finally we are developing the technologies needed to build a major research facility known as the Integrated Research Experiment (IRE)

  12. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    SciTech Connect

    Not Available

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target.

  13. Nonequilibrium dynamics of the quark-gluon plasma in heavy ion collisions

    SciTech Connect

    Mottola, E.; Cooper, F.; Habib, S.; Kluger, Y.; Paz, J.P.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We have developed field theory and numerical methods for the general problem of quantum back reaction on classical fields, with applications to a wide variety of physical systems. Our main focus was on particle production processes in the time evolution of the quark-gluon plasma following an ultrarelativistic heavy-ion collision. In particular, we studied in some detail the evolution of a disoriented chiral condensate (DCC) produced in the chiral phase transition of nuclear matter in heavy-ion collision experiments. We have also studied dissipation and decoherence as a result of particle production in time-varying mean fields. Numerical codes previously developed for particle production in strong electric fields in quantum electrodynamics (QED) have been modified for the quantum chromodynamics (QCD) problem. We have made specific predictions for energy-momentum flow and pion production in the central rapidity region of experiments to be performed at the Relativistic Heavy-Ion Collider (RHIC).

  14. Nuclear structure and heavy-ion fusion. [Lecture

    SciTech Connect

    Stokstad, R.G.

    1980-10-01

    A series of lectures is presented on experimental studies of heavy-ion fusion reactions with emphasis on the role of nuclear structure in the fusion mechanism. The experiments considered are of three types: the fusion of lighter heavy ions at subcoulomb energies is studied with in-beam ..gamma..-ray techniques; the subbarrier fusion of /sup 16/O and /sup 40/Ar with the isotopes of samarium is detected out of beam by x-radiation from delayed activity; and measurements at very high energies, again for the lighter ions, employ direct particle identification of evaporation residues. The experimental data are compared with predictions based on the fusion of two spheres with the only degree of freedom being the separation of the centers, and which interact via potentials that vary smoothly with changes in the mass and charge of the projectile and target. The data exhibit with the isotopes of samarium, a portion of these deviations can be understood in terms of the changing deformation of the target nucleus, but an additional degree of freedom such as neck formation appears necessary. The results on /sup 10/B + /sup 16/O and /sup 12/C + /sup 14/N ..-->.. /sup 26/Al at high bombarding energies indicate a maximum limiting angular momentum characteristic of the compound nucleus. At lower energies the nuclear structure of the colliding ion seems to affect strongly the cross section for fusion. Measurements made at subbarrier energies for a variety of projectile-target combinations in the 1p and 2s - 1d shell also indicate that the valence nucleons can affect the energy dependence for fusion. About half the systems studied so far have structureless excitation functions which follow a standard prediction. The other half exhibit large variations from this prediction. The possible importance of neutron transfer is discussed. The two-center shell model appears as a promising approach for gaining a qualitative understanding of these phenomena. 95 references, 52 figures, 1 table.

  15. SIMULATION OF INTENSE BEAMS FOR HEAVY ION FUSION

    SciTech Connect

    Friedman, A

    2004-06-10

    Computer simulations of intense ion beams play a key role in the Heavy Ion Fusion research program. Along with analytic theory, they are used to develop future experiments, guide ongoing experiments, and aid in the analysis and interpretation of experimental results. They also afford access to regimes not yet accessible in the experimental program. The U.S. Heavy Ion Fusion Virtual National Laboratory and its collaborators have developed state-of-the art computational tools, related both to codes used for stationary plasmas and to codes used for traditional accelerator applications, but necessarily differing from each in important respects. These tools model beams in varying levels of detail and at widely varying computational cost. They include moment models (envelope equations and fluid descriptions), particle-in-cell methods (electrostatic and electromagnetic), nonlinear-perturbative descriptions (''{delta}f''), and continuum Vlasov methods. Increasingly, it is becoming clear that it is necessary to simulate not just the beams themselves, but also the environment in which they exist, be it an intentionally-created plasma or an unwanted cloud of electrons and gas. In this paper, examples of the application of simulation tools to intense ion beam physics are presented, including support of present-day experiments, fundamental beam physics studies, and the development of future experiments. Throughout, new computational models are described and their utility explained. These include Mesh Refinement (and its dynamic variant, Adaptive Mesh Refinement); improved electron cloud and gas models, and an electron advance scheme that allows use of larger time steps; and moving-mesh and adaptive-mesh Vlasov methods.

  16. ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.

    1989-01-01

    Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.

  17. The effects of swift heavy-ion irradiation on helium-ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Li, B. S.; Du, Y. Y.; Wang, Z. G.; Shen, T. L.; Li, Y. F.; Yao, C. F.; Sun, J. R.; Cui, M. H.; Wei, K. F.; Zhang, H. P.; Shen, Y. B.; Zhu, Y. B.; Pang, L. L.

    2014-10-01

    Cross-sectional transmission electron microscopy (XTEM) was used to study the effects of irradiation with swift heavy ions on helium-implanted silicon. <1 0 0>-oriented silicon wafers were implanted with 30 keV helium to a dose of 3 × 1016 He+/cm2 at 600 K. Subsequently, the helium-implanted Si wafers were irradiated with 792 MeV argon ions. The He bubbles and extended defects in the wafers were examined via XTEM analysis. The results reveal that the mean diameter of the He bubbles increases upon Ar-ion irradiation, while the number density of the He bubbles decreases. The microstructure of the He bubbles observed after Ar-ion irradiation is comparable to that observed after annealing at 1073 K for 30 min. Similarly, the mean size of the extended defects, i.e., Frank loops, increases after Ar-ion irradiation. Possible mechanisms are discussed.

  18. Modeling heavy ion ionization energy loss at low and intermediate energies

    SciTech Connect

    Rakhno, I.L.; /Fermilab

    2009-11-01

    The needs of contemporary accelerator and space projects led to significant efforts made to include description of heavy ion interactions with matter in general-purpose Monte Carlo codes. This paper deals with an updated model of heavy ion ionization energy loss developed previously for the MARS code. The model agrees well with experimental data for various projectiles and targets including super-heavy ions in low-Z media.

  19. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    PubMed

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-01

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater. PMID:26913810

  20. Overview of the hypernuclear production in heavy-ion collision experiments

    NASA Astrophysics Data System (ADS)

    Rappold, Christophe

    2016-01-01

    In the last decade, heavy-ion collision experiments have brought new insight to the study of hypernucleus. Experiments using ion induced reactions for hypernuclear research focus on two distinct aspects: the spectroscopy and probing the nuclear reaction. In the case of the experimental spectroscopy, the internal structure of hypernuclei is investigated in order to determine the baryon-baryon interaction in the strangeness sector for the hyper-matter equation of state. The dynamical aspect of the nucleus-nucleus reaction can also be explored by studying the production of hypernuclei. The experimental observations of the production mechanisms responsible for the formation of the hypernuclei in ion collisions will be presented. Depending of the center-of-mass energy and the type of experiment, fixed target or collider, hypernuclei can be produced in the mid-rapidity and/or in the spectator regions. The experimental results from both cases will be presented and discussed.